
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Layout-tree-based approach for identifying
visually similar blocks in a web page

Zeng, Jun
Graduate School of Information, Science and Electrical Engineering, Kyushu University

Flanagan, Brendan
Graduate School of Information, Science and Electrical Engineering, Kyushu University

Hirokawa, Sachio
Research Institute for Information Technology, Kyushu University

https://hdl.handle.net/2324/1442112

出版情報：2013 IEEE/ACIS 12th International Conference on Computer and Information Science,
ICIS 2013 - Proceedings, pp.65-70, 2013-10-31
バージョン：
権利関係：

Layout-Tree-based Approach for

Identifying Visually Similar Blocks in a Web Page

Jun Zeng

Graduate School of Information

Science and Electrical Engineering,

Kyushu University,

Fukuoka, Japan

zeng.j.000@s.kyushu-u.ac.jp

Brendan Flanagan

Graduate School of Information

Science and Electrical Engineering,

Kyushu University,

Fukuoka, Japan

bflanagan.kyudai@gmail.com

Sachio Hirokawa

Research Institute for Information

Technology,

Kyushu University,

Fukuoka, Japan

hirokawa@cc.kyushu-u.ac.jp

Abstract— When extracting information from a web page, IE

systems usually need to perform pattern recognition to identify

the elements that have similar patterns. However, most of them

are mainly based on analyzing HMTL source code, DOM tree,

tag tree or Xpath of web pages. These methods are language-

dependent, or more precisely, HTML-dependent. They have

some insuperable limitations. In order to overcome these

limitations, we propose a notion of layout-tree and a pattern

recognition method to identify visual blocks with similar visual

pattern using layout tree. In this paper, we call a visible

rectangular region in a web page a visual block or block for

short. We consider if the elements of two blocks are displayed

in a similar layout, we define that the two blocks are visually

similar. We first transform the layout into a layout tree. By

calculating the similarity of the layout trees of two blocks, we

can determine whether the two blocks are visually similar or

not. The result of experiment shows that the layout tree is an

effective method to identify visually similar blocks.

Keywords-layout tree; pattern recognition; visually similar;

information extraction.

I. INTRODUCTION

The Web, as the largest database, often contains
information that may be interesting for researchers and the
general public. However, the quantity of information
available today is more than at any point in history, but with
this wealth of information comes even greater challenges.
Unlike structured database, Web pages are semi-structured
data. Due to the lack of structure of web information sources,
access to this huge collection of information has been limited
to extracting and searching automatically. The process that
extracts information from semi-structured data (such as web
pages) and translates the information into structured data is
called Information Extraction (IE) [1].

Programs that perform IE task are referred to as
extractors or wrappers. Wrappers are used to identify data of
interest and map them to some suitable format such as, XML
or relational tables. In order to identify the elements with
similar pattern, a wrapper usually performs pattern
recognition which rely on a set of extraction rules. These
rules are mainly based on analyzing the HMTL source code,
Document Object Model (DOM) tree [2, 3], tag tree [4, 5] or
Xpath [6, 7] of web pages. These methods have some

insuperable limitations. They depend on web page
programming languages. With the reversion of these
languages, some new tags will be introduced and some tags
may be deprecated. For example, by comparison with
HTML4, HTML5 adds many new syntactic features, such as
<video>, <audio> and <canvas> elements. Also, some
elements, such as <a>, <cite> and <menu> have been
changed. Once the version of languages changes, these
methods are not able to adapt to the new version of the
language. Thus the life circle of these methods is very short.

In order to overcome these limitations, vision-based
methods have been proposed [8, 9]. These methods rely on
visual cues from browser renderings. Most of the vision-
based methods focus on the location, size or font features of
elements. However, these approaches can only be applied to
certain web page templates. For example [9] clusters the data
records through analyzing the similarity of position, image
size and font size of the elements and consider that the main
contents or data records are always in the middle of web
page. Even though such assumptions are important for the
success of the algorithm, it is hard to see how the proposed
approaches can be used for pages with other semantic
structures.

Besides the HTML structure and visual cues, there is
another important feature that is often ignored. That is
relative position of elements. Some may consider relative
position as a visual property. Strictly speaking, relative
position is different from other visual properties. The visual
properties such as position, size and font size only refers to
just one single element, but relative position refers to at least
two elements. In other words, the visual properties like
position, size and font size are absolute and a single tuple,
but layout is relative and therefore a double tuple. The
relative positions of the elements can form the layout of
these elements. In this paper, we translate the layout feature
into a tree structure called layout tree and propose a pattern
recognition method to identify visual block (see Section III
for definition) with similar visual pattern using layout tree.

The rest of the paper is organized as follows: Related
works are reviewed in Section II. Visual block and layout
feature are introduced in Section III. Our solution for identify
visually similar block is described in Section IV.

Experimental results are reported in Section V. Finally,
conclusion and future work are given in Section VI.

II. RELATED WORK

In the past few years, many approaches to information
extraction have been proposed. According to the pattern
recognition rules, we roughly divide these approaches into
two groups: HTML-based approaches and vision-based
approaches.

A. HTML-based Approaches

HTML source code is often transformed into three forms:
DOM tree, tag tree, xpath and tag path. These approaches
identify the similar patterns by calculating the similarity or
distance of DOM tree, tag tree, xpath or tag path of elements.

1) DOM tree: Analyzing the DOM tree is a basic and

effective way to identify the structure feature of HTML

documents. D. Yuan et al. [2] consider the nodes labeled

"div" as topic content node, which may contain the

important information. They prune back the noise nodes

which are not topic node and extract the information from

the pruned DOM tree. C. Castillo et al. [3] defined the

length of the path between two nodes of a DOM tree as

DOM distance. This method is based on DOM distance and

can extract information from single webpages or collections

of interconnected webpages.

2) Tag tree: The tag tree can be regarded as a simplified

DOM tree. It focuses on the tag name of HTML elements

and igores the other attributes and properties. X. Ji et al. [4]

parsed web pages into tag trees, and then generated

templates using a cost-based tree similarity measurement.

The exclusive content in each page is then extracted by

using the templates to parse the page. Finally, the records in

pages and the schema of the records can be extracted from

the exclusive content by finding repeating patterns and

using some heuristic rules. X. Xie et al. [5] transfered a

distinct group of tag paths appearing repeatedly in the DOM

tree of the Web document to a sequence of integers, from

which a suffix tree is built by using this sequence. Then they

captured the useful data region patterns which can be used

to extract data records.

3) Xpath or tag path: Similar to the tag tree, the Xpath

or tag path makes use of the tag name of HTML elements to

analyze the structure of HTML documents. G. Miao et al.

[6] focuses on how a distinct tag path appears repeatedly in

the DOM tree of a Web document. Instead of comparing a

pair of individual segments, a pair of tag path occurrence

patterns were compared to estimate how likely these two tag

paths represent the same list of objects. T. Grigalis et al. [7]

mainly segment a web page using xpath. This method

clusters visually and structurally similar repeating web page

elements to identify the underlying data records.
All of these approaches are language-dependent, or more

precisely, HTML-dependent. Once the version of languages
changes, these methods are not able to adapt to the new

version of the language. Moreover, an HTML document is
just one part of a web page. Web pages also need the support
of some script languages, such as: Javascript and Cascading
Style Sheets (CSS). Although, these script languages have
little semantic function, they play an irreplaceable role and
contain a lot of valuable information. In other words, an
HTML file cannot be equated with a web page. Simply
analyzing the web page programming language may lead to
incorrect results.

B. Vision-based Approaches

Vision-based approaches rely on visual cues from
browser renderings. Most of the vision-based methods focus
on the location, size or font features of elements. These
approaches can make good use of the visual information that
is defined by Javascript or CSS.

J. Kang et al. [8] proposed an informative block
extraction approach. This approach relies on visual clue for
vision-based page block segmentation to analyze and
partition a web page into a set of visual blocks, and then
groups related blocks with similar content structures into
block clusters by using a tree edit distance method. Then it
recognizes the informative block cluster by using tree
alignment and tree matching. W. Liu et al. [9] proposed a
vision-based IE method that primarily utilizes the visual
features on the deep Web pages to implement deep Web data
extraction, including data record extraction and data item
extraction.

However, these approaches can only be applied to certain
web page templates and often need to make some
assumptions. As these assumptions are integral to the success
of the algorithm, it is hard to see how the proposed
approaches could be used for pages with other semantic
structures.

III. VISUALLY SIMILAR BLOCKS

A. Definition of Visual Block

Figure 1. The structure of visual blocks.

A web page is made up of finite blocks. We also call
these blocks visual block or block for short. We consider a
visual block as a visible rectangular region on a web page, as
shown in Figure 1. The definition of a visual block is as
follows:

Definition III-1: Visual block VB = (E, R), where E is an
Element object that is defined by the HTML DOM based on
W3C standard, and R represents the visible rectangular
region where VB is displayed in web page.

According to W3C standard, the Element object of the
DOM represents an element in the HTML document. The
details of Element object can be found in official website of
W3C [10]. The Element object not only contains the
attributes of an HTML element, such as “tagName”, “id”,
“value” etc., but also contains the properties defined by the
DOM, such as “childNodes”, “nextSibling”, etc.

Definition III-2: For two given visual blocks VB1= (E1,
R1) and VB2 = (E2, R2), if E1 is a descendant node of E2, then

VB2 includes VB1, denoted VB1 ⊂ VB2.

Definition III-3: If a visual block VB= (E, R) does not
include any other visual blocks, then VB is a leaf visual block,
denoted VB : leaf.

B. Visually Similar Blocks

(a) (b)

Figure 2. (a) and (b) are two visually similar blocks.

Definition III-4: For two given visual blocks VB1 and
VB2, if the leaf visual blocks of VB1 and VB2 are displayed in
a similar layout, we define that VB1 and VB2 are visually
similar.

It should be noted that only the layout of leaf blocks are
considered. This is because the leaf blocks contain contents
such as text, images etc. The other intermediate visual blocks
do not contain content, so they are ignored. Figure 2 shows
two records of tablet computers. Although the contents of
two records are not all the same, the main layout is similar.
In both two records, a picture is on the top of records; the
product names are under the pictures; the prices are under the
product names; evaluations are on the bottom of records.
The (a) record contains some additional contents, but the
layout of “picture”, “name”, “price” and “evaluation” is the
same in both (a) and (b). According to Definition III-4, (a)
and (b) are visually similar blocks.

IV. LAYOUT TREE OF VISUAL BLOCKS

A. The Layout of Visual Blocks

In this section, a description of layout is given and the

creation of layout tree is introduced.

For a visual block B, where B is not a leaf block, the
layout of B is represented as a two-tuples Layout(B) = (LB,

S). LB = {bi |bi : leaf and b ⊂ B, i ∊ [1, n]} is a finite

sequence of leaf blocks that are included by B. All these
blocks are not overlapping. The order of the leaf blocks are
determined by depth-first traversal of the DOM tree. S = {s1,
s2, … , sn-1} is a finite sequence of separators, including
horizontal separators and vertical separators. The direction of
a separator is a simple and effective way to describe the
relative position. If the separator is horizontal, it means the
relative position of the two parts that are on the two sides of
the separator is up-down. If the separator is vertical, it means
the relative position is left-right. It should be noted that a
separator never crosses any blocks.

Figure 3. An example of the layout of a visual block.

Figure 3 shows an example of the layout of a visual block.
In Figure 3, the solid line rectangles represent the leaf blocks
and dotted lines represent the separators. All the intermediate
blocks are ignored, because if they are considered the visual
blocks may overlap each other, which will make it difficult
to determine the separators. Therefore only the leaf blocks
are considered to describe the layout of a visual block.

B. The Layout Tree of Visual Block

The separators can be considered as nodes of a tree, and
the two smaller parts can be considered as the left sub-tree
and the right sub-tree. Generally, if the separator is
horizontal, the upper part is left sub-tree and lower part is the
right sub-tree. If the separator is vertical, the left part is left
sub-tree and right part is right-tree. Therefore, the layout of a
visual block can be regarded as a tree. We call the tree a
“layout tree”. In this section, we introduce how to determine
each separator and generate a layout tree.

We take the visual block in Figure 3 for example to
explain the process of generating a layout tree as shown in
Figure 4. Let us suppose that the ordered set of the leaf
blocks {b1, b2, b3, b4} have been figured out. First, {b2, b3, b4}
are considered as a whole. There is a separator S1 between b1
and {b2, b3, b4}. In Figure 4 (a) the first separator S1 splits the
block into two parts P1 and P2. Then the S1 is considered as
the root, the upper part P1 is the left sub-tree and the lower
part P2 is the right sub-tree. After that, the two sub-trees are
checked to see if contain a separator. In Figure 4 (b), P1
contains only the leaf block b1 and does not contain any
separators. There is no need to separated P1 anymore, so P1
is replaced by b1. The right sub-tree P2 contains three leaf

blocks {b2, b3, b4}, so it needs to be separate further.
Similarly, {b3, b4} could be considered as a whole, however,
there are not any separators between b2 and {b3, b4}.
Therefore {b2, b3} is considered as a whole as there is a
separator S2 between {b2, b3} and b4. S2 separates P2 into two
smaller parts. The upper part P2_1 is the left sub-tree and the
lower part P2_2 is the right sub-tree. In Figure 4(c), b4
replaces the P2_2 that is because b4 is the only one leaf block
that is contained in P2_2. P2_1 is separated by S3 into P2_1_1
and P2_1_2. Finally, P2_1_1 is replaced by b2 and P2_1_2 is
replaced by b3 as both P2_1_1 and P2_1_2 contain only leaf
block. Figure 4(d) shows the final layout tree of the visual
block.

C. Weight of Layout Tree

The contribution of different leaf blocks to the layout is
different. For example in Figure 3, b1 is more important than
any other leaf blocks. If b1 disappeared then the layout would
change a lot. Conversely, if b2 or b3 disappeared the change
of the layout is much less. Here, we call this contribution or
importance “weight”. For a leaf block bi the Weight(bi) is
calculated as in formula (1) :

)Area(

)Area(
)Weight(

B

b
b i

i  (1)

Here B is the visual block where bi is in, Area(bi) and
Area(B) represent the area of bi and B. In other words, in the
same visual block, the leaf block with greater area has
greater weight.

Similar to the leaf blocks, each separator has weight. It is
not hard to notice that each separator can separate the current
rectangular region and leaf blocks into two smaller parts.
Therefore the weight Weight(Si) of a separator Si is
calculated as formula (2):

)Area(

)}Area(),{Area(
)Weight(21

B

PPMin
Si  (2)

Here B is the visual block containing Si, P1 and P2 are the
two smaller parts that are separated by Si. Area() represents
the area. Let us go back to the example of Figure 3, it is
obvious that the order of the weight of the three separators is
Weight(S1) > Weight(S2) > Weight(S3). Particularly, if
Area(P1) + Area(P2) = Area(B) and Area(P1) = Area(P2), the
Weight(Si) will be the maximum value 1/2.

D. Similarity of Layout Trees

According to Definition III-4, if two blocks has a similar
layout feature, they are visually similar blocks. The
similarity of layout trees can be regarded as the similarity of
blocks. There are many algorithms to calculate the structural
similarity between trees, in which the Tree Edit Distance
(TED) is a simple and efficient algorithm [11]. We apply the
TED algorithm to measure the similarity between layout
trees. The edit distance, ED(T1, T2), between two trees T1 and
T2 is defined as the minimum cost to transform T1 to T2 by
using insertion, deletion, and replacement operations on
nodes. See paper [11] for the detail of TED algorithm.

Basing on the TED algorithm and the features of layout
tree, we introduce the cost functions to calculate the cost of
operations. Formula (3) and formula (4) show the cost
functions of insertion and deletion operations:

)Weight()Insert(nn  (3)

)Weight()Delete(nn  (4)

Here n is a node of a layout tree, and Weight(n) is the

weight of n. That is to say if insert n into a tree or delete n

from a tree the cost will be the weight of n. The greater the

weight is the greater the cost will be. Similarly, the cost

function of a replacement operation is calculated as in

formula (5)








)(

)(

)Weight()Weight(

0
),Re(

21

21

21

21
ndiffn

nsimn

nn
nn (5)

Here n1 sim n2 represents n1 and n2 are similar, and n1 diff n2

represents n1 and n2 are not similar. As introduced in

(a)

(b)

(c)

(d)

Figure 4. The process for layout tree generation.

previous section, there are two types of nodes in a layout

tree: separator nodes and leaf block nodes. Moreover, there

are two directions in separator nodes: horizontal and vertical.

As for leaf block nodes, we roughly divide them into two

types: image nodes and text nodes. The following rules are

used to determine whether n1 and n2 are similar or not:

Rule 1: If node n1 and node n2 are different types (one is a

separator node and the other is a leaf block node), then n1

diff n2.

Rule 2: If both node n1 and n2 are separator nodes, and the

directions of n1 and n2 are different (one is horizontal and

the other one is vertical) then n1 diff n2. Otherwise, n1 sim n2.

Rule 3: If both node n1 and n2 are leaf block nodes, and the

types of n1 and n2 are different (one is image node and the

other one is text node) then n1 diff n2.

Rule 4: If both node n1 and n2 are image nodes, then n1 diff

n2.

Rule 5: If both node n1 and n2 are text nodes, and n1 and n2

have the same font and font size, then n1 sim n2. Otherwise

n1 diff n2.

After the edit distance of two layout trees are determined,

the similarity of them can be calculate. Let T1 and T2 be two

layout trees. ED(T1, T2) is the edit distance of T1 and T2. The

similarity of T1 and T2 can be calculated as in formula (6):

 


)}Weight(),Weight({

),ED(
),Sim(21

21

ii mnMax

TT
TT (6)

Here ni is a node in T1 and mi is a node in T2. The

denominator of formula (6) represents the greater weight of

the layout tree T1 and T2. The similarity of T1 and T2 has the

following features:

(1)]1,0[),Sim(21 TT

(2) If Sim(T1, T2) is closer to 0, then T1 and T2 are have a

greater similarity; if Sim(T1, T2) is closer to 1, then T1 and T2

are have greater different. We introduce a threshold α. If

Sim(T1, T2) ≤ α, then T1 and T2 are similar, otherwise they

are different.

V. EXPERIMENT AND EVALUATION

TABLE I. RESULTS OF EXPERIMENT

Type Site URL

Online

Shopping

Sites

Amazon http://www.amazon.co.jp/

Rakuten http://www.rakuten.co.jp/

Kakaku http://kakaku.com/

News

Sites

Google news https://news.google.com/

Yahoo news http://headlines.yahoo.co.jp/

Goo news http://news.goo.ne.jp/

Video

Sites

YouTube http://www.youtube.com/

MSN Video http://video.jp.msn.com/

SNS and

Blog Sites

Twitter https://twitter.com/

Laplog http://www.yaplog.jp/

In this section, an experiment is conducted. The goal of
the experiment is to determine whether the layout tree can
identify visually similar blocks accurately and effectively.

We collected data from 10 different web sites, in order to
guarantee the diversity of the data set. The 10 web site can
be roughly divided into four types: online shopping sites,
news sites, video sites, SNS and blog sites. TABLE I shows
the sites and URLs. For each site, we submitted 10 queries
and collected one search result page for each query. Finally,
we collected 10 * 10 = 100 pages as the data set.

In the search result pages of each site, the search result
blocks have a similar layout feature. The set of search result
blocks in each page is denoted SRB. The set of identified
layout similar block is denoted IB. The precision, recall and
F-Measure were used as the evaluation criteria, and the
definitions of them are shown as in formula (7):

}{

||
Precision

IBNum

IBSRBNum 


}{

||
Recall

SRBNum

IBSRBNum 


RecallPrecision

RecallPrecision2
F




 (7)

Empirically, we let the threshold α be 0.4 and conducted

an experiment to identify these search result blocks using the
layout tree as pattern recognition rule. TABLE II shows the
experiment result of each site and the average result. The
average precision reached 0.9923 and the average recall
reached 0.9843. It shows that the layout tree method can
identify the layout similar blocks accurately and effectively.

TABLE II. RESULTS OF EXPERIMENT

Site Precision Recall F

Amazon 0.9889 0.9528 0.9705

Rakuten 0.9814 0.9653 0.9732

Kakaku 0.9882 0.9712 0.9796

Google news 1.0000 1.0000 1.0000

Yahoo news 1.0000 1.0000 1.0000

Goo news 1.0000 1.0000 1.0000

YouTube 1.0000 1.0000 1.0000

MSN Video 1.0000 0.9823 0.9910

Twitter 0.9728 0.9712 0.9720

Laplog 0.9912 1.0000 0.9955

Average 0.9923 0.9843 0.9882

VI. CONCLUSION AND FUTURE WORK

When extracting information from web pages, IE systems
usually need to perform pattern discovery to identify the
elements that have similar patterns. However, most of the
pattern recognition methods are mainly based on analyzing
HMTL source code, such as: DOM tree, tag tree or Xpath of
web pages. These methods are language-dependent, or more
precisely, HTML-dependent. They have some insuperable
limitations. In order to overcome these limitations, we

proposed a pattern recognition method to identify visual
blocks with similar visual patterns using layout tree. In this
paper, we call a visible rectangular region on a web page a
visual block or block for short. We consider if the elements
of two blocks are displayed in a similar layout, we define
that the two blocks are visually similar. We used the
separators to transform the layout of a block into a tree
structure called layout tree. By calculating the similarity of
the layout trees of two blocks, we can determine whether the
two blocks are visually similar or not. The result of
experiment showed that the layout tree is an effective
method to identify visually similar blocks.

The layout-tree-based pattern recognition method can be
applied to many fields, such as: information extraction,
pattern reorganization and data mining. In the future, we plan
to develop an IE system to extract data records from web
pages using the layout tree method.

REFERENCES

[1] C. Chang, M. Kayed, M. Girgis, and K. Shaalan, "A Survey of Web
Information Extraction Systems", IEEE Transactions on Knowledge
and Data Engineering, Vol. 18, Issue 10, 2006, pp. 1411-1428.

[2] D. Yuan, Z. Mo, B. Xie, and Y. Xie, "The Technology of Extracting
Content Information from Web Page Based on DOM Tree",
Communications in Computer and Information Science Volume 144,
2011, pp. 271-278.

[3] C. Castillo, H. Valero, J. Ramos, and J. Silva, "Information extraction
from webpages based on DOM distances", Lecture Notes in
Computer Science Volume 7182, 2012, pp. 181-193.

[4] X. Ji, J. Zeng, S. Zhang, and C. Wu, "Tag tree template for Web
information and schema extraction", Expert Systems with
Applications Volume 37, Issue 12, 2010, pp. 8492–8498.

[5] X. Xie, Y. Fang, Z. Zhang and L. Li, "Extracting data records from
web using suffix tree", Proc. ACM SIGKDD Workshop on Mining
Data Semantics (MDS '12), 2012, Article No. 12.

[6] G. Miao, J. Tatemura, W. Hsiung, A. Sawires, and L. E. Moser,
"Extracting data records from the web using tag path clustering", Proc.
the 18th international conference on World wide web(WWW 09),
2009, pp.981-990

[7] T. Grigalis and A. Čenys, "Generating Xpath Expressions for
Structured Web Data Record Segmentation", Communications in
Computer and Information Science Volume 319, 2012, pp. 38-47.

[8] J. Kang and J. Choi, "Recognising informative web page blocks using
visual segmentation for efficient information extraction", Journal of
Universal Computer Science, Vol. 14, No. 11, 2008, pp. 1893-1910.

[9] W. Liu, X. Meng, and W. Meng, "Vide: A vision-based approach for
deep web data extraction", IEEE Transactions on Knowledge and
Data Engineering, Vol. 22, Issue 3, 2010, pp. 447-460.

[10] http://www.w3.org/

[11] K. Zhang and D. Shasha, "Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems", SIAM J. COMPUT,
Vol. 18, No, 6, 1989, pp. 1245-1262.

