
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Maximum Satisfiability Approach to Game Theory
and Network Security

廖, 暁鵑

https://doi.org/10.15017/1441264

出版情報：九州大学, 2013, 博士（工学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

Kyushu University

Doctoral Thesis

Maximum Satisfiability Approach to

Game Theory and Network Security

Author:

Xiaojuan Liao

Supervisor:

Prof. Ryuzo Hasegawa

A thesis submitted for the degree of

Doctor of Engineering

in the

Graduate School of Information Science and

Electrical Engineering

January 2014

kyushu-u.ac.jp
http://www.johnsmith.com
http://www.jamessmith.com
http://portal.isee.kyushu-u.ac.jp/e/
http://portal.isee.kyushu-u.ac.jp/e/

Abstract

The problem of determining whether a propositional Boolean formula can be true is

called Boolean Satisfiability Problem (SAT). Maximum Satisfiability Problem (MaxSAT),

as well as its extensions: partial MaxSAT, weighted MaxSAT, and weighted partial

MaxSAT, are optimization versions of the famous SAT problem. To date, there have

been a variety of MaxSAT applications such as planning and scheduling. This thesis is

concerned with a well-suited way of representing and solving real-world problems with

MaxSAT, in terms of multi-agent systems and cryptographic areas.

Generally, a propositional Boolean formula is expressed in Conjunction Normal Form

(CNF), which is a conjunction of clauses that are disjunctions of literals. A literal

is either a positive or negative Boolean variable. Weighted partial MaxSAT (WPM)

distinguishes clauses between hard and soft, where each soft clause is associated with a

positive weight. The WPM problem is to satisfy all hard clauses and maximize the sum

of weights of all the satisfied soft clauses. The fact that WPM only identifies positive

weights sometimes becomes impediment to solve problems where positive and negative

weights co-exist. To avoid this difficulty, in this thesis, an extended WPM (EWPM) for

handling non-zero weights is presented and the relationship between EWPM and WPM

solution is examined. The design of EWPM paves the way for a wider range of WPM

applications.

One application of EWPM is the coalition structure generation problem (CSG), which

tries to partition a set of agents into coalitions so that the total sum of payoffs of all

coalitions is maximized. One of the difficulties for solving the CSG problem is that the

size for representing the payoffs of possible coalitions is exponential to the number of

agents. Recently, a new breakthrough has been achieved by representing the CSG prob-

lem concisely in a set of rules, where each rule is assigned to a non-zero payoff. With

the compact representation schemes, the CSG problem has been significantly scaled up.

This thesis provides two WPM encodings for solving the CSG problem in compact rep-

resentation schemes, making use of rule relations and agent relations respectively. The

rule relation-based WPM encoding is derived from the existing optimization framework-

s, while the agent relation-based WPM encoding is a brand-new encoding drawing on

the developed EWPM. Both encodings validate the effectiveness of the WPM solvers in

solving the CSG problem, and the agent relation-based WPM encoding exhibits more

desirable performance than the other one.

iv

If all soft clauses in WPM have weight 1, the problem is regarded as partial MaxSAT.

The goal of partial MaxSAT is to satisfy all hard clauses and the maximal number of soft

clauses. In this thesis, the potential of partial MaxSAT is exploited for reconstructing

corrupted keys of advanced encryption standard (AES), which is typically extracted from

dynamic random access memory. An AES key is a series of 0-1 bits closely related to

each other. The relations among key bits are naturally expressed with a set of Boolean

formulas, and thus the problem of rectifying the faults in the corrupted AES key schedule

is able to be formulated as a Boolean satisfiability problem. Traditionally, the AES key

recovery is achieved by SAT solvers, based on the assumption that all memory bits

decay from the charged state to the ground state. However, this assumption does not

hold in realistic case where the majority of memory bits decay to the ground state while

a small fraction of bits flip in the opposite direction. This thesis follows the realistic

setting by taking the reverse flipping into consideration, and encodes the problem of AES

key recovery into partial MaxSAT. Experiments demonstrate that the partial MaxSAT

encoding can greatly improve the efficiency of AES key recovery from corrupted key bits.

Acknowledgements

First of all, I would like to acknowledge the China Scholarship Council (CSC) for award-

ing me the state scholarship, which covered all my living stipend in Japan during my

Ph.D course. Thanks to this scholarship, I could fully devote myself to the research.

I would like to thank my supervisor Prof. Ryuzo Hasegawa for his support of my

research and Ph.D study. Without his supervision and help, this work would not be

possible. His dedication to research and patience for students will always be an example

for me to follow. I gratefully thank Prof. Hiroshi Fujita for his constructive suggestions

and support during my study in Hasegawa-Fujita Lab. I am heartily indebted to Prof.

Miyuki Koshimura for his patient and expert guidance throughout the course of the

research described in this thesis. Without the numerous discussions with him, the results

presented in this thesis would never have existed. I would also like to thank Prof. Makoto

Yokoo and Prof. Einoshin Suzuki for taking the time to read my thesis and giving me

precious comments.

I would like to express my sincere appreciation to Prof. Makoto Yokoo and his students

for their kind and generous help of my research. My sincere appreciation is extended to

Dr. Tadashi Araragi for being my external advisor and providing a lot of perspicacious

comments about my research. Besides, I would like to thank my collaborator Dong Hao

for his valuable comments and suggestions. I would like to show my deep gratitude to

Hiroshi Kihara for giving me kind help on my research. I would also like to thank Dr.

Fagen Li for providing me with the valuable research knowledge and advice.

I would like to express sincere thanks to all members of Hasegawa-Fujita Laboratory.

You have been remarkable source of inspiration for many ideas developed in this thesis.

I am really glad to have collaborated with you all. I am grateful to my colleagues and

friends at Kyushu University: Rong Huang, Leyuan Liu, Yichao Xu, Chengming Li and

Hao Zhu. I am very fortunate to have met up, discussed and worked with you during

my Ph.D course. Thank you for all your support on research and living

Finally I would like to thank my parents, my husband, and all my friends for their love

and encouragement. Without their help and understanding, I certainly would not have

been able to finish this thesis.

v

Contents

Abstract iii

Acknowledgements v

Contents vi

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Research Area . 1

1.1.1 SAT and MaxSAT . 1

1.1.2 The CSG Problem . 3

1.1.3 Recovering AES Keys from a Cold Boot Attack 5

1.2 Thesis Contribution . 6

1.3 Thesis Organization . 7

2 Preliminary 11

2.1 SAT, MaxSAT and Its Extension . 11

2.2 MaxSAT Algorithms . 14

2.3 CNF Encodings . 16

2.3.1 Transformation by Boolean Algebra 17

2.3.2 Transformation by Tseitin Encoding 18

2.4 Game Theory . 20

2.4.1 Non-cooperative game . 20

2.4.2 Cooperative game . 21

2.4.3 Game Theory Applied in Network Security 22

3 Extending MaxSAT to Deal with Negative Weights 25

3.1 Weighted Partial MaxSAT . 26

3.2 Extended Weighted Partial MaxSAT . 26

3.2.1 EWPM-to-WPM Transformation 26

3.2.2 Redundancy in Transformation . 29

vii

Contents viii

3.2.3 Considerations . 30

3.3 Chapter Summary . 31

4 MaxSAT Encoding for the CSG Problem based on Rule Relations 33

4.1 Coalition Structure Generation (CSG) . 34

4.1.1 Characteristic Function Game . 34

4.1.2 Partition Function Game . 36

4.2 Related Works . 38

4.2.1 An Overview . 38

4.2.2 Direct Encoding . 39

4.3 WPM Encoding on Rule Relations . 42

4.3.1 Encoding Positive Value Rules . 42

4.3.2 Encoding Positive Value Embedded Rules 44

4.3.3 Encoding Negative Value Rules . 47

4.3.4 Encoding Negative Value Embedded Rules 49

4.4 Evaluation . 51

4.4.1 Generating Problem Instances . 51

4.4.2 Selecting Appropriate Solvers . 52

4.4.3 Results . 53

4.5 Chapter Summary . 54

5 MaxSAT Encoding for the CSG Problem based on Agent Relations 57

5.1 WPM Encoding on Agent Relation . 58

5.1.1 Agent Relation . 58

5.1.2 Encoding Positive Value (Embedded) Rules 60

5.1.3 Encoding Negative Value (Embedded) Rules 62

5.2 Evaluation . 64

5.3 Chapter Summary . 66

6 MaxSAT Encoding for Recovering AES Key Schedules 69

6.1 Cold Boot Attack and AES . 70

6.2 Reltaed Works . 71

6.3 Modeling Bits in AES-128 Key Schedules 73

6.4 SAT/ MaxSAT Encoding for Recovering AES-128 Key Schedules 75

6.4.1 Recovery with SAT under the Realistic Assumption 76

6.4.2 Recovery with MaxSAT under the Realistic Assumption 77

6.5 Experiment and Comparison . 80

6.5.1 Generating Problem Instances . 80

6.5.2 Selecting Appropriate Solvers . 81

6.5.3 Results . 82

6.6 Chapter Summary . 86

7 Conclusions and Future Works 89

7.1 Efficient MaxSAT Encoding . 89

7.2 Future Works . 91

Contents ix

A Complete File for Example 4.7 in WPM Input Format 93

B Complete File for Example 4.8 in WPM Input Format 97

C Complete File for Example 5.2 in WPM Input Format 103

D Complete File for Example 5.3 in WPM Input Format 105

E A Sample of Sbox Expressed in ANF 107

Bibliography 113

List of Related Publications 125

List of Figures

4.1 Graphical representation of Example 4.5 41

4.2 Average computation time of RWPM and direct encoding [75, 111] 54

5.1 Average computation time of RWPM and AWPM 66

5.2 Number of Boolean variables in RWPM and AWPM 67

5.3 Number of clauses in RWPM and AWPM 67

6.1 Diagram of AES-128 key expansion in adjacent two rounds 73

xi

List of Tables

4.1 Average wall-clock time (seconds) required for RWPM in MC-nets 53

4.2 Average wall-clock time (seconds) required for RWPM in embedded MC-
nets . 53

5.1 Average wall-clock time (seconds) required for AWPM in MC-nets 65

5.2 Average wall-clock time (seconds) required for AWPM in embedded MC-
nets . 65

6.1 Average runtime (seconds) required for MaxSAT Solvers 82

6.2 Average runtime of SAT/MaxSAT approaches at δ1 = 0.1% 82

6.3 Runtime statistics of SAT/MaxSAT approaches with 1 reverse flipping
error . 84

6.4 Runtime statistics of SAT/MaxSAT approaches with 1 reverse flipping
error (cont’d) . 84

6.5 Runtime statistics of SAT/MaxSAT approaches with 2 reverse flipping
errors . 85

6.6 Runtime statistics of SAT/MaxSAT approaches with 2 reverse flipping
errors (cont’d) . 85

xiii

Chapter 1

Introduction

Many problems that arise in the real world are difficult to solve partially because they

present computational challenges. Furthermore, it is often important to find not just

any solution to the problem, but the best one from all feasible solutions according to

some objective. In this case, the problem falls into the class of optimization problems.

If an optimization problem is represented as discrete variables, it is known as a com-

binatorial optimization problem. Maximum Satisfiability (MaxSAT), as an advanced

tool for solving combinatorial optimization problem, has been applied to a wide range

of practical areas.

This thesis is about the application of MaxSAT to multi-agent systems and cryptographic

areas. More in particular, weighted partial MaxSAT is employed for solving the coalition

structure generation problem, one of the main challenges in coalition formation. In

addition, the potential of partial MaxSAT is exploited for reconstructing corrupted AES

key schedule images, a series of 0-1 bits extracted from dynamic random access memory.

This chapter provides an overview of the problems that will be addressed in the rest of

the thesis and gives a brief summary of the thesis contributions.

1.1 Research Area

1.1.1 SAT and MaxSAT

A Boolean formula is used to represent a Boolean function, where the definition domain

and the value field are both in B = {Ture, False}. A Boolean variable takes only the

1

Chapter 1. Introduction 2

two values in B. If a Boolean variable is bounded with a Boolean value, it is said to be

assigned a value, otherwise, it is free, which means it is not assigned a value. Given a

Boolean formula, the problem of determining whether there exists a variable assignment

that makes a Boolean formula evaluate to true is called the satisfiability problem.

A propositional Boolean formula is a Boolean formula that only contains logic operations

and, or and not. Typically, a Boolean propositional formula is expressed in Conjunctive

Normal Form (CNF), also known as Product of Sum (POS) form. A formula in CNF

consists of a conjunction (logic and) of one or more clauses. A clause is a disjunction

(logic or) of one or more literals, and a literal is an occurrence of a Boolean variable or

its negation.

A variable assignment satisfies a literal x if x takes the value of 1 and satisfies a literal

¬x if x takes the value 0. A variable assignment satisfies a clause if it satisfies at least

one literal of the clause, and satisfies a CNF formula if it satisfies all clauses of the

formula.

Boolean Satisfiability Problem (SAT) determines whether there exists a variable assign-

ment that makes a propositional Boolean formula evaluate to true. In other words, the

SAT problem for a CNF formula tries to find a variable assignment that satisfies all the

clauses in a Boolean propositional formula. If such an assignment exists, the formula

is satisfiable, otherwise, the formula is unsatisfiable. SAT problem is the first known

NP-complete problem proven by Stephen Cook in 1971 [19], and is one of the most

important and extensively studied problem in computer science.

Maximum Satisfiability (MaxSAT) is a generalization of the Boolean Satisfiability prob-

lem. MaxSAT tries to find a variable assignment that satisfies the maximum number of

clauses in a CNF formula. There are several variants of the MaxSAT problem: partial

MaxSAT, weighted MaxSAT, and weighted partial MaxSAT. In partial MaxSAT prob-

lem for a CNF formula, some clauses are declared to be relaxable or soft and the rest

are hard. The problem is to find a variable assignment that satisfies all the hard clauses

and the maximum number of soft clauses. Weighted MaxSAT, where each clause has a

bounded positive numerical weight, is to find a variable assignment that maximizes the

sum of weights of satisfied clauses. Weighted Partial MaxSAT (WPM) is the combina-

tion of partial MaxSAT and weighted MaxSAT. In WPM, each soft clause is associated

with a positive numerical value. Solving WPM corresponds to finding an assignment

that satisfies all the hard clauses and maximizes the sum of weights of satisfied soft

clauses (or equivalently, that minimizes the sum of weights of unsatisfied soft clauses).

Chapter 1. Introduction 3

1.1.2 The CSG Problem

Coalition formation is an important capacity in multi-agent systems. It is a funda-

mental type of interaction that involves the creation of coherent groupings of distinct,

autonomous agents in order to efficiently achieve their individual or collective goals. In

general, coalition formation is composed of three main activities [76]:

• Coalition structure generation: finding a coalition structure, i.e., an exhaustive

set of mutually disjoint coalition, so that the performance of the entire system is

optimized.

• Teamwork: optimizing the performance of each individual coalition.

• Payoff distribution: dividing the gains from cooperation among agents so as to

meet certain positive or normative criteria.

Coalition structure generation (CSG) [97] is the main research issue in coalition forma-

tion of multi-agent systems. It means partitioning a set of agents into exhaustive and

disjoint coalitions, where each coalition is assigned a real-valued payoff. This partition

is called a coalition structure. Solving the CSG problem is to find a coalition structure

such that the total value of all the coalitions is maximized. Two concrete examples of

the CSG problem are shown as follows.

Example 1.1. Let us consider coalition formation among three autonomous agent-robots

a1, a2, and a3. The payoffs of possible coalitions are listed as follows.

• If a1 works alone, the payoff of 1 is achieved.

• If a2 works alone, the payoff of 0 is achieved.

• If a3 works alone, the payoff of 0 is achieved.

• If a1 and a2 work together, the payoff of 1 is achieved.

• If a1 and a3 work together, the payoff of 1 is achieved.

• If a2 and a3 work together, the payoff of 1 is achieved.

• If a1, a2 and a3 work together, the payoff of 2 is achieved.

It indicates that a1 is able to secure the payoff of 1 if acting alone, while a2 and a3

produce nothing if performing separately. Besides, no pair of cooperating agents achieves

any value added except a2 and a3 who are able to lead to the payoff of 1 if they work

together. There are two optimal partitions of these three agents. The first one is the

Chapter 1. Introduction 4

grand coalition, i.e, a1, a2 and a3 perform cooperatively. The other one is to assign a2

and a2 to the same group while let a1 work alone. The total values of these two partitions

are both 2.

Example 1.2. Let us consider coalition formation among the three autonomous agent-

robots a1, a2, and a3 again. The payoffs of coalitions are almost the same as that in

Example 1.1, except that the following condition is incorporated.

• The performance of a1 improves by an additional 0.5 when facing the cooperation

of a2 and a3.

In this case, the value of coalition {a1} is different in {{a1}, {a2, a3}} than in {{a1}, {a2},
{a3}}. When considering the payoff of {a1}, the formation of other coalitions should be

taken into account, i.e, whether a2 and a3 are assigned to the same coalition.

These two examples provide an overview of two types of the CSG problem. In Example

1.1, the value of a coalition is independent of how other coalitions are formed, while in

Example 1.2, the value of a coalition is affected by the formation of other coalitions.

This effect is known as externality from coalition formation. Clearly, the CSG problem

with externalities is more complicated that the problem without externalities as more

possible coalitions are needed to be examined. Currently, the majority of works have

been devoted to solving the CSG problem without externalities, while only a few works

have been designed for solving the problem with externalities.

The difficulty of solving the CSG problem lies in the exponentially increasing number of

possible solutions (i.e., coalition structures), with O (nn) for n agents. Furthermore, the

representation size for enumerating the payoffs of possible coalitions is also considerably

large, O (2n) for CSG without externalities, and O (nn) for CSG with externalities [87].

To date, the state-of-the-art algorithms are able to solve the CSG problem with only a

dozen of agents.

The large representation size of the CSG problem could be alleviated by employing

compact representation schemes. To date, a variety of such schemes have been devel-

oped, e.g., marginal contribution nets (MC-nets) [43], synergy coalition groups (SCGs)

[18], SCGs in multi-issue domains [17], and embedded MC-nets [69]. In these concise

representation schemes, the CSG problem is expressed in a set of rules, in the form of

condition→ value, which could represent all possible mappings between coalitions and

the corresponding values. Thus solving the CSG problem amounts to maximizing the

Chapter 1. Introduction 5

sum of values of rules where the corresponding conditions satisfy some constraints. With

these concise representation schemes, the CSG problem can scale up significantly under

some off-the-shelf optimization algorithms. If the weighted rules and constraints are

respectively encoded into soft clauses and hard clauses, the CSG problem is formulated

as a weighted partial MaxSAT problem. The only obstacle to adopt MaxSAT solvers is

that the value of a coalition is either positive or negative, while the weight in weighted

partial MaxSAT must be positive.

1.1.3 Recovering AES Keys from a Cold Boot Attack

Dynamic random access memory (DRAM) is the main memory used in most modern

computers. Most security practitioners assumed that a computer’s memory is erased

almost immediately when it loses power, or that whatever data remains is difficult to

retrieve without specialized equipment. This assumption has been declared incorrect

in 2008 [34]. The observed fact is, after power is lost, DRAM retains its contents for

several seconds at room temperature, and for minutes or even hours if the chips are kept

at low temperature. This feature of DRAM is called DRAM remanence. Residual data

can be recovered using simple, nondestructive techniques that require only momentary

physical access to the machine.

Encryption systems typically store the encryption keys in RAM to speed up the retrieval

of keys, which opens a door to attackers to retrieve the encryption keys by cutting

power to the memory. If attackers are forced to cut power to the memory for too long,

the contents of memory will become corrupted. Confronting with the corrupted keys,

attackers have developed algorithms to correct errors in private and symmetric keys.

Advanced Encryption Standard (AES) is a worldwide prevalent symmetric cryptographic

algorithm nowadays. The recovery of AES keys is usually achieved by exploiting the

redundancy of key material inherent in cryptographic algorithms. An AES key refers to

a key schedule consisting of multiple round keys. According to the AES key expansion

algorithm [31], all these round keys are computed from an initial key that is relatively

short compared to the entire key schedule. This implies that the round keys contain

a large amount of redundancy. In other words, bits in the round keys are so strongly

constrained with each other that an attacker may recover the entire key schedule even if

he knows only some parts of the key bits. Besides, the relations that have to be satisfied

between the round key bits are naturally expressed in a set of Boolean formulas, which

could be reformulated as Boolean propositional formulas. Therefore, it is possible to

Chapter 1. Introduction 6

employ SAT or MaxSAT solvers to recover the AES key schedule, as long as a moderate

amount of key bits is available. The occasions of employing SAT or MaxSAT solvers are

distinguished by the different assumptions adopted in the key recovery.

According to the observation of DRAM remanence, the probability of decaying to the

ground state approaches 1 as time goes on, while the probability of flipping in the

opposite direction remains relatively constant and small (around 0.1% observed in [34]).

In other words, given a section of memory contents after power is removed, most bits

in the charged state that remain in the memory are correct because the probability of

flipping from the ground state to the charged state is quite tiny. This tiny probability

is sometimes neglected and thus all the memory bits in the ground state after extracted

from memory are correct without any exception. This is called perfect assumption, on

which based the key recovery problem is modeled as a SAT problem. On the other hand,

if the reverse flipping is taken into consideration, recognized as realistic assumption, the

problem can be modeled as partial MaxSAT, in which the probabilistically correct bits

are modeled as soft clauses.

1.2 Thesis Contribution

This thesis contributes to applying MaxSAT to solve the CSG problem and recover AES

key schedules by providing added values to the following points:

Extending WPM to deal with negative weights. In weighted paritial MaxSAT

(WPM), it is natural to limit the weights of soft formulas in the positive domain be-

cause the original intention of MaxSAT is maximizing the number of satisfied formulas.

However, there are some applications expressed as formulas with both positive and neg-

ative weights. For example, in the CSG problem that are represented by a set of rules,

the values of these rules can be both positive and negative. In this context, we have

extended the WPM to deal with negative weights, referred to as extended WPM (EW-

PM), thus any propositional Boolean formulas with non-zero weights could be handled

by an off-the-shelf MaxSAT solver. Moreover, in order to solve EWPM instances with

WPM solvers, we have presented transformation from EWPM to WPM and examine

the relationship between EWPM and WPM solutions.

Solving the CSG problem with WPM. Traditionally, to represent a characteristic

function or partition function in the CSG problem, a naive solution is to enumerate the

payoffs to each set of agents, thus requiring space exponential to the number of agents

Chapter 1. Introduction 7

in the game. This is prohibitive when the number of agents is large. In order to conquer

the problem of exponentially growing representation size, recent works have made use

of compact representation schemes and scaled up the CSG problem significantly.

Inspired by the recent works that employ the concise representation schemes, we have

encoded the CSG problem into Boolean propositional formulas, which could be handled

by existing WPM solvers. Specifically, our encodings are composed of two methods.

The first one, named rule relation-based WPM encoding, is directly derived from the

existing works [75, 111]. The results obtained confirm the effectiveness of our encoding

and show that WPM could be successfully applied to the CSG problem. Our second

method, called agent relation-based WPM encoding, managed to further improve the

performance, which saves the computation time by more than half compared to the rule

relation-based WPM encoding.

Recovering AES key schedules with MaxSAT. In a true cold boot attack observed

by Halderman [34], with time goes on after power is removed, most memory bits decay

from the charged state to the ground state, with only a small fraction, around 0.1%, flip

to the charged state. This is the realistic assumption for a cold boot attack. However, in

many previous works, the decay direction is assumed only from the charged state to the

ground state with no bit flipping in the opposite direction. We call it perfect assumption.

In this thesis, we have extended the previous SAT-based approach [49], which could only

recover AES keys under perfect assumption, to adapt the realistic assumption. Moreover,

we have recast the problem of AES key recovery under the realistic assumption as a

partial MaxSAT problem. Specifically, all bits in the charged state are encoded as soft

clauses, and the relations that have to be satisfied between different round key bits are

encoded as hard clauses. Experiments show that the MaxSAT approach is significantly

superior to the SAT approach, which is tuned from the previous work [49].

1.3 Thesis Organization

The organization of this thesis is as follows. Chapter 2 provides an introduction to

the preliminaries used in the remainder of the this thesis, including concepts related to

MaxSAT, various techniques used for MaxSAT solving, and encodings that transform

from a propositional formula to CNF formula. MaxSAT solving techniques play a crucial

role to improving the efficiency of problem solving, and the choice of CNF encoding is as

Chapter 1. Introduction 8

important as that of MaxSAT solving algorithms, since currently, many MaxSAT solvers

are designed to solve problems represented typically in CNF formulas.

In Chapter 3, the standard weighted partial MaxSAT (WPM) is extended for handling

not only positive weights but also negative weights. The original intension of the exten-

sion is to describe the real-world problems that are associated with both positive and

negative values, and then employ the off-the-shelf WPM solvers to these problems. To

this end, this chapter first shows the way of transforming from extended WPM (EWPM)

to the standard one, and provides a rigorous proof on the relation between EWPM and

WPM solutions.

Chapter 4 presents a WPM encoding on solving the coalition structure generation (CSG).

The encoding provided in this chapter is directly derived from the previous work by

Yokoo et. al [111]. First an overview of the previous work that is the most related to

our encodings is provided, which has been shown sound and more efficient than other

works. This forms the basis for the WPM encoding discussed subsequently. A procedure

to encode the previous work into WPM formulas is provided, including the encoding of

the basic CSG problem as well as its extension. Experiments are used to show the

efficiency and scalability of the WPM encoding.

Chapter 5 provides a brand-new WPM encoding for the CSG problem, taking advantage

of the EWPM-to-WPM transformation described in Chapter 3. The notion of agent re-

lations is introduced and the encodings of the CSG problem based on agent relations are

defined. In the rest of this chapter, the WPM encoding towards solving the CSG prob-

lem with positive values and negative values are discussed step by step. Experimental

data and comparison results are provided to validate the effectiveness of the proposed

encoding.

In Chapter 6, two propositional logical encodings for recovering AES key schedules is

provided. There are two different assumptions for key recovery, i.e., perfect assumption

and realistic assumption. Perfect assumption assumes all memory bits tend to decay

to the ground state after power is removed, while in the realistic assumption, the phe-

nomenon of decaying to the ground state and flipping to the charged state may co-exist.

The works for recovering the AES keys under different assumptions are analyzed. Since

the realistic assumption is more suitable for the real-world case, this chapter presents t-

wo approaches for recovering AES keys under realistic assumption, with SAT and partial

MaxSAT solvers respectively. Experiments are provided to demonstrate the effectiveness

of the proposed approaches.

Chapter 1. Introduction 9

Finally, Chapter 7 contains a summary of this thesis and a discussion of some future

research directions that may be worth exploring.

Chapter 2

Preliminary

The purpose of this chapter is to set the basic concepts and notations of the Maximum

Satisfiability (MaxSAT) problem and game theory. This chapter consists of four sec-

tions. The first section introduces the basic formal concepts on SAT, MaxSAT, partial

MaxSAT, weighted partial MaxSAT, and weighted partial MaxSAT. In Section 2.2, the

algorithms for solving MaxSAT are outlined. The third section describes the techniques

for transforming from a Boolean propositional formula to Conjunction Normal Form

(CNF). Finally, in Section 2.4, an overview of game theory is provided.

2.1 SAT, MaxSAT and Its Extension

A Boolean formula is a string that represents a Boolean function. A Boolean function

is a function of the form: Bk → B, where B = {True, False} is a Boolean domain

and k is the arity of the function. Usually True and False are represented by 1 and 0

respectively. A propositional Boolean formula is a Boolean formula that only contains

logic operations and, or and not (sometimes called negation or complement), symbolized

as ∧, ∨ and ¬, respectively. Some examples of propositional Boolean formulas are listed

as follows:

(a ∧ b) ∨ (a ∧ ¬c) ∨ (b ∧ c ∧ d)

(a ∨ b) ∧ (a ∨ ¬b ∨ ¬c) ∧ (c ∨ ¬a)

(b ∨ ¬c) ∧ (a ∨ ¬c) ∨ b

11

Chapter 2. Preliminary 12

A Boolean propositional formula can be expressed in Conjunctive Normal Form (CNF),

also known as Product of Sum (POS) form. A formula in CNF consists of a conjunction

(logic and) of one or more clauses. A clause is a disjunction (logic or) of one or more

literals, and a literal is an occurrence of a Boolean variable or its negation. An example

of a propositional Boolean formula in CNF is φ = (b ∨ ¬c) ∧ (a ∨ ¬c) ∧ b, which is also

can be represented by a set of clauses as φ = {b∨¬c, a∨¬c, b}, or an assemble of literal

sets like φ = {{b,¬c}, {a,¬c}, {b}}. In this thesis, a CNF formula is denoted by a set of

clauses, i.e., conjunction is omitted.

The problem of determining whether there exists a variable assignment that makes a

propositional Boolean formula evaluate to true is called Boolean Satisfiability Problem

(SAT). In other words, the SAT problem tries to find a variable assignment to a CNF

formula that satisfies all the clauses in a Boolean propositional formula. If such an

assignment exists, the formula is satisfiable, otherwise, the formula is unsatisfiable.

Example 2.1. φ = {a ∨ b ∨ ¬c ∨ d, a ∨ ¬b ∨ ¬c, a ∨ b,¬d, d} is a Boolean propositional

formula in CNF. This formula contains five clauses: (a ∨ b ∨ ¬c ∨ d), (a ∨ ¬b ∨ ¬c),
(a ∨ b), (¬d), and (d). The first clause (a ∨ b ∨ ¬c ∨ d) contains four literals, i.e., a,

b, ¬c, and d. This formula is unsatisfiable because the last two clauses are conflicting,

which means they cannot be satisfied at the same time.

SAT problem is the first known NP-complete problem proven by Stephen Cook in 1971

[19] and independently by Leonid Levin in 1973. The proof shows how every decision

problem in the complexity class NP can be reduced to the SAT problem for CNF for-

mulas. That the SAT problem is NP problem briefly means that there is no known

algorithm that efficiently solves all instances of SAT, and it is generally believed that no

such algorithm can exist. A class of algorithms to efficiently solve a large enough subset

of SAT instances is called SAT solver, which is useful in various practical areas such as

circuit design and automatic theorem proving, as well as solving problems in comput-

er science. Extending the capabilities of SAT solving algorithms is an ongoing area of

progress. However, no current such methods can efficiently solve all SAT instances.

The last decade has witnessed a dramatic speed-up of SAT solvers: problems with thou-

sands of variables are now solved in milliseconds by state-of-the-art SAT solvers. One

of the main reasons for such remarkable improvements is the wide range of SAT appli-

cations. Examples include software verification [16, 44], model checking of finite-state

systems [11, 102], AI planning in artificial intelligence [91, 99], as well as cryptographic

Chapter 2. Preliminary 13

areas that have been on the rise in recent years [49, 80]. In addition to practical appli-

cations, the extension of SAT has also attracted much attention, such as Satisfiability

Modulo Theories (SMT) [7], Quantified-Boolean Formulas (QBF) [56], and Maximum

Satisfiability (MaxSAT) [38, 58]. Readers may refer to [66] for more applications of SAT.

Given a Boolean propositional formula, if it is unsatisfiable, SAT solvers only report

that no solution exists, without any information on unsatisfiable instances. However,

assignments violating a minimum number of constraints, or satisfying all the compulsory

(hard) constraints and as many optional (soft) constraints as possible, can be consid-

ered as acceptable solutions in real-life scenarios. To cope with this limitation of SAT,

MaxSAT and its extensions, such as partial MaxSAT and weighted MaxSAT, are be-

coming an alternative for representing and efficiently solving over-constrained problems

[12].

The MaxSAT problem for a CNF formula is the problem of finding a variable assignment

that maximizes the number of satisfied clauses. MaxSAT is often used to mean Min-

UNSAT, because finding an assignment that maximizes the number of satisfied clauses

is equivalent to finding an assignment that minimizes the number of unsatisfied clauses.

MaxSAT is useful to measure the extent of unsatisfiability of a CNF formula.

Three extensions of MaxSAT are more well-suited for representing and solving over-

constrained problems: partial MaxSAT, weighted MaxSAT, and weighted partial MaxSAT.

In a partial MaxSAT instance, each clause is labeled either hard or soft. The hard

clauses must be obligatorily satisfied, while the soft clauses can be unsatisfied. The goal

of solving the partial MaxSAT instance is to satisfy all hard clauses and the maximal

number of soft clause. The partial MaxSAT problem is easily extended to a SAT problem

if all the clauses are hard, and a MaxSAT problem if all the clauses are soft.

Example 2.2. Given a partial MaxSAT instance φ = {[a] , [¬a ∨ ¬b] , (b ∨ c)}, the first

and second clause, enclosed by “[]”, are hard clauses, and the third clause, enclosed by

“()”, is a soft clause. To satisfy the hard clauses, a and b are forced to be 1 and 0

respectively. Based on the assignment of a and b, the true assignment of c has to be 1

so that the soft clause can be satisfied.

A weighted MaxSAT instance is expressed in weighted CNF, where each clause is as-

signed a positive integer. The problem is to find a truth assignment that maximizes the

sum of weights of satisfied clauses. In a special case, if the weights of all the clauses in

weighted MaxSAT is equal to one, the problem is regarded as a MaxSAT problem.

Chapter 2. Preliminary 14

Example 2.3. A weighted MaxSAT instance φ = {(a, 2) , (¬a ∨ ¬b, 3) , (b ∨ c, 4)} has

three weighed clauses holding weights 2, 3, 4 respectively. All of the three clauses can be

satisfied by assigning 1, 0, 1 to a, b, c respectively, which leads to the maximal sum of

weights of satisfied clauses.

The weighted partial MaxSAT (WPM) is the combination of partial MaxSAT and

weighted partial MaxSAT. A WPM instance distinguishes hard and soft clauses, where

each soft clause is assigned a positive integer. Solving the WPM instance is to satisfy all

hard clauses and maximize the sum of weights of satisfied soft clauses. The definition

of WPM can be easily extended to partial MaxSAT, where all soft clauses have weight

1, and weighted MaxSAT, where no clauses are hard.

Example 2.4. Given a WPM instance φ = {[a] , [¬a ∨ ¬b] , (b ∨ c, 2) , (b ∨ ¬c, 7)}, the

first and second clause, enclosed by “[]”, are hard clauses, while the third and fourth

clauses, enclosed by “()”, are soft clauses. To satisfy the hard clauses, a and b are forced

to be 1 and 0 respectively. Based on the assignment of a and b, the true assignment of

c is preferred to be 0 so that the weight 7 can be earned, which is larger than the other

case that the gain is merely 2.

Many important problems can be naturally expressed as MaxSAT, including academic

problems such as Max-Cut or Max-Clique, as well as problems from many industrial do-

mains. Concrete examples include the following domains: routing problems [115], hard-

ware debugging [15, 63, 95], software debugging [46, 47], scheduling [51, 113], planning

[20, 48, 92, 116], probabilistic reasoning [78], electronic markets [96], etc. Additionally,

many problems originally formulated in other optimization frameworks can be easily

reformulated as MaxSAT, such as the Pseudo-Boolean Optimization framework [1], the

Weighted CSP framework [55] and the MaxSMT framework [74]. Readers may refer [71]

for more applications of MaxSAT.

2.2 MaxSAT Algorithms

The last two decades have witnessed significant progress in the development of theoret-

ical, logical and algorithmic aspects of MaxSAT solving, as well as new and appealing

research directions such as exploring the impact of modeling on the performances of

MaxSAT solvers [6]. Early theoretical MaxSAT research provided insights in the com-

plexity of the problem [9, 77]. Moreover, the MaxSAT evaluation [28], which was firstly

Chapter 2. Preliminary 15

held in 2006, plays as a driving force for motivating the development of novel MaxSAT

technologies.

Generally speaking, there are two approaches for MaxSAT solving techniques: approx-

imation algorithms that compute near-optimal solutions, and exact (or complete) algo-

rithms that compute optimal solutions.

Heuristic local search algorithms are the foundation of early practical works to find near-

optimal solutions. Whereas many exact MaxSAT solvers use a local search algorithm

to compute an initial assignment of variables, these algorithms do not guarantee to find

the optimal solution. That is why this class is referred to as incomplete solvers. The

approximation of a MaxSAT solution is usually measured by a factor that is bounded

by a constant α or a slowly growing function of the input size. Given a constant α,

an algorithm is α-approximation for a maximization problem if it provides a feasible

solution in polynomial time which is at least α times the optimum, considering all the

possible instances of the problem [12]. A number of improvements have been achieved on

the performance guarantee, from 1/2, proposed in 1974 [45], to 0.7584, proposed in 1995

[33]. Later on, a limit on approximability was proved by H̊astad [42] that unless NP=P,

no approximation algorithm for MaxSAT can achieve a performance guarantee better

than 7/8. This theory was proved again in [50], showing that the constant 7/8 is tight.

Recently, semidefinite programming has been shown quite promising for approximating

MaxSAT solutiosn. Readers may refer to [3] to learn more about how to approximate

MaxSAT with semidefinite programming.

The exact algorithms can be classified into two approaches. The one follows a branch

and bound (BB) algorithm and applies several techniques tailored to MaxSAT. Another

one makes use of a state-of-the-art SAT solver as an inference engine, referred to as

SAT-based approach.

Many contemporary exact MaxSAT solvers follow a BB algorithm [2, 13, 24, 39, 54,

62, 82, 83, 114], which ensures the minimal number of unsatisfied clauses in a MaxSAT

problem. Given a MaxSAT instance φ, BB explores a search tree that represents the

space of all possible assignments for φ in a depth-first manner. At every node, BB

compares the upper bound (UB) with the lower bound (LB). UB is the best solution

(i.e., the minimum number of falsified clauses) found so far for a complete assignment,

and LB is the sum of the number of clauses which are falsified by the current partial

assignment plus an underestimation of the number of clauses that will become unsatisfied

f the current partial assignment is completed. If LB ≥ UB, the algorithm prunes the

Chapter 2. Preliminary 16

subtree below the current node and backtracks chronologically to a higher level in the

search tree. If UB < LB, the algorithm tries to find a better solution by extending the

current partial assignment by assigning one more variable. The value of UB after the

search of entire tree is the optimal number of unsatisfied clauses in φ.

SAT-based approach uses a SAT solver to iteratively search for satisfiable subsets of

clauses within certain constraints. SAT-based solvers are further classified into two

categories: satisfiability-based [10] and unsatisfiability-based [5, 64].

For a satisfiability-based solver, given a MaxSAT instance φ = {C1, . . . , Cn}, a new

variable bi is added to each clause Ci (1 ≤ i ≤ n). bi is called a blocking variable. Solving

the MaxSAT problem for φ is to minimize the number of blocking variables that evaluate

to true, called true blocking variables, in φ′ = {C1∨bi, . . . , Cn∨bn}. The minimal satisfied

assignment is searched by iterative calls to a SAT solver, summarized as follows [52].

First run the SAT solver on φ′ without any constraints to get an initial model and count

the number k of true blocking variables in the model, then add a constraint to limit

the number of true blocking variables to less than k, and run the solver again. If the

problem is unsatisfied, k is the optimal solution. Otherwise, the process is repeated with

the constraint that limits the number of true blocking variables to a smaller integer. This

process terminates when the problem becomes unsatisfied.

For an unsatisfiability-based solver, given a MaxSAT instance φ, the following process

is iterated until φ is satisfiable: First run a SAT solver on φ. If φ is unsatisfiable,

extract an unsatisfiable subset US = {C1, . . . , Cm} from φ and introduce m new blocking

variables bi (1 ≤ i ≤ m). Then, replace Ci with Ci∨ bi (1 ≤ i ≤ m) and add a constraint∑m
i=1 bi = 1 to build a new φ. If φ is satisfiable, the iteration terminates. The number

of iterations indicates the number of falsified clauses in the original φ.

2.3 CNF Encodings

Before a combinational problem or combinational optimization problem can be solved

by SAT or MaxSAT solvers, it must usually be transformed to CNF, which has the

advantage of being a very simple form, leading to easy algorithm implementation and

a common file format. However, after being transformed to CNF, the formula may

lose a great deal of structural information. To conquer this drawback, solvers for non-

CNF problems have been devised [72, 81, 105, 106]. These techniques can yield great

improvements on certain structured problems but CNF currently remains the norm [12].

Chapter 2. Preliminary 17

This section describes techniques for transforming from a propositional formula to CNF,

including transformation by Boolean algebra and Tseitin encoding. A propositional

formula is a formal expression that denotes a proposition, which is a statement telling

either true or false.

2.3.1 Transformation by Boolean Algebra

Boolean algebra is the subarea of algebra in which the values of the variables are the

truth values true and false. It is fundamental in the development of computer science

and digital logic, as well as in set theory and statistics [35].

The main operations in Boolean algebra are and, or, and not. These basic operations

can be taken as a basis for other derived Boolean operations that can be built up from

them by composition, the manner in which operations are combined or compounded.

Some examples of derived operations composed from the basic operations are shown as

follows.

x→ y = ¬x ∨ y

x⊕ y = (x ∨ y) ∧ ¬ (x ∧ y)

x ≡ y = ¬ (x⊕ y)

The operation x→ y is called material implication. If x is true then the value of x→ y

is taken to be that of y. However, if x is false, the value of x → y is constantly true

regardless of that of y. x⊕ y is called exclusive or. It excludes the possibility of x and

y taking the same truth value. In other words, the value of x ⊕ y is true just when x

and y have different truth values. x ≡ y, the complement of exclusive or, is equivalence

or Boolean equality. The value of x ≡ y is true just when x and y have the same value.

A propositional formula can be transformed to a logically equivalent CNF formula by

using the rules of Boolean algebra. Take the example of a propositional formula [107],

shown as follows.

Example 2.5. Let us consider the following propositional formula:

(a→ (c ∧ d)) ∨ (b→ (c ∧ e))

Chapter 2. Preliminary 18

The implications can be decomposed:

((a→ c) ∧ (a→ d)) ∨ ((b→ c) ∧ (b→ e))

The conjunctions and disjunctions can be rearranged:

((a→ c) ∨ (b→ c)) ∧ ((a→ c) ∨ (b→ e)) ∧ ((a→ d) ∨ (b→ c)) ∧ ((a→ d) ∨ (b→ e))

The implications can be rewritten as disjunctions, and duplicated literals are removed:

(¬a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ c ∨ e) ∧ (¬a ∨ ¬b ∨ c ∨ d) ∧ (¬a ∨ ¬b ∨ d ∨ e)

Finally, subsumed clauses can be removed, leaving the conjunction shown as follow:

(¬a ∨ ¬b ∨ c) ∧ (¬a ∨ ¬b ∨ d ∨ e)

This propositional formula finally reduces to a compact CNF formula, but in general

this method generates exponentially large formulas [12].

2.3.2 Transformation by Tseitin Encoding

The naive approach to use rules of Boolean algebra results in an exponential increase

in equation size. To avoid the exponentially large size, conversion to CNF is usually

achieved by using the well-known Tseitin encoding [108], which outputs an equation

whose size grows linearly relative to the input.

Tseitin encoding generates a new variable, (or say, auxiliary variable), for each sub-

formula of the original formula, as well as a set of clauses that capture the equivalent

relationship 1 between these new variables and the subformulas. The procedure of T-

seitin encodings is exhibited in the following example.

Example 2.6. Consider the propositional formula in example 2.5. A new Boolean

variable f1 is introduced to replace the subformula (c ∧ d), with the definition:

f1 ↔ (c ∧ d)

1Formula φ and φ′ are equivalent means φ is satisfiable if and only if φ′ is satisfiable.

Chapter 2. Preliminary 19

This definition is reduced to clauses:

(¬f1 ∨ c) ∧ (¬f1 ∨ d) ∧ (¬c ∨ ¬d ∨ f1)

Similarly another new Boolean variable f2 is introduced to replace the subformula (c ∧ e),
with the definition

f2 ↔ (c ∧ e)

which is reduced to clauses

(¬f2 ∨ c) ∧ (¬f2 ∨ e) ∧ (¬c ∨ ¬e ∨ f2)

Then the original formula is reduced to

(¬a ∨ f1) ∧ (¬b ∨ f2)

Next, two more variables are introduced with definitions

f3 ↔ (¬a ∨ f1)

and

f4 ↔ (¬b ∨ f2)

and clauses

(¬f3 ∨ ¬a ∨ f1) ∧ (a ∨ f3) ∧ (¬f1 ∨ f3) ∧ (¬f4 ∨ ¬b ∨ f2) ∧ (b ∨ f4) ∧ (¬f2 ∨ f4)

The formula is now reduced to

(f3 ∨ f4)

This formula is already in clausal form as we desired.

Tseitin encoding is linear in the size of the original formula as long as the Boolean

operators that appear in the formula have linear clausal encodings. The operators and,

or, not, and implies all have linear clausal encodings, while encoding exclusive or requires

exponential number of clauses to that of variables. We will introduce the CNF encoding

of exclusive or in Chapter 6.

Chapter 2. Preliminary 20

2.4 Game Theory

Game theory, which is primarily used in economics, describes multi-person decision sce-

narios where each player chooses actions that result in the optimal possible rewards for

self, while anticipating the rational actions from other players. It provides rich mathe-

matical tools for resolving multi-criteria optimization problems among multiple entities

who behave strategically. Game theory has been widely recognized as an important tool

in many fields, including economics, political science, and psychology, as well as logic

and biology. In the area of computer science, there have been also a large number of

applications, such as job scheduling, cryptology, network security, sensor networks, etc.

Formally, a game is the collection of the following definitions:

• Player. A player is the basic entity of a game who makes decision and then takes

actions.

• Action. An action constitutes a move in the given game.

• Strategy. A strategy is a plan of action that a player can take during the game.

• Payoff (Outcome). A payoff is a positive or negative reward to a player for a given

action within the game.

2.4.1 Non-cooperative game

A non-cooperative game is one in which players make rational decisions independently, in

the aim of maximizing their individual payoffs. A solution concept of a non-cooperative

game is called Nash equilibrium, which describes a steady state condition of the game.

At the steady point, no player would prefer to change his strategy as that would lower

his payoffs given that all other players are adhering to the prescribed strategy.

A canonical example of a non-cooperative game is prisoner’s dilemma, which shows two

individual players might not cooperate, even if it appears that being cooperative is their

best choice. The scenario of prisoner’s game is presented as follows. The police arrest

and imprison two persons (suppose A and B) but do not have enough evidence to convict

them. Then the police separate the two prisoners and provide each prisoner with the

opportunity either to betray the other, by testifying that the other committed the crime,

or to cooperate with the other, by remaining silent. Here’s how it goes:

• If A and B both betray the other, each of them serves 2 years in prison.

Chapter 2. Preliminary 21

• If A betrays but B remains silent, A will be set free and B will serve 3 years in

prison (and vice versa).

• If A and B both remain silent, both of them will only serve 1 year in prison (on

the lesser charge).

In this scenario, since the two prisoners will have no opportunity to reward or punish

their partner in future, they need to only care their current choices. Obviously, betraying

a partner offers a greater reward than cooperating with them, no matter which action his

partner takes. Therefore, rational self-interested prisoners would betray the other, and

the outcome is the both prisoners serve 2 years in prison. This is the Nash equilibrium

of the game.

2.4.2 Cooperative game

A cooperative game is a game where groups of players may enforce cooperative be-

haviour, hence the game is a competition between coalitions of players. In a non-

cooperative game, any cooperation among players must be self-enforcing, while in a

cooperative game, the cooperation is guaranteed by a binding agreement. In prisoner’s

dilemma, if the two prisoners’ behaviours are enforced by a third party, they can achieve

the optimal outcome, i.e., prisoners cooperate with each other by remaining silent.

A cooperative game is given by specifying a value for every possible set of players, known

as a coalition. Formally, the game (coalitional game) consists of a finite set of players A,

called the grand coalition, and a characteristic function v : 2A → R from the set of all

possible coalitions to a set of payments that satisfies v (∅) = 0. The function describes

how much collective payoff a set of players can gain by forming a coalition. The players

are assumed to choose which coalitions to form, according to their estimate of the way

the payment will be divided among coalition members. Coalitional games have been

proven highly influential in the research of multi-agent systems, composed of multiple

interacting intelligent agents (agents are referred to as players in game theory domain).

Multi-agent systems can be used to solve problems that are difficult or impossible for

an individual agent or a monolithic system to solve.

Coalition structure generation (CSG) is one of the main research issues in the use of

coalitional games in multi-agent systems. It is related to the problem that how to

maximize the social welfare, that is, the total value of coalitions, among agents. Solving

Chapter 2. Preliminary 22

the CSG problem is one of the main contributions devoted in this thesis, which will be

elaborated in Chapter 4 and Chapter 5.

2.4.3 Game Theory Applied in Network Security

Conventional cryptography and intrusion detection systems provide the first line of the

defense in networks. However, in the presence of inside attackers and complicated at-

tacks, the standard cryptography may be crippled and the traditional intrusion detection

systems may be confused. In this context, as game theory has the ability to deal with

problems where multiple players with contradictory objectives compete with each other,

it can provide us with a mathematical framework for analysis and modeling network se-

curity problems. To date, many existing game-theoretic research as applied to network

security falls under non-cooperative games, with interactions between the administrator

(or legitimate user responsible for detection in self-organized networks) and an attack-

er. Sometimes the game could be a cooperative game where the players cooperatively

achieve the same goal, e.g., to cooperatively detect the malicious around them.

A structured and comprehensive overview of the research contributions that analyze and

solve security and privacy problems in computer networks by game-theoretic approach-

es is illustrated in [65]. Other works [30, 94] associate the network security with game

theoretic approaches according to different game types, namely, the static or dynamic

game with the complete or incomplete information. These works provide comprehensive

understanding of game theoretic solutions on cyber security problems. In order to sum-

marize which kind of attacks is suitable to be thwarted by game theoretical approaches,

efforts have been devoted to investigating the association between network attacks and

game theory. Our previously published works [61] present a classification which sorts

a variety of attacks in wireless ad hoc networks into two types, namely palpable attack

and subtle attack. Palpable attacks result in conspicuous impacts on network functions,

which are intolerable to users, while subtle attacks lead to invisible damages in vaguer

way. Game models, especially in game players, regularly vary according to the two types.

For palpable attacks, game can be directly played between attackers and normal users,

but for subtle attacks, game usually draws support from additional player or mechanisms

to help detection. In addition, both palpable attacks and subtle attacks are possible to

be eliminated by proactive cooperation of legitimate users.

It is worth noting that, although the proactive cooperation of legitimate users is useful

to detect attacks, in resource-starved environment such as wireless ad hoc networks,

Chapter 2. Preliminary 23

the proactive cooperative detection on abnormal behaviors is difficult to achieve, as

saving energy is placed high priority. In this situation, effective incentive mechanisms to

stimulate cooperation is of great importance. Take the Sybil attack [25] as an example.

A common method to detect Sybil nodes is resource testing [57]. The conventional

resource test includes computation, storage, communication [25] and radio resource test

[73]. More recently, psychometric tests and color tests were proposed to identify Sybil

groups, based on the fact that Sybil identities forged by one user share the same personal

psychometric nature [36]. However, these intended resource tests have side effects on

wireless ad hoc networks due to the limited resource on each node. If nodes spend too

much resource on testing, the performance of normal communications would be affected.

At this point, many solutions employ local detection to capture misbehavior and then

enhance the detection accuracy with information exchange. Encouraging users to share

reliable detection information could be achieved by a repeated game among users, which

helps utility-driven users to share information with reliable neighbors [60].

Chapter 3

Extending MaxSAT to Deal with

Negative Weights

The Maximum Satisfiability (MaxSAT) problem is an extension of Satisfiability (SAT)

that is able to represent optimization problems. Many optimization problems can be ex-

pressed as MaxSAT, such as electronic design automation (EDA), planning, probabilistic

inference, and software upgradeability.

In some real-world optimization problems, some constraints may be more important to

satisfy than others, then the MaxSAT problem can be extended by assigning different

positive weights to different constraints. In this case, it is natural to cast MaxSAT in

terms of maximizing the total weights of the satisfied constraints.

This chapter presents an extended weighted partial MaxSAT (EWPM) to deal with

negative weights, so that the existing weighted partial MaxSAT (WPM) solver could

be applied to situations where the weights involved in a problem are both positive and

negative. Specifically, Section 3.1 gives the definition of the standard WPM formula.

Section 3.2 presents EWPM for handling negative weights. In order to solve EWPM

instances with the existing WPM solver, an EWPM-to-WPM transformation is also

provided, followed by the investigation of the relationship between EWPM and WPM

solutions. Finally, Section 3.3 summarizes this chapter.

25

Chapter 3. Extending MaxSAT to Deal with Negative Weights 26

3.1 Weighted Partial MaxSAT

A weighted clause is a pair (C,w), where C is a clause and w, its weight, is a positive

integer or infinity. A clause is called hard if its weight is infinity, otherwise it is soft.

A weighted partial MaxSAT (WPM) instance is a multiset of weighted clauses φ =

{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}, where the first m clauses are soft

and the last m′ clauses are hard. A truth assignment of φ is a mapping that assigns to

each variable in φ either 0 or 1.

Given a WPM instance φ and a truth assignment I, the benefit of I on φ, noted

benefit(φ, I), is the sum of the weights of the soft clauses satisfied by I if I satisfies

all the hard clauses, otherwise, benefit(φ, I) = −∞. φ is satisfiable if φ has a truth

assignment which satisfies all the hard clauses, otherwise it is unsatisfiable. The WP-

M problem for a WPM instance φ is the problem of finding an optimal assignment I

of φ that maximizes benefit(φ, I), that is, benefit(φ, I) ≥ benefit(φ, I ′) for an arbitrary

assignment I ′.

3.2 Extended Weighted Partial MaxSAT

In WPM, it is natural to limit the weights of soft clauses in the positive domain because

the original intention of MaxSAT is maximizing the number of satisfied clauses. How-

ever, there are problems which we express as formulas with both positive and negative

weights naturally. This section presents the standard extension of WPM and examine

the relationship between solutions of WPM and its extension.

3.2.1 EWPM-to-WPM Transformation

As an extension of WPM, an Extended weighted partial MaxSAT (EWPM) instance is a

multiset of weighted formulas φ = {(F1, w1), . . . , (Fm, wm), (Fm+1,∞), . . . , (Fm+m′ ,∞)},
where the first m formulas are soft and the last m′ formulas are hard. A weighted formula

is a pair (F,w), where F is a propositional Boolean formula and w is a non-zero integer

or infinity. A soft formula is called positive if its weight is positive while it is called

negative if its weight is negative.

Chapter 3. Extending MaxSAT to Deal with Negative Weights 27

Given an EWPM instance φE and a truth assignment IE , the benefit of IE on φE , noted

benefit(φE , IE), is the sum of the weights of the soft formulas satisfied by IE if IE satis-

fies all the hard formulas, otherwise, benefit(φE , IE) = −∞. φE is satisfiable if φE has a

truth assignment which satisfies all the hard formulas, otherwise it is unsatisfiable. The

EWPM problem for an EWPM instance φE is the problem of finding an optimal assign-

ment IE of φE that maximizes benefit(φE , IE), that is, benefit(φE , IE) ≥ benefit(φE , IE
′
)

for an arbitrary assignment IE
′
.

Definition 3.1. (EWPM-to-WPM Transformation).

Let φE = {(F1, w1), . . . , (Fm, wm), (Fm+1,∞), . . . , (Fm+m′ ,∞)} be an EWPM instance

where wi is non-zero integer and (Fi, wi) is a soft formula (1 ≤ i ≤ m). The EWPM-to-

WPM transformation consists of two steps:

(1) For each soft formula (Fi, wi), a new variable bi is introduced. The soft formula is

then transformed into a soft clause:

(i) (bi, wi) if wi > 0

(¬bi,−wi) if wi < 0

and two hard formulas ensuring that Fi and bi are logically equivalent:

(ii) (Fi → bi,∞)

(iii) (bi → Fi,∞)

(2) Transform hard formulas into hard clauses with a satisfiability preserving CNF

transformation. In this step, any satisfiability preserving CNF transformations

could be applied [12].

The two hard formulas ensure that Fi and bi are logically equivalent.

For a positive soft formula (Fi, wi), if there is a clause Ci which is satisfiability-equivalent

to Fi, then bi is unnecessary. We simply transform such (Fi, wi) into (Ci, wi). Similarly

for a negative soft formula (Fi, wi), if there is a clause Ci which is satisfiability-equivalent

to ¬Fi, we simply transform such (Fi, wi) into (Ci,−wi).

Lemma 3.2. Let φE be a satisfiable EWPM instance, φ be a WPM instance obtained

from φE by applying EWPM-to-WPM transformation, and Wneg be the sum of all neg-

ative weights in φE.

Chapter 3. Extending MaxSAT to Deal with Negative Weights 28

If IE is a truth assignment of φE and satisfies all the hard formulas in φE, then there

exists a truth assignment I of φ such that I satisfies all the hard clauses in φ and

benefit(φE , IE) = benefit(φ, I) +Wneg .

Proof. We assume that IE satisfies p negative soft formulas and falsifies q negative soft

formulas. That is, IE satisfies (F s
i , w

s
i) and falsifies (F f

j , w
f
j) where ws

i < 0 and wf
j < 0

(1 ≤ i ≤ p, 1 ≤ j ≤ q). Then, benefit(φE , IE) = W IE
pos +

∑p
i=1w

s
i where W IE

pos denotes

the sum of the weights of positive soft clauses satisfied with IE . We should notice that∑p
i=1w

s
i +

∑q
j=1w

f
j = Wneg .

Now, we make a truth assignment I of φ by extending IE so as to satisfy all the hard

clauses in φ as follows. If IE satisfies a soft clause (Fi, wi), we let I satisfy bi which

is a new variable introduced by the transformation, otherwise, we let I falsify bi. It is

obvious that I satisfies the hard formulas (ii) and (iii) in the transformation. Thus, we

can make I satisfy all the hard clauses in φ because we use a satisfiability-preserving CNF

transformation in (2) of the transformation. From p negative soft formulas (F s
i , w

s
i), p

soft clauses (¬bsi ,−ws
i) are obtained, and, from q negative soft formulas (F f

j , w
f
j), q

soft clauses (¬bfj ,−w
f
j) are obtained by the transformation where bsi and bfj are new

variables introduced. I falsifies p soft clauses (¬bsi ,−ws
i) and satisfies q soft clauses

(¬bfj ,−w
f
j). Thus, benefit(φ, I) = W I

pos +
∑q

j=1(−w
f
j) where W I

pos denotes the sum of

the weights of positive soft clauses satisfied with I. Here, W I
pos = W IE

pos because the

transformation does not change the satisfiability of positive soft formulas. Therefore,

benefit(φ, I) = W IE
pos +

∑q
j=1(−w

f
j).

The difference between benefit(φE , IE) and benefit(φ, I) is benefit(φE , IE)−benefit(φ, I) =∑p
i=1w

s
i −
∑q

j=1(−w
f
j) =

∑p
i=1w

s
i +
∑q

j=1w
f
j = Wneg . Consequently, benefit(φE , IE) =

benefit(φ, I) +Wneg .

Lemma 3.3. Let φE, φ, and Wneg be the same as those in Lemma 3.2. If I is

a truth assignment of φ and satisfies all the hard clauses in φ, then there exists a

truth assignment IE of φE such that IE satisfies all the hard formulas in φE and

benefit(φE , IE) = benefit(φ, I) +Wneg .

Proof. We make a truth assignment IE by restricting I to variables in φE . By a similar

way in the proof of Lemma 3.2, we conclude IE satisfies the above conditions.

By Lemma 3.2 and 3.3, we conclude the following theorem.

Chapter 3. Extending MaxSAT to Deal with Negative Weights 29

Theorem 3.4. Let φE be a satisfiable EWPM instance and φ be a WPM instance

obtained from φE by applying EWPM-to-WPM transformation. Then, φ is satisfiable.

Furthermore, if IEsol is an EWPM solution of φE and Isol is a WPM solution of φ, then

benefit(φE , IEsol) = benefit(φ, Isol) + Wneg where Wneg is the sum of all negative weights

in φE.

Proof. According to Lemma 3.2, there exists a truth assignment I ′ of φ such that

benefit(φE , IEsol) = benefit(φ, I ′) + Wneg . According to Lemma 3.3, there exists a truth

assignment I ′E of φE such that benefit(φE , I ′E) = benefit(φ, Isol) +Wneg .

Here, benefit(φE , IEsol) ≥ benefit(φE , I ′E) and benefit(φ, Isol) ≥ benefit(φ, I ′) because

benefit(φE , IEsol) and benefit(φ, Isol) are maximal benefits. These inequalities and the

above two equalities imply benefit(φ, Isol) = benefit(φ, I ′) and benefit(φE , IEsol) = benefit(φ,

Isol) +Wneg .

3.2.2 Redundancy in Transformation

The hard formula (ii) for a positive soft formula and the hard formula (iii) for a negative

soft formula are redundant for solving EWPM problem. That is, without these hard

formulas, Theorem 3.4 holds.

Proposition 3.5. Let φE be a satisfiable EWPM instance and φ be a WPM instance

obtained from φE by applying EWPM-to-WPM transformation. Let φ− denote a multiset

of weighted clauses which are soft clauses in φ, hard clauses in φ from hard formulas in

φE, (ii) for negative soft formulas or (iii) for positive soft formulas. In other words, φ−

is obtained from φ by eliminating the hard clauses from (ii) for positive soft formulas

and (iii) for negative soft formulas.

If Isol is a WPM solution of φ and I−sol is a WPM solution of φ−, then benefit(φ, Isol) =

benefit(φ−, I−sol).

Proof. φ is a superset of φ−, and the soft clauses in φ and those in φ− are the same,

so Isol is a truth assignment of φ− and satisfies all the hard clauses in φ−. Therefore,

benefit(φ, Isol) ≤ benefit(φ−, I−sol) because I−sol gives the maximal benefit of φ−.

Next, we prove benefit(φ, Isol) ≥ benefit(φ−, I−sol) by showing that I−sol satisfies all the

hard clauses in φ.

Chapter 3. Extending MaxSAT to Deal with Negative Weights 30

Consider a positive soft formula (Fi, wi)(wi > 0). For this soft formula, the soft clause

(bi, wi) is generated. Assume that I−sol falsifies the hard formula (ii) (Fi → bi,∞), then

I−sol satisfies Fi and falsifies bi. A truth assignment, that agrees to I−sol except only for

the assignment to bi, gives a benefit of φ−, which is wi greater than benefit(φ−, I−sol).

This contradicts the maximality of benefit(φ−, I−sol). Consequently, I−sol has to satisfy the

hard formula (ii). Thus, I−sol satisfies the hard clauses from (ii) while these clauses are

not contained in φ−.

By the similar way, we can show that I−sol satisfies the hard clauses obtained from the

hard formula (iii) for a negative soft formula. Consequently, I−sol satisfies all the hard

clauses in φ.

3.2.3 Considerations

A natural interpretation of a soft formula (F,w) is that we gain w dollars when F is true.

Under the interpretation, a negative soft formula (F,−20) means that we lose 20 dollars

when F is true. (F,−20) is transformed into (¬b, 20) where b is logically equivalent to

F . (¬b, 20) means that we gain 20 dollars when b, i.e. F is false. Someone may consider

this is strange because the original soft formula (F,−20) says nothing when F is false.

It is ordinary for us to imply that neither gain nor loss when F is false according to the

soft formula.

This strange meaning is resolved by the following settings: We pay a deposit of −w
dollars for a negative soft formula (F,w)(w < 0) and have −w dollars refunded when F

is false.

Take (F,−20) as an example. We first pay 20 dollars as the deposit, then examine the

truth value of F . When F is false, we have 20 dollars refunded. Thus, the final payoff is

0 when F is false. This is in accordance with (F,−20). When F is true, 20 dollars should

be paid according to (F,−20). Since the deposit 20 dollars has been paid beforehand,

this amount of money is taken into the consideration.

We should notice that the total deposit is −Wneg dollars under the assumption of Theo-

rem 3.4. Thus, the expression (benefit(φE , IEsol) = benefit(φ, Isol)+Wneg) in Theorem 3.4

means that our maximal gain from φE equals the difference between maximal gain from

φ and the total deposit.

Let us leave the interpretation and turn to MinSAT which is an alternative to MaxSAT.

MinSAT is the problem of finding a truth assignment that satisfies all the hard clauses

Chapter 3. Extending MaxSAT to Deal with Negative Weights 31

and minimizes the sum of weights of satisfied soft clause. We can say that EWPM

“minimizes” the sum of absolute values of weights of satisfied negative soft formulas.

From this point of view, we can solve MinSAT with EWPM.

Let φMin = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} be a satisfiable weight-

ed partial MinSAT instance. We make an EWPM instance φMax by negating the weights

in φMin:

φMax = {(C1,−w1), . . . , (Cm,−wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

If a truth assignment satisfies all the hard clauses in φMin, then it satisfies all the hard

clauses in φMax, and vice versa. It must be noted that benefit(φMax, I) = −benefit(φMin,

I) where I is a truth assignment. This implies that benefit(φMax, I) becomes larger as

benefit(φMin, I) becomes smaller. Consequently, a MinSAT solution of φMin, which gives

the minimum benefit of φMin, is a MaxSAT solution of φMax, which gives the maximum

benefit of φMax. Reversely, a MaxSAT solution of φMax is a MinSAT solution of φMin.

In short, φMin and φMax have the same solution; accordingly, we may say that EWPM is

not only an extension of MaxSAT but also that of MinSAT, or EWPM is an integration

of MaxSAT and MinSAT.

3.3 Chapter Summary

This chapter presented an extension of WPM to deal with not only positive weights

but also negative weights. Specifically, in order to solve EWPM instances with WPM

solvers, we gave a transformation from EWPM to WPM and examined the relationship

between their solutions. We theoretically proved that, for a WPM instance and its

extension, the optimal solution of EWPM is always (−Wneg) larger than that of WPM,

where Wneg is the sum of negative weights in the EWPM instance. The extended WPM

paves a way for a wider range of applications, such as the coalition structure generation

problem described in the subsequent chapters.

Chapter 4

MaxSAT Encoding for the CSG

Problem based on Rule Relations

Coalition Structure Generation (CSG) is a main research issue in the domain of coalition

games. A majority of existing works assume that the value of a coalition is independent

of others in the coalition structure. Recently, there has been interest in more realistic

settings, where the value of a coalition is affected by the formation of other coalitions.

This effect is known as externality.

The focus of this chapter is to make use of weighted partial MaxSAT to solve the

CSG problem where externalities may exist. Motivated by the previous works that

represent the CSG problem in a set of rules, we encode rule relations and their constraints

into weighted partial MaxSAT formulas and show that MaxSAT solvers are effective

in solving the CSG problem with and without externalities. Specifically, Section 4.1

introduces the CSG problem and its concise representation schemes used in this chapter.

Section 4.2 introduces related works on the CSG problem, including an overview of the

previous works and the direct encoding algorithm that is the foundation of the next

chapter. Section 4.3 describes the rule relation-based WPM approach encoding the

previous algorithm into weighted partial MaxSAT. The evaluation results are shown in

Section 4.4 and conclusion is given in Section 4.5.

33

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 34

4.1 Coalition Structure Generation (CSG)

Coalition formation, the process by which agents come together and take joint actions

to perform a set of tasks cooperatively, is an important capacity in multi-agent system-

s. Sample applications of coalition formation include distributed vehicle routing [98],

sensor network [23], and e-commerce [110]. Coalitional games have been proved highly

influential in the research of multi-agent systems as they model the ability of the agents

to act as a coherent group as primitives [76]. Coalition Structure Generation (CSG),

one of the main challenges in coalition formation, is the main research issue in the use of

coalitional games in multi-agent systems [97]. The CSG problem involves partitioning a

set of agents so that the total value of all coalitions is maximized.

A majority of the existing works assume that a coalition’s value is independent of other

coalitions in the coalition structure. Such settings are known as Characteristic Function

Game (CFGs), where the value of a coalition is given by a characteristic function.

Many, but clearly not all, real-world multi-agent problems happen to be CFGs [97, 98].

Recently, there has been interest in a more realistic partition function form of coalition

values, where the value of a coalition is affected by the formation of other coalitions. This

class of coalitional games is called Partition Function Games (PFGs). The effect is known

as externality. Examples of games with externalities include collusion in oligopolies,

congestion games, as well as various forms of international policy coordination between

countries [14, 84].

Given a set of agents A, a coalition, denoted by C, is a non-empty subset of A, i.e.,

C ∈ 2A\∅. A coalition structure, CS, is an exhaustive set of mutually disjoint coalitions

over A, i.e., CS is subject to the constraints: ∀i, j (i 6= j) , Ci ∩ Cj = ∅,
⋃

Ci∈CS

Ci = A.

We denote by Π (A) the set of all coalition structures over A.

4.1.1 Characteristic Function Game

In a setting without externalities, the value of a coalition C is given by a characteristic

function v : 2A → R, assigning a real-valued payoff to each coalition C ⊆ A. The

value of a coalition structure CS is called social welfare, denoted as V (CS), given by

V (CS) =
∑

Ci∈CS

v (Ci). The objective of solving the CSG problem is to find an optimal

coalition structure that makes the social welfare maximized, i.e., given A, find CS∗ such

that ∀CS ∈ Π (A) , V (CS∗) ≥ V (CS) .

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 35

Example 4.1. We reconsider the game in Example 1.1. For A = {a1, a2, a3}, the

characteristic function is denoted as:

v ({a1}) = 1, v ({a2}) = 0, v ({a3}) = 0,

v ({a1, a2}) = 1, v ({a1, a3}) = 1, v ({a2, a3}) = 1,

v ({a1, a2, a3}) = 2.

There are 5 possible coalition structures, the social welfare of all these coalition structures

are enumerated as follows.

V
({
{a1}, {a2}, {a3}

})
= 1, V

({
{a1, a2}, {a3}

})
= 1,

V
({
{a1, a3}, {a2}

})
= 1, V

({
{a1}, {a2, a3}

})
= 2,

V
({
{a1, a2, a3}

})
= 2.

It is clear that there are two optimal coalition structures:
{
{a1}, {a2, a3}

}
and

{
{a1, a2,

a3}
}

, with the social welfare of 2.

Naive representation of characteristic functions enumerates the payoffs to each possible

set of agents, requiring space exponential in the number of agents. To be more specific,

the representation size the CSG problem is O (2n) for CFGs, where n is the number

of agents. This is prohibitive for large n. Ieong and Shoham [43] develop a concise

representation called marginal contribution network (MC-net), which largely reduces

the space necessary for representation.

Definition 4.1. (MC-nets). An MC-net consists of a set of rules R. Each rule ri ∈ R
is expressed in a syntactic form Ii → wi, where wi ∈ R and Ii is the condition of rule ri,

denoted by a conjunction of literals over A, i.e., {a1 ∧ a2 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am}.
For each rule ri, we call Pi positive literals where Pi = {aj}lj=1, and Ni negative literals

where Ni = {aj}mj=l+1. A rule ri is said to apply to a coalition C if Pi ⊆ C and Ni∩C = ∅,
i.e., all agents in Pi are in C, and none of agents in Ni are in C. For a coalition C,

v (C) =
∑

ri∈R′
wi, where R′ is the set of rules that apply to C. Thus, the value of a

coalition structure CS is given as
∑

C∈CS

v (C). Without loss of generality, we assume

each rule has at least one positive literal.

Thus, the problem of finding CS∗ is equivalent to finding a set of rules that apply to

some coalition C ∈ CS∗, such that the sum of values in the set of rules is maximized.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 36

In practice, the procedure for checking whether a rule r (: Ir → wr) applies to a coalition

C can proceed in the following way. First assign true to all the agents present in C and

false to others. Based on such assignment, examine the truth value of Ir. If Ir evaluates

to true, the rule r applies to C and the value of wr is obtained. Otherwise r does not

apply to C and the corresponding gain is zero.

Example 4.2. The game in Example 4.1 can be represented with just two rules:

• r1 : a1 → 1,

• r2 : a2 ∧ a3 → 1.

r1 applies to coalition {a1}, {a1, a2}, {a1, a3}, and {a1, a2, a3}. r2 applies to {a2, a3}
and {a1, a2, a3}. Both rules apply to

{
{a1}, {a2, a3}

}
and

{
{a1, a2, a3}

}
, thus there are

two optimal coalition structures:
{
{a1}, {a2, a3}

}
and

{
{a1, a2, a3}

}
. The maximized

social welfare is V (CS∗) = 2.

4.1.2 Partition Function Game

In a setting with externalities, an embedded coalition is a pair (C,CS). Let M denote the

set of all embedded coalitions, i.e., M := {(C,CS) : CS ∈ Π (A) , C ∈ CS}. The value

of a coalition depends on the formation of other co-existing coalitions in the coalition

structure, and is specified by a partition function, which is a mapping w : M → R. A

game in a partition function form is a tuple (A,w). The problem of solving CSG seeks

a coalition structure CS, such that V (CS∗) =
∑

C∈CS∗
w (C,CS∗) is optimized.

Example 4.3. We reconsider the game in Example 1.2. For A = {a1, a2, a3}, the

partition function is denoted as:

w
(
{a1},

{
{a1}, {a2}, {a3}

})
= 1, w

(
{a1},

{
{a1}, {a2, a3}

})
= 1.5,

w
(
{a2},

{
{a1}, {a2}, {a3}

})
= 0, w

(
{a2},

{
{a2}, {a1, a3}

})
= 0,

w
(
{a3},

{
{a1}, {a2}, {a3}

})
= 0, w

(
{a3},

{
{a3}, {a1, a2}

})
= 0,

w
(
{a1, a2},

{
{a1, a2}, {a3}

})
= 1, w

(
{a1, a3},

{
{a2}, {a1, a3}

})
= 1,

w
(
{a2, a3},

{
{a1}, {a2, a3}

})
= 1, w

(
{a1, a2, a3},

{
{a1, a2, a3}

})
= 2.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 37

There are 5 possible coalition structures, the social welfare of these coalition structures

are listed as follows.

V
({
{a1}, {a2}, {a3}

})
= 1, V

({
{a1, a2}, {a3}

})
= 1,

V
({
{a1, a3}, {a2}

})
= 1, V

({
{a1}, {a2, a3}

})
= 2.5,

V
({
{a1, a2, a3}

})
= 2.

By enumerating all possible coalition structures and comparing their social welfare, we

find that the optimal coalition structure is
{
{a1}, {a2, a3}

}
, with the social welfare of

2.5.

Coalitional games with externalities are more complex since the value depends not only

on individual coalitions, but also on embedded coalitions. The representation size in-

creases to O (nn) for PFGs [87]. Therefore, solving the CSG problem for PFGs is more

challenging than the CFG case, which is already NP-complete [97]. Michalak et al. [69]

develop a concise representation scheme for PFGs by extending MC-nets to a partition

function, called embedded MC-nets.

Definition 4.2. (Embedded MC-nets). An embedded MC-net is given by a set of

embedded rules ER. Each rule er ∈ ER is expressed in a syntactic form I0|I1, · · · , Ik →
wer, where each Ii : i ∈ {0, · · · , k} is conjunction of literals over A. A rule er is said to

apply to an embedded coalition (C,CS) if

1. I0 applies to C, and

2. each Ii : i ∈ {1, · · · , k} applies to at least one coalition in CS\C.

For an embedded coalition (C,CS), w (C,CS) =
∑

er∈ER′
wer, where ER′ is the set of

embedded rules that apply to (C,CS).

Example 4.4. The game with externalities in Example 4.3 can be described with the

following set of rules:

• r1 : a1 → 1,

• r2 : a2 ∧ a3 → 1,

• r3 : a1|a2 ∧ a3 → 0.5.

r1 applies to coalition {a1}, {a1, a2}, {a1, a3}, and {a1, a2, a3}. r2 applies to {a2, a3}
and {a1, a2, a3}. r3 applies to an embedded coalition

(
{a1},

{
{a1}, {a2, a3}

})
. All rules

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 38

apply to
{
{a1}, {a2, a3}

}
, thus the optimal coalition structure is

{
{a1}, {a2, a3}

}
and the

optimized social welfare is V (CS∗) = V
({
{a1}, {a2, a3}

})
= 2.5.

It worth noting that in this example, {a1, a2, a3} is no longer the optimal solution because

in this case, r3 does not apply to the grand coalition and the corresponding payoff of 0.5

cannot be obtained.

In Example 4.4, r1 and r3 highlight the difference between games with and without

externalities. In r1, agent a1 contributes to any embedded coalition it belongs with

value 1. Additionally, r3 said that if there co-exists another embedded coalition where

a2 and a3 cooperate, the value of a1 is increased by 0.5. This happens in {{a1}, {a2, a3}}
and {{a1}, {a2, a3}}. In this way, embedded MC-nets allow to capture externalities in

coalitional games [69].

4.2 Related Works

4.2.1 An Overview

There have been a number of attempts to solve the CSG problem for CFGs, broadly

classified as dynamic programming and anytime optimal algorithms. Dynamic program-

ming (DP) based algorithms [86, 93] break the optimization problem into sub-problems

that can be solved recursively, and then combine the results of the sub-problems to

output a final solution. These algorithms have the lowest worst complexity, i.e., given n

agents, they guarantee to find an optimal solution in Θ (3n) time. However, they cannot

generate a solution until they complete the entire execution. By contrast, anytime op-

timal algorithms, e.g., integer partition (IP) [85, 90], can return a solution even if they

are terminated prematurely. The solution quality improves monotonically as the compu-

tation time increases. Nevertheless, these algorithms provide worst-case guarantees on

the quality of the optimal solution in Θ (nn), i.e., in the worst case, the algorithms need

to search the entire space. In practice, IP has been shown to significantly outperform

DP based algorithms for many popular test distributions of coalition values [89]. Recent

algorithms [89, 101] combine these two techniques, so as to overcome the limitations of

DP and IP. Another branch of algorithms is called Heuristics [100, 103]. Although they

return solutions more quickly than the other two techniques, they provide no guarantee

on finding the optimal. In the worst case, they might never find the optimal solution.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 39

To date, few works have attempted to solve the CSG problem in PFGs. The initial

work is under the restrictions that the externalities are either always positive or always

negative [68, 87]. These constraints were relaxed in [8], which incorporates mixed ex-

ternalities in the agent types-based framework, i.e., positive and negative externalities

could co-exist in a problem instance. These works represent partition functions by list-

ing the values of all possible coalitions, thus requiring space exponential in the number

of agents in the game [43]. When the number of agents n becomes large, solving the

problem with the naive representation is prohibitive. What is why these works could

only solve problem instances with only a few dozen of agents.

Another line of research focuses on solving the CSG problem with concise representations

[75, 88, 111, 112], where a characteristic function or a partition function is represented

by a set of rules and the representation size can be reduced significantly. In this context,

Ohta et al., [75] initially formalize the CSG problem as a problem of finding the subset of

rules that maximizes the sum of rule values under certain constraints. Their work takes

an initial step towards developing efficient constraint optimization algorithms for solving

the CSG problem in CFGs, and shows that with concise representations such as MC-net,

the CSG problem could be solved within significantly less time than other works. In

case of PFGs, applying compact representation schemes to the CSG problem is more

desirable, as PFGs require greater space than CFGs if we use the naive representation.

In this context, embedded MC-net [69], a compact representation designed for coalitional

games with externalities, has been developed. By using the embedded MC-net, Ueda et

al. [111] extend the formalization of CSG in [75] and develop a direct encoding algorithm

to handle the externalities among the CSG problem.

4.2.2 Direct Encoding

In MC-nets or embedded MC-nets, each (embedded) rule is associated with a real-

valued payoff. If the value is positive, the rule is called positive value (embedded) rule.

If the value is negative, the rule is called negative value (embedded) rule. This section

exhibits the existing works on handling positive and negative value (embedded) rules,

respectively, which are the most related to our WPM encodings introduced in the next

section.

Definition 4.3. [75]. (Feasible rule set). A set of rules R is feasible if there exists a

coalition structure CS where each rule in R applies to some coalition C or embedded

coalition (C,CS), where C ∈ CS.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 40

Thereby, the problem of finding CS∗ is equivalent to finding a feasible rule set, such

that the sum of values of the rule set is maximized.

To handle positive value rules in MC-nets, Ohta et al. [75] represent an MC-net in a

rule relations-based graph. In this graph, each vertex is a rule, and between any two

vertices, there exists an edge whose type is one of the four cases described as follows.

Definition 4.4. [75]. (Relations between rules). The possible relations between rules

ri and rj are classified into the following four non-overlapping and exhaustive cases:

• Compatible on the same coalition: Pi ∩ Pj 6= ∅ and Pi ∩Nj = Pj ∩Ni = ∅.

• Compatible on different coalitions: Pi ∩ Pj = ∅ and (Pi ∩Nj 6= ∅ or Pj ∩Ni 6= ∅).

• Incompatible: Pi ∩ Pj 6= ∅ and (Pi ∩Nj 6= ∅ or Pj ∩Ni 6= ∅).

• Independent: Pi ∩ Pj = ∅ and Pi ∩Nj = Pj ∩Ni = ∅.

Example 4.5. [75] Let there be five agents a, b, c, d, e and four rules:

r1 : b ∧ e→ 3, r2 : a ∧ b ∧ c ∧ ¬d→ 2,

r3 : a ∧ d→ 1, r4 : c ∧ e→ 1.

The relations among these rules are listed as follows:

• r1 and r2 are compatible on the same coalition.

• r1 and r4 are compatible on different coalitions.

• r2 and r3 are incompatible.

• r2 and r4 are compatible on the same coalition.

• Other unmentioned rule relations are independent.

The graph representation of Example 4.5 is depicted in Fig. 4.1 [75] where the condition

of each rule is denoted in the form of (Pi, Ni). For instance, ({a, b, c}, {d}) represents

the condition of r1, i.e., a ∧ b ∧ c ∧ ¬d.

The following constraints are proved to be sufficient to find out a feasible rule set among

positive value rules in MC-nets. We refer readers to [75] for the proof of the theorem.

Theorem 4.5. [75]. A set of rules R′ is feasible if and only if R′ satisfies the following

conditions.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 41

r4
({c}, {e})

r1
({b, e}, {})

r3
({a, d}, {})

r2
({a, b, c}, {d})

compatible on
different coalitions

compatible on
the same coalition

incompatible
compatible on
the same coalition

Figure 4.1: Graphical representation of Example 4.5

1. R′ includes no pair of rules/vertices connected by an “incompatible” edge, and

2. if two rules in R′ have the relation of “compatible on different coalitions”, then

they are not reachable via “compatible on the same coalition” edges in R′ .

To handle positive value embedded rules, Ueda et al. [111] develop an explicit form for

each embedded rule er ∈ ER (i.e., er : I0|I1, · · · , Ik → wer) by adding each positive

literal in I0 to the negative literals of each I1, · · · , Ik, as well as adding each positive

literal in I1, · · · , Ik to the negative literals of I0. Thus, er applies to some embedded

coalition in CS if each of I0, · · · , Ik applies to some coalition in CS. The explicit form

relieves the algorithm of checking whether the coalitions I0 and Ii (i = 1, . . . , k) apply

to are different.

When all (embedded) rules have positive values, the solver in [75] only needs to select as

many rules as possible because satisfying more rules never decreases the social welfare.

However, when negative values are involved, extra constraints are required to specify

when negative value (embedded) rules should be selected, otherwise, the solver would

simply ignore these rules because selecting them decreases the social welfare. This would

lead to incorrect results since in some cases, choosing some negative value (embedded)

rules is the precondition of satisfying more positive value (embedded) rules.

To handle negative value (embedded) rules, Ueda et al. [111] create zero-valued dummy

rules for each negative value (embedded) rule, and specify their constraint in Theorem

4.6. Readers may refer to the proof in literature [111].

Theorem 4.6. [111]. A negative value (embedded) rule applies to a coalition in coalition

structure CS if and only if none of its dummy rules apply to any coalition in CS.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 42

4.3 WPM Encoding on Rule Relations

In this section, we set out to encode rule relations and the technique of direct encoding

into WPM. First, we consider a special case that a rule contains only one agent. In this

case, the rule is always selected because no matter how a CS is structured, a rule with

a single agent a always applies to a coalition that contains a. Without loss of generality,

in the rest of this chapter, we assume each rule contains at least two agents, one of which

must be positive literal.

4.3.1 Encoding Positive Value Rules

Encoding a positive value rule into WPM formulas is straightforward. Let R = {r1, . . . ,
rn} be a set of positive value rules. For each rule ri, we introduce a new Boolean

variable Bi (i = 1, . . . , n). We define B as the set of all such Boolean variables, i.e.,

B = {B1, . . . , Bn}. Intuitively, Bi = 1 means ri is in a feasible set of rules.

In order to deal with the reachability mentioned in Theorem 4.5, we introduce a Boolean

variable Si,j for each pair of rules ri and rj where 1 ≤ i < j ≤ n. Intuitively, Si,j = 1

means both ri and rj are reachable via “compatible on the same coalition” edges in the

feasible rule set. To accomplish the reachability, we need the following hard clauses:

• ¬Si,j ∨ ¬Sj,k ∨ Si,k,

• ¬Si,j ∨ ¬Si,k ∨ Sj,k,

• ¬Si,k ∨ ¬Sj,k ∨ Si,j ,

where 1 ≤ i < j < k ≤ n. The number of hard clauses for representing the transitive

laws over R is n · (n− 1) · (n− 2) /2.

Definition 4.7. (WPM encoding of positive value rules). Let R be a set of positive

value rules. For each positive value rule ri ∈ R (i.e., ri : Ii → wi, wi > 0), we introduce

a weighted soft clause (Bi, wi). The possible relations between two rules ri and rj are

encoded as following hard clauses:

(1) If ri and rj are “compatible on the same coalition”, three hard clauses are gener-

ated: ¬Bi ∨ ¬Bj ∨ Si,j , ¬Si,j ∨Bi, and ¬Si,j ∨Bj .

(2) If ri and rj are “compatible on different coalitions ”, one hard clause is generated:

¬Bi ∨ ¬Bj ∨ ¬Si,j .

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 43

(3) If ri and rj are “incompatible”, one hard clause is generated: ¬Bi ∨ ¬Bj .

(4) If ri and rj are “ independent ”, then no clause is generated.

Definition 4.7 encodes the rule relations introduced in Definition 4.4 into WPM formulas.

Soft clauses are interpretations of positive value rules. Hard clauses are constraints on

rules, which characterize whether a rule applies to some coalition in CS.

In the following, we use Hard (R) to denote a set of hard clauses representing the

transitive laws and those introduced by Definition 4.7.

Lemma 4.8. Let R be a set of positive value rules, R′ = {r′1, r′2, . . . , r′l} ⊆ R be a

feasible rule set, and B′ = {B′1, B′2, . . . , B′l} be the corresponding Boolean variable set.

Then, B′ ∪Hard (R) is satisfiable.

Proof. First, we consider hard clauses introduced by Definition 4.7 (1). If Bi ∈ B′

and Bj ∈ B′, then we can make Si,j = 1 because ri ∈ R′, rj ∈ R′, and ri and rj are

compatible on the same coalition. If Bi /∈ B′, then we can make Si,j = 0 because ri /∈ R′.
Similarly, if Bj /∈ B′, we can make Si,j = 0. Thus, hard clauses introduced by Definition

4.7 (1) are satisfied.

Next, we consider hard clauses introduced by Definition 4.7 (2). If Bi /∈ B′ or if Bj /∈ B′,
the truth value of Si,j is not limited, so we only consider the case of both Bi ∈ B′ and

Bj ∈ B′. In this case, we can make Si,j = 0 because ri and rj are not reachable according

to Theorem 4.5 (2).

Then, we consider hard clauses introduced by Definition 4.7 (3). We assume it is possible

to hold both Bi ∈ B′ and Bj ∈ B′. According to Theorem 4.5 (1), either ri /∈ R′ or

rj /∈ R′. This contradicts our assumption.

It is obvious that the transitive laws are satisfiable under the above assignment.

Lemma 4.9. Let R be a set of positive value rules and B′ = {B′1, B′2, . . . , B′l} be a subset

of B. If B′ ∪Hard (R) is satisfiable, then {r′1, r′2, . . . , r′l} is a feasible rule set.

Proof. The proof is basically the reverse process of proving Lemma 4.8. Given B′ ∪
Hard (R) is satisfiable, the corresponding rule set R′ = {r′1, r′2, . . . , r′l} includes no pair

of rules connected by the relation of “incompatible” because of Definition 4.7-3, and if

any two rules in R′ are compatible on different coalitions, then they are not reachable

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 44

via the relation of “compatible on the same coalition” according to Definition 4.7 (2).

Therefore, R′ is a feasible rule set.

The above two lemmas indicate that if R′ is a feasible rule set, then B′ ∪ Hard (R) is

satisfiable, and vice versa. Thus, the following theorem holds.

Theorem 4.10. The encoding given by Definition 4.7 with the transitive laws leads a

MaxSAT solver to output the correct results of the CSG problem, consisting of a set of

positive value rules.

Proof. We need to prove the soft clause encoded in Definition 4.7 is correct, i.e., we show

the result output by the MaxSAT solver is equal to the value of the feasible rule set R′.

If ri is a feasible rule set, then the corresponding Bi evaluates 1, and both of Ii → wi

and (Bi, wi) lead to a payoff of wi, otherwise, Bi = 0, and the corresponding payoffs of

both formulas are 0. Given a feasible rule set R′ = {r′1, r′2, . . . , r′l} and the corresponding

Boolean variable set B′ = {B′1, B′2, . . . , B′l}, according to Lemma 4.8, B′ ∪Hard (R) is

satisfiable. This means ∀B′i ∈ B′, (B′i, wi) is satisfied, thus the result output by the

MaxSAT solver is
∑l

i=1wi, which is equal to the value of the feasible rule set R′. As an

alternative, we can also prove the sum of weights of satisfied soft clauses is equal to the

value of the feasible rule set R′ by Lemma 4.9.

4.3.2 Encoding Positive Value Embedded Rules

For an embedded rule er ∈ ER (i.e., er : I0|I1, · · · , Ik → wer) that applies to (C,CS),

an implicit constraint is that each I1, · · · , Ik must apply to some other coalition except

C. To represent the constraint explicitly, Ueda et al. [111] develop an explicit form for

each embedded rule by adding each positive literal in I0 to the negative literals of each

I1, · · · , Ik, as well as adding each positive literal in I1, · · · , Ik to the negative literals

of I0. After an embedded rule is transformed into explicit form, the number of agents

may increase dramatically. To be specific, let pos0, · · · , posk be the number of positive

literals in I0, · · · , Ik, respectively. In the worst case, the number of agents that need to be

added in er is

(
k · pos0 +

k∑
x=1

posx

)
. The large number of agents contained in embedded

rules would be prohibitive when the number of embedded rules grows, especially in the

approach in use of relations between pairs of agents. Therefore, reducing the number of

agents in the explicit form is highly in demand.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 45

We reform the explicit form of er : I0|I1, . . . , Ik → wer. For each Ii (i ∈ {1, · · · , k}),
we first investigate whether P0 ∩Ni 6= ∅ or Pi ∩N0 6= ∅ holds. If at least one of the

conditions holds, it means I0 and Ii cannot apply to the same coalition by nature,

then nothing would be done. Otherwise, we add one agent in Pi to N0, so that the

coalition that Ii applies to (suppose C) contains at least one agent in N0, which makes

I0 impossible to apply to C. This explicit form guarantees that I0 and Ii (i ∈ {1, · · · , k})
cannot apply to the same coalition. With this method, the number of agents to be added

in er is largely decreased.

Example 4.6. For an embedded rule er : a1∧a2|a4∧¬a3 → 1, the explicit form developed

in [111] for er is a1∧a2∧¬a4|a4∧¬a3∧¬a1∧¬a2 → 1, while in our method, the explicit

form is simplified as a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → 1.

The explicit form has already indicated that for each Ii (i = 1, . . . , k), it is impossible

that I0 and Ii apply to the same coalition. Therefore, to make er apply to some em-

bedded coalition, we only need to have each of I0, I1, . . . , Ik apply to some coalition in

CS, without any other constraints. For simplicity, we assume in the rest of this chapter,

each embedded rule is expressed in our defined explicit form.

Given a positive value embedded rule er : I0|I1, . . . , Ik → wer (wer > 0), we introduce

Boolean variables Ber, B
0
er, . . . , B

k
er for er, r0er, r

1
er, . . . , r

k
er, respectively, where each rier

(i = 0, . . . , k) is an auxiliary rule rier : Ii → 0. Intuitively, Ber = 1 means er applies to

some embedded coalition in CS, and Bi
er = 1 means rier applies to some coalition in CS.

Obviously, whether an embedded rule applies to some embedded coalition is uniquely

determined by whether the set of its auxiliary rules is feasible. Thus the constraints

on rule relations as well as the transitive laws for representing reachability could be

specified on auxiliary rules only, instead of embedded rules.

Definition 4.11. (WPM encoding for positive value embedded rules). Let ER be

a set of positive value embedded rules in the explicit form. For each positive value

embedded rule er ∈ ER (i.e., er : I0|I1, . . . , Ik → wer (wer > 0)), the following clauses

are introduced:

• one weighted soft clause: (Ber, wer), and

• (k + 1) hard clauses: ¬Ber ∨Bi
er, for i = 0, . . . , k.

The possible relations between any two auxiliary rules and the transitive laws among

auxiliary rules are defined in the same way as introduced in Section 4.3.1.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 46

Theorem 4.12. The encoding given by Definition 4.11 leads a MaxSAT solver to output

the correct results of the CSG problem, consisting of a set of positive value embedded

rules.

Proof. The encoding of rule relations with transitive laws has been elaborated in Section

4.3.1, we only need to prove the encoding of positive value embedded rule in Definition

4.11 is correct.

If each of B0
er, . . . , B

k
er is true, then the value of Ber is not restricted by any hard clauses.

In this case, the MaxSAT solver would always prefer Ber = 1, so that the payoff wer

could be gained.

If at least one of B0
er, . . . , B

k
er is false, then the corresponding hard clause could not be

satisfied unless Ber = 0. Thus, the corresponding payoff is 0.

In either case, the MaxSAT solver calculate the correct social welfare.

Example 4.7. For A = {a1, a2, a3, a4}, assume there are four rules:

r1 : a1 ∧ a2 → 2, r2 : a3 ∧ ¬a4 → 1,

r3 : a4 ∧ ¬a1 → 1, r4 : a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → 1.

We introduce four weighted soft clauses (B1, 2), (B2, 1), (B3, 1) and (B4, 1) for r1, r2, r3

and r4, respectively. Embedded rule r4 generates two auxiliary rules: r5: a1∧a2∧¬a4 →
0, r6: a4∧¬a3 → 0. The constraint between r4 and its auxiliary rules is specified by two

hard clauses as defined in Definition 4.11: ¬B4 ∨B5, ¬B4 ∨B6. The rule relations are

captured by the following clauses:

• r1 and r5 are compatible on the same coalition:

¬B1 ∨ ¬B5 ∨ S1,5, ¬S1,5 ∨B1, ¬S1,5 ∨B5.

• r3 and r6 are compatible on the same coalition:

¬B3 ∨ ¬B6 ∨ S3,6, ¬S3,6 ∨B3, ¬S3,6 ∨B6.

• r1 and r3 are compatible on different coalitions: ¬B1 ∨ ¬B3 ∨ ¬S1,3.

• r2 and r3 are compatible on different coalitions: ¬B2 ∨ ¬B3 ∨ ¬S2,3.

• r2 and r6 are compatible on different coalitions: ¬B2 ∨ ¬B6 ∨ ¬S2,6.

• r3 and r5 are compatible on different coalitions: ¬B3 ∨ ¬B5 ∨ ¬S3,5.

• r5 and r6 are compatible on different coalitions: ¬B5 ∨ ¬B6 ∨ ¬S5,6.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 47

• r1 and r2, r1 and r6, r2 and r5 are independent: no clause is generated.

To solve this problem, 16 variables and 47 clauses are generated. The generated claus-

es include 4 weighted soft clauses representing rules, 2 hard clauses generated by the

embedded rule, 11 hard clauses capturing the constraints on rules, and 30 hard clauses

representing the transitive laws. All the above clauses are connected into a CNF formu-

la. The MaxSAT solver takes the CNF formula as an input, and outputs the optimized

social welfare and the corresponding feasible rule set. For the complete file in WPM

input format, readers may refer to Appendix A.

4.3.3 Encoding Negative Value Rules

Encoding negative value rules into WPM formulas is not as straightforward as translating

positive value rules. First, in WPM, the weight of a clause must be positive, and

MaxSAT solvers can only solve problems with the weight larger than 0. Therefore,

turning negative values into positive is indispensible. In addition, the constraints on

a negative value rule and its dummy rules [111] should be encoded into propositional

Boolean formulas that MaxSAT solvers can deal with.

Definition 4.13. (WPM encoding of negative value rules). Let R be a set of negative

value rules. We introduce a weighted soft clause (¬Bx,−wx) for each negative value rule

rx ∈ R (i.e., rx : Ix → wx, wx < 0). Suppose Ix = {a1 ∧ a2 ∧ · · · ∧ ak ∧ ¬ak+1 ∧ ¬ak+2 ∧
· · · ∧ ¬am}. rx generates m− 1 dummy rules, following two types:

(i) rix : a1 ∧ ¬ai+1 → 0 where 1 ≤ i ≤ k − 1,

(ii) rjx : a1 ∧ aj+1 → 0 where k ≤ j ≤ m− 1,

where rix denotes the i-th dummy rule created by rx.

The constraints on rx and its dummy rules are specified by the following hard clauses:

(1) Bx ∨
∨

i∈{1,...,m−1}B
i
x, and

(2) ¬Bi
x ∨ ¬Bx, for i = 1, . . . ,m− 1,

where Bi
x is a Boolean variable.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 48

Intuitively, Bi
x = 1 if rix applies to a coalition C in CS and Bi

x = 0, otherwise. The final

social welfare after encoding is (−Wneg) larger than the original one, where Wneg is the

sum of values of negative value rules.

It is clear from Definition 4.13 that for a negative value rule rx, each of its dummy rules

rix is always incompatible with rx. This is because rix and rx always share the same

positive literal a1, but meanwhile rix either takes a positive literal of rx as its negative

literal, or takes the negative literal of rx as its positive literal. Thus the negative value

rule is selected only if none of its dummy rules are selected, as described in Theorem

4.6. The rigorous proof is stated in [111].

Theorem 4.14. The encoding given by Definition 4.7 and Definition 4.13 with transitive

laws leads a MaxSAT solver to output the correct results of the CSG problem, consisting

of a set of negative value rules.

Proof. Hard clauses introduced by Definition 4.13 (1) and (2) are encoded from Theorem

4.6. Now, we prove the encoding is correct. Let R′ be a feasible rule set and B′ be the

corresponding Boolean variable set. Let D (rx) = {r1x, r2x, . . . , rm−1x } be the set of dummy

rules created by a negative value rule rx, and BD(rx) = {B1
x, B

2
x, . . . , B

m−1
x } be the set

of corresponding Boolean variables. Consider the hard clause introduced by Definition

4.13 (1). If ∀rix ∈ D (rx), rix /∈ R′, i.e., Bi
x /∈ B′, we have to make Bx ∈ B′ according to

the hard clause introduced by Definition 4.13 (1), i.e., rx ∈ R′. This agrees with the “if”

part of Theorem 4.6. Next, we consider the hard clauses introduced by Definition 4.13

(2). If rx ∈ R′, i.e., Bx ∈ B′, then we have to make Bi
x /∈ B′ for ∀Bi

x ∈ BD(rx) according

to the hard clauses introduced by Definition 4.13 (2), i.e., ∀rix ∈ D (rx), rix /∈ R′. This

is consistent with the “only if” part of Theorem 4.6.

Under the above encoding, the CSG problem has been encoded into the one containing

only positive value rules. The remaining work is the same as introduced in Definition

4.7. Detailed proof of this part is mentioned in Lemma 4.8, Lemma 4.9, and Theorem

4.10.

It must be noted that the construction of dummy rules guarantees that each negative

value rule is incompatible with all of its dummy rules, and such “incompatible” relation

has been captured by Definition 4.7. Therefore, in practice, hard clauses in Definition

4.13 (2) is redundant and can be omitted safely.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 49

After the encoding of negative value rules and the constraints on dummy rules, the

remaining work of solving the problem is the same as handling positive value rules in-

troduced in Section 4.3.1, i.e., identifying the rule relations between each pair of rules and

generating corresponding hard clauses on rule relations, as well as hard clauses from tran-

sitive laws. Note that when identifying rule relations and representing the transitivity of

rule relations, newly generated dummy rules should be taken into account. More specifi-

cally, let Rd be the set of dummy rules, then the various types of rule relations encoded in

Definition 4.4 should be identified over R∪Rd, and the number of hard clauses for repre-

senting the transitive laws should be extended to (n+ nd) (n+ nd − 1) (n+ nd − 2) /2,

where nd is the cardinality of Rd.

4.3.4 Encoding Negative Value Embedded Rules

The WPM encoding of negative value embedded rules is similar to that introduced in

Section 4.3.3, both derived from Theorem 4.6.

Definition 4.15. (WPM encoding for negative value embedded rules). Let ER be a set

of negative value embedded rules in the explicit form. For each negative value embedded

rule er ∈ ER (er : I0|I1, . . . , Ik → wer, wer < 0), where Ii = a1 ∧ a2 ∧ · · · ∧ al ∧ ¬al+1∧
· · · ∧ ¬am, i = 0, . . . , k. Ii generates the following two types of dummy rules:

• rxer,i: a1 ∧ ¬ax+1 → 0 where 1 ≤ x ≤ l − 1,

• ryer,i: a1 ∧ ay+1 → 0 where l ≤ y ≤ m− 1,

where rxer,i denotes the x-th dummy rules of a condition Ii in er.

For the negative value embedded rule er, the following clauses are introduced:

• one soft clause: (¬Ber,−wer),

• one hard clause: Ber ∨
∨

i∈{0,...,k}
x∈{1,...,m}

Bx
er,i,

where Bx
er,i is a Boolean variable corresponding to rxer,i.

After encoding, the result output by a MaxSAT solver is (−Wneg) larger than the social

welfare of the CSG problem in PFGs, where Wneg is the sum of values of negative value

embedded rules.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 50

Theorem 4.16. The encoding given by Definition 4.11 and Definition 4.15 leads a

MaxSAT solver to output the correct results of the CSG problem, consisting of a set of

negative value embedded rules.

Proof. The correctness of Definition 4.11 has been proved in Theorem 4.12. In the

following, we prove the encoding in Definition 4.15 is correct.

Given a negative value embedded rule er, if er does not apply to any embedded coalition

in CS, i.e., Ber = 0, the payoff generated by the soft clause (¬Ber,−wer) and the rule

er is (−wer) and 0, respectively. If er applies to some embedded coalition in CS, i.e.,

Ber = 1, the payoff generated by (¬Ber,−wer) and er is 0 and wer, respectively. Clearly,

in either case, the payoff of (¬Ber,−wer) is (−wer) larger than that of er. Considering

a coalition game of n negative value embedded rules, the social welfare after encoding is

(−Wneg) larger than the original one, where Wneg is the sum of values of negative value

embedded rules.

Next, we prove the hard clause introduced by Definition 4.15 is correctly encoded from

Theorem 4.6. If ∀i ∈ {0, . . . , k} and x ∈ {1, . . . ,m}, Bx
er,i = 0, then, to satisfy the hard

clause, Ber must be 1. This coincides with the “if” part of Theorem 4.6. If at least

one Bx
er,i is 1, then the value of Ber is unrestricted by the hard clause. In such a case,

a MaxSAT solver prefers Ber = 0 because the payoff of (−wer) can be gained. This

is consistent with the converse-negative proposition of the “only if” part in Theorem

4.6.

Example 4.8. For A = {a1, a2, a3, a4}, assume there are four rules:

r1 : a1 ∧ a2 → 2, r2 : a3 ∧ ¬a4 → 1,

r3 : a4 ∧ ¬a1 → −1, r4 : a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → −1.

We introduce four weighted soft clauses (B1, 2), (B2, 1), (¬B3, 1) and (¬B4, 1), respec-

tively. r3 generates a dummy rule r5 : a1∧a4 → 0. The constraint is specified by B3∨B5.

r4 generates 3 dummy rules: r6 : a1 ∧ ¬a2 → 0, r7 : a1 ∧ a4 → 0, r8 : a4 ∧ a3 → 0. The

constraint is specified by B4∨B6∨B7∨B8. The remaining work is the same as handling

positive value rules introduced in Section 4.3.1, i.e., identifying the rule relations between

each pair of rules and generating corresponding hard clauses on rule relations, as well

as hard clauses from transitive laws. To solve this problem, 36 variables and 143 clauses

are generated. The generated clauses include 4 weighted soft clauses representing rules,

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 51

2 hard clauses generated by the negative value (embedded) rule, 32 hard clauses captur-

ing the constraints on rules, and 105 hard clauses representing the transitive laws. The

original social welfare is recovered by subtracting (−Wneg) = 2 from the result output by

the solver. Readers may refer to Appendix B for the complete file in WPM input format.

4.4 Evaluation

This section shows the evaluation of the rule relation-based WPM approach (RWPM)

for solving the CSG problem in CFGs (i.e., without externalities) and PFGs (with exter-

nalities), respectively. The contents of this section include generating problem instances,

selecting appropriate MaxSAT solvers, and comparing the experimental results of our

WPM encoding with the previous algorithm.

4.4.1 Generating Problem Instances

The method of generating the instances was described in [111], summarized as follows.

First create a coalition with one random agent, then repeatedly add a new random

agent with the probability of α until an agent is not added or the coalition includes all

agents. Then, we repeatedly add a new condition of each rule with probability β until

the condition is not added. The value of a rule is chosen between 0 and the number of

agents in the rule, uniformly at random. In addition, for each coalition that contains

more than one agent, we move an agent from positive to negative with the probability

of p. Furthermore, we convert the value of a coalition from positive to negative with the

probability of q.

The settings of parameters are given as follows.

• For MC-nets (i.e., the CSG problem in CFGs), we set α = 0.55, β = 0, p = 0.2,

q = 0.2, and #rules = #agents, ranging from 10 to 150. For each fixed #rules,

100 problem instances are generated.

• For embedded MC-nets (i.e., the CSG problem in PFGs), we set α = 0.55, β =

0.15, p = 0.2, q = 0.2, and #rules = #agents, ranging from 10 to 120. For each

fixed #rules, 100 problem instances are generated.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 52

4.4.2 Selecting Appropriate Solvers

As mentioned before, RWPM encodes the CSG problem into propositional logic and

needs a MaxSAT solver to output the final solution. Therefore, choosing the right

MaxSAT solver in our experiment is of great importance. So far, there are a variety

of MaxSAT solvers for a wide range of practical applications. They can be classified

into two categories. The one implements a branch and bound scheme, and the oth-

er one uses a state-of-the-art SAT solver as an inference engine, referred to as SAT-

based solver. SAT-based solvers are further classified into two: satisfiability-based and

unsatisfiability-based. The state-of-the-art solvers for weighted partial MaxSAT, which

we used, are listed as follows: Akmaxsat (version 1.1) [53] and WmaxSatz (version

2009) [59] are branch and bound solvers. Sat4j (version 2.2.3) [10] and ShinMaxSat

][41] are satisfiability-based solvers. WPM1 (version 2012) [4] and Pwbo (version 2.0)

[67] are unsatisfiability-based solvers. Note that Pwbo is a parallel solver incorporat-

ing a satisfiability-based search into an unsatisfiability-based approach. To select an

appropriate solver in our evaluation, we apply these MaxSAT solvers to solve instances

generated from MC-nets and embedded MC-nets, respectively shown in Tab. 4.1 and

Tab. 4.2. For each instance and solver, there is a time limit of 900 seconds. Number

in bracket means the number of instances that were successfully solved within the time

limit by the corresponding solver and is omitted in the table if the solver managed to

solve all the 100 instances. At #rules = N , if a solver fails to solve any instances within

the time limit, we terminate the solver and mark “/” for the corresponding solver with

#rules > N . The tests were carried out on a Core i5-2540 2.6GHz processor with 8GB

RAM.

As can be seen from Tab. 4.1, Sat4j, ShinMaxSat, and Pwbo managed to solve all the

problem instances with #rules ranging from 10 to 150. By contrast, branch and bound-

based solvers performed worst in our experiment. In addition, as #rules increases,

especially when #rules reaches 110, the superiority of Sat4j becomes more remarkable,

and it can be inferred that Sat4j may be more desirable when #agents keeps growing.

Similar analysis could be done to Tab. 4.2, which shows Sat4j finished solving all the

instances with the shortest time. Therefore, we conclude that Sat4j is the appropriate

solver for RWPM to solve the CSG problem in both CFGs and PFGs.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 53

Table 4.1: Average wall-clock time (seconds) required for RWPM in MC-nets

Sat Unsat Sat/Unsat Branch and Bound

#rules Sat4j ShinMaxSat WPM1 Pwbo Akmaxsat WmaxSatz

10 0.035 0.014 0.002 0.006 2.951 6.349(98)
20 0.191 0.490 0.032 0.028 6.380(73) /
30 0.398 2.638 0.138 0.058 / /
40 0.507 4.927 0.520 0.127 / /
50 0.734 9.063 1.397(99) 0.301 / /
60 1.058 14.321 / 0.477 / /
70 1.391 19.269 / 0.826 / /
80 2.098 28.630 / 1.584 / /
90 3.012 37.074 / 2.725 / /
100 3.849 43.797 / 3.521 / /
110 5.197 58.272 / 5.412 / /
120 6.707 72.284 / 7.816 / /
130 8.729 87.563 / 10.036 / /
140 11.189 103.199 / 15.085 / /
150 13.283 125.880 / 17.352 / /

Table 4.2: Average wall-clock time (seconds) required for RWPM in embedded MC-
nets

Sat Unsat Sat/Unsat Branch and Bound

#rules Sat4j ShinMaxSat WPM1 Pwbo Akmaxsat WmaxSatz

10 0.055 0.021 0.005 0.010 5.172(97) 31.998(92)
20 0.258 0.738 0.066 0.031 / /
30 0.461 2.715 0.306 0.095 / /
40 0.627 5.999 0.822 0.218 / /
50 0.947 10.950 2.265(95) 0.464 / /
60 1.430 17.447 / 0.921 / /
70 1.936 24.521 / 1.615 / /
80 2.979 34.526 / 2.828 / /
90 4.146 47.520 / 5.351 / /
100 5.708 59.454 / 7.580 / /
110 7.687 74.237 / 10.435 / /
120 9.970 95.259 / 14.791 / /

4.4.3 Results

In this subsection, we compare the RWPM encoding with the state-of-the-art optimiza-

tion algorithm, i.e., direct encoding [75, 111], which does not make use of MaxSAT

solvers.

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 54

70 80 90 100 110 120 130 140 150
0

20

40

60

80

100

120

140

160

Number of agents (rules)

C
om

pu
ta

tio
n

tim
e

(s
)

Direct encoding
Rule relation−based WPM

(a) Computation time for MC-nets

10 20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

Number of agents (rules)

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
)

Direct encoding
Rule relation−based WPM

(b) Computation time for embedded MC-nets

Figure 4.2: Average computation time of RWPM and direct encoding [75, 111]

Our test was run on a Core i5-2540 2.6GHz processor with 8GB RAM and employed

Sat4j as the solver. By contrast, the direct encoding algorithm was run on an Xeon

E5540 2.53GHz processor with 24GB RAM and used ILOG CPLEX (version 11.2) as a

general-purpose mixed integer programming package.

Figure 4.2 depicts the average computation time for solving the generated problem

instances in MC-nets and embedded MC-nets, by the direct encoding algorithm and

RWPM. It is clear that RWPM outperforms the direct encoding algorithm for large

values of #rules. In particular, for MC-nets, as Fig. 4.2(a) shows, when #rules reaches

over 110, the average computation time of direct encoding increases fast and surges

over 150 seconds to solve instances with #rules = 150. By contrast, the computation

time of RWPM goes up much slowly with the increase of #agents, and gets around 13

seconds at #agents = 150. On the other hand, for embedded MC-nets, the average

computation time of direct encoding soars sharply when #rules is larger than 90, and

reaches around 125 seconds at #rules = 120. In comparison, the computation time

of RWPM goes up quite smoothly and is merely 10 seconds to solve the same set of

instances at #rules = 120, as depicted in Fig. 4.2(b).

4.5 Chapter Summary

In this chapter, we made the first step towards a study of applying MaxSAT solvers

to the CSG problem for CFGs and PFGs, represented by MC-nets and embedded MC-

nets, respectively. Specifically, with the encodings of rule relations, we showed that the

CSG problem can scale up significantly when MaxSAT solvers are exploited, even though

Chapter 4. MaxSAT Encoding for the CSG Problem based on Rule Relations 55

the rule relation-based WPM approach is encoded directly from the previous algorithms.

Experiments demonstrated the superiority of the WPM encoding. Specifically, instances

for CFGs with 150 rules (agents) could be solved within 14 seconds on average, and those

for PFGs with 120 rules (agents) could be solved within 10 seconds on average. In both

cases, the computation time for solving the instances is largely reduced, compared to

previous algorithms that do not make use of MaxSAT. This is our first attempt to apply

an WPM encoding for solving the CSG problem.

Chapter 5

MaxSAT Encoding for the CSG

Problem based on Agent

Relations

Chapter 4 introduces a rule relation-based WPM encoding for solving the CSG problem

and demonstrate the superiority of the WPM encoding to other advanced optimization

techniques. This chapter seeks for a more efficient WPM encoding to solve the MC-

net-based CSG problem. Instead of encoding rule relations into propositional logic, we

capture a more fine-grained relation, i.e., the relations between each pair of agents, and

reform the MC-net-based CSG problem as a set of extended WPM (EWPM) formulas.

With the EWPM-to-WPM transformation proposed in Chapter 2, these EWPM formu-

las are easily converted to standard WPM formulas, which could be solved by existing

WPM solvers.

This chapter is organized as follows. Section 5.1 describes the main idea of the agent

relation-based WPM encoding. Specifically, Section 5.1.1 introduces the concept and

the encoding of agent relations, which is the foundation of this chapter. Section 5.1.2

and 5.1.3 describes the agent relation-based WPM encoding of positive value (embedded)

rules and negative value (embedded) rules, respectively. Evaluation is subject to Section

5.2. We compare the performance of the agent relation-based WPM encoding with that

of the rule relation-based one, and try to explain the reason why one dominates the other

one by investigating the number of variables and clauses generated during the problem

solving. Finally, in section 5.3, we concludes this chapter.

57

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 58

5.1 WPM Encoding on Agent Relation

In a MC-net, a rule r is expressed in a syntactic form Ir → wr, where wr ∈ R and Ir is

the condition of rule r, denoted by a conjunction of literals over the set of agents A, i.e.,

{a1 ∧ a2 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am}. {aj}lj=1 are called positive literals, denoted by

Pr, and {aj}mj=l+1 are negative literals, denoted by Nr. A rule r is said to apply to a

coalition C if Pr ⊆ C and Nr ∩C = ∅, i.e., all agents in Pr are in C, and none of agents

in Nr are in C.

Similar to Chapter 4, in this chapter, we assume each rule contains at least two agents,

one of which is positive literal. This is because any rule of only one agent (suppose

a) always applies to the coalition containing a, no matter how a coalition structure is

structured.

5.1.1 Agent Relation

Let Ar be the set of agents in rule r, i.e., Ar = Pr ∪ Nr. Given a rule r of m agents,

we call ap standard agent if p is the minimum index of all positive literals in r, formally,

ap ∈ Pr, ∀al ∈ Pr \ {ap} , p < l. With ap, the agent relation between each pair of agents

in r can be captured by the relations between ap and ak, ak ∈ Ar \ {ap}. The agent

relation between ap and ak is denoted by a Boolean variable Cp,k (if p < k) or Ck,p (if

p > k). Intuitively, the value of the Boolean variable is equal to 1 if ak ∈ Pr, and equal

to 0 if ak ∈ Nr.

For a rule ri expressed as {a1 ∧ a2 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am}, the standard agent

is a1. We interpret the condition of a rule by using the agent relations between the

standard agent a1 and other agents in the rule, showing in Definition 5.1.

Definition 5.1. (Agent relation-based MC-nets). An agent relation-based MC-net con-

sists of a set of rules R. Each rule ri ∈ R is expressed in a syntactic form Si → wi, where

Si is a conjunction of agent relations, formally expressed by C1,2 ∧ · · · ∧ C1,l ∧ ¬C1,l+1 ∧
· · · ∧ ¬C1,m. A rule ri is said to apply to a coalition C if Si is true, i.e., {C1,k}lk=2 are all

true, and {C1,k}mk=l+1 are all false.

The definition of the agent relation-based MC-nets could be extended to the embedded

MC-nets, as Definition 5.2 shows. Each embedded rule is expressed in explicit form

defined in Section 4.3.2.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 59

Definition 5.2. (Agent relation-based embedded MC-nets). An agent relation-based

embedded MC-net consists of a set of embedded rules ER. Each rule er ∈ ER is

expressed in a syntactic form S0 ∧ S1 ∧ . . . ∧ Sk → wer, where each Si: i ∈ {0, . . . , k} is

a conjunction of agent relations, as defined in Definition 5.1. An embedded rule er is

said to apply to an embedded coalition (C,CS) if {Si}ki=0 are all true.

Apparently, the relation that two agents are in the same coalition is transitive, i.e., any

three agents ai, aj , and ak (1 ≤ i < j < k ≤ m) satisfy the following transitive laws:

• ¬Ci,j ∨ ¬Cj,k ∨ Ci,k,

• ¬Ci,j ∨ ¬Ci,k ∨ Cj,k,

• ¬Ci,k ∨ ¬Cj,k ∨ Ci,j ,

where m is the number of agents. The number of hard clauses for representing the

transitive laws is m · (m− 1) · (m− 2) /2.

Example 5.1. For A = {a1, a2, a3, a4}, assume there are four rules:

r1 : a1 ∧ a2 → 2, r2 : a3 ∧ ¬a4 → 1,

r3 : a4 ∧ ¬a1 → 1, r4 : a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → 1.

In agent relation-based MC-net, these four rules are expressed as follows:

r1 : C1,2 → 2, r2 : ¬C3,4 → 1,

r3 : ¬C1,4 → 1, r4 : C1,2 ∧ ¬C1,4 ∧ ¬C3,4 → 1.

The four agents totally generate 12 hard clauses by the transitive laws.

The transitive laws introduced above could be refined in some cases. Take the example

of a CSG problem with three rules: r1 : a1 ∧ a2 → 2, r2 : a3 ∧ ¬a4 ∧ ¬a5 → 1,

r3 : a1 ∧ ¬a6 → 1. Agents a3, a4 and a5 only appear in r2 and have nothing to do with

a1, a2 and a6. Then we can combine a3, a4 and a5 into a group, and make the rest

three agents form the other group. Obviously, these two groups are independent of each

other. Thus, the number of clauses for representing transitive laws is calculated within

two groups respectively. In this example, the number of transitive laws is only 6, while

the original one sums up to 6 · 5 · 4/2 = 60.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 60

5.1.2 Encoding Positive Value (Embedded) Rules

With EWPM-to-WPM transformation and the agent relations, rules in MC-nets and

embedded MC-nets could be encoded in straightforward way. Specifically, encodings of

positive value (embedded) rules are given in this subsection and those for negative value

(embedded) rules are introduced in the next subsection.

Definition 5.3. (WPM encoding for positive value rules). For a positive value rule

ri : Si → wi (wi > 0), where Si = C1,2 ∧ · · · ∧ C1,l ∧ ¬C1,l+1 ∧ · · · ∧ ¬C1,m, the following

clauses are introduced, where ui is a new Boolean variable.

(i) a weighted soft clause: (ui, wi), and

(ii) (m− 1) hard clauses: ¬ui ∨ C1,2, . . . ,¬ui ∨ C1,l,¬ui ∨ ¬C1,l+1,. . . ,¬ui ∨ ¬C1,m.

Definition 5.3 is in accordance with EWPM-to-WPM transformation, which leads the

following theorem to hold.

Theorem 5.4. The encoding given by Definition 5.3 with the transitive laws leads a

MaxSAT solver to output the correct results of the CSG problem, which consists of a set

of positive value rules.

Proof. If there is a coalition structure CS, then we can make an assignment A which

satisfies all hard clauses for the transitive laws so as to agree with CS. Reversely, if

there is an assignment A which satisfies all hard clauses for the transitive laws, then

we obtain a coalition structure CS which agrees with A. Thus, there is a one-to-one

correspondence between a set of coalition structures and a set of assignments which

satisfy all hard clauses for the transitive laws.

Definition 5.3. (i) and (ii) correspond to Definition 3.1. (i) and (iii), respectively.

According to Theorem 3.4 and Proposition 1, Definition 3.1. (i) and (iii) guarantee the

correctness of EWPM-to-WPM transformation for positive soft formulas. Therefore,

MaxSAT solvers calculate the correct social welfare.

The encoding for positive value embedded rules can be fulfilled in the similar way.

Definition 5.5. (WPM encoding for positive value embedded rules). For a positive

value embedded rule er : S0 ∧ S1 ∧ · · · ∧ Sk → wer (wer > 0), the following clauses are

introduced, where uer is a new Boolean variable.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 61

(i) a weighted soft clause: (uer, wer), and

(ii) k + 1 propositional Boolean formulas that could be expanded to several hard

clauses: ¬uer ∨ S0, . . . ,¬uer ∨ S1, ¬uer ∨ Sk.

Theorem 5.6. The encoding given by Definition 5.5 with the transitive laws leads a

MaxSAT solver to output the correct results of the CSG problem, which consists of a set

of positive value embedded rules.

Proof. Let CS be a coalition structure. We can make an assignment A which satisfies

all hard clauses for the transitive laws so as to agree with CS.

If a positive value embedded rule er applies to an embedded coalition in CS, then A
satisfies each Si, and the corresponding soft clause (uer, wer) is not restricted by any

hard clauses. In such a case, MaxSAT solvers prefer uer = 1 to uer = 0 because the

payoff wer can be gained.

If rer does not apply to any embedded coalition in CS, then A does not satisfy at least

one Si unless uer = 0. Thus, the corresponding soft clause (uer, wer) is unsatisfied, that

is, the payoff is 0.

In either case, MaxSAT solvers calculate the correct social welfare.

Example 5.2. In Example 5.1, the four rules are encoded into the following soft and

hard clauses.

• r1 : C1,2 → 2 is encoded into a soft clause (u1, 2) and a hard clause ¬u1 ∧ C1,2,

• r2 : ¬C3,4 → 1 is encoded into a soft clause (u2, 1) and a hard clause ¬u2 ∨ ¬C3,4,

• r3 : a4∧¬a1 → 1 is encoded into a soft clause (u3, 1) and a hard clause ¬u3∨¬C1,4,

• r4 : a1 ∧ a2 ∧¬a4|a4 ∧¬a3 → 1 is encoded into a soft clause (u4, 1) and three hard

clauses: ¬u4 ∨ C1,2, ¬u4 ∨ ¬C1,4, ¬u4 ∨ ¬C3,4,

where ui (i = 1, . . . , 4) are newly introduced Boolean variables.

To solve this problem instance, a total of 10 variables and 22 clauses are generated.

These clauses include: 4 weighted soft clauses representing rules, 6 hard clauses encoded

from conjunction formulas, and 12 hard clauses representing transitive laws. For the

complete file in WPM input format, readers may refer to Appendix C.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 62

5.1.3 Encoding Negative Value (Embedded) Rules

If a rule is a negative value rule ri : Si → wi (wi < 0), as explained in previous section,

the EWPM-to-WPM transformation referred to Definition 3.1. (i) and (ii), which derive

the following encodings.

Definition 5.7. (WPM encoding for negative value rules). For each negative value rule

ri : Si → wi (wi < 0), the following clauses are introduced, where ui is a new Boolean

variable.

(i) a weighted soft clause: (¬ui,−wi), and

(ii) a hard clause: ¬Si ∨ ui.

The social welfare after encoding is (−Wneg) larger than the original one, where Wneg

is the sum of negative weights.

Theorem 5.8. The encoding given by Definition 5.7 with the transitive laws leads a

MaxSAT solver to output the correct results of the CSG problem, which consists of a set

of negative value rules.

Proof. Let CS be a coalition structure. We can make an assignment A which satisfies

all hard clauses for the transitive laws so as to agree with CS.

Definition 5.7. (i) and (ii) correspond to Definition 3.1. (i) and (ii), respectively. Ac-

cording to Theorem 3.4 and Proposition 1, Definition 3.1. (i) and (ii) guarantee the

correctness of EWPM-to-WPM transformation for negative soft formulas. Therefore,

MaxSAT solvers calculate the correct social welfare.

Definition 5.9. (WPM encoding for negative value embedded rules). For each negative

value embedded rule er : S0 ∧ S1 ∧ · · · ∧ Sk → wer (wer < 0), the following clauses are

introduced, where ui is a new Boolean variable.

(i) a weighted soft clause: (¬uer,−wer), and

(ii) a hard clause: ¬S0 ∨ ¬S1 ∨ · · · ∨ ¬Sk ∨ ui.

The social welfare after encoding is (−Wneg) larger than the original one, where Wneg

is the sum of negative weights.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 63

Theorem 5.10. The encoding given by Definition 5.9 with the transitive laws leads a

MaxSAT solver to output the correct results of the CSG problem, which consists of a set

of negative value embedded rules.

Proof. Let CS be a coalition structure. We can make an assignment A which satisfies

all hard clauses for the transitive laws so as to agree with CS.

If a negative value embedded rule rer applies to an embedded coalition in CS, then A
satisfies each Si. This implies A does not satisfy the corresponding hard clause unless

uer = 1. Thus, the corresponding soft clause (¬uer,−wer) is unsatisfied. That is, no

payoff is obtained with MaxSAT solvers. In contrast, the payoff of rer is wer because rer

applies to an embedded coalition in CS.

If a negative value rule rer does not apply to any embedded coalition in CS, then A does

not satisfy at least one Si. This implies A satisfies the corresponding hard clause, and

the corresponding soft clause (¬uer,−wer) is not restricted by any hard clauses. In such

a case, MaxSAT solvers prefer uer = 0 because the payoff of −wer, which is positive, is

gained. In contrast, the payoff of rer is 0 because rer does not apply to any coalition in

CS.

In either case, MaxSAT solvers overestimate the social welfare by −wer for a negative

value embedded rule, thus the value after encoding is (−Wneg) larger than the original

one.

Example 5.3. For A = {a1, a2, a3, a4}, assume there are four rules:

r1 : a1 ∧ a2 → 2, r2 : a3 ∧ ¬a4 → 1,

r3 : a4 ∧ ¬a1 → −1, r4 : a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → −1.

r1 and r2 are encoded the same way as shows in Example 5.2. r3 and r4 are encoded as

follows.

• r3 : a4∧¬a1 → −1 is encoded into a soft clause (¬u3, 1) and a hard clause C1,4∨u3,

• r4 : a1 ∧ a2 ∧ ¬a4|a4 ∧ ¬a3 → −1 is encoded into a soft clause (¬u4, 1) and a hard

clause ¬C1,2 ∨ C1,4 ∨ C3,4 ∨ u4,

where u3 and u4 are newly introduced Boolean variables.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 64

To solve this problem, a total of 10 variables and 20 clauses are generated. These clauses

include: 4 weighted soft clauses representing rules, 4 hard clauses encoded from conjunc-

tion formulas, and 12 hard clauses representing transitive laws. Readers may refer to

Appendix D for the complete file in WPM format.

5.2 Evaluation

In this section, we experimentally evaluated the performance of the rule relation-based

WPM approach (RWPM) and agent relation-based WPM approach (AWPM). RWPM

is derived directly from the existing algorithms [75, 111], as introduced in Chapter 4,

and AWPM is a brand-new encoding described in this chapter.

The method of generating problem instances is the same as that introduced in Section

4.4.1. In the following, we investigate which MaxSAT solver is suitable for AWPM in

MC-nets and embedded MC-nets, respectively. The solvers evaluated in our experiments

include: branch and bound solver Akmaxsat (version 1.1) [53] and WmaxSatz (version

2009) [59], satisfiability-based solver Sat4j (version 2.2.3) [10] and ShinMaxSat [41],

unsatisfiability-based solver WPM1 (version 2012) [4] and Pwbo (version 2.0) [67]. Table

5.1 and Tab. 5.2 show the comparison results of their performances in MC-nets and

embedded MC-nets, respectively. Tests in Tab. 5.1 were carried out on a Core i7-2600

3.40GHz processor with 8GB RAM, and tests in Tab. 5.2 were carried out on a Core

i5-2540 2.6GHz processor with 8GB RAM. Consistent with the settings for RWPM,

for each instance and solver, there is a time limit of 900 seconds. Number in bracket

means the number of instances that were successfully solved within the time limit by

the corresponding solver and is omitted in the table if the solver managed to solve all

the 100 instances. At #agents = N , if a solver fails to solve all instances within the

time limit, then we terminate the solver and mark “/” for the corresponding solver with

#agents > N .

As can be seen from Tab. 5.1, Sat4j, ShinMaxSat, and Pwbo managed to solve all the

problem instances. Among these three solvers, Pwbo outperformed others when #agents

is no greater than 120, while Sat4j becomes more desiable when #agents increases over

120. We can predict that, the superiority of Sat4j would be more remarkable when

#agents keeps growing. Thus we choose Sat4j for the evaluation of AWPM in MC-nets.

Similar analysis could be done on Tab. 5.2, where Pwbo performed best with #agents

ranging from 10 to 120.

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 65

Table 5.1: Average wall-clock time (seconds) required for AWPM in MC-nets

Sat Unsat Sat/Unsat Branch and Bound

#agents Sat4j ShinMaxSat WPM1 Pwbo Akmaxsat WmaxSatz

10 0.13 0.02 0.01 0.01 0.02 0.03
20 0.20 0.28 0.03 0.02 0.44 0.25
30 0.28 1.27 0.07(99) 0.03 13.70 9.18
40 0.33 2.75 / 0.05 45.64(99) 46.03(89)
50 0.40 4.61 / 0.08 / /
60 0.50 6.67 / 0.14 / /
70 0.62 9.14 / 0.21 / /
80 0.77 12.06 / 0.30 / /
90 1.02 16.22 / 0.53 / /
100 1.36 20.40 / 0.75 / /
110 1.67 23.31 / 1.25 / /
120 2.47 30.57 / 2.04 / /
130 3.21 34.50 / 2.91 / /
140 4.38 44.95 / 5.26 / /
150 5.79 51.00 / 6.61 / /

Table 5.2: Average wall-clock time (seconds) required for AWPM in embedded MC-
nets

Sat/Unsat Sat Unsat Branch and Bound

#agents Pwbo Sat4j ShinMaxSat WPM1 Akmaxsat WmaxSatz

10 0.001 0.025 0.008 0.001 0.006 0.001
20 0.010 0.101 0.569 0.020 0.716 0.389
30 0.033 0.298 1.912 0.070 13.669 8.192
40 0.065 0.447 4.923 0.188 (99) 123.023 (98) 89.412 (89)
50 0.120 0.489 7.833 / / /
60 0.213 0.737 11.859 / / /
70 0.359 0.945 17.952 / / /
80 0.556 1.192 21.889 / / /
90 0.815 1.476 29.752 / / /
100 1.513 2.338 38.129 / / /
110 2.043 2.775 46.575 / / /
120 3.324 3.887 55.976 / / /

Therefore, in what follows, we employ Sat4j and Pwbo as the solver to evaluate AWPM

in MC-nets and embedded MC-nets, respectively. In comparison, the solver chosen for

RWPM is Sat4j, which performed best according to our previous experiment in Chapter

4.4.2. All the tests below were run on a Core i5-2540 2.6GHz processor with 8GB RAM.

Figure 5.1 depicts the average computation time of RWPM and AWPM, for solving

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 66

30 50 70 90 110 130 150
0

2

4

6

8

10

12

14

Number of agents (rules)

C
om

pu
ta

tio
n

tim
e

(s
)

Rule relation−based WPM
Agent relation−based WPM

(a) Computation time for MC-nets

10 20 30 40 50 60 70 80 90 100 110 120
0

2

4

6

8

10

Number of agents (rules)

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
)

Rule relation−based WPM
Agent relation−based WPM

(b) Computation time for embedded MC-nets

Figure 5.1: Average computation time of RWPM and AWPM

the CSG problem in MC-nets and embedded MC-nets, respectively. It is clear that

AWPM is more time efficient than RWPM, and the superiority of AWPM becomes

more remarkable as #agents goes up. Especially, in MC-nets, as Fig 5.1(a) shows,

when #agnets increases to 150, the computation time for solving problem instances by

AWPM is less than 11 seconds, while gets around 14 seconds for RWPM. In embedded

MC-nets, as Fig 5.1(b) depicts, when #agents reaches 120, the computation time for

solving problem instances by AWPM approach is less than 4 seconds, while reaches

around 9 seconds for RWPM.

We explain the reason why AWPM is more time efficient by investigating the number

of Boolean variables and clauses in these two approaches, depicted in Fig. 5.2 and Fig.

5.3, respectively. Obviously, both the numbers of variables and clauses in RWPM are

greater than that in AWPM. In general, the computation time goes up as the number

of variables and clauses increases. That is why RWPM needs more computation time

than AWPM in our experiment.

5.3 Chapter Summary

In this chapter, in order to further improve the performance of solving the CSG problem,

we exploited agent relations to encode the CSG problem into a set of Boolean formulas,

which could be formulated as WPM instances with the EWPM-to-WPM transforma-

tion introduced in Chapter 3. Experiments showed that the agent relation-based WPM

(AWPM) approach achieved higher efficiency than the rule relation-based WPM (RW-

PM). To be more specific, in MC-nets, problem instances with 150 agents (rules) were

Chapter 5. MaxSAT Encoding for the CSG Problem based on Agent Relations 67

30 50 70 90 110 130 150
0

0.4

0.8

1.2

1.6

2
x 10

4

Number of agents (rules)

N
um

be
r

of
 g

en
er

at
ed

 B
oo

le
an

 v
ar

ia
bl

es Rule relation−based WPM
Agent relation−based WPM

(a) No. of Boolean variables for MC-nets

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2
x 10

4

Number of agents (rules)

N
um

be
r

of
 g

en
er

at
ed

 B
oo

le
an

 v
ar

ia
bl

es Rule relation−based WPM
Agent relation−based WPM

(b) No. of Boolean variables for embedded MC-nets

Figure 5.2: Number of Boolean variables in RWPM and AWPM

30 50 70 90 110 130 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Number of agents (rules)

N
um

be
r

of
 g

en
er

at
ed

 c
la

us
es

Rule relation−based WPM
Agent relation−based WPM

(a) No. of clauses for MC-nets

10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

2.5

3
x 10

6

Number of agents (rules)

N
um

be
r

of
 g

en
er

at
ed

 c
la

us
es

Rule relation−based WPM
Agent relation−based WPM

(b) No. of clauses for embedded MC-nets

Figure 5.3: Number of clauses in RWPM and AWPM

solved within 11 seconds by AWPM, while RWPM required 14 seconds on average. In

MC-nets, instances with 120 agents (rules) were solved by AWPM within averagely 4

seconds. This is only a half of the time consumed by RWPM. Moreover, we examined

the number of generated Boolean variables and clauses in these two methods. Results

showed that, in both MC-nets and embedded MC-nets, RWPM generates more variables

and clauses than AWPM to solve the same problem. Generally, the computation time of

a solver goes up as the number of variables and clauses increases. That is why RWPM

needs more time than AWPM to solve the same set of problem instances.

Chapter 6

MaxSAT Encoding for

Recovering AES Key Schedules

Cold boot attack is a side channel attack that recovers data from memory, which persists

for a short period after power is lost. In the course of this attack, the memory gradually

degrades over time and only a corrupted version of the data may be available to the

attacker. Recently, great efforts have been devoted to reconstructing the original data

from a corrupted version of AES key schedules, based on the assumption that all bits in

the charged states tend to decay to the ground states while no bit in the ground state

ever inverts. Considering the relations among AES key bits are naturally expressed

with a set of Boolean formulas, the previous work [49] has formulated these Boolean

formulas, as well as bits in the charged states, as sets of hard clauses for a SAT solver.

Then the SAT solver could infer other unknown (i.e., corrupted) bits and recover the

AES key schedule reliably, as long as all the bits in the charged states are guaranteed to

be correct. However, in practice, there is a small number of bits flipping in the opposite

direction, i.e., the bits flip from the ground state flipping to the charged state. We

call them reverse flipping errors. In this chapter, motivated by the previous work that

formulates the relations of AES key bits as a SAT problem, we move one step further by

taking the reverse flipping errors into consideration and employ an off-the-shelf MaxSAT

solver to accomplish the key recovery of AES-128 key schedules from decayed memory

images. This work can adapt well to real situations where decaying and reverse flipping

errors co-exist.

This chapter is organized as follows. Section 6.1 briefly introduces the cold boot attack

and AES key expansion. Section 6.2 provides an overview of the related works on AES

69

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 70

key recovery. Section 6.3 models the AES key bits from the key expansion algorithm.

In Section 6.4, we describe the SAT encoding and MaxSAT encoding for recovering

the AES key schedules from a true cold boot attack. Experiment and comparison are

illustrated in Section 6.5 and chapter summary is given in Section 6.6.

6.1 Cold Boot Attack and AES

A dynamic random access memory (DRAM) cell is essentially a capacitor that can be

either charged or discharged, indicating that a bit is in the charged state or the ground

state, respectively. DRAM remanence, presented by Halderman in [34], refers to that

after power is lost, the DRAM holds its state for several seconds, and for minutes or even

hours if the chips are kept at low temperatures. Cold boot attack [34] is a sophisticated

side channel attack that exploits DRAM remanence effects to recover sensitive data from

a running computer. It poses a particular threat to systems that typically store sensitive

data in memory. For example, several disk encryption systems have been defeated by the

cold boot attack, including BitLocker, TrueCrypt, FileVault, LoopAES, and dm-crypt

[37]. These on-the-fly disk encryption softwares typically store the encryption key in

DRAM while the disk is mounted, which opens a door for an attacker with access with

the contents of DRAM to learn the key and decrypt the disk.

The cold boot attack comes in three variants of increasing resistance to countermeasures

[37]. The simplest is to reboot the machine and launch a custom kernel with a small

memory footprint that gives the adversary access to the residual memory. A more

advanced attack is to briefly cut power to the machine, then restore power and boot a

custom kernel. This deprives the operating system of any opportunity to erase memory

before shutting down. An even stronger attack is to cut the power, transplant the DRAM

modules to a second PC prepared by the attacker, and use it to extract their state. This

attack further deprives the original BIOS and PC hardware of any chances to clear the

memory on boot.

Given the nature of the cold boot attack, memory bits gradually decay over time once

power is removed, and finally, only a corrupted image of memory contents may be

available to the attacker. The recovery of a cryptographic key from a corrupted image

of memory contents is usually achieved by exploiting the redundancy of key material

inherent in cryptographic algorithms. In practice, many encryption programs store data

pre-computed from the encryption keys to speed up computation. For block ciphers, a

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 71

key schedule, made up of multiple roundkeys, is usually pre-computed from the secret

key. This data contains much more information than the key itself, by which one can

efficiently reconstruct the original key even in the presence of errors [37]. The focus of

this chapter is to recover AES encryption keys from a cold boot attack.

Advanced Encryption Standard (AES) is a specification for the encryption of electronic

data established by the U.S. National Institute of Standards and Technology (NIST) in

2001, and is currently used as a worldwide prevalent symmetric cryptographic algorithm.

As a kind of block ciphers, AES is vulnerable to the cold boot attack, via which the

attacker could extract the encryption key from memory. An AES encryption key refers

to a key schedule consisting of multiple roundkeys that are expanded from an initial key,

via the key expansion algorithm [31]. The length of an AES initial key is 128, 192, or 256

bits, referred to as AES-128, AES-192, AES-256, respectively. The AES key schedule

is the primary source of key redundancy, which enables an attacker to reconstruct the

initial key by exploiting the known bits present in the memory, even if the content he

extracts has a moderate amount of errors.

6.2 Reltaed Works

This section first introduces the models related to decay patterns and then surveys

existing works for recovering the AES key schedule from a cold boot attack.

When memory is out of power, the refresh cycle of DRAM is interrupted. Halderman

et al. [34] observed that most memory bits tend to decay to the ground states as time

goes on, with a constant and small fraction of bits flipping to the charged states. The

ground state could be encoded as either 0 or 1, depending on how the cell is wired,

thus the decay of memory bits is overwhelmingly either 0 → 1 or 1 → 0. The decay

direction in a given region could be inferred by comparing the numbers of 1s and 0s

since in an uncorrupted key schedule, we expect these to be approximately equal [34].

For simplicity of elaboration, in the rest of this chapter, we assume 1 as the charged

state, and 0 as the ground state. Then the decay direction is overwhelmingly 1 → 0,

with a small fraction from 0 to 1.

We denote the probability of 1 degrading to 0 by decay factor δ0, and the probability

of 0 flipping to 1 by some fixed δ1. Generally speaking, δ0 reflects the extent of decay,

which approaches to 1 as time goes on after power is lost. By contrast, δ1 is relatively

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 72

constant and tiny, from 0.05% to 0.1% [34]. According to the different settings of δ1,

existing works model the decay patterns by either of the following two cases.

• Perfect assumption: since δ1 is quite small in true cold boot attacks, the decay

direction is assumed only from 1 to 0 with no bit flipping in the opposite direction,

i.e., δ1 is set 0. Therefore, all 1s present in the decayed key schedule are correct

with absolute certainty.

• Realistic assumption: δ1 is from 0.05% to 0.1%. In this setting, both 1 → 0 and

0→ 1 coexist in an attack, thus none of the key bits in the decayed key schedule

are known with absolute certainty.

The technique of identifying AES keys in memory has been developed in [37]. In the

following, we investigate previous works on how to reconstruct AES key schedules after

they have been extracted from memory.

The AES key schedule contains a large amount of linearity, which allows one to search

for a small set of keys exhaustively and then combine these small pieces into the overall

key. The method proposed in [34] takes advantage of the high amount of linearity.

Instead of trying to reconstruct the entire AES-128 key at a time, their algorithm cuts

up the 128-bit roundkey into four subsets of 32 bits, and uses 24 bits of the subsequent

roundkey as redundancy. These small sets are decoded in order of likelihood, and then

combined into a candidate key, which could be checked against the full schedule. Their

work reconstructed AES-128 keys with δ0 = 15% and δ1 = 0.1% in a fraction of a second,

and up to half of keys with δ = 30% and δ1 = 0.1% within 30 seconds.

As far as we concern, [34] is the only work that works for the realistic assumption, while

many existing works adopt the perfect assumption.

The algorithm presented in [109] makes better use of the AES key schedule structure, by

modeling the search of keys in a depth-first tree under tree-pruning constraints. Their

method allows one to recover the AES-128 key schedules with on average 300 seconds for

δ0 = 70% and δ1 = 0. Although it was noted in [109] that the proposed algorithm did

still work for realistic assumption, the methodology was not mentioned in their work,

and the performance in this case was not demonstrated in [109]. Later on, motivated by

the dramatic speed-up of Boolean Satisfiability (SAT) solvers, Abdel et al. [49] took the

initial step to model the AES key recovery problem as a SAT problem by making full

use of the present bits equal to 1. Based on the perfect assumption, all 1s in the decayed

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 73

Figure 6.1: Diagram of AES-128 key expansion in adjacent two rounds

key schedule are correct, thus a set of correct constraints could be constructed from 1s.

On the other hand, the large amount of redundant information available in the AES

key schedule could also be formulated as constraints that have to be satisfied in a SAT

problem. As a result, by employing CryptoMiniSat [104], an XOR supported SAT solver,

their approach considerably improved the performance of AES key recovery, in terms

of both the recovery speed and the maximum recoverable decay factor. Specifically, the

authors reported that recovering AES-128 key schedules could be fulfilled with δ0 = 70%

and δ1 = 0 in around 1.2 seconds on average, and recovering keys with δ0 = 80% and

δ1 = 0 became possible.

6.3 Modeling Bits in AES-128 Key Schedules

AES is a widely spread symmetric key algorithm that uses the same cryptographic keys

for both encryption and decryption. In this chapter, we focus on AES-128 and our

method could be extended to AES-192 and AES-256 in a straightforward way since the

key schedule for 128-bit, 192-bit, and 256-bit encryption are very similar, with only some

constants changed.

An AES-128 key schedule consists of 11 roundkeys, each made up of 128 bits. The 0th

roundkey is equal to the initial key itself, which is bijectively mapped to the subsequent

10 roundkeys, via the public AES key expansion algorithm. Each bit in the key schedule,

either 0 or 1, is naturally expressed as a Boolean variable. We denote the ith bit of the

rth roundkey by bri , where 0 6 r 6 10 and 0 6 i 6 127. bri = 1 if the corresponding bit in

the memory is 1 and bri = 0 otherwise. The key schedule components are addressed with

the following two notations: the round-dependent word array and the substitution box.

The round-dependent word array, denoted by R (r), contains the values {02}r−1H for the

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 74

least significant byte and 0 for the rest bytes, with {02}r−1H being powers of {02}H in the

Galois field GF
(
28
)
, where {02}H is the hexadecimal representation of 2. Particularly,

R (r) (1 6 r 6 10) is listed as follows.

R (1) = 0 · · · 0︸ ︷︷ ︸
24 bits

00000001, R (6) = 0 · · · 0︸ ︷︷ ︸
24 bits

00100000,

R (2) = 0 · · · 0︸ ︷︷ ︸
24 bits

00000010, R (7) = 0 · · · 0︸ ︷︷ ︸
24 bits

01000000,

R (3) = 0 · · · 0︸ ︷︷ ︸
24 bits

00000100, R (8) = 0 · · · 0︸ ︷︷ ︸
24 bits

10000000,

R (4) = 0 · · · 0︸ ︷︷ ︸
24 bits

00001000, R (9) = 0 · · · 0︸ ︷︷ ︸
24 bits

00011011,

R (5) = 0 · · · 0︸ ︷︷ ︸
24 bits

00010000, R (10) = 0 · · · 0︸ ︷︷ ︸
24 bits

00110110.

The substitution box, abbreviated with S-box, is a basic component regarding security in

AES key schedule, which operates independently on a byte, by taking the multiplicative

inverse in the finite field GF
(
28
)

using the irreducible polynomial x8 + x4 + x3 + x+ 1

and then applying an affine transformation over GF (2). For more details, we refer

readers to the literature [31]. According to the hardware implementation of the AES key

expansion algorithm, an S-box operation could be split into eight functions in algebraic

normal form (ANF)1, with 1-byte input and 1-bit output [117].(See Appendix E for a

sample of Sbox expressed in ANF.) We denote each of the eight functions by Sx (Br
i),

where x (= 0, . . . , 7) is the index of the function, and Br
i is an input byte starting with

bri , following the least-significant-bit-first convention, i.e., Br
i = {bri , bri+1, . . . , b

r
i+7}. The

output of an S-box is then obtained by combining the outputs of these eight functions

into a byte, with the decreasing significance of x. Specifically, each bit in 1-10 roundkeys

is described by the following formulas.

bri = br−1i ⊕ Simod 8

(
Br−1

104+8·bi/8c

)
⊕Ri (r) , 0 6 i 6 23,

bri = br−1i ⊕ Simod 8

(
Br−1

96

)
⊕Ri (r) , 24 6 i 6 31,

bri = br−1i ⊕ bri−32, 32 6 i 6 127.

(6.1)

where 1 6 r 6 10, Ri (r) is the ith bit of the round constant word array R (r), and bxc
is the floor function that returns the largest integer not greater than x. The relations

among bits exhibited in Equation 6.1 show that each bit in the subsequent 10 rounds is

1A logical formula is considered to be in ANF if it is an XOR of a constant and one or more
conjunctions of Boolean variables.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 75

associated with its former bits. In particular, bri (0 6 i 6 31, 1 6 r 6 10) is determined

by 9 bits, i.e., br−1i and Br−1
104+8·bi/8c, and bri (32 6 i 6 127, 1 6 r 6 10) is determined

by 2 bits, i.e., br−1i and bri−32. Thus, an error occurring on a bit could be rectified by

examining the values of its related 2 or 9 bits. Similarly, if several bits are decayed,

they could be recovered correctly as long as a sufficient number of bits are known. For

convenience, we call the relations characterized in Equation 6.1 as bit-relations. The

bit-relations among two adjacent rounds are shown in Fig. 6.1, where the core refers to

an S-box XORing the round-dependent word array R (r).

6.4 SAT/ MaxSAT Encoding for Recovering AES-128 Key

Schedules

The performance obtained in [49] confirmed the superiority of SAT solvers in AES key

recovery. However, Abdel et al. [49] thoroughly excluded the possibility of reverse

flipping errors, by assuming that all 1s are correct with absolute certainty. In fact,

based on δ1 = 0.1%, the event of reverse flipping is expected to arise around 1 or 2 times

in a real key recovery attack for AES-128 where the total number of key bits is 1408,

and more times for AES-192 and AES-256, which contain larger number of bits apt to

decay. In particular, the reverse flipping errors arise 1 or 2 or 3 times in AES-192, and 2

or 3 or 4 times in AES-256. Although bits flipping from 0 to 1 are very rare in number,

these fatal events are sufficient to derail SAT solvers, leading SAT solvers to mistake the

wrong 1s as the correct constraints to infer the rest unknown bits. As a result, conflicts

may occur during the reasoning and SAT solvers would fail to recover the correct key

schedule by outputting unsatisfiable.

In this section, we show how to recover the AES key schedule with MaxSAT, an optimized

version of SAT, in the presence of reverse flipping errors. Specifically, we extend the

work of [49] to adapt SAT approach to a true cold boot attack. Moreover, motivated by

the feature of MaxSAT which satisfies as many constraints as possible and eliminates

the minority of unsatisfied ones, we recast the problem of AES key recovery under the

realistic assumption as a partial MaxSAT problem.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 76

6.4.1 Recovery with SAT under the Realistic Assumption

The versatility and effectiveness of SAT solving techniques have shown the potential

use of SAT solvers as a tool for cryptanalysis. Several cryptanalytic attacks using SAT

solvers emerged, ranging from the area of cryptanalysis of block ciphers [21, 22] and

stream ciphers [27, 32] to asymmetric-key algorithms [26, 29, 79] and hash functions

[40, 70]. Another line of research focuses on the attempts to make SAT solvers more

cryptanalytic-friendly. Soos et al. [104] implemented several steps towards a specialized

SAT solver for cryptography, including native support for the XOR operation, Gaussian

elimination, and logical circuit generation. Facilitated by these XOR supported mech-

anisms in CryptoMiniSat, attacks against stream ciphers such as Crypto-1 [32] could

be accelerated considerably, compared with other standard SAT solvers that only sup-

port CNF representations. The advantage of cryptanalytic-friendly SAT solvers is also

demonstrated in [49], which fulfilled the AES key recovery with significantly less time

than other previous works.

For a SAT solver, the attempt of finding an assignment to variables is made on the

premise that all the specified constraints are satisfied without any exception, otherwise

the solver outputs unsatifiable. This feature is suitable for the perfect assumption where

all 1s present in the decayed AES key schedule are correct with absolute certainty. In

addition, the bit-relations in the AES key schedule can be easily formulated as a SAT

problem which lead itself naturally to SAT solvers [49]. Therefore, given enough number

of 1s in the corrupted key schedule, a SAT solver could infer the values of other unknown

bits by formulating all the 1s and bit-relations as hard constraints.

However, in case of some 0s flipping to 1s, a SAT solver could not be aware of such

reverse flipping errors, instead, it still takes all 1s as absolutely correct. Misled by the

incorrect information, the solver would fail to recover the key schedule by outputting

unsatisfiable as a result of the conflicts arising during the reasoning. Obviously, the

heart of addressing this problem is to find and rectify the reverse flipping errors. A

straightforward way would be to conduct exhaustive search over all 1s in a bit-by-bit

fashion, by exploiting the fact that a SAT solver would always output unsatisfiable as

long as reverse flipping errors exist. Only if all the wrong 1s are cleared, the solver is

probable to find the correct assignment of variables. Particularly, when there is one

reverse flipping error, to distinguish this wrong 1 from other correct 1s, we modify the

decayed key schedule by turning one of these 1s to 0, then take the modified key schedule

as the input of a SAT solver. If the solver outputs satisfiable, it means that the bit that

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 77

we just modified is the reverse flipping error. Otherwise, we revert that bit; convert

the next 1 to 0, and run the solver again. This process would repeat until the solver

outputs satisfiable, i.e., it locates and corrects the reverse flipping error. In the worst

case, the solver needs to run (n+ 1) times, where n is the number of 1s in the decayed

key schedule. The complexity of the exhaustive search is closely related to the actual

number and the location of the reverse flipping errors, neither of which are unknown to

a SAT solver. If the number of reverse flipping errors is k, in the best case, the solver

needs to run

(∑
06i6k−1

Ci
n + 1

)
times, while in the worst case, it has to try

∑
06i6k

Ci
n

times, where Ci
n is the number of i-combinations of n. It is clear that a SAT solver

has to run multiple times to recover a decayed key schedule with reverse flipping errors.

Obviously, this method is tedious and cumbersome.

6.4.2 Recovery with MaxSAT under the Realistic Assumption

We can solve the problem significantly better by taking advantage of the partial MaxSAT.

That such a connection exists should be no surprise: we are in a situation where the

majority of 1s are correct, with only a small fraction of 1s flipping from 0, and we wish

to find out such reverse flipping errors and recover the true bits. A partial MaxSAT

solver treats the bit-relations as hard constraints, while considers the bits equal to 1 as

soft constraints, i.e., it takes the possibility that the present 1s may be incorrect into

consideration. Solving the partial MaxSAT problem amounts to finding an assignment of

variables that satisfy all hard constraints and the maximum number of soft constraints.

As long as the reverse flipping errors account for a small percentage among all 1s, they

can be surely cleared by a partial MaxSAT solver, which always satisfies the majority

of soft constraints by excluding the unsatisfied minority. By using MaxSAT solvers, the

exhaustive search over all 1s is eliminated.

Modeling 1s as soft clauses could be fulfilled without further elaboration. In particular,

if the ith bit of the rth roundkey presents 1 in the decayed key schedule, we only need

to declare bri = 1 as a soft clause to a MaxSAT solver. By contrast, modeling bit-

relations as hard clauses is not such straightforward. The main problem is to handle

the XOR operation, which is fundamental in characterizing bit-relations. In the rest of

this subsection, we elaborate the way of describing the following two kinds of formulas

in CNF representations.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 78

(1) XOR formula: a formula connected by XOR operator, with all the terms being

individual Boolean variables.

(2) ANF formula: a formula connected by XOR operator, with terms consisting of a

constant (0 or 1) and conjunctions of Boolean variables.

A naive way of describing an XOR formula in CNF representation introduces 2n−1

clauses, where n is the size of the XOR formula. This straightforward way, called direct

conversion, applies to the case that the size of an XOR formula is relatively small.

Example 6.1. In an AES-128 key schedule, to describe the bit-relation bri = br−1i ⊕br−1i−32

(32 6 i 6 127, 1 6 r 6 10) in CNF, only the following four clauses are sufficient:

¬bri ∨ br−1i ∨ br−1i−32, bri ∨ ¬br−1i ∨ br−1i−32,

bri ∨ br−1i ∨ ¬br−1i−32, ¬bri ∨ ¬br−1i ∨ ¬br−1i−32.

Obviously, this interpretation is unmanageable for large n as the number of clauses goes

up exponentially with the size of an XOR formula. To overcome this exponential explo-

sion, a long XOR formula is usually cut up into manageable groups, each represented

by an auxiliary Boolean variable. In our work, we set the size of manageable groups as

5, i.e., we introduce an auxiliary variable for each 5 Boolean variables, thus the number

of clauses to describe one group is no more than 25. The long XOR formula is then

represented as a new XOR of dn/5e auxiliary variables, as well as a set of clauses for

describing the manageable groups. If the size of the new XOR formula is still overlong,

then more auxiliary Boolean variables are introduced to further cut up the formula.

This process repeats until the size of the new XOR formula is manageable. We call this

method as cut-up conversion.

Up to this point, we have discussed the way of describing both short and long XOR

formulas in CNF representations. To encode ANF into CNF, we need to first introduce

additional Boolean variables to substitute the conjunctions, so that turn the ANF formu-

la to an XOR, which could be handled by either direct or cut-up conversion. Formally,

a conjunction of Boolean variables, denoted by x0 ∧ x1 ∧ · · · ∧ xn, could be represented

by a new Boolean variable a with n+ 1 additional clauses:

x1 ∨ ¬a, x2 ∨ ¬a, . . . , xn ∨ ¬a,¬x1 ∨ ¬x2 · · · ∨ ¬xn ∨ a.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 79

Thus the ANF formula is converted to a set of clauses and an XOR of a constant and

several additional Boolean variables. If the constant is 0, we remove it safely without

further conversion. Otherwise, we eliminate the constant 1 by turning one of the Boolean

variables to its negation. Specifically, 1 ⊕ x1 ⊕ x2 · · · ⊕ xn is tautologically equivalent

to ¬x1 ⊕ x2 · · · ⊕ xn.

Example 6.2. In an AES-128 key schedule, the 129-th bit, i.e., b10, is represented as

b10 = b00 ⊕ S0
(
B0

104

)
⊕ R0 (1), where R0 (1) = 1 and S0

(
B0

104

)
is an ANF function of

131 terms. This formula is equivalent to b10 ⊕ b00 ⊕ S0
(
B0

104

)
= 1 where the left side

of the equal symbol is an ANF formula of 133 terms, made up of 6 individual Boolean

variables and 127 conjunctions of two or more Boolean variables. Then we introduce

127 additional Boolean variables to substitute the conjunctions, thus turning the ANF

formula to an XOR of 133 Boolean variables and 127 substituted equations. The 127

equations are then converted to a set of clauses that a MaxSAT solver could understand.

To handle the long XOR formula of 133 Boolean variables, if we apply the direct conver-

sion, the number of clauses is 2132, which is unmanageable for the capacity of modern

computers. In the following, we employ the cut-up conversion to address the problem.

Boolean variables in the long XOR formula are divided into d133/5e = 27 groups, each

represented by an auxiliary Boolean variable. Thus the number of clauses introduced in

this step is 25 · 26 + 23 = 840. The long XOR formula then degrades to a shorter one of

27 auxiliary variables and 840 clauses. Evidently, this new XOR formula is still too long

to be converted into manageable CNF, which requires 226 clauses. In the follow-up step,

we make further efforts to cut the formula by introducing d27/5e = 6 auxiliary variables

and 25 · 5 + 22 = 164 clauses. Finally, followed by the set of introduced clauses, we

rewrite the formula as a new one of 6 variables, which could be converted directly to 32

clauses. To sum up, to describe the long XOR formula in CNF, the numbers of auxiliary

variables and clauses are equal to 27 + 6 = 33 and 840 + 164 + 32 = 1036, respectively.

Although the cut-up conversion for handling long XOR formulas is far from optimal,

it does decrease the number of clauses for describing the S-box that is represented as

eight ANF functions of more than 100 conjunctions of Boolean variables. By introducing

auxiliary Boolean variables to cut up long XOR formulas, the total number of clauses

for the S-box is strikingly reduced.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 80

6.5 Experiment and Comparison

In this section, we experimentally evaluated the performance of AES-128 key recovery

with SAT and MaxSAT, respectively, including generating problem instances, selecting

solvers and comparing the results.

6.5.1 Generating Problem Instances

According to [34], in a true cold boot attack, δ1 is around 0.1% and δ0 increases as

time goes on. To be consistent with the realistic assumption, we generate the problem

instances as follows. The test generator first derives a key schedule from a randomly

selected initial key where the number of 0s and 1s are approximately equal, then it

randomly converts 1s to 0s with the probability of δ0, and converts 0s to 1s with the

probability of δ1. We set δ1 = 0.1% and vary δ0 from 30% to 76%. Since the time

for recovering a key schedule observed in the experiments rises dramatically when δ0

grows over 70%, we set δ0 from 30% to 70% with 10% increments, and 70% to 76%

with 2% increments, respectively. At each fixed decay factor δ0, 100 problem instances

are generated. In this setting, the number of reverse flipping errors in the generated

problem instances ranges from 0 to 2.

To investigate the performances of SAT and MaxSAT approaches under specific number

reverse flipping errors, we generate additional problem instances for the following cases:

(1) Each instance contains only 1 reverse flipping error.

(2) Each instance contains 2 reverse flipping errors.

The method of generating instances for case (1) is almost the same as that for the

realistic assumption, except that we remove the setting of δ1 and limit the number of

reverse flipping errors to 1. For case (2), due to the extended time for key recovery, we

range δ0 from 30% to 74% and generate 40 instances for each fixed δ0.

It is predictable that as δ0 goes up, the number of “probably known” bits decreases. In

this situation, SAT/ MaxSAT solvers need quite a long time to find the result, which

may be different from the correct key schedule. Fortunately, in our experiments where

δ0 is up to 76%, the result for each problem instance obtained by the solvers is always

unique, i.e., the same as the correct key schedule.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 81

6.5.2 Selecting Appropriate Solvers

The solver for evaluating the SAT approach is CryptoMiniSat (version 2.9.6) as it sup-

ports XOR operations natively. The encodings of bit-relations are almost the same

as [49], with the only difference on the strategy of handling an XOR formula like

x0 ⊕ x1 ⊕ x2 = 0. Considering that CryptoMiniSat expects only positive clauses, we

rewrite the XOR formula as its equivalent form ¬x0 ⊕ x1 ⊕ x2 = 1, instead of adding

a new clause with a dummy variable d to turn the XOR formula to two formulas:

d⊕ x0 ⊕ x1 ⊕ x2 = 1 and d = 1, as illustrated in [49].

So far, there have been a variety of MaxSAT solvers, classified into two categories. The

one implements a branch and bound scheme, and the other one uses a state-of-the-art

SAT solver as an inference engine. Candidate partial MaxSAT solvers in our experiments

are listed as follows: Akmaxsat (version 1.1) [53] and WMaxSatz (version 2009) [59] are

branch and bound solvers. QMaxSAT (version 0.21) [52], QMaxSAT-g2 (version 0.21)

[52], WPM1 (version 2012) [4], PM2 (version 2010) [4], and Pwbo (version 2.0) [67] are

SAT-based solvers. To evaluate whether these solvers are suitable for AES key recovery,

we first apply these candidates to recover 100 AES-128 key schedules with δ1 = 0.1% and

δ0 = 30%. Our experiment was carried out on a 2.2GHz quad-core Intel i7-2675 processor

with 8GB RAM. Under a time limit of 900 seconds, WPM1, PM2, and Pwbo succeeded

in recovering all the key schedules, while Akmaxsat and WMaxSatz accomplished none

of these instances. In the middle are QMaxSAT and QMaxSAT-g2, which managed to

solve 12 and 42 instances, respectively.

Next, we compare the performances of WPM1, PM2, and Pwbo with increasing decay

factors. Specifically, δ0 ranges from 30% to 72%, and δ1 is set 0.1%. Results are illustrat-

ed in Table 6.1. Number in bracket means the number of instances that were successfully

solved by the corresponding solver and is omitted in the table if the solver managed to

recover all the 100 instances within the time limit. As can be seen from Table 6.1,

within the time limit of 900 seconds, Pwbo managed to recover more key schedules than

the other two solvers. In particular, when δ0 = 70%, both Pwbo and PM2 recovered

all the key schedules while WPM1 failed one of the instances. When δ0 = 72%, Pwbo

completed recovering 99 key schedules while the other two only fulfilled 97 instances.

Moreover, among all the solved instances, the average runtime required for Pwbo is

conspicuously shorter than that of WPM1 and PM2. Considering the high efficiency

of Pwbo in recovering the AES key schedules, in the following experiments, we choose

Pwbo as the solver to evaluate the MaxSAT approach.

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 82

Table 6.1: Average runtime (seconds) required for MaxSAT Solvers

δ0 (%) 30 40 50 60 70 72

Pwbo 0.928 1.236 1.347 1.771 11.564 25.967 (99)

WPM1 1.601 2.195 2.771 4.140 25.993 (99) 41.659 (97)

PM2 1.060 1.541 2.778 4.205 22.114 48.666 (97)

Table 6.2: Average runtime of SAT/MaxSAT approaches at δ1 = 0.1%

Decay Factor CryptoMiniSat Pwbo

δ0 (%) Solver Time (s) CPU Time (s) Solver Time (s)

30 45.812 462.238 0.943

40 28.467 228.878 0.956

50 19.665 97.240 1.168

60 26.524 89.187 1.560

70 225.379 255.097 12.532

72 678.452 718.031 26.782

74 1004.161 1035.134 231.610

76 1116.353 1143.289 296.415

6.5.3 Results

In the following experiments, we carried out tests on a 2.6GHz quad-core Intel i5-2540

processor with 8GB RAM and experimentally evaluated the performance of AES-128

key recovery with CryptoMiniSat and Pwbo, respectively. Both solvers were run on the

same sets of test cases, so their results are directly comparable.

For the SAT approach, we collect two kinds of metrics: solver time and CPU time.

The former one is the net time consumed by CryptoMiniSat, and the latter one is the

total time spent in solving an instance, including the solver time as well as the time of

modifying the input file, which is inevitable when searching for reverse flipping errors.

Evidently, the CPU time is always longer than the solver time for solving the same set of

instances. By contrast, we evaluate the MaxSAT approach by only measuring the solver

time because this approach enables reliable key recovery by loading the input file only

once. In what follows, we compare the performances of SAT and MaxSAT approaches

with the solver time, and list the CPU time only for reference. The benchmark results

for true cold boot attacks are summarized in Tab. 6.2.

In general, the MaxSAT approach enables more efficient key recovery than the SAT

approach, at all the varied decay factors. Specifically, the solver time needed by the

MaxSAT approach rises monotonically with the increase of δ0, indicating the higher

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 83

difficulty in fulfilling the key recovery at increasing δ0. In comparison, for the SAT ap-

proach, both the solver time and CPU time present a down and up trend as δ0 increases.

We explain the reasons as follows. First, at the low decay factor, particularly when δ0

is 30%, the number of 1s in a decayed schedule is relatively large, implying that Cryp-

toMiniSat needs to run a considerable number of times to find out the reverse flipping

errors. At this point, both the two metrics are maintained in high level, especially the

CPU time, because a large amount of time is spent in modifying the input file, with

only a small fraction used for CryptoMiniSat to determine whether the input file is sat-

isfiable. Later, with the increase of the decay factor, the number of 1s drops, leading to

less time on modifying the input file and fewer number of times to run CryptoMiniSat.

In addition, the increasing decay factor is not large enough to affect the high efficiency

of CryptoMiniSat to solve an input file. In this situation, both the solver time and

CPU time decline. Finally, as the decay factor further rises, the difficulty of solving an

input file increases strikingly, and the net time consumed by CryptoMiniSat becomes

the dominant factor that influences the total time. As a result, both metrics rise sharply

when δ0 is over 70%.

Table 6.2 demonstrates that the MaxSAT approach outperforms the SAT one in recov-

ering AES-128 key schedules for a true cold boot attack under the realistic assumption,

where the number of reverse flipping errors ranges from 0 to 2. Since the focus of this

chapter is to handle problems with reverse flipping errors, in the following, we carried

out two additional tests, as described in case (1) and (2), to estimate the performance

of the two approaches under a specific number of reverse flipping errors. Table 6.3 and

Tab. 6.4 reflect the runtime statistics of SAT and MaxSAT approaches with 1 reverse

flipping error. Table 6.5 and Tab. 6.6 show the results with 2 reverse flipping errors.

When there is only one reverse flipping error, the MaxSAT approach runs slightly faster

than the SAT approach, as indicated in Tab. 6.3 and Tab. 6.4. In particular, when

the decay factor reaches 76%, the solver time of CryptoMiniSat for the worst case is

more than 2.9 hours, with the average time at 8 minutes and median time at 3 minutes,

respectively. In the MaxSAT approach, the worst case is recovered within 1.8 hours,

with the average and median time at 6.4 and 2.4 minutes, respectively.

Table 6.5 and Tab. 6.6 show the time statistics of the SAT and MaxSAT approaches for

the decay factor from 30% to 74%, with exactly 2 reverse flipping errors in each instance.

Evidently, the MaxSAT approach is far superior to the other one at all decay factors. In

particular, when the decay factor is 74%, solver time of CryptoMiniSat grows averagely

to 4 hours with the median time at 2.2 hours. Moreover, nearly 2 days are consumed

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 84

Table 6.3: Runtime statistics of SAT/MaxSAT approaches with 1 reverse flipping
error

Decay Factor δ0 (%) 30 40 50 60 70

C
ry

p
to

M
in

iS
a
t

S
ol

ve
r

T
im

e(
s) Avg. 2.045 1.310 1.971 5.026 43.532

Med. 1.761 1.169 1.443 2.285 29.016

Max 5.161 3.942 8.911 78.318 642.389

Min 0.090 0.070 0.111 0.180 1.045

St.Dev. 1.423 0.967 1.632 8.678 69.660

C
P

U
T

im
e(

s) Avg. 10.680 6.959 7.334 9.273 47.509

Med. 9.141 6.378 6.024 6.240 31.804

Max 23.133 18.029 20.877 88.638 646.952

Min 0.328 0.164 0.296 0.224 1.108

St.Dev. 6.647 5.009 5.157 10.578 70.630

P
w

b
o

S
ol

ve
r

T
im

e(
s) Avg. 1.037 1.088 1.345 2.252 14.945

Med. 0.785 0.905 1.145 1.944 8.949

Max 2.369 2.396 3.240 6.351 262.724

Min 0.705 0.704 0.722 0.768 1.025

St.Dev. 0.449 0.402 0.540 1.307 29.022

Table 6.4: Runtime statistics of SAT/MaxSAT approaches with 1 reverse flipping
error (cont’d)

Decay Factor δ0 (%) 72 74 76

C
ry

p
to

M
in

iS
at

S
ol

ve
r

T
im

e(
s) Avg. 47.603 280.825 480.101

Med. 43.625 67.475 186.010

Max 233.645 3491.271 10498.967

Min 0.575 0.754 2.016

St.Dev. 43.684 646.057 1196.448

C
P

U
T

im
e(

s) Avg. 51.450 284.525 483.432

Med. 37.295 71.431 188.626

Max 240.951 5691.972 10503.143

Min 1.256 0.788 2.616

St.Dev. 45.064 750.881 1165.962

P
w

b
o

S
ol

ve
r

T
im

e(
s) Avg. 28.354 122.524 384.348

Med. 13.311 25.224 142.748

Max 599.011 3122.610 6492.834

Min 1.514 2.278 4.335

St.Dev. 61.904 344.664 869.453

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 85

Table 6.5: Runtime statistics of SAT/MaxSAT approaches with 2 reverse flipping
errors

Decay Factor δ0 (%) 30 40 50 60

C
ry

p
to

M
in

iS
a
t

S
ol

ve
r

T
im

e(
s) Avg. 198.638 162.249 224.689 329.621

Med. 171.615 186.392 127.715 153.839

Max 387.542 371.530 1358.530 2112.362

Min 13.740 8.611 7.304 27.476

St.Dev. 87.961 89.679 276.601 493.632

C
P

U
T

im
e(

s) Avg. 1838.272 1438.002 1175.426 908.879

Med. 1547.673 1582.850 902.144 884.411

Max 3884.488 3182.162 4297.181 3362.834

Min 64.041 37.678 65.888 68.824

St.Dev. 1052.836 900.462 917.924 770.543

P
w

b
o

S
ol

ve
r

T
im

e(
s) Avg. 1.464 1.562 2.184 4.676

Med. 1.020 1.165 1.884 3.165

Max 7.121 8.218 5.834 19.192

Min 0.229 0.901 0.910 1.002

St.Dev. 1.114 1.223 1.197 3.942

Table 6.6: Runtime statistics of SAT/MaxSAT approaches with 2 reverse flipping
errors (cont’d)

Decay Factor δ0 (%) 70 72 74

C
ry

p
to

M
in

iS
at

S
ol

ve
r

T
im

e(
s) Avg. 3047.821 4909.565 14715.607

Med. 2077.345 3517.530 7936.68

Max 9747.162 17027.594 161389.012

Min 38.417 10.439 62.768

St.Dev. 2907.309 5077.264 26695.935

C
P

U
T

im
e(

s) Avg. 3366.986 5309.834 14967.686

Med. 2208.291 3663.322 8249.485

Max 10226.602 17670.254 161885.498

Min 145.917 29.246 90.738

St.Dev. 3029.013 5224.465 26753.922

P
w

b
o

S
ol

ve
r

T
im

e(
s) Avg. 47.725 245.177 2160.486

Med. 37.343 97.372 473.762

Max 220.865 1848.418 20687.945

Min 5.054 6.710 20.045

St.Dev. 37.338 358.486 3982.245

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 86

by recovering the key schedule for the worst case. By contrast, the average and median

time for Pwbo to solve the same set of instances is 36 and 7.9 minutes, respectively,

with the worst-case recovery time at 5.7 hours. The low efficiency of the SAT approach

is owing to the large number of times for searching the reverse flipping errors, while the

MaxSAT solver only runs one time, by excluding the minority errors with optimized

algorithms.

It is worth noting that when recovering the same decayed AES key schedule, the MaxSAT

approach generates overwhelmingly larger number of clauses than the other one. To be

specific, the number of hard clauses for capturing AES-128 bit-relations is 372,240 for

the MaxSAT approach, around 6 times more than that for the SAT approach, which

generates only 51,440 hard clauses. The conspicuous gap in numbers attributes to the

distinct strategies for handling the XOR operation. As an XOR supported SAT solver,

CryptoMiniSat prunes redundant clauses dynamically along with the process of assign-

ing Boolean values to variables natively, considerably decreasing the number of clauses

introduced for handling XOR formulas. By contrast, to date, there have not been any

MaxSAT solvers that could support XOR natively, thus an XOR formula has to be

converted to CNF by the direct conversion and cut-up conversion introduced in Section

6.4.2. Unfortunately, both conversions are executed in a static way, in spite that some

introduced clauses are redundant for the current assignment of variables. Though the

XOR-CNF conversions in MaxSAT are not as refined as the strategies of CryptoMiniSat,

experiments still show that the MaxSAT approach excels the SAT one, and we say with

assurance that the development of a MaxSAT solver that supports XOR natively would

further stretch the advantage of the MaxSAT approach.

6.6 Chapter Summary

This chapter presented a MaxSAT approach to fulfill the reliable AES key recovery

from a cold boot attack. In contrast to many existing solutions that take the perfect

assumption for granted, our work enables efficient key recovery applicable to a true

cold boot attack, as long as the reverse flipping errors account for a small fraction of

all 1s. Specifically, we extended the work of [49] to make SAT solvers adapt to AES

key recovery from a true cold boot attack. Moreover, motivated by the feature of

MaxSAT that satisfies as many soft constraints as possible by eliminating the minority

of unsatisfied ones, we recast the problem as a partial MaxSAT problem. Experiments

showed that the MaxSAT approach outperforms the SAT approach, especially when the

Chapter 6. MaxSAT Encoding for Recovering AES Key Schedules 87

number of reverse flipping bits is relatively large. In particular, with MaxSAT, decayed

key schedules with δ0 = 76% and δ1 = 0.1% could be recovered within 300 seconds on

average, while the SAT approach required nearly 4 times longer to solve the same set of

instances.

Chapter 7

Conclusions and Future Works

This thesis has contributed to the research area of applying MaxSAT, an optimization

version of the famous SAT problem, to multi-agent systems and cryptographic area.

This chapter draws the conclusions from the research results obtained, and looks at

some future work on MaxSAT research and related issues.

7.1 Efficient MaxSAT Encoding

Extended Weighted Partial MaxSAT. There is no argument that the most impor-

tant feature of a MaxSAT solver is its efficiency. Therefore, a large number of applica-

tions that rely on a MaxSAT solver as a core to fulfill the task have achieved significant

improvements compared to traditional optimization frameworks.

In order to facilitate the modelling of a variety of optimization problems, where some

constraints may be more important to satisfy than others, the MaxSAT problem have

been extended by associating different payoffs with satisfying different clauses. In this

case, it is natural to cast MaxSAT in terms of maximizing the total payoffs of the satisfied

clauses. One of the most general form of MaxSAT instances is commonly referred to as

weighted partial MaxSAT (WPM). In WPM instances, each clause is associated with a

weight that is either a positive integer or infinity. The solution to the WPM instance is

a variable assignment that satisfies all the infinite weighted clauses and maximizes the

total weights of satisfied clauses. WPM is more well-suited for representing and solving

problems where satisfying some constraints is more crucial than others. The positive

weight is used to measure the importance of constraints.

89

Chapter 7. Conclusions and Future Works 90

For some applications, the weights associated to constraints are ranging from negative

to positive. For example, in the coalition structure generation (CSG) problem, to find

the optimal partition of agents, different coalitions and the assigned payoffs need to

be examined. In these coalitions, positive and negative payoffs may co-exist. In order

to apply the off-the-shelf WPM solvers, converting weights from negative to positive is

indispensable, as WPM solvers only deal with positive weights.

This thesis has described a formal method, called extend weighted partial MaxSAT

(EWPM), to handle formulas with both positive and negative weights. Thus problems

with non-zero weights can be readily formulated as EWPM instances. Next, we looked

in the relationship between EWPM and WPM instances, presenting a procedure on

EWPM-to-WPM transformation. With this transformation, EWPM instances are con-

verted to standard WPM instances that are naturally solved by existing WPM solvers.

Finally, as the result of the EWPM-to-WPM transformation, the ultimate results ob-

tained by the WPM solvers may suffer from some deviations compared with the original

ones. Therefore, the last step is to offset the effect of deviations by adding Wneg, the

sum of negative weights in the problem.

MaxSAT Encoding for the CSG Problem. Coalition formation is a key research

topic in multi-agent systems. One of the goals in coalition formation is to form a coalition

structure that maximizes the sum of values of coalitions, known as the coalition structure

generation (CSG) problem. Two critical problems for finding such coalition structure

are:

1. the input size grows exponentially as the number of agents increases;

2. the number of possible coalition structures is too large to allow exhaustive search

for the optimal one.

The first problem has been resolved by making use of compact representation schemes

to describe the CSG problem. In these concise representations, the CSG problem is

represented by a set of rules, in the form of condition → value, where condition is

denoted by conjunction (logic and) of agents, and value is a real-valued payoff. A rule is

said apply to a coalition C if all agents that appear themselves in the rule are in C and

none of agents that appear their negations in the rule are in C. Then the CSG problem

evolves to find a coalition structure such that the sum of values of rules that apply to

some coalitions in the coalition structure is maximized.

Chapter 7. Conclusions and Future Works 91

This thesis has taken the advantage of the compact representation schemes and de-

veloped two WPM encodings for the CSG problem, based on rule relations and agent

relations respectively. The rule relation-based approach is directly encoded from the pre-

vious work [111]. Rule relations are classified into four exhaustive and non-overlapping

categories. The main method is to identify the relations between each pair of rules and

compare the payoffs of rule sets that apply to some coalitions under certain constraints.

Finally the rule set that achieves the maximum payoff is the optimal solution. The agent

relation-based approach identifies only two kinds of relations, i.e., whether two agents

are in the same coalition or not, and thus makes the problem simpler compared to the

other one. Some of the results obtained are: the rule relation-based WPM encoding

is significantly time efficient than previous works, and the agent relation-based WPM

encoding further improves the efficiency of the CSG problem solving, given the numbers

of agents and rules are equal in a problem instance.

MaxSAT Encoding for Recovering AES Key Schedules. Advanced encryption

standard (AES) is a worldwide prevalent symmetric cryptographic algorithm used to

keep data confidential. An AES key refers to a key schedule made up of a series of

0-1 bits. This thesis has devised a partial MaxSAT encoding to recover the AES key

schedule in the case that only a corrupted image of key bits are available. The image

of key bits is especially extracted from the dynamic random access memory (DRAM),

which persists for a short time after power is removed. An essential property of DRAM

is that, after power is lost, most bits decay to the ground state, while a small fraction

(only 0.1%) flips to the charged state. This thesis has made full use of this property and

encoded the key recovery problem into partial MaxSAT, where all bits in the charged

state are taken as soft constraints and the relations that have to be satisfied among key

bits are taken as hard constraints. This encoding has achieved remarkable improvements

compared to the previous works, especially when the phenomenon of “reverse flipping”

is relatively remarkable.

7.2 Future Works

There are several avenues of research that we hope are eventually explored.

MaxSAT Encoding for Naive Representation of the CSG Problem. Naive

representation of a characteristic function or a partition function is simply enumerating

Chapter 7. Conclusions and Future Works 92

all possible coalitions as well as the corresponding payoffs, thus requiring large repre-

sentation size. A remedy for this problem is to represent the functions by compact

representation schemes that significantly reduce the input size of the CSG problem.

In this thesis of solving the CSG problem with WPM encodings, no matter whether

based on rule relations or agent relations, the problem is represented by a set of rules,

thus a characteristic function or partition function is represented in more concise man-

ner. Although these compact representation schemes have been shown expressive for

coalitional games of which the size depends on the complexity of the interactions among

agents, it remains unclear which kinds of problem domains can be concisely represented

by such rules. It is likely that some problems are intractable for these concise represen-

tation schemes. In the future work, we would like to go back to the naive representation

and try to apply MaxSAT solvers to solve the CSG problem expressed by the naive

representation.

Handling XOR in MaxSAT. The potential use of SAT solvers as a tool for crypt-

analysis has been proven in large number of cryptanalytic attacks, such as block ciphers,

stream ciphers, and hash functions, etc. To date, attempts have been made to make SAT

solvers more cryptanalytic-friendly by supporting the XOR operation natively, such as

CryptoMiniSAT. This facilitates the application of SAT solvers in many cryptanalytic

attacks, where XOR is the key operation in cryptographic algorithms.

Unfortunately, to date, there have not been any MaxSAT solvers able to handle XOR na-

tively. This is prohibitive for applications in cryptographic areas where XOR dominates.

That is why in Chapter 6, to recover the AES key schedules, XOR-CNF conversions are

indispensable before a problem instances is input to a MaxSAT solver. In our current

work, a long XOR formula is cut up into several shorter formulas. Each formula has

up to six variables. This is far from optimal while works significantly better than SAT

solvers. Therefore, it is promising if more advanced method of handling XOR formulas

is devised for MaxSAT solvers. In the future work, we would like to refine the way of

handling XOR formulas in MaxSAT, for example, seek the optimal value of k when cut-

ting a long XOR formula into groups of k variables, and integrate the XOR supported

mechanism into MaxSAT, so as to relieve the solver of the overwhelming large number

of clauses.

Appendix A

Complete File for Example 4.7 in

WPM Input Format

The following shows the generated file for solving Example 4.7 in WPM input format.

c #agent : 4 #rule : 6

c the maximum cost : 5

p wcnf 21 47 6

c

c soft clause

2 1 0

1 2 0

1 3 0

1 4 0

c

c hard clauses generated from positve rules with ex

6 -4 5 0

6 -4 6 0

c

c hard clauses generated from compS

6 -1 -5 10 0

6 -10 1 0

6 -10 5 0

6 -3 -6 18 0

6 -18 3 0

93

Appendix A. Complete file for Example 4.7 in WPM input format 94

6 -18 6 0

c

c hard clauses generated from compD

6 -1 -3 -8 0

6 -2 -3 -12 0

6 -2 -6 -15 0

6 -3 -5 -17 0

6 -5 -6 -21 0

c

c hard clauses generated from incomp

c

c transitive laws

6 -7 -12 8 0

6 -7 -14 10 0

6 -7 -15 11 0

6 -7 -8 12 0

6 -7 -10 14 0

6 -7 -11 15 0

6 -8 -12 7 0

6 -10 -14 7 0

6 -11 -15 7 0

6 -8 -17 10 0

6 -8 -18 11 0

6 -8 -10 17 0

6 -8 -11 18 0

6 -10 -17 8 0

6 -11 -18 8 0

6 -10 -21 11 0

6 -10 -11 21 0

6 -11 -21 10 0

6 -12 -17 14 0

6 -12 -18 15 0

6 -12 -14 17 0

6 -12 -15 18 0

6 -14 -17 12 0

6 -15 -18 12 0

6 -14 -21 15 0

6 -14 -15 21 0

Appendix A. Complete file for Example 4.7 in WPM input format 95

6 -15 -21 14 0

6 -17 -21 18 0

6 -17 -18 21 0

6 -18 -21 17 0

Appendix B

Complete File for Example 4.8 in

WPM Input Format

The following shows the generated file for solving Example 4.8 in WPM input format.

c #agent : 4 #rule : 8

c the maximum cost : 3

p wcnf 36 143 6

c

c soft clause

2 1 0

1 2 0

1 -3 0

1 1-4 0

c

c hard clauses generated from dummy rules without ex

6 3 5 0

c

c hard clauses generated from negative rules with ex

6 4 6 7 8 0

c

c hard clauses generated from compS

6 -1 -5 12 0

6 -12 1 0

6 -12 5 0

97

Appendix B. Complete file for Example 4.8 in WPM input format 98

6 -1 -7 14 0

6 -14 1 0

6 -14 7 0

6 -3 -8 26 0

6 -26 3 0

6 -26 8 0

6 -5 -6 31 0

6 -31 5 0

6 -31 6 0

6 -5 -7 32 0

6 -32 5 0

6 -32 7 0

6 -5 -8 33 0

6 -33 5 0

6 -33 8 0

6 -6 -7 34 0

6 -34 6 0

6 -34 7 0

6 -7 -8 36 0

6 -36 7 0

6 -36 8 0

c

c hard clauses generated from compD

6 -1 -3 -10 0

6 -2 -3 -16 0

6 -2 -5 -18 0

6 -2 -7 -20 0

6 -3 -6 -24 0

c

c hard clauses generated from incomp

6 -1 -6 0

6 -2 -8 0

6 -3 -7 0

c

c transitive laws

6 -9 -16 10 0

6 -9 -18 12 0

6 -9 -19 13 0

Appendix B. Complete file for Example 4.8 in WPM input format 99

6 -9 -20 14 0

6 -9 -21 15 0

6 -9 -10 16 0

6 -9 -12 18 0

6 -9 -13 19 0

6 -9 -14 20 0

6 -9 -15 21 0

6 -10 -16 9 0

6 -12 -18 9 0

6 -13 -19 9 0

6 -14 -20 9 0

6 -15 -21 9 0

6 -10 -23 12 0

6 -10 -24 13 0

6 -10 -25 14 0

6 -10 -26 15 0

6 -10 -12 23 0

6 -10 -13 24 0

6 -10 -14 25 0

6 -10 -15 26 0

6 -12 -23 10 0

6 -13 -24 10 0

6 -14 -25 10 0

6 -15 -26 10 0

6 -12 -31 13 0

6 -12 -32 14 0

6 -12 -33 15 0

6 -12 -13 31 0

6 -12 -14 32 0

6 -12 -15 33 0

6 -13 -31 12 0

6 -14 -32 12 0

6 -15 -33 12 0

6 -13 -34 14 0

6 -13 -35 15 0

6 -13 -14 34 0

6 -13 -15 35 0

6 -14 -34 13 0

Appendix B. Complete file for Example 4.8 in WPM input format 100

6 -15 -35 13 0

6 -14 -36 15 0

6 -14 -15 36 0

6 -15 -36 14 0

6 -16 -23 18 0

6 -16 -24 19 0

6 -16 -25 20 0

6 -16 -26 21 0

6 -16 -18 23 0

6 -16 -19 24 0

6 -16 -20 25 0

6 -16 -21 26 0

6 -18 -23 16 0

6 -19 -24 16 0

6 -20 -25 16 0

6 -21 -26 16 0

6 -18 -31 19 0

6 -18 -32 20 0

6 -18 -33 21 0

6 -18 -19 31 0

6 -18 -20 32 0

6 -18 -21 33 0

6 -19 -31 18 0

6 -20 -32 18 0

6 -21 -33 18 0

6 -19 -34 20 0

6 -19 -35 21 0

6 -19 -20 34 0

6 -19 -21 35 0

6 -20 -34 19 0

6 -21 -35 19 0

6 -20 -36 21 0

6 -20 -21 36 0

6 -21 -36 20 0

6 -23 -31 24 0

6 -23 -32 25 0

6 -23 -33 26 0

6 -23 -24 31 0

Appendix B. Complete file for Example 4.8 in WPM input format 101

6 -23 -25 32 0

6 -23 -26 33 0

6 -24 -31 23 0

6 -25 -32 23 0

6 -26 -33 23 0

6 -24 -34 25 0

6 -24 -35 26 0

6 -24 -25 34 0

6 -24 -26 35 0

6 -25 -34 24 0

6 -26 -35 24 0

6 -25 -36 26 0

6 -25 -26 36 0

6 -26 -36 25 0

6 -31 -34 32 0

6 -31 -35 33 0

6 -31 -32 34 0

6 -31 -33 35 0

6 -32 -34 31 0

6 -33 -35 31 0

6 -32 -36 33 0

6 -32 -33 36 0

6 -33 -36 32 0

6 -34 -36 35 0

6 -34 -35 36 0

6 -35 -36 34 0

Appendix C

Complete File for Example 5.2 in

WPM Input Format

The following shows the generated file for solving Example 5.2 in WPM input format.

c #agent : 4 #rule : 4

c the maximum cost : 5

p wcnf 10 22 6

c

c soft clauses and their derived hard clauses

2 7 0

6 -7 1 0

c

1 8 0

6 -8 -6 0

c

1 9 0

6 -9 -3 0

c

1 10 0

6 -10 1 0

6 -10 -3 0

6 -10 -6 0

c

c transitive laws

103

Appendix C. Complete file for Example 5.2 in WPM input format 104

6 -1 -2 4 0

6 -1 -3 5 0

6 -1 -4 2 0

6 -1 -5 3 0

6 -2 -3 6 0

6 -2 -6 3 0

6 -2 -4 1 0

6 -3 -5 1 0

6 -3 -6 2 0

6 -4 -5 6 0

6 -4 -6 5 0

6 -5 -6 4 0

Appendix D

Complete File for Example 5.3 in

WPM Input Format

The following shows the generated file for solving Example 5.3 in WPM input format.

c #agent : 4 #rule : 4

c the maximum cost : 3

p wcnf 10 20 6

c

c soft clauses and their derived hard clauses

2 7 0

6 -7 1 0

c

1 8 0

6 -8 -6 0

c

1 -9 0

6 9 3 0

c

1 -10 0

6 10 -1 3 2 0

c

c transitive laws

6 -1 -2 4 0

6 -1 -3 5 0

105

Appendix D. Complete file for Example 5.3 in WPM input format 106

6 -1 -4 2 0

6 -1 -5 3 0

6 -2 -3 6 0

6 -2 -6 3 0

6 -2 -4 1 0

6 -3 -5 1 0

6 -3 -6 2 0

6 -4 -5 6 0

6 -4 -6 5 0

6 -5 -6 4 0

Appendix E

A Sample of Sbox Expressed in

ANF

Let B0 = {b0, b1, b2, b3, b4, b5, b6, b7}, b0b1b2b4b5b6b7 be short for b0∧b1b2∧b4∧b5∧b6∧b7,
then Si (B0) (i = 0, . . . , 7) is represented as follows.

S0 (B0) = b0b1b2b4b5b6b7 ⊕ b0b1b2b3b4b6b7 ⊕ b0b2b3b4b5b6b7 ⊕ b0b2b3b4b5b6 ⊕
b1b2b3b4b6b7 ⊕ b0b1b4b5b6b7 ⊕ b0b1b2b3b5b7 ⊕ b0b1b2b3b6b7 ⊕ b1b3b4b5b6b7 ⊕
b0b1b2b4b5b7 ⊕ b0b1b2b3b4b7 ⊕ b0b1b3b4b6b7 ⊕ b0b2b3b5b6b7 ⊕ b0b1b2b5b6b7 ⊕
b2b3b4b5b6b7 ⊕ b1b2b4b5b6b7 ⊕ b0b1b2b3b4b6 ⊕ b0b2b3b4b5b7 ⊕ b0b3b5b6b7 ⊕ b0b2b3b4b5 ⊕
b2b3b4b5b7 ⊕ b1b2b4b6b7 ⊕ b0b1b5b6b7 ⊕ b0b3b4b5b7 ⊕ b0b1b2b3b6 ⊕ b0b1b3b5b7 ⊕
b0b1b2b6b7 ⊕ b0b2b4b6b7 ⊕ b1b2b4b5b6 ⊕ b0b1b4b5b6 ⊕ b0b1b2b4b7 ⊕ b0b2b3b4b6 ⊕
b0b1b2b3b4 ⊕ b0b1b2b4b5 ⊕ b1b2b5b6b7 ⊕ b0b1b3b5b6 ⊕ b1b2b3b5b7 ⊕ b1b3b4b5b7 ⊕
b0b3b4b5b6 ⊕ b0b3b4b6b7 ⊕ b1b2b3b5b6 ⊕ b0b1b2b5b7 ⊕ b0b1b3b4b6 ⊕ b2b3b4b5b6 ⊕
b0b1b3b6b7 ⊕ b2b4b5b6b7 ⊕ b0b2b4b5b7 ⊕ b0b1b2b3b7 ⊕ b0b2b5b7 ⊕ b1b2b4b6 ⊕ b0b1b2b7 ⊕
b3b5b6b7 ⊕ b1b3b6b7 ⊕ b0b2b4b5 ⊕ b0b4b5b6 ⊕ b1b2b3b5 ⊕ b0b1b2b3 ⊕ b0b2b3b5 ⊕
b2b3b5b7 ⊕ b0b1b4b7 ⊕ b0b1b4b5 ⊕ b1b3b4b6 ⊕ b2b4b5b6 ⊕ b0b1b2b5 ⊕ b2b4b5b7 ⊕
b2b3b6b7 ⊕ b1b2b3b6 ⊕ b0b4b5b7 ⊕ b1b5b6b7 ⊕ b1b2b4b7 ⊕ b0b3b5b6 ⊕ b0b2b3b7 ⊕
b1b2b6b7 ⊕ b1b2b3b7 ⊕ b1b4b5b7 ⊕ b0b4b6b7 ⊕ b0b3b4b6 ⊕ b1b4b5b6 ⊕ b0b1b2b6 ⊕ b0b2b5b6 ⊕
b0b2b4b7 ⊕ b1b2b3 ⊕ b3b5b7 ⊕ b0b2b4 ⊕ b3b4b7 ⊕ b1b2b6 ⊕ b1b4b6 ⊕ b0b4b6 ⊕ b0b1b6 ⊕
b1b3b7 ⊕ b0b3b5 ⊕ b2b3b5 ⊕ b2b5b7 ⊕ b2b3b7 ⊕ b0b3b6 ⊕ b0b1b4 ⊕ b5b6b7 ⊕ b1b2b4 ⊕
b0b4b7 ⊕ b0b2b5 ⊕ b0b1b7 ⊕ b0b3b4 ⊕ b2b5b6 ⊕ b2b6b7 ⊕ b0b2b7 ⊕ b4b5b6 ⊕ b3b6b7 ⊕
b1b3b4 ⊕ b1b5b6 ⊕ b0b2b6 ⊕ b2b4b7 ⊕ b1b4 ⊕ b1b6 ⊕ b0b6 ⊕ b0b1 ⊕ b0b5 ⊕ b6b7 ⊕ b2b7 ⊕
b2b6 ⊕ b2b4 ⊕ b5b6 ⊕ b1b3 ⊕ b1b2 ⊕ b0b4 ⊕ b2b3 ⊕ b4b6 ⊕ b5b7 ⊕ b0 ⊕ b2 ⊕ b3 ⊕ ¬b4.

107

Appendix E. A sample of Sbox expressed in ANF 108

S1 (B0) = b0b1b2b3b5b6b7 ⊕ ⊕ b0b1b3b4b5b6b7 ⊕ b0b1b2b4b5b6b7 ⊕ b0b1b2b3b4b6b7 ⊕
b0b2b3b4b6b7 ⊕ b0b1b3b4b6b7 ⊕ b1b3b4b5b6b7 ⊕ b0b1b2b3b5b6 ⊕ b1b2b3b4b6b7 ⊕
b0b1b3b4b5b6 ⊕ b0b1b2b4b6b7 ⊕ b0b1b2b4b5b7 ⊕ b1b2b3b5b6b7 ⊕ b0b1b2b3b4b6 ⊕
b1b2b3b4b5b6 ⊕ b0b2b3b5b6b7 ⊕ b0b2b3b4b5b7 ⊕ b0b1b2b3b4b7 ⊕ b0b1b2b5b6b7 ⊕
b0b2b3b4b5b6 ⊕ b1b3b4b5b6 ⊕ b1b2b3b5b6 ⊕ b0b1b2b3b6 ⊕ b0b2b5b6b7 ⊕ b2b3b4b5b7 ⊕
b0b1b3b4b7 ⊕ b1b2b3b4b6 ⊕ b0b2b3b5b7 ⊕ b0b1b2b6b7 ⊕ b0b1b2b3b4 ⊕ b0b1b3b4b6 ⊕
b0b2b4b5b6 ⊕ b0b3b5b6b7 ⊕ b0b1b5b6b7 ⊕ b0b1b2b4b7 ⊕ b0b1b2b3b7 ⊕ b0b1b3b5b7 ⊕
b1b2b4b5b6 ⊕ b0b2b3b6b7 ⊕ b2b3b4b6b7 ⊕ b0b2b3b4b7 ⊕ b0b3b4b5b7 ⊕ b0b1b2b4b6 ⊕
b1b3b4b5b7 ⊕ b0b1b3b6b7 ⊕ b0b1b2b4b5 ⊕ b0b1b4b5b6 ⊕ b0b1b3b5b6 ⊕ b0b4b5b6b7 ⊕
b2b4b5b6b7 ⊕ b0b2b3b4b5 ⊕ b0b1b4b7 ⊕ b1b3b4b7 ⊕ b0b4b5b7 ⊕ b0b2b5b6 ⊕ b0b3b4b6 ⊕
b1b2b6b7 ⊕ b1b3b4b5 ⊕ b1b3b5b7 ⊕ b1b2b5b7 ⊕ b2b3b5b7 ⊕ b0b3b4b5 ⊕ b2b3b4b5 ⊕
b1b2b3b5 ⊕ b0b1b5b6 ⊕ b2b4b5b7 ⊕ b0b1b2b6 ⊕ b1b4b6b7 ⊕ b0b4b5b6 ⊕ b0b1b3b6 ⊕
b3b4b6b7 ⊕ b0b2b4b5 ⊕ b1b2b4b7 ⊕ b0b4b6b7 ⊕ b3b4b5b6 ⊕ b1b3b5b6 ⊕ b1b4b5b7 ⊕
b0b2b3b6 ⊕ b3b4b5b7 ⊕ b0b1b4b5 ⊕ b0b1b3b4 ⊕ b2b3b4b7 ⊕ b2b4b6b7 ⊕ b1b2b5b6 ⊕
b3b5b6 ⊕ b1b3b6 ⊕ b2b3b5 ⊕ b0b5b7 ⊕ b2b6b7 ⊕ b2b3b6 ⊕ b1b3b4 ⊕ b5b6b7 ⊕ b3b6b7 ⊕
b1b2b4 ⊕ b0b3b4 ⊕ b0b2b3 ⊕ b3b5b7 ⊕ b3b4b7 ⊕ b0b2b7 ⊕ b3b4b6 ⊕ b0b1b4 ⊕ b1b2b3 ⊕
b0b1b6 ⊕ b0b6b7 ⊕ b1b3b7 ⊕ b0b4b6 ⊕ b2b5b7 ⊕ b2b3b4 ⊕ b1b3b5 ⊕ b1b4b7 ⊕ b0b4b7 ⊕
b0b1b3 ⊕ b1b5b6 ⊕ b0b4b5 ⊕ b0b4 ⊕ b3b7 ⊕ b0b7 ⊕ b0b1 ⊕ b2b3 ⊕ b4b5 ⊕ b1b3 ⊕
b2b7 ⊕ b0b3 ⊕ b4b6 ⊕ b1b7 ⊕ b2b6 ⊕ b1b4 ⊕ b0b2 ⊕ b7 ⊕ b6 ⊕ b3 ⊕ ¬b0.

S2 (B0) = b0b2b3b4b5b6b7 ⊕ b0b1b2b3b5b6b7 ⊕ b0b1b2b3b4b6b7 ⊕ b0b1b3b4b5b6b7 ⊕
b1b2b3b4b5b6b7 ⊕ b0b2b3b5b6b7 ⊕ b1b2b3b4b5b7 ⊕ b0b1b3b5b6b7 ⊕ b0b1b2b3b4b5 ⊕
b1b2b3b4b6b7 ⊕ b0b1b2b3b5b6 ⊕ b0b1b3b4b6b7 ⊕ b0b1b2b4b5b7 ⊕ b0b1b2b3b4b6 ⊕
b0b1b2b3b4b7 ⊕ b0b2b3b4b5b6 ⊕ b0b1b2b4b5b6 ⊕ b2b3b4b5b6b7 ⊕ b0b1b4b5b6b7 ⊕
b0b2b3b4b6b7 ⊕ b0b2b4b5b6b7 ⊕ b0b1b3b4b5b7 ⊕ b0b3b4b5b7 ⊕ b1b3b4b6b7 ⊕ b0b1b2b6b7 ⊕
b0b1b4b6b7 ⊕ b1b4b5b6b7 ⊕ b1b2b4b5b6 ⊕ b0b2b3b4b7 ⊕ b3b4b5b6b7 ⊕ b0b1b2b3b4 ⊕
b1b2b3b4b6 ⊕ b1b3b5b6b7 ⊕ b0b2b3b5b7 ⊕ b1b2b3b4b5 ⊕ b1b2b4b5b7 ⊕ b1b3b4b5b6 ⊕
b0b1b3b4b7 ⊕ b0b2b5b6b7 ⊕ b1b2b4b6b7 ⊕ b0b1b2b3b6 ⊕ b0b1b3b6b7 ⊕ b0b1b3b4b6 ⊕
b0b4b5b6b7 ⊕ b0b1b2b3b5 ⊕ b0b1b2b3b7 ⊕ b0b3b5b6b7 ⊕ b1b2b3b6b7 ⊕ b0b2b4b5b6 ⊕
b0b1b2b5b7 ⊕ b2b3b5b6b7 ⊕ b2b3b4b6b7 ⊕ b0b1b2b4b7 ⊕ b0b1b2b4b5 ⊕ b0b1b3b5b7 ⊕
b0b2b3b4 ⊕ b3b5b6b7 ⊕ b1b2b3b5 ⊕ b1b2b5b7 ⊕ b1b3b5b7 ⊕ b0b3b5b6 ⊕ b2b4b5b7 ⊕ b0b1b3b4 ⊕
b1b5b6b7 ⊕ b0b3b4b7 ⊕ b3b4b5b6 ⊕ b0b2b3b7 ⊕ b0b1b2b5 ⊕ b2b4b6b7 ⊕ b0b1b3b5 ⊕ b0b2b4b7 ⊕
b0b1b2b7 ⊕ b0b1b5b6 ⊕ b2b5b6b7 ⊕ b4b5b6b7 ⊕ b0b3b4b6 ⊕ b1b2b6b7 ⊕ b2b3b4b7 ⊕ b1b2b3b4 ⊕
b0b1b3b6 ⊕ b0b2b3b5 ⊕ b1b2b3b6 ⊕ b0b1b4b6 ⊕ b1b4b5b7 ⊕ b2b4b5b6 ⊕ b2b3b5b6 ⊕ b0b3b5b7 ⊕
b1b3b6b7 ⊕ b1b2b4b7 ⊕ b0b2b4b6 ⊕ b2b3b4b6 ⊕ b0b4b6 ⊕ b2b3b4 ⊕ b0b3b6 ⊕ b1b2b5 ⊕
b0b3b7 ⊕ b3b5b6 ⊕ b0b2b7 ⊕ b3b4b5 ⊕ b0b1b4 ⊕ b0b6b7 ⊕ b2b4b5 ⊕ b2b3b7 ⊕ b1b2b7 ⊕
b1b5b7 ⊕ b0b2b5 ⊕ b0b2b4 ⊕ b0b1b7 ⊕ b1b3b5 ⊕ b1b3b4 ⊕ b1b4b5 ⊕ b1b2b6 ⊕ b0b3b4 ⊕

Appendix E. A sample of Sbox expressed in ANF 109

b4b6b7 ⊕ b0b5b7 ⊕ b0b4b7 ⊕ b1b2b4 ⊕ b0b1b3 ⊕ b0b1b5 ⊕ b1b4b7 ⊕ b3b4b6 ⊕ b1b3b7 ⊕
b0b3b5 ⊕ b2b6b7 ⊕ b0b2b3 ⊕ b2b3b6 ⊕ b1b5b6 ⊕ b0b4b5 ⊕ b0b1b6 ⊕ b5b6 ⊕ b0b2 ⊕ b0b4 ⊕
b1b4 ⊕ b6b7 ⊕ b0b5 ⊕ b2b3 ⊕ b4b7 ⊕ b0b7 ⊕ b0b6 ⊕ b3b4 ⊕ b0b3 ⊕ b7 ⊕ b0 ⊕ b1 ⊕ b5.

S3 (B0) = b0b1b2b3b4b5b6 ⊕ b0b1b3b4b5b6b7 ⊕ b0b2b3b4b5b6b7 ⊕ b0b1b2b3b5b6b7 ⊕
b0b1b2b3b6b7 ⊕ b0b1b3b4b5b7 ⊕ b0b1b2b3b4b6 ⊕ b1b2b3b4b5b6 ⊕ b0b1b2b4b5b7 ⊕
b1b2b3b4b5b7 ⊕ b2b3b4b5b6b7 ⊕ b1b2b4b5b6b7 ⊕ b0b2b3b5b6b7 ⊕ b0b1b2b3b5b7 ⊕
b0b1b2b3b5b6 ⊕ b1b2b3b4b6b7 ⊕ b0b1b2b4b6b7 ⊕ b1b2b3b5b6b7 ⊕ b0b2b3b4b6b7 ⊕
b0b1b2b3b4b7 ⊕ b0b3b4b5b6 ⊕ b0b2b3b5b7 ⊕ b0b2b4b5b7 ⊕ b2b3b4b5b6 ⊕ b0b4b5b6b7 ⊕
b0b1b2b3b5 ⊕ b0b3b4b6b7 ⊕ b0b2b5b6b7 ⊕ b0b1b2b5b6 ⊕ b2b4b5b6b7 ⊕ b0b1b2b4b7 ⊕
b0b1b5b6b7 ⊕ b0b1b2b3b4 ⊕ b0b1b2b3b7 ⊕ b3b4b5b6b7 ⊕ b0b1b4b5b7 ⊕ b0b2b4b5b6 ⊕
b0b2b3b4b5 ⊕ b1b3b4b6b7 ⊕ b0b1b3b4b7 ⊕ b1b2b3b5b6 ⊕ b0b1b2b5b7 ⊕ b2b3b4b5b7 ⊕
b0b1b3b4b5 ⊕ b0b1b3b5b6 ⊕ b1b2b4b5b6 ⊕ b0b1b3b4b6 ⊕ b1b2b5b6b7 ⊕ b0b3b4b5b7 ⊕
b0b2b3b5b6 ⊕ b0b3b5b6b7 ⊕ b1b3b5b6b7 ⊕ b0b2b3b6b7 ⊕ b0b3b4b6 ⊕ b0b1b2b3 ⊕ b0b4b5b6 ⊕
b0b2b6b7 ⊕ b1b2b6b7 ⊕ b1b3b4b6 ⊕ b4b5b6b7 ⊕ b1b2b4b5 ⊕ b1b4b5b7 ⊕ b1b2b3b7 ⊕
b1b3b5b6 ⊕ b2b4b5b7 ⊕ b2b3b4b5 ⊕ b1b2b3b6 ⊕ b1b4b5b6 ⊕ b1b3b4b5 ⊕ b3b4b6b7 ⊕ b1b5b6b7 ⊕
b0b5b6b7 ⊕ b0b1b4b6 ⊕ b1b4b6b7 ⊕ b2b4b5b6 ⊕ b0b1b2b4 ⊕ b1b2b3b5 ⊕ b0b1b3b6 ⊕ b3b4b5b6 ⊕
b0b1b2b5 ⊕ b0b2b4b6 ⊕ b0b1b5b6 ⊕ b1b2b4b7 ⊕ b0b2b3b7 ⊕ b1b3b4b7 ⊕ b1b2b5b7 ⊕ b3b5b6b7 ⊕
b2b4b6b7 ⊕ b0b1b6b7 ⊕ b0b2b5b6 ⊕ b0b2b4b7 ⊕ b0b3b6b7 ⊕ b0b2b7 ⊕ b0b4b5 ⊕ b2b3b7 ⊕
b0b2b3 ⊕ b0b1b7 ⊕ b0b1b3 ⊕ b0b2b6 ⊕ b0b3b7 ⊕ b0b3b4 ⊕ b0b3b6 ⊕ b0b4b6 ⊕ b3b4b7 ⊕
b1b2b6 ⊕ b0b1b4 ⊕ b1b2b7 ⊕ b1b2b5 ⊕ b2b4b5 ⊕ b2b3b4 ⊕ b2b5b7 ⊕ b2b3b5 ⊕ b0b1b6 ⊕
b1b3b4 ⊕ b0b1b5 ⊕ b1b5b6 ⊕ b0b2b4 ⊕ b5b6b7 ⊕ b3b5b6 ⊕ b1b2b3 ⊕ b3b5b7 ⊕ b6b7 ⊕ b2b3 ⊕
b0b3 ⊕ b5b6 ⊕ b0b7 ⊕ b3b7 ⊕ b4b5 ⊕ b1b7 ⊕ b1b2 ⊕ b5b7 ⊕ b3b6 ⊕ b0 ⊕ b6 ⊕ b4 ⊕ b7.

S4 (B0) = b0b1b2b3b4b5b7 ⊕ b0b1b2b3b4b6b7 ⊕ b0b2b3b4b5b6b7 ⊕ b0b1b2b3b4b5 ⊕
b1b2b3b4b5b6 ⊕ b0b1b2b3b4b7 ⊕ b0b1b2b3b5b6 ⊕ b1b2b3b5b6b7 ⊕ b0b3b4b5b6b7 ⊕
b1b2b3b4b6b7 ⊕ b1b2b3b4b5b7 ⊕ b0b1b3b4b5b6 ⊕ b0b1b2b4b5b6 ⊕ b0b2b3b4b5b7 ⊕ b0b1b2b3b6 ⊕
b0b1b2b3b7 ⊕ b0b1b2b6b7 ⊕ b0b2b3b4b6 ⊕ b1b2b3b5b7 ⊕ b0b1b3b6b7 ⊕ b0b1b3b5b7 ⊕
b0b3b5b6b7 ⊕ b1b2b5b6b7 ⊕ b1b4b5b6b7 ⊕ b0b1b2b5b7 ⊕ b1b2b4b5b6 ⊕ b0b2b3b4b5 ⊕
b0b2b3b5b6 ⊕ b0b1b5b6b7 ⊕ b1b3b4b5b6 ⊕ b2b3b4b5b7 ⊕ b1b2b3b5b6 ⊕ b1b3b5b6b7 ⊕
b0b1b2b4b5 ⊕ b0b1b2b3b4 ⊕ b1b3b4b5b7 ⊕ b0b2b4b6b7 ⊕ b0b3b4b6b7 ⊕ b2b3b4b6b7 ⊕
b1b2b4b5b7 ⊕ b0b2b3b5b7 ⊕ b2b4b5b6b7 ⊕ b0b1b4b5b6 ⊕ b0b1b3b4b6 ⊕ b2b3b4b5b6 ⊕
b1b2b3b4b6 ⊕ b3b4b5b6b7 ⊕ b0b4b5b6b7 ⊕ b0b1b6b7 ⊕ b0b3b4b5 ⊕ b3b4b6b7 ⊕ b0b2b5b7 ⊕
b0b3b5b6 ⊕ b0b3b5b7 ⊕ b0b1b3b5 ⊕ b0b2b3b4 ⊕ b0b1b3b6 ⊕ b0b1b4b6 ⊕ b1b3b4b7 ⊕
b0b1b2b6 ⊕ b2b3b5b7 ⊕ b1b2b4b6 ⊕ b2b3b4b7 ⊕ b0b3b4b6 ⊕ b1b2b3b5 ⊕ b0b3b6b7 ⊕
b0b1b4b5 ⊕ b1b2b5b7 ⊕ b0b1b5b6 ⊕ b2b3b5b6 ⊕ b0b4b5b6 ⊕ b1b3b4b5 ⊕ b0b4b6b7 ⊕
b0b1b5b7 ⊕ b0b1b3b7 ⊕ b3b5b6b7 ⊕ b3b4b5b7 ⊕ b1b2b3b4 ⊕ b1b2b6b7 ⊕ b0b3b4b7 ⊕

Appendix E. A sample of Sbox expressed in ANF 110

b0b3b5 ⊕ b1b4b5 ⊕ b1b2b4 ⊕ b4b6b7 ⊕ b1b3b5 ⊕ b0b3b4 ⊕ b2b3b4 ⊕ b2b3b5 ⊕ b0b2b6 ⊕
b3b4b5 ⊕ b3b4b7 ⊕ b1b5b7 ⊕ b2b4b7 ⊕ b5b6b7 ⊕ b3b5b6 ⊕ b3b4b6 ⊕ b3b6b7 ⊕ b4b5b7 ⊕
b0b2b3 ⊕ b2b4b5 ⊕ b0b4b7 ⊕ b2b5b6 ⊕ b1b6b7 ⊕ b0b4b6 ⊕ b0b4b5 ⊕ b2b3b6 ⊕ b3b5b7 ⊕
b0b6b7 ⊕ b2b6b7 ⊕ b4b5 ⊕ b2b5 ⊕ b3b4 ⊕ b6b7 ⊕ b1b6 ⊕ b0b6 ⊕ b0b7 ⊕ b1b4 ⊕ b3b7 ⊕
b0b5 ⊕ b0b4 ⊕ b3b5 ⊕ b2b3 ⊕ b5b7 ⊕ b0b1 ⊕ b1b5 ⊕ b4b6 ⊕ b2 ⊕ b3 ⊕ b0 ⊕ b5 ⊕ b1.

S5 (B0) = b0b1b2b4b5b6b7 ⊕ b0b1b2b3b5b6b7 ⊕ b0b1b2b4b5b7 ⊕ b0b1b2b3b5b7 ⊕ b1b2b4b5b6b7 ⊕
b0b2b3b4b6b7 ⊕ b0b1b2b3b5b6 ⊕ b0b2b4b5b6b7 ⊕ b1b2b3b4b6b7 ⊕ b0b1b2b4b5b6 ⊕
b0b1b2b3b4b5 ⊕ b1b2b3b5b6b7 ⊕ b0b2b4b5b7 ⊕ b0b2b3b5b7 ⊕ b0b1b5b6b7 ⊕ b1b3b4b6b7 ⊕
b0b2b3b6b7 ⊕ b0b1b4b5b7 ⊕ b0b1b2b4b6 ⊕ b0b3b4b5b6 ⊕ b2b3b5b6b7 ⊕ b0b1b2b3b5 ⊕
b0b1b2b3b7 ⊕ b1b2b4b5b6 ⊕ b0b1b4b6b7 ⊕ b0b3b4b5b7 ⊕ b0b2b3b4b7 ⊕ b0b1b2b4b5 ⊕
b0b4b5b6b7 ⊕ b2b3b4b5b6 ⊕ b1b3b4b5b6 ⊕ b0b1b2b3b6 ⊕ b0b1b4b5b6 ⊕ b0b1b2b3b4 ⊕
b1b2b3b4b6 ⊕ b2b4b5b6b7 ⊕ b0b1b2b6b7 ⊕ b0b1b3b5b7 ⊕ b1b2b3b4b7 ⊕ b3b4b5b7 ⊕
b0b1b3b4 ⊕ b1b4b5b7 ⊕ b1b2b4b7 ⊕ b1b2b3b5 ⊕ b0b4b6b7 ⊕ b2b3b4b7 ⊕ b0b1b4b6 ⊕
b0b1b5b6 ⊕ b0b1b4b5 ⊕ b0b2b4b5 ⊕ b0b2b3b4 ⊕ b3b4b6b7 ⊕ b1b3b5b6 ⊕ b1b3b4b7 ⊕
b0b1b4b7 ⊕ b0b1b5b7 ⊕ b0b1b2b3 ⊕ b3b4b5b6 ⊕ b0b1b2b5 ⊕ b0b1b3b7 ⊕ b0b3b4b7 ⊕
b2b4b5b7 ⊕ b0b2b3b5 ⊕ b1b2b4b5 ⊕ b2b3b4b6 ⊕ b1b2b3b6 ⊕ b2b3b4b5 ⊕ b1b3b4b6 ⊕
b0b5b6b7 ⊕ b2b3b5b6 ⊕ b1b3b5b7 ⊕ b0b4b7 ⊕ b4b5b7 ⊕ b2b4b5 ⊕ b0b5b6 ⊕ b0b1b6 ⊕
b5b6b7 ⊕ b0b1b3 ⊕ b0b2b6 ⊕ b1b5b7 ⊕ b2b4b7 ⊕ b2b3b7 ⊕ b1b2b5 ⊕ b1b2b4 ⊕ b0b1b2 ⊕
b1b3b5 ⊕ b0b3b5 ⊕ b1b4b6 ⊕ b0b2b4 ⊕ b2b3b6 ⊕ b1b3b6 ⊕ b2b5b7 ⊕ b3b5b7 ⊕ b1b3b7 ⊕
b2b6b7 ⊕ b0b1b5 ⊕ b1b5b6 ⊕ b1b6b7 ⊕ b1b4b7 ⊕ b0b1b7 ⊕ b0b1b4 ⊕ b3b4b5 ⊕ b1b2b6 ⊕
b3b4 ⊕ b1b6 ⊕ b2b4 ⊕ b1b5 ⊕ b4b6 ⊕ b5b7 ⊕ b0b3 ⊕ b7 ⊕ b6 ⊕ ¬b4.

S6 (B0) = b0b1b3b4b5b6b7 ⊕ b0b1b2b4b5b6b7 ⊕ b0b1b3b4b5b7 ⊕ b0b1b2b3b5b6 ⊕ b0b1b2b3b4b7 ⊕
b0b1b3b4b5b6 ⊕ b0b1b2b4b6b7 ⊕ b0b1b2b4b5b7 ⊕ b0b1b3b5b6b7 ⊕ b0b1b3b4b6b7 ⊕
b1b3b4b5b6b7 ⊕ b0b1b2b4b5b6 ⊕ b0b1b2b5b6b7 ⊕ b0b4b5b6b7 ⊕ b1b2b3b5b7 ⊕ b1b2b3b4b5 ⊕
b0b1b3b6b7 ⊕ b0b1b4b5b7 ⊕ b0b1b2b3b5 ⊕ b1b4b5b6b7 ⊕ b0b3b4b6b7 ⊕ b0b2b5b6b7 ⊕
b0b1b2b3b7 ⊕ b1b2b4b5b6 ⊕ b0b2b4b5b7 ⊕ b2b3b4b6b7 ⊕ b0b1b2b3b6 ⊕ b1b3b4b5b6 ⊕
b1b2b5b6b7 ⊕ b2b3b5b6b7 ⊕ b1b2b3b4b7 ⊕ b3b4b5b6b7 ⊕ b0b2b3b5b6 ⊕ b1b3b4b5b7 ⊕
b0b1b3b4b5 ⊕ b0b2b4b6b7 ⊕ b0b2b3b4b5 ⊕ b0b1b3b6 ⊕ b1b2b4b7 ⊕ b1b2b3b5 ⊕ b0b3b4b7 ⊕
b0b1b6b7 ⊕ b4b5b6b7 ⊕ b1b3b5b7 ⊕ b0b2b4b6 ⊕ b0b2b3b5 ⊕ b1b2b3b4 ⊕ b0b3b4b6 ⊕
b2b3b4b5 ⊕ b2b3b5b6 ⊕ b1b2b3b6 ⊕ b1b4b6b7 ⊕ b0b1b2b5 ⊕ b0b1b3b4 ⊕ b0b2b3b7 ⊕
b1b4b5b7 ⊕ b1b3b4b6 ⊕ b1b3b4b7 ⊕ b0b2b4b5 ⊕ b2b3b4b6 ⊕ b1b2b4b5 ⊕ b0b2b3b6 ⊕ b0b2b5b7 ⊕
b2b3b5b7 ⊕ b0b1b3b7 ⊕ b0b4b6b7 ⊕ b0b1b2b4 ⊕ b3b4b6 ⊕ b0b2b5 ⊕ b0b4b7 ⊕ b1b5b6 ⊕
b0b1b5 ⊕ b1b2b5 ⊕ b1b3b6 ⊕ b0b3b5 ⊕ b5b6b7 ⊕ b0b1b4 ⊕ b0b4b5 ⊕ b1b6b7 ⊕ b0b1b3 ⊕
b0b2b4 ⊕ b0b2b6 ⊕ b3b5b7 ⊕ b2b4b6 ⊕ b0b5b6 ⊕ b4b5b6 ⊕ b0b4b6 ⊕ b2b3b7 ⊕ b1b3b4 ⊕

Appendix E. A sample of Sbox expressed in ANF 111

b1b4b7 ⊕ b1b2b7 ⊕ b2b4b7 ⊕ b3b6b7 ⊕ b2b3b4 ⊕ b0b5b7 ⊕ b0b3b6 ⊕ b1b4b6 ⊕ b1b2b6 ⊕
b3b5 ⊕ b0b5 ⊕ b2b3 ⊕ b5b7 ⊕ b1b7 ⊕ b1b3 ⊕ b4b6 ⊕ b3b7 ⊕ b0b4 ⊕ b0b7 ⊕ b5 ⊕ b6 ⊕ ¬b3.

S7 (B0) = b0b2b3b4b5b6b7 ⊕ b0b1b3b4b5b6b7 ⊕ b0b2b4b5b6b7 ⊕ b0b2b3b4b6b7 ⊕ b0b2b3b4b5b7 ⊕
b0b1b3b4b5b7 ⊕ b0b1b2b4b5b7 ⊕ b1b3b4b5b6b7 ⊕ b0b1b3b5b6b7 ⊕ b0b1b2b3b6b7 ⊕
b0b1b3b4b6b7 ⊕ b0b2b3b5b6b7 ⊕ b0b2b3b4b5b6 ⊕ b0b1b3b4b7 ⊕ b0b3b5b6b7 ⊕ b0b1b2b3b6 ⊕
b0b2b3b4b6 ⊕ b1b2b3b5b6 ⊕ b0b1b2b3b4 ⊕ b1b4b5b6b7 ⊕ b0b1b3b4b5 ⊕ b0b1b2b5b7 ⊕
b0b2b3b4b5 ⊕ b2b3b4b5b6 ⊕ b0b1b5b6b7 ⊕ b0b1b2b4b6 ⊕ b0b2b3b4b7 ⊕ b0b1b4b5b7 ⊕
b0b3b4b6b7 ⊕ b1b2b4b5b6 ⊕ b3b4b5b6b7 ⊕ b0b1b4b5b6 ⊕ b0b3b4b5b6 ⊕ b1b2b5b6b7 ⊕
b1b2b4b6b7 ⊕ b0b1b2b6b7 ⊕ b1b3b5b6b7 ⊕ b0b1b4b7 ⊕ b0b1b2b4 ⊕ b2b4b6b7 ⊕ b1b3b4b7 ⊕
b1b4b5b7 ⊕ b4b5b6b7 ⊕ b1b2b4b6 ⊕ b2b5b6b7 ⊕ b1b5b6b7 ⊕ b1b2b3b5 ⊕ b1b2b3b7 ⊕
b0b2b4b7 ⊕ b0b2b3b5 ⊕ b0b1b2b7 ⊕ b0b3b6b7 ⊕ b0b3b4b7 ⊕ b0b1b3b6 ⊕ b0b1b2b3 ⊕
b0b3b4b6 ⊕ b3b4b5b6 ⊕ b0b3b5b6 ⊕ b1b2b3b4 ⊕ b0b2b3b7 ⊕ b0b4b6b7 ⊕ b1b4b6b7 ⊕
b0b3b5b7 ⊕ b1b2b4b5 ⊕ b0b2b3b6 ⊕ b2b3b4b7 ⊕ b1b3b6b7 ⊕ b0b1b2b5 ⊕ b0b2b4b6 ⊕ b0b1b3b4 ⊕
b1b3b6 ⊕ b2b4b6 ⊕ b1b2b6 ⊕ b0b2b7 ⊕ b1b4b7 ⊕ b0b3b6 ⊕ b0b3b7 ⊕ b2b6b7 ⊕ b1b2b3 ⊕
b0b4b5 ⊕ b2b5b6 ⊕ b0b1b5 ⊕ b0b6b7 ⊕ b0b1b6 ⊕ b4b5b7 ⊕ b0b2b3 ⊕ b0b2b5 ⊕ b3b5b7 ⊕
b0b5b6 ⊕ b0b1b4 ⊕ b0b3b5 ⊕ b3b4b5 ⊕ b4b5b6 ⊕ b2b3b5 ⊕ b1b3b5 ⊕ b4b6b7 ⊕ b0b6 ⊕
b2b4 ⊕ b2b6 ⊕ b3b5 ⊕ b1b7 ⊕ b0b2 ⊕ b5b7 ⊕ b4b6 ⊕ b1b2 ⊕ b0b7 ⊕ b7 ⊕ b4 ⊕ b5 ⊕ b2.

Bibliography

[1] F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Generic ilp versus special-

ized 0-1 ilp: An update. In Proceedings of International conference on computer-

aided design, pages 450–457, 2002.

[2] T. Alsinet, a F. Many and J. Planes. An efficient solver for weighted Max-SAT.

Journal of Global Optimization, 41(1):61–73, 2008.

[3] M. F. Anjos. Semidefinite optimization approaches for satisfiability and maximum-

satisfiability problems. Journal on Satisfiability, Boolean Modeling and Computa-

tion, 1(1):1–47, 2006.

[4] C. Ansotegui, M. Bonet, and J. Levy. Solving Weighted partial MaxSAT through

satisfiability testing. In Proceedings of 12th International Conference on Theory

and Applications of Satisfiability Testing, 2009.

[5] C. Ansótegui, M. L. Bonet, and J. Levy. Solving (weighted) partial MaxSAT

through satisfiability testing. In Proceedings of International conference on Theory

and Applications of Satisfiability Testing, pages 427–440, 2009.

[6] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Modelling max-csp as par-

tial Max-SAT. In Proceedings of 11th International Conference on Theory and

Applications of Satisfiability Testing, pages 1–14, 2008.

[7] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT

based approach for solving formulas over boolean and linear mathematical proposi-

tions. In Proceedings of International Conference on Automated Deduction, pages

195–210, 2002.

[8] Bikramjit B. and Landon K. Coalition structure generation in multi-agent systems

with mixed externalities. In Proceedings of 9th International Joint Conference on

Autonomous Agents and Multiagent Systems, 2010.

113

Bibliography 114

[9] N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. In

Proceedings of International symposium on algorithms and computation, pages

247–258, 1999.

[10] D.L. Berre and A. Parrain. The SAT4J library, release 2.2. Journal on Satisfia-

bility, Boolean Modeling and Computation, 7:59–64, 2010.

[11] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without

BDDs. In Proceedings of Tools and Algorithms for the Construction and Analysis

of Systems, pages 193–207, 1999.

[12] A. Biere, M. Heulu, H. Maaren, and T. Walsh. Handbook of satisfiability, 2009.

[13] B. Borchers and J. Furman. A two-phase exact algorithm for MAX-SAT and

weighted MAX-SAT problems. Journal of Combinatorial Optimization, 2:299?–

306, 1999.

[14] E. Catilina and R. Feinberg. Market power and incentives to form research con-

sortia. Review of Industrial Organization, 28:129–144, 2008.

[15] Y. Chen, S. Safarpour, A. Veneris, and J. Marques-Silva. Spatial and temporal de-

sign debug using partial MaxSAT. In Proceedings of ACM Great Lakes Symposium

on VLSI, pages 345–350, 2009.

[16] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ansi-c programs. In

Proceedings of Tools and Algorithms for the Construction and Analysis of Systems,

pages 168–176, 2004.

[17] V. Conitzer and T. Sandholm. Computing Shapley values, manipulating value

division schemes, and checking core membership in multi-issue domains. In Pro-

ceedings of 19th National Conference on Artificial Intelligence, pages 219–225,

2004.

[18] V. Conitzer and T. Sandholm. Complexity of constructing solutions in the core

based on synergies among coalitions. Artificial Intelligence, 170(6-7):607–619,

2006.

[19] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

annual ACM symposium on Theory of computing, pages 151–158, 1971.

[20] M.C. Cooper, S. Cussat-Blanc, M. deRoquemaurel, and P. Régnier. Soft arc con-

sistency applied to optimal planning. In Proceedings of International conference

on principles and practice of constraint programming, pages 680–684, 2006.

Bibliography 115

[21] N. T. Courtois and G. V. Bard. Algebraic cryptanalysis of the data encryption

standard. In Proceedings of IMA International Conference on Cryptography and

Coding, pages 152–169, 2007.

[22] N. T. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on

KeeLoq. In Proceedings of International Workshop of Fast Software Encryption,

pages 97–115, 2008.

[23] V. D. Dang, R. K. Dash, A. Rogers, and N. R. Jennings. Overlapping coalition

formation for efficient data fusion in multi sensor network. In Proceedings of 21st

National Conference on Artificial Intelligence and the 18th Innovative Applications

of Artificial Intelligence Conference, 2006.

[24] J. Davies, J. Cho, and F. Bacchus. Using learnt clauses in MaxSAT. In Proceedings

of International conference on principles and practice of constraint programming,

pages 176–190, 2010.

[25] J. R. Douceur. The sybil attack. In Proceedings of 1st International Workshop on

Peer-to-Peer Systems, pages 251–260, 2002.

[26] V. I. Dylkeyt, R. T. Faizullin, and I. G. Khnykin. Reducing the problem of

asymmetric ciphers cryptanalysis to solving satisfiability problems. In Proceedings

of XIII All-Russian Conference Mathematical Methods in Pattern Recognition,

pages 249–251, 2007.

[27] T. Eibach, E.Pliz, and G. Volkel. Attacking Bivium using SAT solvers. In Proceed-

ings of International Symposium on the Theory and Applications of Satisfiability

and Testing, pages 63–76, 2008.

[28] MaxSAT Evaluations. http://maxsat.ia.udl.cat:81/.

[29] R. T. Faizullin, I. G. Khnykin, and V. I. Dylkeyt. The SAT solving method as

applied to cryptographic analysis of asymmetric ciphers. The Computing Research

Repository, abs/0907.1755, 2009.

[30] M. Felegyhazi and J. P. Hubaux. Game theory in wireless networks: a tutorial. In

EPFL Laboratory for Computer Communications and Applications, pages 1–14,

2006.

[31] Federal Information Processing Standards Publication FIPS 197. Announcing the

advanced encryption standard (AES), 2001.

http://maxsat.ia.udl.cat:81/

Bibliography 116

[32] F. D. Garcia, G. K. Gans, R. Muijrers, P. Rossum, R. Verdult, R. W. Schreur,

and B. Jacobs. Dismantling mifare classic. In Proceedings of European Symposium

on Research in Computer Security, pages 97–114, 2008.

[33] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal

of the ACM, 42(6):1115–1145, 1995.

[34] J. A. Halderman, S. D. Schoen, N. A. Heninger, W. Clarkson, W. Paul, J. A.

Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remem-

ber: Cold-boot attacks on encryption keys. In Proceedings of USENIX Security

Symposium, pages 45–60, California, USA, Jul 2008.

[35] P. Halmos and S. Givant. Introduction to boolean algebras, 2009.

[36] K. Haribabu, A. Paul, and C. Hota. Detecting sybils in peer-to-peer overlays

using psychometric analysis methods. In Workshops of International Conference

on Advanced Information Networking and Applications, pages 114 – 119, 2011.

[37] N. A. Heninger. Error Correction and the Cryptographic Key. PhD thesis, Univ. of

Princeton, May 2011. ftp://ftp.cs.princeton.edu/reports/2011/897.pdf.

[38] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: a new weighted Max-SAT

solver. In Proceedings of International Conference on Theory and Applications of

Satisfiability Testing, pages 41–55, 2007.

[39] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSat: An efficient weighted Max-

SAT solver. Journal of Articial Intelligence Research, 31:1–32, 2008.

[40] E. Homsirikamol, P. Morawiecki, M. Rogawski, and M. Srebrny. Security mar-

gin evaluation of SHA-3 contest analists through SAT-based attacks. Computer

Information Systems and Industrial Management, 7564:56–67, 2012.

[41] K. Honjyo and T. Tanjo. ShinMaxSat: A weighted partial Max-SAT solver inspired

by MiniSat+. http://www.edu.kobe-u.ac.jp/istc-tamlab/cspsat/sms/.

[42] J. H̊astad. Some optimal inapproximability results. In Proceedings of 28th ACM

Symposium on the Theory of Computing, pages 1–10, 1997.

[43] S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation

scheme for coalitional games. In Proceedings of 6th ACM Conference on Electronic

Commerce, 2005.

ftp://ftp.cs.princeton.edu/reports/2011/897.pdf
 http://www.edu.kobe-u.ac.jp/istc-tamlab/cspsat/sms/

Bibliography 117

[44] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer. In

Proceedings of International Conference on Software Engineering, pages 730–733,

2000.

[45] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of

Computer and System Science, 9(3):256–278, 1974.

[46] M. Jose and R. Majumdar. Bug-assist: Assisting fault localization in ANSI-C

programs. In Proceedings of International conference on computer aided verif

ication, pages 504–509, 2011.

[47] M. Jose and R. Majumdar. Cause clue clauses: Error localization using maxi-

mum satisfiability. In Proceedings of ACM SIGPLAN conference on programming

language design and implementation, pages 437–446, 2011.

[48] F. Juma, E.I. Hsu, and S.A. McIlraith. Preference-based planning via MaxSAT.

In Proceedings of Canadian conference on AI, pages 109–120, 2012.

[49] A.A. Kamal. Applications of SAT solvers to AES key recovery from decayed

key schedule images. In Proceedings of 4th International Conference on Emerging

Security Information Systems and Technologies, pages 216–220, 2010.

[50] H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? In

Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer

Science, pages 406–415, 1997.

[51] M. Koshimura, H. Nabeshima, H. Fujita, and R. Hasegawa. Solving open job-shop

scheduling problems by SAT encoding. IEICE Transactions on Information and

Systems, 93-D(8):2316–2318, 2010.

[52] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa. Qmaxsat: A partial

Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,

8(1/2):95–100, 2012.

[53] A. Kugel. Improved exact solver for the weighted Max-SAT problem. In Proceed-

ings of Pragmatics of SAT, 2010.

[54] J. Larrosa, F. Heras, and S. de Givry. A logical approach to efficient Max-SAT

solving. Artificial Intelligence, 172(2-3):204–233, 2008.

[55] J. Larrosa and T. Schiex. Solving weighted csp by maintaining arc consistency.

Artificial Inteligence, 159(1-2):1–26, 2004.

Bibliography 118

[56] R. Letz. Lemma and model caching in decision procedures for quantified boolean

formulas. In Proceedings of International Conference on Automated Reasoning

with Analytic Tableaux and Related Methods, pages 160–175, 2002.

[57] B. N. Levine, C. Shields, and N. B. Margolin. A survey of solutions to the sybil

attack, 2006.

[58] C. M. Li, F. Manyà, and J. Planes. New inference rules for MaxSAT. Journal of

Artificial Intelligence Research, 30:321–359, 2007.

[59] C.M. Li, F. Manya, N.O. Mohamedou, and J. Planes. Exploiting cycle struc-

tures in Max-Sat. In Proceedings of 12th International Conference on Theory and

Applications of Satisfiability Testing, 2009.

[60] X. Liao, D. Hao, and K. Sakurai. Achieving cooperative detection against sybil

attack in wireless ad hoc networks: A game theoretic approach. In Proceedings of

17th Asia-Pacific Conference on Communications, pages 806 – 811, 2011.

[61] X. Liao, D. Hao, and K. Sakurai. Classification on attacks in wireless ad hoc

networks: A game theoretic view. In Proceedings of 7th International Conference

on Networked Computing and Advanced Information Management, pages 144–149,

2011.

[62] H. Lin, K. Su, and C. M. Li. Within-problem learning for efficient lower bound

computation in Max-SAT solving. In Proceedings of 22th AAAI Conference on

Artificial Intelligence, pages 351–356, 2008.

[63] H. Mangassarian, A.G. Veneris, S. Safarpour, F.N. Najm, and M.S. Abadir. Maxi-

mum circuit activity estimation using pseudo-boolean satisfiability. In Proceedings

of Conference on design, automation and test in Europe, pages 1538–1543, 2007.

[64] V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted boolean

optimization. In Proceedings of International conference on Theory and Applica-

tions of Satisfiability Testing, pages 495–508, 2009.

[65] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J. P. Hubaux. Game theory

meets network security and privacy. ACM Computing Surveys, 45(25):1–39, 2013.

[66] J. Marques-Silva. Practical applications of boolean satisfiability. In Proceedings of

9th International Workshop on Discrete Event Systems, pages 28–30, 2008.

Bibliography 119

[67] R. Martins, V. Manquinho, and I. Lynce. Parallel search for maximum satisfiabil-

ity. AI Communications, 25:75–95, 2012.

[68] T. Michalak, A. Dowell, P. McBurney, and M. Wooldridge. Optimal coalition

structure generation in partition function games. In Proceedings of European Con-

ference on Artificial Intelligence, 2008.

[69] T. Michalak, D. Marciniak, M. Szamotulski, T. Rahwan, M. Wooldridge, P. M-

cBurney, and N. Jennings. A logic-based representation for coalitional games with

externalities. In Proceedings of 9th International Conference on Autonomous A-

gents and Multiagent Systems, 2010.

[70] I. Mironov and L. Zhang. Applications of SAT solvers to cryptanalysis of hash

functions. In Proceedings of International Symposium on the Theory and Applica-

tions of Satisfiability and Testing, pages 102–115, 2006.

[71] A. Morgado, F. Heras, M. H. Liffiton, J. Planes, and Marques-Silva J. Iterative and

core-guided MaxSAT solving: A survey and assessment. Constraints, 18(4):478–

534, 2013.

[72] R. Muhammad and P. J. Stuckey. A stochastic non-CNF SAT solver. In Proceed-

ings of Trends in Artificial Intelligence, 9th Pacific Rim International Conference

on Artificial Intelligence, pages 120–129, 2006.

[73] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks:

analysis & defenses. In Proceedings of 3rd International Symposium on Information

Processing in Sensor Networks, pages 259–268, 2004.

[74] R. Nieuwenhuis and A. Oliveras. On SAT modulo theories and optimization prob-

lems. In Proceedings of International conference on theory and applications of

satisf iability testing, pages 156–169, 2006.

[75] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki, and M. Yokoo. Coali-

tion structure generation utilizing compact characteristic function representation.

In Proceedings of 15th International Conference on Principles and Practice of

Constraint Programming (CP ’09), 2009.

[76] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,

1994.

[77] C. H. Papadimitriou. Computational complexity, 1994.

Bibliography 120

[78] J.D. Park. Using weighted MAX-SAT engines to solve mpe. In Proceedings of 16th

AAAI Conference on Artificial Intelligence, pages 682–687, 2002.

[79] C. Patsakis. RSA private key reconstruction from random bits using SAT solvers.

IACR Cryptology ePrint Archive, 26, 2013.

[80] C. Patsakis. RSA private key reconstruction from random bits using SAT solvers.

IACR Cryptology ePrint Archive, 2013.

[81] D. N. Pham, J. R. Thornton, and A. Sattar. Building structure into local search

for SAT. In Proceedings of 20th International Joint Conference on Artificial In-

telligencef, pages 2359–2364, 2007.

[82] K. Pipatsrisawat and A. Darwiche. Clone: Solving weighted Max-SAT in a reduced

search space. In Proceedings of 20th Australian Joint Conference on Artificial

Intelligence, pages 223–233, 2007.

[83] J. Planes. Improved branch and bound algorithms for Max-2-SAT and weighted

Max-2-SAT. In Proceedings of 9th International Conference on Principles and

Practice of Constraint Programming, page 991, 2003.

[84] J. Plasmans, J. Engwerda, B. Aarle, B. Bartolomeo, and T. Michalak. Dynamic

Modeling of Monetary and Fiscal Cooperation Among Nations. Springer, 2006.

[85] T. Rahwan and N.R. Jennings. Coalition structure generation: Dynamic program-

ming meets anytime optimisation. In Proceedings of the 22th AAAI Conference

on Artificial Intelligence, 2008.

[86] T. Rahwan and N.R. Jennings. An improved dynamic programming algorithm for

coalition structure generation. In Proceedings of 7th International Joint Conference

on Autonomous Agents and Multiagent Systems, 2008.

[87] T. Rahwan, T. Michalak, M. Wooldridge, and N. R. Jennings. Anytime coalition

structure generation in multi-agent systems with positive or negative externalities.

Artificial Intelligence, 186:95–122, 2012.

[88] T. Rahwan, T. P. Michalak, E. Elkind, P. Faliszewski, J. Sroka, M. Wooldridge,

and N.R. Jennings. Constrained coalition formation. In Proceedings of the 25th

AAAI Conference on Artificial Intelligence, 2011.

[89] T. Rahwan, T.P. Michalak, and N.R. Jennings. A hybrid algorithm for coalition

structure generation. In Proceedings of the 26th AAAI Conference on Artificial

Intelligence, 2012.

Bibliography 121

[90] T. Rahwan, S.D. Ramchurn, N.R. Jennings, and A. Giovannucci. An anytime algo-

rithm for optimal coalition structure generation. Journal of Artificial Intelligence

Research, 34:521–567, 2009.

[91] J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: parallel plans

and algorithms for plan search. Artificial Intelligence, 170(12-13):1031–1080, 2006.

[92] N. Robinson, C. Gretton, D.N. Pham, and A. Sattar. Partial weighted MaxSAT

for optimal planning. In Proceedings of Pacif ic rim international conference on

artificial intelligence, pages 231–243, 2010.

[93] M.H. Rothkopf, A. Pekec, and R.M. Harstad. Computationally manageable com-

binatorial auctions. Management Science, 44:1131–1147, 1998.

[94] S. Roy, C. Ellis, S. G. Shiva, D. Dasgupta, V. Shandilya, and Q. Wu. A survey

of game theory as applied to network security. In Proceedings of 43rd Hawaii

International Conference on System Sciences, pages 1–10, 2010.

[95] S. Safarpour, H. Mangassarian, A. Veneris, M.H. Liffiton, and K.A. Sakallah.

Improved design debugging using maximum satisfiability. In Proceedings of 7th

Conference on Formal methods in computer-aided design, pages 13–19, 2007.

[96] T. Sandholm. An algorithm for optimal winner determination in combinatorial

auctions. In Proceedings of International joint conference on artificial intelligence,

pages 542–547, 1999.

[97] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme. Coalition

structure generation with worst case guarantees. Artificial Intelligence, 111:209–

238, 1999.

[98] T. Sandholm and V.R. Lesser. Coalitions among computationally bounded agents.

Artificial Intelligence, 94:99–137, 1997.

[99] B. Selman and H. Kautz. Planning as satisfiability. In Proceedings of European

Conference on Artificial Intelligence, pages 359–363, 1992.

[100] S. Sen and P.S. Dutta. Searching for optimal coalition structures. In Proceedings

of 4th International Conference on Multi-Agent Systems, 2000.

[101] T.C. Service and J.A. Adams. Constant factor approximation algorithms for coali-

tion structure generation. Autonomous Agents and Multi-Agent Systems, 23:1–17,

2011.

Bibliography 122

[102] M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties using induc-

tion and a SAT solver. In Proceedings of 3rd International Conference on Formal

Methods in Computer-Aided Design, pages 108–125, 2000.

[103] O. Shehory and S. Kraus. Methods for task allocation via agent coalition forma-

tion. Artificial Intelligence, 101:165–200, 1987.

[104] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic

problems. In Proceedings of International Symposium on the Theory and Applica-

tions of Satisfiability and Testing, pages 244–257, 2009.

[105] Z. Stachniak. Going non-clausal. In Proceedings of 5th International Symposium

on Theory and Applications of Satisfiability Testing, pages 316–322, 2002.

[106] C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL

search. In Proceedings of 7th International Conference on Theory and Applications

of Satisfiability Testing, pages 147–156, 2004.

[107] C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL

search. In Proceedings of 7th International Conference on Theory and Applications

of Satisfiability Testing, pages 147–156, 2004.

[108] G. S. Tseitin. On the complexity of derivation in propositional calculus. Automa-

tion of Reasoning: Classical Papers in Computational Logic, 2:466–483, 1983.

[109] A. Tsow. An improved recovery algorithm for decayed AES key schedule images.

In Proceedings of Selected Areas in Cryptography, pages 215–230, 2009.

[110] M. Tsvetovat and K. Sycara. Customer coalitions in the electronic marketplace.

In Proceedings of the fourth international conference on Autonomous agents, 2000.

[111] S. Ueda, T. Hasegawa, N. Hashimoto, N. Ohta, A. Iwasaki, and M. Yokoo. Han-

dling negative value rules in MC-net-based coalition structure generation. In

Proceedings of 11th International Joint Conference on Autonomous Agents and

Multiagent Systems, 2012.

[112] S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise characteristic function

representations in coalitional games based on agent types. In Proceedings of 22nd

International Joint Conference on Artificial Intelligence, 2011.

[113] M. Vasquez and J. Hao. A logic-constrained knapsack formulation and a tabu

algorithm for the daily photograph scheduling of an earth observation satellite.

Journal of Computational Optimization and Applications, 20(2):137–157, 2001.

Bibliography 123

[114] Z. Xing and W. Zhang. Maxsolver: an efficient exact algorithm for (weighted)

maximum satisfiability. Artificial Intelligence, 164(1-2):47–80, 2005.

[115] H Xu, R. Rutenbar, and K. Sakallah. Sub-SAT: A formulation for relaxed boolean

satisfiability with applications in routing. In Proceedings of International sympo-

sium on physical design, pages 182–187, 2002.

[116] L. Zhang and F. Bacchus. MaxSAT heuristics for cost optimal planning. In

Proceedings of 26th AAAI Conference on Artificial Intelligence, pages 1846–1852,

2012.

[117] X. Zhang and K. K. Parhi. High-speed vlsi architectures for the AES algorithm.

IEEE Transactions on Very Large Scale Integration VLSI Systems, 12(9):957–967,

2004.

List of Related Publications

1. X. Liao, M. Koshimura, H. Fujita and R. Hasegawa, Extended MaxSAT to Solve

the Coalition Structure Generation Problem with Externalities based on Agent Re-

lations, IEICE Transactions on Information and Systems, conditionally accepted,

2013.

2. X. Liao, M. Koshimura, H. Fujita and R. Hasegawa, MaxSAT Encoding for MC-

net-based Coalition Structure Generation Problem with Externalities, IEICE Trans-

actions on Information and Systems, conditionally accepted, 2013.

3. X. Liao, H. Zhang, M. Koshimura, H. Fujita and R. Hasegawa, Using MaxSAT to

Correct Errors in AES Key Schedule Images, IEEE 25th International Conference

on Tools with Artificial Intelligence (ICTAI), pages 284–291, 2013.

4. X. Liao, M. Koshimura, H. Fujita and R. Hasegawa, Solving the Coalition Struc-

ture Generation Problem MaxSAT, IEEE 24th International Conference on Tools

with Artificial Intelligence (ICTAI), pages 910–915, 2012.

5. X. Liao, D. Hao and K. Sakurai, Using Game Theory to Classify Wireless Ad

Hoc Network Attacks with Analysis on Countermeasures, International Journal of

Advancements in Computing Technology (IJACT), 3(8): 296–303, 2011.

6. X. Liao, D. Hao and K. Sakurai, Achieving Cooperative Detection against Sybil

Attack in Wireless Ad hoc Networks: A Game Theoretic Approach, 17th Asia-

Pacific Conference on Communications (APCC), pages 806–811, 2011.

7. X. Liao, D. Hao and K. Sakurai, Classification on Attacks in Wireless Ad Hoc

Networks: A Game Theoretic View, 7th International Conference on Networked

Computing and Advanced Information Management (NCM), pages 144–149, 2011.

8. D. Hao, X. Liao, A. Adhikari, K. Sakurai and M. Yokoo: A Repeated Game Ap-

proach for Analyzing the Collusion on Selective Forwarding in Multihop Wireless

Networks, Computer Communications (ComCom), 35(17): 2125–2137, 2012.

125

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research Area
	1.1.1 SAT and MaxSAT
	1.1.2 The CSG Problem
	1.1.3 Recovering AES Keys from a Cold Boot Attack

	1.2 Thesis Contribution
	1.3 Thesis Organization

	2 Preliminary
	2.1 SAT, MaxSAT and Its Extension
	2.2 MaxSAT Algorithms
	2.3 CNF Encodings
	2.3.1 Transformation by Boolean Algebra
	2.3.2 Transformation by Tseitin Encoding

	2.4 Game Theory
	2.4.1 Non-cooperative game
	2.4.2 Cooperative game
	2.4.3 Game Theory Applied in Network Security

	3 Extending MaxSAT to Deal with Negative Weights
	3.1 Weighted Partial MaxSAT
	3.2 Extended Weighted Partial MaxSAT
	3.2.1 EWPM-to-WPM Transformation
	3.2.2 Redundancy in Transformation
	3.2.3 Considerations

	3.3 Chapter Summary

	4 MaxSAT Encoding for the CSG Problem based on Rule Relations
	4.1 Coalition Structure Generation (CSG)
	4.1.1 Characteristic Function Game
	4.1.2 Partition Function Game

	4.2 Related Works
	4.2.1 An Overview
	4.2.2 Direct Encoding

	4.3 WPM Encoding on Rule Relations
	4.3.1 Encoding Positive Value Rules
	4.3.2 Encoding Positive Value Embedded Rules
	4.3.3 Encoding Negative Value Rules
	4.3.4 Encoding Negative Value Embedded Rules

	4.4 Evaluation
	4.4.1 Generating Problem Instances
	4.4.2 Selecting Appropriate Solvers
	4.4.3 Results

	4.5 Chapter Summary

	5 MaxSAT Encoding for the CSG Problem based on Agent Relations
	5.1 WPM Encoding on Agent Relation
	5.1.1 Agent Relation
	5.1.2 Encoding Positive Value (Embedded) Rules
	5.1.3 Encoding Negative Value (Embedded) Rules

	5.2 Evaluation
	5.3 Chapter Summary

	6 MaxSAT Encoding for Recovering AES Key Schedules
	6.1 Cold Boot Attack and AES
	6.2 Reltaed Works
	6.3 Modeling Bits in AES-128 Key Schedules
	6.4 SAT/ MaxSAT Encoding for Recovering AES-128 Key Schedules
	6.4.1 Recovery with SAT under the Realistic Assumption
	6.4.2 Recovery with MaxSAT under the Realistic Assumption

	6.5 Experiment and Comparison
	6.5.1 Generating Problem Instances
	6.5.2 Selecting Appropriate Solvers
	6.5.3 Results

	6.6 Chapter Summary

	7 Conclusions and Future Works
	7.1 Efficient MaxSAT Encoding
	7.2 Future Works

	A Complete File for Example 4.7 in WPM Input Format
	B Complete File for Example 4.8 in WPM Input Format
	C Complete File for Example 5.2 in WPM Input Format
	D Complete File for Example 5.3 in WPM Input Format
	E A Sample of Sbox Expressed in ANF
	Bibliography
	List of Related Publications

