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Abstract

Due to the rapid advance in computer technology and global growth of computer networks, we
can utilize a large amount of machine-readable data today. Most of such data can be seen as
sequences of characters, or strings, and the demand for mining valuable information from them
is increasing. To mine valuable information from them, efficient string mining algorithms ap-
plicable to large-scale string data are needed. In this thesis, we develop fast and space efficient
string mining algorithms for enormous string data, using text compression as a core technol-
ogy. We focus on compressed string processing, which is an approach that directly processes
compressed data without explicit decompression.

We present simple and efficient algorithms for calculating all frequencies of q-grams that
occur in a string T represented in compressed form, namely, as a straight line program (SLP).
Our algorithm runs in O(qn) time and space, where n is the size of the SLP. Computational
experiments show that our algorithm and its variation are practical for small q, actually running
faster on various real string data, compared to algorithms that work on the uncompressed text.
We also discuss applications in data mining and classification of string data, for which our
algorithms can be useful.

We then improve the algorithm so that it can handle larger q. We propose an O(min{qn,N−
dup(q, T )}) algorithm improving on our previous O(qn) algorithm when q = Ω(N/n), where
N is the length of T and dup(q, T ) is a quantity that represents the amount of redundancy that
the SLP captures with respect to q-grams in T . The algorithm is asymptotically always at least
as fast and better in many cases compared to working on the uncompressed strings.

We further consider the extended problem which computes non-overlapping occurrence fre-
quency of all q-grams. The non-overlapping occurrence frequency of a string P in a string T is
defined as the maximum number of non-overlapping occurrences of P in T . We present the first
algorithm for calculating the non-overlapping occurrence frequency of all q-grams, that works
for any q ≥ 2, and runs in O(q2n) time and O(qn) space.

Since the runtime of compressed string processing algorithms depends on the size of an
input SLP, it is important to develop algorithms to compute, from a given text, an SLP of small
size that derives it. It is known that the computation of the smallest sized grammar of a string
is NP-hard, and therefore several approximation algorithms have been proposed. Rytter pro-
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posed an O(logN) approximation algorithm (Rytter 2003), which is one of several algorithms
which achieve the best known approximation ratio running in linear time. The algorithm firstly
computes the LZ77 factorization of a given string T and then transforms it into an SLP. The
bottleneck here is the computation of the LZ77 factorization from T .

To eliminate the above bottleneck, we propose linear time LZ77 factorization algorithms
that are fast in practice. Computational experiments on various data sets show that our algo-
rithms constantly outperform LZ OG (Ohlenbusch and Gog 2011) which is one of the fastest
existing linear time algorithms, and can be up to 2 to 3 times faster in the processing after
obtaining the suffix array.

We also propose space efficient linear time LZ77 factorization algorithms. Our new algo-
rithms use N logN + O(σ logN) bits of working space, where σ is the alphabet size. Com-
putational experiments show that our algorithms are only about 2-3 times as slow as KKP2
(Kärkkäinen et al. 2013), which is the fastest algorithm among linear time algorithms using
2N logN bits of working space, despite the intricacies introduced in order to use less space.
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Chapter 1

Introduction

1.1 Background and Motivation

Due to the progress and spread of computer and sensor technologies, we can now obtain enor-
mous sized machine-readable data. Most of such data can be seen as sequences of characters,
or strings, and the demand for mining valuable information from them is increasing. To this
end, it is necessary to develop efficient string mining algorithms applicable to large-scale string
data. In this thesis, we develop fast and space efficient string mining algorithms for enormous
string data, using text compression as a core technology.

Text compression is a widely used technology that allows us to represent strings more com-
pactly by detecting and removing the redundancies in them. Though text compression is useful
for reducing storage and communication costs, we usually need to decompress the compressed
representation of the data before utilizing and analyzing them. It takes extra time compared with
processing from uncompressed strings. Compressed string processing (CSP) is an approach that
directly processes compressed data without explicit decompression in order to reduce the above
mentioned overhead. One goal of CSP is to develop algorithms such that [Goal 1] processing
time on compressed strings < decompression time + processing time on uncompressed strings.
The algorithms in [54, 56–58] achived Goal 1 for the exact and approximate pattern matching
problems. A more difficult and challenging goal is to develop algorithms such that [Goal 2]
processing time on compressed strings < processing time on uncompressed strings. The al-
gorithms in [51, 64] achieved Goal 2 for the exact pattern matching problem. CSP has been
studied especially for pattern matching problems [9, 20, 34, 39, 49, 54–58, 68, 73]. On the other
hand, other CSP algorithms, e.g. for problems of equality testing and edit distance, have also
been proposed [21, 30, 30, 33, 53], but they consider only theoretical aspects.

Since there exist many different text compression schemes, it is not realistic to develop dif-
ferent algorithms for respective schemes. Thus, it is common to consider algorithms on strings
represented as straight line programs (SLPs) [30, 39, 48]. An SLP is a context free grammar
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CHAPTER 1. INTRODUCTION

in the Chomsky normal form that derives a single string. Outputs of various compression algo-
rithms, e.g. Sequitur [59], Re-Pair [46], and Lempel-Ziv family [66, 72, 74, 75], can be regarded
as or quickly transformed to SLPs. Thus many CSP algorithms assume that the input is given
as an SLP. SLPs can represent strings of length exponential in its size. Therefore in such ex-
treme case, if we can develop polynomial time algorithms on SLPs, they can run exponentially
faster than the algorithms on uncompressed strings, and consume exponentially less space as
well. Recently, even compressed self-indices based on SLPs have appeared [13], and SLPs are
a promising representation of compressed strings for conducting various operations.

Since the runtime of CSP algorithms depends on the input SLP size, it is important to de-
velop algorithms to compute, from a given text, an SLP of small size that derives it. However,
it is known that the computation of the smallest sized grammar of a string is NP-hard [11].
There is no polynomial time algorithm to compute the smallest sized grammar unless P=NP.
Therefore many approximation algorithms have been proposed that guarantee the output size is
proportional in approximation of the smallest grammar size [42, 46, 52, 59, 75]. We only focus
on linear time approximation algorithms since we want to treat enormous data.

The runtime of some CSP algorithms on SLPs depends not only on the size of a given
SLP but also on other properties of the SLP. For example, the algorithm in [13] depends on
the height of the derivation tree of a given SLP to locate the occurrences of a given pattern in
the decompressed string, and the algorithm [21] computing edit distance depends on, for each
internal node of the derivation tree, the balancedness with respect to the decompressed strings
for its left and right children. Therefore, it is also important to develop compression algorithms
which obtain SLPs having good properties for CSP.

1.2 Our Contribution

In this thesis, we explore more advanced fields of applications for CSP, and especially study
CSP for string mining, we call compressed string mining. There are two ways to speed up CSP.
The first is to develop fast and space efficient algorithms running on compressed strings, and
the second is to develop efficient approximation algorithms which output smaller SLPs. Our
main contributions are the following two.

(A) Developing efficient algorithms to compute q-gram frequencies on SLPs. We consider
the problem of computing all frequencies of q-grams that occur in a string T when give
an SLP of size n representing T of size N over an alphabet Σ. Frequencies of q-grams
are important features of string data, widely used in many fields such as text and natural
language processing [8], machine learning [3], and bioinformatics [6].

Inenaga and Bannai proposed [33] an O(|Σ|2n2)-time O(n2)-space algorithm for finding
the most frequent 2-gram from an SLP. Claude and Navarro [13] mentioned that the most
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CHAPTER 1. INTRODUCTION

frequent 2-gram can be found in O(|Σ|2n log n) time and O(n logN) space, if the SLP
is pre-processed and a self-index is built. It is possible to extend these two algorithms to
handle q-grams for q > 2, but would respectively require O(|Σ|qqn2) and O(|Σ|qqn log n)

time, since they must essentially enumerate and count the occurrences of all substrings
of length q, regardless of whether the q-gram occurs in the string. Note also that any
algorithm that first decompresses the SLP obtaining the entire text T , and then works on
the decompressed text, requires exponential time in the worst case, since N can be as
large as O(2n).

We propose an O(qn)-time and space algorithm that computes all frequencies of q-grams
that occur in a string when given an SLP of size n representing the string. We prove
that the q-gram frequencies problem on SLPs can be reduced to the weighted q-gram
frequencies problem on a single uncompressed string of size at most 2(q − 1)n, and
the reduced problem can be solved in time proportional to the input size of 2(q − 1)n.
The algorithm solves the more general problem and greatly improves the computational
complexity compared to previous work, moreover the algorithm achieved Goal 2. Com-
putational experiments show that our algorithm and its variation are practical for small q,
actually running faster on various real string data, compared to algorithms that work on
the uncompressed text. Our algorithms have profound applications in the field of string
mining and classification. We discuss several applications and extensions. For example,
our algorithm leads to an O(q(n1 + n2))-time algorithm for computing the q-gram spec-
trum kernel [47] between SLP compressed texts of size n1 and n2. It also leads to an
O(qn)-time algorithm for finding the optimal q-gram (or emerging q-gram) that discrim-
inates between two sets of SLP compressed strings, when n is the total size of the SLPs.

We then improve the algorithm to be able to handle larger q. The improved algorithm
is asymptotically always at least as fast and better in many cases compared to working
on the uncompressed strings. Though the O(qn) algorithm runs faster than algorithms
on uncompressed strings when q is small, it is slower when q is large. This is because
the total length of the partial decompressions in the algorithm becomes longer than the
uncompressed string T . Theoretically, q can be as large as O(N), hence in such a case
the algorithm requires O(Nn) time, which is worse than a trivial O(N) solution that
first decompresses the given SLP and runs a linear time algorithm for q-gram frequencies
computation on T . We propose an O(min{qn,N − dup(q, T )}) algorithm improving on
our previous O(qn) algorithm when q = Ω(N/n). The computational experiments show
that our new approach achieves a practical speed up as well, for all values of q.

We further consider the extended problem which computes non-overlapping occurrence
frequency of all q-grams. The non-overlapping occurrence frequency of a string P in a
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CHAPTER 1. INTRODUCTION

string T is defined as the maximum number of non-overlapping occurrences of P in T [2].
The problem for SLP was first considered in [32], where an algorithm for q = 2 running
in O(n4 log n) time and O(n3) space was presented. However, the algorithm cannot be
readily extended to handle q > 2. Intuitively, the problem for q = 2 is much easier
compared to larger values of q, since there is only one way for a 2-gram to overlap, while
there can be many ways that a longer q-gram can overlap. We present the first algorithm
for calculating the non-overlapping occurrence frequency of all q-grams, that works for
any q ≥ 2, and runs in O(q2n) time and O(qn) space. Not only do we solve a more
general problem, but the complexity is greatly improved compared to previous work.

(B) Developing efficient compression algorithms with high compression ratio. We consider
the problem of computing a smaller sized SLP representing a given string T . Rytter [63]
proposed an algorithm that, given the LZ77 factorization of T , computes an SLP of size
O(z logN) representing T in output linear time, where z is the size of the LZ77 factor-
ization of T and N is the length of T . This is one of several algorithms which achieve
the best known approximation ratio running in linear time. Moreover, the SLP by Ryt-
ter’s algorithm has good feature that the height of derivation tree is O(logN) since the
derivation tree of the SLP is of form AVL trees. For a string T , we can obtain an SLP
of T by firstly computing the LZ77 factorization of T , and then computing an SLP from
the LZ77 factorization using Rytter’s algorithm. The bottleneck here is the computation
of the LZ77 factorization from T . We propose several fast and space efficient algorithms
to compute the LZ77 factorization of a given string T in linear time.

Fast linear time LZ77 factorization algorithm. Most recent efficient linear time algo-
rithms are off-line, and use O(N) space for integer alphabets [12, 15–17, 36, 62]. They
first construct the suffix arrays [50] of the string, and then compute an array called the
Longest Previous Factor (LPF) array from which the LZ77 factorization can be easily
computed [1, 12, 16, 17, 62]. Many algorithms of this family first compute the longest
common prefix (LCP) array prior to the computation of the LPF array. However, the com-
putation of the LCP array is also costly. The algorithm CI1 (COMPUTE LPF) of [15],
and the algorithm LZ OG [62] cleverly avoids its computation and directly computes the
LPF array.

An important observation here is that the LPF array is actually more information than
is required for the computation of the LZ77 factorization, i.e., if our objective is the
LZ77 factorization, we only use a subset of the entries in the LPF array . However, the
above algorithms focus on computing the entire LPF array, perhaps since it is difficult
to determine beforehand, which entries of LPF are actually required. Although some
algorithms such as a variant of CPS1 or CPS2 in [12] avoid computation of LPF, they
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CHAPTER 1. INTRODUCTION

either require the LCP array, or do not run in linear worst case time and are not as efficient.
(See [1] for a survey.)

We propose a new approach to avoid the computation of LCP and LPF arrays altogether,
and our algorithms run in linear time and using three to four integer arrays of length N .
The resulting algorithms are surprisingly both simple and efficient. Computational exper-
iments on various data sets show that our algorithms constantly outperform LZ OG [62]
which is one of the fastest among existing linear time algorithms, and can be up to 2 to 3
times faster in the processing after obtaining the suffix array, while requiring the same or
a little more space.

Space efficient linear time LZ77 factorization algorithm. Kärkkäinen et al. [36] inde-
pendently and almost simultaneously proposed 3 algorithms which avoid the computation
of LPF array. Their algorithms are called KKP3, KKP2, and KKP1, which respectively
store and utilize 3, 2, and 1 auxiliary integer arrays of length N kept in main memory.
KKP3 can be seen as reorganization of one of our algorithms, but is modified so that array
access are more cache friendly, thus making the algorithm run faster. KKP2 is based on
KKP3, but further reduces one integer array by an elegant technique that rewrites values
on the integer array. KKP1 is the same as KKP2, except that it assumes that the suffix
array is stored on disk, but since the values of the suffix array are only accessed sequen-
tially, the suffix array is streamed from the disk. Thus, KKP1 can be regarded as requiring
only a single integer array to be held in memory. In this sense, KKP1 is the most space
efficient linear time algorithm, and has been shown to be faster than KKP2, if we assume
that the suffix array is already computed and exists on disk [36]. However, note that the
total space requirement of KKP1 is still two integer arrays, one existing in memory and
the other existing on disk.

We propose new algorithms for computing the LZ77 factorization that uses only N logN+

O(σ logN) bits of working space. We achieve this by introducing a series of techniques
for rewriting the various auxiliary integer arrays from one to another, in linear time and
in-place, i.e., using only O(σ logN) bits of working space. Computational experiments
show that our algorithm is at most around twice as slow as previous algorithms, but in
turn, uses only half the total space, and may be a viable alternative when the total space
(including disk) is a limiting factor due to the enormous size of data.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.
In Chapter 2 we define some notations and introduce several important data structures such
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CHAPTER 1. INTRODUCTION

as SLPs, Suffix Arrays, LCP arrays, and LZ77 factorization.
In Chapter 3, we present algorithms that computes all q-gram frequencies of a string from a

given SLP repreesnting the string without explicit decompression. We also explain applications
of q-gram frequencies to several data mining tasks, and describe efficient CSP solutions based
on the above algorithm.

In Chapter 4, we show how to improve the algorithm in Chapter 3 in order to handle large
q.

In Chapter 5, we present an algorithm that computes all non-overlapping q-gram frequencies
of a string from a given SLP representing the string without explicit decompression.

In Chapter 6, we present fast linear time LZ77 factorization algorithms which avoid the
computation of the whole LPF array. We show that our approach is very effective compared
with the previous approach that firstly computes LPF array.

In Chapter 7, we describe new space efficient linear time LZ77 factorization algorithms,
which are the most space efficient among all existing linear time algorithms when the alphabet
size is small.

In Chapter 8, we present the conclusion of the thesis, and give future perspectives.
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Chapter 2

Preliminaries

2.1 Intervals and Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. For any integer q > 0, an
element of Σq is called an q-gram. The length of a string T is denoted by |T |. The empty string
ε is a string of length 0, namely, |ε| = 0. For a string T = XY Z, X , Y and Z are called a
prefix, substring, and suffix of T , respectively. The i-th character of a string T is denoted by T [i]

for 1 ≤ i ≤ |T |, and the substring of a string T that begins at position i and ends at position j

is denoted by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i : j] = ε if j < i. Let TR

denote the reversal of T , namely, TR = T [N ]T [N − 1] · · ·T [1], where N = |T |. For a string T

and q ≥ 0, let pre(T, q) and suf (T, q) represent respectively, the length-q prefix and suffix of
T . That is, pre(T, q) = T [1 : min(q,N)] and suf (T, q) = T [max(1, N − q + 1) : N ].

For integers i ≤ j, let [i : j] denote the interval of integers {i, . . . , j}. For an interval
[i : j] and integer q > 0, let pre([i : j], q) and suf ([i : j], q) represent respectively, the length-q
prefix and suffix interval, that is, pre([i : j], q) = [i : min(i + q − 1, j)] and suf ([i : j], q) =

[max(i, j − q + 1) : j]. The substrings of T is also denoted by the combination of T and
interval. For a string T and interval [i : j](1 ≤ i ≤ j ≤ N), T ([i : j]) denote T [i : j], and
T ([i : j]) = T [i : j] = ε if i < j.

For an integer i and a set of integers A, let i ⊕ A = {i + x | x ∈ A} and i ⊖ A = {i − x |
x ∈ A}. If A = ∅, then let i ⊕ A = i ⊖ A = ∅. Similarly, for a pair of integers (x, y), let
i⊕ (x, y) = (i+ x, i+ y).

For the computation model, we use the word RAM model with word-length Θ(logN),
where any arithmetic operation for a number represented by Θ(logN) bits, and read and write
of the number to memory are achieved in constant time. For convenience, we omit O(logN)

terms when describing space complexities in bits, i.e. ignore a constant number of integers.
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2.2 Occurrences and Frequencies

For any strings T and P , let Occ(T, P ) be the set of occurrences of P in T , i.e.,

Occ(T, P ) = {k > 0 | T [k : k + |P | − 1] = P}.

The number of occurrences of P in T , or the frequency of P in T is, |Occ(T, P )|. Any two
occurrences k1, k2 ∈ Occ(T, P ) with k1 < k2 are said to be overlapping if k1 + |P | − 1 ≥ k2.
Otherwise, they are said to be non-overlapping. The non-overlapping frequency nOcc(T, P ) of
P in T is defined as the size of a largest subset of Occ(T, P ) where any two occurrences in the
set are non-overlapping. For any strings X,Y , we say that an occurrence i of a string Z in XY ,
with |Z| ≥ 2, crosses X and Y , if i ∈ [|X| − |Z|+ 2 : |X|] ∩Occ(XY,Z).

For any strings T and P , we define the sets of right and left priority non-overlapping occur-
rences of P in T , respectively, as follows:

RnOcc(T, P ) =

{
∅ if Occ(T, P ) = ∅,
{i} ∪ RnOcc(T [1 : i− 1], P ) otherwise,

LnOcc(T, P ) =

{
∅ if Occ(T, P ) = ∅,
{j} ∪ j+|P |−1⊕LnOcc(T [j + |P | : |T |], P ) otherwise,

where i = maxOcc(T, P ) and j = minOcc(T, P ). For all k ∈ RnOcc(T, P ), it is trivially
said that RnOcc(T [k : |T |], P ) ⊆ RnOcc(T, P ). It can be said to LnOcc similarly. Note that
RnOcc(T, P ) ⊆ Occ(T, P ), LnOcc(T, P ) ⊆ Occ(T, P ), and LnOcc(T, P ) = |T | − |P |+2⊖
RnOcc(TR, PR).

Lemma 1. nOcc(T, P ) = |RnOcc(T, P )| = |LnOcc(T, P )|

Proof. We prove nOcc(T [1 : i], P ) = |LnOcc(T [1 : i], P )| by induction on i. For i ≤ 1,
the statement clearly holds. Now, assume that the statement holds for i < k, where k ≥ 2.
For i = k, notice that 0 ≤ nOcc(T [1 : k], P ) − |LnOcc(T [1 : k], P ) ≤ 1, since there can be
at most one new occurrence of P ending at position i, which may or may not be counted for
nOcc(T [1 : k], P ). If we assume on the contrary that the statement does not hold for i = k, then
nOcc(T [1 : k], P )− nOcc(T [1 : k − 1], P ) = nOcc(T [1 : k], P )− |LnOcc(T [1 : k], P )| = 1.
Since the change was caused by the new occurrence, we have nOcc(T [1 : k]) = nOcc(T [1 :

k − |P |]) + 1. By the inductive hypothesis, we have nOcc(T [1 : k − |P |], P ) = |LnOcc(T [1 :

k − |P |], P )|. Also, |LnOcc(T [1 : k], P )| = |LnOcc(T [1 : k − |P |], P )| + 1, since the new
occurrence does not overlap with any occurrences in LnOcc(T [1 : k − |P |]). This leads to
nOcc(T [1 : k]) = |LnOcc(T [1 : k], P )|, a contradiction. nOcc(T, P ) = |RnOcc(T, P )| can be
shown symmetrically.
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Figure 2.1: The derivation tree of SLP T = {X1 → a, X2 → b, X3 → X1X2, X4 →
X1X3, X5 → X3X4, X6 → X4X5, X7 → X6X5}, representing string T = val(X7) =
aababaababaab.

Lemma 2. For any strings T and P , and any integer i with 1 ≤ i ≤ |T |, let u1 = maxLnOcc(T [1 :

i − 1], P ) + |P | − 1 and u2 = i − 1 + minRnOcc(T [i : |T |], P ). Then nOcc(T, P ) =

|LnOcc(T [1 : u1], P )|+ nOcc(T [u1 + 1 : u2 − 1], P ) + |RnOcc(T [u2 : |T |], P )|.

Proof. By Lemma 1 and the definitions of u1, u2, LnOcc and RnOcc, we have

nOcc(T, P )

= |LnOcc(T [1 : u1], P )|+ |LnOcc(T [u1 + 1 : |T |], P )|
= |LnOcc(T [1 : u1], P )|+ |RnOcc(T [u1 + 1 : |T |], P )|
= |LnOcc(T [1 : u1], P )|+|RnOcc(T [u1+1 : u2−1], P )|+|RnOcc(T [u2 : |T |], P )|
= |LnOcc(T [1 : u1], P )|+ nOcc(T [u1+1 : u2 − 1], P ) + |RnOcc(T [u2 : |T |], P )|.

2.3 Straight Line Programs

A straight line program (SLP) is a set of assignments T = {X1 → expr1, X2 → expr2, . . . , Xn →
exprn}, where each Xi is a variable and each expri is an expression, where expri = a (a ∈ Σ),
or expri = Xℓ(i)Xr(i) (i > ℓ(i), r(i)). It is essentially a context free grammar in the Chomsky
normal form, that derives a single string. Let val(Xi) represent the string derived from variable
Xi. To ease notation, we sometimes associate val(Xi) with Xi and denote |val(Xi)| as |Xi|, and
val(Xi)([u : v]) as Xi([u : v]) for any interval [u : v]. pre(Xi, q) and suf (Xi, q) respectively
denotes the length-q prefix and suffix of val(Xi). An SLP T represents the string T = val(Xn).

9
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The size of the program T is the number n of assignments in T . Note that N can be as large as
Θ(2n). However, we assume as in various previous work on SLP, that the computer word size is
at least logN , and hence, values representing lengths and positions of T in our algorithms can
be manipulated in constant time.

The derivation tree of SLP T is a labeled ordered binary tree where each internal node is
labeled with a non-terminal variable in {X1, . . . , Xn}, and each leaf is labeled with a terminal
character in Σ. The root node has label Xn. Let V denote the set of internal nodes in the
derivation tree. For any internal node v ∈ V , let ⟨v⟩ denote the index of its label X⟨v⟩. Node v

has a single child which is a leaf labeled with c when (X⟨v⟩ → c) ∈ T for some c ∈ Σ, or v has
a left-child and right-child respectively denoted ℓ(v) and r(v), when (X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈
T . Each node v of the tree derives val(X⟨v⟩), a substring of T , whose corresponding interval
itv(v), with T (itv(v)) = val(X⟨v⟩), can be defined recursively as follows. If v is the root node,
then itv(v) = [1 : N ]. Otherwise, if (X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈ T , then, itv(ℓ(v)) = [bv :

bv + |X⟨ℓ(v)⟩| − 1] and itv(r(v)) = [bv + |X⟨ℓ(v)⟩| : ev], where [bv : ev] = itv(v). Let vOcc(Xi)

denote the number of times a variable Xi occurs in the derivation tree, i.e., vOcc(Xi) = |{v |
X⟨v⟩ = Xi}|. We assume that any variable Xi is used at least once, that is vOcc(Xi) > 0.

For any interval [b : e] of T (1 ≤ b ≤ e ≤ N), let ξT (b, e) denote the deepest node v in
the derivation tree, which derives an interval containing [b : e], that is, itv(v) ⊇ [b : e], and
no proper descendant of v satisfies this condition. We say that node v stabs interval [b : e],
and X⟨v⟩ is called the variable that stabs the interval. If b = e, we have that (X⟨v⟩ → c) ∈ T
for some c ∈ Σ, and itv(v) = b = e. If b < e, then we have (X⟨v⟩ → X⟨ℓ(v)⟩X⟨r(v)⟩) ∈ T ,
b ∈ itv(ℓ(v)), and e ∈ itv(r(v)). When it is not confusing, we will sometimes use ξT (b, e) to
denote the variable X⟨ξT (b,e)⟩.

SLPs can be efficiently pre-processed to hold various information. |Xi| and vOcc(Xi) can
be computed for all variables Xi(1 ≤ i ≤ n) in a total of O(n) time by a simple dynamic
programming algorithm. Also, the following Lemma is useful for partial decompression of a
prefix of a variable.

Lemma 3 ([22]). Given an SLP T = {Xi → expr i}ni=1, it is possible to pre-process T in O(n)

time and space, so that for any variable Xi and 1 ≤ j ≤ |Xi|, Xi([1 : j]) can be computed in
O(j) time.

2.4 Suffix Arrays and LCP Arrays

The suffix array [50] SA of any string T is an array of length N such that for any 1 ≤ i ≤ N ,
SA[i] = j indicates that suf (j) is the i-th lexicographically smallest suffix of T . For conve-
nience, we assume that SA[0] = SA[N + 1] = 0. The inverse suffix array SA−1 of SA is an
array of length N such that SA−1[SA[i]] = i. As in [37], let Φ be an array of length N such

10



CHAPTER 2. PRELIMINARIES

Table 2.1: Suffix array and LCP array for string T=abracadabra

i T [i : N ] SA[i] LCP [i] T [SA[i] : N ]
1 abracadabra 11 0 a
2 bracadabra 8 1 abra
3 racadabra 1 4 abracadabra
4 acadabra 4 1 acadabra
5 cadabra 6 1 adabra
6 adabra 9 0 bra
7 dabra 2 3 bracadabra
8 abra 5 0 cadabra
9 bra 7 0 dabra
10 ra 10 0 ra
11 a 3 2 racadabra

that Φ[SA[1]] = N and Φ[SA[i]] = SA[i − 1] for 2 ≤ i ≤ N , i.e., for any suffix j = SA[i],
Φ[j] = SA[i − 1] is the immediately preceding suffix in the suffix array. The suffix array SA

for any string of length N can be constructed in O(N) time regardless of the alphabet size,
assuming an integer alphabet (e.g. [38, 61]). Furthermore, there exists a linear time suffix array
construction algorithm for a constant alphabet using O(1) working space [60].

Although our algorithms will not utilize the following array, we shall introduce it for com-
pleteness. The LCP array is an array of length N such that LCP [i] is the length of the longest
common prefix of T [SA[i − 1] : N ] and T [SA[i] : N ] for 2 ≤ i ≤ N , and LCP [1] = 0. Given
the text and suffix array, the LCP array can also be calculated in O(N) time [40]. (See Table 2.4
shows suffix array and lcp array for string T = abracadabra.)

2.5 LZ77 Factorization

LZ77 factorization is dynamic dictionary based encodings with many variants. The variant we
consider is also known as the s-factorization [14].

Definition 1 (LZ77-factorization). The s-factorization of a string T is the factorization T =

f1 · · · fn where each s-factor fk ∈ Σ+ (k = 1, . . . , n) starting at position i = |f1 · · · fk−1| + 1

in T is defined as follows: If T [i] = c ∈ Σ does not occur before i then fk = c. Otherwise, fk
is the longest prefix of suf (i) that occurs at least once before i.

Note that each LZ77 factor can be represented in constant space, i.e., a pair of integers
where the first and second elements respectively represent the length and position of a previous
occurrence of the factor. If the factor is a new character and the length of its previous occurrence

11
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is 0, the second element will encode the new character instead of the position. For example the
s-factorization of the string T = abaabababaaaaabbabab is a, b, a, aba, baba, aaaa, b,
babab. This can be represented as (0, a), (0, b), (1, 1), (3, 1), (4, 5), (4, 10), (1, 2), (5, 5).

We define two functions LPF and PrevOcc below. For any 1 ≤ i ≤ N , LPF (i) is the
longest length of longest common prefix between suf (i) and suf (j) for any 1 ≤ j < i, and
PrevOcc(i) is a position j which gives LPF (i)1. More precisely,

LPF (i) = max({0} ∪ {lcp(suf (i), suf (j)) | 1 ≤ j < i})
and

PrevOcc(i) =

−1 if LPF (i) = 0

j otherwise

where j satisfies 1 ≤ j < i, and T [i : i + LPF (i) − 1] = T [j : j + LPF (i) − 1]. Let pk =

|f1 · · · fk−1|+ 1. Then, fk can be represented as a pair (LPF (pk),PrevOcc(pk)) if LPF (pk) >

0, and (0, T [pk]) otherwise.

1There can be multiple choices of j, but here, it suffices to fix one.

12



Chapter 3

Algorithm for q-gram Frequencies

Toward compressed string mining, in this chapter we focus on the q-gram frequencies prob-
lem. The q-gram frequencies problem is an important fundamental problem which appears in
machine learning [3] and data mining [6]. Our interest is how to compute frequencies of all
q-grams that occur in T when given an SLP T representing a string T . The definition of the
problem is as follows.

Problem 1 (q-gram frequencies on SLP). Given an integer q ≥ 1 and an SLP T of size n that
represents string T , output (i, |Occ(T, P )|) for all P ∈ Σq where Occ(T, P ) ̸= ∅, and some
i ∈ Occ(T, P ).

When q = 1, the problem is very simple because we only have to compute how many
terminal variable is used in the derivation tree of Xn, which is namely vOcc(Xi) for Xi = a

and a ∈ Σ. The computation can be done in O(n) time as shown in Section 2.3.
When q = 2, the subproblem of finding the most frequent 2-gram from an SLP was pre-

viously considered by Inenaga and Bannai [33], and they proposed an O(|Σ|2n2)-time O(n2)-
space algorithm. Claude and Navarro mentioned that the most frequent 2-gram can be found in
O(|Σ|2n log n) time and O(n logN) space [13], if the SLP is pre-processed and a self-index is
built.

It is possible to extend these two algorithms to handle q-grams for q > 2, but would re-
spectively require O(|Σ|qqn2) and O(|Σ|qqn log n) time, since they essentially enumerate and
count the occurrences of all substrings of length q, regardless of whether the q-gram occurs in
the string. Both the algorithms are not practical when we want to apply them for larger values
of q since they need time and space exponential in q.

In this chapter we propose an O(qn) algorithm to compute q-gram frequencies in T when
an SLP T of size n representing T is given. The key point of our algorithm to reduce the
q-gram frequencies problem from SLPs to the weighted q-gram frequencies problem from un-
compressed strings of size O(qn) by partially decompressing the SLPs in O(qn) time. The
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Algorithm 1: A naı̈ve algorithm for computing q-gram frequencies.
Input: string T , integer q ≥ 1
Report: (P, |Occ(T, P )|) for all P ∈ Σq where Occ(T, P ) ̸= ∅.

1 S← ∅; // empty associative array
2 for i← 1 to N − q + 1 do
3 qgram ← T [i : i+ q − 1];
4 if qgram ∈ keys(S) then S[qgram]← S[qgram] + 1;
5 else S[qgram]← 1; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram,S[qgram])

weighted q-gram frequencies problem from uncompressed strings can be solved in linear time
with a slight modification of a linear time algorithm which solves the normal q-gram frequen-
cies problem on uncompressed strings. According to the computational experiments, the O(qn)

algorithm tends to be faster than the linear time algorithm on uncompressed strings when q is
small, more precisely, when the total length of partially decompressed strings is shorter than
T . Our new algorithm is theoretically superior to the previous ones, moreover it runs faster in
practice than the algorithm on uncompressed strings, thus achieving Goal 2.

This result primarily appeared in [25, 28].

3.1 O(N) time Algorithm on Uncompressed Strings

We describe two algorithms (Algorithm 1 and Algorithm 2) for computing the q-gram frequen-
cies of a given uncompressed string T .

A naı̈ve algorithm for computing the q-gram frequencies is given in Algorithm 1. The
algorithm constructs an associative array, where keys consist of q-grams, and the values cor-
respond to the occurrence frequencies of the q-grams. The time complexity depends on the
implementation of the associative array, but requires at least O(qN) time since each q-gram
is considered explicitly, and the associative array is accessed O(N) times: e.g. O(qN log |Σ|)
time and O(qN) space using a simple trie.

The q-gram frequencies of string T can be calculated in O(N) time using suffix array SA

and lcp array LCP , as shown in Algorithm 2. For each 1 ≤ i ≤ N , the suffix SA[i] represents an
occurrence of q-gram T [SA[i] : SA[i]+q−1], if the suffix is long enough, i.e. SA[i] ≤ N−q+1.
The key is that since the suffixes are lexicographically sorted, intervals on the suffix array where
the values in the lcp array are at least q represent occurrences of the same q-gram. The algorithm
runs in O(N) time, since SA and LCP can be constructed in O(N) time. The rest is a simple
O(N) loop. A technicality is that we encode the output for a q-gram as one of the positions in
the text where the q-gram occurs, rather than the q-gram itself. This is because there can be a
total of O(N) different q-grams, and if we output them as length-q strings, it would require at
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Algorithm 2: A linear time algorithm for computing q-gram frequencies.
Input: string T , integer q ≥ 1
Report: (i, |Occ(T, P )|) for all P ∈ Σq and some position i ∈ Occ(T, P ).

1 SA← SUFFIXARRAY (T ); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i← 2 to N + 1 do
3 if i = N + 1 or LCP [i] < q then // end of interval where lcp ≥ q
4 if count > 0 then
5 Report (SA[i− 1], count);
6 count ← 0;

7 if i ≤ N and SA[i] ≤ N − q + 1 then // count current suffix if
valid

8 count ← count + 1;

least O(qN) time.

3.2 O(qn) time Algorithm on SLPs

We now describe the core idea of our algorithms, and explain two variations which utilize vari-
ants of the two algorithms for uncompressed strings presented in Section 3.1. For q = 1, the 1-
gram frequencies are simply the frequencies of the alphabet, and the output is (a,

∑
{vOcc(Xi) |

Xi = a}) for each a ∈ Σ, which takes only O(n) time. For q ≥ 2, we make use of Lemma 4
below. The idea is similar to the mk Lemma [11], but the statement is more specific.

Lemma 4. Let T = {Xi = expr i}ni=1 be an SLP that represents string T . For an interval
[u : v] (1 ≤ u < v ≤ N), there exists exactly one variable Xi = Xℓ(i)Xr(i) such that for some
[ui : vi] ∈ itv(Xi), the following holds: [u : v] ⊆ [ui : vi], u ∈ [ui : ui+ |Xℓ(i)|−1] ∈ itv(Xℓ(i))

and v ∈ [ui + |Xℓ(i)| : vi] ∈ itv(Xr(i)).

Proof. Any interval is a subinterval of the interval [1 : N ] derived by Xn. For a given variable, if
the interval [u : v] is a subinterval of the interval derived by either of its children, we recursively
consider the child variable. Each time, the interval derived by the variable is divided into two
parts and becomes smaller. Hence, a variable Xi = Xℓ(i)Xr(i) satisfying the condition will
eventually be obtained. Any other variable Xi′ = Xℓ(i′)Xr(i′) cannot satisfy the condition,
since if the interval derived by Xi′ is to contain the given interval, it must be a descendant or
an ancestor of Xi. Either way, this contradicts the condition that the given interval is not a
subinterval of any of the intervals derived from the children variables Xℓ(i′), Xr(i′), Xℓ(i), Xr(i).

Note that if we consider length 1 intervals [u : u] and [v : v] corresponding to leaves in
the derivation tree, Xi corresponds to the lowest common ancestor of these intervals in the
derivation tree.
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q - 1q - 1

q

Xi

Xℓ(i) Xr(i)ti

T

Figure 3.1: Length-q intervals which are stabbed by Xi = Xℓ(i)Xr(i).

From Lemma 4, each occurrence of a q-gram (q ≥ 2) represented by some length-q interval
of T , corresponds to a single variable Xi = Xℓ(i)Xr(i), and is split in two by intervals corre-
sponding to Xℓ(i) and Xr(i). On the other hand, consider all length-q intervals that correspond
to a given variable. Counting the frequencies of the q-grams they represent, and summing them
up for all variables give the frequencies of all q-grams of T .

For variable Xi = Xℓ(i)Xr(i), let ti = suf (Xℓ(i), q − 1)pre(Xr(i), q − 1). Then, all q-grams
represented by length q intervals that correspond to Xi are those in ti. (Figure 3.1.) If we obtain
the frequencies of all q-grams in ti, and then multiply each frequency by vOcc(Xi), we obtain
frequencies for the q-grams occurring in all intervals derived by Xi. It remains to sum up the
q-gram frequencies of ti for all 1 ≤ i ≤ n. We can regard it as obtaining the weighted q-gram
frequencies in the set of strings {t1, . . . , tn}, where each q-gram in ti is weighted by vOcc(Xi).

We further reduce this problem to a weighted q-gram frequencies problem for a single string
z as in Algorithm 3. String z is constructed by concatenating each ti satisfying q ≤ |ti| ≤
2(q − 1), and the weights of q-grams starting at each position in z is held in array w. On line 8,
0’s instead of vOcc(Xi) are appended to w for the last q − 1 values corresponding to ti. This is
to avoid counting unwanted q-grams that are generated by the concatenation of ti to z on line 6,
which are not substrings of each ti. The weighted q-gram frequency problem for a single string
(Line 9) can be solved with a slight modification of Algorithm 1 or 2. The modified algorithms
are shown respectively in Algorithms 4 and 5.

Theorem 1. Given an SLP T = {Xi = expr i}ni=1 of size n representing a string T , the q-gram
frequencies of T can be computed in O(qn) time for any q > 0.

Proof. Consider Algorithm 3. The correctness is straightforward from the above arguments,
so we consider the time complexity. Line 1 can be computed in O(n) time. Line 2 can be
computed in O(qn) time by a simple dynamic programming. For pre(): If Xi = a for some
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Algorithm 3: Calculating q-gram frequencies of an SLP for q ≥ 2

Input: SLP T = {Xi = expr i}ni=1 representing string T , integer q ≥ 2.
Report: all q-grams and their frequencies which occur in T .

1 Calculate vOcc(Xi) for all 1 ≤ i ≤ n;
2 Calculate pre(Xi, q − 1) and suf (Xi, q − 1) for all 1 ≤ i ≤ n− 1 ;
3 z ← ε; w ← [];
4 for i← 1 to n do
5 if Xi = Xℓ(i)Xr(i) and |Xi| ≥ q then
6 ti = suf (Xℓ(i), q − 1)pre(Xr(i), q − 1); z.append(ti);
7 for j ← 1 to |ti| − q + 1 do w.append(vOcc(Xi));
8 for j ← 1 to q − 1 do w.append(0);

9 Report q-gram frequencies in z, where each q-gram z[i : i+ q − 1] is weighted by w[i].

Algorithm 4: A variant of Algorithm 1 for weighted q-gram frequencies.
Input: string T , array of integers w of length N , integer q ≥ 1
Report: (P,

∑
i∈Occ(T,P )w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P ) w[i] > 0.

1 S← ∅; // empty associative array
2 for i← 1 to N − q + 1 do
3 qgram ← T [i : i+ q − 1];
4 if qgram ∈ keys(S) then S[qgram]← S[qgram] + w[i];
5 else if w[i] > 0 then S[qgram]← w[i]; // new q-gram

6 for qgram ∈ keys(S) do Report (qgram,S[qgram])

a ∈ Σ, then pre(Xi, q − 1) = a. If Xi = Xℓ(i)Xr(i) and |Xℓ(i)| ≥ q − 1, then pre(Xi, q − 1) =

pre(Xℓ(i), q − 1). If Xi = Xℓ(i)Xr(i) and |Xℓ(i)| < q − 1, then pre(Xi, q − 1) = pre(Xℓ(i), q −
1)pre(Xr(i), q − 1 − |Xℓ(i)|). The strings suf () can be computed similarly. The computation
amounts to copying O(q) characters for each variable, and thus can be done in O(qn) time. For
the loop at line 4, since the length of string ti appended to z, as well as the number of elements
appended to w is at most 2(q − 1) in each loop, the total time complexity is O(qn). Finally,
since the length of z and w is O(qn), line 9 can be calculated in O(qn) time using the weighted
version of Algorithm 2 (Algorithm 5).

Note that the time complexity for using the weighted version of Algorithm 1 for line 9 of
Algorithm 3 would be at least O(q2n): e.g. O(q2n log |Σ|) time and O(q2n) space using a trie.
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Algorithm 5: A variant of Algorithm 2 for weighted q-gram frequencies.
Input: string T , array of integers w of length N , integer q ≥ 1
Output: (i,

∑
i∈Occ(T,P )w[i]) for all P ∈ Σq where

∑
i∈Occ(T,P )w[i] > 0 and some

position i ∈ Occ(T, P ).
1 SA← SUFFIXARRAY (T ); LCP ← LCPARRAY (T, SA); count ← 1;
2 for i← 2 to N + 1 do
3 if i = N + 1 or LCP [i] < q then // end of interval where lcp ≥ q
4 if count > 0 then
5 Report (SA[i− 1], count);
6 count ← 0;

7 if i ≤ N and SA[i] ≤ N − q + 1 then // count current suffix if
valid

8 count ← count + w[SA[i]];
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3.3 Computational Experiments

We implemented 4 algorithms (NMP, NSA, SMP, SSA) that count the frequencies of all q-
grams in a given text. NMP (Algorithm 1) and NSA (Algorithm 2) work on the uncompressed
text. SMP (Algorithm 3 + Algorithm 4) and SSA (Algorithm 3 + Algorithm 5) work on SLPs.
The algorithms were implemented using the C++ language, and source codes are available at
http://code.google.com/p/qshi/. We used std::map from the Standard Tem-
plate Library (STL) for the associative array implementation. For constructing suffix arrays,
we used the divsufsort library version 2.0.01 developed by Yuta Mori. This implementation
is not linear time in the worst case, but has been empirically shown to be one of the fastest
implementations on various data.

All computations were conducted on a Mac Pro (Mid 2010) with MacOS X Lion 10.7.2,
and 2 x 2.93GHz 6-Core Xeon processors and 64GB Memory, only utilizing a single pro-
cess/thread at once. The program was compiled using the GNU C++ compiler (g++) 4.6.2 with
the -Ofast option for optimization. The running times are measured in seconds, starting from
after reading the uncompressed text into memory for NMP and NSA, and after reading the SLP
that represents the text into memory for SMP and SSA. Each computation is repeated at least 3
times, and the average is taken.

3.3.1 Fibonacci Strings

The i th Fibonacci string Fi can be represented by the following SLP: X1 = b, X2 = a,
Xi = Xi−1Xi−2 for i > 2, and Fi = val(Xi). Figure 3.2 (Up) shows the running times
on Fibonacci strings F20, F25, . . . , F95, for q = 50. Although this is an extreme case since
Fibonacci strings can be exponentially compressed, we can see that SMP and SSA that work on
the SLP are clearly faster than NMP and NSA which work on the uncompressed string.

3.3.2 Pizza & Chili Corpus

We also applied the algorithms on texts XML, DNA, ENGLISH, and PROTEINS, with sizes
50MB, 100MB, and 200MB, obtained from the Pizza & Chili Corpus2. We used two variations
of SLP data, which are generated by RE-PAIR [45] and LCA [52].

Table 3.1 shows the running times for all algorithms and data which are generated by RE-
PAIR, where q is varied from 2 to 10. We see that for all corpora, SMP and SSA running
on SLPs are actually faster than NMP and NSA running on uncompressed text, when q is
small. Furthermore, SMP is faster than SSA when q is smaller. Interestingly for XML, the SLP

1http://code.google.com/p/libdivsufsort/
2http://pizzachili.dcc.uchile.cl/texts.html
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Figure 3.2: (Up) Running times of NMP, NSA, SMP, SSA on Fibonacci strings for q = 50.
(Down) Time ratios NMP/SMP and NSA/SSA plotted against ratio |z|/N , for the Pizza & Chili
Corpus.
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versions are faster even for q up to 9. Table 3.2 shows the running times for the data which are
generated by LCA. The SLPs which are generated by LCA consist of more variables than the
SLPs which are generated by RE-PAIR. The size of string z which is generated by Algorithm 3
generally increases with respect to the size of the SLP, so the results for SLPs generated by
RE-PAIR tend to have better performance compared to those for LCA.

Figure 3.2 (Down) shows the same results as time ratio: NMP/SMP and NSA/ SSA, plotted
against ratio: (length of z in Algorithm 3)/(length of uncompressed text). As expected, the
SLP versions are basically faster than their uncompressed counterparts, when |z|/(text length)
is less than around 0.7. This is because the SLP versions run the weighted versions of the
uncompressed algorithms on a text of length |z|, with some overhead for constructing z and for
handling the weights. Results with SLPs generated by both RE-PAIR and LCA show similar
tendencies.

Table 3.3 and 3.4 show the memory usage of the algorithms measured by the getrusage()
function. We see that in terms of memory usage, NMP is the best when q is not too large.
However, NMP is never the fastest choice. NSA can be more space efficient and faster than
SMP or SSA when q is not so small. On the other hand, the memory usage of NSA is fairly
large even when q is small, and SMP and SSA can both be faster and more space efficient in
this case.
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Table 3.1: Running times in seconds for the Pizza & Chili Corpus. Each data is compressed
by RE-PAIR [45]. Bold numbers represent the fastest time for each data and q. Times for
SMP and SSA are prefixed with ▷, if they become fastest when all algorithms start from the
SLP representation, i.e., NMP and NSA require time for decompressing the SLP (denoted by
decompression time). The bold horizontal lines show the boundary where |z| in Algorithm 3
exceeds the uncompressed text length.

XML(RE-PAIR)
50MB 100MB 200MB
SLP Size: 2,702,383 SLP Size: 5,059,578 SLP Size: 9,541,590

decompression time: 0.85 secs decompression time: 1.72 secs decompression time: 3.66 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 5,404,574 5.6 8.9 1.0 1.4 10,118,964 11.3 19.2 2.0 3.1 19,082,988 22.9 41.7 4.1 6.5
3 10,713,906 12.5 8.9 2.4 2.5 20,103,632 26.4 19.3 4.7 5.3 37,966,315 55.7 41.7 9.3 11.0
4 15,680,270 19.7 8.9 5.3 3.8 29,544,225 42.8 19.3 10.3 7.9 55,983,397 93.3 41.8 20.7 16.3
5 20,223,744 26.7 8.9 9.5 5.0 38,287,472 58.1 19.3 18.7 10.4 72,878,965 129.3 41.7 37.0 21.3
6 24,428,612 32.7 9.0 13.8 6.2 46,436,350 71.8 19.3 27.5 12.8 88,786,480 158.7 41.7 54.6 25.8
7 28,354,144 36.9 8.9 18.2 7.1 54,094,679 81.9 19.4 36.3 14.8 103,862,589 181.1 41.7 73.1 30.1
8 32,052,358 41.0 8.9 23.6 8.1 61,340,059 90.2 19.4 49.1 16.6 118,214,023 198.3 41.9 95.5 34.2
9 35,525,151 45.6 9.0 28.0 8.9 68,175,926 98.4 19.4 56.3 18.3 131,868,777 218.9 41.6 118.2 37.9
10 38,838,107 48.8 9.0 33.5 ▷9.7 74,690,539 107.2 19.3 65.4 ▷19.9 144,946,389 235.7 41.8 133.1 41.3

DNA(RE-PAIR)
50MB 100MB 200MB
SLP Size: 6,406,324 SLP Size: 12,233,978 SLP Size: 23,171,463

decompression time: 1.15 secs decompression time: 2.43 secs decompression time: 5.02 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 12,812,616 2.0 12.5 1.8 4.3 24,467,924 4.1 27.5 3.7 9.2 46,342,894 8.6 61.7 7.5 19.3
3 25,624,572 3.8 12.4 2.9 6.7 48,935,122 7.9 27.3 5.7 14.1 92,684,656 16.4 61.7 11.7 29.1
4 38,427,472 6.0 12.5 4.5 9.9 73,391,054 12.7 27.4 8.8 20.5 139,011,475 26.4 61.4 17.4 42.2
5 51,148,851 8.3 12.4 6.7 13.1 97,743,073 17.4 27.3 13.3 27.0 185,200,662 36.2 61.4 26.9 56.3
6 63,566,979 10.8 12.4 10.3 16.8 121,657,437 22.1 27.4 19.8 34.7 230,769,162 46.2 61.7 40.2 73.1
7 75,366,779 15.0 12.4 15.0 20.7 144,600,769 30.6 27.3 ▷29.1 42.8 274,845,524 62.3 61.4 56.8 90.9
8 86,058,072 20.5 12.4 22.4 24.7 165,661,494 41.0 27.5 43.3 51.9 315,811,932 83.4 61.7 89.3 110.3
9 95,468,332 28.9 12.4 38.3 27.9 184,445,080 57.3 27.5 73.9 59.5 352,780,338 116.1 61.2 139.2 127.3
10 103,563,590 49.5 12.4 60.0 30.9 200,915,121 98.5 27.4 119.0 66.3 385,636,192 199.8 61.5 231.8 143.3

ENGLISH(RE-PAIR)
50MB 100MB 200MB
SLP Size: 4,861,619 SLP Size: 10,063,953 SLP Size: 18,945,126

decompression time: 1.06 secs decompression time: 2.31 secs decompression time: 4.86 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 9,722,886 5.1 11.7 1.7 3.2 20,127,476 10.5 25.6 4.0 7.7 37,889,802 21.5 56.8 7.8 16.3
3 19,371,594 10.9 11.8 3.8 5.4 40,135,705 23.1 25.6 8.4 12.5 75,611,002 48.5 56.6 16.4 25.6
4 28,806,795 18.7 11.7 7.6 8.1 59,789,962 40.0 25.6 17.2 18.3 112,835,471 84.8 57.0 32.5 37.5
5 37,815,947 29.0 11.7 14.7 10.8 78,702,809 63.7 25.6 32.4 24.4 148,938,576 137.4 56.6 63.0 49.8
6 46,271,085 43.0 11.8 24.9 13.5 96,629,891 95.0 25.6 57.6 30.6 183,493,406 205.9 56.4 106.6 62.9
7 54,049,585 57.4 11.8 37.1 16.1 113,307,235 127.2 25.8 81.9 36.6 215,975,218 276.4 56.7 160.1 75.7
8 61,098,637 71.0 11.7 53.2 18.5 128,612,883 156.8 25.8 122.4 41.8 246,127,485 341.7 56.6 242.2 87.9
9 67,333,842 83.2 11.9 70.3 20.5 142,376,652 185.8 25.9 156.2 47.0 273,622,444 405.6 57.3 298.8 100.2
10 72,766,008 95.5 11.9 84.6 22.3 154,559,225 213.9 25.9 190.1 51.6 298,303,942 469.4 57.4 381.9 110.9

PROTEINS(RE-PAIR)
50MB 100MB 200MB
SLP Size: 10,357,053 SLP Size: 18,806,316 SLP Size: 32,375,988

decompression time: 1.53 secs decompression time: 3.33 secs decompression time: 6.70 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 20,714,056 4.2 12.9 3.6 7.2 37,612,582 8.4 28.7 6.9 14.4 64,751,926 16.8 60.6 12.3 27.1
3 41,393,022 9.0 12.9 7.4 13.0 75,190,116 18.0 28.8 14.0 25.9 129,449,835 36.2 60.8 24.2 47.5
4 60,589,652 20.5 12.9 18.8 20.4 110,572,865 40.8 28.7 34.8 40.2 191,045,216 82.2 60.8 ▷61.6 74.9
5 76,267,233 59.7 12.9 51.0 26.9 140,409,835 123.1 28.7 93.6 54.2 243,692,809 241.5 60.6 162.9 101.6
6 85,957,716 104.7 13.1 98.6 32.1 160,241,692 223.0 28.9 183.6 65.2 280,408,504 444.4 61.0 318.8 123.7
7 90,917,270 128.3 13.0 128.2 34.6 171,093,875 287.0 29.1 255.9 71.2 301,810,933 593.4 61.0 473.6 136.1
8 93,077,387 133.0 13.0 146.8 35.9 176,147,947 301.6 28.9 288.8 74.1 311,863,817 627.1 60.9 562.6 142.3
9 94,652,133 134.7 13.0 150.9 36.8 179,504,647 307.0 28.9 310.7 76.1 318,432,611 637.1 61.2 587.9 148.1
10 96,283,667 135.8 12.9 153.6 37.5 182,971,091 309.3 28.8 306.6 77.3 325,028,658 649.6 61.2 582.0 149.7
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Table 3.2: Running times in seconds for the Pizza & Chili Corpus. Each data is compressed
by LCA [52]. Bold numbers represent the fastest time for each data and q. Times for SMP
and SSA are prefixed with ▷, if they become fastest when all algorithms start from the SLP
representation, i.e., NMP and NSA require time for decompressing the SLP (denoted by de-
compression time). The bold horizontal lines show the boundary where |z| in Algorithm 3
exceeds the uncompressed text length.

XML(LCA)
50MB 100MB 200MB
SLP Size: 4,523,711 SLP Size: 8,434,909 SLP Size: 15,924,230

decompression time: 0.67 secs decompression time: 1.40 secs decompression time: 2.95 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 9,046,908 5.6 8.9 1.4 2.4 16,869,304 11.3 19.2 2.7 5.2 31,847,946 22.9 41.7 5.3 11.1
3 18,049,781 12.5 8.9 3.8 4.7 33,684,488 26.4 19.3 7.3 9.8 63,630,712 55.7 41.7 14.5 20.3
4 26,600,275 19.7 8.9 7.9 7.1 49,821,349 42.8 19.3 15.5 14.5 94,397,662 93.3 41.8 31.2 29.7
5 34,296,630 26.7 8.9 13.7 ▷9.1 64,573,151 58.1 19.3 27.5 18.6 122,946,997 129.3 41.7 55.3 38.5
6 41,267,760 32.7 9.0 19.4 11.0 78,035,445 71.8 19.3 39.1 22.4 149,289,229 158.7 41.7 79.3 46.1
7 47,364,107 36.9 8.9 25.3 12.5 89,974,719 81.9 19.4 50.9 25.5 172,985,811 181.1 41.7 104.8 53.0
8 52,566,768 41.0 8.9 32.3 13.6 100,305,951 90.2 19.4 67.5 28.0 193,871,501 198.3 41.9 139.0 59.0
9 57,416,357 45.6 9.0 37.7 14.8 109,917,599 98.4 19.4 79.4 30.4 213,294,106 218.9 41.6 164.0 64.5
10 62,113,559 48.8 9.0 44.5 15.9 119,213,755 107.2 19.3 87.8 32.6 232,110,590 235.7 41.8 188.5 69.8

DNA(LCA)
50MB 100MB 200MB
SLP Size: 6,875,540 SLP Size: 13,130,252 SLP Size: 24,875,272

decompression time: 0.72 secs decompression time: 1.51 secs decompression time: 3.18 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 13,750,566 2.0 12.5 1.4 4.1 26,259,990 4.1 27.5 2.9 9.0 49,750,030 8.6 61.7 6.1 19.0
3 27,499,612 3.8 12.4 2.6 7.8 52,517,989 7.9 27.3 5.4 16.4 99,497,221 16.4 61.7 10.9 34.0
4 41,233,447 6.0 12.5 4.5 12.0 78,757,910 12.7 27.4 9.2 25.1 149,221,813 26.4 61.4 18.1 51.9
5 54,846,345 8.3 12.4 7.1 16.1 104,837,527 17.4 27.3 14.2 33.5 198,734,240 36.2 61.4 29.2 70.8
6 68,075,224 10.8 12.4 ▷11.1 20.5 130,354,024 22.1 27.4 22.0 43.2 247,434,478 46.2 61.7 43.6 91.5
7 80,317,216 15.0 12.4 17.1 24.7 154,216,217 30.6 27.3 33.3 52.3 293,437,541 62.3 61.4 64.7 111.9
8 91,336,539 20.5 12.4 25.4 28.3 175,953,553 41.0 27.5 49.5 60.5 335,812,032 83.4 61.7 97.7 131.3
9 100,964,579 28.9 12.4 42.7 31.6 195,238,735 57.3 27.5 83.9 67.7 373,922,825 116.1 61.2 162.4 147.9
10 109,112,377 49.5 12.4 69.8 33.9 211,943,374 98.5 27.4 137.8 73.8 407,523,732 199.8 61.5 280.0 162.6

ENGLISH(LCA)
50MB 100MB 200MB
SLP Size: 6,900,943 SLP Size: 14,188,706 SLP Size: 26,622,149

decompression time: 0.82 secs decompression time: 1.75 secs decompression time: 3.74 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 13,801,372 5.1 11.7 2.2 4.3 28,376,898 10.5 25.6 4.9 10.5 53,243,784 21.5 56.8 9.7 21.8
3 27,567,320 10.9 11.8 5.5 8.5 56,699,575 23.1 25.6 11.8 19.4 106,423,066 48.5 56.6 22.8 39.9
4 40,814,697 18.7 11.7 11.6 12.9 84,173,516 40.0 25.6 24.6 29.2 158,417,667 84.8 57.0 48.3 59.6
5 52,814,284 29.0 11.7 21.5 16.8 109,482,188 63.7 25.6 47.5 38.1 207,133,095 137.4 56.6 93.8 79.3
6 63,255,060 43.0 11.8 34.9 20.2 131,943,421 95.0 25.6 77.6 46.1 251,209,285 205.9 56.4 156.1 97.2
7 71,756,474 57.4 11.8 49.9 22.8 150,733,960 127.2 25.8 112.3 52.5 289,041,443 276.4 56.7 227.0 112.6
8 78,061,763 71.0 11.7 72.2 24.6 165,238,663 156.8 25.8 164.1 57.3 319,411,332 341.7 56.6 319.8 124.4
9 82,902,871 83.2 11.9 88.0 26.0 176,608,232 185.8 25.9 201.0 60.7 343,753,791 405.6 57.3 414.5 132.4
10 87,002,279 95.5 11.9 97.6 27.2 186,161,731 213.9 25.9 233.4 63.3 364,216,092 469.4 57.4 465.4 139.1

PROTEINS(LCA)
50MB 100MB 200MB
SLP Size: 11,080,596 SLP Size: 20,523,326 SLP Size: 35,664,074

decompression time: 0.84 secs decompression time: 1.84 secs decompression time: 3.77 secs
q |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA |z| NMP NSA SMP SSA
2 22,160,678 4.2 12.9 3.0 7.8 41,046,138 8.4 28.7 5.9 16.1 71,327,634 16.8 60.6 10.7 30.4
3 44,308,566 9.0 12.9 7.8 15.0 82,078,185 18.0 28.8 14.7 30.8 142,638,768 36.2 60.8 25.8 57.7
4 64,915,672 20.5 12.9 21.2 23.2 120,888,577 40.8 28.7 40.2 47.7 210,819,082 82.2 60.8 71.1 90.0
5 81,572,382 59.7 12.9 60.4 29.2 153,169,620 123.1 28.7 114.0 60.3 268,633,454 241.5 60.6 202.1 115.6
6 92,353,450 104.7 13.1 111.6 33.4 175,766,089 223.0 28.9 215.7 69.6 311,180,656 444.4 61.0 379.7 133.7
7 95,984,524 128.3 13.0 140.8 34.7 184,840,592 287.0 29.1 291.3 73.2 330,941,705 593.4 61.0 544.7 142.1
8 96,967,563 133.0 13.0 152.5 34.4 187,501,717 301.6 28.9 322.5 72.4 337,428,046 627.1 60.9 614.8 141.7
9 98,393,791 134.7 13.0 160.7 34.4 190,745,408 307.0 28.9 330.3 72.7 344,457,810 637.1 61.2 654.1 141.3
10 100,625,828 135.8 12.9 163.3 34.8 195,433,969 309.3 28.8 335.2 73.2 353,955,168 649.6 61.2 666.3 143.0
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Table 3.3: Memory usage in Mega bytes for the computation of Most Frequent q-gram from the
Pizza & Chili Corpus. Each data is compressed by RE-PAIR algorithm [45].

XML(RE-PAIR)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 156 244 228 1,428 296 460 382 2,728 566 874
3 118 714 166 332 233 1,428 309 626 371 2,728 582 1,187
4 135 714 204 422 258 1,428 365 794 374 2,728 666 1,503
5 170 714 271 506 312 1,428 472 953 454 2,728 835 1,806
6 217 714 362 586 391 1,428 624 1,105 586 2,728 1,088 2,097
7 269 714 457 658 482 1,428 790 1,244 745 2,728 1,378 2,368
8 322 714 622 726 576 1,428 1,078 1,377 911 2,728 1,875 2,626
9 375 714 745 799 672 1,428 1,299 1,517 1,082 2,728 2,269 2,899
10 430 714 862 860 771 1,428 1,512 1,637 1,259 2,728 2,647 3,135

DNA(RE-PAIR)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 357 565 228 1,428 688 1,085 377 2,728 1,277 2,029
3 114 714 357 773 228 1,428 688 1,482 370 2,728 1,277 2,780
4 114 714 358 981 228 1,428 689 1,879 378 2,728 1,278 3,532
5 114 714 360 1,190 228 1,428 692 2,277 380 2,728 1,283 4,285
6 114 714 374 1,404 228 1,428 711 2,683 379 2,728 1,310 5,050
7 115 714 398 1,618 229 1,428 748 3,091 380 2,728 1,366 5,820
8 117 714 445 1,834 231 1,428 825 3,505 377 2,728 1,492 6,604
9 126 714 534 2,058 241 1,428 971 3,937 371 2,728 1,733 7,426
10 162 714 653 2,237 277 1,428 1,136 4,296 378 2,728 1,980 8,133

ENGLISH(RE-PAIR)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 287 444 228 1,428 590 915 378 2,728 1,069 1,682
3 117 714 293 603 232 1,428 599 1,243 375 2,728 1,081 2,299
4 128 714 318 762 250 1,428 639 1,572 378 2,728 1,132 2,916
5 161 714 384 919 304 1,428 748 1,898 428 2,728 1,284 3,532
6 227 714 514 1,077 414 1,428 970 2,226 587 2,728 1,608 4,152
7 332 714 711 1,224 598 1,428 1,316 2,536 867 2,728 2,144 4,746
8 477 714 1,099 1,364 863 1,428 2,017 2,833 1,294 2,728 3,262 5,319
9 652 714 1,490 1,506 1,199 1,428 2,770 3,136 1,869 2,728 4,551 5,904
10 841 714 1,893 1,620 1,583 1,428 3,590 3,386 2,563 2,728 6,035 6,401

PROTEINS(RE-PAIR)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 602 938 228 1,428 1,061 1,671 376 2,728 1,734 2,784
3 115 714 604 1,275 229 1,428 1,063 2,281 379 2,728 1,736 3,834
4 124 714 665 1,631 238 1,428 1,146 2,922 380 2,728 1,848 4,928
5 259 714 987 1,983 383 1,428 1,548 3,566 497 2,728 2,376 6,046
6 1,020 714 2,422 2,306 1,504 1,428 3,712 4,184 2,026 2,728 5,454 7,169
7 1,633 714 3,511 2,454 2,905 1,428 6,176 4,488 4,722 2,728 10,173 7,743
8 1,757 714 4,317 2,541 3,273 1,428 7,896 4,661 5,577 2,728 13,511 8,069
9 1,791 714 4,489 2,670 3,365 1,428 8,270 4,907 5,778 2,728 14,250 8,513
10 1,813 714 4,572 2,736 3,418 1,428 8,452 5,038 5,886 2,728 14,598 8,752

24



CHAPTER 3. ALGORITHM FOR Q-GRAM FREQUENCIES

Table 3.4: Memory usage in Mega bytes for the computation of Most Frequent q-gram from the
Pizza & Chili Corpus. Each data is compressed by LCA algorihtm [52].

XML(LCA)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 272 418 228 1,428 515 788 382 2,728 858 1,374
3 118 714 280 565 233 1,428 525 1,062 371 2,728 870 1,891
4 135 714 320 716 258 1,428 584 1,342 374 2,728 957 2,417
5 170 714 396 858 312 1,428 704 1,611 454 2,728 1,146 2,929
6 217 714 499 996 391 1,428 878 1,871 586 2,728 1,437 3,427
7 269 714 605 1,114 482 1,428 1,064 2,100 745 2,728 1,767 3,878
8 322 714 781 1,217 576 1,428 1,371 2,301 911 2,728 2,297 4,275
9 375 714 921 1,330 672 1,428 1,625 2,519 1,082 2,728 2,747 4,697
10 430 714 1,047 1,423 771 1,428 1,853 2,700 1,259 2,728 3,155 5,057

DNA(LCA)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 379 602 228 1,428 729 1,155 377 2,728 1,362 2,168
3 114 714 379 825 228 1,428 729 1,581 370 2,728 1,362 2,975
4 114 714 380 1,048 228 1,428 730 2,007 378 2,728 1,363 3,782
5 114 714 383 1,272 228 1,428 735 2,435 380 2,728 1,370 4,591
6 114 714 401 1,504 228 1,428 760 2,873 379 2,728 1,406 5,417
7 115 714 442 1,742 229 1,428 829 3,328 380 2,728 1,519 6,274
8 117 714 496 1,970 231 1,428 922 3,768 377 2,728 1,676 7,113
9 126 714 586 2,198 241 1,428 1,068 4,209 371 2,728 1,918 7,954
10 162 714 708 2,381 277 1,428 1,239 4,578 378 2,728 2,174 8,682

ENGLISH(LCA)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 381 604 228 1,428 779 1,238 378 2,728 1,449 2,312
3 117 714 386 828 232 1,428 786 1,698 375 2,728 1,458 3,175
4 128 714 420 1,057 250 1,428 840 2,168 378 2,728 1,530 4,053
5 161 714 505 1,283 304 1,428 984 2,633 428 2,728 1,736 4,928
6 227 714 667 1,505 414 1,428 1,267 3,095 587 2,728 2,165 5,806
7 332 714 890 1,689 598 1,428 1,668 3,494 867 2,728 2,802 6,589
8 477 714 1,300 1,839 863 1,428 2,418 3,828 1,294 2,728 4,018 7,264
9 652 714 1,731 1,999 1,199 1,428 3,258 4,179 1,869 2,728 5,474 7,965
10 841 714 2,147 2,105 1,583 1,428 4,108 4,416 2,563 2,728 7,021 8,456

PROTEINS(LCA)
50MB 100MB 200MB

q NMP NSA SMP SSA NMP NSA SMP SSA NMP NSA SMP SSA
2 114 714 636 995 228 1,428 1,146 1,812 376 2,728 1,897 3,053
3 115 714 637 1,354 229 1,428 1,147 2,477 379 2,728 1,898 4,210
4 124 714 699 1,735 238 1,428 1,231 3,174 380 2,728 2,011 5,411
5 259 714 1,033 2,115 383 1,428 1,662 3,887 497 2,728 2,581 6,656
6 1,020 714 2,448 2,436 1,504 1,428 3,800 4,523 2,026 2,728 5,593 7,808
7 1,633 714 3,540 2,565 2,905 1,428 6,271 4,805 4,722 2,728 10,323 8,365
8 1,757 714 4,362 2,648 3,273 1,428 8,027 4,976 5,577 2,728 13,722 8,695
9 1,791 714 4,543 2,785 3,365 1,428 8,426 5,245 5,778 2,728 14,502 9,187
10 1,813 714 4,630 2,864 3,418 1,428 8,616 5,404 5,886 2,728 14,866 9,489
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3.4 Applications and Extensions

We showed that for an SLP T of size n representing string T , q-gram frequencies problems on T

can be reduced to weighted q-gram frequencies problems on a string z of length O(qn), which
can be much shorter than T . This idea can further be applied to obtain efficient compressed
string processing algorithms for interesting problems which we briefly introduce below.

3.4.1 q-gram Spectrum Kernel

A string kernel is a function that computes the inner product between two strings which are
mapped to some feature space. It is used for classifying string or text data using methods such
as Support Vector Machines (SVMs), and its computation is one of the dominating factors in
the time complexity of learning and classification. A q-gram spectrum kernel [47] considers the
feature space of q-grams. For string T1 and T2, the kernel function is defined as Kq(T1, T2) =∑

p∈Σq |Occ(T1, p)||Occ(T2, p)|. The calculation of the kernel function amounts to summing
up the product of occurrence frequencies in strings T1 and T2 for all q-grams which occur in
both T1 and T2. This can be done in O(|T1|+ |T2|) time using suffix trees or arrays [67, 70].

Let two SLPs T1 and T2 of size n1 and n2 represent strings T1 and T2. First, we calculate
strings z1, z2, and weight array w1 and w2, for SLPs T1 and T2 using Algorithm 3. Second,
we construct the suffix array and lcp array of string z1z2, and consider the weighted q-gram
frequencies on this string with respect to weight array w1w2. As we described previously,
intervals where the values of the lcp array are at least q represent occurrences of the same q-
gram. A subtle difference is that we must sum the occurrences of the q-grams separately for
strings T1 and T2. We can obtain whether an occurrence of a q-gram is in T1 or T2 by checking
the position of the q-gram: if it is less than |z1| − q + 2 then it occurs in T1, and if it is at least
|z1| + 1 then it occurs in T2. (Note that q-grams generated by the concatenation of z1 and z2

are essentially ignored since they have weight 0 by the construction of w1.) Finally, we can
compute the q-gram spectrum kernel Kq(T1, T2) by multiplying the number of occurrences of
each q-gram for each string, and summing them up. This can be done in O(q(n1 + n2)) time
since it is a simple scan of the suffix array and lcp arrays of length |z1z2| = O(q(n1 + n2)).

3.4.2 Optimal Substring Patterns of Length q

Given two sets of strings, finding string patterns that are frequent in one set and not in the other,
is an important problem in string data mining, with many problem formulations and types of
patterns to be considered, e.g.: in Bioinformatics [6], Machine Learning (optimal patterns [3]),
and more recently Knowledge Discovery in Databases (emerging patterns [10]). A simple op-
timal q-gram pattern discovery problem can be defined as follows: Let T1 = {T1,1, . . . , T1,m1}
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and T2 = {T2,1, . . . , T2,m2} be two multisets of strings. The problem is to find the q-gram p

which gives the highest (or lowest) score according to some scoring function that depends only
on |T1|, |T2|, and the number of strings respectively in T1 and T2 for which p is a substring.
For uncompressed strings, the problem can be solved in O(N) time, where N is the total length
of the strings in both T1 and T2. This can be done by using a generalized suffix array of T1 and
T2, which is a suffix array constructed for all suffixes of strings in T1 and T2, and each suffix
is also identified with the index of the string it comes from. We can then simply scan this suffix
array and its corresponding lcp array to identify intervals corresponding to q-grams as before,
and for each interval, count the number of distinct strings that come respectively from T1 and
T2. We prepare a bit array of size m1 + m2 where each bit corresponds to a string in either
T1 or T2, and represents whether a suffix coming from the string has occurred in the interval.
Then, the counting for each interval, as well as the re-setting of the bit array, can be conducted
in time linear in the size of the interval, resulting in a total of O(N) time.

For the SLP compressed version of this problem, the input is two multisets of SLPs, T1 =

{T1,1, . . . , T1,m1} and T2 = {T2,1, . . . , T2,m2}. For each SLP Ti,j , we construct the string zi,j

and weight array wi,j as in Algorithm 3. Notice that the number of occurrences of q-grams in
Ti,j correspond to the total weight of their occurrences in zi,j weighted by wi,j . Therefore, the
problem can be reduced to the problem of finding the optimal q-gram from two sets of weighted
strings, {z1,1, . . . , z1,m1} and {z2,1, . . . , z2,m2}. Since the total length of zi,j is O(qM), where
M is the total number of variables in T1 and T2, the problem can be solved in O(qM) time by
applying the algorithm mentioned above for the uncompressed case, that incorporates weights.

3.4.3 Different Lengths

Standard techniques on suffix trees [29] can be used to modify and extend our algorithm to
consider all substrings of length not only q, but all lengths up-to and including q. Note that
substrings of length less than q can be associated to a q-gram that starts at the same position.
For example, an occurrence of q-gram T [u : u + q − 1] implies an occurrence of its prefixes,
1-gram T [u : u], 2-gram T [u : u + 1], . . . , and (q − 1)-gram T [u : u + q − 2], and hence,
these substrings can be counted with respect to the q-gram T [u : u+ q− 1]. Here, although the
q-gram T [u : u+ q − 1] contains other substrings of length less than q, such substrings will be
counted with respect to a different q-gram. For example, the 1-gram T [u + 1 : u + 1], . . . , and
(q−1)-gram T [u+1 : u+q−1] will be counted with respect to q-gram T [u+1 : u+q], 1-gram
T [u+ 2 : u+ 2], . . . , and (q − 2)-gram T [u+ 2 : u+ q − 1] with q-gram T [u+ 2 : u+ q + 1],
and so on. Therefore, occurrences of substrings with lengths at most q are all represented in
the string z and weight array w as computed in Algorithm 3, where the weight of a substring
that starts at position i is w[i]. A slight technicality is that the last q − 1 positions of the text do
not have a corresponding q-gram which starts at that same position, and cannot be counted this
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way. This can be overcome simply by adding T [N − q + 2 : N ]$ to z, and 1q−10 to w, where $

is a character which does not appear elsewhere in T .
Next, consider a suffix tree of the modified z, where each leaf that corresponds to suffix

z[i : |z|] is weighted by w[i]. Then, for any (possibly implicit) node v in the suffix tree that
represents string P of length at most q, the sum of the weights on the leaves in the subtree rooted
at v is Occ(T, P ). For the applications discussed above, although the number of substrings of
length at most q can be as large as Θ(q2n), the O(qn) time complexity can be maintained. This
is because the size of the suffix tree is O(qn), and there exist only O(qn) substrings with distinct
frequencies, which correspond to nodes of the suffix tree. Therefore, the computations of the
extra substrings can be summarized with respect to them. The algorithm can also be simulated
on suffix and LCP arrays [40].

When extending the problem of finding the optimal substring pattern mentioned in Sec-
tion 3.4.2 to include all lengths up-to and including q, there is a technicality in counting the
number of distinct strings that contain the pattern. This problem can be solved by applying the
algorithm of [31] to two sets of strings.
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Chapter 4

Faster Algorithm for q-gram Frequencies

In Chapter 3, we considered the problem of computing all q-gram frequencies in a string T

of length N when given an SLP of size n representing T , and proposed an O(qn) algorithm
to solve the problem. In this Chapter, we improve the O(qn) algorithm both theoretically and
practically. The drawback of the O(qn) algorithm is that it runs slowly when q is large since
q can be O(N) in theory, and the total length of the decompressed strings can be O(Nn) and
the algorithm requires O(Nn) time in such situation. We introduce a q-gram neighbor relation
on SLP variables, in order to reduce the redundancy in the partial decompression of T which is
performed in the O(qn) algorithm. Using this relation, we are able to convert the problem to a
weighted q-gram frequencies problem on a weighted trie, whose size is at most N − dup(q, T ).
Here, dup(q, T ) is a quantity that represents the amount of redundancy that the SLP captures
with respect to q-grams. Since the size of the trie is also bounded by O(qn), the time complex-
ity of our new algorithm is O(min{qn,N − dup(q, T )}), improving on our previous O(qn)

algorithm when q = Ω(N/n). The computational experiments show that our new approach
achieves a practical speed up as well, for all values of q.

This result primarily appeared in [27].

4.1 O(N − dup(q, T )) time Algorithm on SLPs

We now describe our new algorithm which solves the q-gram frequencies problem on SLPs.
The new algorithm basically follows the previous O(qn) algorithm, but is an elegant refinement.
The reduction for the previous O(qn) algorithm leads to a fairly large amount of redundantly
decompressed regions of the text as q increases. This is due to the fact that the ti’s are considered
independently for each variable Xi, while neighboring q-grams that are stabbed by different
variables actually share q − 1 characters. The key idea of our new algorithm is to exploit this
redundancy. (See Figure 4.1.) In what follows, we introduce the concept of q-gram neighbors,
and reduce the q-gram frequencies problem on SLP to a weighted q-gram frequencies problem
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Xℓ(i)
Xr(i)

Xi

Xj

Xℓ(j) Xr(j)

ti

tj

q - 1

Xℓ(j) Xr(j)

Xj

Xi
Xℓ(i) Xr(i)

tj

ti

q - 1

Figure 4.1: q-gram neighbors and redundancies. (Left) Xj is a right q-gram neighbor of Xi,
and Xi is a left q-gram neighbor of Xj . Note that the right q-gram neighbor of Xi is uniquely
determined since |Xr(i)| ≥ q and it must be a descendant on the left most path rooted at Xr(i).
However, Xj may have other left q-gram neighbors, since |Xℓ(j)| < q, and they must be ances-
tors of Xj . ti (resp. tj) represents the string corresponding to the union of intervals [u : u+q−1]
where X⟨ξT (u,u+q−1)⟩ = Xi (resp. X⟨ξT (u,u+q−1)⟩ = Xj). The shaded region depicts the string
which is redundantly decompressed, if both ti and tj are considered independently. (Right)
Shows the reverse case, when |Xr(i)| < q.

on a weighted tree.

4.1.1 q-gram Neighbor Graph

We say that Xj is a right q-gram neighbor of Xi (i ̸= j), or equivalently, Xi is a left q-gram
neighbor of Xj , if for some integer u ∈ [1 : N − q], X⟨ξT (u,u+q−1)⟩ = Xi and X⟨ξT (u+1,u+q)⟩ =

Xj . Notice that |Xi| and |Xj| are both at least q if Xi and Xj are right or left q-gram neighbors
of each other.

Definition 2. For q ≥ 2, the right q-gram neighbor graph of SLP T = {Xi → expri}ni=1 is the
directed graph Gq = (V,Er), where

V = {Xi | i ∈ {1, . . . , n}, |Xi| ≥ q}
Er = {(Xi, Xj) | Xj is a right q-gram neighbor of Xi }

Note that there can be multiple right q-gram neighbors for a given variable. However, the
total number of edges in the neighbor graph is bounded by 2n, as will be shown below.

Lemma 5. Let Xj be a right q-gram neighbor of Xi. If, |Xr(i)| ≥ q, then Xj is the label of the
deepest node on the left-most path of the derivation tree rooted at a node labeled Xr(i) whose
length is at least q. Otherwise, if |Xr(i)| < q, then Xi is the label of the deepest node on the
right-most path rooted at a node labeled Xℓ(j) whose length is at least q.
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Proof. Suppose |Xr(i)| ≥ q. Let u be a position, where X⟨ξT (u,u+q−1)⟩ = Xi and X⟨ξT (u+1,u+q)⟩ =

Xj . Then, since the interval [u+1 : u+ q] is a prefix of itv(Xr(i)), Xj must be on the left most
path rooted at Xr(i). Since Xj = X⟨ξT (u+1,u+q)⟩, the lemma follows from the definition of ξT .
The case for |Xr(i)| < q is symmetrical and can be shown similarly.

Lemma 6. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the number of
edges in the right q-gram neighbor graph Gq of T is at most 2n.

Proof. Suppose Xj is a right q-gram neighbor of Xi. From Lemma 5, we have that if |Xr(i)| ≥ q,
the right q-gram neighbor of Xi is uniquely determined and that |Xℓ(j)| < q. (See Figure 4.1
(Left)) Similarly, if |Xr(i)| < q, |Xℓ(j)| ≥ q and the left q-gram neighbor of Xj is uniquely Xi.
(See Figure 4.1 (Right)) Therefore,

n∑
i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| ≥ q}|+
n∑

i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| < q}|

=
n∑

i=1

|{(Xi, Xj) ∈ Er | |Xr(i)| ≥ q}|+
n∑

i=1

|{(Xi, Xj) ∈ Er | |Xℓ(j)| ≥ q}| ≤ 2n.

Since the number of unique left q-gram neighbors is bounded by n (one for each variable), the
total number of right q-gram neighbors is 2n.

Lemma 7. For an arbitrary SLP T = {Xi → expri}ni=1 and integer q ≥ 2, the right q-gram
neighbor graph Gq of T can be constructed in O(n) time.

Proof. For any variable Xi, let lmq(Xi) and rmq(Xi) respectively represent the index of the
label of the deepest node with length at least q on the left-most and right-most path in the
derivation tree rooted at Xi, or null if |Xi| < q. These values can be computed for all variables
in a total of O(n) time based on the following recursion: If (Xi → a) ∈ T for some a ∈ Σ,
then lmq(Xi) = rmq(Xi) = null . For (Xi → Xℓ(i)Xr(i)) ∈ T ,

lmq(Xi) =


null if |Xi| < q,

i if |Xi| ≥ q and |Xℓ(i)| < q,

lmq(Xℓ(i)) otherwise.

rmq(Xi) can be computed similarly. Finally,

Er = {(Xi, Xlmq(Xr(i))) | lmq(Xr(i)) ̸= null , i = 1, . . . , n}
∪{(Xrmq(Xℓ(i)), Xi) | rmq(Xℓ(i)) ̸= null , i = 1, . . . , n}.
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Lemma 8. Let Gq = (V,Er) be the right q-gram neighbor graph of SLP T = {Xi = expri}ni=1

representing string T , and let Xi1 = X⟨ξT (1,q)⟩. Any variable Xj ∈ V (i1 ̸= j) is reachable from
Xi1 , that is, there exists a directed path from Xi1 to Xj in Gq.

Proof. Straightforward, since any q-gram of T except for the left most T ([1 : q]) has a q-gram
on its left.

4.1.2 Weighted q-gram Frequencies Over a Trie

From Lemma 8, we have that the right q-gram neighbor graph is connected. Consider an arbi-
trary directed spanning tree rooted at Xi1 = X⟨ξT (1,q)⟩ which can be obtained in linear time by
a depth first traversal on Gq from Xi1 . We define the label label(Xi) of each node Xi of the
q-gram neighbor graph, by

label(Xi) = ti[q : |ti|]

where ti = suf (Xℓ(i), q − 1)pre(Xr(i), q − 1) as before. For convenience, let Xi0 be a dummy
variable such that label(Xi0) = T ([1 : q − 1]), and Xr(i0) = Xi1 (and so (Xi0 , Xi1) ∈ Er).

Lemma 9. Fix a directed spanning tree on the right q-gram neighbor graph of SLP T , rooted at
Xi0 . Consider a directed path Xi0 , . . . , Xim on the spanning tree. The weighted q-gram frequen-
cies on the string obtained by the concatenation label(Xi0)label(Xi1) · · · label(Xim), where
each occurrence of a q-gram that ends in a position in label(Xij) is weighted by vOcc(Xij), is
equivalent to the weighted q-gram frequencies of strings {ti1 , . . . tim} where each q-gram in tij
is weighted by vOcc(Xij).

Proof. Proof by induction: for m = 1, we have that label(Xi0)label(Xi1) = ti1 . All q-
grams in ti1 end in ti1 and so are weighted by vOcc(Xi1). When label(Xij) is added to
label(Xi0) · · · label(Xij−1

), |label(Xij)| new q-grams are formed, which correspond to q-grams
in tij , i.e. |tij | = q − 1 + |label(Xij)|, and tij is a suffix of label(Xij−1

)label(Xij). All the new
q-grams end in label(Xij) and are thus weighted by vOcc(Xij).

From Lemma 9, we can construct a weighted trie Υ based on a directed spanning tree of Gq

and label(), where the weighted q-grams in Υ (represented as length-q paths) correspond to the
occurrence frequencies of q-grams in T 1.

Lemma 10. Υ can be constructed in time linear in its size.

Proof. See Algorithm 6. Let G be the q-gram neighbor graph. We construct Υ in a depth first
manner starting at Xi0 . The crux of the algorithm is that rather than computing label() separately

1A minor technicality is that a node in Υ may have multiple children with the same character label, but this
does not affect the time complexities of the algorithm.
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Algorithm 6: Constructing weighted trie from SLP
1 Construct right q-gram neighbor graph G = (V,Er);
2 Calculate vOcc(Xi) and |label(Xi)| for i = 1, . . . , n;
3 for i = 0, . . . , n do visited[i] = false;
4 Xi1 = X⟨ξT (1,q)⟩ = lmq(Xn);
5 Define Xi0 so that Xr(i0) = Xi1 and |label(Xi0)| = q − 1;
6 root ← new node; // root of resulting trie
7 BuildDepthFirst(i0, root);
8 return root

Procedure BuildDepthFirst(i, trieNode)
// add prefix of r(i) to trieNode while right neighbors are

unique
1 l← 0; k ← i;
2 while true do
3 l← l + |label(Xk)|;
4 visited[k]← true;

// exit loop if right neighbor might be non-unique or is
visited

5 if |Xr(k)| < q or visited[lmq(Xr(k))] = true then break;
6 k ← lmq(Xr(k));

7 add new branch from trieNode with string Xr(i)([1 : l]);
8 let end of new branch be newTrieNode;
// If |Xr(k)| < q, there may be multiple right neighbors.
// If |Xr(k)| ≥ q, nothing is done because it was already

visited.
9 for Xc ∈ {Xj | (Xk, Xj) ∈ Er} do

10 if visited[c] = false then BuildDepthFirst(Xc, newTrieNode);

for each variable, we are able to aggregate the label()s and limit all partial decompressions of
variables to prefixes of variables, so that Lemma 3 can be used.

Any directed acyclic path on G starting at Xi0 can be segmented into multiple sequences of
variables, where each sequence Xij , . . . , Xik is such that j is the only integer in [j : k] such that
j = 0 or |Xr(ij−1)| < q. From Lemma 5, we have that Xij+1

, . . . , Xik are uniquely determined.
If j > 0, label(Xij) is a prefix of val(Xr(ij)) since |Xr(ij−1)| < q (see Figure 4.1 Right), and
if j = 0, label(Xi0) is again a prefix of val(Xr(i0)) = val(Xi1). It is not difficult to see that
label(Xij) · · · label(Xik) is also a prefix of Xr(ij) since Xij+1

, . . . , Xik are all descendants of
Xr(ij), and each label() extends the partially decompressed string to consider consecutive q-
grams in Xr(ij). Since prefixes of variables of SLPs can be decompressed in time proportional
to the output size with linear time pre-processing (Lemma 3), the lemma follows.
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We only illustrate how the character labels are determined in the pseudo-code of Algo-
rithm 6. It is straightforward to assign a weight vOcc(Xk) to each node of Υ that corresponds
to label(Xk).

Lemma 11. The number of edges in Υ is (q−1)+
∑
{|ti|− (q−1) | |Xi| ≥ q, i = 1, . . . , n} =

N − dup(q, T ) where

dup(q, T ) =
∑
{(vOcc(Xi)− 1) · (|ti| − (q − 1)) | |Xi| ≥ q, i = 1, . . . , n}}

Proof. (q − 1) +
∑
{|ti| − (q − 1) | |Xi| ≥ q, i = 1, . . . , n} is straight forward from the

definition of label(Xi) and the construction of Υ. Concerning dup, each variable Xi occurs
vOcc(Xi) times in the derivation tree, but only once in the directed spanning tree. This means
that for each occurrence after the first, the size of Υ is reduced by |label(Xi)| = |ti| − (q − 1)

compared to T . Therefore, the lemma follows.

To efficiently count the weighted q-gram frequencies on Υ, we can use suffix trees. A suffix
tree for a trie is defined as a generalized suffix tree for the set of strings represented in the trie
as leaf to root paths2. The following is known.

Lemma 12 ([65]). Given a trie of size m, the suffix tree for the trie can be constructed in O(m)

time and space.

With a suffix tree, it is a simple exercise to solve the weighted q-gram frequencies problem
on Υ in linear time. In fact, it is known that the suffix array for the common suffix trie can also
be constructed in linear time [19], as well as its longest common prefix array [43], which can
also be used to solve the problem in linear time.

Corollary 1. The weighted q-gram frequencies problem on a trie of size m can be solved in
O(m) time and space.

From the above arguments, the theorem follows.

Theorem 2. The q-gram frequencies problem on an SLP T of size n, representing string T can
be solved in O(min{qn,N − dup(q, T )}) time and space.

Note that since each q ≤ |ti| ≤ 2(q− 1), and |label(Xi)| = |ti| − (q− 1), the total length of
decompressions made by the algorithm, i.e. the size of the reduced problem, is at least halved
and can be as small as 1/q (e.g. when all |ti| = q), compared to the previous O(qn) algorithm.

2When considering leaf to root paths on Υ, the direction of the string is the reverse of what is in T . However,
this is merely a matter of representation of the output.
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Table 4.1: A comparison of the size of Υ and the total length of strings ti for SLPs that represent
textual data from Pizza & Chili Corpus. The length of the original text is 209,715,200. The
SLPs were constructed by RE-PAIR [45].

XML DNA ENGLISH PROTEINS
q

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

∑
|ti| size of Υ

2 19,082,988 9,541,495 46,342,894 23,171,448 37,889,802 18,944,902 64,751,926 32,375,964
3 37,966,315 18,889,991 92,684,656 46,341,894 75,611,002 37,728,884129,449,835 64,698,833
4 55,983,397 27,443,734139,011,475 69,497,812112,835,471 56,066,348191,045,216 93,940,205
5 72,878,965 35,108,101185,200,662 92,516,690148,938,576 73,434,080243,692,809114,655,697
6 88,786,480 42,095,985230,769,162114,916,322183,493,406 89,491,371280,408,504123,786,699
7 103,862,589 48,533,013274,845,524135,829,862215,975,218103,840,108301,810,933127,510,939
8 118,214,023 54,500,142315,811,932153,659,844246,127,485116,339,295311,863,817129,618,754
9 131,868,777 60,045,009352,780,338167,598,570273,622,444126,884,532318,432,611131,240,299
10 144,946,389 65,201,880385,636,192177,808,192298,303,942135,549,310325,028,658132,658,662
15 204,193,702 86,915,492477,568,585196,448,347379,441,314157,558,436347,993,213138,182,717
20 255,371,699104,476,074497,607,690200,561,823409,295,884162,738,812364,230,234142,213,239
50 424,505,759157,069,100530,329,749206,796,322429,380,290165,882,006416,966,397156,257,977
100537,677,786192,816,929536,349,226207,838,417435,843,895167,313,028463,766,667168,544,608

4.2 Computational Experiments

We first evaluate the size of the trie Υ induced from the right q-gram neighbor graph, on which
the running time of the new algorithm of Section 4.1 is dependent. We used data sets obtained
from Pizza & Chili Corpus, and constructed SLPs using the RE-PAIR [45] compression algo-
rithm. Each data is of size 200MB. Table 4.1 shows the sizes of Υ for different values of q,
in comparison with the total length of strings ti, on which the previous O(qn)-time algorithm
of Section 3.2 works. We cumulated the lengths of all ti’s only for those satisfying |ti| ≥ q,
since no q-gram can occur in ti’s with |ti| < q. Observe that for all values of q and for all data
sets, the size of Υ (i.e., the total number of characters in Υ) is smaller than those of ti’s and the
original string.

The construction of the suffix tree or array for a trie, as well as the algorithm for Lemma 3,
require various tools such as level ancestor queries [4, 5, 18] for which we did not have an effi-
cient implementation. Therefore, we try to assess the practical impact of the reduced problem
size using a simplified version of our new algorithm. We compared three algorithms (NSA,
SSA, STSA) that count the occurrence frequencies of all q-grams in a text given as an SLP.
NSA is the O(N)-time algorithm which works on the uncompressed text, using suffix and LCP
arrays. SSA is our previous O(qn)-time algorithm [25], and STSA is a simplified version of
our new algorithm. STSA further reduces the weighted q-gram frequencies problem on Υ, to
a weighted q-gram frequencies problem on a single string as follows: instead of constructing
Υ, each branch of Υ (on line 7 of BuildDepthFirst) is appended into a single string. The q-
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Table 4.2: Running time in seconds for SLPs that represent textual data from Pizza & Chili
Corpus. The SLPs were constructed by RE-PAIR [45]. Bold numbers represent the fastest time
for each data and q. STSA is faster than SSA whenever q > 3.

XML DNA ENGLISH PROTEINS
q NSA SSA STSA NSA SSA STSA NSA SSA STSA NSA SSA STSA
2 41.67 6.53 7.63 61.28 19.27 22.73 56.77 16.31 19.23 60.16 27.13 30.71
3 41.46 10.96 10.92 61.28 29.14 31.07 56.77 25.58 25.57 60.53 47.53 50.65
4 41.87 16.27 14.5 61.65 42.22 41.69 56.77 37.48 34.95 60.86 74.89 73.51
5 41.85 21.33 17.42 61.57 56.26 54.21 57.09 49.83 45.21 60.53 101.64 79.1
6 41.9 25.77 20.07 60.91 73.11 68.63 57.11 62.91 55.28 61.18 123.74 75.83
7 41.73 30.14 21.94 60.89 90.88 82.85 56.64 75.69 63.35 61.14 136.12 72.62
8 41.92 34.22 23.97 61.57 110.3 93.46 57.27 87.9 69.7 61.39 142.29 71.08
9 41.92 37.9 25.08 61.26 127.29 96.07 57.09 100.24 73.63 61.36 148.12 69.88
10 41.76 41.28 26.45 60.94 143.31 96.26 57.43 110.85 75.68 61.42 149.73 69.34
15 41.95 58.21 32.21 61.72 190.88 84.86 57.31 146.89 70.63 60.42 160.58 66.57
20 41.82 74.61 39.62 61.36 203.03 83.13 57.65 161.12 64.8 61.01 165.03 66.09
50 42.07 134.38 53.98 61.73 216.6 78.0 57.02 166.67 57.89 61.05 181.14 66.36
100 41.81 181.23 60.18 61.46 217.05 75.91 57.3 166.67 56.86 60.69 197.33 69.9

grams that are represented in the branching edges of Υ can be represented in the single string,
by redundantly adding suf (Xr(i)([1 : l]), q − 1) in front of the string corresponding to the next
branch. This leads to some duplicate partial decompression, but the resulting string is still
always shorter than the string produced by our previous algorithm [25]. The partial decom-
pression of Xr(i)([1 : l]) is implemented using a simple O(h + l) algorithm, where h is the
height of the SLP which can be as large as O(n). These implementations are available at
http://code.google.com/p/qshi/ along with the implementations of Section 3.3.

All computations were conducted on a Mac Pro (Mid 2010) with MacOS X Lion 10.7.2,
and 2 x 2.93GHz 6-Core Xeon processors and 64GB Memory, only utilizing a single pro-
cess/thread at once. The program was compiled using the GNU C++ compiler (g++) 4.6.2 with
the -Ofast option for optimization. The running times were measured in seconds, after read-
ing the uncompressed text into memory for NSA, and after reading the SLP that represents the
text into memory for SSA and STSA. Each computation was repeated at least 3 times, and the
average was taken.

Table 4.2 summarizes the running times of the three algorithms. SSA and STSA computed
weighted q-gram frequencies on ti and Υ, respectively. Since the difference between the total
length of ti and the size of Υ becomes larger as q increases, STSA outperforms SSA when the
value of q is not small. In fact, in Table 4.2 STSA was faster than SSA for all values of q > 3.
STSA was even faster than NSA on the XML data whenever q ≤ 20. What is interesting is that
STSA outperformed NSA on the ENGLISH data when q = 100.
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Chapter 5

Algorithm for Non-Overlapping q-gram
Frequencies

In Chapter 3 and 4, we considered the q-gram frequencies problem on SLPs, and how to ef-
ficiently solve the problem when the input text is given as an SLP. In this Chapter, we further
consider a variation of the problem, where we consider non-overlapping occurrence frequencies
of q-grams. The non-overlapping occurrence frequency nOcc(T, P ) of a string P in a string T

is defined as the maximum number of non-overlapping occurrences of P in T [2]. The precise
definition of the new problem is defined as follows.

Problem 2 (Non-overlapping q-gram frequencies on SLP). Given an SLP T of size n that
describes string T and a positive integer q, compute nOcc(T, P ) for all q-grams P ∈ Σq.

For uncompressed texts, the problem can be solved in O(N) time, by applying string indices
such as suffix arrays. A similar problem is the string statistics problem [2], which asks for the
non-overlapping occurrence frequency of a given string P in string T . The problem can be
solved in O(|P |) time for any P , provided that the string is pre-processed in O(N logN) time
using the sophisticated algorithm of [7]. However, note that the preprocessing requires only
O(N) time if occurrences are allowed to overlap. This perhaps indicates the intrinsic difficulty
that arises when considering overlaps.

For SLPs, if q = 1 then since no occurrences of a 1-gram overlap, the 1-gram non-overlapping
frequency is simply the number of occurrences of the corresponding character in string T . This
can be computed in a total of O(n) time, since nOcc(T, a) =

∑
Xi=a vOcc(Xi) for each a ∈ Σ.

So we consider the problem for q ≥ 2. For q = 2, the problem for SLP was first considered
in [32], where an algorithm for q = 2 running in O(n4 log n) time and O(n3) space was pre-
sented. However, the algorithm cannot be readily extended to handle q > 2. Intuitively, the
problem for q = 2 is much easier compared to larger values of q, since there is only one way
for a 2-gram to overlap, while there can be many ways that a longer q-gram can overlap. In this
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chapter, we present the first algorithm for calculating the non-overlapping occurrence frequen-
cies of all q-grams, that works for any q ≥ 2, and runs in O(q2n) time and O(qn) space. Not
only do we solve a more general problem, but the complexity is greatly improved compared to
previous work.

In the following sections, we first describe an alternative algorithm to compute 2-gram non-
overlapping frequencies on SLPs, and then give an extended algorithm for q ≥ 3.

This result primarily appreared in [26].

5.1 Simple Linear Time Algorithm on SLPs for q = 2

Note that for convenience Xi[j] and Xi[j : k] denote val(Xi)[j] and val(Xi)[j : k], respectively.
(See Chapter 2.3.)

Problem 3 (Non-overlapping 2-gram frequencies on SLP). Given an SLP T that describes
string T , compute nOcc(T, P ) for all 2-grams P ∈ Σ2.

Let plen(Xi) = max{k | Xi[j] = pre(Xi, 1), 1 ≤ ∀j ≤ k} and slen(Xi) = min{k |
Xi[j] = suf (Xi, 1), k ≤ ∀j ≤ |Xi|}. That is, plen(Xi) and slen(Xi) are the length of the
maximum runs of the first and the last characters of val(Xi), respectively. We can compute
plen(Xi) for all variables Xi in a total of O(n) time, as follows:

plen(Xi) =


1 if Xi = a,

|Xℓ(i)|+ plen(Xr(i)) if Xi = Xℓ(i)Xr(i), plen(Xℓ(i)) = |Xℓ(i)|, Xℓ(i)[1] = Xr(i)[1],

plen(Xℓ(i)) otherwise.

slen(Xi) can be computed similarly in O(n) time.

Theorem 3. Problem 3 can be solved in O(n) time.

Proof. Algorithm 7 shows a pseudo-code of our algorithm to compute non-overlapping fre-
quences of 2-grams from a given SLP. We initialize list z to be empty.

Firstly, let us consider a 2-gram of form ab, where a ̸= b ∈ Σ. It is clear that no occurrences
of such a 2-gram overlap. Therefore, we simply compute the number of occurrences of ab. By
Lemma 4, we have nOcc(T, ab) =

∑
vOcc(Xi), where Xi = Xℓ(i)Xr(i) is any variable such

that suf (Xℓ(i), 1) = a and pre(Xr(i), 1) = b. We append the pair (ab, vOcc(Xi)) to list z (in
line 6).

Now we consider a 2-gram of form aa, where a ∈ Σ. A key idea is to find an interval that
corresponds to a maximal repetition of a in T . Namely, if there is an interval [u, v] (1 ≤ u ≤
v ≤ N ) such that T [u : v] = av−u+1, T [u− 1] ̸= a, and T [v + 1] ̸= a, then we know that there
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are at most ⌊(v−u+1)/2⌋ non-overlapping occurrences of aa in T [u−1 : v+1]. By summing
up this value for all such intervals, we obtain nOcc(T, aa). To find such intervals, we process
variables Xi = Xℓ(i)Xr(i) in increasing order of i. There are three cases to consider (see also
Figure 5.1):

1. When suf (Xℓ(i), 1) = pre(Xr(i), 1) = a, slen(Xℓ(i)) < |Xℓ(i)| and plen(Xr(i)) < |Xr(i)|
(line 13). For any interval [u′, v′] ∈ itv(Xi), let j1 = u′ + |Xℓ(i)| − slen(Xℓ(i)) − 1

and j2 = u′ + |Xℓ(i)| + plen(Xr(i)), it holds that T [j1] ̸= a and T [j2] ̸= a. Since there
are at most ⌊(slen(Xℓ(i)) + plen(Xr(i)))/2⌋ ≥ 1 non-overlapping occurrences of aa in
T [j1+1 : j2− 1], we append pair (aa, vOcc(Xi) · ⌊(slen(Xℓ(i))+ plen(Xr(i)))/2⌋) to list
z.

2. When suf (Xℓ(i), 1) ̸= pre(Xr(i), 1) and 1 < slen(Xℓ(i)) < |Xℓ(i)| (line 9). Let suf (Xℓ(i),

1) = a. For any interval [u′, v′] ∈ itv(Xi), it holds that T [u′+|Xℓ(i)|−slen(Xℓ(i))−1] ̸= a

and T [u′ + |Xℓ(i)|] ̸= a. Since there are at most ⌊slen(Xℓ(i))/2⌋ ≥ 1 non-overlapping
occurrences of aa in T [u′ + |Xℓ(i)| − slen(Xℓ(i))− 1 : u′ + |Xℓ(i)|], we append pair (aa,
vOcc(Xi) · ⌊slen(Xℓ(i))/2⌋) to list z.

3. When suf (Xℓ(i), 1) ̸= pre(Xr(i), 1) and 1 < plen(Xr(i)) < |Xr(i)| (line 11). This is
symmetric to Case 2, and we append pair (bb, vOcc(Xi) · ⌊plen(Xr(i))/2⌋) to list z, where
b = pre(Xr(i), 1).

For convenience, we assume that T starts and ends with special characters # and $ that do
not occur anywhere else in T , respectively. Then we can cope with the last variable Xn as
described above. By Lemma 4, we are guaranteed to obtain the non-overlapping frequencies
for all 2-grams.

For all variables Xi, pre(Xi, 1), suf (Xi, 1), plen(Xi), and slen(Xi) can be computed in a
total of O(n) time, as descrived above. The amortized number of 2-grams appended to w for
each variable is at most one, and hence the size of z does not exceed 2n. Assuming an integer
alphabet, sorting the elements in z using radix sort takes O(n) time (line 14). Finally, since
the same 2-gram will appear consecutively in z after the sort, we may scan z and sum up the
occurrences for each distinct 2-gram in O(n) time (line 15).

5.2 O(q2n) time Algorithm on SLPs for q > 2

5.2.1 Key Ideas

Solving Problem 2 for q ≥ 3 is essentially more difficult than when q ≤ 2, since q-grams with
q ≥ 3 can have more than 1 period. This implies that computing plen(Xi) and slen(Xi) does
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Xi

Xℓ

slen(Xℓ) plen(Xr)

b ba a aa ・・・ ・・・

Xr

slen(Xℓ) plen(Xr)

b aa b ba ・・・ ・・・

aa: vOcc(Xi) ・  slen(Xℓ)+plen(Xr) / 2 aa: vOcc(Xi) ・  slen(Xℓ) / 2

bb: vOcc(Xi) ・  plen(Xr) / 2

Case 1 Cases 2 and 3 Xi

Xℓ Xr

Figure 5.1: Non-overlapping frequencies corresponding to Xi

not help. To deal with the general case q ≥ 3, we introduce an extended notion of plen(Xi) and
slen(Xi), called longest overlapping covers.

For any string T and positive integers q and j (1 ≤ j ≤ j + q − 1 ≤ N ), the longest
overlapping cover of the q-gram P = T [j : j + q − 1] w.r.t. position j of T is an ordered pair
locq(T, j) = (b, e) of positions in T which is defined as:

locq(T, j) = argmax
(b,e)(e− b)

∣∣∣∣∣∣∣∣∣
(b, e) ∈ Occ(T, P )× ((q − 1)⊕Occ(T, P )),

b ≤ j ≤ j + q − 1 ≤ e,

∀k ∈ [b : e− q] ∩Occ(T, P ),

[k + 1 : min{k + q − 1, e− q + 1}] ∩Occ(T, P ) ̸= ∅


Namely, locq(T, j) represents the beginning and end positions of the maximum chain of over-
lapping occurrences of q-gram T [j : j + q − 1] that contains position j. For example, con-
sider string T = aaabaabaaabaabaaaabaa of length 21. For q = 5 and j = 9, we have
locq(T, j) = (2, 16), since T [2 : 6] = T [5 : 9] = T [9 : 13] = T [12 : 16] = aabaa. Note that
T [17 : 21] = aabaa is not contained in this chain since it does not overlap with T [12 : 16].

Lemma 13. Given a string T and integers q, j, the longest cover locq(T, j) can be computed in
O(N) time.

Proof. Using, for example, the KMP algorithm [44], we can obtain a sorted list of Occ(T, T [j :
j + q − 1]) in O(N) time. We can just scan this list forwards and backwards, to easily obtain b

and e.

For a variable Xi = Xℓ(i)Xr(i) and a position 1 ≤ j ≤ |Xi| − q + 1, a longest overlapping
cover (b, e) = locq(Xi, j) is said to be closed in Xi if q−1 < b < |Xℓ(i)|+q and |Xℓ(i)|−q+1 <
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Algorithm 7: Algorithm for computing 2-gram non-overlapping frequencies from SLP
Input: SLP T = {Xi}ni=1 representing string T .
Output: nOcc(T, P ) for all 2-grams P ∈ Σ2.

1 Compute plen(Xi), slen(Xi), pre(Xi, 1), and suf (Xi, 1) for all 1 ≤ i ≤ n;
2 z ← []; // list to hold pairs: (2-gram, non-overlapping freq
in Xi)

3 for i← 1 to n do
4 if Xi = Xℓ(i)Xr(i) then
5 a← suf (Xℓ(i), 1); b← pre(Xr(i), 1);
6 if a ̸= b then
7 z.append((ab, vOcc(Xi)));
8 if 1 < slen(Xℓ(i)) < |Xℓ(i)| then
9 z.append((aa, vOcc(Xi) · ⌊slen(Xℓ(i))/2⌋));

10 if 1 < plen(Xr(i)) < |Xr(i)| then
11 z.append((bb, vOcc(Xi) · ⌊plen(Xr(i))/2⌋));

12 else if slen(Xℓ(i)) < |Xℓ(i)| and plen(Xr(i)) < |Xr(i)| then // now a = b
13 z.append((aa, vOcc(Xi) · ⌊(slen(Xℓ(i)) + plen(Xr(i)))/2⌋));

14 RadixSort(z); // same 2-grams now appear consecutively in z.
15 Scan z from beginning to end, to sum up occurrences of each distinct 2-gram;

e < |Xi|−q+2. For the special case of i = n, we say that (b, e) is closed in Xn if b < |Xℓ(i)|+q

and |Xℓ(i)| − q + 1 < e.

Theorem 4. Problem 2 can be solved in O(q2n) time, provided that, for all variables Xi,
(b, e) = locq(Xi, j) and nOcc(Xi[b : e], s) are already computed for all positions j s.t. max{1, |Xℓ(i)|−
2q + 3} ≤ j ≤ min{|Xℓ(i)|+ q − 1, |Xi| − q + 1}, where s = Xi[j : j + q − 1].

Proof. Algorithm 8 shows a pseudo-code of our algorithm to solve Problem 2.
Consider q-gram s = Xi[j : j + q − 1] at position j for which (b, e) = locq(Xi, j) is closed

in Xi. A key observation is that, if (b, e) is closed in Xi, then (b, e) is never closed in Xℓ(i) or
Xr(i). Therefore, by summing up vOcc(Xi) · nOcc(Xi[b : e], s) for each closed (b, e) in Xi, for
all such variables Xi, we obtain nOcc(T, s). The range of j implies that all covers (b, e) that
satisfy b < |Xℓ(i)|+ q and |Xℓ(i)| − q+1 < e, are considered, and Line 14 is sufficient to check
if (b, e) is closed.

For all 1 ≤ i ≤ n, vOcc(Xi) can be computed in O(n) time, and ti = pre(Xi, 2q −
2)suf (Xi, 2q−2) can be computed in O(qn) time and space. The problem amounts to summing
up the values of vOcc(Xi) · nOcc(Xi[b : e], s) for each q-gram s contained in each ti, and can
be reduced to a weighted q-gram frequencies problem on string z and integer array w of length
O(qn), which can be solved in O(qn) time by Algorithm 5 in Section 3.2.
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Algorithm 8: Computing q-gram non-overlapping frequencies from SLP
Input: SLP T = {Xi}ni=1 representing string T , integer q ≥ 2.
Output: nOcc(T, P ) for all q-grams P ∈ Σq where Occ(T, P ) ̸= ∅.

1 Compute vOcc(Xi) for all 1 ≤ i ≤ n;
2 Compute pre(Xi, 2q − 2) and suf (Xi, 2q − 2) for all 1 ≤ i ≤ n− 1;
3 z ← ε; w ← [];
4 for i← 1 to n do
5 if |Xi| ≥ q then
6 let Xi = XℓXr;
7 k ← |suf (Xℓ, 2q − 2)|;
8 ti = suf (Xℓ, 2q − 2)pre(Xr, 2q − 2);
9 z.append(ti);

10 wi ← create integer array of length |ti|, each element set to 0;
11 for j ← max{1, |Xℓ| − 2q + 3} to min{|Xℓ|+ q − 1, |Xi| − q + 1} do
12 s← Xi[j : j + q − 1];
13 (b, e)← locq(Xi, j);
14 if (q − 1 < b and e < |Xi| − q + 2) or i = n then
15 if locq(Xi, h) ̸= locq(Xi, j) for any position h s.t.

max{1, |Xℓ| − 2q + 3} ≤ h < j then
16 wi[k − |Xℓ|+ j]← vOcc(Xi) · nOcc(Xi[b : e], s);

17 w.append(wi);

18 Calculate q-gram frequencies in z, where each q-gram starting at position d is weighted
by w[d].

In line 15, we check if there is no previous position h (max{1, |Xℓ(i)| − 2q + 3} ≤ h < j)
such that Xi[h : h+ q − 1] = Xi[j : j + q − 1] by locq(Xi, h) = locq(Xi, j), so that we do not
count the same q-gram more than once. If there is no such h, we set the value of wi[k−|Xℓ(i)|+j]

to vOcc(Xi) · nOcc(Xi[b : e], s). This can be checked in O(q2n) time for all Xi and j. Hence
the theorem holds.

5.2.2 Computing Longest Overlapping Covers

In this subsection, we will show how to compute longest overlapping cover (b, e) = locq(Xi, j)

where s = Xi[j : j + q − 1] for all Xi and all j required for Theorem 4.
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For any string T and integers q and j (1 ≤ j < q), let

−→
locq(T, j) =

(j, be) if j + q − 1 ≤ N,

(j,N) otherwise,

←−
locq(T, j) =

(eb, N − j + 1) if N − j − q + 2 ≥ 1,

(1, N − j + 1) otherwise,

where (j, be) = (j − 1) ⊕ locq(T [j : N ], 1) and (eb, N − j + 1) = locq(T [1 : N − j +

1], N − j− q+2). Namely,
−→
locq(T, j) is a suffix of the longest overlapping cover of the q-gram

T [j : j + q − 1] that begins at position j (1 ≤ j < q) in T , and
←−
locq(T, j) is a prefix of the

longest overlapping cover of the q-gram T [N − j − q + 2 : N − j + 1] that ends at position
N − j + 1 in T .

Lemma 14. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1),
−→
locq(Xi, j) can be computed in a total of

O(q2n) time.

Proof. We use dynamic programming. Let Xi = Xℓ(i)Xr(i), and assume
−→
locq(Xℓ(i), j) and

−→
locq(Xr(i), j) have been calculated for all 1 ≤ j ≤ 2(q−1). We examine the string Xi[max(j, |Xℓ(i)|−
q + 2) : min(|Xi|, |Xℓ(i)| + q − 1)] for occurrences of pj that cross Xℓ(i) and Xr(i), obtain its
longest overlapping cover (bi, ei), and check if it overlaps with

−→
locq(Xℓ(i), j). Furthermore, let

bbr be the left most occurrence of pj in Xr(i) that has the possibility of overlapping with (bi, ei).
Then,

−→
locq(Xi, j) is either

−→
locq(Xℓ(i), j), or its end can be extended to ei, or further to the end

of
−→
locq(Xr(i), bbr), depending on how the covers overlap.
More precisely, let (j, beℓ) =

−→
locq(Xℓ(i), j), (bi, ei) = max(j − 1, |Xℓ(i)| − q + 1) ⊕

locq(Xi[max(j, |Xℓ(i)| − q + 2) : min(|Xi|, |Xℓ(i)| + q − 1)], h) where h ∈ Occ(Xi[max(j,

|Xℓ(i)| − q + 2) : min(|Xi|, |Xℓ(i)| + q − 1)], pj), and (bbr, ber) = |Xℓ(i)| ⊕
−→
locq(Xr(i), k)

where k = minOcc(pre(Xr(i), 2(q − 1)), pj). (Note that (bbr, ber), (bi, ei) are not defined if
occurrences h, k of pj do not exist.) Then we have

−→
locq(Xi, j) =


(j, beℓ) if beℓ < bi or ̸ ∃h,

(j, ei) if bi ≤ beℓ and (ei < bbr or ̸ ∃k)

(j, ber) otherwise.

(See also Figure 5.2.) For all variables Xi we pre-compute pre(Xi, 3(q−1)) and suf (Xi, 3(q−
1)). This can be done in a total of O(qn) time. Then, each

−→
locq(Xi, j) can be computed in O(q)

time using the KMP algorithm, Lemma 13, and the above recursion, giving a total of O(q2n)

time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1).
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Figure 5.2: Illustration for Lemma 14. In this figure,
−→
locq(Xi, j) = (j, ei).

Lemma 15. For all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1),
←−
locq(Xi, j) can be computed in a total of

O(q2n) time.

Proof. The proof is essentially the same as the proof for
−→
locq(Xi, j) in Lemma 14.

Recall that we have assumed in Theorem 4 that locq(Xi, j) are already computed. The
following lemma describes how locq(Xi, j) can actually be computed in a total of O(q2n) time.

Lemma 16. For all 1 ≤ i ≤ n and j s.t. |Xℓ(i)|−2q+3 ≤ j ≤ |Xℓ(i)|+q−1, (b, e) = locq(Xi, j)

can be computed in a total of O(q2n) time.

Proof.
Let sj = Xi[j : j+q−1]. Firstly, we compute (bi, ei) = locq(suf (Xℓ(i), 2q−2)pre(Xr(i), 2q−

2), j) by Lemma 13, using the KMP algorithm in O(q) time, and then locq(Xi, j) can be com-
puted based on (bi, ei), as follows: Let (ebℓ, eeℓ) =

←−
locq(Xℓ(i), h) and (bbr, ber) = |Xℓ(i)| ⊕−→

locq(Xr(i), k), where h = |suf (Xℓ(i), 2q− 2)| − (maxOcc(suf (Xℓ(i), 2q− 2), sj) + q− 1) + 1,
k = minOcc(pre(Xr(i), 2q − 2), sj).

1. If bi ≤ |Xℓ(i)| and ei > |Xℓ(i)|, then we have b ≤ bi ≤ |Xℓ(i)| < ei ≤ e. (b, e) =

locq(Xi, j) can be computed by checking whether (ebℓ, eeℓ), (bi, ei), and (bbr, ber) are
overlapping or not. (See also Figure 5.3.)

2. If ei ≤ |Xℓ(i)|, then trivially b = ebℓ and e = ei = eeℓ. (See also Figure 5.4.)

3. If bi > |Xℓ(i)|, then trivially b = bi and e = ber.

Each eeℓ = h and bbr = |Xℓ(i)| + k can be computed using the KMP algorithm in O(q) time.
By Lemmas 14 and 15, (ebℓ, eeℓ) and (bbr, ber) can be pre-computed in a total of O(q2n) time
for all 1 ≤ i ≤ n. Hence the lemma holds.
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Figure 5.3: Illustration for Lemma 16 case 1. Rectangles show important occurrences of Xi[j :
j + q − 1]. In this case b = ebℓ and e = ber.

5.2.3 Largest Left-Priority and Smallest Right-Priority Occurrences

In order to compute nOcc(Xi[b : e], s) for all Xi and all j required for Theorem 4, where
(b, e) = locq(Xi, j) and s = Xi[j : j + q − 1], we will use the largest and second largest
occurrences of LnOcc and RnOcc.

For any set S of integers and integer 1 ≤ k ≤ |S|, let maxk S and mink S denote the k-th
largest and the k-th smallest element of S.

For 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), consider computing maxk LnOcc(Xi[j : be i], pj) for
k = 1, 2, where (j, be i) =

−→
locq(Xi, j) and pj = Xi[j : j + q − 1]. Intuitively, difficulties in

computing maxk LnOcc(Xi[j : be i], pj) come from the fact that the string val(Xi)[j : be i] can
be as long as O(2n), but we only have prefix pre(Xi, 3(q − 1)) and suffix suf (Xi, 3(q − 1)) of
val(Xi) of length O(q). Hence we cannot compute the value of be i by simply running the KMP
algorithm on those partial strings. For the same reason, the size of LnOcc(Xi[j : be i], pj) can
be as large as O(2n/q). Hence we cannot store LnOcc(Xi[j : be i], pj) as is. Still, as will be
seen in the following lemma, we can compute those values efficiently, only in O(q2n) time.

Lemma 17. For any 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), let (j, be i) =
−→
locq(Xi, j), pj = Xi[j :

j + q − 1]. We can compute the values max1 LnOcc(Xi[j : be i], pj) and max2 LnOcc(Xi[j :

be i], pj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Proof. We compute the smallest occurrence bi in (j − 1)⊕ LnOcc(Xi[j : be i], pj) that crosses
Xℓ(i) and Xr(i), and does not overlap with the largest occurrence in (j − 1) ⊕ LnOcc(Xℓ(i)[j :

beℓ], pj), where (j, beℓ) =
−→
locq(Xℓ(i), j). Also, we compute the smallest occurrence bbr in

(j − 1)⊕ LnOcc(Xi[j : be i], pj) that is completely within Xr(i) and does not overlap with bi.
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Figure 5.4: Illustration for Lemma 16 case 2. Rectangles show important occurrences of Xi[j :
j + q − 1]. In this case b = ebℓ and e = ei = eeℓ.

Then the desired value max1 LnOcc(Xi[j : be i], pj) can be computed depending whether bi
and bbr exist or not.

Formally, let Consider the set S = ((j−1)⊕LnOcc(Xi[j : be i], pj))∩[|Xℓ(i)|−q+2 : |Xℓ(i)|]
of occurrence of pj which is either empty or singleton. If S is singleton, then let bi be its single
element. Let bbr = min{k − |Xℓ(i)| | k ∈ (j − 1) ⊕ LnOcc(Xi[j : be i], pj) ∩ [|Xℓ(i)| + 1 :

|Xℓ(i)|+ q − 1], if ∃bi then k ≥ bi + q}.
Then we have

max1LnOcc(Xi[j : be i], pj)

=


max1 LnOcc(Xℓ(i)[j : beℓ], pj) if ̸ ∃bi and ̸ ∃bbr
bi − j + 1 if ∃bi and ̸ ∃bbr
bbr − j +max1 LnOcc(Xr(i)[bbr : ber], pj) if ∃bbr

(See also Figure 5.5.)
For all variables Xi we pre-compute pre(Xi, 3(q − 1)) and suf (Xi, 3(q − 1)). This can be

done in a total of O(qn) time. If bi or bbr exists, |Xℓ(i)|−3(q−1) ≤ j−1+maxLnOcc(Xℓ(i)[j :

beℓ], j) ≤ |Xℓ(i)| − q + 1. Then, each bi and bbr can be computed from LnOcc(Xi[(j − 1 +

maxLnOcc(Xℓ(i)[j : beℓ], j)) : |Xℓ(i)| + 3(q − 1)], pj) runnning the KMP algorithm on string
pre(Xi, 3(q − 1))suf (Xi, 3(q − 1)).

Based on the above recursion, we can compute max1 LnOcc(Xi[j : be i], pj) in a total of
O(q2n) time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1).

It is not difficult to see that similar claims, with slightly different conditions, can be made for
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max2 LnOcc(Xi[j : be i], pj) where the value corresponds to one of 4 values: max2 LnOcc(Xℓ(i)[j :

beℓ], pj), max1 LnOcc(Xℓ(i)[j : beℓ], pj), bi, or max2 LnOcc(Xr(i)[bbr : ber], pj), with appro-
priate offsets.

Xi

e
ℓ

Xℓ Xr

bb
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bej b
i

locq(Xℓ , j) locq(Xr , bbr 
)

locq(Xi , j )

Figure 5.5: Illustration for Lemma 17, calculating maxLnOcc(Xi[j : be], pj). Shadowed oc-
currences are not in LnOcc(Xi[j : be i], pj), while white ones are in LnOcc(Xi[j : be i], pj).

The next lemma can be shown similarly to Lemma 17.

Lemma 18. For any 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), let (eb, ee) =
←−
locq(Xi, j), and

sj = Xi[|Xi|−j−q+2 : |Xi|−j+1]. We can compute the values min1 RnOcc(Xi[eb : ee], sj)

and min2RnOcc(Xi[eb : ee], sj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n)

time.

Lemma 19. For all 1 ≤ i ≤ n and 1 ≤ j < q, maxLnOcc(Xi[ebi : ee i], sj) can be computed in
a total of O(q2n) time, where (ebi, ee i) =

←−
locq(Xi, j) and sj = Xi[|Xi|−j−q+2 : |Xi|−j+1].

Proof. Our basic strategy for computing maxLnOcc(Xi[ebi : ee i], sj) is as follows. Firstly
we compute the largest element of LnOcc(Xi[ebi : ee i], sj) that occurs completely within
Xℓ(i). Secondly we compute the smallest element of LnOcc(Xi[ebi : ee i], sj) that crosses
the boundary of Xℓ(i) and Xr(i). Let d be this occurrence, if such exists. Then the desired out-
put maxLnOcc(Xi[ebi : ee i], sj) is given as either the largest or the second largest element of
LnOcc(Xr(i)[d+ q : 1], sj).

More formally: We consider the case where ebi + q − 1 ≤ |Xℓ(i)|. Let eeℓ = q − 1 +

max(Occ(Xi, sj) ∩ [|Xℓ(i)| − 2q + 2 : |Xℓ(i)| − q + 1]), m = ebi − 1 +maxLnOcc(Xℓ(i)[ebi :

eeℓ], sj) where (ebi, eeℓ) =
←−
locq(Xℓ(i), |Xℓ(i)| − (eeℓ + q − 1) + 1). Let d = m + q − 1 +
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minLnOcc(Xi[m+ q : ee i], sj). Let

bbr =

d if ee i−q+1≤|Xℓ(i)| or d> |Xℓ(i)|,

d+q−1+minLnOcc(Xi[d+q : |Xi|], sj) otherwise.

Let h′ = max2 LnOcc(Xi[bbr : ber], sj) and h = max1 LnOcc(Xi[bbr : ber], sj) where
(bbr, ber) =

−→
locq(Xi, bbr). (See also Figure 5.6.) Then

maxLnOcc(Xi[ebi : ee i], sj) =

h if h ≤ ee i − q + 1,

h′ otherwise.

The case where ebi + q − 1 > |Xℓ(i)| can be solved similarly.
Each eeℓ, d and bbr can be computed in O(q) time using the KMP algorithm, hence requir-

ing a total of O(q2n) time. By Lemmas 14 and 15,
←−
locq(Xℓ(i), eeℓ) and

−→
locq(Xi, bbr) can be

computed in O(q2n) time for all Xi = Xℓ(i)Xr(i) and 1 ≤ j < n. By Lemma 17, h′ and h can
be computed in a total of O(q2n) time for all Xi = Xℓ(i)Xr(i) and 1 ≤ j < n. Therefore, by
dynamic programming we can compute LnOcc(Xi[ebi : ee i], sj) in a total of O(q2n) time.

Xi

Xℓ Xr

hh’ee
ℓ

eb
i bb

rdm ee
i

Figure 5.6: Illustration for Lemma 19. Rectangles show important occurrences of sj . In this
case maxLnOcc(Xi[ebi, ee i], sj) = h′, as h > ee i − q + 1.

Lemma 20. For all 1 ≤ i ≤ n and 1 ≤ j < q, minRnOcc(Xi[bbi : be i], pj) can be computed
in a total of O(q2n) time, where (bbi, be i) =

−→
locq(Xi, j) and pj = Xi[j : j + q − 1].

Proof. The lemma can be shown in a similar way to Lemma 19, using Lemma 18 instead of
Lemma 17.
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5.2.4 Counting Non-Overlapping Occurrences in Longest Overlapping
Covers

Firstly, we show how to count non-overlapping occurrences of q-gram pj in Xi[j : be i], for all i
and j, where pj = Xi[j : j + q − 1] and (j, bej) =

−→
locq(Xi[j : be i], pj).

Lemma 21. For any 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), let (j, be i) =
−→
locq(Xi, j) and

pj = Xi[j : j + q − 1]. We can compute nOcc(Xi[j : be i], pj) for all 1 ≤ i ≤ n and
1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

Proof. By Lemma 1, we have nOcc(Xi[j : be i], pj) = |LnOcc(Xi[j : be i], pj)|. We com-
pute the smallest occurrence bi in (j − 1) ⊕ LnOcc(Xi[j : be i], pj) that crosses Xℓ(i) and
Xr(i), and does not overlap with the largest occurrence in (j − 1) ⊕ LnOcc(Xℓ(i)[j : beℓ], pj),
where (j, beℓ) =

−→
locq(Xℓ(i), j). Also, we compute the smallest occurrence bbr in (j − 1) ⊕

LnOcc(Xi[j : be i], pj) that is completely within Xr(i) and does not overlap with bi. Then the
desired value nOcc(Xi[j : be i], pj) can be computed depending whether bi and bbr exist or not.

Formally: Consider the set S = ((j−1)⊕LnOcc(Xi[j : be i], pj))∩ [|Xℓ(i)|−q+2 : |Xℓ(i)|]
of occurrence of pj which is either empty or singleton. If S is singleton, then let bi be its
single element. Let bbr = min{k − |Xℓ(i)| | k ∈ LnOcc(Xi[j : be i], pj) ∩ [|Xℓ(i)| + 1 :

|Xℓ(i)|+ q − 1], if ∃bi then k ≥ bi + q}.
Then we have

nOcc(Xi[j : be i], pj)

=



nOcc(Xr(i)[j − |Xℓ(i)| : be i − |Xℓ(i)|], pj) if j > |Xℓ(i)|,

nOcc(Xℓ(i)[j : beℓ], pj) if ̸ ∃bi and ̸ ∃bbr,

nOcc(Xℓ(i)[j : beℓ], pj) + 1 if ∃bi and ̸ ∃bbr
nOcc(Xℓ(i)[j : beℓ], pj) + nOcc(Xr(i)[br : ber], pj) if ̸ ∃bi and ∃bbr,

nOcc(Xℓ(i)[j : beℓ], pj) + nOcc(Xr(i)[br : ber], pj) + 1 if ∃bi and ∃bbr,

where (bbr, ber) =
−→
locq(Xr(i), bbr).

For all variables Xi we pre-compute pre(Xi, 3(q − 1)) and suf (Xi, 3(q − 1)). This can be
done in a total of O(qn) time. If bi or bbr exists, |Xℓ(i)|−3(q−1) ≤ j−1+maxLnOcc(Xℓ(i)[j :

beℓ], j) ≤ |Xℓ(i)| − q + 1. Then, each bi and bbr can be computed from LnOcc(Xi[(j −
1 + maxLnOcc(Xℓ(i)[j : beℓ], j)) : |Xℓ(i)| + 3(q − 1)], pj) running the KMP algorithm on
string pre(Xi, 3(q − 1))suf (Xi, 3(q − 1)). Based on the above recursion, we can compute
nOcc(Xi[j : be i], pj) in a total of O(q2n) time for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1).

The next lemma can be shown similarly to Lemma 21.
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Lemma 22. For any 1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), let (ebi, ee i) =
←−
locq(Xi, j) and

sj = Xi[|Xi| − j − q + 2 : |Xi| − j + 1]. We can compute nOcc(Xi[ebi : ee i], sj) for all
1 ≤ i ≤ n and 1 ≤ j ≤ 2(q − 1), in a total of O(q2n) time.

We have also assumed in Theorem 4 that nOcc(Xi[b : e], sj) are already computed. This
can be computed efficiently, as follows:

Lemma 23. For all 1 ≤ i ≤ n and j s.t. |Xℓ(i)|−2q+3 ≤ j ≤ |Xℓ(i)|+q−1, nOcc(Xi[b : e], sj)

can be computed in a total of O(q2n) time, where (b, e) = locq(Xi, j) and sj = Xi[j : j+q−1].

Proof.
We consider the case where |Xℓ(i)| − q + 2 ≤ j ≤ |Xℓ(i)|, as the other cases can be shown

similarly. Our basic strategy for computing nOcc(Xi[b : e], sj) is as follows. Firstly we com-
pute the largest element of LnOcc(Xi[b : e], sj) that occurs completely within Xℓ(i). Secondly
we compute the smallest element of RnOcc(Xi[b : e], sj) that occurs completely within Xr(i).
Thirdly we compute an occurrence of sj that crosses the boundary of Xℓ(i) and Xr(i), and do
not overlap the above occurrences of sj completely within Xℓ(i) and Xr(i).

Formally: Let eeℓ = b+ q − 2 + maxOcc(Xi[b : |Xℓ(i)|], sj), bbr = minOcc(Xi[|Xℓ(i)|
+1 : e], sj), u1 = b+q−2+maxLnOcc(Xi[b : eeℓ], sj), and u2 = bbr−1+minRnOcc(Xi[bbr :

e], sj). We consider the case where all these values exist, as other cases can be shown similarly.
It follows from Lemmas 1 and 2 that

nOcc(Xi[b : e], sj)

= |LnOcc(Xi[b : u1], sj)|+nOcc(Xi[u1+1 : u2−1], sj)+|RnOcc(Xi[u2 : e], sj)|
= nOcc(Xi[b : eeℓ], sj) + nOcc(Xi[u1 + 1 : u2 − 1], sj) + nOcc(Xi[bbr : e], sj),

(See also Figure 5.7.)
By Lemma 16, (b, e) = locq(Xi, j) can be pre-computed in a total of O(q2n) time. Since

b < eeℓ and bbr < e, eeℓ and bbr can be computed in O(q) time using the KMP algorithm.
By Lemmas 21 and 22 nOcc(Xi[b : eeℓ], sj) and nOcc(Xi[bbr : e], sj) can be pre-computed
in a total of O(q2n) time (Notice (b, eeℓ) =

←−
locq(Xℓ(i), eeℓ) and (bbr, e) =

−→
locq(Xr(i), bbr −

|Xℓ(i)|) ⊕ |Xℓ(i)|). By Lemmas 19 and 20, u1 and u2 can be pre-computed in a total of O(q2n)

time. Hence nOcc(Xi[u1 + 1 : u2 − 1], sj) can be computed in O(q) time using the KMP
algorithm for each i and j. The lemma thus holds.

5.2.5 Main Result

The following theorem concludes this whole section.
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Figure 5.7: Illustration for Lemma 23. Rectangles show important occurrences of Xi[j : j +
q − 1]. In this case nOcc(Xi[b : eeℓ], sj) = 3, nOcc(Xi[u1 + 1 : u2 − 1], sj) = 1, and
nOcc(Xi[bbr : e], sj) = 3.

Theorem 5. Problem 2 can be solved in O(q2n) time and O(qn) space.

Proof. The time complexity and correctness follow from Theorem 4, Lemma 16, and Lemma 23.
We compute and store strings suf (Xi, 3(q − 1)) and pre(Xi, 3(q − 1)) of length O(q) for

each variable Xi, hence this requires a total of O(qn) space for all 1 ≤ i ≤ n. We use a constant
number of dynamic programming tables each of which is of size O(qn). Hence the total space
complexity is O(qn).
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Chapter 6

Fast Algorithm for LZ77 Factorization

As mentioned in Chapter 1, the runtime of compressed string processing depends on the fol-
lowing two points: The first is the time complexity of algorithms on SLPs, and the second is the
size of input SLPs. For the first point, We have developed efficient algorithms for the q-gram
frequencies problem on SLPs in Chapter 3,4, and non-overlapping q-gram frequencies problem
on SLPs in Chapter 5. In this Chapter, we consider the second point.

Rytter [63] proposed an algorithm that, given the LZ77 factorization of a string T , computes
an SLP of size O(z logN) representing T in output linear time, where z is the size of the LZ77
factorization of T and N is the length of T . This is one of several algorithms which achieve
the best known approximation ratio running in linear time. For a string T , we can obtain an
SLP of T by firstly computing the LZ77 factorization of T , and then computing an SLP from
the LZ77 factorization using Rytter’s algorithm. The bottleneck here is the computation of the
LZ77 factorization from T . In this Chapter, we develop fast LZ77 factorization algorithms and
resolve the above bottleneck.

A naı̈ve algorithm that computes the longest common prefix with each of the O(N) previous
positions only requires O(1) working space (excluding the output), but can take O(N2) time,
where N is the length of the string. Using string indice such as suffix trees [71] and on-line
algorithms to construct them [69], the LZ77 factorization can be computed in an on-line manner
in O(N log σ) time and O(N logN) bits of space, where σ is the size of the alphabet.

Most recent efficient algorithms are off-line, running in O(N) time for integer alphabets
using O(N logN) bits space (see Table 6.1). They first construct the suffix array [50] of the
string, and compute an array called the Longest Previous Factor (LPF) array from which the
LZ77 factorization can be easily computed [1, 12, 16, 17, 62]. Many algorithms of this family
first compute the longest common prefix (LCP) array prior to the computation of the LPF array.
However, the computation of the LCP array is costly. The algorithm CI1 (COMPUTE LPF)
of [15], and the algorithm LZ OG [62] cleverly avoids its computation and directly computes
the LPF array.
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Table 6.1: Space usage of linear time LZ77 factorization algorithms based on suffix arrays.
Each algorithm uses marked auxiliary integer arrays of size N , and also may use a stack, where
the size may become N in the worst case. Merged cells mean that the algorithm uses both
auxiliary integer arrays, but either one is rewritten by the other, therefore using a single integer
array of size N for the two arrays.

Integer Arrays of size N

Algorithm Stack
# of

arrays LCP LPF PrevOcc SA PSV NSV SA−1

CI1 [15] 5 3 3 3 3 3

CI2 [15] 3 4 3 3 3 3

CPS1 [12] 3 4 3 3 3 3

CPS2 [12] 3 3 3 3 3

CPS3 [12] 3 2 3 3

CIS [17] 3 4 3 3 3 3

CII [16] 3 4 3 3 3 3

OG [62] 3 3 3 3

BGS 3 4 3 3 3 3

BGL 4 3 3 3 3

BGT 3 3 3 3

An important observation here is that the LPF is actually more information than is required
for the computation of the LZ77 factorization, i.e., if our objective is the LZ77 factorization, we
only use a subset of the entries in the LPF . However, the above algorithms focus on computing
the entire LPF array, perhaps since it is difficult to determine beforehand, which entries of LPF
are actually required. Although some algorithms such as a variant of CPS1 or CPS2 in [12]
avoid computation of LPF, they either require the LCP array, or do not run in linear worst case
time and are not as efficient (see [1] for a survey).

In Section 6.1, we propose a new approach to avoid the computation of LCP and LPF arrays
altogether, by combining the ideas of the naı̈ve algorithm with those of CI1 and LZ OG, and
still achieve worst case linear time (see Table 6.1). The resulting algorithm is surprisingly both
simple and efficient. Computational experiments on various data sets shows that our algorithms
constantly outperforms LZ OG [62], and can be up to 2 to 3 times faster in the processing after
obtaining the suffix array, while requiring the same or a little more space.

These results primarily appeared in [23].
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Algorithm 9: Naı̈ve Algorithm for Calculating the LZ77 factorization
Input : String T

1 p← 1;
2 while p ≤ N do
3 LPF ← 0;
4 for j ← 1, . . . , p− 1 do
5 l← 0;
6 while T [j + l] = T [p+ l] do l← l + 1; // l← lcp(T [j : N ], T [p : N ])
7 if l > LPF then LPF ← l; PrevOcc ← j;

8 if LPF > 0 then Output: (LPF ,PrevOcc)
9 else Output: (0, T [p])

10 p← p+max(1,LPF );

6.1 Algorithm Using Three Integer Arrays

We first describe the naı̈ve algorithm for calculating the LZ77 factorization of a string, and
analyze its time complexity. The naı̈ve algorithm does not compute all values of LPF and
PrevOcc as explicit arrays, but only the values required to represent each factor. The procedure
is shown in Algorithm 9. For a factor starting at position p, the algorithm computes LPF (p)

and PrevOcc(p) by simply looking at each of its p−1 previous positions, and naively computes
the longest common prefix (lcp) between each previous suffix and the suffix starting at position
p, and outputs the factor accordingly. At first glance, this algorithm looks like an O(N3) time
algorithm since there are 3 nested loops. However, the total time can be bounded by O(N2),
since the total length of the longest lcp’s found for each p in the algorithm, i.e., the total length
of the LZ77 factors found, is N . More precisely, let the LZ77 factorization of string T of length
N be f1 · · · fn, and pk = |f1 · · · fk−1|+1 as before. Then, the number of character comparisons
executed in Line 6 of Algorithm 9 when calculating fk is at most (pk − 1)|fk + 1|, and the total
can be bounded:

∑n
k=1(pk−1)|fk+1| ≤ N

∑n
k=1 |fk+1| = O(N2). An important observation

here is that if we can somehow reduce the number of previous candidate positions for naı̈vely
computing lcp’s (i.e. the choice of j in Line 4 of Algorithm 9) from O(N) to O(1) positions,
this would result in a O(N) time algorithm. This very simple observation is the first key to the
linear running times of our new algorithms.

To accomplish this, our algorithm utilizes yet another simple but key observation made
in [15]. Since suffixes in the suffix arrays are lexicographically sorted, if we fix a suffix SA[i]

in the suffix array, we know that suffixes appearing closer in the suffix array will have longer
longest common prefixes with suffix SA[i].
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For any position 1 ≤ i ≤ N of the suffix array, let

PSVlex [i] = max({0} ∪ {1 ≤ j < i | SA[j] < SA[i]})
NSVlex [i] = min({0} ∪ {N ≥ j > i | SA[j] < SA[i]})

i.e., for the suffix starting at text position SA[i], the values PSVlex [i] and NSVlex [i] represent
the lexicographic rank of the suffixes that start before it in the string and are lexicographically
closest (previous and next) to it, or 0 if such a suffix does not exist. From the above arguments,
we have that for any text position 1 ≤ p ≤ N ,

LPF (p) = max(lcp(suf (SA[PSVlex [SA
−1[p]]]), suf (p)),

lcp(suf (SA[NSVlex [SA
−1[p]]]), suf (p))).

The above observation or its variant has been used as the basis for calculating LPF (i) for all
1 ≤ i ≤ N in linear time in practically all previous linear time algorithms for LZ77 factorization
based on the suffix array. In [62], they consider (implicitly) the arrays in text order rather than
lexicographic order. In this case,

PSVtext [SA[i]] = SA[PSVlex [i]]

NSVtext [SA[i]] = SA[NSVlex [i]]

and therefore

LPF (p) = max(lcp(suf (PSVtext [p]), suf (p)), lcp(suf (NSVtext [p]), suf (p))).

While [15] and [62] utilize this observation to compute all entries of LPF in linear time, we
utilize it in a slightly different way as mentioned previously, and use it to reduce the candidate
positions for calculating PrevOcc(i) (i.e. the choice of j in Algorithm 9) to only 2 positions.
The key idea of our approach is in the combination of the above observation with the amortized
analysis of the naı̈ve algorithm, suggesting that we can defer the computation of the values of
LPF until we actually require them for LZ77 factorization and still achieve linear worst case
time. If PSVlex [i] and NSVlex [i] (or PSVtext [i] and NSVtext [i]) are known for all 1 ≤ i ≤ N , the
linear running time of the algorithm follows from the previous arguments. The basic structure of
our algorithm is shown in Algorithm 10 when using PSVlex and NSVlex . Our algorithm consists
of two steps, which we shall call the preliminary step and the parsing step. In the preliminary
step Line 1, we compute PSVlex and NSV for all positions and store them in integer arrays.
In the parsing step, Line 2-11, we compute the LZ77 factorization of T by using PSVlex and
NSVlex arrays. Note that it is easy to replace them with PSVtext and NSVtext , and in such case,
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SA and SA−1 are not necessary once we have PSVtext and NSVtext .
What remains is how to compute PSVlex [i] and NSVlex [i], or PSVtext [i] and NSVtext [i] for

all 1 ≤ i ≤ N . This can be done in several ways. We consider 3 variations.
The first is a computation of PSVlex [i], NSVlex [i] using a simple linear time scan of the suffix

array with the help of a stack. The procedure is shown in Algorithm 11. This variant requires
the text, and the arrays SA, SA−1, PSVlex , NSVlex and a stack. The total space complexity is
(4N + Smax) logN bits, where Smax is the maximum size of the stack during the execution of
the algorithm and can be Θ(n) in the worstcase. We will call this variant BGS.

The other two is a process called peak elimination, which is very briefly described in [15]
for lexicographic order (Shown in Algorithms 12 and 13), and in [62] for text order (Shown in
Algorithms 14 and 15). In peak elimination, each suffix i and its lexicographically preceding
suffix j (SA−1[j] + 1 = SA−1[i]) is examined in some order of i (lexicographic or text order).
For simplicity, we only briefly explain the approach for text order. If i > j, this means that
PSVtext [i] = j and if i < j, NSVtext [j] = i. When both values of PSVtext [i] and NSVtext [i] are
determined, i is identified as a peak. Given a peak i, it is possible to eliminate it, and determine
the value of either NSVtext [PSVtext [i]] (which will be NSVtext [i] if PSVtext [i] > NSVtext [i]) or
PSVtext [NSVtext [i]] (which will be PSVtext [i] if if PSVtext [i] < NSVtext [i])), and this process is
repeated. The algorithm runs in linear time since each position can be eliminated only once. The
procedure for lexicographic order is a bit simpler since the lexicographic order of calculation
implies that PSVlex [i] will always be determined before NSVlex [i].

The algorithm of [62] actually computes the arrays LPF and PrevOcc directly without
computing PSVtext and NSVtext . The algorithm we show is actually a simplification, deferring
the computation of LPF and PrevOcc, computing PSVtext and NSVtext instead.

For lexicographic order, we need the text and the arrays SA, SA−1, PSVlex , NSVlex and no
stack, giving an algorithm with 4N logN bits of working space. We will call this variant BGL.
For text order, although the Φ array is introduced instead of the SA−1 array, the suffix array is
not required after its computation. Therefore, by reusing the space of SA for PSVtext , the total
space complexity can be reduced to 3N logN bits of working space. We will call this variant
BGT. Note that although peakElimlex and peakElimtext are shown as recursive functions for
simplicity, they are tail recursive and thus can be optimized as loops and will not require extra
space on the call stack.

6.1.1 Interleaving PSV and NSV

Since accesses to PSV and NSV occur at the same or close indices, it is possible to improve
the memory locality of accesses by interleaving the values of PSV and NSV , maintaining
them in a single array as follows. Let PNSV be an array of length 2N , and for each position
1 ≤ i ≤ 2N , PNSV [i] = PSV [j] if i mod 2 ≡ 0, NSV [j] otherwise, where j = ⌊i/2⌋.
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Algorithm 10: Basic Structure of our Algorithms.
Input : String T

1 Calculate PSVlex [i] and NSVlex [i] for all i = 1...N ;
2 p← 1 ;
3 while p ≤ N do
4 LPF ← 0;
5 for j ∈ {SA[PSVlex [SA

−1[p]]], SA[NSVlex [SA
−1[p]]]} do

6 l← 0;
7 while T [j + l] = T [p+ l] do l← l + 1; // l← lcp(T [j : N ], T [p : N ])
8 if l > LPF then LPF ← l; PrevOcc ← j;

9 if LPF > 0 then Output: (LPF ,PrevOcc)
10 else Output: (0, T [p])
11 p← p+max(1,LPF ) ;

Algorithm 11: Calculating PSVlex and NSVlex from SA

Input : Suffix array SA
Output: PSVlex , NSVlex

1 Let S be an empty stack;
2 for i← 1 to N do
3 x← SA[i];
4 while (not S.empty()) and (SA[S.top()] > x) do
5 NSVlex [S.top()]← i; S.pop() ;

6 PSVlex [i]← if S.empty() then 0 else S.top() ;
7 S.push(i);

8 while not S.empty() do
9 NSVlex [S.top()]← 0; S.pop() ;

Naturally, for any 1 ≤ i ≤ N , PSV and NSV can be accessed as PSV [i] = PNSV [2i] and
NSV [i] = PNSV [2i + 1]. This interleaving can be done for both lexicographic order and
text order. We will call the variants of our algorithms that incorporate this optimization, iBGS,
iBGL, iBGT.

6.2 Computational Experiments

We implement and compare our algorithms with LZ OG since it has been shown to be the
most time efficient in the experiments of [62]. We also implement a variant LZ iOG which
incorporates the interleaving optimization for LPF and PrevOcc arrays. We have made the
source codes publicly available at http://code.google.com/p/lzbg/.

All computations were conducted on a Mac Xserve (Early 2009) with 2 x 2.93GHz Quad
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Algorithm 12: Calculating PSVlex and NSVlex from SA by Peak Elimination.
Input : Suffix array SA

1 for i← 1 to N do NSVlex [i]← 0;
2 PSVlex [1]← 0;
3 for i← 2 to N do peakElimlex(i− 1, i);

Algorithm 13: Peak Elimination peakElimlex(j, i) in Lexicographic Order.
1 if j = 0 or SA[j] < SA[i] then
2 PSVlex [i]← j;

3 else // j ≥ 1 and SA[j] > SA[i]
4 NSVlex [j]← i;
5 peakElimlex(PSVlex [j], i) ; // j was peak.

Core Xeon processors and 24GB Memory, only utilizing a single process/thread at once. The
programs were compiled using the GNU C++ compiler (g++) 4.2.1 with the -fast option for
optimization. The running times are measured in seconds, starting from after the suffix array is
built, and the average of 10 runs is reported.

We use the data of http://www.cas.mcmaster.ca/˜bill/strings/, used in
previous work. Table 6.2 shows running times of the algorithms, and Table 6.3 shows some
statistics of the datasets used in Table 6.2. The running times of the fastest algorithm for each
data is shown in bold. The fastest running times for the variant that uses only 13N bytes is
prefixed with ‘▷’.

The results show that all the variants of our algorithms constantly outperform LZ OG and
even LZ iOG for all data tested, and in some cases can be up to 2 to 3 times faster. We can
see that iBGS is fastest when the data is not extremely repetitive, and the average length of the
factor is not so large, while iBGT is fastest for such highly repetitive data. iBGT is also the
fastest when we restrict our attention to the algorithms that use only 13N bytes of work space.
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Algorithm 14: Calculating PSVtext and NSVtext from SA using Φ.
Input : Suffix array SA

1 Φ[SA[1]]← N ;
2 for i← 2 to N do Φ[SA[i]]← SA[i− 1];
3 for i← 1 to N do
4 PSVtext [i]← ⊥; NSVtext [i]← ⊥;

5 for i← 1 to N do peakElimtext(Φ[i], i);

Algorithm 15: Peak Elimination peakElimtext(j, i)

1 if j < i then
2 PSVtext [i]← j;
3 if NSVtext [i] ̸= ⊥ then peakElimtext(j,NSVtext [i]) ; // i was peak.

4 else // j > i
5 NSVtext [j]← i;
6 if PSVtext [j] ̸= ⊥ then peakElimtext(PSVtext [j], i) ; // j was peak.
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Table 6.2: Running times (seconds) of algorithms for the data set of http://www.cas.
mcmaster.ca/˜bill/strings/.

Algorithm LZ OG LZ iOG BGS iBGS BGL iBGL BGT iBGT

Use Stack 3 3

# of Integer Arrays
of length N

3 3 4 4 4 4 3 3

E.coli 0.64 0.58 0.26 0.23 0.33 0.29 0.45 ▷ 0.37
bible 0.37 0.34 0.20 0.19 0.25 0.22 0.27 ▷ 0.24
chr19.dna4 10.05 9.25 4.40 4.00 5.33 4.71 7.64 ▷ 6.54
chr22.dna4 5.37 4.91 2.27 2.06 2.77 2.44 4.09 ▷ 3.45
fib s2178309 0.06 0.06 0.05 0.06 0.06 0.05 0.05 ▷ 0.05
fib s3524578 0.11 0.11 0.10 0.10 0.10 0.10 0.10 ▷ 0.09
fib s5702887 0.18 0.18 0.15 0.16 0.16 0.15 0.15 ▷ 0.14
fib s9227465 0.30 0.30 0.26 0.27 0.27 0.26 0.26 ▷ 0.24
fib s14930352 0.50 0.49 0.43 0.44 0.44 0.43 0.42 ▷ 0.39
fss9 0.09 0.08 0.08 0.08 0.08 0.08 0.07 ▷ 0.07
fss10 0.40 0.39 0.36 0.37 0.36 0.35 0.34 ▷ 0.32
howto 4.20 3.91 2.30 2.15 2.79 2.51 3.28 ▷ 2.91
mozilla 5.30 4.95 3.19 3.13 3.91 3.65 4.31 ▷ 3.86
p1Mb 0.08 0.07 0.05 0.05 0.06 0.06 0.05 ▷ 0.05
p2Mb 0.23 0.21 0.11 0.12 0.15 0.15 0.17 ▷ 0.14
p4Mb 0.58 0.52 0.26 0.26 0.35 0.33 0.43 ▷ 0.35
p8Mb 1.27 1.15 0.55 0.55 0.73 0.70 0.94 ▷ 0.78
p16Mb 2.70 2.43 1.18 1.16 1.52 1.46 2.08 ▷ 1.74
p32Mb 5.58 5.02 2.47 2.44 3.14 3.03 4.43 ▷ 3.74
rndA2 4Mb 0.49 0.45 0.20 0.18 0.24 0.20 0.35 ▷ 0.28
rndA2 8Mb 1.08 0.99 0.42 0.38 0.50 0.43 0.77 ▷ 0.63
rndA21 4Mb 0.64 0.58 0.28 0.28 0.38 0.37 0.47 ▷ 0.37
rndA21 8Mb 1.43 1.28 0.61 0.60 0.83 0.79 1.05 ▷ 0.85
rndA255 4Mb 0.65 0.58 0.38 0.39 0.51 0.47 0.49 ▷ 0.40
rndA255 8Mb 1.43 1.27 0.84 0.84 1.12 1.04 1.10 ▷ 0.92
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Table 6.3: Statistics of the Data used in Table 6.2. Smax is maximum stack size used in BGS
and iBGS. The last two columns show

∑
i |i− PSVlex [i]|/N and

∑
i |i− NSVlex [i]|/N .

File Name Alphabet
Size

Text
Size N

# of LZ
factors

Average
Length

of
Factor

Smax

Average
Dis-

tance of
PSVlex

Average
Dis-

tance of
NSVlex

E.coli 4 4638690 432791 10.72 36 14.49 13.94
bible 63 4047392 337558 11.99 42 16.14 15.32
chr19.dna4 4 63811651 4411679 14.46 58 16.97 17.51
chr22.dna4 4 34553758 2554184 13.53 43 16.25 15.04
fib s2178309 2 2178309 31 70268 16 10.16 10.16
fib s3524578 2 3524578 32 110143 16 10.95 10.57
fib s5702887 2 5702887 33 172815 17 10.88 10.88
fib s9227465 2 9227465 34 271396 17 11.67 11.29
fib s14930352 2 14930352 35 426581 18 11.61 11.61
fss9 2 2851443 40 71286.10 22 10.83 10.73
fss10 2 12078908 44 274521 24 11.96 11.88
howto 197 39422105 3063929 12.87 616 20.17 21.24
mozilla 256 51220480 6898100 7.43 3964 21.58 104.46
p1Mb 23 1048576 216146 4.85 38 13.41 13.50
p2Mb 23 2097152 406188 5.16 40 14.17 14.28
p4Mb 23 4194304 791583 5.30 42 14.89 14.93
p8Mb 23 8388608 1487419 5.64 898 50.97 15.68
p16Mb 23 16777216 2751022 6.10 898 33.93 16.38
p32Mb 24 33554432 5040051 6.66 898 25.81 17.08
rndA2 4Mb 2 4194304 201910 20.77 36 13.48 14.33
rndA2 8Mb 2 8388608 385232 21.78 37 13.02 15.19
rndA21 4Mb 21 4194304 970256 4.32 34 13.59 13.025
rndA21 8Mb 21 8388608 1835235 4.57 37 14.76 14.32
rndA255 4Mb 255 4194304 2005584 2.09 35 14.07 13.23
rndA255 8Mb 255 8388608 3817588 2.20 38 13.59 14.68
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Chapter 7

Space Efficient Algorithm for LZ77
Factorization

In Chapter 6, we proposed fast linear time LZ77 factorization algorithms that avoid the compu-
tation of LCP and LPF arrays. As well as developing fast algorithm, developing space efficient
algorithm is also important applicable to large-scale string data. In this Chapter, we develop
space efficient linear time LZ77 factorization algorithms, which also avoid the computation of
LCP and LPF arrays.

We note that algorithms that avoid the computation of LCP and LPF based on a similar
idea was developed independently and almost simultaneously by Kempa and Puglisi [41] and
Kärkkäinen et al [36]. The algorithm of [41] is fast and space efficient, however the worst case
time complexity of it depends on the alphabet size. In [36], three algorithms KKP3, KKP2, and
KKP1 are proposed which respectively store and utilize 3, 2, and 1 auxiliary integer arrays of
length N kept in main memory. KKP3 can be seen as a reengineering of BGT in Chapter 6, that
is modified so that array access are more cache friendly, thus making the algorithm run faster.
KKP2 is based on KKP3, but further reduces one integer array by an elegant technique that
rewrites values on the integer array. KKP1 is the same as KKP2, except that it assumes that the
suffix array is stored on disk, but since the values of the suffix array are only accessed sequen-
tially, the suffix array is streamed from the disk. Thus, KKP1 can be regarded as requiring only
a single integer array to be held in memory. In this sense, KKP1 is the most space economical
among the existing linear time algorithms, and has been shown to be faster than KKP2, if it is
assumed that the suffix array is already computed and exists on disk [36]. However, note that
the total space requirement of KKP1 is still two integer arrays, one existing in memory and the
other existing on disk.

We further improve the results of [36] to reduce the working space. we propose new algo-
rithms that use only N logN + O(σ logN) bits of space, i.e., a single auxiliary integer array
of length N and a number of integer arrays of length σ, where σ is the size of the alphabet.
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We achieve this by introducing a series of techniques for rewriting the various auxiliary integer
arrays from one to another, in linear time using only O(σ logN) bits of extra working space.
Computational experiments show that our algorithm is at most around two to three times as slow
as previous algorithms, but in turn, uses only half the total space. Thus, our algorithm may be
a viable alternative when the total available space (including disk) is a limiting factor due to the
enormous size of data. Note that while the space complexity of our algorithm depends on σ,
the time complexity does not.

Our new algorithm partly uses the idea of KKP2. We firstly describe overview of the KKP
algorithms [36] in Section 7.1, and secondly propose new algorithm using 2N logN bits of
working space in different way of KKP2 in Section 7.2, and finally propose new algorithms
using N logN + O(σ logN) bits of working space by combining these two algorithms in Sec-
tion 7.3.

These results primarily appeared in [24].

7.1 Overview of the KKP Algorithms

We first describe the LZ77 factorization algorithms by Kärkkäinen et al. [36]: KKP3, KKP2,
and KKP1.

Their approach is very similar to ours in the terms of avoiding to compute LPF and PrevOcc

arrays, their algorithm compute PSVtext and NSVtext arrays in the preliminary step, and com-
pute the LZ77 factorization by using these auxiliary integer arrays in parsing step. KKP3 com-
pute PSVtext and NSVtext arrays in linear time in similar way of Algorithm 14. The most
difference is the computation of PSVtext and NSVtext in preliminary step. BGT computes each
values of PSVtext and NSVtext in text order, on the other hand, KKP3 computes each values
of PSVtext and NSVtext in lexicographic order. Thefore KKP3 does not need the Φ array and
it can compute PSVtext and NSVtext just in one sequential scan left to right of SA (see Al-
gorithm 16). In this way, KKP3 runs in linear time using a total of 3 auxiliary integer arrays
(SA,PSVtext ,NSVtext ) of length N .

For KKP2, Kärkkäinen et al. show that the parsing step can be accomplished by using only
the NSVtext array. The idea is based on a very interesting connection between PSVtext , NSVtext ,
and Φ arrays. They showed that starting from the NSVtext array, it is possible to sequentially
scan and rewrite the NSVtext array (consequently to the Φ array) in-place, during which, values
of PSVtext (and naturally NSVtext ) for each position can be obtained sequentially as well.

Lemma 24 ([36]). Given the NSVtext array of a string T of length N , PSVtext(i) and NSVtext(i)

of T can be sequentially obtained for all positions i = 1, . . . , N in O(N) total time using
O(logN) bits space other than the NSVtext array and T .
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Algorithm 16: Computation of PSVtext and NSVtext from SA.
Input : SA

1 SA[N + 1]← 0 ;
2 prev ← 0 ;
3 for i← 1 to N + 1 do
4 while prev > SA[i] do
5 NSVtext [prev] = i ;
6 prev ← PSVtext [prev] ;

; // peak elimination

7 PSVtext [i]← prev ;
8 prev ← i ;

Algorithm 17: In-place computation of NSVlex from Φ.
Input : Φ array (denoted as NSVlex )

1 cur ← NSVlex [1] ; // Φ[1]: lexicographically largest suffix
2 prev ← 0 ;
3 while cur ̸= 0 do
4 while cur < prev do
5 prev ← NSVlex [prev] ; // peak elimination

6 next← NSVlex [cur] ; // Φ[cur]
7 NSVlex [cur]← prev ;
8 prev ← cur ; cur ← next ;

By making use of this technique, only the NSVtext array is now required for the parsing step.
KKP2 uses 2 integer arrays (SA and NSVtext ) of length N in the preliminary step, and 1 integer
array (NSVtext ) of length N in the parsing step, and thus in summary, KKP2 runs in linear time
using a total of 2 auxiliary integer arrays of length N .

The memory bottleneck of KKP2 is the computation of the NSVtext array in the preliminary
step. Since each value in SA are only used sequentially and once each, KKP1 partly overcomes
this problem by first storing SA to disk, and then streams the SA from the disk, storing only
the NSVtext array in main memory. Thus, KKP1 runs in linear time keeping only 1 auxiliary
integer array of length N in main memory, although of course, the total storage requirement is
still 2 integer arrays (SA and NSVtext ).

7.2 Algorithm Using Two Integer Arrays

In this section, we describe our linear time LZ77 factorization algorithm that uses two auxiliary
integer arrays of length N in the different way of algorithms by Kärkkäinen et al.. We call the
algorithm that uses two integer arrays of length N BGtwo (see Figure 7.1).
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Figure 7.1: A comparison of the auxiliary arrays used and how their contents change with time
for the KKP variants and our algorithm.

KKP2 scans the SA sequentially to compute the NSVtext array. If possible, we would like
to compute the NSVtext array from SA in-place. However, this seems difficult, since while the
values of SA are in lexicographic order, the values of NSVtext array are in text order. To solve
this problem, we consider the Φ array. Since Φ[i] for each i indicates lexicographic predecessor
of suf (i), we can sequentially access values of SA from right to left, by accessing Φ starting
from the lexicographically largest suffix, which is Φ[1] = SA[N ], that is, Φ can be regarded as
an array based implementation of a singly linked list, linking the elements of SA from right to
left. Thus, the algorithm for computing NSVtext from SA can be simulated using the Φ array.
An important difference is that while elements of SA are in lexicographic order, elements of Φ
are in text order, which is the same as NSVtext . Also, since the access on SA is sequential, the
value Φ[i] is not required anymore after it is processed, and we can rewrite Φ[i] to NSVtext [i]

in-place. The pseudo code of the algorithm is shown in Algorithm 17. The correctness and
running time follows from the above arguments.

Lemma 25. Given the Φ array of a string T , NSVtext array of T can be computed from Φ in
linear time and in-place using O(logN) bits of working space.

7.3 Algorithm Using a Single Integer Array

In the previous section, we showed that the NSVtext array can be computed by rewriting Φ

array in-place in linear time. As described in Section 7.1, PSVtext(i) and NSVtext(i) can be
sequentially obtained by rewriting NSVtext array to Φ array, and compute the LZ77 factorization
in linear time. By combining the two algorithms (combining Lemma 24 and Lemma 25), we
obtain our main result.
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Theorem 6. Assuming an integer alphabet of size σ, the LZ77 factorization of a string of length
N can be computed in O(N) time using of N logN +O(σ logN) bits of total working space.

The problem is now how to compute the Φ array. Although the Φ array can easily be
computed in linear time by a naive sequential scan on SA, storage for both the input SA and
output Φ array is required for such an approach, as in the case of computing NSVtext from SA.
As far as we know, an in-place linear time construction algorithm for the Φ array has not yet
been proposed. Below, we propose the first such algorithm. As noted in the previous subsection,
the Φ array can be considered as an alternative representation of SA, which allows us to simulate
a sequential scan on the SA. Thus, in order to construct Φ in-place, our algorithm simulates
the in-place suffix array construction algorithm by Nong [60] which runs in linear time and
O(σ logN) bits of extra working space. We first describe the outline of the algorithm by
Nong for computing SA, and then describe how to modify this to compute the Φ array.

7.3.1 Construction of the Suffix Array by Induced Sorting [60]

Nong’s algorithm is based on induced sorting, which is a well known technique for linear time
suffix sorting. Induced sorting algorithms first sort a certain subset of suffixes, either directly
or recursively, and then induces the lexicographic order of the remaining suffixes by using the
lexicographic order of the subset. There exist several methods depending on which subset of
suffixes to choose. Nong’s algorithm utilizes the concept of LMS suffixes defined below.

Definition 3. For 1 ≤ i ≤ N − 1, a suffix suf (i) is an L-suffix if suf (i) is lexicographically
larger than suf (i+ 1), and an S-suffix otherwise. We call S or L the type of the suffix. An
S-suffix suf (i+ 1) is a Left-Most-S-suffix (LMS-suffix) if suf (i+ 1) is an S-suffix and suf (i) is
an L-suffix.

Recall that T [N ] = $, where $ is a special delimiter character that does not occur elsewhere
in the string. We define suf (N) to be an S-suffix. Notice that for i ≤ N − 1, suf (i) is an
S-suffix iff T [i] < T [i + 1], or T [i] = T [i + 1] and suf (i+ 1) is an S-suffix. The type of each
suffix can be determined by scanning T from right to left.

In SA, all suffixes starting with the same character c occur consecutively, and we call the
interval on the suffix array of such suffixes, the c-interval. A simple observation is that the
L-suffixes that start with some character c must be lexicographically smaller than all S-suffixes
that start with the same character c. Thus a c-interval can be partitioned into two sub-intervals,
which we call the L-interval and S-interval of c.

The induced sorting algorithm consists of the following steps. We denote the working array
to be SA, which will become the suffix array of the text at the end of the algorithm. In steps
2-4, we use integer arrays of size σ to store the interval of a character c. If we have these
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arrays, we can insert each suffix to its c-interval from left to right or right to left in turn, each
insertion taking O(1) time. These arrays can be computed by first scanning T from right to left,
and counting all characters, and then summing the values in lexicographic order to obtain each
interval.

1. Sort the LMS-suffixes.
We call the result LMS SA. We omit details of how this is computed, since our algorithm
will use the algorithm described in [60] as is, but it may be performed in linear time using
O(logN) bits of extra working space. We assume that the result LMS SA is stored in the
first k elements of SA, i.e. SA[1..k], where k is the number of LMS-suffixes.

2. Put each LMS-suffix into the S-interval of its first character, in the same order as LMS SA.

All values in SA[k+1..N ] are initially set to EMPTY . By a right to left scan on LMS SA

(i.e. SA[1..k]), we put each LMS-suffix suf (i) in the right most empty element of the S-
interval.

3. Sort and put the L-suffixes in their proper positions in SA.
This is done by scanning SA from left to right. For each position i, if SA[i] > 1 and
suf (SA[i]− 1) is an L-suffix, suf (SA[i]− 1) is put in the left-most empty position of the
L-interval for character T [SA[i] − 1]. The correctness of the algorithm follows from the
fact that if suffix suf (SA[i]− 1) is an L-suffix, then, suf (SA[i]) must have been located
before i (in the correct order), in SA.

4. Sort and put the S-suffixes in their proper positions in SA.
This is done by scanning SA from right to left. For a position i, if SA[i] > 1 and
suf (SA[i]− 1) is an S-suffix, suf (SA[i]− 1) is put in the right most empty position
of the S-interval for character T [SA[i] − 1]. The correctness of the algorithm follows
from the fact that if suffix suf (SA[i]− 1) is an S-suffix, then, suf (SA[i]) must have been
located after i (in the correct position), in SA.

In total, the algorithm computes suffix array in linear time using only a single integer array of
length N , and O(σ logN) bits of extra working space. Note that for any position i, determining
whether suffix suf (SA[i]− 1) is an L-suffix or not, can be done in O(1) time using no extra
space. If T [SA[i] − 1] < T [SA[i]] then it is an S-suffix, and if T [SA[i] − 1] > T [SA[i]] then it
is an L-suffix. For the case of T [SA[i]− 1] = T [SA[i]], the type of suf (SA[i]− 1) is the same
as that of suf (SA[i]), which can be determined by the position i, and the start and end positions
of the L- and S-intervals of character T [SA[i]].
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7.3.2 Construction of the Φ array by induced sorting

We regard Φ as an array based implementation of a singly linked list containing elements of SA
from right to left. The basic idea of our algorithm to construct the Φ array is to modify Nong’s
algorithm for computing SA, to use this list representation instead. However, there are some
technicalities that need to be addressed.

We denote the working array to be A, which will be an array based representation of a singly
linked list that links (in lexicographic order) the set of so-far sorted suffixes at each step, and
will become the Φ array of the text at the end of the algorithm. The algorithm is described
below.

1. Sort the LMS-suffixes.
First, we sort LMS-suffixes in the same way as [60]. The result will be called LMS SA

and stored in A[1..k], where k is the number of LMS-suffixes.

2. Transform LMS SA to the array based linked list representation
To simulate the algorithm for SA, we firstly need linked list representation of LMS SA

such that each value indicates the lexicographically succeeding LMS-suffix. For each
LMS-suffix suf (LMS SA[i]), its succeeding LMS-suffix suf (LMS SA[i+ 1]) will be
put in A[LMS SA[i]], i.e., A[LMS SA[i]] = LMS SA[i + 1] for i < k. If LMS SA and
A were different arrays, then we could simply set A[LMS SA[i]] = LMS SA[i + 1] for
each i < k. The problem here is that since LMS SA is stored in A[1..k], when setting a
value at some position of A, we may overwrite a value of LMS SA which has not been
used yet. We overcome this problem as follows.

First, we memorize LMS SA[1], the first value of LMS SA. Then, for 1 ≤ i ≤ k, we
set A[2i] = LMS SA[i] and A[2i− 1] = EMPTY by scanning A[1..k] from right to left.
Since k never exceeds N/2, we have 2i ≤ N for all 1 ≤ i ≤ k.

Next, for 1 ≤ i ≤ k − 1, let j1 = A[2i](= LMS SA[i]) and j2 = A[2(i + 1)](=

LMS SA[i + 1]). We attempt to set A[j1] = j2 . If A[j1] = EMPTY , then we simply
set A[j1] = j2. Otherwise j1 = 2i′ for some 1 ≤ i′ ≤ k, and A[j1] stores the value
LMS SA[i′]. Therefore, we do not overwrite this value, but instead, borrow the space
immediately left of position j1, and set A[j1 − 1] = j2. An important observation is that
A[j1 − 1] must have been EMPTY , because LMS-suffixes cannot, by definition, start at
consecutive positions, and if j1 was an LMS suffix, j1 − 1 cannot be an LMS suffix and
the algorithm will never try to set another value at this position.

After this, we set A[2i] = EMPTY for all 1 ≤ i ≤ k, and we arrange the remaining
values to their correct positions by attempting to traverse succeeding suffixes stored in
A from the lexicographically smallest suffix of LMS SA memorized at the beginning of
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the process. Let i be the current position we are traversing. We attempt to obtain its
succeeding suffix by reading A[i]. If A[i] ̸= EMPTY , the succeeding suffix of suf (i)
was stored at the correct position, and we continue with the next position A[i]. If
A[i] = EMPTY , then the succeeding suffix of suf (i) may be stored at the immediately
left position, i.e. A[i−1]. In such a case, A[i−1] ̸= EMPTY , and we set A[i] = A[i−1]

and A[i−1] = EMPTY , and continue with the next position A[i]. If A[i−1] = EMPTY ,
this means that suf (i) is the lexicographically largest suffix of LMS-suffixes, and we
finish the process.

In this way, for all LMS-suffixes suf (i), we can set the succeeding suffix at A[i]. The
process essentially scans the values of LMS SA on A twice. Therefore, this step runs in
O(k) time and O(logN) bits of working space.

3. Sort and put the L-suffixes in their proper positions in A.
To simulate the algorithm for SA, we need to scan the suffixes in lexicographically in-
creasing order by using A. Let suf (i) be a suffix the algorithm is processing. We want to
set A[j] = i−1 if suf (i− 1) is an L-suffix, and suf (j) is the suffix that lexicographically
precedes suffix suf (i− 1).

To accomplish this, we introduce four integer arrays of size σ each, Lbkts [c], Lbkte[c],
Sbkts [c] and Sbkte[c]. Lbkts [c] and Lbkte[c] store the lexicographically smallest and
largest suffix of the L-interval for a character c which have been inserted into A, and
Sbkts [c] and Sbkte[c] are the same for each S-interval. All values are initially set to
EMPTY . We first scan the list of LMS suffixes in lexicographically increasing order
represented in A constructed in the previous step, and insert each LMS suffixes into the
corresponding S-interval, by updating Sbkts [c] and Sbkts [e]. Then, we scan all LMS-
and L-suffixes in lexicographically increasing order by traversing the succeeding suffixes
on A by starting from Lbkts [c], traversing the list represented by A until we process
Lbkte[c]. Then we do the same starting from Sbkts [c] and process the suffixes until we
reach Sbkte[c], and repeat the process for all characters c in lexicographic order.

Let suf (i) be a suffix the algorithm is currently processing. We store suf (i− 1) in the
appropriate position of A, if suf (i− 1) is an L-suffix, and do nothing otherwise. Since
we know the type of suffix suf (i) since we are either processing a suffix between Lbkts [c]

and Lbkte[c] or Sbkts [c] and Sbkte[c], the type of suf (i− 1) can be determined in constant
time by simply comparing T [i − 1] and T [i], i.e. it is an L-suffix if T [i − 1] > T [i], an
S-suffix if T [i− 1] < T [i], and has the same type as suf (i) if T [i− 1] = T [i].

When storing suf (i− 1) in A, we check Lbkts [T [i− 1]]. If Lbkts [T [i− 1]] = EMPTY ,
then, suf (i− 1) is the lexicographically smallest suffix starting with T [i − 1]. We set
Lbkts [T [i − 1]] = Lbkte[T [i − 1]] = i − 1. Otherwise, there is at least one suffix
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lexicographically smaller than suf (i− 1) in the L-interval for character T [i − 1]. This
suffix is Lbkte[T [i−1]] = j, and we set A[j] = i−1, and update Lbkte[T [i−1]] = i−1.

In this way we can compute all the lexicographically succeeding suffixes of each L-
suffixes in the corresponding L-interval, and store them in A. Since the number of
times we read the values of A is at most the number of LMS- and L-suffixes, and the
updates for each new L-suffix can be done in O(1) time, the algorithm runs in linear time
using only a single integer array and O(σ logN) bits of working space in total.

4. Sort and put the S-suffixes in their proper positions in A.
To simulate the algorithm for SA, we need to scan all L-suffixes in lexicographically
decreasing order by using A. However, since the linked list of L-suffixes constructed on
A in the previous step is in increasing order, we first rewrite A to reverse the direction of
the links. That is, we want to set A[j] = i − 1 if suf (i− 1) is an L-suffix and suf (j) is
the suffix that lexicographically succeeds suffix suf (i− 1).

This rewriting can be done by scanning the succeeding suffixes in a similar way as that of
Step 3. For each c in lexicographically increasing order, traverse the L-suffixes by using
Lbkts [c],Lbkte[c], and A, and simply rewrite the values in A to reverse the links, i.e., if
suf (j) preceded suf (i) then A[i] = j.

Now we have a lexicographically decreasing list of L-suffixes represented in A, and insert
the S-suffixes into A similar to that of Step 3. After that all suffixes have been inserted
and linked, we can obtain all suffixes in decreasing order by traversing preceding suffixes
on A, i.e. A is now equal to the Φ array. Similarly to the previous step, we can see that
this step runs in linear time using one integer array of length N (A) and O(σ logN) bits
of extra space.

All steps run in linear time using A and O(σ logN) bits extra space, thus giving a linear time
algorithm for computing Φ using O(σ logN) bits of extra working space.

The above procedure describes how to construct Φ from T in linear time using O(σ logN)

bits of working space. Although we omit the details, it is possible to compute Φ by rewriting
SA in-place, in linear time and O(σ logN) bits of working space. This could seem useless, but
may have applications when the SA is already available, since the conversion does not require
the expensive recursion step as in the linear time SA construction algorithm (in Step 1), but can
be achieved in a few scans.

7.4 Computational Experiments

We implemented BGtwo and two variations of BGone. These are different in the computa-
tion of the Φ array. One computes the Φ array directly from T (BGoneT), and the other first
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computes SA and then computes the Φ array from SA (BGoneSA). The 3 implementations
are available at http://code.google.com/p/bgone/. We compared our algorithms
with the implementation of KKP1, KKP2, and KKP3 1, and also LZScan and LZISA6s which
are not linear time algorithms, but are practically fast and use less space. LZScan runs in
O(dN) time and O((N logN)/d) bits of working space, where d is a parameter that deter-
mines the space-time trade-off. In our experiments, d is chosen so that LZScan uses at least
and as close to the amount of space that BGoneT uses. LZISA6s runs in O(N log σ) time and
(1+ ϵ)N logN +N +O(σ logN) bits of space. We use SACA-K which is the implementation
of Nong’s algorithm to compute LMS SA in BGoneT, and the faster of SACA-K and divsufsort
to compute SA in all other implementations. The theoretical work space required for SACA-K
is σ logN + O(logN) bits, and O(logN) bits for divsufsort 2. Note that BGoneT has a dis-
advantage, but these conditions were chosen since the latter algorithms can choose any suffix
array construction algorithm, while BGoneT cannot.

All computations were conducted on a Mac Xserve (Early 2009) with 2 x 2.93GHz Quad
Core Xeon processors, each core has L2 cache of 256 KB and L3 cache of 8MB , and 24GB
Memory, only utilizing a single process/thread at once. The programs were compiled using the
GNU C++ compiler (g++) 4.7.1 with the -Ofast -msse4.2 option for optimization. The
running times are measured in seconds, starting after reading the input text in memory, and the
average of 3 runs is reported.

Figure 7.2 shows running times for two strings chosen from existing corpora3. Running
times for a more comprehensive set of data can be found at http://code.google.com/
p/bgone/. The running time is broken down into: construction of the suffix array, computa-
tion of PSV and NSV arrays, and LZ parsing 4. We omit the runtime of LZScan for LISP, since
it was 8 to 10 times slower than other algorithms. The figure shows that our algorithms is only
about 2-3 times as slow as the KKP algorithms for large data, despite the added complexity
introduced in order to use less space. One reason that KKP1 is faster may be because BGone
needs random access on the integer array to compute the NSVlex array, while KKP1 does not.
Although KKP1 writes/reads SA to and from the disk, sequential I/O seems to be faster than
random access on the memory. BGoneSA which computes the Φ array through SA, is a little
faster than BGoneT which computes Φ directly. Interestingly, BGoneT can be the fastest for
very small data, presumably when the whole space required for the algorithm fits within the L2

1https://www.cs.helsinki.fi/group/pads/lz77.html.
2the README of libdivsufsort-2.0.1 mentions the total space to be 5N + O(1) bytes, leaving O(1) bytes

excluding the suffix array and input text.
3http://corpus.canterbury.ac.nz/descriptions/, http://pizzachili.dcc.

uchile.cl/texts.html
4The runtime of the computation of PSVlex and NSVlex in KKP1 includes the read and write time of SA, and

the same runtimes in BGoneT and BGoneSA include the computation of Φ since NSVlex values are computed
on-the-fly in the construction of Φ.
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Figure 7.2: Running times in seconds for (left) DNA (100MB, σ = 16) and (right) LISP code
(3721B, σ = 76).
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cache. In such case SACA-K runs faster than divsufsort, and thus divsufsort is used for DNA
while SACA-K is used for the LISP code, for constructing SA.
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Chapter 8

Conclusion and Future Perspectives

8.1 Conclusion

We summarize our works as follows.

(A) Developing efficient algorithms to compute q-gram frequencies on SLPs. In Chapter 3,
we proposed an O(qn) time algorithm for computing all q-gram frequencies in a string
when given an SLP of size n representing the string. The algorithm extensively improved
previous work [33], and computational experiments showed that our algorithm run faster
than linear time algorithm on uncompressed strings for small q. We also showed that
applications of q-gram frequencies also can run efficiently in SLPs. For strings T1 and
T2, A string kernel between them can be computed in O(|T1| + |T2|). For two multisets
of SLPs, the optimal q-gram from two sets can be found in O(qM) time, where M is the
total number of variables of two multisets of SLPs. We presented that the O(qn) algo-
rithm can be easily extended to compute frequencies of all substrings of length up-to and
including q.

In Chapter 4, we improved the O(qn) algorithm to be able to handle large q, and proposed
an O(N − dup(q, T )) time algorithm. The algorithm is asymptotically always at least as
fast compared to algorithms on uncompressed strings for any q.

In Chapter 5, we considered the non-overlapping q-gram frequencies problem, and then
proposed an O(q2n) time and O(qn) space algorithm.

(B) Developing efficient compression algorithms with high compression ratio. In Chapter 6,
we developed fast linear time algorithms to compute the LZ77 factorization of a given
string T . We call them BGS, BGL, and BGT. They respectively use (4N + Smax) logN ,
4N logN , 3N logN bits of working space, excluding T , where Smax ≤ N is the maxi-
mum stack size that the algorithm uses. Computational experiments on various data sets
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showed that BGS, BGL, BGT constantly outperform LZ OG [62] which is one of the
fastest among existing linear time algorithms, and especially BGS can be up to 2 to 3
times faster in the processing after obtaining the suffix array.

In Chapter 7, we developed space efficient linear time algorithms to compute the LZ77
factorization of a given string T . We call them BGtwo and BGone. They respectively
use 2N logN and N logN + O(σ logN) bits of working space, excluding T . BGtwo is
one of algorithms using the least space among existing linear time algorithms for integer
alphabets, and BGone is the algorithm using the least space for small alphabets. Compu-
tational experiments showed that BGone is only about 2-3 times as slow as KKP2, which
is the fastest algorithm among linear time algorithms using 2N logN bits of working
space, despite the added complexity introduced in order to use less space.

8.2 Future Perspectives

We give some perspectives for future work.

(A) Developing efficient algorithms to compute q-gram frequencies on SLPs. Since some ap-
plications admit approximate solutions of q-gram frequencies, a future work is to develop
approximate yet faster q-gram frequencies algorithms on SLPs.

(B) Developing efficient compression algorithms with high compression ratio. We proposed
the linear time LZ77 factorization algorithms using N logN+O(σ logN) bits of working
space. An interesting question is whether it is possible to compute the LZ77 factoriza-
tion in linear time using only N logN bits of working space independent of alphabet size.
However it means that we may have to develop also a linear time suffix array construction
algorithm which uses only N logN bits of working space, and looks quite difficult.

Recently, super linear time but practically fast algorithms which use more than N logN

bits of working space were proposed [41]. A super linear time algorithm using less than
N logN bits of working space was also proposed [35], but can be slower than the fastest
linear time algorithm in practice. A future work is to develop super linear time algorithms
that run practically faster than the fastest linear time algorithm, and use less than N logN

bits of space.
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