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Abstract

Recently, learning to rank techniques has been attracting increasing attention in various

areas such as web search, product recommendation, financial risk analysis, scheduling,

and so on. Informally, the task is to obtain an appropriate ranking among items from

training data. The amount of data is typically very large in these areas and even rapidly

increasing. Therefore, it is particularly important to develop learning algorithms that

run efficiently, as well as producing rankings with high quality. In this thesis, we explore

efficient algorithms in the following two theoretical learning models, the statistical learning

model and the online prediction model.

In the statistical learning model, we consider the bipartite ranking problem, which

is one of the most fundamental problems of learning ranking functions. In the bipartite

ranking problem, we are given a randomly generated sample consisting of positive and

negative instances and required to learn a real-valued function called a ranking function,

so that it maps a positive instance to a higher value than a negative instance. It is

well known that the problem is reduced to a binary classification problem and so we can

apply any of standard learning algorithms such as the Support Vector Machines (SVMs).

However, the sample is blown up quadratically in size through the reduction. This means

that if we use the 1-norm or 2-norm regularized SVM to obtain a good ranking function,

we need to solve a linear or quadratic programming problem of size O(m4), respectively,

where m is the size of the original sample. In this thesis, we reformulate the SVMs

for ranking functions as significantly simplified optimization problems of size O(m2) and

give theoretical guarantees on the generalization ability of the ranking functions obtained

by solving the optimization problems. In particular, the reformulation of the 1-norm

regularized SVM yields the first practical algorithm that is competitive with the original

1-norm regularized SVM in performance.

As an application of our algorithm, we consider the problem of constructing an evalu-
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ABSTRACT ii

ation function for shogi (Japanese chess) from game records of professional shogi players,

where the positions appearing in the records are regarded as positive instances and those

not appearing as negative instances. This kind of approach for constructing evaluation

functions using machine learning techniques is called the Bonanza method, which is named

after the first successful software that uses this approach. Most of the computer shogi

softwares developed nowadays use the Bonanza method and its performance is now nearly

as well as professional shogi players. But the feature extraction still remains a big prob-

lem, because it depends on the algorithm designers to determine what features are to

be extracted to form the feature vector that represents a game position. In this thesis,

we use the kernel method to generate the feature vector automatically that consists of

all n-ary relations among the basic features. The resultant feature vector contains most

features adopted by the state-of-the-art computer shogi softwares. We then combine the

kernel method with the 2-norm regularized version of our algorithm for learning evaluation

functions. Preliminary experiments show promising results.

An online prediction problem is a repeated game between the player and the adversarial

environment, where in each trial the player first chooses a decision from a fixed decision

space and then adversary returns a feedback. At this trial, the player incurs a loss defined

by the decision and the feedback. The goal of the player is to minimize the total loss.

Many problems such as web search and product recommendation are also nicely modeled

as online prediction problems with the class of rankings (permutations) as the decision

space. Similarly, the online versions of various combinatorial optimization problems are

modeled as online prediction problems with corresponding combinatorial concept classes

as the decision spaces. Examples of such classes are s-t paths in a given graph, spanning

trees of a given graph, k-sets of a given set, and so on. Typically, these concept classes

contain finite but exponentially many concepts. We have a general scheme called the

“follow the regularized leader” (FTRL) for designing an online prediction algorithm with a

good performance bound. But in the FTRL two external procedures called the projection

and the decomposition are assumed to be implemented. In other words, it seems that we

need to design efficient algorithms for the two procedures individually for each concept

class. In this thesis, we give efficient algorithms that works uniformly for a wide family

of concept classes including permutations, spanning trees, k-sets, based on the methods

of submodular function minimization.
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Chapter 1

Introduction

Ranking is to order items according to some criterion, and we find everywhere in our

society such systems and services that produce rankings. For example, the web search

engine produces a list of websites related to given keywords, so that the higher a website

appears on the list, the more important it would be for the user. So the web search

engine essentially produces rankings among websites. The recommendation system is an

information filtering system that finds items such as books, music, or movies and shows

them to a user, so that the user would be interested in them. The items recommended

to the user are considered to be ranked higher than those not recommended. So the

recommendation system produces rankings with ties possibly allowed. Another example

is a job scheduling problem, where we are given a set of jobs and are required to find the

order of the jobs to be processed by a single machine, so that the flow time is minimized.

Here, the flow time is defined as the sum of the process time (including the wait time)

over all jobs. The jobs processed earlier are considered to be ranked higher than the

those processed later. So this problem is also a problem of producing rankings (i.e.,

permutations over the given set of jobs).

But how to find a good ranking? For a web search engine, the PageRank [12] is a

seminal algorithm that has turned out to be very succesful. But originally, it uses only

the link structures of the webpages, and so the ranking produced does not reflect the

user’s preferences. Nowadays, more refined web ranking algorithms are proposed by us-

ing machine learning techniques [63, 2], where the algorithms learn the user’s preferences

from the search history data. For a recommendation system, the method of collaborative

filtering has been extensively studied in the machine learning community [36, 85]. Intu-

itively, the collaborative filtering system learns the similarity of preferences among users

1



CHAPTER 1. INTRODUCTION 2

from the users’ ratings for items, and predicts a user’s rating for an item, which the user

has not rated yet.

As just described, learning to rank, that is, the problem of constructing good rankings

from data has been one of the most active research areas in machine learning and infor-

mation retrieval in the past decade [21, 44, 30, 23, 11, 64, 7, 54, 27, 65, 14, 39, 49, 86].

The amount of data is typically very large in these areas and even rapidly increasing.

Therefore, it is particularly important to develop learning algorithms that run efficiently,

as well as producing rankings with high quality. In this thesis, we explore efficient al-

gorithms in the following two theoretical learning models, the statistical learning model

and the online prediction model. In the statistical learning model, we consider the bipar-

tite ranking problem, which is one of the most fundamental problems of learning ranking

functions. In the online prediction model, we investigate efficient algorithms that work

uniformly for various decision spaces including permutations (rankings).

1.1 Bipartite ranking problem

Background and motivation

In the bipartite ranking problem, we are given a randomly generated sample consisting

of positive and negative instances and required to learn a real-valued function called a

ranking function, so that it maps a positive instance to a higher value than a negative

instance [44, 45, 30, 5]. The following recommendation task is modeled by this problem.

Imagine that a user is given sample movies for free that are randomly chosen by a movie

distribution site. The user is then required to return her evaluations by replying “positive”

or “negative” for each sample movie. Based on the evaluations, the movie distribution site

learns the preferences of the user as a ranking function over all movies, and recommend

new movies of highest ranks according to the ranking function, in hope that the user

would buy them.

It is well known that the problem is reduced to a binary classification problem over

the new instance space that consists of all pairs of positive and negative instances. So we

can apply any of the standard learning algorithms such as the Support Vector Machines

(SVMs) over the new instance space. The methods obtained by combining the reduction

and SVMs are called the Ranking SVMs. In particular, the algorithms that use the

SVMs with the 1-norm or 2-norm of the weight vector regularized are called the 1-norm
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Ranking SVM or 2-norm Ranking SVM, respectively. The 2-norm Ranking SVM is a

more standard one and can be enhanced with the kernel trick. On the other hand, the

1-norm Ranking SVM is likely to produce linear functions with sparse weight vectors,

and thus is suitable for the feature selection. But the complexity issue arises, when the

sample is very large. This is caused by the fact that the sample is blown up quadratically

in size through the reduction. Thus, naive implementations of the Ranking SVMs are

impractical. More specifically, if we use the 1-norm or 2-norm Ranking SVMs, we need

to solve linear or quadratic programming problems (LP or QP problems) of size O(m4),

respectively, where m is the size of the original sample.

Surprisingly, for the 2-norm Ranking SVM, efficient algorithms are proposed that solve

the O(m4) size QP problem in O(m ln m) time [45, 19]. However, it is unclear how the

techniques used in these algorithms are applied for solving the LP problem of the 1-norm

Ranking SVM. Another approach to solving the 1-norm Ranking SVM would be to use the

boosting technique. The RankBoost [30] is a very efficient algorithm that simulates the

AdaBoost over the new instance space in O(m) time per iteration. But it does not have

any theoretical guarantee on its performance when the sample is not linearly separable.

The SoftRankBoost [56] is a modification of the RankBoost based on the smooth boosting

framework. It also runs in O(m) time and turns out to have the same guarantee as our

algorithm. But the underlying optimization problem is not clear.

Our contributions

In this thesis, we take a different approach by simplifying the LP formulation for the

1-norm Ranking SVM, rather than devising a fast algorithm for it. More precisely, we

reformulate the Ranking SVMs as significantly simplified optimization problems of size

O(m2) and give theoretical guarantees on the generalization ability of the ranking func-

tions obtained by solving the optimization problems. In particular, the reformulation of

the 1-norm regularized SVM yields the first practical algorithm that is competitive with

the original 1-norm regularized SVM in performance.

As an application of our algorithm, we consider the problem of constructing an evalu-

ation function for shogi (Japanese chess) from game records of professional shogi players,

where the positions appearing in the records are regarded as positive instances and those

not appearing as negative instances. This kind of approach for constructing evaluation

functions using machine learning techniques is called the Bonanza method, which is named
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after the first successful software that uses this approach. Most of the computer shogi

softwares developed nowadays use the Bonanza method and its performance is now nearly

as well as professional shogi players. But the feature extraction still remains a big prob-

lem, because it depends on the algorithm designers to determine what features are to

be extracted to form the feature vector that represents a game position. In this thesis,

we use the kernel method to generate the feature vector automatically that consists of

all n-ary relations among the basic features. The resultant feature vector contains most

features adopted by the state-of-the-art computer shogi softwares. We then combine the

kernel method with the 2-norm regularized version of our algorithm for learning evaluation

functions. Preliminary experiments show promising results.

1.2 Online prediction for combinatorial concept classes

Background and motivation

Online prediction is a repeated game between the player and the adversarial environment,

where in each trial the player first chooses a decision from a fixed decision space and then

adversary returns a feedback. At this trial, the player incurs a loss defined by the decision

and the feedback. The goal of the player is to minimize the total loss. Many problems

such as the web search engine and the recommendation system are also nicely modeled as

online prediction problems with the class of rankings (permutations) as the decision space.

In particular, discussing these problems in the online prediction model is more suitable

when we cannot put any (probabilistic) assumptions on the user’s behaviors, whereas

in the statistical learning model, we assume that the user’s behaviors are statistically

stationary. For example, consider the following list access problem. Imagine that a

database has a fixed set of items. In each trial, the system chooses a ranking (i.e., a

permutation) over the item set and sorts items in a list according to the ranking; Then

the user searches for an item (called the target item) in the list; The loss of the system is

k if the target item is in the k-th position in the list.

The most basic version of the online prediction problem is the expert problem [82, 53,

15, 40, 78], where the decision space is small enough for enumerating all elements (called

the experts). In this case, we can employ a simple algorithm called the Hedge algorithm,

which maintains a weight for each expert and makes predictions based on the weighted

majority. But when the decision space contains all permutations over n items as in the
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above example, then the size of the decision space is n!, which is too large to use the

Hedge algorithm. Observe here that the decision space (i.e., the set of permutations over

n items) is defined in a combinatorial way from a small seed, (i.e., the set of n items),

and the seed is only explicitly given to the player.

Similarly, the online versions of various combinatorial optimization problems are mod-

eled as online prediction problems with corresponding combinatorial concept classes as the

decision spaces. Examples of such combinatorial concept classes are permutations over

a fixed item set [1, 52, 80, 81, 39, 86] as just described, s-t paths in a given graph [75],

k-sets of a given universal set [84], spanning trees of a given graph [49, 16], and so on.

Typically, these concept classes contain finite but exponentially many concepts.

Most results obtained so far are based on the Follow the Regularized Leader (FTRL)

framework [38], which is a general scheme of designing efficient online prediction algo-

rithms with a good performance bound for combinatorial concept classes. In the FTRL

framework, two external procedures called the projection and the decomposition are as-

sumed to be implemented. In other words, it seems that we need to design efficient

algorithms for the two procedures individually for each concept class.

Our contributions

In this thesis, we give polynomial time algorithms for the projection and the decompo-

sition, provided that the concepts in the class are represented as the vertices of a base

polyhedron defined by a submodular function. This implies that we have essentially a

single algorithm that works uniformly and efficiently for a wide family of concept classes

including permutations, spanning trees, k-sets, and more. The projection and the de-

composition algorithms we propose are just simple applications of submodular function

minimization. In particular, if the submodular function is cardinality-based, then the cor-

responding base polyhedron is highly symmetric and using the symmetry we give more

efficient O(n2) time algorithms.

1.3 Organization

The rest of this thesis is organized as follows: In Chapter 2, we describe the statistical

learning model and the online prediction model with basic learning algorithms and the-

ory. In Chapter 3, we propose efficient algorithms for the bipartite ranking problem. In
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Chapter 4, we describe a method for learning evaluation functions for shogi as an applica-

tion of our method for bipartite ranking. In Chapter 5, we consider the online prediction

problem over combinatorial concept classes and present efficient algorithms that work

uniformly for a wide family of concept classes, based on the methods of submodular func-

tion minimization. In Chapter 6, we give conclusion of this thesis and discuss our future

work.



Chapter 2

Preliminaries

In this chapter, we give the notations to be used throughout this thesis, and introduce

two learning models, the statistical learning model and the online prediction model, with

basic learning algorithms and theory covered in this thesis.

2.1 Notation

Let R and R+ be the set of real numbers and the set of non-negative real numbers,

respectively. For an integer u, [1, u] denotes the set {1, . . . , u}. For an integer N , PN

denotes the N -dimensional probability simplex, i.e., PN = {p ∈ [0, 1]N |
∑

i pi = 1}. Let

I(·) denote the indicator function. That is, for a proposition P , I(P ) = 1 if P is true and

I(P ) = 0 otherwise.

2.2 Statistical learning model

The statistical learning model is one of the most important models for machine learning

with ideas from statistics. The statistical learning model deals with the problem of finding

a function (e.g. classification function or ranking function) called a hypothesis from

randomly chosen data set, so that the hypothesis has a good generalization performance,

by which we mean that the hypothesis predicts well the label or rank of an unseen data.

2.2.1 Problem settings

First we give the problem settings that are common to both the binary classification

problem and the bipartite ranking problem.

7
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We denote by X ⊆ RN the set of instances and Y = {−1, +1} the set of labels. We

call a multiset of instance-label pairs S = {(x1, y1), . . . , (xm, ym)} ⊆ X × Y a sample,

where the number m of the pairs is called the size of S. We call xi a positive instance if

yi = +1, and a negative instance otherwise. We assume that instances are independently

and identically distributed (i.i.d.) according to some unknown distribution D over X×Y .

The learner is given a sample S and required to produce a function called a hypothesis

h that maps X to R. In particular, we mainly consider linear functions as hypotheses,

which are described as

h(x) = w · x + b

for some weight vector w ∈ RN and real number b ∈ R.

Binary classification problem

In the binary classification problem, the goal of the learner is to find a hypothesis h such

that its generalization error with respect to the distribution D is small. The generalization

error of h is defined as follows.

Definition 1 (Generalization error)

For a hypothesis h : X → R and an underlying distribution D over X × Y , the general-

ization error of h is defined by

RD(h) = Pr
(x,y)∼D

[h(x)y < 0] = E
(x,y)∼D

[I(h(x)y < 0)].

Note that the generalization error of h is also defined as Pr(x,y)∼D[sign(h(x)) ̸= y], where

sign(a) = 1 if a ≥ 0 and sign(a) = −1 if a < 0. The learner cannot exactly compute

the generalization error in general because the distribution D is unknown. However, the

learner can estimate it by computing the empirical error of h on the given sample S,

which is defined as follows.

Definition 2 (Empirical error)

For a hypothesis h : X → R and a sample S = {(x1, y1), . . . , (xm, ym)}, the empirical

error of h is defined by

R̂S(h) =
1

m

m∑

i=1

(I(h(xi)yi < 0)).

In other words, the empirical error of h is the fraction of the instances in S that is

misclassified by h. Note that for a fixed h, the expectation of the empirical error over
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i.i.d. sample S of a fixed size m is equal to the generalization error:

E
S∼Dm

[R̂S(h)] = R(h).

Bipartite ranking problem

In the bipartite ranking problem, a function h : X → R is called a ranking function. The

goal of the learner is to find a ranking function h that maximizes the AUC score given as

follows.

Definition 3 (AUC score)

For a ranking function h : X → R and an underlying distribution D over X × Y , the

AUC score of h is defined by

AUC(h) = Pr
(x,y),(x′,y′)∼D

(h(x) > h(x′) | y = +1, y′ = −1).

In a word, the AUC score of h is the probability that h maps a positive instance to a

higher value than a negative instance. For convenience, we renumber the indices of the

instances in S, so that x+
1 , . . . , x+

p and x−
1 , . . . , x−

n are the positive and negative instances

in S, respectively. Clearly, m = p + n and

S = {(x+
1 , +1), . . . , (x+

p , +1)} ∪ {(x−
1 ,−1), . . . , (x−

n ,−1)}

holds, where the sets appearing in the formula above are all multisets. Similar to the

binary classification problem, we define the empirical AUC score of h at ρ for a real

number ρ > 0 as follows.

Definition 4 (Empirical AUC score)

For a hypothesis h, a sample S = {(x+
1 , +1), . . . , (x+

p , +1)} ∪ {(x−
1 ,−1), . . . , (x−

n ,−1)},
and a real number ρ > 0, the empirical AUC score of h at ρ is defined as

AUCS,ρ(h) =
1

pn

p∑

i=1

n∑

j=1

I

(
h(x+

i ) − h(x−
j )

2
≥ ρ

)
.

For a linear ranking function h(x) = w · x + b for some weight vector w ∈ RN and

b ∈ R, Rudin and Schapire give the following bounds on the AUC score in terms of the

empirical AUC score [65]. Note that for the bipartite ranking problem, we may assume

without loss of generality that b = 0.
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Theorem 1

For any ρ > 0 and δ > 0, with probability at least 1− δ, the following bound holds for any

linear ranking function h(x) = w · x:

AUC(h) ≥ AUCS,ρ(h) −

√
4

mE4

(
8 ln N

ρ2
ln

(
4mE2ρ2

ln N

)
+ 2 ln

(
2

δ

))
,

where

E = E
(x,y),(x′,y′)∼D

[I(y = 1, y′ = −1)].

The theorem says that a reasonable way of finding a linear function h(x) = w ·x with

high AUC score is to enlarge AUCS,ρ(h) for as large ρ as possible.

Figure 2.1: An example of ROC curve (left) of the ranking function h (right).

As suggested by its name, the empirical AUC score at ρ = 0, which is simply called

the empirical AUC, coincides with the area under the ROC curve as shown in the left

panel of Figure 2.1. An ROC curve plots the true positive rate and the false positive rate,

where the true positive rate is the fraction of positive instances with correctly predicted

as positive, and the false positive rate is the fraction of negative instances with incorrectly

predicted as positive. Each point on the curve is generated by the value of threshold θ

from one extreme to another as in the right panel of Figure 2.1. The value of threshold θ

determines the classification of any point x into positive and negative by sgn(h(x) − θ).

At one extreme, all points are predicted as negative, and hence both the true positive

rate and the false positive rate are zero. At the other extreme, all points are predicted as

positive, and hence both the true positive rate and the false positive rate are one.
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2.2.2 Classification SVM

Support Vector Machines (SVMs) are one of the most successful algorithms for the binary

classification problem, since it is well-grounded in theory and effective in practice [24,

17, 43, 59]. It is known that the SVMs are useful not only for classification but also

for regression [26, 69, 22] and ranking [45, 60]. In this and the next subsections, we

show general frameworks for two types of SVMs: the SVM for the binary classification

problem (Classification SVM) and the SVM for the bipartite ranking problem (Ranking

SVM). Here we introduce the SVM for the binary classification problem. Given a sample

S = {(x1, y1), . . . , (xm, ym)}, the Classification SVM outputs a linear hypothesis

h(x) = w · x + b

for some weight vector w ∈ RN and real number b ∈ R. We introduce four variants of

the Classification SVM: {Hard, Soft} Margin SVM with {1, 2}-norm of the weight vector

regularized. Among these, the SVMs with 2-norm of the weight vector regularized (2-norm

SVMs, for short) are standard ones and can be combined with the kernel method. On

the other hand, SVMs with 1-norm of the weight vector regularized (1-norm SVMs, for

short) does not seem to enjoy the kernel method, but, the resulting weight vector tends

to be sparse and thus they are suitable for the feature selection.

Hard Margin SVMs

The hard margin SVMs find a linear function h(x) = w · x + b that correctly classifies

S (i.e., R̂S(h) = 0) if S is linearly separable. The linear functions (w, b) output by the

Hard Margin 2-norm SVM and the Hard Margin 1-norm SVM can be expressed as the

solutions to the following quadratic and linear programming problems, respectively.

OP 1: Hard Margin 2-norm SVM (primal)

min
w,b

1

2
∥w∥2

2

sub.to

yi(w · xi + b) ≥ 1, i ∈ [1,m].

This formulation is motivated by the margin theory. The constraints imply that the

hypothesis (w, b) should correctly classify S. Moreover, the constraints imply that the
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Figure 2.2: Illustration of the Hard Margin 2-norm SVM.

margin is at least 1/∥w∥2, where the margin ρ of (w, b) for S is defined as the L2 (Eu-

clidean) distance between the hyperplane (w, b) and the instance xi that is closest to

(w, b), i.e.,

ρ = min
(xi,yi)∈S

yi(w · xi + b)

∥w∥2
.

Therefore, the formulation implies that the solution (w, b) is a hyperplane that maximizes

the margin. Figure 2.2 illustrates the Hard Margin 2-norm SVM.

On the other hand, the Hard Margin 1-norm SVM finds a hyperplane (w, b) that

maximizes L∞-margin, where L∞-margin ρ∞ is the margin that is now measured with

respect to the L∞ distance, i.e.,

ρ∞ = min
(xi,yi)∈S

yi(w · xi + b)

∥w∥1
.

In the following formulation, we assume without loss of generality that the weight vector

w is nonnegative and normalized to 1. In other words, we assume that w ∈ PN .

OP 2: Hard Margin 1-norm SVM (primal)

max
w,b

ρ

sub.to

yi(w · xi + b) ≥ ρ, i ∈ [1,m]

w ∈ PN .

To see why we may assume the weight vectors to be non-negative, observe that any vector

w can be written as w = w+ − w− for some two non-negative vectors w+ and w− such
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that ∥w∥1 = ∥w+∥1 + ∥w−∥1. This implies that the reduction x *→ (x,−x) enables us

to learn the general class of hyperplanes {(w, b) | ∥w∥1 = 1} by a learning algorithm for

our class {(w, b) | w = (w+, w−) ∈ P2N}.

Soft Margin SVMs

The Soft Margin SVMs work well even when the sample S is not linearly separable.

In this thesis, we use the ν-SVM formulation [66].

OP 3: Soft Margin 2-norm SVM (primal)

min
ρ,w,b,ξ

1

2
∥w∥2

2 − νρ +
1

m

m∑

i=1

ξi

sub.to

yi(w · xi + b) ≥ ρ − ξi, i ∈ [1,m]

ξ ≥ 0,

ρ ≥ 0.

Here, ν is a parameter that controls the tradeoffs between two objectives, maximizing ρ

and minimizing ξi’s, where ρ is a target margin and ξi is a penalty term that represents

the amount of how the instance (xi, yi) violates the target margin ρ. See Figure 2.3 for

geometric interpretation.

Next we give the formulation of the Soft Margin 1-norm SVM.

OP 4: Soft Margin 1-norm SVM (primal)

max
ρ,w,b,ξ

ρ − 1

ν

m∑

i=1

ξi

sub.to

yi(w · xi + b) ≥ ρ − ξi, i ∈ [1,m]

ξ ≥ 0,

w ∈ PN ,

ρ ≥ 0.
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ξj

ξi

w · x + b = 0

w · x + b = +ρ

w · x + b = −ρ

target margin!

w

Figure 2.3: Illustration of the Soft Margin 2-norm SVM.

Dual form and kernel method

All the optimization problems given above have dual forms. In particular, the dual form

of the Soft Margin 2-norm SVM is described as a quadratic programming program with

m variables, O(m) constraints, and a quadratic objective function of m2 terms, whose

coefficients are −yiyj(xi · xj), 1 ≤ i, j ≤ m. Therefore, once we have the inner products

xi · xj for all 1 ≤ i, j ≤ m, the problem size becomes independent of the dimension N .

By this property, the 2-norm SVM enjoys the kernel method.

Below let us derive the dual form of the Soft Margin 2-norm SVM. The Lagrangian of

OP 3 is given as

L(w, ξ, b, ρ, α,β, δ) =
1

2
∥w∥2 − νρ +

1

m

m∑

i

ξi

−
m∑

i

(αi(yi(xi · w + b) − ρ + ξi) + βiξi) − δρ,

where α ≥ 0, β ≥ 0 and δ ≥ 0 are Lagrangian multipliers that correspond to the first,

second and third constraints of OP 3, respectively.
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By KKT conditions [79] the solutions of OP 3 should satisfy

∂L

∂w
= w −

m∑

i

αiyixi = 0, (2.1)

∂L

∂ξi
=

1

m
− αi − βi = 0, i ∈ [1,m] (2.2)

∂L

∂b
= −

m∑

i

αiyi = 0, (2.3)

∂L

∂ρ
= −ν +

m∑

i

αi − δ = 0. (2.4)

αi(yi(xi · w + b) − ρ + ξi) = 0, i ∈ [1,m], (2.5)

βiξi = 0, i ∈ [1,m], (2.6)

δρ = 0. (2.7)

Plugging these equations obtained above into OP 3, we get the following dual form.

OP 5: Soft Margin 2-norm SVM (dual)

max
α

−1

2

m∑

i,j=1

αiαjyiyj(xi · xj)

sub.to

0 ≤ αi ≤
1

m
i ∈ [1,m],

m∑

i

αiyi = 0,

m∑

i

αi ≥ ν.

Note that the last constraint can be made equality.

Now we are ready to explain the kernel method. We extend the framework of learning

linear functions to the following scenario: Consider a feature map Φ : RN → RNhigh

and let X̃ ⊆ RNhigh be a new instance space (oftend called the feature space) defined as

X̃ = {Ψ(x) | x ∈ X}. Then, use the Soft Margin 2-norm SVM to learn a linear function

over the new instance space X̃. Typically, we take Ψ to be a non-linear function that

maps to a very high dimensional instance space (i.e., Nhigh ≫ N), so that the resultant

hypothesis h(x) = w · Ψ(x) + b will perform much better than any linear function over

the original instance space X. Here w is of dimension Nhigh and it may be impractical to
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solve the primal form OP 3 with xi replaced with Ψ(xi). Instead, we use the dual form

OP 5 with (xi · xj) replaced with (Ψ(xi) · Ψ(xj)) = K(xi, xj), where K : X × X → R is

the kernel associated with Ψ, defined as

K(x,x′) = Ψ(x) · Ψ(x′).

We give the kernelized version of OP 5 as follows.

OP 6: Soft Margin 2-norm SVM with Kernel (dual)

max
α

−1

2

m∑

i,j=1

αiαjyiyjK(xi, xj)

sub.to

0 ≤ αi ≤
1

m
i ∈ [1,m],

m∑

i

αiyi = 0,

m∑

i

αi ≥ ν.

Clearly, the time complexity of solving OP 5 depends on the time complexity of com-

puting the kernel K. There are many kernels proposed in the literature that can be

computed efficiently. A polynomial kernel K(x, x′) = (x · x′ + 1)d for some constant d is

a widely used efficient kernel, which we will use in Chapter 4.

Note that we can also compute the hypothesis h(x) = w · Ψ(x) + b using the kernel.

By (2.1) we have

w =
m∑

i

αiyiΨ(xi),

and hence the first term of h can be expressed by

w · Ψ(x) =
m∑

i

αiyiΨ(xi) · Ψ(x) =
m∑

i

αiyiK(xi,x).

Let i1 and i2 be indices such that yi1 = +1, yi2 = −1 and 0 < αi1 ,αi2 < 1/m. By (2.2),

we have βi1 , βi2 > 0 and hence by (2.6) we have ξi1 = ξi2 = 0. Therefore, by (2.5) we have

Ψ(xi1) · w + b − ρ = 0,

−Ψ(xi2) · w − b − ρ = 0.
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From these it follows that

b =
w · (Ψ(xi1) + Ψ(xi2))

2
=

∑m
i αiyi(K(xi, xi1) + K(xi,xi2))

2
.

Note that the 1-norm SVMs cannot be kernelized because, unlike the 2-norm SVMs,

the solution vectors w of OP 2 and OP 4 are not the forms of a linear combination of

instances in general.

2.2.3 Ranking SVM

As we show below, the bipartite ranking problem can be reduced to the binary classi-

fication problem. So we can apply the SVMs to the reduced problem. The resultant

algorithms are called the Ranking SVMs.

Assume that we are given a sample

S = {(x+
1 , +1), . . . , (x+

p , +1)} ∪ {(x−
1 ,−1), . . . , (x−

n ,−1)}

with m = p + n. Note that the empirical AUC score of a linear ranking function h(x) =

w · x at ρ can be rewritten as

AUCS,ρ(h) =
1

pn

∑

z∈S′

I(w · z ≥ ρ),

where S ′ = {(x+
i − x−

j )/2 | 1 ≤ i ≤ p, 1 ≤ j ≤ n} is called the pair-sample.

Thus, the problem of finding h with large empirical AUC score can be seen as the

standard binary classification problem of finding a large margin classifier w over the pair-

sample. For convenience, we will use AUC(w) and AUCS,ρ(w) to denote AUC(h) and

AUCS,ρ(h) with h(x) = w · x, respectively.

In what follows, we denote by M the set of all indices (i, j) of the pair-sample. That

is,

M = [1, p] × [1, n].

2-norm Ranking SVMs

We give the formulation of 2-norm Ranking SVM as follows. First, we give hard margin

optimization problems.
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OP 7: Hard Margin 2-norm Ranking SVM (primal)

max
w

1

2
∥w∥2

2

sub.to

w · (x+
i − x−

j )/2 ≥ 1, (i, j) ∈ M.

The dual problem is given as

OP 8: Hard Margin 2-norm Ranking SVM (dual)

max
α

p∑

i=1

n∑

j=1

αij −
1

2

∥∥∥∥∥

p∑

i=1

n∑

j=1

αij(x
+
i − x−

j )/2

∥∥∥∥∥

2

sub.to

αij ≥ 0, (i, j) ∈ M.

Next we give the standard soft margin 2-norm Ranking SVM, which is based on the

ν-SVM formulation [66], where ν-SVM is an equivalent variant of SVM and useful for

showing a lower bound on the empirical AUC score1.

OP 9: Soft Margin 2-norm Ranking SVM (primal)

(ρ∗, w∗, ξ∗) = min
ρ,w,ξ

1

2
∥w∥2

2 − νρ +
1

pn

p∑

i=1

n∑

j=1

ξij

sub.to

w · (x+
i − x−

j )/2 ≥ ρ − ξij, (i, j) ∈ M

ξij ≥ 0, (i, j) ∈ M.

where 0 ≤ ν ≤ 1 is a parameter. By the property of the ν-SVM (see, e.g., [66]), the optimal

solution guarantees that the number of pairs (x+
i , x−

j ) for which w∗ · (x+
i −x−

j )/2 ≤ ρ∗ is

at most νpn. In other words, we have

AUCS,ρ∗(w
∗) ≥ 1 − ν. (2.8)

The dual problem of is given below:

1In the original formulation [66], there is another constraint that ρ ≥ 0. In our analysis, we omit the
constraint for simplicity.
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OP 10: Soft Margin 2-norm Ranking SVM (dual)

α∗ = arg max
α

−1

2

∥∥∥∥∥

p∑

i=1

n∑

j=1

αij(x
+
i − x−

j )/2

∥∥∥∥∥

2

sub.to

0 ≤ αij ≤
1

pn
, (i, j) ∈ M

p∑

i=1

n∑

j=1

αij = ν.

Note that the dual form is of size O((pn)2), assuming that each inner product between

instances is of unit size.

1-norm Ranking SVMs

Below we give the primal form of the hard margin 1-norm Ranking SVM.

OP 11: Hard Margin 1-norm Ranking SVM (primal)

max
ρ,w

ρ

sub.to

w · (x+
i − x−

j )/2 ≥ ρ, (i, j) ∈ M,

w ∈ PN .

This optimization problem is for finding w that maximizes the margin ρ such that

AUCS,ρ(w) = 1. So, if the sample is not linearly separable, then we have ρ < 0 and

Theorem 1 says nothing about AUC(w). The dual form is given as follows.

OP 12: Hard Margin 1-norm Ranking SVM (dual)

min
γ,d

γ

sub.to
∑

i,j

dij(x
+
i − x−

j )/2 ≤ γ1,

d ∈ Ppn.

We give the primal form of the soft margin 1-norm Ranking SVM.
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OP 13: Soft Margin 1-norm Ranking SVM (primal)

(ρ∗, w∗, ξ∗) = arg max
ρ,w,ξ

ρ − 1

ν

p∑

i=1

n∑

j=1

ξij

sub.to

w · (x+
i − x−

j )/2 ≥ ρ − ξij, (i, j) ∈ M

w ∈ PN ,

ξij ≥ 0, (i, j) ∈ M.

By using the KKT conditions, we can show that the optimal solution guarantees that

the number of indices (i, j) ∈ M for which w∗ · (x+
i − x−

j )/2 ≤ ρ∗ is at most ν [66, 83].

In other words, we have

AUCS,ρ∗(w
∗) ≥ 1 − ν

pn
. (2.9)

Note that ρ∗ depends on ν and becomes positive when ν is large, even if the sample is not

linearly separable. So, the soft margin 1-norm Ranking SVM is quite a robust approach

for obtaining a linear function with high AUC score.

The dual problem is given as

OP 14: Soft Margin 1-norm Ranking SVM (dual)

(γ∗, d∗) = arg min
γ,d

γ

sub.to
∑

i,j

dij(x
+
i − x−

j )/2 ≤ γ · 1,

0 ≤ dij ≤
1

ν
, (i, j) ∈ M

d ∈ Ppn.

Note that the size of the soft margin 1-norm Ranking SVM is O(pn(pn + N)).

2.3 Online prediction model

In this section, we introduce the online prediction model with a general scheme, called

the Follow the Regularized Leader (FTRL), of designing online prediction algorithms.

Particularly in this thesis, we deal with the online prediction problem over combinato-

rial concept classes, where the decision space is defined by some combinatorial way from



CHAPTER 2. PRELIMINARIES 21

a given simple concept (called a seed) such as a set and a graph. Examples of such classes

are rankings (permutations) over a given set, s-t paths in a given graph, spanning trees

of a given graph, k-sets of a given set, and so on. Typically, those concept classes contain

finite but exponentially many concepts. Later in this section, we will give the formal

definition of the online prediction problem over a family of combinatorial concept classes.

2.3.1 Problem settings

We assume a finite class C of concepts, where each concept in C is encoded as a non-

negative vector in Rn for some integer n, i.e., C ⊆ Rn
+. The online prediction problem over

a concept class C is described as a repeated game between the player and the adversary

as follows: For each trial t = 1, . . . , T ,

1. the player predicts ct ∈ C,

2. the adversary returns a loss vector ℓt ∈ [0, 1]n,

3. the player incurs loss ct · ℓt.

The goal of the player is to minimize the regret:

T∑

t=1

ct · ℓt − min
c∈C

T∑

t=1

c · ℓt.

The first term represents the cumulative loss of the algorithm, and the second term the

cumulative loss of the best concept in the class C in hindsight.

2.3.2 Bregman divergence

The FTRL is specified by a Bregman divergence. Here we give the definition of Bregman

divergences and two examples. See, e.g. [38] for reference.

Let Φ : Γ → R be a strictly convex function defined on a closed convex set Γ ⊆ Rn.

The Bregman divergence ∆Φ : Γ × Γ → R+ with respect to Φ is defined as

∆Φ(p, q) = Φ(p) − Φ(q) −∇Φ(q) · (p − q),

where ∇Φ(q) is the gradient of Φ at q. The function Φ is separable if there exists functions

φi : Γi → R for i = 1, 2, . . . , n such that Γ = Γ1 × Γ2 × · · · × Γn and for any x =

(x1, x2, . . . , xn) ∈ Γ, Φ(x) =
∑n

i=1 φi(xi). In particular, if all φi’s are the same, then the
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function Φ is said to be uniformly separable. In this thesis, we will sometimes consider

two particular uniformly separable convex functions, the 2-norm function:

ΦEUC(x) =
1

2
∥x∥2

2 =
1

2

n∑

i=1

x2
i

defined on Rn, and the unnormalized negative entropy function:

ΦURE(x) =
n∑

i=1

(xi ln xi − xi)

defined on Rn
+. It is well known that these functions define the Euclidean distance and

the unnormalized relative entropy, respectively. That is,

∆EUC(x,z)
def
= ∆ΦEUC(x,z) =

1

2

n∑

i=1

(xi − zi)
2,

and

∆URE(x,z)
def
= ∆ΦURE(x, z) =

n∑

i=1

xi ln
xi

zi
+

n∑

i=1

zi −
n∑

i=1

xi.

2.3.3 Follow the Regularized Leader

Let us fix a Bregman divergence ∆Φ : Γ × Γ → R+ by which the FTRL is specified. We

assume that Γ is large enough so that C ⊆ Γ. The FTRL uses two external procedures

called the Projection and the Decomposition.

The procedure Projection is defined as follows, where conv(C) denotes the convex hull

of C.

Definition 5 (Projection)

The Projection is a procedure that inputs a point z ∈ Γ and outputs a point in conv(C)

that is closest to z with respect to ∆Φ. That is,

Projection(z) = arg inf
x∈conv(C)

∆Φ(x, z).

The procedure Decomposition is defined as follows:

Definition 6 (Decomposition)

The Decomposition is a randomized procedure that inputs a point x in conv(C) and outputs

a point c ∈ C randomly so that E[c] = x.
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Algorithm 1 FTRL with Projection and Decomposition

1. Let x1 be any point in conv(C).

2. For t = 1, . . . , T

(a) Run Decomposition(xt) and get ct ∈ C randomly so that E[ct] = xt.

(b) Predict ct and incur loss ct · ℓt.

(c) Update xt+ 1
2

as xt+ 1
2

= arg min
x∈Γ

(
ηx · ℓt + ∆Φ(x, xt)

)
.

(d) Run Projection(xt+ 1
2
) and get xt+1, which is the projection of xt+ 1

2
onto

conv(C). That is, xt+1 = arg infx∈conv(C) ∆Φ(x,xt+ 1
2
).

We give the FTRL in Algorithm 1.

The following regret bounds with respect to Euclidean distance and unnormalized

relative entropy are known.

Theorem 2 ([31, 89, 38])

1. Let Φ = ΦEUC. Then, for an appropriate choice of η, the expected regret of the

FTRL is O(DEUC

√
nT ), where DEUC = maxc,c′∈C ∥c − c′∥2.

2. Let Φ = ΦURE. Then, for an appropriate choice of η, the expected regret of the

FTRL is O(
√

L∗DURE + DURE), where DURE = maxc∈C ∆URE(c, x1) and L∗ =

minc∈C
∑T

t=1 c · ℓt.

2.3.4 Combinatorial concept classes

Now, we give the formal definition of combinatorial concept classes. A family of combi-

natorial concept classes F is defined by a pair (S,φ), where S is a language over a finite

alphabet and φ : S → 2Rn
+ is called a semantic function that maps s ∈ S to a concept

class C = φ(s) ⊆ Rn
+. We refer to S as a seed set. Thus, the family F defines the family

of combinatorial concept classes {φ(s) | s ∈ S}.
In this thesis, we consider an online prediction problem for a family F = (S,φ) of

combinatorial concept classes, where the algorithm is required to work efficiently and

uniformly over all concept class C in the family F . So, we assume that the algorithm first

receives a seed s ∈ S before starting the protocol, and then makes predictions from the

concept class C = φ(s). Consequently, in order to employ the FTRL, we need to design
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algorithms for the Projection and the Decomposition so that they receive a seed s ∈ S as

well and work efficiently for the concept class C = φ(s).

2.3.5 Examples

Below we show some examples of a family of combinatorial concept classes.

Experts The classical expert problem [31] is an example of online prediction problem

over a family of combinatorial concept classes. In the expert problem, we are given n

experts who give advice to the player, and the player would like to predict nearly as well

as the best expert in hindsight. This problem can be seen as the online prediction problem

for the following family F = (S,φ): The seed set S is the set of natural numbers, and

for a seed n, the concept class φ(n) is the set {e1, . . . , en} ⊆ {0, 1}n, where ei is a unit

vector whose i-th component is 1 and other components are 0.

k-sets The class of k-sets is a generalization of Experts, where each concept corresponds

to a set of k experts among n experts. This problem was first considered by [84]. This

problem can be described by the following family F = (S,φ): The seed set S is the set

of pairs (n, k) of natural numbers with k ≤ n, and for a seed s = (n, k), the concept class

φ(s) is defined by {c ∈ {0, 1}n |
∑n

i ci = k}.

s-t paths The online shortest path problem is studied in many papers [49, 76]. Here

the seed set S is the set of directed graphs G = (V, E) with two special nodes s and t,

and for a seed G, the concept class is defined by

φ(G) = {c ∈ {0, 1}E | the edge set {e ∈ E | ce = 1} forms an s-t paths in G}.

Spanning trees Online prediction problems of undirected or directed spanning trees

are studied in [16] and [49]. Here we consider undirected versions. Then the seed set S is

the set of undirected graphs G = (V,E) and for a seed G, the concept class is defined by

φ(G) = {c ∈ {0, 1}E | the edge set {e ∈ E | ce = 1} forms a spanning tree of G}.

Permutations The online prediction problem for this class models an online scheduling

problem of n jobs with a single processor where the sum of flow time over all jobs is to be
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minimized [86]. Here the seed set S contains natural numbers and the concept class φ(n)

for seed n is the set of all permutations Sn over {1, . . . , n}. A different representation of

permutations and the related problem was also considered in [39].

Set covers The online set cover problem is studied in [33]. The problem is described

by the following family F = (S,φ): The seed set S be a subset family U of some ground

set X such that
⋃

u∈U u = X, and for a seed U , the concept class is

φ(U) = {c ∈ {0, 1}U | {u ∈ U | cu = 1} is a cover of X}.



Chapter 3

Efficient Reformulation for 1-norm

Ranking SVM

3.1 Introduction

Among the problems related to learning to rank, the bipartite ranking is a fundamental

problem, which involves learning to obtain rankings over positive and negative instances.

More precisely, for a given sample consisting of positive and negative instances, the goal of

the bipartite ranking problem is to find a real-valued function h, which is referred to as a

ranking function, with the following property: For a randomly chosen test pair of positive

instance x+ and negative instance x−, the ranking function h maps x+ to a higher value

than x− with high probability. Thus, a natural measure for evaluating the goodness of

ranking function h is the probability that h(x+) > h(x−), which we call the AUC (the

area under the receiver operating characteristic (ROC) curve) of h.

It is known that the bipartite ranking problem can be reduced to a binary classification

problem over a new instance space, consisting of all pairs (x+,x−) of positive and negative

instances. More precisely, the problem of maximizing the AUC is equivalent to finding

a binary classifier f of the form of f(x+,x−) = h(x+) − h(x−) so that the probability

that f(x+,x−) > 0 is maximized for a randomly chosen instance pair. Several studies

including the Ranking SVM have taken this approach with a linear classifier f(x+,x−) =

w · (x+ − x−) for some weight vector w as the ranking function. The Ranking SVM

is justified by generalization bounds [55] which say that a large margin over pairs of

positive and negative instances in the sample implies a high AUC score under the standard

assumption that instances are drawn i.i.d. under the underlying distribution.

26
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Note that a naive implementation of the reduction approach for bipartite ranking

problem is impractical since the sample constructed through the reduction (called the

pair-sample) is of size pn when the original sample consists of p positive and n negative

instances. This implies that we need to solve a quadratic problem (QP) problem of size

O(pn(pn + N)) in the primal form or of size O((pn)2) in the dual form (with a kernel),

where N is the dimension of the instance space. To overcome this inefficiency, Joachims

proposed a Cutting-Plane based algorithm called the SVM-Perf [45], which simulates the

Ranking SVM in O(s(p + n) log(p + n)) time, where s is the maximum number of non-

zero features in the given instances. Chapelle and Keerthi proposed another efficient

implementation of the Ranking SVM, called the PRSVM [19], which runs in O((p +

n) log(p + n) + N(p + n)) time. Note that the Ranking SVM simulated in the above

implementations is based on the standard SVM formulation. That is, they solve a soft

margin optimization problem with 2-norm of the weight vector regularized.

In this thesis, we consider a 1-norm SVM formulation, which is originally proposed by

Bradley and Mangasarian [10] not for the ranking but for the classification problem, where

the 1-norm of the weight vector is regularized. This version of Ranking SVM is called

the 1-norm Ranking SVM. It has some advantages over the standard Ranking SVM: It is

formulated as a linear programming (LP) problem and thus can be solved much faster if

its size is not too large. Moreover, note that again, the resulting weight vector tends to

be sparse and thus is suitable for the feature selection. Unfortunately, the LP problem

for the 1-norm Ranking SVM is naturally of size O(pn(pn + N)), the same as the QP

problem for the standard Ranking SVM. But in this case, it is unclear how the techniques

used in SVM-Perf and PRSVM are applied for solving the LP problem efficiently.

To avoid the difficulty, we take a different approach by simplifying the LP formulation

for the 1-norm Ranking SVM, rather than devising a fast algorithm for it. More precisely,

we reformulate the LP problems for hard as well as soft margin optimization, with addi-

tional constraints that the dual variables dij are restricted to the product form dij = d+
i d−

j ,

where i and j range over the p positive and n negative instances, respectively. With these

constraints, the number of variables is reduced from pn to p + n, which results in greatly

simplified optimization problems of size O((p + n)(p + n + N)). We call the simplified

problems OPThard and OPTsoft that correspond to the hard and soft margin optimiza-

tion, respectively. Apparently, they would have worse solutions (i.e., weight vectors with

less margins) than the original hard and soft margin 1-norm Ranking SVMs, because the
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additional constraints significantly reduce the feasible solution spaces. But surprisingly,

OPThard turns out to be equivalent to the original hard margin 1-norm Ranking SVM.

In other words, the optimal solution (d∗
ij) of the hard margin 1-norm Ranking SVM and

the optimal solution (d̂+
i , d̂−

j ) of OPThard actually have the relation d∗
ij = d̂+

i d̂−
j . This

motivates the reformulation for the soft margin optimization, i.e., OPTsoft.

Unfortunately, unlike in the case of the hard margin optimization, the equivalence

between OPTsoft and the soft margin 1-norm Ranking SVM does not hold. To make

matters worse, OPTsoft is not a convex problem, let alone an LP problem. Nevertheless,

we show that a feasible solution can be found by solving an LP problem that is obtained

from OPTsoft by fixing a parameter, and the solution has a certain amount of margin.

Furthermore, if the given sample is close to be linearly separable, then our theoretical

guarantee on the margin becomes close to that of the soft margin 1-norm Ranking SVM.

We also give a practical heuristic to improve the feasible solution up to a local optimum.

Although, as mentioned above, several efficient algorithms for the 2-norm Ranking

SVM have been proposed [45, 19], we show that our reformulation technique can be

extended to the formulation of the 2-norm Ranking SVM, which yield simplified QP

problems of size O((p + n)N) in the primal form and of size O(pn) in the dual form.

We conduct several experiments using artificial and real data sets. Surprisingly, the

results show that our methods not only run much faster than most of the previously

proposed algorithms as expected, they achieve relatively high AUC scores for many data

sets.

Related works

Several related works have been done in the literature. Yu and Kim proposed a different

notion of 1-norm Ranking SVM [87], where the weight vector is restricted to a linear com-

bination of support vectors, so that the dual form of its LP formulation can be kernelized.

But then its size is O((pn)2), which is an unacceptable blowup in size. Moreover, in their

formulation the 1-norm of the dual variables (the coefficients of linear combination) is

regularized, and so the resulting weight vector is not always sparse. Another approach

to maximizing the margin with a sparse weight vector is to use the boosting technique

such as the AdaBoost [31, 61, 62], although in the naive implementation we would again

face with the same obstacle that the pair-sample constructed through the reduction is of

size pn. Freund et al. proposed the RankBoost [30] that simulates the AdaBoost over the
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pair-sample in time linear in the original sample size (p + n). Later, Rudin and Schapire

showed that under certain assumptions, the AdaBoost is equivalent to the RankBoost [65].

But the RankBoost has only a (weak) guarantee of hard margin and no theoretical jus-

tification is given when the sample is not linearly separable. Moribe et al. proposed the

SoftRankBoost [56] based on the smooth boosting framework [25, 67, 35, 37, 9], so that

it works well when the sample is not linearly separable. The SoftRankBoost runs in

O((p + n)N) time per iteration and is shown to have the same guarantee of soft margin

as that of our algorithm. But the SoftRankBoost does not seem to solve a soft margin

optimization problem in any sense.

We would like to mention that the notion of AUC consistency is recently proposed

for a criterion of ranking algorithms. An algorithm is said to be AUC consistent if the

algorithm outputs a ranking function that converges the Bayes optimal one, that is, the

ranking function that maximizes the AUC with respect to the underlying probability

distribution. Uematsu et al. [48] first propose this notion and investigate the relation

between AUC maximization and a convex loss minimization, where the loss function is

an upper bound on the ranking risk. In particular, they show that the algorithm for

minimizing hinge loss is not AUC consistent. Kotolowski et al. [50] and Agarwal [3]

show that the algorithms for minimizing exponential loss and logistic loss are both AUC

consistent. These results would suggest that as for AUC maximization the AdaBoost

(minimizing exponential loss) works well but the Ranking SVM (minimizing hinge loss)

does not. However, in these results, the ranking functions are assumed to be chosen from

the universal hypothesis class containing all functions (not only linear functions), and

they do not discuss the performance of algorithms when the hypothesis class is restricted

to, say, linear functions.

3.2 Reformulation of the hard margin 1-norm Rank-

ing SVM

In this section, we reformulate the hard margin 1-norm Ranking SVM by restricting the

dual variables d ∈ Ppn to the product form dij = d+
i d−

j , where d+ ∈ Pp and d− ∈ Pn are



CHAPTER 3. EFFICIENT REFORMULATION FOR 1-NORM RANKING SVM 30

new variables. Then, since

∑

i,j

dij(x
+
i − x−

j )/2

=
∑

i,j

d+
i d−

j (x+
i − x−

j )/2

=
∑

i

d+
i

(
∑

j

d−
j

)
x+

i /2 −
∑

j

d−
j

(
∑

i

d+
i

)
x−

j /2

=
∑

i

d+
i x+

i /2 −
∑

j

d−
j x−

j /2,

we obtain from OP 12 the following simplified LP problem, called OPThard.

OP 15: OPThard (dual)

min
γ,d+,d−

γ

sub.to
∑

i

d+
i x+

i /2 −
∑

j

d−
j x−

j /2 ≤ γ1,

d+ ∈ Pp,

d− ∈ Pn.

It turns out that the primal form of the LP problem above is the standard classification

version of hard margin 1-norm SVM over the original sample S, which now has the bias

term:

OP 16: OPThard (primal)

max
ρ,w,b

ρ

sub.to

w · x+
i + b ≥ ρ, i ∈ [1, p]

w · x−
j + b ≤ −ρ, j ∈ [1, n]

w ∈ PN .

Note that OPThard is of size O((p + n)N) in the both forms.

In the following, we show that OPThard is equivalent to the original hard margin

1-norm Ranking SVM (OP 11), by showing that an optimal solution of OP 11 can be

constructed from an optimal solution of OP 16.
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Theorem 3

Let (ρb,wb, bb) be an optimal solution of OP 16. Then, (ρb, wb) is also an optimal solution

of OP 11.

Proof Let (ρp,wp) be an optimal solution of OP 11. Clearly, (ρb,wb) is a feasible solution

of OP 11. So, ρb ≤ ρp. Next, we show that the opposite is true. Let x+ and x− be positive

and negative support vectors of OP 11 for which wp · (x+ − x−)/2 = ρp. Let

bp = −wp · (x+ + x−)

2
.

Then, (ρp, wp, bp) is a feasible solution of OP 16. To see this, for any positive instance

x+
i , observe that

wp · x+
i + bp =

wp · (x+
i − x−)

2
+

wp · (x+
i − x+)

2

≥ ρp +
wp · (x+

i − x−) − wp · (x+ − x−)

2

≥ ρp + ρp − ρp = ρp.

A similar inequality holds for negative instances as well. So we have ρp ≤ ρb.

3.3 Reformulation of the soft margin 1-norm Rank-

ing SVM

Motivated by the equivalence result of the hard margin case, we now reformulate the soft

margin 1-norm Ranking SVM with the same additional constraints dij = d+
i d−

j . Then we

obtain from OP 14 the following simplified optimization problem:
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OP 17: OPTsoft

γ̂ = min
γ,d+,d−,ν+

γ

sub.to
∑

i

d+
i x+

i /2 −
∑

j

d−
j x−

j /2 ≤ γ1,

d+
i ≤ 1

ν+
, i ∈ [1, p]

d−
j ≤ ν+

ν
, j ∈ [1, n]

d+ ∈ Pp,

d− ∈ Pn.

Note that we replace the constraint max(i,j)∈I dij ≤ 1/ν of OP 14 by maxi d
+
i maxj d−

j ≤
1/ν, which is further replaced by the two constraints maxi d

+
i ≤ 1/ν+ and maxj d−

j ≤ ν+/ν

with a new variable ν+ to be optimized.

OPTsoft is of size O((p + n)(p + n + N)) and thus seems to be easier to solve. But it

is not a convex optimization problem since the constraints d+
i ≤ 1/ν+ are not convex. To

overcome this difficulty, we first consider OPTsoft as an LP problem with ν+ to be fixed

to a constant. The LP problem with parameter ν+ is called OPTsoft(ν+):

OP 18: OPTsoft(ν+) (dual)

γ̂(ν+) = min
γ,d+,d−

γ

sub.to the same constraints as in OPTsoft

Clearly, minν+ γ̂(ν+) = γ̂. Unfortunately, the function γ̂(ν+) is not convex with respect to

ν+ (see Fig. 3.1 for example). So, it seems to be hard to obtain the optimum. In the next

section we propose an iterative linearization-minimization method to find a local optimal

solution of ν+.

On the other hand, for any fixed choice of ν+, we can guarantee that the solution of

OPTsoft(ν+) has a certain amount of empirical AUC score. To see this, we first give the

primal form of OPTsoft(ν+):
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OP 19: OPTsoft(ν+) (primal)

(ρ̂, ŵ, b̂, ξ̂+, ξ̂−)

= arg max
ρ,w,b,ξ+,ξ−

ρ − 1

2ν+

∑

i

ξ+
i − ν+

2ν

∑

j

ξ−j

sub.to

w · x+
i + b ≥ ρ − ξ+

i , i ∈ [1, p]

− w · x−
j − b ≥ ρ − ξ−j , j ∈ [1, n]

w ∈ PN ,

ξ+, ξ− ≥ 0.

Theorem 4

For a fixed ν+, let ρ̂ and ŵ be the solutions of OPTsoft(ν+) (primal). Then,

AUCS,ρ̂(ŵ) ≥ 1 − ν+

p
− ν

nν+
+

ν

pn
.

Proof By using the KKT conditions, we have ξ̂+
i (d̂+

i − 1/ν+) = 0. So, if ξ̂+
i > 0 then

d̂+
i = 1/ν+. Since there are at most ν+ indices i such that d̂+

i = 1/ν+, there are at most ν+

indices i with ξ̂+
i > 0. Similarly, there are at most ν/ν+ indices j with ξ̂−j > 0. Therefore,

for at least (p − ν+)(n − ν/ν+) pairs of instances zij in the pair-sample, ŵ · z ≥ ρ̂.

For particular choices of the parameters ν and ν+, we obtain the following corollary.

Corollary 5

Let ρ̂ and ŵ be the optimal solution of OPTsoft(ν+) (primal) for ν = εpn and ν+ =
√

εp.

Then,

AUCS,ρ̂(ŵ) ≥ (1 −
√

ε)2.

For comparison, we show the guarantee (2.9) of the original soft margin 1-norm Rank-

ing SVM for the same choice of ν as in the corollary above:

AUCS,ρ∗(w
∗) ≥ 1 − ε.

Below we compare ρ∗ and ρ̂. Note that, by duality we have

ρ̂ − 1

2ν+

∑

i

ξ̂+
i − ν+

2ν

∑

j

ξ̂−j = γ̂(ν+).
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Combined this with the fact that

γ̂(ν+) ≥ γ̂ ≥ γ∗ = ρ∗ − (1/ν)
∑

ij

ξ∗ij,

we have

ρ̂ ≥ ρ∗ − 1

ν

∑

ij

ξ∗ij.

Therefore, if
∑

ij ξ∗ij is small, i.e., the sample is close to be linearly separable, then we

can say that the solution ŵ of OPTsoft(ν+) has nearly as high AUC score as the original

1-norm soft margin Ranking SVM.

3.4 An iterative linearization-minimization method

for optimizing ν+

Now we give an iterative linearization-minimization method for finding a local optimal

solution of ν+, which attains a local minimum of OPTsoft. Recall that in OPTsoft, we

have non-convex constraints d+
i ≤ 1/ν+. In order to make them convex, we replace them

by their linear approximations. To be more precise, we consider the constraint that every

d+
i is bounded by the tangent line of 1/ν+ at some point ν+ = ν+

c . That is,

d+
i ≤ − 1

(ν+
c )2

+
2

ν+
c

. (3.1)

Thus we have the following LP problem called LPsoft, where ν+
c is a parameter:

OP 20: LPsoft

(γ̃, d̃+, d̃−, ν̃+) = arg min
d+,d−,γ,ν+

γ

sub.to
∑

i

d+
i x+

i /2 −
∑

j

d−
j x−

j /2 ≤ γ1,

d+
i ≤ − 1

(ν+
c )2

ν+ +
2

ν+
c

, i ∈ [1, p]

d−
j ≤ ν+

ν
, j ∈ [1, n]

d+ ∈ Pp,

d− ∈ Pn.
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Figure 3.1: Non-convexity of the function γ̂(ν+) for an artificial data set.

Note that since any d+
i satisfying the new constraint (3.1) also satisfies the original

constraints d+
i ≤ 1/ν+, the optimal solution of LPsoft is a feasible solution of OPTsoft.

Now we are ready to describe our algorithm:

1. Let ν+
c be an initial guess.

2. Solve LPsoft and get a solution (d̃+, d̃−, γ̃, ν̃+).

3. If the value of γ̃ decreases, then let ν+
c = ν̃+ and go to 2.

4. Solve OPTsoft(ν+)(dual) with ν+ = ν̃+ and get a solution (d̂+, d̂−, γ̂).

A reasonable choice of the initial guess in the first step would be ν+
c =

√
ϵp with ν = ϵpn,

as in Corollary 5. Observe that the solution (d̃+, d̃−, γ̃, ν̃+) of LPsoft is a feasible solution of

LPsoft(ν̃+). So, the minimum γ̃′ of LPsoft(ν̃+) satisfies γ̃′ ≤ γ̃. Therefore, by repeating this

procedure, we can obtain a monotonically decreasing sequence of γ̃, which will converge to

a local minimum. Fig. 3.2 illustrates the algorithm. Note that the final step is redundant

and thus can be skipped. We add this just for numerical stability.

3.5 Reformulation of 2-norm Ranking SVM

In this section, we employ a similar reformulation and simplification strategy to the stan-

dard 2-norm Ranking SVM, although as stated in Introduction, it has efficient algorithms

under the original formulation. Here we no longer assume that the weight vector w is in

PN .
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Figure 3.2: Illustration of our algorithm. The dotted line shows the tangent line of 1/ν+

at ν+ = ν+
c . ν̃+ is the solution of LPsoft

3.5.1 Reformulation of the hard margin 2-norm Ranking SVM

We reformulate the hard margin 2-norm Ranking SVM by restricting the dual variables

αij to 2α+
i α−

j /
∑p

i α+
i . If we add the restriction for OP 8, then we obtain the following

QP problem which we call 2-norm OPThard.

OP 21: 2-norm OPThard (dual)

max
α+,α−

p∑

i=1

α+
i +

n∑

j=1

α−
j − 1

2

∥∥∥∥∥

p∑

i=1

α+
i x+

i −
n∑

j=1

α−
j x−

j

∥∥∥∥∥

2

sub.to
p∑

i=1

α+
i =

n∑

j=1

α−
j ,

α+
i ≥ 0, i ∈ [1, p]

α+
j ≥ 0, j ∈ [1, n].

We can transform this QP problem into the primal form, which is the standard clas-

sification formulation of hard margin 2-norm SVM over the original sample S with bias

term:
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OP 22: 2-norm OPThard (primal)

max
w,b

1

2
∥w∥2

2

sub.to

w · x+
i + b ≥ 1, i ∈ [1, p]

w · x−
j + b ≤ −1, j ∈ [1, n].

In hard margin 2-norm Ranking SVM, similar equivalence theorem holds between OP

7 and 2-norm OP 22.

Theorem 6

OP 7 and OP 22 are equivalent to each other. That is, each optimal solution can be

constructed from the solution of the other one.

Proof We show the equivalence of their dual problems. Let θp(α) and θb(α+, α−) be

the objective functions of the dual problems (8) and (21), respectively. Also, we denote

α̃ and (α̂+, α̂−) as the optimal solution of the dual problems (8) and OP 21, respectively.

First, we construct a feasible solution of the problem (21) from the optimal solution

of the problem (8). We define (α̃+, α̃−) as α̃+
i =

∑n
j=1 α̃ij/2 and α̃−

j =
∑p

i=1 α̃ij/2. Then,

it holds that

θp(α̃) =
p∑

i=1

n∑

j=1

α̃ij −
1

2

(
p∑

i=1

n∑

j=1

α̃ij(x
+
i − x−

j )/2

)
·
(

p∑

i=1

n∑

j=1

α̃ij(x
+
i − x−

j )/2

)

=
p∑

i=1

α̃+
i +

n∑

j=1

α̃−
j − 1

2

(
p∑

i=1

α̃+
i x+

i −
n∑

j=1

α̃−
j x−

j

)
·
(

p∑

i=1

α̃+
i x+

i −
n∑

j=1

α̃−
j x−

j

)

= θb(α̃
+, α̃−). (3.2)

Note that
∑p

i=1 α̃+
i =

∑n
j=1 α̃−

j =
∑p

i=1

∑n
j=1 αij and α̃i, α̃j ≥ 0. So, (α̃+, α̃−) is a feasible

solution of the problem (21). This implies

θb(α̃
+, α̃−) ≤ θb(α̂

+, α̂−). (3.3)

Next, we construct a feasible solution of OP 8 from the optimal solution of OP 21.
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Let α̂ be such that α̂ij/2 = α̂+
i

bα−
jPn

j=1 bα−
j
. Then,

θb(α̂
+, α̂−) =

p∑

i=1

α̂+
i +

n∑

j=1

α̂−
j − 1

2

(
p∑

i=1

α̂+
i x+

i −
n∑

j=1

α̂−
j x−

j

)
·
(

p∑

i=1

α̂+
i x+

i −
n∑

j=1

α̂−
j x−

j

)

=
p∑

i=1

n∑

j=1

α̂ij −
1

2

(
p∑

i=1

n∑

j=1

α̂ij(x
+
i − x−

j )/2

)
·
(

p∑

i=1

n∑

j=1

α̂ij(x
+
i − x−

j )/2

)

= θp(α̂). (3.4)

Again, since α̂ is a feasible solution of OP 8,

θp(α̂) ≤ θp(α̃). (3.5)

Combining (3.2), (3.3), (3.4), and (3.5), it follows that θp(α̃) = θp(α̂) = θb(α̂+, α̂−) =

θb(α̃+, α̃−), which completes the proof.

3.5.2 Reformulation of the soft margin 1-norm Ranking SVM

Motivated by the equivalence result of the hard margin case, now we give our reformula-

tion. Like the 1-norm case, we replace each dual variable αij with a (slightly modified)

product form 4α+
i α−

j /ν but now we put an additional constraint
∑

i α
+
i =

∑
j α−

j (= ν/2).

Then, it is easy to see that we obtain from OP 10 the following simplified but non-convex

optimization problem, called 2-norm OPTsoft:

OP 23: 2-norm OPTsoft

(α̂+, α̂−, ν̂+)

= arg max
α+,α−,ν+

−1

2

∥∥∥∥∥

p∑

i=1

α+
i x+

i −
n∑

j=1

α−
j x−

j

∥∥∥∥∥

2

sub.to

0 ≤ α+
i ≤ ν+

2p
, i ∈ [1, p]

0 ≤ α−
j ≤ ν

2nν+
, j ∈ [1, n]

p∑

i=1

α+
i =

n∑

j=1

α−
j =

ν

2
.

Note that we replace the constraint max(i,j)∈I αij ≤ 1/(pn) of OP 10 by maxi α
+
i maxj α−

j ≤
ν/(4pn), which is further replaced by the two constraints maxi α

+
i ≤ ν+/(2p) and maxj α−

j ≤
ν/(2nν+) with the new variable ν+ to be optimized.



CHAPTER 3. EFFICIENT REFORMULATION FOR 1-NORM RANKING SVM 39

When we fix ν+ to a constant, then we have the QP problem, called 2-norm OPTsoft(ν+),

which has the following primal form:

OP 24: 2-norm OPTsoft(ν+) (primal)

(ρ̂, ŵ, b̂, ξ̂+, ξ̂−)

= arg min
ρ,w,b,ξ+,ξ−

||w||2

2
− νρ +

ν+

2p

p∑

i=1

ξ+
i +

ν

2nν+

n∑

j=1

ξ−j

sub.to

w · x+
i + b ≥ ρ − ξi, i ∈ [1, p]

− w · x−
j − b ≥ ρ − ξj, j ∈ [1, n]

ξ+, ξ− ≥ 0,

ρ ≥ 0.

For any fixed choice of ν+, we can guarantee that the solution of 2-norm OPTsoft(ν+)

has a certain amount of empirical AUC score.

Theorem 7

For a fixed ν+, let ρ̂ and ŵ be the solutions of 2-norm OPTsoft(ν+) (primal). Then,

AUCS,ρ̂(ŵ) ≥ 1 − ν+ − ν

ν+
+ ν.

Proof By the KKT conditions, ξ+
i > 0 implies α+

i = ν+/(2p). Since
∑

i α
+
i = ν/2, there

are at most νp/ν+ indices i such that ξi > 0. Similarly, there are at most ν+n indices j

such that ξj > 0. Therefore, at least (p − νp/ν+)(n − ν+n) pairs of instances zij in the

pair-sample, ŵ · z ≥ ρ̂.

For a paticular choice of ν+, we obtain the following corollary.

Corollary 8

Let ρ̂ and ŵ be the optimal solutions of 2-norm OPTsoft(ν+) (primal) for ν+ =
√

ν. Then,

AUCS,ρ̂(ŵ) ≥ (1 −
√

ν)2.

Moreover, we can use the iterative linearization-minimization technique to find a local

optimal value of ν+, as we did for the 1-norm case. In this case, we replace the non-convex

constraints

α−
j ≤ ν

2nν+
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of 2-norm OPTsoft with the linear constraints

α−
j ≤ − ν

2n(ν+
c )2

ν+ +
ν

nν+
c

,

where ν+
c is the current guess. Then, solve the QP problem and obtain ν̂+. Repeat the

procedure above with ν+
c = ν̂+ until convergence. Finally, solve 2-norm OPTsoft(ν+) with

ν+ = ν̂+.

3.6 Experiments

In the following experiments, we verify effectiveness and efficiency of our method for

maximizing AUCs. The data sets include artificial data sets, and some UCI data sets.

3.6.1 Artificial data

For the first experiment, we used artificial data sets with r-of-k threshold functions as

target functions. An r-of-k threshold function f over N Boolean variables is associated

with some set A of k Boolean variables and f outputs +1 if at least r of the k variables in

A are positive and f outputs −1, otherwise. Assume that the instance space is {+1,−1}N .

That is, the r-of-k threshold function f is represented as

f(x) = sign

(
∑

x∈A

x + k − 2r + 1

)
.

For N = 100, k = 30, and r = 1, 8, 15, we fix r-of-k threshold functions which determine

labels. Then for each set of parameters, we generate m = 1000 random instances so that

ratios of positive and negative instances are 5 : 5, 7 : 3, and 9 : 1 respectively. Finally, we

add random noise into labels by changing the label of each instance with probability 5%,

10%, and 15%. As hypotheses, we use N Boolean variables themselves and the constant

hypothesis which always outputs +1.

We compare SVM-Perf [45], RankBoost [30], SoftRankBoost [56], naive 1-norm Rank-

ing SVM (LP-Pair), and our methods for 1-norm and 2-norm. For SVM-Perf, we set the

parameter ϵ = 0.001, C = 10, 20, . . . , 100. For RankBoost, we set the number of iterations

as T = 1000, 10000, 100000. For the other methods, we set the parameter ν = εpn, where

ε ∈ {0.05, 0.1, 0.15, 0.2}. We evaluate each method by 5-fold cross validation. Table 3.1

is the result that we change the noises, keep p : n = 5 : 5. Table 3.2 is the result that
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Table 3.1: AUCs for artificial data sets with random noises 5%, 10%, and 15% so that

ratios of positive and negative instances are 5:5.

data
SVM-Perf

Rank Soft
LP-Pair

our method

r noise Boost RankBoost 1-norm 2-norm

1 0.9363 0.9480 0.6991 0.9380 0.9445 0.9566

8 5(%) 0.8967 0.9285 0.9441 0.9592 0.9601 0.9566

15 0.9325 0.9236 0.9537 0.9515 0.9526 0.9374

1 0.8951 0.9030 0.6459 0.8909 0.9071 0.9209

8 10(%) 0.8658 0.8928 0.9227 0.9186 0.9221 0.9169

15 0.8862 0.8786 0.9158 0.9002 0.9044 0.8914

1 0.8480 0.8338 0.6343 0.6396 0.8343 0.8650

8 15(%) 0.8337 0.8516 0.8566 0.8663 0.8730 0.8687

15 0.8436 0.8359 0.8598 0.8450 0.8613 0.8347

Table 3.2: AUCs for artificial data sets so that ratios of positive and negative instances

are 7:3, 9:1.

data
SVM-Perf

Rank Soft
LP-Pair

our method

p : n r Boost RankBoost 1-norm 2-norm

1 0.9411 0.9257 0.8440 0.9231 0.9046 0.9458

7:3 8 0.9166 0.9078 0.9317 0.9333 0.9336 0.9177

15 0.9179 0.9027 0.9392 0.9282 0.9333 0.9093

1 0.7950 0.8014 0.8095 0.8049 0.8175 0.7974

9:1 8 0.7659 0.7734 0.7773 0.7678 0.7748 0.7645

15 0.7269 0.7567 0.7573 0.7494 0.7774 0.7578

we change the ratios p : n, keep noises 5%. Surprisingly, our methods achieve high AUC

scores comparing the other methods. We can observe that SoftRankBoost also often

achieves high AUC scores, but our methods are better in stably.

3.6.2 Real data

For the next experiment we use data sets “hypothyroid”, “ionosphere”, “australian”,

“colon cancer” and “duke breast cancer” in LIBSVM data [18]. We set the parameter C
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Table 3.3: AUCs for LIBSVM data sets

data SVM-Perf
Rank Soft

LP-Pair
our method

Boost RankBoost 1-norm 2-norm

hypothyroid 0.9374 0.7883 0.8504 0.8504 0.9091 0.9318

ionosphere 0.9643 0.8961 0.9518 0.9778 0.9790 0.9568

australian 0.8882 0.9171 0.8896 0.9298 0.9257 0.9325

colon-cancer 0.8200 0.8500 0.9350 0.7900 0.8950 0.9000

duke 0.9520 0.6720 0.8720 0.9600 0.9520 0.9120

of SVM-Perf 100, 200, . . . , 1000. The parameters of the other algorithms are the same as

in section 3.6.1. As can be seen in Table 3.3, It is not to say that our methods are clearly

better than the other methods, but our methods stably archive high AUCs for all data

sets.

3.6.3 Computation time

In this experiment, we will compare our method to LP-pair in 1-norm case and compare

to SVM-Perf. The time complexity of SVM-Perf is guaranteed O(sm log(m)), where s is

the number of non-zero features. We use the machine with 6 cores of Intel Xeon 5560

2.80GHz and 32GByte memory, and use the artificial data sets, the size of each data set is

m = 250, 500, 1000, 1500, 3000, respectively. The parameters of SVM-Perf are ϵ = 0.001,

C = 100 and 10000. For RankBoost, we set T = 100. We evaluate each execution time

which is consumed to train for 5-fold cross validation and is averaged.

In 1-norm case, as is shown in Table 3.4, our method is clearly faster than LP-Pair.

However, RankBoost and SoftRankBoost is much faster than our method. In 2-norm

case, our method is faster than SVM-Perf set by C = 10000.

3.6.4 Sparsity

Finally, we show that the hyperplane obtained by 1-norm regularized methods has high

sparsity using UCI data sets. As seen in Table 3.5, SoftRankBoost, LP-Pair and our

method of 1-norm obtain sparse weight vectors for large feature data sets, and weight

vectors of our method of 1-norm are as sparse as those of LP-Pair. Note that the each
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Table 3.4: Computation time

m
SVM-Perf Rank Soft

LP-Pair
our method

C = 100 C = 10000 Boost RankBoost 1-norm 2-norm

250 2.7 20.8 0.33 0.12 7.6 0.36 1.9

500 1.8 332.4 0.30 0.18 38.8 1.3 6.4

1000 1.9 527.1 0.22 0.13 153.8 3.0 27.1

1500 2.1 328.5 0.24 0.11 377.6 7.8 58.3

3000 3.9 683.6 0.41 0.16 1454.9 9.9 229.8

Table 3.5: The number of non-zero features of weight vectors obtained by each method

using UCI data sets. N is the dimension each data set has.

data
SVM-Perf

Rank Soft
LP-Pair

our method

N Boost RankBoost 1-norm 2-norm

hypothyroid 43 29 12 2 32 2 28

ionosphere 34 33 12 11 7 9 32

australian 14 8 6 6 9 8 14

colon-cancer 2000 1997 159 4 27 18 1991

duke 7129 7048 375 21 25 25 7066

norm of weight vector of SVM-Perf, RankBoost, and our method of 2-norm are normalized

to 1.

3.7 Conclusion and future work

In this chapter, we have reformulated the Ranking SVMs for ranking functions as signifi-

cantly simplified optimization problems of size O(m2), where m is the size of the original

sample. We gave theoretical guarantees on the generalization ability of the ranking func-

tions obtained by solving the optimization problems. In particular, the reformulation of

the 1-norm Ranking SVM yields the first practical algorithm that is competitive with the

original 1-norm Ranking SVM in performance.

As future work, we apply our practical method to optimizing other criteria biased to

top elements [64].



Chapter 4

Learning Evaluation Functions for

Shogi

4.1 Introduction

Game programming (for chess, shogi, Go) has been extensively investigated in artificial

intelligence. Shogi (Japanese chess) is hard to solve by brute-force calculation, since it

is said that the game tree from the start to final is very huge. Very recently, computer

shogi has grown strong enough to defeat some professional shogi players. A key factor of

this development is induced by Bonanza Method which is based on technique of machine

learning. Since before the availability of Bonanza Method, machine learning of evaluation

functions has been popular topic for game programming [34, 13, 77], but there had not

been big result on computer shogi. Therefore the evaluation functions have had to been

tuned by hand, of course it requires a lot of work and time. Furthermore, it causes a

problem that the evaluation functions heavily depend on the knowledge and the sense of

the designers. Bonanza Method allows us to tune the evaluation function automatically.

More precisely, in Bonanza Method, the records of the professional players are used as

a learning sample, and the optimization problem is formulated such that the evaluation

function gives the maximum value to the professional players’ moves within the legal

moves in each position of the record. However, we still have an important problem that

the designers do not know how to set the features of the evaluation function. That is,

the evaluation functions still depend on the ability of the designers while computer shogi

has grown strong. For example, it is considered that the positional relationships among

multiple pieces or each piece’s influence are important features to evaluate a position, and

44
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such assorted features are made by the designers themselves. But it is unclear that the

designers can cover all valuable features. Additionally, to set the combinations of some

features increases the computation time to optimize the parameters.

In this chapter, we focus on this problem. For learning the evaluation functions,

setting only basic and simple features, we apply polynomial kernel and Support Vector

Machines (SVMs). d-polynomial kernel, which is one of kernel, allows us to cover all the

features of position which can be expressed by at least d-monomial of the basic features.

The computational complexity of kernels does not depend on d.

SVM is an efficient learning algorithm for a binary classification problem which is ad-

vantadgeous to combine kernels. To use SVM, we define positive examples as the positions

appeared in professional records and negative examples as otherwise (they are consists

of the positions after legal move at each position). Given such sample, an evaluation

function fSVM is obtained by SVM, then we can reasonably classify a position vector x

into a positive position by the evaluation function if the value fSVM(x) ≥ 0. However,

the function value absolutely does not estimate a goodness of a position. Thus, if the

evaluation function values all of the (legal moved) positions set as negative, there is no

foundation that we consider the position which has the largest value of them all is the best

position. To obtain the evaluation function which estimates a goodness of a position, that

is, we should rank the positions set. Therefore we see the learning evaluation functions

problem as a bipartite ranking problem and we apply a ranking learning method.

As mentioned in Section 1.1, a naive implementation of classification reduction ap-

proach is impractical since the pair-sample constructed through the reduction is of size

pn where the original sample consists of p positive and n negative instances. This is

a quadratic blowup in size. In this thesis, by making pairs of only next positions set

generated by the legal moves at a position, we can drastically reduce memory usage and

computation time. In this thesis, we call this method RankSVM-Method.

Organization The rest of this chapter is organized as follows: In Section 4.2, we show

a standard method with classification SVM to learn the evaluation function for shogi. In

Section 4.3, we consider the learning of evaluation function as bipartite ranking problem.

In Section 4.4, we examine our method using implementation of our computer shogi

program. In Section 4.5, we conclude this chapter and mention future work.
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4.2 Learning evaluation function using SVM

In this section, we show a method to learn the evaluation function for shogi using SVM.

4.2.1 Position vector

In this thesis, we represent position of shogi as a vector(we call position vector), and

for which we use only basic and simple features (we call low-level features). We set the

features of position vector as following:

(1) the number of each piece on the board,

(2) the number of each piece in hand,

(3) the kind of piece on each square,

(4) the kind and number of pieces influencing each square.

For example, at the initial array, the components of position vector include “the number

of Black’s pawn is nine on the board”, “the number of Black’s gold is two on the board”,

“a White’s pawn is on 1c”, and “a White’s pawn influences 1d”. All of the component

of position vector values 0 or 1 if we construct the features redundantly as following: In

case (1), for each piece

p ∈ P ≡ {Black’s pawn, White’s pawn, . . . ,

Black’s promoted bishop, White’s promoted bishop}

and for each natural number i (0 ≤ i ≤ kp), by converting “Can we find i of p on the

board?” into binary variable. Thus, the component of the vector has
∑

p∈P (kp + 1)

dimensions. For instance, if p =“Black’s pawn”, then “kp = 9”, if p = “White’s promoted

pawn”, then kp = 18, that is, (1) is represented by 130 dimensions in total. Similarly, (2)

is represented by 84 dimensions. Each of the features (3) mean “whether the kind p of

piece exists or not on each square” (in the rules of playing), then the number of dimension

of the features (3) is 2196. The features (4) can be expressed by 2358 dimensional features,

each of which represents “the kind p and the number kp of pieces influencing each square”.

Thus, totally the dimension number of position vector n is 4768.
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4.2.2 Polynomial kernel

Most strong computer shogi programs use many high-level features which the designers

consider useful but not only such low-level features. For example, the positional relation-

ship between king and gold, and the number of influences around the king are considered

as important features. In this chapter, we use polynomial kernel motivated by the fact

that their complicated features can be expressed as d-degree polynomial of the low-level

features. In particular, a polynomial kernel of degree d is defined by

K(a, b) = (a · b + 1)d.

Polynomial kernels map the input space to higher dimensional space RN of dimension

N =
(

n+d
d

)
, and the features associated to a polynomial of degree d are all the monomials

of degree at most d based on the original features. Therefore this higher dimensional space

consists of all the monomials of degree k of the low-level features. So, high-level features

such as the positional relationship among multiple pieces and the number of influencing

around the king are implicitly expressed as the monomials of degree k of low-level features.

Furthermore, the computational complexity of polynomial kernel does not depend on a

degree d. Thus, no matter how higher N dimensional space, the computational time and

space do not increase.

4.2.3 Superiority of using polynomial kernel

The high-level features of the evaluation function of most recent computer shogi programs

are technically or sensuously set by each designer. We introduce some features used in

one of the most famous computer shogi program “Bonanza” [41] as an example:

(a) the number of each friendly piece,

(b) the positional relationship among king and a couple of other pieces,

(c) the positional relationship among the pairs of pieces neighboring each other,

(d) the kind of piece which is influenced by each of promoted rook, promoted bishop,

rook, bishop, knight or lance, respectively,

(e) whether the number of square that each of promoted rook, promoted bishop, rook,

bishop, lance can move, respectively,
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(f) the kind of pinned piece, the direction of the pinning piece, and the distance from

pinned piece to the king,

(g) the number of the pawns which occupies the same color square of friendly bishop,

(h) whether each of pawn, knight, silver on the board can move forward, respectively,

(i) the existence of the pawn which positions straight forward or backward of the positions

of each promoted rook, rook, and lance,

(j) the influencing for each 25 square around the king.

All of these high-level features can be expressed by sum of products of low-level features

that we showed in Subsection4.2.1. For instance, a feature “a gold positions next to a

silver” as one of the features stated in (c) is given as follows: We identify each square on

the board with an integer l(1 ≤ l ≤ 81). For each piece p and each square l, let xp,l be a

Boolean variable that indicates feature (3).

A = (xgold,1 ∧ xsilver,2) ∨ · · · ∨ (xgold,81 ∧ xsilver,80).

Since each term is exclusive, A can also be expressed as the 2-degree polynomial

A = xgold,1xsilver,2 + · · · + xgold,81xsilver,80.

Similarity, the features (a)∼(j) can be expressed as d-degree polynomials of low-level

features. The higher dimensional feature space contains these high-level features, thus, it

contains all of the features used in “Bonanza”. Moreover, polynomial kernel can express

some more high-level features used in other strong computer shogi program such that

“the kind of piece defensing against promoting of the opposing rook”, “whether the pawn

can be dropped forward in the opposing knight”, and so on. Therefore, to procure the

high-level features automatically using polynomial kernel is thought to be effective for the

evaluation function of computer shogi.

4.2.4 Sampling professional records

We construct a learning sample S using some professional records following the modern

strong computer shogi programs. First, for each position z, we compose the next position

set Next(z) obtained by enumerating all the legal moves. Second, for each x ∈ Next(z), if
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a position x occurs in the professional records, we add to sample S as a positive instance

(x, 1), otherwise we label as a negative instance (x,−1). We give this sample to a learning

algorithm and get the evaluation function.

4.2.5 SVM-Method

We show a naive method using (classification) SVM, which we call SVM-Method. We

denote by fSVM a function obtained by giving the above sample to SVM. In game playing,

we use fSVM as an evaluation function. That is, for a position x, fSVM(x) is the evaluation

value of x. In this chapter, for a given position z we choose the next move which leads

the next position x∗ ∈ Next(z) satisfying

fSVM(x∗) = max
x∈Next(z)

fSVM(x).

4.3 Learning evaluation function using Ranking SVM

In this chapter, we consider the bipartite ranking learning problem for learning the evalu-

ation function, and we propose the method using Ranking SVM, which we call RankSVM-

Method.

4.3.1 Sampling professional records

Ranking SVM solves the bipartite ranking problem by reducing to a binary classification

problem over a pairwise instance space (see, 2.2.3). In general, a naive implementation of

Ranking SVM is impractical since the pair-sample is of size pn, where the original sample

consists of p positive and n negative instances. For example, if we construct a sample

using 10000 records, the sample size blows up to more than four hundreds of millions.

However, in shogi, we do not need to rank all the positions but only need to rank the

next positions set. Note that the number of optimal moves (professional moves) for a

position is basically countable on one hand. Therefore, we construct a sample Ŝ ⊂ X×X

as following: For each position existing professional records, we construct Sz from the

subset sample of S which consists of the next positions of z,

Sz = S ∩ (Next(z) × {1,−1}),
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and we further construct the sample Ŝ which is the set of pair-sample S+
z × S−

z ,

Ŝ =
⋃

z

(S+
z × S−

z ).

We give the above sample to Ranking SVM and we obtain a ranking function, which we

denoted by fRSVM. When game playing, we use fRSVM as the evaluation function. That

is, for a position x, fRSVM(x) is the evaluation value of x. In this chapter, for a given

position z, we choose the next move which leads the position x∗ ∈ Next(z) satisfying

fRSVM(x∗) = max
x∈Next(z)

fRSVM(x).

4.4 Experiments

In the following experiments, to examine the effectiveness of polynomial kernel for evalu-

ation functions of shogi, we implement our methods and participate some tournament of

computer shogi. Moreover, to compare SVM-Method and RankSVM-Method, we exam-

ine the agreement rate between professional players’ moves and the moves ranked by our

evaluation function.

4.4.1 Game playing

We construct a sample from one hundred professional records, and use SVM-light [43] to

obtain an evaluation function fSVM with 10-degree of polynomial kernel. We implement

our computer shogi program “STR” using this evaluation function, and play games in

some meets for computer shogi program. Note that we do not input any book and

do not employ tree search but only checkmate search within seven moves. Figure 4.1

shows a position which is appeared when STR took on “ponanza” in the 20th Computer

Shogi Championship. STR took a strategy of “Ibisha” with castle “Minogakoi” against

Black’s “Furibisha-Anaguma”. Figure 4.2 shows one of the positions when playing with

“Bonanza” in the 15th Computer Olympiad. STR took a strategy “Hachi-Go-Hisha” with

castle “Nakahara-Gakoi” against Black’s “Yoko-Fu-Dori”. Both STR’s strategies and both

STR’s castles are common forms in professional records, that is, we can say that STR

plays games like humans. To take such strategies without book or tree search, many

features such as the relationships among multiple pieces and opponent’s strategy have to

be considered. So, their STR’s behaviors are thought to be results of the effectiveness of

polynomial kernel.
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Figure 4.1: ponanza (Black) vs STR (White).

Figure 4.2: Bonanza (Black) vs STR (White).
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4.4.2 Agreement rate with professional players

In the following, we compare SVM-Method and RankSVM-Method. We construct a sam-

ple from one thousand professional records, and use Pegasos [68] as an implementation of

SVM to obtain fSVM and fRSVM
1. Since Pegasos is based on random sampling, it learns

from large sample faster than other general SVMs. For Pegasos, we set the normalization

parameter λ = 0.01, 0.05, 0.1 and the parameter ϵ = 0.001, 0.01, which adjusts the accu-

racy of the solutions. Then, we obtain six and six evaluation functions of fSVM and fRSVM.

The number of iteration is set at 1/λϵ. We randomly choose one hundred records as the

test data set. At each position of test data set without final position, we get rankings

of the next positions set using fSVM and fRSVM. We do not employ tree search method,

checkmate search, and do not input any book. If a ranking of a next position in the top

r includes the position of the professional records, then we see the ranking agrees in the

top r. We define the agreement rate with professional shogi players as (the number of

agreements)/(the number of all positions in the test). As shown in Table 4.1, we can

not observe much different for the agreement in the top 1, however, for the other r, the

agreements rate of rankings output by the functions fRSVM often higher than fSVM.

Figure 4.3 shows that the cumulative frequency table for fSVM and fRSVM, the param-

eters of each are set at ϵ = 0.001 and λ = 0.01. The agreements rate of fRSVM get higher

than fSVM with r increasing. These results show that RankSVM-Method is more effective

than SVM-Method for learning evaluation function of shogi.

4.5 Conclusion and future work

In this chapter, we showed effectiveness of polynomial kernel and bipartite ranking learn-

ing for a evaluation function of shogi. To evaluate a position more precisely, we may need

to employ minimax-search. Therefore, as an idea for an improvement at the learning

phase, we resample positions occurred in professional records to some leaf positions of

minimax-tree rooted from them. Although minimax-search at this phase has to coincide

with the calculation by professional players, there are no such data. So, we cannot seem to

formulate the quadratic problem such as in Chapter 2 on learning an evaluation function

1When we employ RankSVM-Method, we take about one week to learn from one thousand professional
records. Since we take much more time to learn several tens of thousands of professional records like the
other strong programs, we use a sample of very smaller size in this thesis.
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Table 4.1: Agreement rate with professional shogi players.
ϵ λ r SVM RSVM

1 0.056 0.058

0.01 3 0.119 0.146

5 0.163 0.2014

1 0.057 0.063

0.001 0.05 3 0.118 0.137

5 0.163 0.194

1 0.056 0.049

0.1 3 0.119 0.119

5 0.163 0.172

1 0.056 0.051

0.01 3 0.118 0.116

5 0.162 0.172

1 0.056 0.038

0.01 0.05 3 0.121 0.110

5 0.164 0.156

1 0.058 0.056

0.1 3 0.120 0.131

5 0.164 0.174

Figure 4.3: Agreement rate with professional shogi players.
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combining minmax-search. Then, it seems to be effective that minimax-tree is decided

based on the evaluation function at the phase. However, since the weight vector output

by SVM increases with increasing the size of sample, the calculation of inner product

for the evaluation function on a game needs much more time. These heuristics need a

ingenuity such that we truncate the small weight vectors.



Chapter 5

Online Prediction under Submodular

Constraints

5.1 Introduction

Online learning over combinatorial concept classes has gained much attention these days

[39, 16, 49, 86]. Such combinatorial concept classes include shortest paths, k-sets, span-

ning trees, permutations, and so on. In typical settings, we assume a finite set C of

combinatorial concept class where each concept can be represented as a vector in Rn

for some fixed n, i.e., C ⊆ Rn. Then we consider the following protocol: For each trial

t = 1, . . . , T , (i) the player predicts ct ∈ C, (ii) the adversary returns a loss vector

ℓt ∈ [0, 1]n, and (iii) the player incurs loss ct · ℓt. The goal of the player is to minimize

the regret:
∑T

t=1 ct · ℓt − minc∈C
∑T

t=1 c · ℓt.

There are some approaches to attack this type of problem. ranking or permutations

prediction [1, 52, 80, 81, 39, 86], and there are many other online prediction problem

over combinatorial or structured concept classes, shortest paths [75], k-sets [84], spanning

trees [49, 16], and so on. A naive approach to minimize the regret in the above problem

is to apply Hedge algorithm [31]. Hedge algorithm combines experts predictions, where

each expert corresponds to each concept in C. There are some efficient online prediction

methods over combinatorial concept classes, for example, Follow the Perturbed Leader

[47] PermELearn [39] and Component Hedge [49] and Comband in bandit setting [16].

These methods consist of external procedures.

Among the procedures, projection and decomposition are important and used in many

online learning algorithms (see, e.g., [89, 39, 49]). Here, the projection is a procedure that,

55
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when given a point, outputs its projection onto the convex hull of C. The decomposition

is a procedure that, when given a point in the convex hull, finds a convex combination

representation of the point with some extreme points (i.e. concepts). So far, for particular

combinatorial concept classes, we need to design projection and decomposition procedures

individually. In this thesis, we investigate a unified and efficient projection and decom-

position algorithms for a wide family of combinatorial concept classes. The concept class

we consider coincides with the set of vertices (extreme points) of a polyhedron described

by a submodular function f . In submodular function literature, the polyhedron is called

(submodular) base polyhedron and denoted as B(f) (we will give the definition later).

That is, we consider the situation where C is the set of extreme points in B(f). The base

polyhedron B(f) is defined using 2n linear constraints and it is known that there are at

most n! vertices [32]. Examples of our problems include experts, k-sets [84], permuta-

tion [86], spanning trees [16, 49], k-truncated permutation, and k-forest. To the best of

our knowledge, the last two problems are new for the online learning literature.

We propose projection and decomposition algorithms for the base polyhedron B(f).

The running times of the algorithms are both O(n6 + n5EO), where EO denotes the unit

time to evaluate the submodular function. Furthermore, for cardinality-based submodular

functions, we derive O(n2)-time projection and decomposition algorithms. Such examples

include k-sets and (k-truncated) permutation.

Our projection algorithms are designed for Euclidean distance and unnormalized rel-

ative entropy. So, we can combine them with Online Gradient Descent (OGD, [89]) or

Hedge [31], respectively. Combined with our projection and decomposition algorithms

for B(f), their regret bounds become O(DEUC

√
nT ) and O(

√
L∗f([n]) ln n + f([n]) ln n),

respectively, where DEUC = maxc,c′∈B(f) ∥c − c′∥2, and L∗ = minc∈B(f)

∑T
t=1 c · ℓt.

Our contribution is to provide a unified view and efficient prediction strategies for an

online prediction problem with exponentially many candidates by using rich theory of sub-

modular function. Further, our O(n2)-time algorithms for cardinality-based submodular

functions are non-trivial for submodular optimization as well.

We discuss the relationship between previous and our results. First, we compare

Follow the perturbed leader (FPL, [47]) with our algorithms. FPL uses an algorithm

which solves “offline” linear optimization. It is well known that linear optimization over

the base polyhedron is tractable and solved in O(n log n) time [28, 32]. So, the running

time of FPL for our problem is O(n log n) at each trial. On the other hand, the regret of
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FPL is O(D1

√
nT ), where D1 = maxc,c′∈C ∥c − c′∥1, which is worse than ours.

Next, we consider an algorithm proposed by [46] which converts an offline linear ap-

proximate optimization algorithm into the online one. This algorithm has an approximate

projection procedure. But the running time of the projection procedure is O(Tn log n),

which depends on T .

Component Hedge (CH, [49]) is also an efficient algorithm for predicting among ex-

ponentially many combinatorial concept classes. CH represents a combinatorial concept

as a matrix and solves an entropy minimization problem with linear constraints at each

trial. CH has more known applications such as directed spanning trees, paths and so on.

However, the families of the concept classes with which CH can deal seem to be incompa-

rable with ours. In an algorithmic sense, our algorithm has advantages for some concept

classes. For example, for permutations and k-truncated permutations, it can be shown

that CH requires O(n2) memory whereas ours uses O(n) memory (see [86]) for related

discussion.

Organization In Section 5.2 we refer to preliminary knowledge, submodular function

(or base polyhedra) and their examples, and Bregman Divergence. In Section 5.3 we

introduce Follow the Regularized Leader algorithm and its procedures, projection and de-

composition. In Section 5.4 we propose efficient projection and decomposition algorithms

when the underlying submodular function is cardinality-based. In Section 5.5 we conclude

this Chapter.

5.2 Preliminaries

For any fixed positive integer n, we denote by [n] the set {1, . . . , n}. A function f : 2[n] →
R is submodular if for any A,B ⊂ [n], f(A∪B)+f(A∩B) ≤ f(A)+f(B). For simplicity,

we assume that f(∅) = 0. Given a submodular function f , the base polyhedron is defined

as

B(f) =

{
x ∈ Rn |

∑

i∈S

xi ≤ f(S), for any S ⊂ [n], and
n∑

i=1

xi = f([n])

}
.

A point in B(f) is an extreme point if it is not represented as a convex combination of

other two points in B(f). Let C be the set of extreme points in B(f). In general, there

can be exponentially many extreme points in B(f). In this paper, for any submodular

function f , we assume an oracle that returns the value f(S) for any input S.
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5.2.1 Examples

In this chapter, we consider a family (S,φ) of concept classes such that for any seed

s ∈ S, the concept class φ(s) coincides with the set of extreme points of B(f) for some

submodular function f : 2[n] → R. Moreover, we assume that the value f(S) for any

S ⊆ [n] can be evaluated from the seed s in polynomial time. We show some examples of

such families as below. In particular, the last two problems are new applications which

are not previously studied.

Experts For a seed n, the concept class φ(s) coincides with the extreme points of B(f)

for the submodular function f(S) = 1.

k-sets For a seed s = (n, k), the concept class φ(s) coincides with the extreme points of

B(f) for the submodular function f : 2[n] → R such that f(S) = g(|S|), where g(i) = i,

if i ≤ k and g(i) = k, if i > k (see, e.g., [32]).

Spanning trees For a seed G = (V,E), the concept class φ(G) coincides with the

extreme points of B(f) for the submodular function f : 2E → R such that f(A) =

|V (A)| − s(A), where V (A) is the set of vertices of the subgraph induced by the set A

of edges, and s(A) is the number of the connected components of the subgraph [29, 20].

The base polyhedron B(f) is called a spanning tree polyhedron.

Permutations For a seed n, the concept class φ(n) coincides with the extreme points

of B(f) for the submodular function f : 2[n] → R such that f(S) =
∑|S|

i=1(n + 1− i). The

base polyhedron B(f) is called Permutahedron (see, e.g., [88, 32]). Figure 5.1 illustrates

the fourth-order permutahedron.

k-truncated permutations We consider a generalized version of the online scheduling

problem [86], where the flow time of the first k jobs are neglected. This problem can be

seen as the online prediction problem for the following family F = (S, φ): The seed set

S is the set of pairs (n, k) of natural numbers with k < n, and for a seed s = (n, k), the

concept class is defined by

φ(s) = {(i1, . . . , in) | (i1, . . . , in) is a permutation over the multiset

{1, 2, . . . , n − k − 1, n − k, . . . , n − k}, in which n − k appears k + 1 times}.
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Figure 5.1: The fourth-order permutahedron.

For example, for the seed s = (5, 2), (3, 2, 3, 3, 1) is one of the concept in the class φ(s).

For a seed s = (n, k), the concept class φ(s) coincides with the extreme points of B(f)

for the submodular function f : 2[n] → R such that f(S) = (n − k)|S| if |S| ≤ k and

f(S) = (n − k)k +
∑|S|

j=k+1(n + 1 − j), otherwise.

k-forests A k-forest of a graph G = (V, E) is a subset F ⊆ E of edges of size k such

that F induces a forest (i.e., a subgraph with no cycles). It is known that the class of

k-forests is a bases family of a truncation of a graphic matroid, which is known to be

another matroid. Such classes can be described by the following family F = (S,φ): The

seed set S is the set of pairs of a graph G = (V,E) and a natural number k(≤ |E|), and

for a seed s = (G, k), the concept class is defined by

φ(s) =
{
c ∈ {0, 1}E | the edge set {e ∈ E | ce = 1} is a k-forest of G

}
.

The concept class φ(s) coincides with the extreme points of B(f) for the submodular

function f : 2E → R such that f(S) = min{k, max{|F | | F ⊆ S is a forest}}.

5.2.2 Extreme points of the base polyhedron

In this subsection, we will see the correspondence between the permutations of [n] and

the extreme points of the base polyhedron B(f).
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Given a permutation σ = (i1, . . . , in) of [n] = {1, . . . , n}, the greedy algorithm pro-

posed by [28] generates a point cσ ∈ Rn determined by

cσ
j = f({j′ ∈ [n] : ij′ ≤ ij}) − f({j′ ∈ [n] : ij′ < ij}) for each j ∈ [n].

Then cσ is an extreme point of B(f). We will say that cσ is an extreme point of B(f)

generated by σ. Conversely, for each extreme point c of B(f), there is a permutation

that generates c. Figure 5.2 illustrates extreme points of base polyhedra.

x2

B( f )
0

x1 x2
B( f )

x3

x1
0

n = 2 n = 3

c(3,1,2)

c(1,3,2)
c(3,2,1)c(2,3,1)

c(1,2,3)

c(2,1,3)

c(2,1)

c(1,2)

Figure 5.2: Extreme points of B(f)

5.3 Algorithm

In this section, we propose an algorithm that predicts extreme points of the base polyhe-

dron B(f) and prove its regret bounds.

5.3.1 Main structure

The main structure of the algorithm we use is shown in Algorithm 1 (see 2.3). Using

FTRL itself is standard, but we need to design efficient procedures for projection and

decomposition.

For particular combinatorial concept classes, we summarize their regret bounds in

Table 5.1.

To complete our analysis, we specify the procedures Projection for separable strictly

convex function Φ and Decomposition, respectively, in the following subsections. We

will see that both of the two procedures are no harder than the submodular function

minimization problem. For a submodular function f : 2[n] → R with f(∅) = 0, the
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problem Hedge OGD

Experts O(
√

L∗ ln n) O(
√

T )

k-sets O(
√

L∗k ln(n/k) + k ln(n/k)) O(k
√

T )

Spanning Trees O(
√

L∗n ln n + n ln n) O(n
√

T )

Permutahedron O(n
√

L∗ ln n + n2 ln n) O(n2
√

T )

k-truncated Perm. O(
√

L∗(n2 − k2) ln n + (n2 − k2) ln n) O((n − k)
√

n(n + k)T )

k-forest O(
√

L∗k ln(n/k) + k ln(n/k)) O(
√

knT )

Table 5.1: The regrets of combinatorial concept classes obtained using our projection and

decomposition algorithms.

submodular function minimization (SFM) is a problem of finding a subset S ⊆ [n] with

f(S) minimum. Many combinatorial SFM algorithms are known (see [42]), and the fastest

known strongly polynomial algorithm proposed by [58] runs in O(n6 +n5EO) time, where

EO is the unit time to evaluate the value of the submodular function. We will show

that both of the procedures Projection and Decomposition can be implemented to run in

O(n6 + n5EO) time.

5.3.2 Projection

For any given point z ∈ Rn, the procedure Projection in Algorithm 1 computes the

projection of z onto the base polyhedron B(f). We propose an efficient construction of

this procedure. Formally, the projection problem is stated as follows:

OP 25: Projection over Base Polyhedra

Projection(z) = arg inf
x∈B(f)

∆Φ(x, z)

sub.to
∑

j∈S

xj ≤ f(S), ∀S ⊂ [n],

n∑

j=1

xj = f([n]),

where Φ(x) is separable. This convex optimization problem with exponentially many

constraints can be solved efficiently using the parametric submodular algorithm proposed

by [57], which is a parametric extension of the SFM algorithm of [58].
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Theorem 9 ([57])

There is an algorithm that solves OP 25 for separable strictly convex functions Φ in time

O(n6 + n5EO).

5.3.3 Decomposition

For any given point x in the base polyhedron B(f) ⊆ Rn, the procedure Decomposition

in Algorithm 1 finds extreme points cσ1
, . . . , cσK

in B(f) and λ1, . . . , λK ∈ R>0 such

that
∑K

i=1 λicσi
= x and λ1 + · · · + λK = 1, where each cσi

is an extreme point of B(f)

generated by a permutation σi of [n] via the greedy algorithm proposed by [28]. In

other words, this procedure represents x as a convex combination of extreme points of

B(f). Carathéodory’s Theorem guarantees that x ∈ B(f) can be represented as a convex

combination of at most n extreme points of B(f).

To describe the procedure Decomposition, let us briefly review a common framework

of algorithms for SFM. For a submodular function f ′ : 2[n] → R with f ′(∅) = 0, the result

of [28] implies

min
S

{f ′(S) : S ⊆ [n]} = max
z

{
n∑

j=1

min{0, zj} : z ∈ B(f ′)

}
. (5.1)

In many combinatorial SFM algorithms, including Orlin’s algorithm [58], we finally obtain

a minimizer S∗ ⊆ [n] and a maximizer z∗ ∈ B(f ′) of (5.1). Moreover, we obtain z∗ ∈
B(f ′) as a convex combination of at most n extreme points of B(f ′). By the use of this

fact, we can give an efficient construction of the procedure Decomposition.

For a given point x ∈ B(f), the function fx : 2[n] → R defined by fx(S) = f(S) −
∑

j∈S xj (S ⊆ [n]) is submodular and satisfies fx(∅) = 0. For each permutation σ of [n],

let cσ be extreme points in B(f) generated by σ, and let cσ
x be extreme points in B(fx)

generated by σ. Then it holds that cσ
x = cσ − x. In view of the definition of the base

polyhedron, we have that minS⊆[n] fx(S) = 0 and the n-dimensional zero vector 0n is in

B(fx). Therefore, z = 0n is the unique optimal solution to the right hand side of (5.1)

with f ′ = fx.

Now we describe the procedure Decomposition. Initially, we apply some combinatorial

SFM algorithm, (e.g., Orlin’s algorithm, [58]), to the submodular function fx. Then we

obtain permutations σ1, . . . , σK of [n] and λ1, . . . , λK ∈ R>0 such that
∑K

i=1 λicσi

x = 0,

λ1 + · · · + λK = 1, and K ≤ n. As for the function f , these permutations σ1, . . . , σK
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and positive coefficients λ1, . . . , λK generate another point
∑K

i=1 λicσi
. For this point,

we obtain
K∑

i=1
λicσi

=
K∑

i=1
λi(cσi

x + x) =
K∑

i=1
λicσi

x +
K∑

i=1
λix = x.

Thus we have a required representation of x. This gives the following.

Theorem 10

For any x ∈ B(f), there is an algorithm that gives a convex combination representation

of x using at most n extreme points of B(f) in O(n6 + n5EO) time.

5.4 Algorithm for cardinality-based submodular func-

tions

In this section, we propose more efficient projection and decomposition algorithms when

the underlying submodular function f is cardinality-based, i.e., f(S) = g(|S|) for some

g : N → R. For projection, however, we only consider the Euclidean distance and the

unnormalized relative entropy, rather than any Bregman divergence ∆Φ for a separable

function Φ as in the previous section.

A cardinality-based submodular function f has the following nice property: For any

point x ∈ B(f) and any i, j ∈ [n], the vector x′ obtained by exchanging xi and xj in

x is also contained in B(f). A submodular function having this property is said to be

exchangeable.

The following lemma says that for any exchangeable submodular function f , the pro-

jection onto B(f) preserves the order of indices of vector with respect to the inequality

relation.

Lemma 1

Let x∗ be the projection of z in OP 25 under the Bregman divergence ∆Φ for a strictly

convex and uniformly separable function Φ. Assume that the submodular function f is

exchangeable and z1 ≥ · · · ≥ zn. Then, it holds that x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n.

Proof Suppose on the contrary that x∗
i < x∗

j for some i < j. Let x̂ be the point obtained

by exchanging x∗
i and x∗

j in x∗. Then, by definition, we have x̂ ∈ B(f). Furthermore,
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observe that

∆Φ(x∗,z) − ∆Φ(x̂, z) =Φ(x∗) − Φ(x̂) −∇Φ(z) · (x∗ − x̂)

=φ(x∗
i ) + φ(x∗

j) − φ(x∗
i ) − φ(x∗

j)

− (φ′(zi)(x
∗
i − x∗

j) − φ′(zj)(x
∗
j − x∗

i ))

=(x∗
j − x∗

i ) · (φ′(zi) − φ′(zj)) ≥ 0,

which contradicts the assumption that x∗ is the projection. !

In the following, we assume that z1 ≥ · · · ≥ zn without loss of generality (this can be

achieved by sorting). Lemma 1 implies that for any S ⊆ [n],
∑

i∈S x∗
i ≤

∑|S|
j=1 x∗

j , which

means that, if the right hand side is bounded by f(S) = g(|S|), the left hand side is also

bounded by g(|S|). Therefore, OP 25 is equivalent to the following problem with only n

constraints:

OP 26: Projection for Cardinality-based Submodular Functions

min
x

∆Φ(x, z)

sub.to
j∑

i=1

xi ≤ g(j), j = [1, n − 1]

n∑

i=1

xi = g(n).

Now we propose an efficient implementation of Projection that solves OP 26.

5.4.1 Projection under Euclidean distance

First we give an algorithm which computes Projection under Euclidean distance. We

show the algorithm in Algorithm 2. Then we prove the following.

Theorem 11

(i) Given z, Algorithm 2 outputs the projection of x onto the base polyhedron B(f). (ii)

The time complexity of Algorithm 2 is O(n2).
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Algorithm 2 Projection under Euclidean distance
Input: z ∈ Rn satisfying that z1 ≥ z2 ≥ · · · ≥ zn.

Output: projection x of z onto B(f).

1. Let i0 = 0.

2. For t = 1, . . . ,

(a) Let Ct(i) =
g(i)−g(it−1)−

Pi
j=it−1+1 zj

i−it−1
, for i = 1, . . . , n

and it = arg mini:it−1+1≤i≤n Ct(i),

if there are multiple minimizers, choose the largest one as it.

(b) Set xi = zi + Ct(it), for it−1 + 1 ≤ i ≤ it.

(c) If it = n, then break.

3. Output x.

Proof By KKT condition (see, e.g., [8]), x∗ is the solution of OP 26 if and only if there

exists α1, . . . , αn−1 and η such that

x∗
i = zi −

i∑

j=1

αj − η, i = [1, n − 1],

x∗
n = zn − η,
n∑

i=1

x∗
i = g(n),

αi

(
i∑

j=1

x∗
j − g(i)

)
= 0,

αi ≥ 0,
i∑

j=1

x∗
j ≤ g(i), i = [1, n − 1]. (5.2)

Now we show that there indeed exists α1, . . . , αn−1 such that the output x of Projection(z)

satisfies the optimality conditions (5.2), which suffices to prove the first statement. To

do so, first we show that Ct−1(it−1) ≤ Ct(it) for each iteration t. By the definition of
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Ct−1(it−1), we have Ct−1(it−1) ≤ Ct−1(it). Observe that

Ct−1(it) =
g(it) − g(it−2) −

∑it
j=it−2+1 zj

it − it−2

=
g(it) − g(it−1) −

∑it
j=it−1+1 zj + g(it−1) − g(it−2) −

∑it−1

j=it−2+1 zj

(it − it−1) + (it−1 − it−2)

=
(it − it−1)(Ct(it)) + (it−1 − it−2)(Ct−1(it−1))

(it − it−1) + (it−1 − it−2)
.

Since Ct−1(it−1) ≤ Ct−1(it),

(it − it−1)(Ct−1(it−1))

(it − it−1) + (it−1 − it−2)
≤ (it − it−1)(Ct(it))

(it − it−1) + (it−1 − it−2)
.

By simplifying this, we get Ct−1(it−1) ≤ Ct(it), as desired.

Then we determine each αit so that −αit +Ct+1(it+1) = Ct(it), i.e., αit = Ct+1(it+1)−
Ct(it) and fix η to be CT (n), where T satisfies iT = n. Note that since Ct(it) ≤ Ct+1(it+1),

each αit is strictly positive. For other i /∈ {i1, . . . , iT}, we set αi = 0. Then, each xit can

be expressed as

xit = zi + Ct(it) = zi − (αit + αit+1 + · · · + αiT ) − η = zi − (αit + αit+1 + · · · + αin−1) − η.

Similarity, for other i such that it−1 < i < it, we have

xi = zi + Ct(it) = zi − (αit + αit+1 + · · · + αn−1) − η = zi − (αi + αi+1 + · · · + αn−1) − η.

To check if the specified αis and η satisfies the optimality conditions (5.2), observe that

(i) for each it,

it∑

j=1

xj =
it−1∑

j=1

xj +
it∑

j=it−1+1

zj +
it∑

j=it−1+1

Ct(it) = g(it−1) + (g(it) − g(it−1)) = g(it)

and αit > 0, and (ii) for each i such that it−1 < i < it,

i∑

j=1

xj =
it−1∑

j=1

xj +
i∑

j=it−1+1

zj +
i∑

j=it−1+1

Ct(i) ≤
it−1∑

j=1

xj +
i∑

j=it−1+1

(zj + Ct(i))

= g(it−1) + (g(i) − g(it−1)) = g(i)

and αi = 0.

Finally, the algorithm terminates in time O(n2) since the number of iteration is at

most n and each iteration takes O(n) time, which proves the second statement of the

lemma. !
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5.4.2 Projection under unnormalized relative entropy

Next we propose an algorithm for Projection under unnormalized relative entropy. We

construct the projection algorithm by generalizing the one used for permutahedron [86].

Note that the algorithm is also a generalization of the capping algorithm [84]. By KKT

conditions, x∗ satisfies the following conditions:

x∗
i = zie

−
Pn−1

j=1 αj/η, i = [1, n − 1],

x∗
n = zn/η,
n∑

i=1

x∗
i = g(n),

αi

(
i∑

j=1

x∗
j − g(i)

)
= 0,

αi ≥ 0,
i∑

j=1

x∗
j ≤ g(i), i = [1, n − 1]. (5.3)

The algorithm shown in Algorithm 3 outputs the solution which satisfies the optimality

Algorithm 3 Projection under unnormalized relative entropy
Input: z ∈ Rn satisfying that z1 ≥ z2 ≥ · · · ≥ zn.

Output: projection x of z onto B(f).

1. Let i0 = 0.

2. For t = 1, . . . ,

(a) Let Ct(i) = g(i)−g(it−1)Pi
j=it−1+1 zj

, for i = 1, . . . , n

and it = arg mini:it−1+1≤i≤n Ct(i),

if there are multiple minimizers, choose the largest one as it.

(b) Set xi = ziCt(it), for it−1 + 1 ≤ i ≤ it.

(c) If it = n, then break.

3. Output x.

conditions, and following theorem holds.

Theorem 12

(i) Given z, the Algorithm 3 outputs the projection of x onto the base polyhedron B(f).
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(ii) The time complexity of Algorithm 3 is O(n2).

The proof is also a generalization of the proof [86] and omitted due to the space con-

straints.

5.4.3 Decomposition

In this subsection, we describe how to represent a point x ∈ B(f) by a convex combination

of extreme points of B(f). More precisely, we are concerned with the following randomized

rounding problem; given a point x ∈ B(f), output an extreme point X of B(f) with a

probability such that

E[X]
def
=

k∑

j=1

Pr
[
X = cj

]
· cj = x

for an appropriate k > 0.

As a preliminary step, we explain the following Propositions 13, 14, and 15, which are

well-known facts (see e.g., [32]) Let a ∈ R>0 be a constant satisfying a > g(n− 1)− g(n),

and we define f̃ : 2[n] → R by f̃(S)
def
= f(S)+a|S| for any S ⊆ [n]. Notice that f̃ is clearly

a cardinality based function; let g̃(z)
def
= g(z) + a· z then f̃(S) = g̃(|S|) holds.

Proposition 13

The function f̃ is cardinality based submodular, as well as monotone increasing, i.e.,

g̃(i) < g̃(i + 1) for each i ∈ [n − 1].

Note that f̃(∅) = 0, and f̃(S) > 0 hold for any S (∅ ⊂ S ⊆ [n]).

Proposition 14

A point x is in B(f) if and only if x̃
def
= x + a1 is in B(f̃). A point c is an extreme point

of B(f) if and only if c̃
def
= c + a1 is an extreme point of B(f̃).

Proposition 15

Suppose x ∈ B(f) satisfies x =
∑k

j=1 λjcj for λj > 0 (j ∈ [k]) satisfying
∑k

j=1 λj = 1

and cj ∈ B(f) (j ∈ [k]). Then, x̃
def
= x + a1 ∈ B(f̃) satisfies x̃ =

∑k
j=1 λj c̃j where

c̃j def
= cj + a1 ∈ B(f̃).

Now, let f̃ : 2[n] → R≥0 be a cardinality based submodular function which is monotone

increasing, then we consider the randomized rounding problem; given a point x̃ ∈ B(f̃),
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output an extreme point X of B(f̃) with a probability such that

E[X]
def
=

k∑

j=1

Pr
[
X = c̃j

]
· c̃j = x̃

for an appropriate k > 0. By Proposition 15, it is easily transformed into the case from

a general cardinality based submodular function. Without loss of generality, we may

assume that x̃1 ≥ · · · ≥ x̃n in the following. We remark that our randomized rounding

algorithm generalizes the rounding algorithm for the permutahedron [86] in a sense.

To begin with, we define special points in B(f̃), which we call partially averaged

points. Suppose q̃ ∈ B(f̃) satisfies that q̃1 ≥ q̃2 ≥ · · · ≥ q̃n, then, q̃ is a partially

averaged point if
∑i

j=1 q̃j = g̃(i) holds for each i ∈ [n] satisfying q̃i > q̃i+1. Notice that if

q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n] then qi+1 = · · · = qj = (g̃(j) − g̃(i))/(j − i).

This means that the partially averaged point is uniquely determined only by a sequence of

equalities(=)/inequalities(>). We simply say “a partially averaged point of x̃” (x̃ ∈ B(f̃))

as a partially averaged point determined by a sequence of equalities/inequalities derived

from x̃1 ≥ x̃2 ≥ · · · ≥ x̃n of x̃.

Proposition 16

Suppose q̃ ∈ B(f̃) is a partially averaged point satisfying q̃1 ≥ q̃2 ≥ · · · ≥ q̃n. Let Π
def
=

{σ ∈ Sym(n) | q̃σ(1) ≥ q̃σ(2) ≥ · · · ≥ q̃σ(n)}, where Sym(n) is the set of all permutations

over {1, . . . , n}. Let c̃σ = (c̃σ
1 , . . . , c̃σ

n ) for σ ∈ Π denote the extreme point defined by

hyperplanes
∑i

j=1 c̃σ
σ(j) = g̃(i) for all i ∈ [n]. Note that σ ̸= σ′ does not imply c̃σ ̸= c̃σ′

in general. Then, q̃ = 1
|Π|
∑

σ∈Π c̃σ.

Proof Suppose i ∈ [n − 1] satisfies q̃i > q̃i+1. Since any σ ∈ Π satisfies q̃σ(1) ≥ q̃σ(2) ≥
· · · ≥ q̃σ(n), we see that {σ(1), . . . , σ(i)} = [i] holds for any σ ∈ Π. This implies that
∑i

j=1 c̃σ
j =

∑i
j=1 c̃σ

σ(j) = g̃(i). Since q̃ is a partially averaged point, remember that
∑i

j=1 q̃j = g̃(i) holds, too.

Next, suppose q̃i > q̃i+1 = · · · = q̃j > q̃j+1 hold for i, j ∈ [n]. From the above

arguments, we see that
∑j

k=i+1 c̃σ
k = g̃(j) − g̃(i) holds for any σ ∈ Π. For an arbitrary

σ ∈ Π, let σ′ ∈ Sym(n) satisfy σ′(k) = σ(k) for each k (k ≤ i or k > j), then σ′ is

also in Π. Thus, let r̃
def
= 1

|Π|
∑

σ∈Π c̃σ for convenience, then we see that r̃i+1 = · · · =

r̃j = (g̃(j) − g̃(i))/(j − i) hold. Since q̃ is a partially averaged point, remember that

q̃i+1 = · · · = q̃j = (g̃(j) − g̃(i))/(j − i) hold, too. !
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Algorithm 4 Decomposition by partially average points

Input: x̃ ∈ B(f̃) satisfying that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n.

Output: Partially average points q̃1, . . . , q̃K and λ1, . . . , λK ∈ R>0 s.t.
∑K

i=1 λiq̃
i = x̃,

∑K
i=1 λi = 1.

1. Let x̃1 = x̃ and λ = 1.

2. For t = 1, . . . ,

(a) Find a partially averaged point q̃t for x̃t.

(b) if q̃t
i = q̃t

i+1 for any i, then λt = λ

else λt = min
i∈[n−1]

{
x̃t

i−x̃t
i+1

q̃t
i−q̃t

i+1
| q̃t

i ̸= q̃t
i+1

}
.

(c) Let x̃t+1 = x̃t − λtq̃
t and let λ = λ − λt.

(d) If λ = 0 then let K = t and break.

3. Output q̃1, . . . q̃K and λ1, . . . , λK .

Proposition 16 and its proof immediately suggest an algorithm for randomized rounding

of a partially averaged point; generate σ ∈ Π uniformly at random, and output c̃σ. It’s

running time is O(n), clearly.

Now, we explain our Algorithm 4, which provides a convex combination of partially

average points representing x̃ ∈ B(f̃), i.e., given x̃ ∈ B(f̃), find partially average points

q̃1, . . . , q̃K and λ1, . . . ,λK ∈ R>0 such that
∑K

i=1 λiq̃
i = x̃ and

∑K
i=1 λi = 1. Once we ob-

tain such a convex combination, it is clear to obtain an algorithm for randomized rounding

into partially average points. Combining the above arguments concerning Proposition 16,

we obtain a desired algorithm. We will prove the following lemma on Algorithm 4.

Theorem 17

Algorithm 4 provides a convex combination of at most n partially averaged points repre-

senting an arbitrarily given x̃ ∈ B(f̃). Its running time is O(n2).

To show Theorem 17, we show the following lemmas.

Lemma 2

At any iteration t in Algorithm 4, x̃t satisfies that x̃t
i ≥ x̃t

i+1 for any i ∈ [n − 1].

Proof We give an inductive proof with respect to t. In case of t = 1, it is clear. In case

of t > 1, we assume x̃t−1
i ≥ x̃t−1

i+1 holds for any i ∈ [n− 1]. If x̃t−1
i = x̃t−1

i+1, then q̃t−1
i = q̃t−1

i+1
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holds, from the definition of q̃t−1. Thus

x̃t
i = x̃t−1

i − λt−1q̃
t−1
i = x̃t−1

i+1 − λt−1q̃
t−1
i+1 = x̃t

i+1

and we obtain the claim. If x̃t−1
i > x̃t−1

i+1, then q̃t−1
i > q̃t−1

i+1 holds, and

x̃t+1
i − x̃t+1

i+1 = x̃t
i − x̃t

i+1 − λt(q̃
t
i − q̃t

i+1) = (q̃t
i − q̃t

i+1)

(
x̃t

i − x̃t
i+1

q̃t
i − q̃t

i+1

− λt

)
≥ 0,

where the last inequality comes from the definition of λt, followed by

λt ≤ min
i∈[n−1]

{(
x̃t

i+1 − x̃t
i

)
/
(
q̃t
i+1 − q̃t

i

)
| q̃t

i+1 ̸= q̃t
i

}
.

!
Lemma 3

In Algorithm 4, x̃K+1 (= x̃K − λK q̃K) = 0 holds.

Proof Without loss of generality, we may assume that x̃1 ≥ x̃2 ≥ · · · ≥ x̃n, for simplicity

of notations. First we show x̃K+1 ≥ 0. Since Lemma 2, if there exists j ∈ [n] satisfying

that x̃K+1
j < 0, then x̃K+1

n < 0 holds. Thus it is enough to show x̃K+1
n ≥ 0. Let

i∗ = min{j ∈ [n] | x̃K
j = x̃K

n }. Then we have x̃K
i∗ = x̃K

i∗+1 = · · · = x̃K
n and q̃K

i∗ = q̃K
i∗+1 =

· · · = q̃K
n . Hence, we get x̃K+1

i∗ = x̃K+1
i∗+1 = · · · = x̃K+1

n . In case of i∗ ≥ 2, x̃t
i∗−1 > x̃t

i∗ holds

for any t ∈ [K], meaning that q̃t
i∗−1 > q̃t

i∗ holds for any t ∈ [K]. Thus we can see that
∑n

j=i∗ q̃t
j = g̃(n) − g̃(i∗ − 1) holds for any t ∈ [K], from the definition of q̃t. Then we

obtain

n∑

j=i∗

K∑

t=1

λtq̃
t
j =

K∑

t=1

λt (g̃(n) − g̃(i∗ − 1)) = g̃(n) − g̃(i∗ − 1) ≤
n∑

j=i∗

x̃j

where the last inequality is due to constraints of B(f̃),
∑i∗−1

j=1 x̃j ≤ g̃(i∗−1) and
∑n

j=1 x̃j =

g̃(n). Thus we obtain that
∑n

j=i∗ x̃K+1
j =

∑n
j=i∗

(
x̃j −

∑K
t=1 λtq̃t

j

)
≥ 0. As discussed

above, x̃K+1
i∗ = x̃K+1

i∗+1 = · · · = x̃K+1
n holds, and we obtain x̃K+1

n ≥ 0. In case of i∗ = 1, the

proof is done in a similar way.

Now we show x̃K+1 = 0. Since x̃ ∈ B(f̃),
∑n

j=1 x̃K+1
j = g̃(n) holds. In a similar way

as the proof of x̃K+1 ≥ 0,

n∑

j=1

K∑

t=1

λtq̃
t
j =

K∑

t=1

λt

n∑

j=1

q̃t
j =

K∑

t=1

λtg̃(n) = g̃(n).

Since xK+1 ≥ 0, x̃K+1 = x̃ −
∑K

t=1 λtq̃
t = 0. !
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Lemma 4

The number of iterations K is at most n.

Proof From the definition of λt, there is at least one i ∈ [n] satisfying that x̃t
i > x̃t

i+1

and x̃t+1
i = x̃t+1

i+1. If x̃t
i = x̃t

i+1, then x̃t+1
i = x̃t+1

i+1 as discussed in the proof of Lemma 2.

Now the claim is clear. !

Proof of Theorem 17. Since Lemma 3, it is clear that the output
∑K

t=0 λtq̃
t by Al-

gorithm 4 is equal to an arbitrarily given x̃ ∈ B(f̃). It is not difficult to see that every

lines in Algorithm 4 is done in O(n). Hence, the running time of Algorithm 4 is O(n2) by

Lemma 4. !
Note that, by modifying Algorithm 4, we can design an algorithm for randomized

rounding of x ∈ B(f) using only O(n) space, with the same time complexity of O(n2).

We can also improve the algorithm with a time complexity of O(n log n) using a heap,

with O(n) space.

5.5 Conclusion

In this chapter, we consider a prediction problem over the base polyhedron defined by

a submodular function and propose efficient prediction algorithms. An open problem is

to design a projection algorithm for cardinality based submodular functions under all of

Bregman divergence but not only Euclidean distance and unnormalized relative entropy.



Chapter 6

Conclusions

In this thesis, we considered learning rankings and other combinatorial concept classes.

In Chapter 3, we considered bipartite ranking problem and proposed efficient reformu-

lation for 1-norm Ranking SVM. While the LP problem for the 1-norm Ranking SVM is

naturally of size O((pn)2) we achieved to reformulate the LP problem of size O((p + n)2)

where p and n is number of positive and negative instances, respectively. We theoretically

guaranteed the bound of AUC score and we show that it is practical in experiments using

artificial data sets and real data sets. Furthermore, we extend our technique to 2-norm

Ranking SVM.

In Chapter 4, we proposed some learning schemes for evaluation functions for shogi

as an application of Ranking SVM. Conventionally, the features of position are made by

hand, however, using kernel method combining with Ranking SVM, we could generate

such features automatically. Additionally, we could solve efficiently bipartite ranking

learning problem by sampling on each position. In experiments, we show the effectiveness

of kernel method and Ranking SVM for evaluation function of shogi.

In Chapter 5, we considered online prediction problem for combinatorial concept

classes including rankings. We proposed first general method for uniformly solving the

concept classes which are represented by submodular function, and we gave regret bound.

Moreover, we proposed more efficient method for in case the submodular functions are

cardinality-based.
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