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Abbreviation 

MS Mass spectrometry 

m/z Mass to charge 

GC Gas chromatography 

LC Liquid chromatography 

CE Capillary electrophoresis  

RT Retention time 

EI  Electron impact (ionization) 

ESI Electrospray ionization 

MALDI Matrix-assisted laser/desorption ionization 

Q  Quadrupole 

IT  Ion trap 

TOF Time of flight 

FT-ICR Fourier transform-ion cyclotron resonance 

CID Collision-induced dissociation 

PTS Phosphotransferase sugar uptake system 

9-AA 9-Aminoacridine 

F6P Fructose 6-phosphate (hexose phosphate) 

6PG 6-Phosphogluconate 

GSH Glutathione (reduced form) 

dTMP Thymidine monophosphate 



 

 

CMP Cytidine monophosphate 

UMP Uridine monophosphate 

F16P Fructose 1,6-bisphosphate 

AMP Adenosine monophosphate 

GMP Guanosine monophsphate 

dTDP Thymidine diphosphate 

CDP Cytidine diphosphate 

UDP Uridine diphosphate 

ADP Adenosine diphosphate 

GDP Guanosine diphsphate 

dTTP Thymidine triphosphate 

CTP Cytidine triphosphate 

UTP Uridine triphosphate 

ATP Adenosine triphosphate 

GTP Guanosine triphsphate 

NADH Nicotinamide adenine dinucleotide 

dTDPg Thymidine diphosphate 4-oxo-6-deoxy-glucose 

UDPG Uridine diphosphate glucose 

dTDPa Thymidine diphosphate 3-Acetamido-3,6-dideoxy-galactose 

UDPGN Uridine diphosphate N-acetylglucosamine 

GSSH Glutathione (oxydated form) 

NADPH Nicotinamide adenine dinucleotide phosphate 

CoA Coenzyme A 



 

 

AcCoA Acetyl coenzyme A 

PCA Principal component analysis 

CRA Centering resonance analysis 

CA Correspondance analysis 

GGM Gaussian graphical model 
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1.1 Metabolites in dynamics of cellular system 

This study aimed at cultivating a systematic view for the metabolic network of 

microorganisms, as a model system. Systematic understanding of metabolism would allow to 

control, enhance and expand the metabolic system as desired. In addition to bio production, 

the benefit of systematic view would further influence food, material and medical science. 

Experimentally, we exploited a time-course profile of metabolite abundances with an 

untargeted method, which could be called dynamic metabolomics. This section aims to 

provide a basic knowledge and a general background of metabolomic study, and the 

relevance of analyzing the dynamics of microbial metabolome. Although there are numerous 

types of applications with a partial to full use of metabolomics, we mention these facts with 

only a limited extent. 

1.1.1 What'is'metabolite?'

Metabolite is a class of organic low-molecular-weight compounds that are formed in 

the metabolism of a living organism and found in biofluids or cells (including tissues and 

organs). Small peptides such as the tripeptide glutathione are also metabolites, while 

polymerized compounds including proteins or nucleic acids, direct products of gene 

expression, are usually not considered as metabolites (Smolinska et al. 2012). There are two 

classes of metabolites: primary and secondary metabolites. The first can be found in living 

species with a broad distribution, and is essential component of central metabolism involved 

with energy production, growth, or development process. Secondary metabolites, such as 
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alkaloids or hormones, involve with non-essential but important biological functions specific 

to species (Herbert 1989). Since secondary metabolites are synthesized from a part of 

primary metabolites, it is still important to investigate the dynamics of primary metabolites in 

the study of the secondary metabolite synthesis with a systematic view. 

1.1.2 Metabolome'and'metabolomics'

Metabolome is defined as the comprehensive set of metabolites produced or present 

in a biosystem (Dunn et al. 2005). Metabolomics, a study of metabolome, is an emerging 

discipline following to proteomics, transcriptomics and genomics, which represent the 

‘omics’ study of protein, mRNA and DNA, respectively. Such high-throughput and 

quantitative technologies are key progresses that have been leading an innovation in the life 

sciences, as the systems biology. (Hood 2003, van der Greef et al. 2007). In human, the 

number of primary metabolites is no more than a few thousands. However, it is still much 

lower than the number of genes (>30,000), RNA transcripts (>100,000) or proteins 

(>1,000,000) that exist in the body, while a comprehensive metabolome analysis is currently 

difficult. In addition, primary metabolites are largely identical across species as well as 

different cells in a human body. Hence, metabolomics is expected to lead to a simpler but 

inclusive view of biological system in organisms. This fact is one of major factors boosting 

the metabolomic studies. Metabolite analysis itself is of course not a new research field. The 

notion of metabolomics has formed on the basis of the accumulating knowledge of 

metabolism, advances of analytical tools and bioinformatics. 

1.1.3 Metabolite'as'context7dependent'phenotype'

Metabolites are often referred to as the compound-level phenotype or the functional 
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endpoint, reflecting genetic traits of the organism and environmental context. A quantitative 

snapshot of metabolome, metabolic profile, serves as “fingerprints” that should correlate with 

the phenotypes (Fiehn 2001, Bernini et al. 2009). Metabolomics is also an important topic in 

quantitative biology (Griffin 2006, Oldiges et al. 2007, Mapelli et al. 2008). Due to its 

closeness to the phenotype, metabolic profile is presumably affected by 

environmental/genetic alteration, e.g. disease or gene modification, in an immediate manner. 

Metabolite profiling has thus received much attention as a promising tool for clinical systems 

biology to detect early metabolic perturbations, even before the appearance of disease 

symptoms (van der Greef et al. 2007). Recent advances in metabolomic study were 

encouraged by complementation of other omics study, i.e. genomics, transcriptomics and 

proteomics (Trauger et al. 2008, Suhre et al. 2011, Nicholson et al. 2011). 

In contrast to DNA sequence as a basic and static blueprint of an organism, gene 

expression and following biosyntheses and bioconversions involve with dynamics. 

Consequently, depending on the time-scale of interest, the implication of metabolome data 

will undergo distinct interpretation. For example, Dunn et al. traced the the flux of 

metabolites in seconds with comparison to turnover in proteome which is measured in 

minutes to hours (Dunn et al. 2011). It has been demonstrated that metabolome dynamics can 

serve as great source for inferring dynamics of metabolic network both theoretically (Cakır et 

al. 2009) and experimentally (Sriyudthsak et al. 2013). Inferring biological network using 

dynamic ‘omics’ data can expand our view of systematic structure of metabolism. Metabolic 

network inference using dynamic metabolomic data has long been discussed (Sontag et al. 

2004). 
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1.2 Technical basics for high-throughput metabolomics 

In this section, the current state of analytical techniques for metabolomics is reviewed 

to clarify their advances and limitations with a perspective for high-throughput metabolomics. 

These aspects are particularly relevant in Chapter 2, where we conducted a development and 

validation of a high-throughput method for metabolite analysis using matrix-assisted laser 

desorption/ionization-mass spectrometry (MALDI-MS). An overview of MALDI-MS in 

terms of metabolite analysis is also provided in the last section. 

1.2.1 How'to'measure'metabolite'abundances'

Global studies of biomolecules were once limited to genes, transcripts and proteins, 

but technological evolutions in the past decade allowed for the untargeted profiling of 

metabolites as a new ‘omics’ study. Unlike mRNAs and proteins, which are constituted of 4 

and 20 chemical building blocks, i.e. nucleic acids and amino acids, respectively, metabolites 

exhibit a high chemical diversity (e.g., in molecular weight, polarity, solubility, etc.) because 

they includes various structural class of compounds ranging from amino acids to alkaloids. 

This fact makes it almost impossible to analyze a universe of metabolites by a single platform 

(Geier et al. 2011). Additionally, the reliable quantification of metabolites is hindered by the 

greatly wide range of intracellular metabolite concentrations (sub-nM to an order of 100 mM). 

Therefore, multimodal analytical techniques have been developed to analyze metabolites both 

quantitatively and qualitatively. Whilest the profiling study of metabolites was first reported 

1950s (Goldsmith et al. 2010), it is only a decade since metabolomics was considered as a 
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separated research field (Fiehn 2001). Traditionally, quantitative analysis of metabolites in 

interest has been carried out using enzyme-based assays (Cook et al. 1978, Bergmeyer et al. 

1985, Hajjaj et al. 1998). However, such assays require rather a large volume of sample 

despite the small amount of metabolites (less than 5%) in a cell. Furthermore, the scope of 

analyses is limited to single or a few metabolites per sample. 

In modern metabolomics, there are two major analytical platforms: nuclear magnetic 

resonance (NMR) or MS. These tools can provide both quantitative and structural 

information in the scope of metabolome, though the quality of information differs. They work 

complementary if both available, but it can be redundant (Lindon and Nicholson 2008) 

Because the development of MS greatly contributed to the progress of metabolomics (As is 

the case of GC (Koek et al. 2011), we focus on MS-based metabolomic techniques. Basically, 

MS is an analytical system to measure the mass of ion molecule by electric or magnetic field. 

In addition, hyphenation (sequential connection of instruments for online analysis) of 

chromatographic separation is frequently employed. Since each part of equipment is 

customized to the posterior part, an overview of metabolomic analysis is reviewed backward, 

namely MS analysis, ionization and separation. Experimental aspects are also reviewed in the 

next section. 

Regardless of the sort of MS system employed, workflow of hyphenated-MS-based 

metabolome analysis is typically constituted of following steps; sample preparation, online 

separation, quantitation by MS, raw data processing and data analysis. The sample 

preparation step usually includes quenching, extraction, partition and concentration. However, 

it should be noted that, if desired target metabolites are quantitatively detected, sample 

preparation steps are fundamentally not necessary. Since these steps require appreciable costs 
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including materials, times and labor, extensive optimization of experimental design is 

relevant in high-throughput metabolomics. Importantly, most of steps are inevitable for the 

column chromatography. This fact is encouraging to omit the chromatographic pre-separation 

for the higher throughput. In this section, a brief introduction of sample preparation is 

presented to explain the necessity of each step for conventional methods. 

1.2.2 MS'

MS enables analysis of diverse chemicals including bio-molecules on the basis of ion 

molecular mass-to-charge ratio (m/z). The critical properties of MS are mass resolution and 

quantitative dynamic range. Supporting properties are scan speed and m/z range, etc.. 

Practical properties include the cost of instrument and the difficulty of operation and 

maintenance. Accurate mass analysis is usually desired to perform putative annotation of a 

signal, comparing the measured m/z and the expected m/z of a specific metabolite. However, 

this approach may be too optimistic in the sense of metabolome because the experimental 

principle of metabolomics maximizes the possibility of detecting any unknown metabolites 

(See Identification and database for further discussion). 

As a rough interpretation, mass resolution is a reciprocal number with which a peak is 

distinguishable from another peak multiplied. An insufficient resolution thus results in two or 

more peaks being fused, where peak quantification is hindered. The most common definition 

of resolution is given by M/�M, where M corresponds to m/z and �M represents the full 

width at half maximum (FWHM). When a peak has an m/z 500 and a FWHM of 0.05, 

resolution is M/�M = 500/0.05 = 10,000. Mass accuracy is a relative difference between 

theoretical m/z and one that a MS provides, usually characterized by part per million (ppm) 
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unit. An instrument with 100 ppm accuracy can provide information on an ion of m/z 500 

within ±0.05 error. It is affected by the MS’s stability and resolution. 

Supported by a long history of its use, single quadrupole (Q) offers a robust MS 

analysis with a nominal unit resolution. With a similar mechanism, quadropole ion trap (QIT) 

system allows capturing and fragmentation of selected ions, and provides MSn mass spectra, 

which offers additional structural information of ion species. The use of nominal mass 

spectrum could be limited to ‘fingerprint’ analysis, its data source is at the same time 

replaceable with any similar low-resolution data that offered by other instruments. 

Considering its lower cost and maintenance ease, QMS still possesses considerable potential 

for being exploited for fingerprint metabolomic study in any laboratory (Enot et al. 2008, 

Beckmann et al. 2008). Nevertheless, direct connections between mass spectrum and 

chemical entity is often crucial for rational understanding of biological systems based on the 

MS (Junot et al. 2010). Triple-Q (QqQ) MS is a powerful tandem MS system for targeted 

metabolomics. QqQ MS avoids the problem of low mass resolution in QMS analysis by 

exploiting the structural specificity of analyte, even with those effectively isobaric. Each 

quadrupole has a separate function: the first quadrupole (Q1) filters ions with pre-defined m/z 

(precursor). The second quadrupole (Q2) transfers the ions while introducing a collision gas 

for collision-induced dissociation (CID). The third quadrupole (Q3) analyze the known 

fragment ions (product ions) generated in Q2. Multiple pairs of precursor and product ion 

(transitions) per compound is desirable for more confident identification of detected peaks 

(Tsugawa et al. 2013). 

A reflectron time-of-flight (TOF) MS offers higher mass resolution (3,000~15,000) 

and accuracy (10 ppm) and a hybrid Q-TOF MS could potentially achieve a resolving power 
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as high as 50,000. Arguably TOF is the most popular MS system because of its simple 

instrumentation as well as satisfactory performance in ordinary situations. In the context of 

metabolomics, however, the resolving power of TOF is still insufficient to distinguish 

effectively isobaric compounds (Dunn et al. 2005, Castrillo et al. 2003, Davey et al. 2008, 

Yang et al. 2009, Sun and Chen 2011). Fourier transform-ion cyclotron resonance-MS 

(FT-ICR-MS) is at the endpoint of the MS evolutions in terms of mass resolving power, mass 

accuracy and sensitivity (Brown et al. 2005). 

Orbitrap, a new analytical tool in which detections occurs by measuring the frequency 

of the oscillating ions in electrostatic field, followed by fast Fourier transform to determine 

their m/z. Despite its simpler architecture compared to FT-ICR-MS, sensitivity, resolution 

and accuracy can follow FT-ICR, and are much better than Q or TOF (Makarov et al. 2006). 

Currently, the most successful balance of performance and costs may be achieved by 

a quadrupole time-of-flight (QTOF)-MS or an Orbitrap MS, expanding the application field 

of metabolomics (Bino et al. 2004, Scheltema et al. 2008, Viant and Sommer 2012, Lu et al. 

2010). At m/z 500 a current performance would be 10,000~100,000 (FWHM) with mass 

errors ranging from sub-ppm to 10 ppm. Such hybrid instruments are generally constructed 

with quadrupole and TOF mass analysers separated by a higher pressure collision cell which 

can be used to perform CID of selected ions. These systems have been utilized for untargeted 

metabolomics studies to lead novel biological insights (Wikoff et al. 2009, Yanes et al. 2010, 

Jain et al. 2012, Zhang et al. 2012).  

Instrumental performance of MS, e.g. sensitivity, mass resolution and accuracy, is 

still making rapid progress. It is naturally assumed that the better performance leads to the 

better results. However, it has not been well documented which level of the performance is 
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required for which level of scientific readout. The upcoming generation of MS might provide 

an unexplored approach for metabolomics and related research fields rather than just an 

extension of existing methodology. Therefore, researchers and manufacturers should 

cooperatively share strategic aims for an advanced metabolomic study. 

1.2.3 Ionization'

Ionization is the most critical step in MS analysis because neutral (not ionized) 

compounds are fundamentally not detected in MS, and quantitative performance is strongly 

dependent on ionization stability. This is the reason why MS instrument itself is not well 

suited to quantitative analysis. Ionization yield is dependent on both the molecular species 

and ionization method. One metabolite may be ionized by one ionization method, but not by 

another, or at a totally different yield. The experimental aim in global metabolomics studies 

is to obtain a comprehensive, quantitative, and unbiased view of the metabolome, and a key 

to this goal is the ionization event. 

In 1980s, two soft ionization techniques, i.e. electrospray ionization (ESI) (Tolstikov 

and Fiehn 2002, Want et al. 2006, Waybright et al. 2006, Nordström et al. 2006) and MALDI 

(Vaidyanathan et al. 2006, Vaidyanathan and Goodacre 2007b), opened the door for 

MS-based comprehensive analysis of biomolecules (Domon and Aebersold 2006). However, 

the history of hard ionization is much longer. Electron impact ionization (EI) (Fiehn 2001, 

Jellum 1977, Jonsson et al. 2004, Kopka 2006) has long been utilized in GC-MS analysis, 

and is still one of the most popular and robust ionization systems in metabolomics. Basically, 

EI is applicable to gas phase sample, while ESI or MALDI to liquid or solid, respectively. 

These characteristics diversify the utilization of MS in biomolecule analysis. Other different 
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ionization methods have been also probed in a metabolomics context such as atmospheric 

pressure chemical ionization (APCI) (Aharoni et al. 2002), desorption electrospray ionization 

(DESI) (Chen et al. 2006), and desorption/ionization on silicon (DIOS) (Vaidyanathan et al. 

2005). All the above-mentioned ionization techniques discriminate differently and 

specifically/uniquely against certain physicochemical properties of analytes. 

1.2.4 Separation'methods'

Chromatographic separation is employed mainly because of two distinct purposes. 

One is to identify the metabolites by retention time (RT) and the other is to avoid ion 

suppression, a phenomenon where an ionization yield is affected by the co-eluted 

matrix.Especially, ESI is known to suffer from ion suppression (Ikonomou et al. 1990). 

Therefore, although an extracted aliquot can be directly inject into MS, chromatographic 

separation is employed prior to MS analysis to enhance quantitative and sensitive 

measurement of ionized metabolites. Detailed description about separation techniques is out 

of the scope of this paper, because a high-thoughput metabolomics is the main focus, where 

separation step is often omitted to reduce analysis time. An overview of chromatographic 

techniques is presented in the following section to clarify the points that high-throughput 

techniques must overcome. Gas chromatography (GC) and QMS first served as a robust 

analytical system for metabolomics. In recent studies, liquid chromatography-MS (LC-MS) 

become one of the most popular analytical systems (Lisec et al. 2006, De Vos et al. 2007). 

Prior to MS analysis, isolated metabolites are separated chromatographically by using 

relatively short solvent gradients (on the order of minutes) that allow for high-throughput 

analysis of large numbers of samples. The physiochemical landscape of the metabolome is 
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highly heterogeneous, so to increase the number of compounds detected, multiplexed 

methods for the extraction and separation of metabolites are used (Patti 2011). Similarly, 

reversed-phase chromatography is better suited for the separation of hydrophobic metabolites, 

whereas hydrophilic-interaction chromatography generally separates hydrophilic compounds 

more effectively. 

GC and EI-MS is a great combination in terms of reproducibility. Thanks to the 

excellent peak capacity and reproducible RT of the silica column, and reproducible mass 

fragment pattern produced by EI, GC-MS can benefit by robust library-based identification of 

detected peaks, i.e. no reference compounds is usually not required for known metabolites. 

Analytes must be volatile, or otherwise trimethylsilyl derivatization is performed. Low 

molecular weight hydrophilic metabolites including sugar and amino acids can be analyzed 

once derivatized. (Jiye et al. 2005). Compounds with higher molecular weight cannot be 

volatilized even after derivatization because their original boiling points are too high. In 

addition, thermal decomposition also hinders the analysis. For such compounds, alternative 

analytical system such as LC is required. 

LC-MS is capable of analyzing a wide range of metabolites by exploiting appropriate 

combinations of column and mobile phases. The hyphenation of LC and MS was realized by 

the invention of ESI, enabling ionization of the liquid eluent (Whitehouse et al. 1985). 

Although LC columns have been designed to hydrophobic compounds, recent technological 

advances allowed for the separation of hydrophilic metabolites. Reversed-phase ion-pair LC 

is also a useful method for metabolomics (Luo et al. 2007). In addition, ultra-performance 

liquid chromatography (UPLC) emerged as a significant boost for LC-MS-based 

metabolomics (Bruce et al. 2013). Employing pumps with a maximum pressure of more than 
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100 MPa and pressure-torelant columns, shorter measurement time, e.g. a few minutes, was 

realized. Alternatively, capillary electrophoresis mass spectrometry (CE/MS) also provides 

excellent separation of hydrophilic metabolite such as amino acids or intermediates of the 

glycolytic system enabling also excellent quantification of them (Soga and Heiger 2000, Soga 

et al. 2002, Soga et al. 2003, Soga et al. 2009, Sugimoto et al. 2010, Ito et al. 2013, Cai and 

Henion 1995). Although ion-pair LC-MS system is able to measure these metabolites, 

separation performance of CE-MS is generally superior to it. The current situation for peak 

annotation is, however, much similar or worse than that of LC-MS due to poor 

reproducibility and stability. 

These metabolite ‘profiling’ methods demand careful control over the 

chromatographic process to ensure reproducibility and require significant time, effort and 

expertise for data pre-processing in order to deconvolve, align and annotate peaks correctly. 

Unfortunately, any chromatography column matrix will undergo gradual detoriation with 

repetative use, resulting in significant changes in data characteristics after a period of 

constant operation in larger (>200 samples) profiling experiments. Moreover, reproducibility 

of column separation is still dependent on the condition of pumps and columns used, 

including vendor lot. This makes it extremely difficult to develop a generally useful database 

of metabolite detection in LC-MS analysis. Users therefore annotate the chromatographic 

peaks using standard compounds. Whilst a careful operation is still necessary, in-house 

libraries of RT using standard compounds are also frequently developed. Although separation 

of chemicals is the heart of analytical chemistry, chromatographic techniques inevitably pose 

daunting drawbacks to the researchers, especially in non-targeted analyses. Hence, 

non-chromatographic technique is desirable for high-throughput metabolomics if possible. 
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1.2.5 Sampling'and'preparation'

Quenching is an immediate arrest of cellular metabolism, namely enzymatic reaction, 

through inactivation and denaturalization of enzymes without loss of metabolites. Cold 

methanol is routinely employed because of its excellent inactivation effect of enzymes. 

Another choice is rapid and ambient washing followed by freezing by liquid nitrogen, which 

is suitable for samples intolerant to organic solvents. There are many variants of methods 

customized to sample of interest (Faijes et al. 2007, Canelas et al. 2008). The subsequent 

steps are performed strictly at a low temperature to avoid any metabolic reaction by 

remaining enzymatic activity. Additionally, rapid sampling techniques have been developed 

with consideration for the high turnover rates of intracellular metabolites such as G6P, ATP 

or citrate, which are usually in the order of 1–2 s (Weibel et al. 1974, de and van 1992). Such 

methods aims at collecting biological samples represent in vivo conditions as closely as 

possible. 

The principal aim of extraction is to isolate metabolite from biological samples with a 

maximum recovery and without chemical alteration or degradation. Extraction is frequently 

accompanied with cell disruption, especially for cell wall. The reproducibility of extraction 

could be enhanced by extensive inactivation of enzymatic activity as the quenching did 

(Villas-Boas et al. 2005, Wittmann et al. 2004, Winder et al. 2008). Biphasic extraction is 

frequently performed to precipitate protein and cell debris, and partitioning the metabolite 

based on their polarity (Want et al. 2006, Yanes et al. 2011). As one ionization method may 

be suited to the compounds with a certain degree of polarity, appropriate partitioning of 

metabolites is desirable to avoid precipitation of non-ionized substances on the ion source. In 

another word, such laborious conditioning could be omitted if the instrument is tolerant to the 
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crudeness of samples. Whilst chromatographic techniques are vulnerable to the crudeness, 

off-line techniques such as LDIs could overcome the situation. 

The importance of rapid sampling techniques has long been discussed in tems of the 

metabolite dynamics (Cole et al. 1967). Integration and automation contributed to decreasing 

operation cost and manual-handling errors. Weibel et al. introduced a method combining 

rapid sampling and automated analysis was introduced (Weibel et al. 1974) for metabolic 

profiling of yeast cells. The system was readily refined for minute-scale (Gonzalez et al. 

1997) or sub-minute scale metabolite analysis (Sáez and Lagunas 1976, Theobald et al. 1993, 

Theobald et al. 1997, Visser et al. 2002, Mashego et al. 2007). 

Metabolomic study of sub-second time scale has been achieved by Buchholz et al. 

(Buchholz et al. 2002), They performed metabolome analysis and kinetics modeling of 

metabolic perturbation against nutritional pulse in E. coli cells. The analytical system is 

equipped with automated sampling device introduced by Schaefer et al., enabling harvesting 

with intervals of 0.22 s per sample of culture media (Schaefer et al. 1999). Although their 

analytical method itself was not metabolomic, in vivo kinetics of glycolysis was investigated. 

A metabolomic study with a time scale of 100-millisecond was also reported by using a 

stopped-flow sampling technique (Buziol et al. 2002, Chassagnole et al. 2002). 
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1.3 Treatment of a numerous series of MS data  

In this section, an overview of raw MS data treatment is presented. It is characteristic 

to dynamic metabolomics that hundreds of MS spectra are generated per every single 

experiment. Since a high-throughput metabolome analysis employs no pre-separation 

techniques, further consideration is required to annotate the MS signals: although 

chromatogram alignment is thus avoided, greater dependence on MS data quality poses more 

severe technical difficulties compared to an ordinary workflow of metabolomic data 

processing. In addition, identification process is actually the bottleneck for further progress of 

metabolomics. High-throughput analysis would succeed only when efficient identification 

was achieved. 

1.3.1 Raw'data'processing'

The chromatogram of MS analysis is subjected to elaborate processing workflows 

including peak-picking (Dixon et al. 2006), deconvolution (Jonsson et al. 2004, Jonsson et al. 

2005) and alignment. 

An important precaution is that one metabolite compound could lead to more than one 

peak derived from monoisotopic ion, isotope, adduct or ion product generated during the 

ionization process. The mono isotopic peak is generally the interest, and systematic methods 

to distinguish mono isotopic peaks in a mass spectrum have been reported (Werner et al. 

2008, Matsuda et al. 2009). In contrast, isotopic peaks also convey indispensable information 

for identification of unknown compounds (Miura et al. 2010b), which is discussed in the 
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following session. 

Once the signal intensities are aligned into a tabulated table, subsequent steps include 

scaling and transformation of the variables The processed variable table is then applied to 

some statistical methods that meet the purpose of the study. It has been indicated that variable 

processing may have more profound effects on the results of analysis and conclusive 

interpretation than the employed statistical methods (van den Berg et al. 2006). This technical 

aspect encourages a standardized data processing and reporting in metabolomics, even 

though it is still arguable whether a consensus will be established. 

1.3.2 Identification'and'database'

Identity of detected ion species can be roughly classified into five levels: ion 

formation, presence of certain elements, elemental composition, topological chemical 

structure and stereochemical structure. Unambiguous determination of stereochemical 

structure can be done only by NMR. In hyphenated-MS analysis, chemical structures are 

estimated based on the probability of RT, MS and MSn data (Rojas-Chertó et al. 2011). Even 

if such comparative information can provide true-positive estimation, it should be noted that 

false-positives cannot be completely excluded, resulting in numbers of candidates. In 

metabolome studies, MS-based metabolite identification may thus frequently be mentioned in 

a wide sense because empirical identity is often satisfactory for systematic interpretation of 

the acquired data. Due to this ambiguity, there are currently few software programs available 

that can exactly tell metabolite identifications. Nevertheless, exploiting accurate mass 

information, peak annotation methods and databases have experienced continuous progresses 

(Kind and Fiehn 2010, Iijima et al. 2008, Brown et al. 2011, Wishart 2009, Wishart 2011). 
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Given a monoisotopic peak derived from an organic compound is observed, its 

elemental composition can be deduced, though more than one answers may be listed. For 

example, using currently available MS instruments with the highest mass accuracy (< 1 ppm 

of mass error), elemental compositions are uniquely determined for most of metabolites of < 

300 Da. Inversely, however, identifying metabolites > 300 Da requires exponentially higher 

mass resolution if single MS spectra are used, which is probably not feasible (Kind and Fiehn 

2006). Therefore, CID spectra are often acquired to obtain information about the chemical 

structure. When the metabolite was characterized to exhibit the same RT and fragmentation 

pattern than those of reference compound, identification is considered formally done in most 

of metabolomic studies, though a strict chemical identification remains pending. In terms of 

elemental composition, empirical rules were also effective to select chemically plausible 

estimation (Kind and Fiehn 2007). 

It is also important to distinguish known-unknown and unknown-unknown 

metabolites in the identification process. The former is a group of metabolites that are 

publicly known but not yet annotated on the MS data in hand. This class of metabolites can 

be retrieved from public metabolite databases such as the Human Metabolome Database, 

METLIN, KNApSAcK or MassBank (Wishart et al. 2009, Forsythe and Wishart 2009, Smith 

et al. 2005). Although single match of molecular mass only allows putative assignments, 

METLIN and MassBank contain MS/MS data that were acquired by CID experiments with 

different collision energies or different platforms/sites, which can enhance the confidence of 

identification. Unfortunately, it is known that fragmentation patterns of low-energy CID (< 1 

keV) can significantly differ, affected by the instrumental configurations, even if the same 

parameter set is applied for the same MS product. In addition, since there are no standard 
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pre-processing methods for MS spectra, comparison of data derived from different research 

site is hindered. Furthermore, as mentioned in previous section, RT in LC-MS or CE-MS is 

even less reproducible. These facts may be the reason why metabolome researchers develop 

an in-house database of MS experiments and hesitate to publish their data. GC-MS, as the 

only analytical platform that can overcome these problems, would remain the best practice in 

metabolomics. 

The latter class, unknown-unknown, is the fundamental problem in metabolomics. 

They are not registered in any databases, and thus cannot be identified directly by 

comparative searches. Although metabolite databases have grown considerably over the past 

decade, a substantial number of query derived from biological samples do not return any 

matches from any databases (Patti et al. 2012). Complementary experiments (i.e., other 

sequential MSn experiments or H/D exchanges) may help identifying the chemical structure, 

but these additional analyses requires intensive efforts other than those for metabolome 

analysis itself. Presuming that unknown-unknown metabolites still possess some similarity 

with known metabolites, machine-learning methods for estimating chemical substructure 

were attempted using fragmentation patterns of known metabolites as training data 

(Rojas-Cherto et al. 2012). 
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1.4 Data analysis of dynamic metabolome 

Temporal dynamics can be yet another dimension of metabolomic data. This section 

focuses on strategies for analyzing metabolome dynamics in an unbiased manner. In Chapter 

3 and 4, a network analysis of dynamic metabolome data was demonstrated. 

1.4.1 Purpose'of'analysis'

As the compound-level phenotype of genetic traits, metabolome provides a variety of 

ways to investigate the biological system. Whereas the fingerprinting method is a kind of 

pattern recognition, integrative approach has been proposed for better interpretation of 

metabolome (Weckwerth and Morgenthal 2005, Cakir et al. 2006). , Metabolome data also 

served as indispensable information for flux analysis or kinetic modeling of cellular 

metabolism (Mendes et al. 2005, Nikerel et al. 2009). In contrast, sophisticated simplification 

approach of metabolome data was also reported (Hageman et al. 2008). Since a single 

metabolite can be a substrate for a number of different enzymes, metabolite can serve as 

connective information for various metabolic pathways. This concept may turn down the 

top-down understanding of metabolome alterations, i.e. as the consequence of changes in 

mRNA or protein level. Inversely, metabolite should be regarded as end-point evidences for 

the changes in both mRNA and proteins (Ellis et al. 2007, Alm and Arkin 2003). Although 

this situation is much alike to other ‘omics’ studies such as transcriptomics or proteomics, 

several exceptions should be noted. Firstly, the metabolome data we currently face are 

absolutely not a comprehensive view of the true metabolome entity. We only have limited 
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access to some clippings of metabolome, even when detected but unknown metabolites are 

taken into accounted. Secondly, as mentioned just before, a considerably large part of 

detected peaks remains unknown in spite of tremendous efforts including instrumentation and 

informatics (Patti 2011). Lastly, the variances in abundance of metabolites often require 

context-dependent interpretation because the abundance of metabolite itself may convey a 

limited insight for metabolic state. For example, when a metabolite accumulates in a sample, 

there are a priori two reasons: increased in-flux or decreased out-flux. In addition, there may 

be multiple fluxes for the metabolite, and the regulation mechanism of the fluxes is often 

elusive. Specific approaches to decipher these questions are, however, mostly out of scope in 

the context of metabolomics, even though metabolite analysis might help. 

Taken all, the anonymousness of metabolome discouraged the efforts to treat 

metabolomics efficiently as an extension of traditional ‘omics’ sciences. Targeted 

metabolomics is a way to largely neglect these drawbacks, and is also consequently 

compatible with the conventional studies involved with metabolite analysis. Once targets are 

posed, a number of experimental optimizations become available. However, an important 

paradigm of omics study is discovery of hypothesis through analyzing the biological system 

as a whole (Goodacre et al. 2004). This implies that importance of developing metabolomic 

data mining techniques. 

1.4.2 Network'thinking'

Multivariate statistical modeling is essential for ‘omics’ studies. Starting from 

univariate testing (Box et al. 1978) and validation (Broadhurst and Kell 2006), metabolome 

studies employed a variety of supervised methods including partial least squares (PLS) (Wold 
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et al. 2001), orthogonal projections to latent structures (OPLS) (Trygg and Wold 2002), and 

Random Forest (Breiman 2001), and unsupervised methods including principal components 

analysis (PCA) (Jackson 2005), (fuzzy) cluster analysis (Li et al. 2009), neural networks 

(NN) (Taylor et al. 2002), support vector machines (SVM) (Mahadevan et al. 2008), while 

some methods could work in both mode of supervise. Unsupervised methods are popular 

pattern-recognition strategies for metabolomics, which roughly examine how similar a set of 

samples are to one another on the basis of their metabolite profiles. This approach was simple 

and has prospered because it was naturally obey ‘guilt and association’, where the 

provenance could be ultimately attributed to one gene knockout (Altshuler et al. 2000). 

However, considering the currently relevant cases where a huge number of single origin or a 

mixture of factors forms sample classes, alternative methods such as machine learning is 

indispensable (Kell and King 2000). 

Barabási et al. brought about a concept of metabolic networking to the construct of 

the metabolic pathway (Barabasi and Oltvai 2004). As well as mRNAs and proteins, the 

structural properties of the metabolite network have been investigated (Wagner and Fell 

2001). Metabolomic network analysis was thought to be relevant because the distribution of 

metabolites through the metabolic pathway (or flux) was not accessible by analyses at mRNA 

or protein level. Correlation analysis of metabolites is one approach, which was utilized for 

discovering novel pathways (Weckwerth and Fiehn 2002) and inferring unknown metabolic 

networks (Steuer et al. 2003). It has been suggested that such correlation networks were 

occasionally related to the known biochemical network, but sometimes not. 

Again, the metabolic pathway known today is the reconstruction of knowledge in 

biochemistry. Genome sequencing has recently been integrated into the reconstruction, 
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predominantly for microorganisms yet, leading to genome-scale models (GEMs). Systematic 

description of metabolic pathway opened the door for model-based systems biology of 

metabolism (Frazier et al. 2003, Price et al. 2004). Especially, such systematic representation 

of the whole metabolic pathway realized also systematic analysis of biomolecular networks. 

The first GEM is a reconstructed model for Haemophilus influenza published in 1999 

(Edwards 1999). Since then, a number of GEMs have increasingly been reported (Vidal et al. 

2011, Zhuang et al. 2011, Chang et al. 2011). Of all organisms that have been analyzed 

through a constraint-based metabolic reconstruction, E. coli has gained the most attention as a 

model organism (Feist and Palsson 2008). In the present study, a recently reported GEM of E. 

coli (Orth et al. 2011) was utilized to characterize the metabolite correlation network 

constructed by using dynamic metabolome data. 
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1.5 MALDI-MS 

Overall, pre-separation of metabolome sample contributes to reproducible ionization 

and identification. Identification is further supported by MSn analysis. From the view of 

high-throughput, major drawback of chromatographic separation is laborious sample 

pre-processing and analysis time itself. Technical disadvantage includes that maintaining 

separation quality requires highly skilled manpower, and that subsequent data processing 

becomes rather complicated. Furthermore, since simple and comprehensive software for MS 

data processing is currently absent, appropriate peak alignment and annotation require 

considerable time, labor and expertise. However, high-throughput methods should naturally 

be fast and easy. At the same time, such method is compatible to identification process and 

less affected by ion suppression. 

MALDI-MS is the key technology for the future high-throughput metabolomics, as 

well as for the present study. Considering its distinct properties compared to other popular 

analytical techniques for metabolomics, this section dedicates to present a background for 

quantitative analysis of low-molecular-weight compounds by MALDI-MS. 

1.5.1 Why'not'for'low7molecular7weight'compounds?'

MALDI advanced the LDI techniques toward a MS-based biomolecular analysis 

using matrix compounds that mediated the energy transfer, which circumvented stark 

fragmentation of even low molecular weight organic molecules observed in LDI analysis 

(Glish et al. 1989, Schlag et al. 1992, Alexander et al. 1993). In typical MALDI analysis, the 
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sample is co-crystalized into a dried-droplet spot with an excess amount of solid matrix 

compound, which facilitate the soft ionization, embedding the cellular biomolecules. A rapid 

desorption/ionization is induced by using a pulse of radiation from an ultraviolet, visible or 

infrared laser, generating positively or negatively charged ions. 

MALDI is applicable to various fragile and non-volatile samples including 

biomolecules (Castro et al. 1992) such as protein/peptide (Mustafa et al. 2007, Strupat et al. 

1991, Karas and Hillenkamp 1988, Karas et al. 1989, Karas et al. 1990), oligosaccharides 

(Stahl et al. 1991, Franz et al. 2001) and synthetic polymers (Bahr et al. 1992, Danis et al. 

1992, Dey et al. 1995) such as dendrimers (Li et al. 2006) and other macromolecules (Senko 

and McLafferty 1994). Unlike ESI, MALDI produces predominantly simple-charged ions, 

which allows an MS analysis with rather moderate mass resolution (like TOF) as well as 

more straightforward interpretation (Keller and Li 2001). MALDI thus enjoyed its 

Renaissance with the combination of TOF MS (Schriemer and Li 1996). Other advantages of 

MALDI are very high absolute sensitivity and tolerance for contamination and buffers 

(Keller and Li 2001), which enable an analysis of rather crude samples, e.g. direct whole-cell 

analysis (Lay 2001, Welker and Moore 2011). 

Despite a number of advantages, MALDI-MS analysis for low-molecular-weight 

compounds has been hindered by as well a number of disadvantages. Firstly, the mass 

resolution of linear TOF-MS instruments in the early generation was too low to characterize 

such small molecules. In addition, severe interference of ion peaks derived from conventional 

matrices made the MALDI-MS analysis in the low mass range less attractive. Considering 

these factors, the analysis of low-molecular-weight compounds was predominantly 

performed using ESI. 
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However, a higher mass resolution has recent been achieved by improvement of TOF 

MS system and utilization of delayed extraction (Brown and Lennon 1995, Vestal et al. 

1995). FTICR-MS is also suitable to MALDI, because the mass spectrum is generated with 

an individual shot of the laser, unlike ESI with continuous outlet and ionization (Hager 2004). 

Quantitative analysis of low molecular weight metabolites is one of the most major topic in 

metabolomics (Brown et al. 2005). Nowadays, MALDI is coupled a various MS instruments 

including TOF/TOF-MS (tandem TOF/TOF mass spectrometer) (Yergey et al. 2002, 

Fagerquist et al. 2010, Trimpin et al. 2007), QTOF-MS (quadrupole-time of flight mass 

spectrometer) (Hunnam et al. 2001), and QIT-TOF-MS (quadrupole ion trap time-of-flight 

mass spectrometer) (Suzuki et al. 2006), allowing extensive CID analysis, which is 

indispensable to peak annotation in non-chromatographic techniques like MALDI (Vestal 

and Campbell 2005). Hence, MALDI-MS is considered as a complement to other analytical 

techniques for low-molecular-weight compounds (Cohen and Gusev 2002, van Kampen et al. 

2011). 

1.5.2 Current'uses'in'metabolomics'

Application of MALDI-MS in drug discovery and biotechnology typically involves a 

target approach (Cohen and Gusev 2002, van Kampen et al. 2011, Wang et al. 2006). As well 

as high-molecular-weight molecules such as proteins or peptides, secondary metabolites was 

analyzed coincided with bacterial identification, e.g. microbial toxins (Erhard et al. 1997) or 

pigments in organelles (Persson et al. 2000). Nevertheless, metabolomic application of 

MALDI-MS is even recent, mainly because of the matrix ion interference on the low-mass 

range of the mass spectra. The most significant progress in metabolomic application was thus 

– 26 –



Chapter 1 Introduction for Dynamic Metabolomics        

 

matrix development including ionic liquid matrices (Vaidyanathan et al. 2006) or novel 

matrices such as 9-aminoacridine (9-AA) (Edwards and Kennedy 2005, Miura et al. 2010b). 

LDI-based analysis such as MALDI also possesses its advantage in the 

two-dimensional visualization of molecular distribution in a section of biological tissue 

samples for remarkably novel insights into metabolism in higher organisms (Miura et al. 

2010a, Miura et al. 2012, Svatoš 2010). MALDI-MS enabled the imaging MS (IMS) analysis 

of the endogenous and exogenous metabolic compounds including a drug and first-pass 

metabolites in whole body sections of animals (Miura et al. 2010a) and plant (Zaima et al. 

2010). Since in situ metabolite identification in IMS usually cannot benefit from separation 

techniques, sophisticated identification methods based sorely on MS analysis are 

indispensable in MALDI-MS-based metabolomics. 

In the present study, we utilized MALDI-MS for dynamic metabolomics. In Chapter 2, 

basic characteristics of the MALDI-MS-based high-throughput method for metabolite 

analysis were examined to show how the technique was applicable to tracing the dynamics of 

intracellular metabolites in bacterial cells. Since this method enabled facile acquisition of a 

series of time-course MS data, which were derived from hundreds of biological sample, we 

conducted a study for the dynamics of bacterial intracellular metabolism with a concept of 

correlation network in Chapter 3. We characterized metabolic responses to a nutritional 

fluctuation prior to transcriptional alteration. In Chapter 4, this approach was further applied 

to investigate the structural consensus of metabolite correlation networks under variety of 

nutritional fluctuations. Additionally, we attempted to expand the fundamental usability of 

MALDI-MS-based metabolomics through developing numerical models for MALDI events 

in Chapter 5. A quantitative structure-property relationship (QSPR) approach was employed 
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to elucidate the structural compatibility between analyte compounds and a matrix compound. 
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MALDI-MS-based High-throughput Metabolite 

Analysis for Intracellular Metabolic Dynamics 
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2.1 Introduction 

Systems biology aims to represent and understand biology at a global scale where 

biological functions are recognized as a result of complex mechanisms (Kitano 2002). The 

whole cellular system is expected to be represented by an in silico model reconstituted by 

combining information about every molecular step in the system (Görke et al. 2010, Henry et 

al. 2010). Once all the system components are thoroughly understood, the dynamic behavior 

of the cellular system can be predicted through the reconstructed model. To accomplish this 

goal, it employs concepts from a wide range of fields such as mathematics, physics, 

engineering, and computer science besides biological science. The "building blocks" of 

systems biology models are knowledge and data acquired in biological experiment, and 

mathematical modeling provides the "cement" that links these "building blocks" (Kherlopian 

et al. 2008). In addition, analyses on dynamic behaviors of the molecular network are 

required because the cellular system cannot be understood through a static network structure 

alone (Kitano 2002). In this regard, reverse engineering using high-throughput experimental 

data and mathematical theories to infer underlying biological networks is the most 

challenging issues in systems biology (Katagiri 2003). However, large-scaled metabolomic 

analysis has been hindered because of in part the poor throughput of conventional analytical 

methods. The major hindrances of analytical throughput are not only analytical time 

consumption itself but also complicated pre-treatment processes including sample extraction, 

derivatization, filtration and concentration. These requirements are derived from low 

sensitivity of MS. To attack the problem, we introduce a high-throughput method for 
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metabolite analysis using MALDI-MS, which has been successfully applied to metabolic 

profiling analysis (Miura et al. 2010a). Using the analytical method, we then demonstrate its 

application for analyzing dynamics of metabolic system. 

Metabolites represent the final downstream products of gene expression and cellular 

regulatory processes, and changes in metabolic levels may be regarded as the ultimate 

response of biological systems to environmental variations (Fiehn et al. 2000). There is 

significant research interest in understanding the organization and regulation of microbial 

metabolism2. In particular, the central metabolic pathway is often a major research target. 

This is because the central metabolic pathway represents a critical component of cellular 

metabolism that is responsible for both anabolic and catabolic functions that provide 

cofactors and building blocks for the synthesis of other macromolecules as well as energy 

production. Consequently, it provides indispensable data for metabolic engineering and 

metabolomics to characterize this pathway by quantifying time-dependent changes in the 

concentrations of metabolic intermediates and their corresponding cofactors present in the 

central metabolism pathway. Such quantification provides an approach to estimate the major 

metabolic processes of microbes under various environmental conditions. 

For metabolite analysis, a wide variety of analytical methods including enzymatic 

assays (Theobald et al. 1997), liquid chromatography-MS (LC-MS) (Luo et al. 2007), 

GC-MS (Pasikanti et al. 2008), and NMR (Slupsky et al. 2007) have been employed. As 

phosphorylated intermediates in the central metabolic pathways share similarities in structure, 

polarity and non-characteristic UV absorption, MS is decisively employed for intracellular 

metabolite studies. However, it is difficult to quantify phosphorylated metabolic 

intermediates because they exist at such low concentrations in cells and are readily degraded 
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during sample preparation due to structural instability. Consequently, high-throughput sample 

preparation combined with a highly sensitive analytical method is essential. Although 

LC-MS and GC-MS, which are conventional methods for intracellular metabolite analysis, 

have proven to be powerful approaches for the simultaneous determination of different 

metabolites in a single run, both methods have relatively low throughput. The dominant 

factors that hinder the throughput of a whole analytical process are not only analytical time 

consumption but also the complications associated with pre-treatment processes including 

sample extraction, derivatization, filtration and concentration (when required). 

Recently, MSLDI-MS has come to be applied for metabolite analysis (Becher et al. 

2008, Shroff et al. 2007a, Sun et al. 2007, Vaidyanathan and Goodacre 2007a). MALDI is a 

direct ionization method that is characteristically a high-throughput technique. Compared 

with other MS-based analytical methods, MALDI-MS provides one of the most sensitive 

analysis tools and it requires absolutely minimal amounts of sample volume, i.e. sub-micro 

liter amounts or less (Amantonico et al. 2008a). We have recently developed a highly 

sensitive and high throughput metabolic profiling technique for cultured mammalian cells 

with MALDI-MS using 9-aminoacridine (9-AA) as a matrix (Miura et al. 2010a). We have 

also developed a high throughput sample preparation method for MALDI-MS that can 

quench cellular metabolism, extract intracellular metabolites and co-crystallize the matrix 

with metabolites in parallel. 

In the present study, the quantitative performance of the MALDI-MS-based 

metabolite analysis was initially examined. The utility of this method for tracing intracellular 

metabolic dynamics of bacteria was subsequently investigated. As a model system, the 

time-dependent metabolite change during environmental carbon source perturbation 
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following the rapid relief from glucose limitation in E. coli was observed. 
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2.2 Results and Discussion 

Analytical throughput is a critical aspect in particular research scenarios. Studies that 

involve samples with innate variances (e.g., biofluids of humans) require the analysis of a 

sufficiently large number of samples as possibly the only way to accurately assess the 

biological variation. For another example, monitoring the intracellular metabolism during 

bioproduction, such as bacterial fermentation, requires an on-time illustration of how the 

bacterial metabolism proceeds. The use of a developed high-throughput method, thus, 

possesses the potential to realize large-scale analysis that deals with tens of thousands of 

samples and real-time monitoring of intracellular metabolism. Such studies are not practically 

feasible using other analytical methods such as LC�MS. Although LC separation would 

reduce ion suppression effect, the developed MALDI�MS analysis exhibited high sensitivity 

and fair quantitative performance even when biological samples were analyzed. Additionally, 

the developed method involves only an m/z alignment while LC�MS usually includes a 

retention time alignment that requires a carefully arranged quality control during the analyses. 

While LC-separated information is of course not available in this system, this workflow can 

simplify data processing, which is particularly crucial when characterizing tens of thousands 

of samples. To further optimize the high-throughput nature of MALDI, biological samples 

were collected using minimal operations. These operations included a simplified extraction 

process and no concentration of the sample. For sampling, 5 µL of the cell suspension was 

released into the matrix solution (100% methanol), serving both as an immediate quenching 
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and extraction agent. Here, the bacterial cell would be disrupted when the cell suspension 

was mixed into the matrix/methanol solution resulting in the release of the intracellular 

metabolites into the extracellular environment. The released metabolites would readily mix 

with the matrix. The intact solution was then directly applied for MALDI�MS analysis. With 

only minimal sample preparation requiring a few seconds and within approximately 2 min of 

MALDI-MS analysis per sample, over a hundred of intracellular metabolites including target 

phosphorylated compounds could successfully be detected in a single analysis (Figure 2.1). 

The culture medium should not contain the compounds that possibly exist in the cell, because 

living cells are collected with the medium in this method. In this study, an extracellular 

environment was comprised only of water to eliminate any of factors that would interfere 

with the produced mass spectra. While the synthetic mineral medium or PBS buffer could be 

suitable to the system, pure water was employed because they affected the produced mass 

spectra with a rather higher background (Figure 2.2). The osmotic stress on the cell was not 

so significant that the metabolites spread to an extracellular environment (Figure 2.3). The 

high-throughput sampling method developed here, thus, provided a “crude” cell extract. To 

evaluate the sample quality for MALDI�MS analysis, mass spectra acquired from these crude 

samples were compared with samples that had undergone extensive extraction and were 

considered as “clean” samples, (Maharjan and Ferenci 2003) which would otherwise be 

suitable for LC�MS analysis (Luo et al. 2007). An identical cell suspension was collected at 

the same time and subjected to either the high-throughput sampling method or the 

conventional method using cold methanol. The samples were then analyzed by MALDI�MS 

under the same instrument conditions. Despite that direct cell analysis might negatively 

influence ionization efficiency due to the heterogeneous nature of the sample, nearly 
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Figure'2.1'Mass'spectra'acquired'by'direct'detection'of'metabolic'
intermediates'and'corresponding'cofactors'in'central'metabolic'pathway'
from'whole'E.#coli'cells.'

Mass spectra were obtained by analyzing 1 µL of the mixture of E. coli cell suspension and 
the matrix/metahnol solution on AXIMA Confidence in negative ion mode. Phosphorylated 
metabolic intermediates and corresponding cofactors representative of central metabolism 
were sensitively detected. PEP: Phosphoenolpyruvate, Hexose-P: Hexose phosphate, 
Hexose-P2: Hexose bisphosphate, AcCoA: Acetyl-CoA. 
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Figure'2.2'Mass'spectra'acquired'by'direct'analysis'of'E.#coli'suspended'either'
in'water,'in'PBS'buffer'or'in'mineral'medium.'

Mass spectra were acquired by direct MALDI-MS analysis of E. coli cells suspended either in 
water, PBS buffer or synthetic mineral medium. The mass spectra acquired on each condition 
were aligned and magnified around the peak derived from acetyl-CoA. Single to noise ratio 
decreased when the mineral medium (upper mass spectrum) or PBS buffer (middle) was 
employed compared to one with pure water (lower).  
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Figure'2.3'Mass'spectra'acquired'by'direct'analysis'of'E.#coli'or'the'
supernatant'of'the'cell'suspension'after'inducing'glucose'depletion.'

The cells suspended in water for an hour were subjected to centrifugation and the 
supernatant was collected. The collected supernatant was analyzed by MALDI-MS in the 
same method as direct cell analysis. The mass spectrum acquired by direct cell analysis of 
identical E. coli cells (upper) was aligned with one from the supernatant (lower). 
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equivalent or more significant mass responses of the targeted phosphorylated metabolites 

were observed with the “crude” sample when compared with the data collected on the clean 

sample (Figure 2.4). These phosphorylated metabolites were considered to have been 

degraded or were not fully recovered during the more extensive extraction process required 

for the preparation of the “clean” sample. Consequently, in addition to the high throughput 

nature of this method, this observation exemplified another advantage that this fast and 

simple sampling method should minimize the analytical variations that originate in a series of 

experimental steps that are required for other MS-based methods. 

Chromatographic separation and m/z-based separation function complementarily for 

the identification of detected product ions. Whilst MALDI-MS analysis omits 

chromatographic separation, which on the other hand contributes to the high-throughput of 

the analysis, MS/MS spectra and highly accurate m/z measurements should provide sufficient 

information to identify the elemental compositions of the product ions particularly in a 

low-mass range (m/z < 1,000). In this study, the product ions were identified according to 

their MS/MS pattern acquired in the MALDI-TOF-MS analysis. The reliability of the 

metabolite identification is further strengthened using FT-ICR-MS analysis, which realizes 

both a high mass-resolving power and a high mass-accuracy. As a result of the 

MALDI-FT-ICR-MS analysis, all the target metabolites that were observed in the 

MALDI-TOF-MS analysis were confirmed. In this study, over a hundred of peaks other than 

the targeted metabolites were detected, suggesting that this method should be applicable for 

non-target metabolite analysis. 

As MALDI-MS has been primarily used for qualitative analysis of macromolecules, 

its quantitative performance has not been extensively examined. To investigate 
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Figure'2.4'Mass'responses'of'representative'target'phosphorylated'
metabolites'under'two'different'extraction'methods.'

A: Hexose phosphate, B: AMP, C: ADP, D: ATP, E: Acetyl-CoA. Method 1 indicates the rapid 
extraction developed in this study while Method 2 is the methanol extraction previously 
reported. Error bar indicates standard deviation. In the case of target phosphorylated 
metabolites, nearly equivalent or more significant mass responses were observed with 
Method 1. 
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time-dependent changes of intracellular metabolite concentrations, the quantitative 

performance of the MALDI-MS analysis approach and inter-assay precision was confirmed 

by spiking the metabolites into diluted (5 times with deionized water) cell extracts for the 

standard addition method. Raw MALDI-MS spectra could not be quantitatively compared 

because of analytical variance. Inter-sample reproducibility of MALDI-MS is known to be 

quite low (around 50% RSD) (Edwards and Kennedy 2005) compared with GC-MS (around 

10% RSD) (Fiehn et al. 2000). Among several normalization strategies available, we decided 

to perform TIC normalization (Norris et al. 2007). The normalization resulted in good linear 

relationships between the deposited concentrations of metabolite standards and mass 

responses (Figure 2.5). While some deviations in peak intensities were observed, the 

quantitative performance of this analytical method was considered sufficient for a rough 

illustration of intracellular metabolite dynamics. 

The rapid glucose relief to E. coli resulted in a dramatic time-dependent change of the 

mass spectral response of intracellular metabolites and corresponding cofactors (Figure 2.6). 

The observed time-dependent changes of target metabolite concentrations were mapped onto 

summary central metabolism pathways; glycolysis and the pentose phosphate pathway of E. 

coli (Figure 2.7). The most significant changes observed were the increasing levels of hexose 

phosphate, hexose bisphosphate and acetyl CoA. In contrast, the level of 

phosphoenolpyruvate (PEP) dropped after the relief from glucose depletion followed by a 

rather fast recovery. This metabolic behavior by the bacteria is most likely due to PEP being 

used initially for the phosphorylation of glucose resulting in the production of pyruvate 

(phosphoenolpyruvate:glucose phosphotransferase system) (Kaback 1968). Within the first 

hour of limited glucose availability, the bacterial cells respond to the glucose limitation by 
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Figure'2.5'Calibration'curves'of'targeted'phosphorylated'metabolic'
intermediates'and'corresponding'cofactors.'

The mass spectra were obtained by analyzing mixture of metabolite standards dissolved in 
diluted (5:1) cell extract on MALDI-TOF-MS in negative ion mode. Ion intensity was 
normalized to the total ion intensity of each analysis. Individual mass spectrum of metabolites 
was obtained by averaging 121 subspectra (5 shots per subspectra) and six mass spectra 
were averaged per sample. Error bars indicate standard deviation of analyses on the 
replicated sample spots. R2 indicates the coefficient of determination. Fine linearity could be 
observed from 0.1 to 10 pmol/well in most cases. PEP: Phosphoenolpyruvate, 3PG: 
3-phosphoglycerate, F6P: Fructose phosphate, F16P2: Fructose 1,6-bisphosphate, AcCoA: 
Acetyl-CoA. 
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Figure'2.6'TimeHdependent'change'of'concentration'of'intracellular'
metabolites'in'E.#coli'before'and'after'a'carbon'source'perturbation.'

Relief from glucose limitation was caused at time 0 indicated by a broken line. The plot 
originated from three experiments operated independently. Solid curves indicate moving 
average of mean value of the experiments operated at each time point. (a) Hexose 
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phosphate, (b) Hexose bisphosphate, (c) Acetyl-CoA, (d) PEP, (e) cAMP, (f) AMP, (g) ADP, 
(h) ATP, (i) 6-Phosphogluconate, (j) NADPH.   
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Figure'2.6'TimeHdependent'change'of'concentration'of'intracellular'
metabolites'in'E.#coli'before'and'after'a'carbon'source'perturbation.'
(Another'version)'

Error bars indicate SD. 
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Figure'2.7'TimeHdependent'change'of'concentration'of'intracellular'
metabolites'in'bacteria'mapped'on'summary'central'metabolism'pathway,'
glycolysis'and'pentose'phosphate'pathway.'

Relative ion intensity of each metabolite was plotted as a function of time (s). Instant relief 
from glucose limitation was caused at time 0. 
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making a general effort to increase the ability to scavenge and utilize different carbon/energy 

substrates (Wick et al. 2001). Similarly, lower concentrations of environmental glucose 

accelerated the levels of cyclic adenosine 5'-monophosphate (cAMP) which induces the sugar 

transport systems that improve the scavenging potential for glucose or other carbon sources 

(Ferenci 1996). This observation is supported by cAMP levels immediately decreasing after 

the glucose pulse. Central metabolism, especially glycolysis in bacteria could be regulated by 

ATP demand rather than the relationship among its intermediates (Koebmann et al. 2002). 

The present study has shown that this method is quite sensitive for the detection of cofactors 

associated with central metabolism, including ATP. The AMP levels were observed to 

suddenly drop in response to the glucose pulse while ATP levels increased and ADP levels 

decreased moderately. These behaviors were opposite to an observation on Saccharomyces 

cerevisiae where intracellular ATP levels and ADP levels immediately decreased and AMP 

levels temporally increased after a glucose pulse (Theobald et al. 1997, Kresnowati et al. 

2006). Interestingly, the level of 6-phosphogluconate (6PG) increased 180 seconds after 

glucose relief and, on the other hand, the level of NADPH immediately increased after the 

glucose pulse and returned to the original level after 180 seconds had lapsed. NADPH is 

synthesized when glucose 6-phosphate or 6-phosphogluconate is oxidized in the initial part of 

the pentose phosphate pathway and this pathway is activated when nucleotide synthesis 

demands surge. As such, the up-regulated flux through the oxidative part of the pentose 

phosphate pathway during the time from 0 to 180 seconds probably resulted in NADPH 

production along with a dramatic change in the level of 6PG. Moreover, in the initial 180 

seconds following glucose release, the level of nucleotides (ATP, GTP, CTP and UTP) 

increased. These observations indicate that the glucose pulse induced cell growth that caused 
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immediate demands for nucleotide synthesis and thus activation of the pentose phosphate 

pathway. 

Based upon observations under a single experimental condition, it is challenging to 

discuss detailed mechanisms that explain the observed fluctuations in intracellular metabolite 

concentrations derived from a rapid change of environmental glucose concentrations. When 

isotope labeled substrate such as 13C-glucose is employed, more precise flux balance in the 

cell can be elucidated. As for a practical purpose; however, this method could further be used 

for real-time monitoring of intracellular metabolism in combination with on-line analytical 

applications. This system, in combination with metabolic pathway analysis, should represent 

a valuable approach to investigate metabolic regulatory systems that are responsible for the 

rapid response toward environmental perturbation.

– 48 –



Chapter 2 MALDI-MS-based High-throughput Metabolite Analysis       

 

 

2.3 Materials and Methods 

All solvents, metabolite standards and other chemicals were purchased from Sigma 

Aldrich (St. Louis, MO, USA). 9-Aminoacridine hydrochloride was purified and 

recrystallized prior to use (Shroff et al. 2007a). Deionized water was obtained from a Milli-Q 

system (Millipore, Schwalbach, Germany). 

E. coli strain JM109 was used for the metabolite analysis experiments. Incubation was 

carried out in a 50 mL test tube (12 h, 150 rpm, 37 °C) containing 20 mL LB medium. 

Bacterial cells were collected by centrifugation (5,500 g, 2 min) and the collected cells were 

washed once with water. The cells were centrifuged again and resuspended in 1 mL water. 

The cell suspension was then incubated in a 2 mL tube for an hour at 37 °C. 

Matrix solution (6 mg/mL 9-AA in methanol containing 1 µM 

8-anilino-1-naphtalenesulfonic acid as an internal standard) was used to quench intracellular 

metabolism and extract metabolites. A highly concentrated glucose solution was added to the 

shaking cell suspension in an aerobic environment with a final concentration of 1 g/L. 

Sampling was performed by taking 5 µL of suspension and mixing into 15 µL of the 

pre-cooled matrix solution (40 °C) in swift succession before and after the glucose pulse. The 

sampling was performed at the indicated intervals. Sample preparation and processing was 

performed in triplicate. To evaluate the sample quality, the metabolite extract was also 

prepared using cold methanol as reported (Maharjan and Ferenci 2003) with a slight 
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modification as a control sample. The final content of cells and matrix was the same as the 

sample preparation described above. The collected supernatant was subjected to MALDI-MS 

analysis. 

A mixture of metabolite standards was prepared in 60% methanol/water and was used 

for external mass spectrum calibration. Intra-assay precision was confirmed by spiking the 

metabolites into diluted (5 times with deionized water) cell extracts. The calibration curves 

were obtained by analyzing standard solutions ranging from 100 nM to 25 µM.  

In this study, three types of MS instruments were used. For quantitative metabolite 

analysis, single reflectron-type MALDI-TOF-MS (AXIMA Confidence, Shimadzu, Japan) 

was used. Analysis time was less than 20 second/spot. For identification of metabolites by 

MS/MS analysis, quadrupole ion trap (QIT)-type (AXIMA QIT, Shimadzu, Japan) 

instruments were used. CID power parameter was set to almost eliminate the mass response 

of the precursor. These instruments were equipped with a 337 nm N2 laser. For the 

determination of the elemental composition of the metabolites by ultra accurate mass, a 

Fourier transform ion cyclotron resonance (FT-ICR)-type instrument (Apex-Q94e, Bruker 

Daltonics, USA) with an Apollo II ionization source equipped with a 355 nm Nd:YAG laser 

was used. In all analyses, 1 µL of the analyte was applied onto a ground-steel MALDI sample 

plate and air-dried. The samples were irradiated at a laser power that gives satisfactory ion 

intensity and all analyses were performed using the same laser power in the negative 

ionization mode. All the metabolites were identified according to their accurate m/z and 

MS/MS spectra acquired on the MALDI-TOF-MS and/or MALDI-FT-ICR-MS instruments. 

Mass spectra were obtained by MALDI-MS analysis where two laser shots were 

accumulated and 121 spectra were averaged per spot. Six spots were deposited from a sample 
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and averaged to apply for further data analysis. Mass spectra were internally calibrated using 

the mass peaks of the matrix (9-AA; m/z = 193.0776), the internal standard 

(8-anilino-1-naphtalenesufonic acid; m/z = 298.0538) and the constantly detected metabolites 

such as ATP (m/z = 505.9885) and/or acetyl CoA (m/z = 808.1179). The ion intensities of 

individual peaks were normalized to the total ion count (TIC) of each analysis. 

Mass responses of each metabolite at each time point were plotted as a function of 

time (s). To outline the time-dependent transition of a metabolite level, the mean value of 

three experiments at each time point was interpolated by a simple moving average (Chou 

1975).
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3.1 Introduction  

Adapting to fluctuations in carbon source availability is crucial for microorganisms to 

survive. The adaptation system comprised of molecular regulatory network is firstly invoked 

by recognizing the fluctuation. We previously demonstrated that the variation of the 

intracellular metabolite levels in E. coli progressed on a sub-minute scale following a glucose 

pulse (Yukihira et al. 2010). This preliminary analysis clearly indicated that the variation of 

the intracellular metabolite levels progressed on a second scale. Such a time-scale was 

relatively short compared with that of gene expression alterations, where Dikicioglu et al. 

reported a strong response in mRNA levels in E. coli a few minutes after changes in nutrient 

availability (Dikicioglu et al. 2011). It was also true of variations in protein levels, where a 

temporal surge of transcription immediately promoted an increase in protein levels in yeast, 

resulting in a minute- to hour-scale variation (Lee et al. 2011). It has been suggested that the 

sensing system is associated with not only the abundance of carbon sources themselves but 

also the consequent perturbations in the intracellular metabolism (Kotte et al. 2010, 

Kochanowski et al. 2012). We thus assumed that, although such an immediate metabolic 

fluctuation progressed in a passive manner, the cellular system should be organized to buffer 

and recognize the fluctuation. However, the temporal and structural characteristics of the 

fluctuation propagation in its intrinsic time-scale is still unclear because most studies of 

biological responses have not concentrated on the time-scales of biochemical processes of 

metabolites (Steuer 2006). Dynamic behaviors of the molecular network are of particular 

importance because the cellular system cannot be understood through a static network 
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structure alone (Kitano 2002). Therefore, these circumstances encouraged further 

investigation of the time-dependent structural variation of the metabolic network in an early 

phase of metabolic fluctuations. 

The primary focus of this study was to understand characteristics of the metabolic 

system of E. coli in the transient state based on the level of intracellular metabolites. It is 

important to investigate interdependencies of metabolite levels, referred as metabolite 

network, because rather than metabolite level snapshots they should reflect the network 

structure of the underlying complex system. However, correlation itself does not provide 

temporal or contextual information about observed relationships, because it is a static 

representation under a given condition. To address the issue, we formulated the temporal 

behavior of metabolic fluctuation as an evolving network of metabolite correlation, where a 

sliding window was used for evaluating the transient correlation structure of metabolites in 

response to a perturbation. Starving E. coli cells were exposed to an instant glucose relief to 

induce a strong metabolic fluctuation. Firstly, a time-dependent alteration of the metabolite 

correlation structure was overviewed as a phenomenon that reflects the transient metabolic 

fluctuation. The sequential propagation of the metabolic fluctuation was then investigated 

based on the temporal similarity of the variations in metabolite correlations. We discuss the 

usefulness of the temporal information for interpreting the origin of the observed metabolite 

correlations.
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3.2 Results and Discussion 

We previously developed a high-throughput analytical method that employed 

MALDI-MS utilizing its semi-quantitative performance as well as high-throughput 

characteristic for acquiring detailed time course data on intracellular metabolites (Scheme 

3.1A, MALDI-MS-based high-throughput metabolite analysis). With minimal experimental 

work, this method can trace the levels of phosphorylated metabolites such as sugar 

phosphates, nucleotides, nucleotide sugars, and cofactors, which play important roles in 

cellular metabolism (Miura et al. 2010b). In this study, E. coli was exposed to a nutritional 

perturbation and its response was characterized by the temporal variation in metabolite levels. 

In the direct cell analysis using MALDI-MS, about 100 mass peaks were frequently detected. 

Of these, we identified 28 metabolites that were detected reproducibly throughout the time 

course (Table 3.1). These metabolites included a variety of nucleotides, nucleotide sugars, 

and CoA compounds that had historically proven difficult to quantify in LC-MS analyses, in 

spite of their biological importance (Jansen et al. 2009). 

3.2.1 Metabolic'Pathway'Served'as'The'Source'for'Initial'Metabolite'
Correlation'

The time-scale of cellular metabolism alteration was firstly checked. The energy 

charge of the cells could be represented by ATP-ADP ratio. The time course of energy charge 

indicated that the metabolic state of the cells changed on a second scale in response to a 
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Scheme'3.1.'Workflow'summary'of'the'present'study.'

A. MALDI-MS-based high-throughput metabolite analysis. Cell suspension was continuously 
harvested. Intracellular metabolites were detected by directly analyzing the cells. B. 
Time-shifted evaluation. Example of a time course pair (F6P and AMP). The scatter plot on 
the left was constructed using the overall time point of the data set. As the correlation 
appeared to be non-stationary, the short span correlation was evaluated using a sliding 
window technique. C. Time-shifted partial correlation analysis. Temporal correlation network 
analysis based on the GGM technique was performed to illustrate the shift in the correlation 
structure of metabolite levels. Because GGM uses a partial correlation, the direct correlation 
network is provided. D. Temporal single correlation analysis. Maximum length for the span of 
the single correlation was evaluated to compare the temporal similarity of the correlation 
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profile. E. Temporal similarity analysis. Based on the temporal similarity of the correlations, a 
meta-correlation network was constructed. Network analysis methods were applied to extract 
the temporal traits of correlation profiles. See Materials and Methods in Chapter 3 for details 
of the following analytical workflow. 
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Table'3.1'List'of'detected'peaks'and'identified'or'estimated'metabolites.'

Observed m/z Metabolite name Abbreviation 

259.0 Fructose 6-phosphate (hexose phosphate) F6P 

275.0 6-Phosphogluconate 6PG 

306.1 Glutathione (reduced form) GSH 

321.0 Thymidine monophosphate dTMP 

322.1 Cytidine monophosphate CMP 

323.1 Uridine monophosphate UMP 

339.0 Fructose 1,6-bisphosphate F16P 

346.1 Adenosine monophosphate AMP 

362.1 Guanosine monophsphate GMP 

401.1 Thymidine diphosphate dTDP 

402.1 Cytidine diphosphate CDP 

403.0 Uridine diphosphate UDP 

426.1 Adenosine diphosphate ADP 

442.0 Guanosine diphsphate GDP 

481.0 Thymidine triphosphate dTTP 

482.0 Cytidine triphosphate CTP 

483.0 Uridine triphosphate UTP 

506.0 Adenosine triphosphate ATP 

522.0 Guanosine triphsphate GTP 

540.1a Nicotinamide adenine dinucleotide NADH 

545.1 Thymidine diphosphate 4-oxo-6-deoxy-glucose dTDPg 

565.1 Uridine diphosphate glucose UDPG 

588.1 Thymidine diphosphate 3-Acetamido-3,6-dideoxy-galactose dTDPa 

606.1 Uridine diphosphate N-acetylglucosamine UDPGN 

611.1 Glutathione (oxydated form) GSSH 

620.1a Nicotinamide adenine dinucleotide phosphate NADPH 

766.1 Coenzyme A CoA 

808.2 Acetyl coenzyme A AcCoA 
aFragmented ion 
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nutritional fluctuation (Figure 3.1). Therefore, supervised models of the behavior of 

metabolite levels were unavailable because the state of the underlying system should be 

non-stationary. As an unsupervised method, metabolite correlation has been used to 

characterize the effects of environmental or gene variation as a fingerprint (Görke et al. 2010). 

However, the non-stationary metabolic system could lead a transient correlation structure, 

where significant correlations observed at a given time might disappear at a later stage, and 

vice versa. As a straightforward way to address this situation, a short sequence of time course 

data was subjected to the correlation analysis with one time point shifts forward (Scheme 

3.1B, Time-shifted evaluation). This representation is often termed evolving network, a 

natural extension of network analysis onto a temporal context. Firstly, we performed a 

network analysis based on partial correlation coefficient to confirm the time scale of the 

metabolic fluctuation and to extract relevant metabolite correlations. Partial correlation is just 

one of several possibilities for estimating global regulatory interaction structures (Andorf et 

al. 2010). When partial correlations are measured, indirect correlations are explicitly 

excluded. As this approach is recommended to reveal the molecular interaction of cellular 

regulatory networks (Werhli et al. 2006), we first estimated the partial correlation using 

time-shifted sequential data (Scheme 3.1C, Time-shifted partial correlation analysis). In the 

significance test, the threshold of local false discovery rate (fdr) was set to be flexible (up to 

0.4) to keep the temporal context as consistent as possible (see Materials and Methods). As a 

result, 28 out of 378 pairs of metabolites were significantly correlated with a specific 

time-range window (Figure 3.2A). The timings of transient correlations were also 

informative: numerous correlations appeared in response to the glucose pulse, indicating that 

apparent shifts in metabolite correlations were induced. This result indicated that an 

environmental perturbation immediately altered the state of the metabolic system. 
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Figure'3.1'Time'course'of'ATPHADP'ratio'before'and'after'the'glucose'pulse. 

For each time point, the peak intensity of ATP was divided by that of ADP. Triplicate data are 
shown. Not available (NA) points were omitted. Following the glucose pulse, the ATP-ADP 
ratio reached a maximum in three to four time points (corresponding to 30–40 s). 
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Figure'3.2'Temporal'profile'of'the'partial'correlation'structure'and'network'
representation.' '

A. A partial correlation coefficient for each relationship was calculated using the sectioned 
time-shifted longitudinal data of metabolite levels. The profiles were visualized as a heat map 
and clustered by hierarchical clustering using a complete linkage method. A glucose pulse 
was applied just prior to the 25th time point, and time windows that included the time point 
(time windows 9–40) are highlighted (dashed line). The color of each profile was determined 
by mapping the three-dimensional coordination of each relationship in the similarity space of 
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the temporal profile onto a red-green-blue color space. The brightness in the map indicates 
partial correlation coefficients. B. A metabolite correlation network based on the temporal 
correlation profile. The width of the edges indicates the time span of correlation.  
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Considering the time scale of biological events associated with gene and protein expression 

(Dikicioglu et al. 2011, Lee et al. 2011), the initial variation of the correlation network 

indicates a passive fluctuation in the metabolic system, which was dominantly associated 

with metabolites. In this phase, a collapse of metabolic equilibrium could be buffered to 

prepare a new state of metabolic balance. While transcription alternation is most likely to 

cooperate with metabolites, the variations in the protein levels following transcription 

alteration should have little effect on the metabolite-level correlation in this time phase. 

Secondly, metabolic shifts were brought about by binding of allosteric effectors and temporal 

change in protein levels for adaptation to the environment, which might be represented as a 

more gradual change in the correlation profile in a minute-scale. The transient correlation 

profile was then reconstructed as a metabolite network to review the evolution of the 

correlation structure (Figure 3.2B). As several metabolites have edges with distinct colors 

indicating the temporal pattern of the correlation, it was confirmed that a single metabolite 

could participate in more than one correlation at distinct timings. Such correlations with 

different appearance times, which could be derived from different factors, at least in a 

temporal context, would have been overlooked in the ordinary correlation analysis. In this 

study, expressive correlation was observed between fructose 6-phosphate (F6P) and 

6-phosphogluconate during the transition phase in response to the glucose pulse (Figure 3.2A 

and B). Because these metabolites are intermediates of glycolysis and the pentose phosphate 

pathway (PPP) respectively, their correlation could be interpreted as the coordinated supply 

of a carbon source to both pathways. This result agreed with a report that the back-flux from 

PPP scales with the glycolytic flux (Haverkorn van Rijsewijk et al. 2011). Furthermore, the 

correlation pairs that responded faster tended to have less minimum path lengths in the 

reference metabolic pathway, implying that metabolite correlations could be derived from the 
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activation of corresponding metabolic pathway. F6P showed correlations with various 

metabolites (Figure 3.2B). Assuming that F6P was the initial indicator of glucose utilization, 

its correlation partners specific to the phase of metabolic shift might provide a simple 

indicator for the distance in the metabolic pathway. 

3.2.2 Temporal'Analysis'using'a'Single'Correlation'Profile'Provides'a'
Straightforward'View'for'Metabolite'Networks'

When single correlations like Pearson product-moment correlation or Spearman's 

rank correlation are measured to describe a correlation network of biomolecules, its global 

structure is usually too complicated for clear interpretation. In the context of metabolite 

levels, however, indirect correlations are still useful to extract relationships regulated by 

missing factors. Szymanski et al. conducted metabolite pair-wise correlation analysis under 

various stress conditions to allow advanced observation beyond the change in metabolite 

concentration (Szymanski et al. 2009). They found that the stable network, a commonly 

observed network under various stresses, had some components enriched for functionally 

related biochemical pathways. On the other hand, Müller-Linow et al. reported that closeness 

in metabolomic correlation was not an indicator of closeness in biochemical networks 

(Müller-Linow et al. 2007). These reports imply that, whereas it is difficult to understand the 

correlation profile based on a known metabolic pathway, the metabolite correlation itself is 

important information to estimate functionality in the metabolic system. We thus attempted to 

extract module structure of the interdependency concealed within a complex correlation 

network through comparing its temporal traits, namely the simultaneity of relationships, 

which was one of the properties of the temporal profiles that could not be investigated by 

static methods. Compared to the partial correlation analysis, this approach rather concentrated 

– 64 –



Chapter 3 Bacterial Metabolite Network in a Rapid Fluctuation       

 

on elucidating the temporally clustered alteration of the metabolic network, which was 

expected to associate with a similar phase of the regulatory system. To perform a temporal 

analysis of correlation profiles based on the single correlation coefficient, we examined the 

time course with a minimum length of time points to detect transient correlation, followed by 

evaluating a maximum length of correlation (Scheme 3.1D, Temporal single correlation 

analysis). In the construction of a transient correlation network, the appropriate adjustment of 

parameters is important. Although the length of the detection probe should be as short as 

possible to evaluate a short-term correlation, the sample size itself influences the quality of 

the detected correlation. The threshold level of correlation coefficients is also critical for the 

resulting correlation network. These two parameters were optimized to give an ideal balance 

of graph theory properties of the resulting network, i.e. graph density and modularity (Figure 

3.3). Significant variations in metabolite correlation were detected for each metabolite pair 

and expressed as a time course profile (Figure 3.4A). Numerous correlations emerged 

immediately in response to glucose pulse at various temporal durations. 

3.2.3 Variation'of'Degrees'in'the'Metabolite'Correlation'Network'Summarizes'
the'Transience'of'the'Correlation'Profile'

The temporal correlation profile based on the single correlation was highly 

complicated and required further analysis from different perspectives for better interpretation. 

To characterize the temporal trend of the metabolic shift with a viewpoint of the metabolites 

themselves, we examined the time-dependent variation in the connection degree of each 

metabolite node (the number of significant correlations that the metabolite had with other 

metabolites). Centrality is one of measures for importance of given nodes in the network. 

Centrality of each node in a correlation network was evaluated for each time point using the 
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Figure'3.3'Relationship'of'parameters'for'correlation'analysis'to'the'
properties'of'the'resulting'similarity'network.  

A. Density of the similarity network corresponding to a given correlation coefficient threshold 
and significance level. As network density monotonically decreased along with the increase 
of parameters, we estimated the optimum parameters to initiate a drop in density (r = 0.85, k 
= 16). B. Modularity achieved on the similarity networks under the same set of conditions as 
A. Higher modularity was observed when the estimated optimum parameters were applied, 
supporting the validity of parameter estimation. The lattice package (Sarkar, 2008) was used 
to illustrate 3D perspective views. 
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Figure'3.4'Temporal'profile'of'single'correlation'structure'represented'by'a'
time'course'of'correlation'indicator'and'centrality'analysis.'

A. Each slot indicates the maximum time span when significant correlation could be detected 
for a pair of metabolites. The white dashed line indicates the time point when glucose was 
added. Triplicate results were overlaid. The profiles were clustered by hierarchical clustering 
using a complete linkage method. B. A comprehensive view of the time course variation of 
centrality. As centrality can be evaluated when a network is given, time-dependent correlation 
networks were constructed for each time point of the correlation indicator matrix. C. CRA plot 
of the degree centrality. The lined plot represents the time point. Metabolites were located to 
indicate relevance to the time points.   
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time course data of the correlation indicator, as shown in Figure 3.4A, and time-dependent 

variances in centrality were obtained for all nodes. In the present study, several metabolites 

exhibited significant variation of centrality in response to the glucose pulse across a variety 

of durations (Figure 3.4B). Considered inversely, the variation of the correlation network was 

compressed into the variation of node centrality. To better understand this, we further 

employed centering resonance analysis (CRA). CRA is a method of network analysis that 

was originally designed to study complex discourse systems derived from a wide range of 

sociological or psychological phenomena (Corman et al. 2002), and is applicable to evolving 

networks (Brandes and Corman 2003). Briefly, CRA can be conducted as a correspondence 

analysis (CA) of network centrality of a set of nodes evaluated under different network 

structures. However, a potential problem with CA for 2-mode networks has been reported: 

the distances in CA can be misleading because they are not Euclidean (Borgatti and Everett 

1997). In addition, on the two-dimensional (2D) map, it is difficult to determine which 

relationship appears at each time point. Nevertheless, these limitations are not critical for 

understanding the trend of the correlation profiles, as long as the major interest is to assess 

structural equivalence of the network, rather than component association itself (Roberts Jr. 

2000). In the present study, CRA was useful for visualizing the time when each metabolite 

became the center of the correlations, along with the metabolic shift (Figure 3.4C). While the 

first 24 times prior to the glucose pulse remained within a narrow region with regard to Axis 

1, the time points post-induction shifted away from the initial region. The metabolic shift was 

initiated in accordance with a surge in the degree centrality of the number of metabolites. The 

CRA plot indicated that early shifts were related to the variation in the centrality of 

glutathione, CMP, and CDP. The wide-spreading correlating behavior of glutathione is 

reasonable in terms of redox balance maintenance during oxidative respiration coincided with 
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the active utilization of nutrition. It is also known that pyrimidine nucleotides are more 

responsive to the growth phase than purine nucleotides in E. coli (Huzyk and Clark 1971, 

Buckstein et al. 2008). Indeed, UDP, UMP, UDP-glucose UDP-ribose showed the highest 

centrality while purine nucleotides including ADP, AMP, GDP, GMP showed rather delayed 

variations in their centrality. Whilst nucleoside triphosphates themselves do not exhibit any 

correlative behavior in response to the fluctuation, synthesis of pyrimidine nucleotides and 

their phosphorylation level could be sensitively coupled with the developmental conditions, 

implying the structural characteristics of the metabolic pathway. The subsequent metabolic 

alteration was characterized by the centrality of various sugar phosphates and nucleotide. 

Considering the sugar phosphates being the representative intermediates in the central carbon 

metabolism, their correlation partners should indicate the distribution of carbon flux. 

3.2.4 Simultaneity'of'Correlations'in'the'Profile'Indicates'Potential'Relevance'
in'Biological'Events'

Generally, the significant metabolite correlations observed at a given time range do 

not immediately imply any relationship of the metabolites in a biological context. 

Nevertheless, concurrent emergence of correlations could be expected to be under the 

influence of a similar regulation phase. The similarity among correlation profiles was 

evaluated to examine the simultaneity of correlation (Scheme 3.1E, Temporal similarity 

analysis). The resulting similarity matrix was then reconstructed as a temporal similarity 

network (Figure 3.5A). Unlike 2D projection of a multidimensional similarity space, where 

the variation is often poorly explained, this simplified network representation was useful 

because it was obvious which node (a correlating pair of metabolites) was connected to 

others. We then extracted communities, which represented sub-networks having higher 
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Figure'3.5'Concurrent'modules'in'the'metaboliteHmetabolite'network'
determined'by'community'in'the'similarity'network.'

A. Temporal similarity network of metabolite correlations. The similarity index among 
temporal correlation profiles was reconstructed as a similarity network. The nodes in this 
network represented unique pairs of metabolites. The modules composed of more than four 
metabolite pairs were individually colored or otherwise left blank. B. Subsets of the correlation 
network (concurrent modules) that were reconstructed from the communities in the similarity 
network. The module numbers I–IV, indicated at the bottom left of the concurrent networks, 
correspond to those of the temporal similarity network. Corresponding slots of the temporal 
profile (Figure 2) are displayed on the right. Overlapped concurrent modules are displayed on 
the bottom, with metabolite names on the nodes. Ribonucleotides are colored purple, orange, 
and blue, respectively. C. Metabolite-metabolite network based on the single correlation was 
evaluated using time point 1-24 (upper) and 25-96 (lower), corresponding to pre- and 
post-perturbation, respectively.
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modularity in the similarity network. This analysis was almost equivalent to clustering 

analysis for finding correlations with temporal similarity. Although there were modules 

moderately connecting to each other, a clear module structure was observed. These results 

suggested that the time-dependent metabolite correlation had highly concurrent 

characteristics. As the nodes in the similarity network corresponded to the correlation edges 

in the metabolite correlation network, the modules in the similarity network were 

reconstructed as metabolite correlation networks, which appeared at a specific timing. We 

then examined one of each of the modules in terms of interrelation with the system of 

metabolic dynamics (Figure 3.5B). The metabolite correlation networks evaluated using the 

whole time course data in pre- and post-perturbation were shown in Figure 3.5C, representing 

a non-temporal correlation network analysis. In Figure 3.5B, one of the communities 

consisted of constant correlations regardless of the glucose pulse (Figure 3.5B, module I). 

These correlations were composed of nucleotides, and were strongly associated with known 

biological events, namely glycolysis and nucleotide equilibrium. Hexose bisphosphates, 

UDP-glucose, and UDP-GlcNAc are closely related to glycolysis and sugar nucleotide 

metabolism. These three metabolites are intermediates at the metabolic pathway branching 

from the hexose phosphate pool. It has also been previously determined that levels of 

nucleoside triphosphates are related to growth phase, and that the level of each nucleotide is 

more or less correlated (Buckstein et al. 2008). Such relationships were intrinsically 

maintained even under the nutritional perturbation, while the degree of correlation could 

change. In contrast, the other modules represented emerging correlations responding to the 

glucose pulse, at various times and durations (Figure 3.5B, modules II–IV). In these modules, 

nucleoside triphosphates rarely participated in the correlation network, while a large number 

of nucleoside mono- or di- phosphates participated in various temporal modules. This pattern 
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is also shown in Figure 3.4C, where the metabolites clustered around the time course plot 

following glucose pulse, and nucleoside triphosphates were located at quite separate points 

from the cluster. Module II especially was composed of correlations that instantly appeared 

following the glucose pulse. Furthermore, this module included most of nucleoside mono- 

and di- phosphates, as well as the sugar phosphates. In contrast, none of nucleoside 

diphosphates were included in module IV. Instead, sugar phosphates (F6P and F16P) were 

central nodes. Assuming that the immediate fluctuation in the metabolic network is 

independent of the consequent transcriptional regulations, the initial and transient variation of 

the metabolite correlation structure (module II) could be buffering components in the 

metabolic system. These variations were inevitable for the metabolic system, but to be 

resolved by the following regulation, resulting in their disappearance. Although there might 

be missing partners that concurrently correlate with nucleotides, it was implied that 

nucleoside mono- and di- phosphates first buffered the metabolic fluctuation, while the 

nucleoside triphosphate balance was basically maintained. This behavior could further lead a 

speculation that preparing various nucleoside mono- and di- phosphates was versatile in the 

initial action as well as necessary for a stable supply of nucleotide triphosphates required for 

growth. As module IV was composed of correlations that appeared at relatively late time 

points compared to module II, the variations in this phase could be influenced by the 

transcriptional regulation. As Kochanowski et al. reported that utilizing the intermediate 

metabolite in the central metabolism could be an effective way to uniformly detect the 

availability of distinct carbon sources (Kochanowski et al. 2013), the variations in metabolite 

correlations associated with sugar phosphates could possibly provides further implication for 

the metabolic sensing system.

– 72 –



Chapter 3 Bacterial Metabolite Network in a Rapid Fluctuation       

 

 

3.3 Conclusion 

This study revealed the temporal and structural behavior of metabolite correlation 

network in a fast and short span following to the nutritional perturbation. The evolving 

network structure provided novel information for interpreting the metabolite correlation that 

would have been obscured by evaluating a static correlation structure. We observed that 

several metabolites transiently correlated with distinct partners time-dependently in response 

to the glucose pulse, suggesting that some of these relations could be used as the marker in 

immediate sensing of the metabolic state. The temporal profiling of metabolite levels 

introduced in the present study should be considered as a methodological proposal that 

complements metabolomic studies, aimed at developing a broader view of quantitative 

metabolite levels for the price of a limited sample size. As long as a cellular system is 

dynamic, temporal information also benefits advanced interpretation in other omics studies 

that deal with multivariate data individually influenced by a variety of factors. Temporally 

specific patterns of variation in the biological network remain to be investigated, but should 

be a rich source of novel perspective for understanding the network dynamics.
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3.4 Materials and Methods 

Workflow of the experiments and data analysis is summarized in Scheme 3.1. 

3.4.1 Chemicals'

All solvents, metabolite standards, and other chemicals were purchased from Sigma 

Aldrich (St. Louis, MO, USA). Deionized water was obtained from a Milli-Q system 

(Millipore, Schwalbach, Germany). 

3.4.2 Culture'and'Induction'of'Nutritional'Perturbation'

E. coli strain JM109 was used for the direct metabolite analysis. Cultures were 

incubated Luria-Bertani medium (4 h, 150 rpm, 37°C). Bacterial cells were collected by 

centrifugation (6,000 g, 5 min, 37°C) and resuspended in Hank’s balanced salt solution 

(HBSS) containing 5 µM phenol red (OD600 = 2). The cell suspension was further incubated 

in a water bath (37°C) with constant stirring. A pulse of glucose was added to give a final 

concentration of 5% (w/v), and cell samples were harvested from the suspension both before 

and after glucose addition. 

3.4.3 Sampling'

Matrix solution (6 mg/mL 9-AA in 80% methanol) was used to quench intracellular 

metabolism. Each sampling was performed by mixing 10 µL of suspension with 60 µL of the 
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pre-cooled matrix solution (�40°C). The sampling interval was fixed at 10 s. For each 

time-course sample acquisition, 24 samples were taken prior to the nutritional perturbation 

induction and 72 post-induction, resulting in a sample set of 96 time points over 16 min. 

3.4.4 Mass'Spectrometry'

For time-course metabolite analysis, a time-of-flight type MALDI-MS instrument 

(AXIMA Performance, Shimadzu, Japan) was used. The technique was previously introduced 

as a high-throughput and highly sensitive metabolite analysis. In brief, 1 µL of the analyte 

was applied onto a ground-steel MALDI sample plate and air-dried to give a sample spot. 

The spots were irradiated at a laser power that gave satisfactory ion intensity, and all analyses 

were performed using the same laser power in the negative ionization mode. Mass spectra 

were obtained by MALDI-MS analysis where five laser shots were accumulated and 256 

spectra were averaged per spot. Analysis time was less than 20 s/spot. Four spots were 

deposited from an individual sample and averaged to apply to further data analyses. Mass 

spectra were internally calibrated using the internal standard and peaks that appear 

constantly. 

3.4.5 Raw'Data'Processing'

Peak pick, normalization, peak alignment, and scaling were conducted using an 

in-house Perl script. The cut-off threshold was 30-fold of noise intensity and mass error 

tolerance was 200 ppm. Ultimately, 100–200 peaks were detected per spectrum. Peaks that 

appeared in blank sample (HBSS + 9-AA) or that were detected fewer times than half of the 

number of acquired spectra were excluded from the following statistical analysis. Peak 

intensity in a spectrum was normalized to give a zero mean and unit variance throughout the 
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time course. Missing values were designated not available. 

3.4.6 Partial'Correlation'Analysis'using'Sliding'Window'

The following statistical analysis was conducted using R language (R Core Team 

2012). A set of correlation coefficients among observed metabolites was denoted as 

correlation profile. A matrix X�is the time course data of M metabolites with T discrete time 

points for observation. A temporal subset of X starting from time point t with length k is 

denoted as: 

Xt
k = [xt,xt+1,...,xt+k−1]  where 0 ≤ t ≤ T - k +1 

x = (x1, x2,..., xM )
T  

Vector xt represents the peak intensities of M metabolites in a mass spectrum 

observed at time point t. While parameter k can be arbitrarily defined, it controls the trade-off 

between the correlation detection power and the shortest detectable correlation span. The 

parameter was set in accordance with the following analytical section (Scheme 3.1E, 

Temporal Similarity Analysis). The graphical Gaussian modeling (GGM) framework 

(Edwards 2000) was employed to eliminate indirect interrelations. GGMs, also known as 

covariance selection models, are undirected graphical models where each relationship is 

conditioned on all remaining metabolites simultaneously. GGM modeling is based on partial 

Pearson correlation scores, simply calculated by inversion and normalization of the Pearson 

correlation matrix (Schäfer and Strimmer 2005). We estimated the partial correlations using 

GeneNet (Schäfer et al. 2012), an R package that employs a shrinkage approach, which is 

suitable for data with a small sample size and a large number of variables. For the first time 

window, we liberally set the threshold of local false discovery rate (fdr) to give five to ten 

edges in the correlation network. To clearly illustrate the time-dependent variance of partial 
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correlation, cutoff values for the following time windows were determined depending on the 

previous correlation profile. The cutoff value at the t-th time window  Ft is given as 

Ft =max{0 ≤ x ≤ 0.4 | St (x) ≥ 0.8,n11 ≥ 5}

St =
n11

n11 + n10 + n01

 

The similarity index St is the degree of identification with regard to the t-th and the 

previous time windows. The term n11 is the number of edges that are significant under a given 

fdr threshold, both in the t-th and the previous time window. The terms n10 and n00 indicate 

the number of edges of either or neither of the adjacent time windows, respectively. 

3.4.7 Temporal'Similarity'Analysis'of'Correlation'Profile'

In addition to the GGM approach, we performed single correlation analysis to 

examine all correlations, including indirect ones, followed by temporal similarity network 

analysis to extract correlation modules. For every possible pair (i, j) from M metabolites, 

Spearman's rank correlation coefficient was calculated to give a temporal correlation profile 

matrix Y. 

(Y)i, j,t = ri, j (Xt
k ) = rankcor(Xt

k (i),Xt
k ( j))  where Xt

k (l) = (xl,t, xl,t+1,..., xl,t+k−1)  

The statistical significance of each pair was then tested. Here, H0 denotes the null 

hypothesis that |r| = 0.85. Using the alternative hypothesis, H1, that |r| > 0.85, we performed a 

one-way t-test with the alpha level at 0.05. A t-statistic Z0 was calculated using the following 

formula: 

Z 0 =
ζr −ζ pr

1 n−3
 

Here, n indicates the sample size (n ≥ k0, otherwise N/A). ζr and ζp denote a 
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Z-transformed score of population correlation coefficient 0.85 and absolute sample 

correlation coefficient |r| using the formula: 

Z = 1
2
ln1+ r
1− r

 

tc =min t0 ≤ t ≤ T − k0 | P(Z0 (Xt
k0 )) ≤ 0.005{ }

ti =min t0 ≤ t ≤ T − k0 | P(Z0 (Xt
k0 )) ≤ 0.005∩P(Z0 (Xtc

t−tc )) ≤ 0.005{ }
 

Initial t0 is 0. The value of k0 can be considered to be the length of a probe for 

evaluating transient correlation. As an appropriate probe length may depend on the temporal 

resolution of the time course data, k0 was set as 16 for the current study, which is equivalent 

to 160 s. t0 is then updated to tc and used in the successive iteration to find the next slot. 

Time points from tc to ti � 1 represent a correlating slot. Here we denote the series of 

resulting slots as a binary correlation profile matrix B, representing whether a metabolite pair 

p correlates at time point t. 

(B)t,p =
1 (tc ≤ t ≤ ti )
0 otherwise

"
#
$

%$
where 0 ≤ t ≤ T − k0 +1  

For each temporal network produced by (B)t,⋅, the degree centrality of nodes, which 

represent metabolites, was evaluated. The resulting matrix of the centrality was applied to a 

correspondence analysis. 

The slots (B)⋅,p were compared to each other to measure the similarity, represented as 

follows: 

Sp1,p2 =min D(p1, p2 ) C(p1, p2 ){ }  

The function D represents the difference of time points when the correlation 

indicators of two metabolite pairs changed from negative to positive. The function C 

represents the number of time points when both of the indicators of the two metabolites were 
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positive. Because S is produced for every experimental replication, replicated similarity 

values were represented by the minimum one, which represents the worst case of the 

simultaneity, and was regarded as an ‘honest’ estimation to prevent a chance coincidence. A 

similarity network of the temporal correlations was constructed using S with a specified 

threshold for edge selection. In the similarity network, communities were extracted by 

deleting nodes with the highest degree of betweenness at the corresponding iteration step to 

achieve the highest modularity. Here, we determined the parameters, the probe length k and 

the correlation coefficient threshold r, with regard to the influences on the resulting network, 

based on network characteristics such as number of edges, graph density, and modularity. 

The nodes in the module network, which represent the correlation between the corresponding 

two metabolites, were reconstructed as metabolite networks. Correspondence analysis was 

conducted using the MASS package (Venables and Ripley 2002). Graphs were visualized and 

evaluated using the igraph package (Csárdi and Nepusz 2006). 

3.4.8 Genome7scale'model'of'E.#coli#metabolic'network#

A previously reported genome-scale network (GEM) of E. coli, iJO1366 (Orth et al. 

2011) was used as the reference network of metabolism. This model comprised of 1136 

compounds and 2551 reactions, reconstructed based on 1366 genes. SBML-type GEM data 

was converted into a stoichiometric matrix using COBRA Toolbox (Schellenberger et al. 

2011) on MATLAB version R2012b. We excluded ubiquitous compounds that incorporate 

various biochemical reactions, which servie as hub and reducing the path lengths in the 

network, based on their connective degree in the network. The matrix was imported to R 

environment and treated as a graph. Shortest path length (SPL) was calculated using igraph 

package (Csárdi and Nepusz 2006). 
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4.1 Introduction 

The cellular regulatory system is capable of adapting to immediate environmental 

changes. Availability of nutrition is crucial for cells for survival, but it is unlikely that 

specific regulation pathways are prepared for every possible substrates. Kochanowski et al. 

reported that flux sensors were responsible for appropriate metabolic regulation responding to 

nutritional environment (Kochanowski et al. 2013). Fundamental concept of the sensing 

system is that multiple nutrient 'inputs' are directly integrated to inform for environmental 

changes (Perkins and Swain 2009). The fact that a limited number of metabolites can serve as 

indirect information for nutritional environment can be a natural consequence of metabolic 

network structure. Inversely, metabolic network has possibly evolved to converge the 

nutritional input into limited but specific signals. Considering a few-minute delay of mRNA 

variation, such a sensing system work as the first responder through passive recognition of 

changes in extracellular nutrient abundances. For nutrition-dependent cellular responses, a 

number of studies focused on the variation at metabolite level in various time scales. 

However, nutritional pulse was mostly introduced by adding glucose as the representative 

carbon source, providing no differential information accounting for the sort of substrates. 

Furthermore, few studies discussed the metabolomic dynamics in an immediate response to 

fluctuation despite the fact that the metabolic biochemistry of E. coli alters during its growth 

(Buckstein et al. 2008, Allen et al. 2003, Baev et al. 2006). 

A correlation analysis is one of unbiased method to examine system-level associations 

among biomolecules, and is a basic approach in the systems biology (Steuer et al. 2003, 

Camacho et al. 2005). Metabolite-metabolite correlation is recently considered as a rich 
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source of information for cellular physiological state (Steuer 2006). In Chapter 3, we 

discussed the transitional behavior of metabolite-metabolite correlation network in response 

to a glucose pulse. It was indicated that the correlation profile of E. coli evolved immediately 

after glucose pulse and seemingly reached the next stationary phase within a few minutes. 

This result implied that metabolic network could be inherently capable of curtailing sudden 

metabolic perturbations before the alteration of enzyme abundances. 

This study clearly showed that the structure of correlation network dramatically evolved with 

an immediate manner in response to the nutritional fluctuation, and that the source of the 

correlation could be the topological structure of the metabolic pathway. The closeness 

between metabolite-metabolite correlation and the distance in a network is a straightforward 

relation. However, observed uncorrelated relations between the metabolite-metabolite 

correlation and the network distance still remain elusive. 

The primary aim of this study is to understand the rule of variance in the metabolic 

balance with which the cellular system can immediately recognize the environmental 

nutrition abundances. The key points of the present study are that; 1) a wide range of 

compounds were used to give nutritional pulses to E. coli cells; 2) metabolic fluctuation at 

the metabolite level was traced for a few minutes, when a transcriptional regulation could 

have a minor influence on the metabolic state, in order to investigate the innate structural 

characteristics of metabolic pathway; 3) correlation network analysis was employed to 

systemically extract unexpected propagation of metabolic fluctuation. 

MALDI-MS-based high-throughput metabolite analysis is capable of direct detection 

of intracellular metabolite from nearly intact cells with a high sensitivity. Using MALDI-MS, 

Ibáñez et al. characterized the metabolomic variability in single cells (Ibáñez et al. 2013). 

Such a high-throughput system would allow a large-scale analysis as a foundation for the 
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phenotype profiling without non-natural perturbation such as gene modification that is 

directed to one favored phenotype. Using MALDI-MS as the high-throughput analytical 

platform, temporal variation of metabolite-metabolite balance was evaluated during 

immediate response to nutritional fluctuations. 
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4.2 Results and Discussion 

4.2.1 Experimental'design'

High-throughput technique becomes more important in proportion to the 

exponentially increasing number of experimental conditions to examine. In the present 

experiment, nearly 2,000 of time-course samples were subjected to MS analysis to perform 

temporal correlation network analysis to trace a short-time variation of the metabolic state. 

Such a scale of experiments should be unpractical as long as conventional methods were used, 

in either terms of time, quality control or continuous labor. The MALDI-MS-based 

high-throughput method enabled the present study, finishing all the analysis within a few 

days. The analytical stability and specificity for temporal and conditional aspects was 

confirmed by PCA analysis of replicated experiments. 

4.2.2 Temporal'variances'of'individual'metabolite'levels'

As we observed in Chapter 2, PEP level (m/z = 167.0) decreased in most of cases 

other than those of acetic acid, alanine and proline (Figure 4.1). For recognition of 

environmental carbon sources, two major systems are known in bacteria. Some sugars (e.g. 

fructose, galactitol, mannitol, mannose, sorbitol) are recognized through the 

phosphotransferase sugar uptake system (PTS) (Roseman 1969, Janausch et al. 2002, 

Plumbridge 2002, Schlegel et al. 2002, Bijlsma and Groisman 2003, Bettenbrock et al. 2007). 

On the other hand, other sugars (e.g. arabinose, glycerol, galactose, lactose, maltose, 

melibiose, fucose) are recognized transcription factors (TFs), intracellular regulatory proteins 
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Figure'4.1'Time'courses'of'metabolite'levels'in'response'to'nutritional'
fluctuations.'

Red lines indicate the fluctuated samples and gray lines indicate the control samples. Solid 
lines indicate first and third quantile of experimentally or analytically replicated samples and 
dotted lines indicate the second quantile, or median. X-axis corresponds to time point that 
indicates sampling point with a 10-sec interval. Y-axis indicates log2 scaled intensity 
normalized to TIC.   
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Figure'4.1'Time'courses'of'metabolite'levels'in'response'to'nutritional'
fluctuations'(continued).'
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Figure'4.1'Time'courses'of'metabolite'levels'in'response'to'nutritional'
fluctuations'(continued).'

Blank spaces indicate that the corresponding peaks were not detected. 
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(Cohen and Monod 1957, Seshasayee et al. 2006, Ozbudak et al. 2004, Martínez-Antonio et 

al. 2012). For other carbon source including organic acids (e.g. acetate or succinate), no such 

transmembrane sensors or regulatory protein has been reported. However, even though 

carbon source-specific transcription factors are responsible for achieving homeostasis in 

response to new nutritional environments, immediate imbalance of intracellular metabolite 

profile should be controlled firstly without transcriptional regulations. 

The observed decreases in PEP levels could be attributed to the PTS, typically in the 

case of glucose or sorbitol. However, glycerol and maltose have been reported as inactive 

substrates for PTS (Saier 1989). PTS consumes PEP and produce equimolar pyruvate, and in 

the present study, the pyruvate levels (m/z = 87.0) surged in the case of glucose, ribose and 

xylose. Although catabolic in-flux could also increase pyruvate levels, and the case of 

sorbitol could not be well explained, these results implied that these three substrates were 

involved with the PTS. Therefore, the decrease of PEP level observed in the other cases was 

assumingly due to PEP-dependent kinase activity, which would phosphorylate the 

intermediates in other metabolic pathways with a consumption of PEP. 

We examined the temporal variances of other metabolite concentrations to confirm 

the utilization of given substrates by E. coli cells. Apparent changes were found in F6P (m/z 

= 259.0) and F16P (m/z = 339.0) when glycolytic substrates (glucose and sorbitol) were 

added. It has been reported that F16P is relevant to a flux sensor that regulates the activity of 

glycolysis. F16P level increased for about 50 sec after the nutrition pulse, while F6P level 

surged within 20 sec, in both case of these substrates. However, although the F6P level also 

increased in case of some of the other substrates, F16P was not even observed in any other 

cases, including the control. This result implied the glycolytic flux was remarkably greater in 

the case of hexose substrates than the others. Similarly, adding sucrose/maltose led to 
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increases in sucrose/maltose phosphate level (m/z = 421.0), while F6P level was stable. 

Sucrose/maltose phosphate is consequently hydrolyzed to glucose 6-phsphate and fructose or 

glucose, respectively. Supply of hexose phosphate was considered balanced with its 

consumption. 

In contrast, a surge of 3PG level was observed exclusively when pentose substrates 

(xylose and ribose) were added. Flux from pentose substrates directly flows into GAP3, 

bypassing the FBP pathway that controls the glycolytic flux, and then being oxidized into 

3PG. Although the flux from glycerol could flow into GAP3, glycerol might be consumed for 

glycerolipid synthesis with higher ratio compared to the glycolysis. 

Alternatively, a surge of AcCoA was observed in the case of amino acids (alanine and 

proline) and organic acids (acetic acid and succinic acid), while only a moderate increase of 

AcCoA was observed for other cases, reflecting relatively less flux from these substrates to 

the endpoint of the glycolysis. 

4.2.3 Temporal'Variances'of'Metabolite'Levels'in'Accordance'with'ATP/ADP'

In the present study, we employed various kinds of substrates including 

monosaccharide, sugar alcohol, disaccharides, amino acids and organic acids as the source of 

nutritional pulse to investigate specific or common metabolic perturbations that could inform 

the given environment. Firstly, the temporal progress of nutrition utilization was confirmed 

by ATP-ADP ratio (ATP/ADP). ATP/ADP represents adenylate energy charge that should 

indicate actual free energy of ATP hydrolysis available for cellular reactions (Atkinson 1968). 

The concept of the index is based on the assumption that, although the absolute individual 

amounts of ATP, ADP and AMP might vary widely, the ratios of ATP and ADP, or ATP and 

AMP are more reliable indicator of metabolism. In the present study, the ATP/ADP increased 
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significantly when sugars were added, typically within 30-40 sec (Figure 4.2). Amino acids 

led to modest increase of ATP/ADP with a longer time span. This time scale of energy 

metabolism was equivalent to the previously reported behavior in response to nutritional 

pulses. We further examined the correlative variation of other metabolites with ATP/ADP, 

which can be the consequential relationships of cellular metabolism (Ibáñez et al. 2013). In 

control case, basically no metabolite level correlated with ATP/ADP. Amino acids did not 

lead to any significant increase of ATP/ADP, but the level of AMP negatively correlated with 

ATP/ADP. It was thus assumed that AMP was converted into ADP and then ATP with 

maintaining ATP/ADP. On the other hand, CTP, UTP, GTP and succinyl CoA were found to 

positively correlate with ATP/ADP. It should be noted that the levels of these nucleotides 

were seemingly stable in both cases. Such balancing would allow an efficient utilization of 

possible sugar substrates that involves with glycolytic pathways influenced by ATP/ADP. 

Throughout the cases, many other metabolites also negatively correlated with ATP/ADP, 

while most of them remained unknown. There was no positive correlation with ATP/ADP. 

Such trends could indicate that a surplus of intracellular metabolites was directed to synthesis 

of ATP. The structure of the metabolic pathway should determine which metabolites to be 

consumed or saved. 

4.2.4 Centrality'analysis'of'evolving'networks'

We so far discussed the temporal behavior of metabolites in terms of their abundances 

and individual correlative relationships. In the following, we focused on the structures of 

metabolite-metabolite correlation networks observed either commonly or specifically in 

certain cases. As discussed in Chapter 3, alterations in the temporal correlation profile could 

be associated with the variations of adenylate energy charge. We thus constructed a GGM for 
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Figure'4.2'Time'course'of'ATP/ADP'ratio'

Time-dependent variations of ATP-ADP ratio (ATP/ADP) in E. coli cells were displayed. Each 
chart represents the time-course of ATP/ADP variationThe variation chart for control sample 
was displayed in all the panes by gray lines.  
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each substrate using the time-course data acquired at the time points when the energy charge 

reached a maximum (Figure 4.2). Graphical Gaussian networks were constructed for every 

cases of substrate and time point with uniform criteria, and then the eigenvector centrality of 

every node was calculated to summarize key the structural components in the network 

(Figure 4.3). In reconstruction of network, the parameter setting is crucial: the threshold of 

partial correlation coefficient for edge selection would dramatically affect the property of 

resulting network. We checked such influence on the correlation network with increasing 

threshold of correlation coefficients based on the centrality profile of the resulting networks. 

With ρ > 0.05, substrate-specific centrality patterns were observed. As concerned, such 

patterns got dim with ρ > 0.03 (data not shown). On the other hand, they almost disappeared 

with ρ > 0.08. It was assumed that irrelevant relations contaminated to the centrality profile 

due to the loose threshold in the former case, and the latter lacked relevant relations to 

illustrate network characteristics due to the high threshold. Nevertheless, the trend was 

considered at a holistic view, and different thresholds led to different but seemingly 

significant centrality patterns. When the threshold ρ > 0.05, a clear centrality of UMP (m/z = 

323.1) was observed with a moderate progression in the case of pentose sugars (Figure 4.4A). 

A similar pattern was observed for a signal of m/z = 59.1, which remained unknown. 

As discussed in Chapter 3, it is known that pyrimidine nucleotides are more 

responsive to the growth phase than purine nucleotides in E. coli (Huzyk and Clark 1971). 

Pentose sugars directly supply the base structure of nucleotides, and thus it was assumed that 

this process was tightly linked with other metabolite levels. The connectivity (or partial 

correlation coefficients) between UMP and other metabolites was also similar (Figure 4.4A). 

When the threshold ρ > 0.08, a similar pattern was also observed for sucrose/maltose 

phosphate in the case of sucrose and maltose, along with an unknown signal of m/z 404.0 
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Figure'4.3'Centrality'profiles'of'metaboliteHmetabolite'correlation'networks.'

Eigenvector centrality of metabolites was indicated by the brightness in the heat map. The 
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substrate condition was displayed on the top, and time course was ordered from the left to the 
right as indicated by arrows on the bottom. The row was rearranged through hierarchical 
clustering using Euclid distances. Several m/z mentioned in the text were indicated by color 
(see also Figure 4.4). A. Threshold was ρ > 0.05. B. ρ > 0.08. 
  

– 94 –



Figure'4.4'Excerpts'of'Centrality'profiles'of'metaboliteHmetabolite'correlation'
networks.'
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(Figure 4.4B). Since sucrose/maltose phosphate is a direct product from sucrose or maltose, 

its level could naturally influence the levels of other metabolites. One of centrality patterns 

with significant difference than the control distributed among several substrate cases, but 

these low molecular weight signals were unknown (Figure 4.4C). These centrality variations 

were not observed for the case of acetic acid and succinic acid, implying that this pattern was 

characteristic to glycolytic substrates. Such a pattern might serve as indirect information for 

the existence of certain class of substrates. 

4.2.5 Consensus'network'involved'with'various'nutritional'fluctuations'

The edges that showed significant differences in their correlations were selected by 

edge-wise t tests, using GGMs derived from the used substrates and ones from control data of 

every time points. The each selected edge was further filtered with a criterion that the edge 

had significant correlation coefficients with at least five substrates. Based on p-value of t test, 

top 2% of edges were selected. These parameters naturally affect the structure of the resulting 

differential network (data not shown), but following discussion was basically consistent even 

with 2-fold changes of the parameters. Although this approach might not be capable of 

capturing significantly altered correlations for a specific substrates, the main objective of the 

present study is to extract a consensus motif of the metabolite correlation network that altered 

from the control condition. It should also be noted that true specificity of one substrate could 

be elusive because the comprehensiveness of substrates was limited. The constructed 

differential networks derived from individual substrates (with an identical edge composition) 

were then expressed as a heatmap of correlation coefficients for the graph edges (Figure 4.5). 

The dendrogram of the substrates in the heatmap implied that the similarity of network 

structures could be associated with the classification of substrate compounds, e.g. ribose and 

– 96 –



Figure'4.5'Differential'correlation'profiles'
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A partial correlation coefficient for each relationship was calculated using the time-course 
data of metabolite levels sectioned around a maxima of the adenylate energy charge. The 
profiles were visualized as a heat map and clustered by hierarchical clustering using a 
complete linkage method. The index color of each substrate was determined by mapping the 
three-dimensional coordination of each relationship in the similarity space of the differential 
profile onto a red-green-blue color space. 
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xylose led to similar differential networks. However, some typical carbon sources including 

glucose, glycerol and sorbitol exhibited rather distinct differential network structures. Such a 

tendency might indicate that specific responses were prepared for these substrates for 

realizing optimized adaptation. It was rather astonishing that the amino acids (alanine and 

proline) led to relatively similar differential networks, even though they possess 

fundamentally different chemical structures and involve with distinct metabolic pathways. A 

decisive difference between the amino acids and the other carbon sources was nitrogen 

element, implying that the correlation network was involved with a nitrogen-specific 

metabolic response. The differential correlation profile was then reconstructed into a network, 

where edges were colored to indicate the conformity with the substrates (Figure 4.6). 

Closeness of the hue represented the distances in the similarity space (up to the third principal 

component). There was an obvious hub metabolite (m/z = 209.0, referred as CpdA) 

possessing edges with various colors, implying that the metabolite exhibited 

condition-dependent correlations with various metabolites. The green edge between CpdA 

and the vertex of m/z 59.02 corresponded to the condition of acetic acid (m/z = 59.0). The 

edge between CpdA and the vertex of m/z 277.0 was colored purple, corresponding to 

glucose. The peak of m/z 277.0 might be derived from a water-adduct ion ([M + H2O]-) of 

F6P (m/z = 259.0). The vertex of m/z 115.0 could be derived from fumaric acid, a direct 

product of succinic acid in the TCA cycle. The edge between the putative fumaric acid and 

CpdA was colored with deep blue, roughly corresponding to amino acids and succinic acid. 

These observations thus imply that CpdA could be a mediator that informs the presence of 

various kinds of substrates. Although the identity of CpdA was unfortunately yet unknown, 

the consensus network suggested that a certain metabolite could serve as a key point where 

the information fir the availability of nutritional sources was converged. 
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Figure'4.6'Consensus'network'in'response'to'nutritional'perturbations'

The numbers in vertexes indicate m/z values of detected peaks. The colors of edges indicate 
the conformity with the substrates. 
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4.3 Conclusion 

This study revealed the condition-dependent behavior of metabolite correlation 

network structure. Starting from the metabolites known to participate to the metabolic 

sensing of nutritional environment and its behavior in the correlation network, we extracted 

components that exhibited analogous network characteristics. Although preliminary, it was 

demonstrated that dynamic metabolomic analysis could delineate general network motif 

responsible for immediate adaptation to drastically changing environment. Still, more 

sophisticated methods for efficient accumulation of dynamic metabolome data was also 

indispensable. With on-going progression of analytical platforms for high-throughput 

metabolomics the scale of dynamic metabolome data would further grow, but our proposed 

calculative method based on network theory should yet applicable. 
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4.4 Materials and Methods 

4.4.1 Chemicals'

Tested substrates included glucose, ribose, xylose, sorbitol, glycerol, sucrose, maltose, 

alanine, proline, succinic acid and acetic acid, which were expected to serve as carbon source 

(Orth et al. 2011). All solvents including ultra pure water, metabolite standards and other 

chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA). 

4.4.2 Culture'and'induction'of'nutritional'perturbation'

E. coli strain JM109 was used for the direct metabolite analysis. Cultures were 

incubated Luria-Bertani medium (4 h, 150 rpm, 37°C). Bacterial cells were collected by 

centrifugation (6,000 g, 5 min, 37°C) and resuspended in water on a 96-well PCR plate 

(OD600 = 2). The cell suspension was further incubated in a block heater (37°C). A nutrition 

pulse was induced by adding either of substrates to give a final concentration of 1 g/L, and 

cell samples were harvested from the suspension both before and after the nutritional 

fluctuation. 

4.4.3 Sampling'

Matrix solution (6 mg/mL 9-AA in 80% methanol) was used to quench intracellular 

metabolism. Each sampling was performed by mixing 10 µL of suspension with 60 µL of the 

pre-cooled matrix solution (−40°C). The sampling interval was fixed at 10 s. For each 

time-course sample acquisition, 1 samples were taken prior to the nutritional perturbation 
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induction and 15 post-induction, resulting in a sample set of 15 time points over 150 sec. The 

cell culturing and sampling was replicated by ten times. 

4.4.4 Mass'spectrometry'

For time-course metabolite analysis, a time-of-flight type MALDI-MS instrument 

(AXIMA Performance, Shimadzu, Japan) was used. The technique was previously introduced 

as a high-throughput and highly sensitive metabolite analysis. In brief, 1 µL of the analyte 

was applied onto a ground-steel MALDI sample plate and air-dried to give a sample spot. 

The spots were irradiated at a laser power that gave satisfactory ion intensity, and all analyses 

were performed using the same laser power in the negative ionization mode. Mass spectra 

were obtained by MALDI-MS analysis where five laser shots were accumulated and 256 

spectra were averaged per spot. Analysis time was less than 20 sec/spot. Four spots were 

deposited from an individual sample and averaged to apply to further data analyses. Mass 

spectra were internally calibrated using the internal standard and peaks that appear 

constantly. 

4.4.5 Raw'data'processing'

The following data processing was conducted using R language (R Core Team 2012). 

Peak pick, normalization and peak alignment were conducted using an R package 

MALDIquant (Gibb and Strimmer 2012). The cut-off threshold was signal-to-noise ratio of 5 

and mass error tolerance was 0.05 Da. Peak intensity in a spectrum was normalized to give a 

zero mean and unit variance throughout the time course. Missing values were replaced with 

zero. The background and unaffected metabolite peak was excluded by student’s t-test using 

the control case, where E. coli cells were prepared in the same manner as the other cases but 
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no nutritional pulse was applied. Resulting data matrix has the time points in row, and the 

detected peaks (132 in total) in column (a time-course metabolite profile; TC). TC is 

reconstructed for each case of substrate (12 in total including the control) and experimental 

replication (n = 10). 

4.4.6 Evolving'partial'correlation'network'

The graphical Gaussian modeling (GGM) framework was employed as described in 

Chapter 3. A temporal correlation network was constructed using TCs of two successive time 

points for each substrate, resulting in [total number of time points – 1] networks. These 

networks are denoted as temporal correlation networks. Centrality profile of temporal 

correlation networks was constructed as described in Chapter 3.
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5.1 Introduction 

MALDI-MS has come to play a unique role in the analysis of low-molecular-weight 

biological compounds, principally metabolites (Edwards and Kennedy 2005, Dally et al. 

2003). It is well known that the scope of detectable compounds in the MALDI-MS analysis is 

strongly associated with the molecular species of the matrix.  

Many compounds have been reported as the MALDI matrices. They are typically 

aromatic acids in the case of the positive ion mode, and aromatic bases in negative. They 

commonly have optical absorption near the wavelength of the laser and contain a chromophor, 

though it is not always necessary. In the positive ion mode, a storng acid such as 

trifluoroacetic acid is added to matrix solution as a proton donor. The most representative 

matrix compounds are 2,5-dihydroxy benzoic acid (DHB) and α-cyano-4-hydroxy cinnamic 

acid (CHCA). Sinapinic acid or ferulic acid are also occasionally used. These matrix 

compounds are utilized mostly for the positive ionization of microorganisms and other class 

of compounds mentioned above. For metabolite analysis, 9-AA is the most popular matrix 

compound because it can support negative ionization and most of intracellular metabolites 

tend to have negative charges. 

Co-use of different compounds other than matrix compounds is frequently attempted, 

e.g. a surfactant to control the interference of the matrix on the mass spectrum (Guo et al. 

2002). A high molecular weight is also used as alternative approach (Ayorinde et al. 1999, 

Ayorinde et al. 2000). In addition to low-molecular-weight organic compounds, a variety of 

inorganic materials are utilized as MALDI matrix (Sunner et al. 1995, Chen et al. 1998). As 

for different kinds of carbon-based materials, other studies utilized graphite plates (Sunner et 
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al. 1995), graphite suspensions in different solvents (Sunner et al. 1995, Dale et al. 1996), 

graphite trapped in a silicone polymer, (Li et al. 2005), pencil lead (Langley et al. 2007, 

Black et al. 2006), and grapheme (Dong et al. 2010). Furthermore, Matrix-free LDI is yet 

another MALDI technique that use a photoactive but non-desorbable materials on which 

samples are embedded and analyzed without any matrix compound co-crystallized (Cohen, 

Go, & Siuzdak, 2007; Najam-ul-Haq et al., 2007; Petterson, 2007). These strategies are in 

continual development to find more amenable analysis of small molecules without matrix 

interferences. Although no matrix is used and some differences exist in the mechanism of ion 

formation, this approach may be regarded as a derivative of MALDI. The main advantage of 

this approach is that little or no background signals are observed in the mass spectrum. In 

addition, sample preparation is simplified because no matrix is involved. Recently, many 

efforts have been made to eliminate matrix ion interference by using different matrix 

substances, such as desorption/ionization on porous silicon (Zou et al. 2002, Zhang et al. 

2001, Lewis et al. 2003, Wei et al. 1999). Nevertheless, conventional MALDI that utilizing 

low-molecular-weight compounds as matrix compounds still has potential advantage for 

controlling the sensitivity and specificity, because it is empirically well known that different 

matrix compounds supports distinct class of compounds with various sensitivity. However, 

although the modification of matrix compounds would alter their ionization capability, there 

is no general strategy to design the molecular structure for desired ionization property due to 

insufficient understanding of MALDI events. 

In the present study, we aimed to model the relationship between the structural 

properties of the metabolites and matrix compounds that contribute to MALDI efficiency. 

QSPR models have been investigated in a variety of fields to summarize supposed 

relationships between chemical structures and corresponding bioactivities or physical 
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properties (e.g. metabolic activation (Liew et al. 2012) or azeotropic boiling points (Katritzky 

et al. 2011)). The chemical structure could be represented by molecular descriptors that 

represent certain perspectives of the structure through specialized mathematical procedures. 

The present study dedicated to constructing a metabolite QSPR for MALDI efficiency, 

employing 9-AA as a representative matrix compound for metabolite analysis 

(Vermillion-Salsbury and Hercules 2002). The MALDI-MS analyses with 9-AA 

(9-AA-MALDI-MS) have been utilized for various studies, including high-throughput and 

highly sensitive metabolite analyses (Miura et al. 2010b, Yukihira et al. 2010, Amantonico et 

al. 2008b) as well as metabolite MS imaging (Miura et al. 2010a, Miura et al. 2012). In the 

targeted analyses, the merit of metabolite property modeling lies in the prediction of the 

probability of the ionization of metabolites yet to be analyzed in MALDI-MS. In the 

non-targeted analyses, on the other hand, the model would work to screen chemical structures 

plausibly assigned to a detected peak, even if compounds with similar m/z values are not 

distinguishable. A metabolite QSPR model was constructed using a 9-AA-MALDI-MS 

ionization profile of 200 metabolite standard compounds, which were selected to cover a 

wide range of structural diversity and biological importance. The importance of the 

descriptors was estimated and discussed with regard to the relevance to the ionizability and 

ionization efficiency of the compounds. 
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5.2 Results and Discussion 

5.2.1 Ionization'profile'of'metabolites'in'97AA7MALDI7MS'analysis'

First, we investigated the ionizability and ionization efficiency of 200 compounds to 

clarify the coverage of 9-AA-MALDI-MS for the metabolite analysis. As a result of the test 

analysis, 100 out of 200 compounds were detected as deprotonated peaks. The LOD value 

ranged from 0.00125 ppm to 100 ppm. As the chemical diversity defines the applicability of 

models constructed using the dataset, the taxonomy superclass of the metabolites in the 

sample set was summarized in Table 5.1. In general, phosphorylated compounds, such as 

nucleotides and sugar phosphates, exhibited excellent ionization efficiency (Table 5.1, 

Minimum LOD of the “Nucleosides, Nucleotides, and Analogues” class and “Carbohydrates 

and Carbohydrate Conjugates” class. Refer to Online Resource 2 for full information). This 

observation was understandable, because negatively charged functional groups easily 

produce negative ions through deprotonation. Indeed, these compounds have been detected in 

previous studies using 9-AA-MALDI-MS (Vaidyanathan and Goodacre 2007b, Miura et al. 

2010b, Yukihira et al. 2010, Amantonico et al. 2008b, Shroff et al. 2007b). On the other hand, 

the compounds in the “Carbohydrates and Carbohydrate Conjugates” class other than sugar 

phosphates, i.e. oligosaccharides and sugar acids, exhibited poor ionization efficiencies. 

Lipids were scarcely detected, except for cholates (6%, 2/36). Amino acids showed the best 

ionizability (76%, 45/59) at a broad range of LODs (from 0.00125 ppm to 100 ppm). 

Although many compounds in the sample set contained one or more carboxylic group to 

produce negative ions, the ionization efficiencies of these compounds were not directly 
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Table'5.1'The'ionization'profiles'of'metabolites'in'the'9HAAHMALDIHMS'
analysis'and'the'predictive'accuracy'of'the'Random'forest'ionizability'
models.'

 '

   Correct rate of prediction model LOD (ppm) 

Superclass # Ionized Global 2D 3D 
KRFP 

c 
MACCSFP c Minimum Max 

Aliphatic acyclic 

compounds 
10 1 (10%) 1.000 1.000 0.900 1.000 1.000 0.00125 0.00125 

Amino acids/peptides 59 
45 

(76%) 

0.763a 

0.932b 

0.797 a 

0.949 b 

0.932 a 

1.000 b 

0.763 a 

0.847 b 

0.746 a 

0.780 b 
0.0125 100 

Aromatic 

heteromonocyclic 

compounds 

12 6 (50%) 0.917 0.833 1.000 0.833 0.667 0.157 2.50 

Aromatic 

heteropolycyclic 

compounds 

8 3 (38%) 0.875 0.875 1.000 0.750 0.750 0.0313 50.0 

Aromatic 

homomonocyclic 

compounds 

12 8 (67%) 0.750 0.750 0.750 0.750 0.667 0.050 100 

Carbohydrates 13 6 (46%) 0.846 0.846 0.846 0.769 0.769 0.0250 25.0 

Lipids 36 2 (6%) 0.972 0.944 0.917 0.917 0.944 0.157 0.312 

Nucleosides/nucleoti

des 
27 

19 
(70%) 

0.963 0.963 0.889 0.889 0.704 0.00625 6.25 

Organic acids 14 8 (57%) 0.571 0.643 0.857 0.714 0.500 0.0500 12.5 

Others 9 2 (22%) 0.889 0.889 1.000 0.889 0.778 0.625 100 

Whole compounds 200 
100 

(50%) 
0.850 0.855 0.910 0.825 0.765 0.00125 100 

a Predicted by whole-data model. 

b Predicted by amino acid model. 

c The other available types of fingerprint were omitted because of their moderate performance. 
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associated with the existence of a carboxylic group (Table 5.1, 5.2). Nevertheless, the 

compounds in the “Organic Acids and Derivatives” class showed moderate ionization 

efficiencies (from 0.0500 ppm to 12.5 ppm).  

Interestingly, distinct ionization profile was observed even in compounds with a 

similar structure (e.g. β-alanine and sarcosine, or proline and pipecolic acid, Figure 5.1a). In 

these cases, β-alanine and isoleucine exhibited concentration-dependent peak intensity in 

MALDI-MS analysis, while sarcosine and pipecolic acid were not detected (data not shown). 

Generally, structural similarity of low-molecular-weight compounds should give similar 

physicochemical properties. In contrast, these observations strongly indicated that apparent 

properties of the molecule, such as the presence of functional groups, are insufficient to 

explain the diverse ionization profiles of the compounds. 

5.2.2 QSPR'model'for'ionizability'and'relevance'of'descriptor'class'

The physicochemical factors of the metabolites that influenced the ionization profiles 

were of interest. To address these factors, we performed non-hypothesis-based statistical 

modeling, where the source of efficient MALDI was sought by molecular descriptors of 

target compounds. First, we constructed a Random forest QSPR model for the ionizability 

prediction (ionized or not ionized) using the whole descriptor provided by the 

PaDEL-Descriptor (Global model). The overall accuracy of the prediction was 85.0%, and 

there were no significant biases with regard to the estimation error and the metabolite class 

(Table 5.1, Global model for whole compounds). 

The prediction model was then investigated to estimate the prerequisite properties for 

the ionization of a compound in a 9-AA-MALDI-MS analysis. In the Global model, the 

descriptors with higher importance indicated the electrotopological state of strength for 
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Figure'5.1'Distinct'ionization'profiles'of'structurally'similar'compounds'in'
MALDIHMS'analysis'and'their'Random'forest'prediction.'

a. Structural formulas and LODs of four representative compounds with similar structures but 
distinct ionization profiles. b. The prediction of ionizability by the 3D descriptor model for 
whole compounds (gray bar) and by the 3D descriptor amino-acid-specific model (blue bar) 
represented as the votes of the ensemble trees. When the ratio of positive vote (ionizable) 
exceeds 50%, the corresponding compound is predicted to be ionizable. 
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potential hydrogen bonds and the area of the negatively-charged surface (Figure 5.2a and 

Table 5.2). These descriptors belong to the 2D and 3D descriptors, respectively. The 

electrotopological state value (E-state value) is a kind of 2D descriptor that combines both 

the electronic characteristics and the topological environment of each skeletal atom in the 

molecule (Hall and Kier 1995). The importance of the E-state value indicated that the 

strength of possible hydrogen bonds positively correlated with the ionizability in MALDI. It 

was clear that the ionization profiles were strongly influenced by the interaction between 

molecules. In addition to the global model, which incorporated all the type of descriptors 

available, the respective types of descriptors were applied to construct Random forest 

prediction models to investigate the relevance of each descriptor types to the prediction 

performance (Table 5.1). As the result, 3D model exhibited the highest performance followed 

by 2D model (91.0% and 85.5% accuracy rate for whole compounds, respectively). 

Considering the variable importance of these models (Figure 5.2b, c), although the strength 

of hydrogen bonds well represented the ionization profile, the information of charged surface 

area led to a better ionizability model. This result was reasonable because the charged surface 

area indicated the electron distribution within the molecules that should cover the effect of 

hydrogen bond acceptors. The further functioning of the negatively charged surface area 

could be the effectiveness of proton abstraction in the interaction with 9-AA. 

The constructed prediction models for amino acids (“Amino Acids, Peptides, and 

Analogues” class) exhibited relatively poor accuracy, even though they were a major class in 

our data set. Our models were effective for a broad spectrum of metabolites, but they still 

lacked the ability to model rather faint structural differences of amino acids. The reason of 

this defect could be strongly attributed to the relevance of hydrogen bonds. As both amines 

and carboxyl groups in amino acids can form hydrogen bonds, the ionizatilities of amino 
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Figure'5.2'The'variable'importance'of'the'Random'forest'models.'

Each panel indicates the variable importance for the following models. The descriptions for 
individual descriptors can be found in Table 5.2. a. The Global ionizability model for the whole 
compounds. b. The 2D ionizability model for the whole compounds. d. The 3D ionizability 
model for the whole compounds. d. The 3D ionizability model for amino acids. e. The Global 
ionization efficiency model for the whole compounds. f. The 2D ionization efficiency model for 
the whole compounds.  
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Table'5.2'The'list'of'the'descriptors'with'the'higher'importance'for'each'
model.'

Descriptor Description 

Global Ionizability model 

maxHBint2 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 2 

mindssC Minimum atom-type E-State: =C< 

DPSA-1 

Difference of PPSA-1 (Partial positive surface area -- sum of surface area on positive 

parts of molecule) and PNSA-1 (Partial negative surface area -- sum of surface area on 

negative parts of molecule) 

PubchemFP443 C(-C)(=O) 

ETA_Epsilon_1 A measure of electronegative atom count 

2D ionizability model 

maxHBint2 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 2 

mindssC Minimum atom-type E-State: =C< 

maxdO Maximum atom-type E-State: =O 

minwHBa Minimum E-States for weak Hydrogen Bond acceptors 

maxsCH3 Maximum atom-type E-State: -CH3 

3D ionizability model 

DPSA-1 

Difference of PPSA-1 (partial positive surface area -- sum of surface area on positive 

parts of molecule) and PNSA-1 (partial negative surface area -- sum of surface area on 

negative parts of molecule) 

FPSA-1 PPSA-1 / total molecular surface area  

FNSA-1 PNSA-1 / total molecular surface area  

THSA 
Sum of solvent accessible surface areas of atoms with absolute value of partial charges 

less than 0.2 

FPSA-3 PPSA-3 (charge weighted partial positive surface area) / total molecular surface area 

3D amino acid ionizability model 

Wnu1.mass Directional WHIM, weighted by atomic masses  

Weta1.polar Directional WHIM, weighted by atomic polarizabilities 

topoShape Petitjean topological shape index 

Wnu2.eneg Directional WHIM, weighted by Mulliken atomic electronegativites 

GRAV-1 Gravitational index of heavy atoms 

Global ionization efficiency model 

MACCSFP82 ACH2QH 
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MACCSFP136 O=A > 1 

RNCS Relative negative charge surface area -- most negative surface area * RNCG 

RNCG Relative negative charge -- most negative charge / total negative charge 

2D ionization efficiency model 

ndO Count of atom-type E-State: =O 

ETA_EtaP_F Functionality index EtaF relative to molecular size 

SHBint2 Sum of E-State descriptors of strength for potential Hydrogen Bonds of path length 2 

SdO Sum of atom-type E-State: =O 

maxHBint5 Maximum E-State descriptors of strength for potential Hydrogen Bonds of path length 5 
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acids could be overestimated. To address these issues, we attempted to improve the 

prediction performance for amino acids because they are one of the most important classes in 

the metabolite analysis because of their significant metabolic and regulatory versatility (Wu 

2009). We thus developed new models specific for amino acids to improve the predictive 

accuracy and investigate the relevant structural properties. Again, the models were 

constructed using the whole or the individual types of descriptors. As a result, the accuracy of 

model prediction improved for all types of descriptors (Table 5.1). Especially, the 3D model 

achieved a perfect prediction of the ionizability, even for the above-mentioned pairs of 

structurally similar amino acids (Figure 5.1b). Fingerprinting descriptors provided still a 

moderate accuracy (84.7% correct rate for the highest value by the KRFP model), indicating 

that the presence of substructures was insufficient to fully represent the ionizability of amino 

acids. Unlike the class-independent model (whole-data model), the relevant 3D descriptors 

were not involved with the charged surface areas, but Weighted Holistic Invariant Molecular 

(WHIM) descriptors (Todeschini et al. 1994) (Figure 5.2d). WHIM descriptors provide 

information about the whole 3D-molecular structure in terms of the size, shape, symmetry 

and atom distribution. This result was intriguing because the shape of the molecules itself 

was relevant rather than electronic properties. It has been reported that cation affinities of 

amino acids were associated with degree of linearity (Siu and Che 2006), which is a direct 

index of the flexibility of molecule (Devillers and Balaban 1999). Hence, it was suggested 

that the shape properties of target compounds affect their interaction with other molecules to 

promote or inhibit their ionization. 

5.2.3 QSPR'model'for'ionization'efficiency'

The Random forest method is applicable to a regression, averaging the output of 
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decision trees (Breiman 2001). The experimentally evaluated ionization efficiency, indicated 

by LOD values, was also modeled by the Random forest method using individual types of 

descriptors. While the Global ionization efficiency model reached ρ = 0.69 (Figure 5.3a, and 

the variable importance was shown in Figure 5.2e), the best predictive performance was 

achieved with 2D descriptors, evaluated as ρ = 0.73 (2D model, Figure 5.4, and the variable 

importance was shown in Figure 5.2f). It was supposed that the fundamental trend of the 

ionization efficiency was reasonably modeled. The MACCSFP also provided a highly 

accurate model compared to the 2D and Global models (ρ = 0.66, Figure 5.3b). The 3D 

model showed an inferior performance (ρ = 0.60) to the above-mentioned models, in spite of 

the relevance of 3D descriptors in the Global model (Figure 5.3c). The 2D model indicated 

that the quantitative extent of ionization was mainly associated with E-state index of 

double-bonded oxygen and the strength of the potential hydrogen bonds (Figure 5.2f). Hence, 

overall results indicated that the partial negative charge in the molecule could be a 

prerequisite for ionization, and that the richness of carbonyl oxygen should be preferable for 

efficient negative MALDI because of the basic condition brought by 9-AA. Noteworthy, 

structural flexibility of the target compounds might play a special role to specific interaction 

with other molecules, presumably the matrix molecules to ruduce ionization energies (Kinsel 

et al. 2002), which determine the fate of their ionization profiles. 
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Figure'5.3'The'prediction'of'Random'forest'ionization'efficiency'models.'

The predicted ionization efficiencies provided by the following models were plotted against 
the measured ionization efficiencies. See main text for the 2D model, which achieved the best 
performance (ρ = 0.73). a. The Global model. b. The MACCSFP model. c. The 3D model. 
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Figure'5.4'The'Random'forest'regression'model'for'the'ionization'efficiency'
in'9HAAHMALDI.'

The 2D model showed the best performance in terms of the regression for ionization 
efficiency. The rank correlation coefficient for the plot was indicated as ρ. The models of other 
types (Global, MACCSFP and 3D) can be found in Figure 5.3. 
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5.3 Conclusion 

T his study was primarily intended to lead to more rational and predictive 

MALDI-MS analyses. In contrast to empirical approaches, this study employed a systematic 

analysis of the ionization profile in 9-AA-MALDI-MS for the first time. In the MALDI-MS 

analysis, the ionizability prediction model evaluates the likelihood of peak identification. On 

the other hand, the ionization efficiency model would help to estimate the abundance of the 

metabolite based on the observed signal intensity. The relevant descriptors found in this study 

can be interpreted as the structural preference specific to 9-AA and/or negative mode 

MALDI-MS analysis. The QSPR approach should also be applicable for other MALDI 

matrices to characterize the structural properties of target compounds for preferred ionization. 

Such information will play an indispensable role in the strategic development of 

MALDI-MS-based studies. 
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5.4 Materials and Methods 

5.4.1 MALDI7MS'analysis'of'metabolite'standards'

The ionizability and ionization efficiency in MALDI-TOF-MS (AXIMA Confidence, 

Shimadzu, Japan) analysis for each standard compound was assessed using 9-AA as the 

matrix. Ionization efficiency was represented as limit of detection (LOD) value in ppm.  

All the metabolites used in the present study were purchased from Sigma Aldrich 

(MO, USA) or Wako Pure Chemicals (Osaka, Japan). Individual standard compounds were 

dissolved in water or DMSO, and diluted to give graded concentrations (from 0.00125 ppm 

to 100 ppm) and mixed with a 9-AA/methanol solution (10 mg/mL) at a ratio of 1:1 (v/v). 

Deionized water was obtained from a Milli-Q system (Millipore, Schwalbach, Germany). 

One milliliter of the sample was spotted onto the ground-steel MALDI plate and air-dried. 

Four spots were deposited from an individual sample and averaged to apply for the further 

data analyses. A MALDI-TOF-MS (AXIMA Confidence, Shimadzu, Japan) was used for all 

the analyses. A mass spectrum was acquired with five laser shots. For each sample spot, 256 

spectra were averaged. For each metabolite sample, deprotonated peaks were sought with a 

threshold signal-to-noise ratio (more than 5) to confirm its ionizability and the limit of 

detection (LOD) of the metabolite. The ionization of each metabolite was confirmed by a 

deprotonated peak ([M-H]-), because deprotonated ions are exclusively generated in the 

negative mode MALDI, while alkali-metal adduct ions and protonated ions are generated in 

the positive mode. The full list of examined compounds can be found in Table 5.3. 
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Table'5.3'Limit'of'detection'(LOD)'of'metabolites'measured'in'
9HAAHMALDIHMS'analysis.' '

Compound Class LOD 

PEP Aliphatic Acyclic Compounds 0.00125 

agmatine Aliphatic Acyclic Compounds N/D 

betaine aldehyde Aliphatic Acyclic Compounds N/D 

choline Aliphatic Acyclic Compounds N/D 

Diethanolamine Aliphatic Acyclic Compounds N/D 

ethanolamine Aliphatic Acyclic Compounds N/D 

putrescine Aliphatic Acyclic Compounds N/D 

spermidine Aliphatic Acyclic Compounds N/D 

Spermine Aliphatic Acyclic Compounds N/D 

urea Aliphatic Acyclic Compounds N/D 

5-oxoproline Aliphatic Heteromonocyclic Compounds 0.625 

ascorbate (Vitamin C) Aliphatic Heteromonocyclic Compounds 100 

allantoin Aliphatic Heteromonocyclic Compounds N/D 

erythrose Aliphatic Heteromonocyclic Compounds N/D 

gammma-Butyrolactone Aliphatic Heteromonocyclic Compounds N/D 

1-6-Anhydro-β-D-Glucose Aliphatic Heteropolycyclic Compounds N/D 

myo-inositol Aliphatic Homomonocyclic Compounds N/D 

trans-4-hydroxyproline Amino Acids, Peptides, and Analogues 0.0125 

L-Cysteate Amino Acids, Peptides, and Analogues 0.025 

N-acetylglutamate Amino Acids, Peptides, and Analogues 0.025 

xanthurenate Amino Acids, Peptides, and Analogues 0.04 

kynurenate Amino Acids, Peptides, and Analogues 0.05 

L-aspartate Amino Acids, Peptides, and Analogues 0.05 

L-glutamate Amino Acids, Peptides, and Analogues 0.1 

N-acetylaspartate Amino Acids, Peptides, and Analogues 0.1 

N-acetylleucine Amino Acids, Peptides, and Analogues 0.1 

O-acetylserine Amino Acids, Peptides, and Analogues 0.1 

Nicotinurate Amino Acids, Peptides, and Analogues 0.15625 

L-asparagine Amino Acids, Peptides, and Analogues 0.2 

L-glutamine Amino Acids, Peptides, and Analogues 0.2 

L-histidine Amino Acids, Peptides, and Analogues 0.2 
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N-acetyl-aspartyl-glutamic acid Amino Acids, Peptides, and Analogues 0.2 

5-Aminolevulinate Amino Acids, Peptides, and Analogues 0.3125 

phenylacetylglycine Amino Acids, Peptides, and Analogues 0.3125 

L-Homoserine Amino Acids, Peptides, and Analogues 0.5 

citrulline Amino Acids, Peptides, and Analogues 0.625 

GSH Amino Acids, Peptides, and Analogues 0.625 

homocitrulline Amino Acids, Peptides, and Analogues 0.625 

N-acetylasparagine Amino Acids, Peptides, and Analogues 0.625 

N-acetylproline Amino Acids, Peptides, and Analogues 0.625 

cysteine-glutathione disulfide Amino Acids, Peptides, and Analogues 2.5 

glycine Amino Acids, Peptides, and Analogues 2.5 

L-phenylalanine Amino Acids, Peptides, and Analogues 2.5 

N-acetylphenylalanine Amino Acids, Peptides, and Analogues 2.5 

Quinaldic acid Amino Acids, Peptides, and Analogues 2.5 

2-aminobutyrate Amino Acids, Peptides, and Analogues 5 

L-alanine Amino Acids, Peptides, and Analogues 5 

L-isoleucine Amino Acids, Peptides, and Analogues 5 

L-leucine Amino Acids, Peptides, and Analogues 5 

L-serine Amino Acids, Peptides, and Analogues 5 

L-tryptophan Amino Acids, Peptides, and Analogues 5 

ornithine Amino Acids, Peptides, and Analogues 5 

1-methylhistidine Amino Acids, Peptides, and Analogues 10 

3-methylhistidine Amino Acids, Peptides, and Analogues 10 

L-arginine Amino Acids, Peptides, and Analogues 10 

L-cysteine Amino Acids, Peptides, and Analogues 10 

L-methionine Amino Acids, Peptides, and Analogues 10 

L-proline Amino Acids, Peptides, and Analogues 10 

L-tyrosine Amino Acids, Peptides, and Analogues 10 

L-valine Amino Acids, Peptides, and Analogues 10 

N-acetylcysteine Amino Acids, Peptides, and Analogues 10 

N-acetylvaline Amino Acids, Peptides, and Analogues 10 

β-alanine Amino Acids, Peptides, and Analogues 5 

5-aminovalerate Amino Acids, Peptides, and Analogues N/D 

L-pipecolate Amino Acids, Peptides, and Analogues N/D 
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sarcosine (N-Methylglycine) Amino Acids, Peptides, and Analogues N/D 

(R)-S-Lactoylglutathione Amino Acids, Peptides, and Analogues N/D 

1-(5'-Phosphoribosyl)-5-amino-

4-imidazolecarboxamide Amino Acids, Peptides, and Analogues N/D 

D-Alanyl-D-alanine Amino Acids, Peptides, and Analogues N/D 

L-Homocystein Amino Acids, Peptides, and Analogues 5 

L-lysine Amino Acids, Peptides, and Analogues 5 

L-threonine Amino Acids, Peptides, and Analogues 5 

N-acetylglutamine Amino Acids, Peptides, and Analogues N/D 

N-acetylmethionine Amino Acids, Peptides, and Analogues N/D 

N-acetyltyrosine Amino Acids, Peptides, and Analogues N/D 

quinolinate Amino Acids, Peptides, and Analogues N/D 

nicotinate Aromatic Heteromonocyclic Compounds 0.15625 

uracil Aromatic Heteromonocyclic Compounds 0.15625 

urocanate Aromatic Heteromonocyclic Compounds 0.2 

histamine Aromatic Heteromonocyclic Compounds 0.3125 

4-imidazoleacetate Aromatic Heteromonocyclic Compounds 0.625 

pyridoxal Aromatic Heteromonocyclic Compounds 2.5 

1-methylnicotinamide Aromatic Heteromonocyclic Compounds N/D 

5-methylcytosine Aromatic Heteromonocyclic Compounds N/D 

cytosine Aromatic Heteromonocyclic Compounds N/D 

nicotinamide Aromatic Heteromonocyclic Compounds N/D 

Pyridoxamine Aromatic Heteromonocyclic Compounds N/D 

thymine Aromatic Heteromonocyclic Compounds N/D 

xanthine Aromatic Heteropolycyclic Compounds 0.03125 

5-hydroxyindoleacetate Aromatic Heteropolycyclic Compounds 10 

riboflavin (Vitamin B2) Aromatic Heteropolycyclic Compounds 50 

5MeTHF Aromatic Heteropolycyclic Compounds N/D 

biliverdin Aromatic Heteropolycyclic Compounds N/D 

Folate Aromatic Heteropolycyclic Compounds N/D 

thiamin (Vitamin B1) Aromatic Heteropolycyclic Compounds N/D 

Thiamine diphosphate Aromatic Heteropolycyclic Compounds N/D 

anthranilate Aromatic Homomonocyclic Compounds 0.05 

gentisate Aromatic Homomonocyclic Compounds 0.2 
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4-Coumarate Aromatic Homomonocyclic Compounds 1.25 

3-(3-hydroxyphenyl)propionate Aromatic Homomonocyclic Compounds 5 

3-hydroxyphenylacetate Aromatic Homomonocyclic Compounds 10 

4-Aminobenzoate Aromatic Homomonocyclic Compounds 10 

4-hydroxyphenylpyruvate Aromatic Homomonocyclic Compounds 10 

4-hydroxyphenylacetate Aromatic Homomonocyclic Compounds 100 

3,4-dihydroxyphenylacetate Aromatic Homomonocyclic Compounds N/D 

Benzoate Aromatic Homomonocyclic Compounds N/D 

Homogentisate Aromatic Homomonocyclic Compounds N/D 

tyramine Aromatic Homomonocyclic Compounds N/D 

α-D-Glucose 6-phosphate Carbohydrates and Carbohydrate Conjugates 0.025 

ribose 5P Carbohydrates and Carbohydrate Conjugates 0.025 

gluconate Carbohydrates and Carbohydrate Conjugates 0.3125 

pseudouridine Carbohydrates and Carbohydrate Conjugates 0.3125 

N-acetylneuraminate Carbohydrates and Carbohydrate Conjugates 1.25 

sucrose Carbohydrates and Carbohydrate Conjugates 25 

15-AG Carbohydrates and Carbohydrate Conjugates N/D 

glycerol Carbohydrates and Carbohydrate Conjugates N/D 

gulono-1,4-lactone Carbohydrates and Carbohydrate Conjugates N/D 

raffinose Carbohydrates and Carbohydrate Conjugates N/D 

ribitol Carbohydrates and Carbohydrate Conjugates N/D 

stachyose Carbohydrates and Carbohydrate Conjugates N/D 

xylonate Carbohydrates and Carbohydrate Conjugates N/D 

phosphate Homogeneous Non-metal Compounds N/D 

fumarate Lipids 0.15625 

4-acetamidobutanoate Lipids 0.3125 

3-Methyladipic acid Lipids N/D 

6-Aminohexanoate Lipids N/D 

7-dehydrocholesterol Lipids N/D 

acetylcarnitine Lipids N/D 

alpha-tocopherol Lipids N/D 

beta-sitosterol Lipids N/D 

caprate (10:0) Lipids N/D 

caproate (6:0) Lipids N/D 
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caprylate (8:0) Lipids N/D 

cholate Lipids N/D 

cholesterol Lipids N/D 

corticosterone Lipids N/D 

D-Mannitol Lipids N/D 

ethylmalonic acid Lipids N/D 

glycerophosphorylcholine  Lipids N/D 

heptanoate (7:0) Lipids N/D 

hyodeoxycholate Lipids N/D 

isovalerate Lipids N/D 

laurate (12:0) Lipids N/D 

linoleate (18:2n6) Lipids N/D 

linolenate [18:3n3 or 6] Lipids N/D 

maleic acid Lipids N/D 

margarate (17:0) Lipids N/D 

Monomethyl glutarate Lipids N/D 

myristate (14:0) Lipids N/D 

myristoleate (14:1n5) Lipids N/D 

palmitate (16:0) Lipids N/D 

palmitoleate (16:1n7) Lipids N/D 

pentadecanoate (15:0) Lipids N/D 

Pregnenolone Lipids N/D 

sphingosine Lipids N/D 

Stigmasterol Lipids N/D 

Testosterone Lipids N/D 

valerate Lipids N/D 

ADP Nucleosides, Nucleotides, and Analogues 0.00625 

CDP Nucleosides, Nucleotides, and Analogues 0.00625 

dCMP Nucleosides, Nucleotides, and Analogues 0.00625 

UTP Nucleosides, Nucleotides, and Analogues 0.00625 

ATP Nucleosides, Nucleotides, and Analogues 0.0125 

CTP Nucleosides, Nucleotides, and Analogues 0.0125 

dGDP Nucleosides, Nucleotides, and Analogues 0.0125 

UMP Nucleosides, Nucleotides, and Analogues 0.0125 
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cytidine 5'-monophosphate Nucleosides, Nucleotides, and Analogues 0.05 

thymidine Nucleosides, Nucleotides, and Analogues 0.05 

GMP Nucleosides, Nucleotides, and Analogues 0.15625 

GTP Nucleosides, Nucleotides, and Analogues 0.15625 

inosine Nucleosides, Nucleotides, and Analogues 0.15625 

UDP Nucleosides, Nucleotides, and Analogues 0.15625 

dATP Nucleosides, Nucleotides, and Analogues 0.3125 

AMP Nucleosides, Nucleotides, and Analogues 0.625 

Deoxyguanosine Nucleosides, Nucleotides, and Analogues 1.25 

uridine Nucleosides, Nucleotides, and Analogues 3.125 

2'-deoxyinosine Nucleosides, Nucleotides, and Analogues 6.25 

2'-deoxycytidine Nucleosides, Nucleotides, and Analogues N/D 

5-Methyl-2'-deoxycytidine Nucleosides, Nucleotides, and Analogues N/D 

5-methylcytidine Nucleosides, Nucleotides, and Analogues N/D 

adenosine Nucleosides, Nucleotides, and Analogues N/D 

cytidine Nucleosides, Nucleotides, and Analogues N/D 

cytidine 5'-diphosphocholine Nucleosides, Nucleotides, and Analogues N/D 

Deoxyadenosine Nucleosides, Nucleotides, and Analogues N/D 

Guanosine Nucleosides, Nucleotides, and Analogues N/D 

glutarate (pentanedioate) Organic Acids and Derivatives 0.05 

3-hydroxydecanoic acid Organic Acids and Derivatives 0.3125 

pimelate (heptanedioate) Organic Acids and Derivatives 1.25 

itaconate Organic Acids and Derivatives 3.125 

lactate Organic Acids and Derivatives 5 

beta-hydroxyisovalerate Organic Acids and Derivatives 10 

hypotaurine Organic Acids and Derivatives 10 

citrate Organic Acids and Derivatives 12.5 

3-hydroxybutyrate (BHBA) Organic Acids and Derivatives N/D 

3-hydroxyoctanoic acid Organic Acids and Derivatives N/D 

adipate Organic Acids and Derivatives N/D 

malate Organic Acids and Derivatives N/D 

sebacate (decanedioate) Organic Acids and Derivatives N/D 

Taurocyamine Organic Acids and Derivatives N/D 

phosphoethanolamine Organophosphorus Compounds N/D 
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5.4.2 Summary'of'the'QSPR'analysis'

MDL Molfiles of individual metabolites were acquired from the PubChem website 

(http://pubchem.ncbi.nlm.nih.gov), using a list of PubChem Compound IDs (CIDs) as the 

query. The acquired MDL Molfiles were applied for the calculation of the molecular 

descriptors by the PaDEL-Descriptor software program (Yap 2011). The types of molecular 

descriptors included 1-2D and 3D type descriptors and fingerprints. Descriptors with zero 

variance or 95% identical values (including NAs) were excluded from the subsequent 

analysis.  

The LOD was used as the response variable, which could be considered as an inverse 

measure of the ionization efficiency. In the classification model, the responsive variable was 

converted to a categorical value denoted as ionized or not ionized, corresponding to whether 

the LOD value could be evaluated or not. In the regression model, where not ionized 

observations were eliminated, the LOD values were used in the molar concentrations. 

Modeling of the interrelationships between the descriptors and the ionization profiles of 

metabolites was conducted using the Random forest method (Breiman 2001) . The 

importance of variables for constructing a model was evaluated as the mean decrease in 

accuracy. Decision tree models were constructed using the descriptors with the highest 

importance. All of the analyses were performed using the R language (R Core Team 2012). 

Random forest and decision tree models were constructed by the party package (Hothorn et 

al. 2006). The accuracy of the prediction model was evaluated based on the correct rate given 

as a fraction of the number of correct predictions to the number of the examined metabolites. 

The performance of a regression model was evaluated by Spearman’s rank correlation 

coefficients between the measured LODs and the fitted values. 

In two-way QSPR modeling, the descriptor for a mixture of metabolite and matrix 
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compound was represented through numerical functions as follows: 

5.4.3 Note:'Cheminformatics'and'QSPR'

A chemical structure can be expressed as a graph in 2D, or an atomic coordination in 

3D. Once a molecule is encoded into a symbolic representation, it can be transformed into a 

simple yet useful number through a mathematical procedure (Todeschini and Consonni 2000). 

An MDL Molfile is one of the chemical table formats that contains information about the 

constituent atoms and their connectivity and coordinates of a molecule (Dalby et al. 1992). 

This format of the chemical structure is applicable to numbers of cheminformatics software 

applications, including PaDEL-Descriptor (Yap 2011). The QSPR analysis is constituted of 

five steps: Experimental data collection, descriptor calculation, variable selection, predictive 

model construction through cross validation, and interpretation of the model. An 

experimental data set is used as the response values in the QSPR model. It is usually 

comprised of biological activities or physiochemical properties expressed as both potency 

and categorical values, which should be modeled by the regression or the classification, 

respectively. In the present study, a PaDEL-descriptor was employed for the QSPR analysis, 

because every descriptor was calculated by open-source programs, which allowed for an 

understanding of the actual procedure for calculating the descriptors. A PaDEL-descriptor 

provides up to 733 1D-2D and 3D type descriptors and 10 types of fingerprinting descriptors 

for each compound, thus amounting to several thousand variables. In QSPR modeling, 

variable selection is a very important process for producing a reasonable model, particularly 

when a large number of variables are available. Although some simple variable-filtering 

processes were performed on the descriptor set, hundreds of variables still remained 

applicable to the model. Considering such circumstances, Random forest was applied to 
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develop QSPR models. 

5.4.4 Note:'How'Random'forest'works'in'brief'

Random forest is a kind of machine learning method first introduced by Breiman 

(Breiman 2001). The method is robust for sparse and high-dimensional data, and has been 

utilized in many QSPR studies. A Random forest model is an aggregation of large number 

(ntree) of decision trees constructed from training data sets. For each tree construction, m 

bootstrap samples were drawn from the original data set. Then, leaving about one third of the 

subset as the test data set (out-of-bag observation, OOB), a decision tree is then grown using 

mtry randomly selected variables from p original variables. As the result, the model is 

internally validated like cross-validation to yield a consensus prediction of the response. The 

prediction is given as a majority vote for classification and an average for regression. It is 

recommended that mtry is the square root of p for the classification, and p/3 for the regression. 

In the present study, we performed the Random forest model construction with the ntree set 

as 3,000 and the default mtry values. As a Random forest model is comprised of numerous 

small decision tree models of randomly selected variables and observations, neither decisive 

predictors nor their threshold values to predict the response are determined. The variable 

importance was thus estimated according to the ‘mean decrease in accuracy’. This measure 

indicates the decrease in the model accuracy when a specific descriptor is removed from the 

tree construction. Hence, a higher mean decrease in accuracy indicates a higher importance 

for the model.

– 131 –



 

Chapter 6.  

Conclusive Remarks 

– 132 –



Chapter 6 Conclusive Remarks        

 

Although there has been indeed increasing interest in metabolomic approaches, with 

only a limited extent has the scene of the ‘omics’ research field experienced a fundamental 

progress, unlike the emergence of the notion of genome. It is advantageous to directly 

monitor the substrates and products during the cellular metabolism. However, true 

biochemistry is far more complex than a metabolic pathway represents, forcing sometimes an 

unreasonable simplification or abstraction of interpretation for observed phenomena. 

Diagnostic biomarker development could be a straightforward application to exclude such 

barriers, while biological evidences are still required. Assumingly, metabolomics was 

expected to work as fundamental information for bridging the phenotype and genotype, 

which is the ultimate goal of systems biology. More deductively, phenotypic modeling would 

lead to a deeper insight into the principle of dynamics or economics of cellular biochemistry, 

which could be partly parallel to the known metabolic pathway. Such ambition has been 

however hindered by numerous problems as mentioned, e.g. the identity of detected signals, 

coverage of molecular species, or absence of experimental and computational method for 

exploring the additional dimension of metabolome such as time or space. 

Quantitative observation of compound-level phenotype also poses a serious question, 

i.e., what is it like to understand the dynamics? When avoiding reductionism, there is no 

guarantee that underlying mathematics is rational to us. The mechanism of the biological 

system could be unforgiving to predict or reproduce its behavior as a whole. For solving such 

a challenging problem, whilst the primary interest seems to be focusing on the development 

of ‘elegant’ algorithms, we guess the elaborated, multimodal and precise quantitation of 

biomolecules and integrative approaches should have the most significant relevance, just as 

biological validation being prior to statistical validation. Furthermore, the system should not 

only be analyzed, but also synthesized to lead a full-length understand of the underlying 
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principle. Metabolomics will serve as a model plantation of multidisciplinary science, when 

participants desire it to be. 
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