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Abstract

Enhancing the search capability of evolutionary computation (EC) and increas-

ing its optimization performance are important but have not completed yet. EC

is applicable to high dimensional, non-linear, non-differentiable, and/or other hard

problems. However, obtaining an optimal performance is still hard for practical EC

applications. For example, user fatigue is a serious issue of applying interactive EC,

and reducing fatigue is a practical requirement for its applications. As implementing

an efficient search method in EC algorithm is one of the methods for reducing user

fatigue, it is valuable to study on the efficient search methods for EC.

In this dissertation, we propose six novel approaches on this subject and dis-

cuss them within three research directions. They are: (1) approximating fitness

landscape in lower dimensional search space and elite local search, (2) Fourier anal-

ysis on fitness landscape and its enhancement methods, (3) Fourier niche method

for multi-modal optimization, (4) triple and quadruple comparison-based interac-

tive differential evolution (IDE) and differential evolution (DE), (5) EC acceleration

by the accelerating transition from exploration to exploitation, and (6) a new EC

algorithm - chaotic evolution.

The first research direction among three directions in this dissertation is the

fitness landscape approximation method that tries to obtain the knowledge of the

problem structure and search condition in a search space. Once we obtain these

kinds of information, we can propose specific search strategies, introducing local

search to EC, and others to enhance EC search capability.

The second research direction is developing a new search mechanism. We propose

a new triple and quadruple comparison-based IDE and DE, not only to enhance IDE

search as well as reducing IDE user fatigue, but also to enhance canonical DE search.

By introducing transition from exploration to exploitation, a new EC mechanism is

proposed to enhance EC research performance.

The third research direction is developing new EC algorithms. We propose a

new EC algorithm based on chaotic ergodicity. This idea is inspired by ergodicity

of chaotic systems to combine with EC.





概 要

進化計算の探索能力を向上させて最適化性能を高めることは重要な課題であるが，

まだ完成されたとは言えない．進化計算は高次元，非線形，変数間依存，その他の

困難なタスクにも適用可能である．しかし，これまで得られている性能では，実用

タスクに適用するにはまだ不十分である．例えば，ユーザ疲労は対話型進化計算の

大きな課題であり，対話型進化計算の応用のためには疲労軽減が実用的なレベルで

求められる．効率的な探索方法を進化計算に組み込むことはユーザ疲労軽減の一方

法であり，進化計算のための効率的な探索方法の研究は意義あることである．

本学位論文では，3つの研究方向における探索効率化のための 6つのアプローチ

を提案し議論する．これらは，(1) フィットネス景観をより低い次元で近似する方法

と近似で得られたエリート個体による局所探索，(2) フィットネス景観のフーリエ解

析とその強調方法，(3) 多峰性最適化のためのフーリエ・ニッチ法，(4) 3 点および 4

点比較ベースの対話型差分進化と差分進化，(5) Exploration からExploitation への

遷移を加速することによる進化計算の高速化，(6) 新しい進化計算アルゴリズム－

カオス進化．

本学位論文での 3つの研究方向における第 1の研究方向は，タスクの構造と探

索空間での探索条件に関する知識を得ようとするフィットネス景観の近似法である．

一旦このような情報が得られれば，特定の探索戦略，進化計算への局所探索の導入，

その他の進化計算探索能力を向上させる方法などを提案することが可能になる．

第 2の研究方向は，新しい探索メカニズムの開発である．3 点および 4 点比較

ベースの対話型差分進化と差分進化を提案するが，これは，ユーザ疲労を軽減し対

話型差分進化の性能を向上させるだけでなく，従来の差分進化法の性能も向上させ

ることを目的にしている．ExplorationからExploitationへの遷移の概念を導入する

ことで，進化計算研究を展開させる新しい進化計算メカニズムを提案できた．

第 3の研究方向は，新しい進化計算アルゴリズムの開発である．カオスのエル

ゴード性に基づく新しい進化計算を提案する．この考えは，カオスシステムのエル

ゴード特性を進化計算に組み合わせることから得られたものである．





摘摘摘 要要要

增强进化计算的探索能力和提高其优化性能是一个重要的、但尚未完成的研究课

题。 进化计算适用于优化高维的、非线性的、不可微分的和其他一些难以解决的

优化问题。 但是对于具体的应用，通过进化计算获得最优的优化结果，仍然是一

个非常困难的工作。 举例来说，用户疲劳问题是交互式进化计算需要解决的关键

问题， 当应用交互式进化计算解决具体问题时，减轻用户的疲劳是其实用化的具

体需求。 由于在进化计算算法中实现更为有效的搜索是解决用户疲劳问题的方法

之一， 所以在进化计算中实现更有效率的算法研究是一个非常有价值的研究课

题。

在这篇学位论文中，作者从3个研究角度和方向出发，提出了6个创新性的研

究方法和新型的进化计算算法。 这些方法和算法包括： (1) 在低维度的探索空间

的适应值景观近似和精英个体搜索， (2) 适应值景观的Fourier分析以及应用其原

理的进化计算加速方法， (3) 用于解决多峰优化问题的Fourier niche算法， (4) 基

于3点和4点比较的交互式差分进化算法和差分进化算法， (5) 通过从全局探索向

局部挖掘转化的进化计算加速方法， (6) 新的进化计算算法–混沌进化。

这篇学位论文中的第一个研究方向是适应值景观的近似。 这种方法试图通过

适应值景观的近似，在探索空间中，获得被优化问题的知识和进化计算算法的探

索状况。 一旦我们获得了这些信息，就可以利用其采取特定的探索策略、局部探

索方法等增强进化计算的探索能力。

第二个研究方向是开发新的进化计算算法的探索机制。 作者提出了一个基

于3点和4点比较的交互式差分进化算法和差分进化算法。 这些算法不仅可以有效

地增强交互式差分进化算法的探索效率，从而减轻交互式差分进化用户的疲劳，

而且有效地增强了经典差分进化计算的探索和查找。 通过进化计算的查找从全局

探索向局部挖掘的转化，作者提出了一种新的加速进化计算的方法框架。

第三个研究方法是开发新的进化计算算法。 作者提出了一个基于混沌遍历性

的进化计算算法。 算法的思想来源于混沌系统的遍历性和进化过程的迭代性。
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Chapter 1

Introduction

1.1 Background and Remaining Problems

Computational intelligence (CI) is a conceptual set of nature inspired computational
methodologies and approaches, which primarily includes fuzzy systems, artificial

neural networks and evolutionary computation (EC). Many real world problems are
mathematically ill posed and complex. They frequently have uncertainties, con-

straints, multimodal, multi-objectives, noisy and dynamic environments. Nature
may provide us many practical solutions for complex real world problems or hints

from biological, mathematical, or physical systems for solving them. Nature inspired
CI has been applied to complex real world problems, while conventional methods

are inefficient or infeasible for them and often fail to solve them.
There are many characteristics of CI. Intelligence is one of them, which is directly

linked to reasoning and decision making that usually attribute to products and
human life. Adaptivity is another important characteristic of CI, which is also

covered by the fields of machine learning and computational neuroscience. CI also

includes biology inspired algorithms such artificial immune systems that can be
categorized as a part of EC. However, there is a controversial issue about whether

swarm intelligence belongs to EC or not. Furthermore other formalisms, such as
chaos theory, is used to construct computational models.

Fuzzy logic was originally introduced in 1965 by Zadeh, Lotfi, A [124]. It is a tool
to formalize and represent the reasoning process [125]. Fuzzy logic systems are based

on fuzzy logic that possesses many characteristics attributed to intelligence. Fuzzy
logic can effectively handle the uncertainty that is common for human reasoning,

perception and inference.
Artificial neural networks (ANN) were introduced in the 1940s that mimic the

human brain [61], and they were further developed in 1980s. It represents a compu-
tational mechanism based on a simplified mathematical model of the neurons and

signals that they process. ANN is used to solve a variety of tasks that are difficult to
solve by conventional rule based programming. The subjects of learning paradigms,

such as unsupervised learning, supervised learning and reinforcement learning, are

important study topics in ANN.
EC started in the 1970s and has become popular in the late 1980s. It mimics

population based evolution through reproduction of generation and handles many
optimization problems, such as continuous optimization and combinatorial opti-
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mization problems, etc. Its algorithms can be considered as the global optimization
methods with a meta heuristic or stochastic optimization characteristic. Most of

EC are applied to black box optimization problems, which are often in the context
of expensive, large scale, multimodal and multi-objective optimizations. EC uses

iterative progress, such as growth or development in a population, and many variety
of its algorithms are so called as population based optimization algorithms. EC

selects better individuals, which are multiple search points based on a stochastic
approach, and finds further better individuals using EC operators iteratively until

found individuals reach to a desired stop criterion. Such processes are often inspired
by biological mechanisms of evolution. EC has shown its powerful capability to

solve complex industrial and engineering optimization problems in many real world
applications.

Interactive EC (IEC) is an approach whereby such properties as human knowl-

edge, experience and preference are embedded into an optimization process, and
EC solutions are searched using fitness from a human evaluation based system. By

embedding a human being itself into an optimization system, EC techniques become
applicable to tasks for which it is difficult to construct an evaluation system or to

measure their evaluations. For example, hearing aid fitting [112] and cochlear im-
plant fitting [50] are tasks well suited to an IEC approach because there is few ways

to measure how a human being hears sounds except the user’s subjective responses.
IEC has also been applied to artistic areas such as creating music or graphics, en-

gineering areas such as sound and image processing, control and robotics, virtual
reality, data mining, media database retrieval, and others, including geoscience,

education, games, and many other tasks in various areas [108].
From a framework point of view, IEC can be implemented with any EC algo-

rithm by replacing fitness function with a human user. Several EC techniques are
used in IEC, such as interactive genetic algorithms [14], interactive genetic pro-

gramming [100], interactive evolution strategy [31], human based genetic algorithm

[44], interactive particle swarm optimization [56], interactive differential evolution
(IDE) [113], as discussed in the next chapter, and others. Evaluation noise due to

human subjective evaluations cannot be avoided, and therefore EC algorithms that
are sensitive to noise do not show better performance when used as-is in IEC. From

a practical point of view, when such noise sensitive EC algorithms are used in IEC,
it is necessary to add an algorithm for overcoming noise sensitivity [69].

There are many directions in IEC research, such as expanding applications of
IEC; expanding IEC frameworks [109]; applying IEC in a reverse engineering ap-

proach to analyze humans and thus advance [110]; accelerating IEC searches and
improving IEC interfaces. The major remaining IEC problem is the problem of

IEC user fatigue [108]. In addition to the previously mentioned acceleration and
improvement of IEC interfaces, many approaches for reducing IEC user fatigue have

been conducted. Some of these approaches improve methods of inputting fitness,
use a combination of IEC and EC, allow users to intervene in EC searches, introduce

IEC user evaluation models, construct new IEC frameworks and introduce paired

comparison based fitness evaluation rather than evaluating all individuals at once.
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Evolutionary 
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Algorithm
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Support 

System
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Figure 1.1: EC/IEC based optimization system, part 3 is only for IEC.

From a system optimization framework viewpoint, there are four parts in an

EC/IEC based optimization system (Figure 1.1), which includes a target system

that should be optimized, an EC algorithm that implements concrete optimization
operations, a graphical user interface for IEC [108], and one or multiple fitness

function(s) (including a human user for IEC). If it is an EC optimization system,
there is no part 3 in the framework. These four parts encompass the corresponding

four study aspects of an EC/IEC based optimization system, i.e., EC application
study, EC algorithm study, IEC interface study and EC fitness function(s) or human

science studies by an IEC human user, which involves EC/IEC theoretical research
in knowledge discovery.

Although EC has shown powerful optimization capability for many complex and
real world problems to which conventional optimization methods are ineffective, EC

algorithm optimization capability still needs to be improved further to extend its
applicability. How to improve EC and IEC search capabilities and reduce the user

fatigue of an IEC application are primary focused contents and study subjects of
this dissertation.

1.2 Objectives and Approaches

We focus on improving performance of EC and IEC algorithms, and try to find out
efficient search methods and strategies for EC/IEC algorithms, which relate to the

subjects of part 2, part 3 and part 4 studies in Figure 1.1.
The objectives of this work are:

1. developing some efficient search approaches and strategies to enhance EC al-
gorithms,

2. designing well posed interfaces for better interaction and communication be-
tween IEC algorithms and a human user,
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3. constructing a novel EC algorithm framework and fusing multiple schemes
inspired by mathematical, physical or biological phenomena to implement a

new EC algorithm, and
4. better and deeper understanding EC algorithm search processes and principles

of EC algorithm through the study works of (1)-(3) mentioned above.

To achieve these research objectives from aspects of both theoretically under-
standing EC algorithm optimization principles and practically developing more ef-

fective EC algorithm search approaches and strategies, we propose to conduct three
primary aspect works of EC algorithm research.

1. approximation of fitness landscape (part 4 in Figure 1.1),
2. development of search strategies and work schemes (part 2 and part 3 in Figure

1.1),
3. development of new algorithms and their analysis (part 2 in Figure 1.1).

Fitness landscape is an important information to assist EC search for a global

optimum. Conventional methods are time consuming to approximate a fitness land-
scape in its original search space. To reduce computational complexity of approxima-

tion, a dimensionality reduction technique and a local search method are proposed
in approximation process. In a mathematical analysis viewpoint, there is frequency

information in any search spaces. If we can obtain the frequency information and use
it to implement fitness landscape approximation, it is a novel method to deeply un-

derstand search space and to develop an effective approximation method to express

fitness landscape. Fourier transform is applied to obtain the frequency informa-
tion of search space. Based on the obtained principal frequency component, a local

search method is applied to enhance EC search. Likewise a Fourier niche method is
developed to solve multimodal optimization problems using the same principle.

It is a forever subject in the EC research community to develop better search
methods and strategies for obtaining an enhanced EC algorithm. Triple and quadru-

ple based IDE and differential evolution (DE) is developed, which designs an effective
interface for interaction and communication between an IDE human user and IDE

algorithm. The triple and quadruple points come from opposite points of target
and trail vectors in DE based on opposition based learning theory. From theoretical

analysis, the proposed search schemes are effective in both IDE and DE. Other novel
methods are proposed based on transition from exploration to exploitation, which

shows potential enhanced performance of EC convergence.
EC algorithms are originally inspired by the natural phenomena, especially from

biological phenomena that genetic algorithm mimics. In recent decades, EC re-

searchers came to focus on optimization schemes from not only biological phenom-
ena, but also physical and mathematical ones. In chaos theory, chaotic ergodicity

and output distribution of a chaotic system are a well posed characteristic. If it is
fused with evolutionary iterative scheme, an efficient search framework is discovered

and further developed. We call this new EC algorithm as Chaotic Evolution that is
inspired by chaotic ergodicity and evolutionary iteration.

The final objective of these studies is to obtain an accelerated EC optimization
performance. The terms “accelerated”, “accelerating” and “acceleration” here refer
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to obtain the global optimum with less generations, less fitness evaluations, less
EC algorithms’ computational complexity or computational cost, and so on. If our

proposal can obtain a solution with less resources than other methods, or it obtains
a better solution than other methods even if it uses more resources, we may say

that the proposed method is an accelerated EC algorithm or can obtain a better
acceleration performance.

Figure 1.2: Dissertation’s chapter structure.

1.3 Chapter Structure

Following this introductory chapter, an overview of related techniques and ap-
proaches on fitness landscape approximation, Fourier analysis and Fourier transform,

opposition based learning and chaos theory is presented in chapter 2. Comprehensive
survey on conventional EC enhancement methods is reported, and future research

directions are discussed. In chapter 3, we introduce several techniques on fitness
landscape approximation by dimensionality reduction, theoretically and practically

discuss computational complexity of the proposal. The elite combination search
approach enabled by a technique for reducing dimensionality of search space is ex-

plained. In chapter 4 and chapter 5, a Fourier analysis method on fitness landscape
is designed to enhance EC and IEC search, and a Fourier niche method is proposed

to solve multimodal optimization problems. A triple and quadruple based IDE and
DE is presented and reported in chapter 6. We also discuss the related issues on

the human model and interface design. In chapter 7, a new mechanism of transi-
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tion from exploration to exploitation for accelerating EC is proposed. In chapter 8,
we report a chaotic ergodic property based EC algorithm, Chaotic Evolution. We

describe inspiration and development of the chaotic evolution in detail. Finally, we
conclude our primary contributions, limitations and future works in chapter 9.

From the structure viewpoint, chapters 3, 4 and 5 are the studies on fitness
landscape approximation and their applications in ordinary EC and IEC acceleration

and multimodal optimization. Chapters 6 and 7 are the study on effective search
scheme and mechanism in existent EC algorithms. Chapter 8 is a study on the new

EC algorithm development. The visual view of chapter structure of this dissertation
is shown in Figure 1.2.
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Chapter 2

Related Techniques and Works

2.1 Related Techniques

The relationship between related techniques and each chapter is explained as follows.
Differential evolution algorithm is described in section 2.1.1, it is a basic test algo-

rithm used in our evaluations of proposals. Approximation techniques are reported
in section 2.1.2, which is applied in chapter 3. Fourier analysis in section 2.1.3 is

used for obtaining frequency information in chapters 4 and 5. Opposition based
learning in section 2.1.4 is the primary tool to implement triple and quadruple com-

parison mechanisms in chapter 6. Chaos theory in section 2.1.5 is basic knowledge
to implement a new EC algorithm, chaotic evolution, in chapter 8.

2.1.1 Differential Evolution

EC comprises bionic optimization algorithms. EC simulates the production and evo-

lution process of all the lives and intelligence agents. It has been developed not only

on the basis of Darwin’s principles of natural selection and survival of the fittest, but
also have utilized the theory of genetic by Gregory Mendel to maintain an optimized

result, meanwhile attempting to find a better solution. EC is a probabilistic search
optimization technique, which uses computational models of evolutionary processes

as key elements in design and implementation of computer based problem solving
systems [22]. There have been several well defined EC algorithms, which have served

as the basis for most activities in the field of EC: genetic algorithms (GA) [32], evolu-
tion strategies [96, 97, 98], genetic programming [20, 45], evolutionary programming

[64] and differential evolutions (DE) [87, 103].
DE is one of population based EC algorithms. It searches for a global optimum

using a differential vector from two individuals which length is in proportion to
distribution size of individuals in general. Each parent individual generates its

offspring. As a parent’s individual is replaced with the generated one only when
the fitness of a generated one is better then that of the parent, we may say that

DE operations have a similarity to an elite strategy or hill climbing method. The

distinctive feature of DE is powerful search capability with quite simple algorithm.
Suppose that an array on the left side of Figure 2.1 means individuals, contour

lines at the right side is a fitness landscape, and circles on the landscape are individ-
uals. DE algorithm for one search generation is described in the below and repeats
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Figure 2.1: Differential evolution algorithm.

until a satisfied solution(s) is(are) found or the search reaches to the maximum
generations.

(1) Choose one individual to be the target vector (xi,G).
(2) Select two other individuals (xr2,G and xr3,G) as parameter vectors randomly

and derive a differential vector from them.

(3) Select the best individual from the rest of individuals or another individual
randomly as the base vector (xr1,G).

(4) Create a mutant vector (vi,G) by adding a weighted differential vector to the
base vector.

(5) Generate a trial vector by crossing the target vector and the mutant vector.
(6) Compare the fitness of the target vector and the trial vector, and select whichever

one is better as the offspring in the next generation.
(7) Go to the (1) and generate other offspring until all individuals are processed

using the same operations. Then proceed with the next generation.

vi,G = xr1,G + F ∗ (xr2,G − xr3,G) (2.1)

The terms of vector and individual mean the same searching points. The above

steps (1) – (4) are summarized as Eq. (2.1), which shows the DE algorithm is easily
implemented; where F is called a scale factor. There are several DE variations in

the number of differential vectors, selection methods of a base vector in the step (3),
crossover methods in the step (5), and others.

DE is an algorithm that can control balance of exploration and exploitation

automatically thanks to a differential vector which average length is in proportion
to the distribution size of individuals. We can say that DE searches around a

base vector by narrowing its search area gradually because differential vectors have
different lengths and different directions and are added to the base vector to find

search points (in the step (4)). Speaking in more detail, DE biases the search area
to each target vector side (in the steps (5) and(6)).

Several strategies for improving DE performance have been proposed, such as
SaDE [88], JADE [89], jDE [7] and JASaDE [25]. Their strategies include setting DE
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parameter randomly, choosing better strategies from search histories, creating new
mutation strategy, and fusing those strategies together. Approaches for improving

DE performance are roughly categorized into three: parameters tuning methods,
strategy setting methods, i.e. strategy pool architecture, and strategy selection

methods.

2.1.2 Interpolation and Approximation Approaches for Ap-
proximating Fitness Landscape

2.1.2.1 Regression Function Selection

The computation of each EC generation produces a set of discrete individuals and

their corresponding fitness (xi, yi), i = 0, 1, ..., m, but the analytical expression relat-
ing the two cannot be known. We make the data regression curve for the required

function from the given category Φ. Because there is error in the discrete data, we
do not require interpolated or approximated curves pass through all the discrete

points accurately, but rather that it approaches the original curve at its discrete
points, i.e. near xi, as much as possible.

We let the function ϕ(x) belong to Φ, and δi = ϕ(xi) - yi be the error at ϕ(xi),
such that the error vector is δ = (δ0, δ1, ..., δm)

T . In the regression calculation pro-

cess, we let the norm of the vector ||δ|| be minimized. For a different norm, we can
construct a different regression function. The function set is shown in Eq. (2.2).

Φ = Span{ϕ0(x), ϕ1(x), ..., ϕn(x)} (2.2)

The members in Eq. (2.2), i.e. ϕ0(x), ϕ1(x), ..., ϕn(x), are linearly independent
in the interval [a, b], where the nodes xi are contained. Any type of function ϕ(x)

can be used in Eq. (2.3).

ϕ(x) = a0ϕ0(x) + a1ϕ1(x) + ...+ anϕn(x) (2.3)

The regression process brings additional cost to EC, so a better solution is to
select a simple function as the regression function to reduce its additional computa-

tional cost. The power function is suitable for regression computing, we select it as
the regression function in our approximation and interpolation approaches.

2.1.2.2 Lagrange Interpolation Approach

The Lagrange interpolation polynomial has the characteristic of being linear and

unique. For one dimensional data from individuals x0, x1, . . . , xn, we can set up an
n degree polynomial l0(x), l1(x), . . . , ln(x). We set its type as li(xj) = δij , where

the form of δij is as shown in Eq. (2.4).

δij =

{

0 if i = j
1 if i 6= j

(2.4)

From this, we can obtain pn(x) =
∑n

k=0 lk(x)yk , the n degree interpolation poly-
nomial, where li(x) is an nth degree polynomial. We can obtain the relationship

shown in Eq.s (2.5), (2.6), (2.7) and (2.8).
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pn(x) =

n
∑

k=0

lk(x)yk (2.5)

lk(x) = a(x− x0)...(x− xk−1)(x− xk+1)...(x− xn) (2.6)

When lk(x) = 1,

a = [(xk − x0)...(xk − xk−1)(xk − xk+1)...(xk − xn)]
−1 (2.7)

i.e.,

l(x) =
n
∏

i=1,i 6=k

(x− xi)

(xk − xi)
(2.8)

Eq. (2.8) is the n degree Lagrange interpolation benchmark function, and the n
degree Lagrange interpolation polynomial is shown in Eq. (2.9).

Ln(x) =
n
∑

k=0

lk(x)yk, i = 0, 1, ..., n (2.9)

We use two degree Lagrange interpolation polynomial as the simplified regression

fitness landscape expression, and use the n individuals with relative better fitness as
the interpolation points to obtain a concrete regression function form. The concrete

interpolation polynomial is as the Eq. (2.10). The Lagrange interpolation approach
is used to find the parameters of Eq. (2.10).

L(x) =

n
∑

k=1

{

n
∏

i=1,i 6=k

(x− xi)

(xk − xi)

}

yk (2.10)

2.1.2.3 Least Squares Approximation Approach

As it was mentioned above in section “Regression Function Selection”, we want to
minimize the norm of the error vector δ = (δ0, δ,..., δm)

T . If we use the 2-norm form

vector as the error vector, the calculation process is simplified. When we use the
2-norm as the error vector norm, the approximation approach is called the least

squares approach. Given data in form of the function set, i.e., Eq. (2.2), we want
to find a function that lets the error 2-norm vector to be minimized, namely, Eq.

(2.11).

||δ∗||22 =
m
∑

i=0

δ∗2i =
m
∑

i=0

[ϕ∗(xi)− yi]
2 = min

ϕ(x)∈Φ
||δ∗||22 (2.11)

The approximation function is Eq. (2.12).

ϕ∗(x) = a∗0ϕ0(x) + a∗1ϕ1(x) + ... + a∗nϕn(x) (2.12)

If we can obtain ϕ0(x), ϕ1(x), . . . , ϕn(x) , the system will be orthogonal, i.e.

(ϕi, ϕj) = 0(i 6= j), and the coefficient matrix equations will form a diagonal matrix
(Eq. (2.13)).

a∗k =
(f, ϕk)

(ϕk, ϕk)
(2.13)
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So the approximation function is Eq. (2.14).

ϕ∗(x) =

n
∑

i=0

(f, ϕi)

(ϕi, ϕi)
ϕi(x) (2.14)

We use the two degree Lagrange interpolation polynomial to obtain the regression

fitness landscape by interpolation in the interpolation methods. For the approxi-
mation in our regression approach, we use the one degree power function as the

regression function to approximate the fitness landscape in linear space, with the
concrete expression as shown in Eq. (2.15). The approximation process is used to

obtain the parameters D and E in Eq. (2.15) such that regression fitness landscape
may be defined in a linear space.

(

(ϕ0ϕ0)(ϕ0ϕ1)
(ϕ1ϕ0)(ϕ1ϕ1)

)(

D
E

)

=

(

y0
y1

)

(2.15)

2.1.3 Fourier Analysis for Analyzing Fitness Landscape

2.1.3.1 Fourier Transform

Since Jean Baptiste Joseph Fourier issued his classical paper on the distribution of
temperature by the trigonometric function in 1807, he proposed that any continuous

periodical functions can be expressed by a set of combination of sinusoidal function.
Fourier transform have been used in many scientific and industrial societies as a

powerful mathematical analysis tool. There are four types of Fourier Transforms,
i.e. Fourier transform, Fourier series, discrete time Fourier transform and discrete

Fourier transform (DFT), which can process the signals that are continuous and
aperiodic, signals that are continuous and aperiodic, signals that are discrete and

aperiodic, and signals that are discrete and aperiodic, respectively. Because only

the infinite signals can be transferred in Fourier analysis, we have to make the
prolongation original signal, which copy its existent part or set zero value in the

undefined region, to cope with this restriction.
Due to the computer can only process the discrete signals, the discrete Fourier

transform is valuable to the application subject in many areas. Eq.s (2.16) and
(2.17) show the discrete Fourier transform and inverse discrete Fourier transform

(IDFT), which is the main tool that we use it to analyze the EC fitness landscape.

X(k) = DFT [x(n)] =
N−1
∑

n=0

x(n)W kn
N (2.16)

x(n) = IDFT [X(k)] =
1

N

N−1
∑

k=0

X(k)W−kn
N (2.17)

In Eq.s (2.16) and (2.17), W kn
N is W kn

N = e− 2kπ
N

, and 0 ≤ k ≤ N − 1 . The terms
x(n) , X(k) , n and N are the original signal series, frequency signals by DFT in

frequency space, number of original signal and number of transform base frequency,
respectively. For one time DFT, its computational complex is up to O(N2), so it is

costly for introducing DTF into EC to analyze fitness landscape complexity and to
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apply to practical application.

2.1.3.2 Fast Fourier Transform in One Dimension

For reducing the DFT computational cost, in 1965, Cooley and Tukey proposed a
fast discrete Fourier transform (FFT) [12]. The principal of FFT is to cut the long

series into the shorter ones and to use the periodic and symmetric characteristics
to reduce the calculation times. There are two kinds of FFT, one is decimation in

time algorithm (DIT) and the other is decimation in frequency algorithm (DIF).

X(k) = x(2r)W 2rk
N ±W k

Nx(2r + 1)W
(2r+1)k
N (2.18)

X(k) =

N
2
−1
∑

n=0

[x(n) + (−1)(k)x(n +
N

2
)]W n

Nk (2.19)

Eq.s (2.18) and (2.19) show the fundamental principle of the DIT and DIF,

respectively, in Eq. (2.18), mark + when k ∈ [0, N
2
− 1], mark - when k ∈ [N

2
, N − 1].

They can reduce the computational complex from O(N2) to O(N logN). We use

DIF as the main analysis tool to transfer original EC individual series into frequency
space for obtaining frequency information of original fitness landscape.

Sampling Point

Figure 2.2: 1-D and n-D dimension DFT.

2.1.3.3 Fast Fourier Transform in n Dimension

N dimension fast Fourier transform (n-D FFT) is considered as conducting one

time 1-D FFT with Mi points when the other dimensional value is fixed, and this
kind of 1-D FFT conducts Πn

k=1,k 6=iMk times. Mi is the sampling point in the i -th

dimension. For a brief explanation, the 2-D FFT and inverse 2-D FFT are Eq.s
(2.20) and (2.21) (see Figure 2.2).

X(k, l) = [
M−1
∑

m=0

N−1
∑

n=0

x(m,n)W km
M W ln

N ]RM,N (k, l) (2.20)

x(m,n) =
1

N
[

M−1
∑

k=0

N−1
∑

l=0

X(k, l)W−km
M W−ln

N ]RM,N (m,n) (2.21)
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RM,N (m,n) =
{

1 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1,
0 otherwise (2.22)

M and N are the ranges of original 2 dimensional range, m and n are the

respective sampling data in each dimension, l and k are the FFT base frequency
number in each 1 dimensional FFT, respectively. The computational complexity of

2 dimensional FFT is O((m+ n)N logN), i.e. (m+ n) times of 1 dimensional FFT.

2.1.4 Opposition Based Learning for IDE and DE Enhance-
ment

Opposition based learning (OBL) [114] is used in machine learning [115] and to
accelerate optimization searches. Suppose that x ∈ [a, b] is a real number, then the

opposition point of x is given by OP (x) = a + b − x. By extending this idea to a
multi-dimensional space, the opposition point, OP (X), of a point on a n-dimensional

real space, X =(x1, x2, ..., xn) (xi ∈ [ai, bi], i = 1, 2, ..., n; ai, bi ∈ R), is given by Eq.s
(2.23) and (2.24).

OP (X) = {OP (x1), OP (x2), ..., OP (xn)} (2.23)

OP (xi) = ai + bi − xi (2.24)

OBL optimization uses the opposite point to accelerate EC search, and two
acceleration approaches are widely used: OBL based initialization of individuals

and OBL based generation of offspring. The former generates opposite points for
randomly generated individuals, and chooses the better of the randomly generated

individuals and their oppositions as the initialized individuals for the first generation.

When a population size is small, the risk becomes higher that randomly initialized
individuals do not cover a search space evenly, and are biased to certain areas, and

are trapped in local minima. The OBL based initialization can reduce this risk and
help EC to start its search from better sub areas from the global viewpoint.

The latter switches between two strategies for generating offspring with a prob-
ability called the jumping rate. The one strategy is to generate offspring based on

ordinary EC operations and the other is to generate offspring by comparing pairs
of parent individuals and their opposite points. Acceleration approaches using op-

position points are based on two hypotheses. One is that most population based
optimization methods are of a stochastic nature and when the search point is located

far from the global optimum, the probability that the opposition point is better be-
comes high. Another is that the probability of the search point or its opposite being

better is usually equivalent.
OBL has been applied to several EC algorithms, and an opposite based differen-

tial evolution (OBDE) that embeds the two previously mentioned OBL techniques

into a conventional DE was been proposed [90]. Since then, several further varia-
tions have also been proposed: OBDE applied to shuffled DE [1], generalized OBDE

extended by introducing an opposite search space and four schemes for making the
opposition point [116], a new DE applying an opposition operator for a mutant

vector and leaving the winner to the next generation [35], and others.
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Figure 2.3: Logistic map when initial value is 0.7 and µ is set to 1, 2, 3, and 4; X-
and Y- axes are iterations and system outputs, respectively; when µ is 4, the system
shows the chaos.

2.1.5 Chaos Theory for New EC Inspiration

2.1.5.1 An Overview of Chaos Theory

The subject beginning of chaos theory can be traced back to the time when Jules
Henri Poincare studied on the famous Three-body problem. He found that there are

some orbits which are non periodic, and yet not forever increasing up nor approach-
ing to a fixed point [19]. His research results in the production of chaos theory and

its studies. The early research of chaos theory involved in the mathematical area
and many of them were all directly inspired by physical problems. The modern

study of chaos theory is formalized to explain the system behavior, and it is easy to
be simulated in computer visibly. The famous application of chaos is in weather pre-

diction by Edward Norton Lorenz [55]. In his research, he had discovered that small
changes in initial conditions produced large changes in the long term outcome [105].

This is a simplest explanation of chaos characteristic and phenomenon. Another
research topic, Fractal and fractal dimension, was studied by Benoit Mandelbrot

[58], which is a classic of chaos theory. It presents that the dimensional number not
only is a integrate number, but also can be a fractional number.

It is difficult to define a system as a chaotic system by using a strict language

of mathematics. However, there are some explicit properties and characteristics to
explain and judge chaotic system and phenomenon. First, the chaotic system is
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Figure 2.4: Bifurcation diagram of logistic map. X- and Y- axes are µ values and
system outputs, respectively.

sensitive to the initial condition. If the initial input value of a chaotic system is
changed with a small difference, the outcome of the system can obtain a big change.

Second, the chaotic system is topological mixing and its periodic orbits are dense.
Third, the chaotic system is a simple system that exhibits complex behavior, which

cannot be explained by using a conventional theory. However, it is as well as a
complex system that exhibits the behavior, which seems random and unstructured,

but it has an underlying order. In the mathematical version, the concept of chaos

is famous as sensitive dependence, determinacy and nonlinearity.

2.1.5.2 Logistic Map

Logistic map shows that simple nonlinear equation can result in the chaos, which
originally is designed to express the demographic model [60]. Eq. (2.25) shows the

mathematical form of the logistic map (x ∈ R), and when the parameter µ is set to
4, the system behaviour will result in the chaos, which exhibits a great sensitivity

to initial conditions.

xn = µxn−1(1− xn−1) (2.25)

Figure 2.3 sketches the logistic map system outputs when parameter µ is set to

1, 2, 3 and 4, and the initial value is set to 0.7. When µ is set to 1 and 2, the
system becomes stable. When µ is set to 3, on a small scale, the system shakes;

however, on a large scale, it becomes convergent and stable. When µ is set to 4, the

system results in the chaos. The entire system behavior of logistic map is shown in
its bifurcation diagram, which has an explanation of population biology when µ is

set to a different value (Figure 2.4).
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2.2 A Survey of EC Search Enhancement Approaches

2.2.1 Coding Methods

The coding technology is a basic issue for EC algorithm design, and different coding

methods influence the algorithm performance and concrete applications. For exam-
ple, many coding technologies have been proposed in GA. These include messy GA

[23], Delta coding GA [120], dynamic parameter encoding GA [95] and real coding
GA [17]. These coding techniques develop EC search space and make a basement

for a variety of search strategies in corresponding search space. Coding method

influences EC search performance.

2.2.2 Initialization and Selection for Reproduction

2.2.2.1 Orthogonal Experimental Design Based Population Initializa-
tion

Reference [51] used orthogonal experimental design method in the initialization to

generate the population. The problem of this method is selection of the orthogonal

experimental factor and level. Whether the pre designed orthogonal experimental
parameter is feasible to enhance EC or not, it should be investigated furthermore.

2.2.2.2 Hybrid Population Construction Methods

It is an important EC acceleration method to construct a new population from one

generation to the next. In this process, there are two key aspects to be considered.
One is to keep population diversity. The objective is to let generated individuals

distribute in the whole search space averagely. The other is to generate individuals
near the global optimum as much as possible for obtaining that easily.

Reference [122] proposed a virtual population method to reconstruct a new pop-
ulation to achieve these two objectives. A hybrid population construction method

using elitist selection and stochastic universal sampling approaches were proposed
[9]. A pipeline based hyper population construction was proposed as well [99].

2.2.2.3 Dynamic Fitness Threshold

Fitness threshold method gives higher priority to the fitter individual. It is initialized

by the user, and only if the new individual is greater than the fitness threshold one,
the new individual is put into the population, otherwise this randomly generated

individual is not considered. The fitness threshold value will be tuned by considering
the previous generation. The policy improves the fitness values, which will always

be increasing from one generation to the next. When the population has lack of
diversity, the EC algorithm may fail into the premature trap. Research on how

to use the dynamic fitness threshold method and avoid the local optimum could
therefore be promising.
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2.2.2.4 Fitness Scaling

Fitness scaling technology can be used to tune the individual fitness. It uses some

transformations to avoid premature convergence in the selection operation, but this

handling destroys the evaluation rule of a certain EC algorithm. For interactive
EC application, it may be a good approach to assist human’s evaluation, which is

sometimes inconsistent.
Fitness scaling technology assumes that best solution in current population is

closest to global optimum. If this assumption is true, then searching around the
best solution will generate solutions, which are close to the global optimum. Con-

versely, if the assumption is false, this approach will lead to a local optimum. We
will therefore search the opposite direction to avoid the problem (failing into local

optimum region), and search beyond the best solution in the current population to
find the global optimum and escape the local optimum. References [122] and [121]

use an method to generate a population that conducts a local search near the best
solution to find a global optimum and avoids the local optimum to solve load flow

problem in power system.

2.2.3 Alternative Operations

2.2.3.1 Estimation of Distribution Algorithm

Estimation of distribution algorithms (EDAs) were introduced in the field of EC [2],

which is a new area of EC. In EDAs there is neither crossover nor mutation oper-
ator. New population is generated by sampling the probability distribution, which

is estimated from a database containing selected individuals of previous generation.
Different methods have been proposed for the estimation of probability distribution.

EDAs learn the structure of the search space and use this knowledge to generate
the offspring so as to improve the performance of the algorithm. Accordance with

the relationship between the variable, there are three types EDAs, i.e. independent
variables [2, 30, 67, 68], bivariate dependencies [3, 15, 84] and multiple dependencies

[29, 47, 83].

2.2.3.2 Surrogate Model Based EC

There are two purposes to use surrogate model embedded into EC. Firstly, it is to

shorten the evaluation time for obtaining fitness from a surrogate model, because

some fitness function evaluations needs more time. Secondly, there are no explicit
fitness function for EC in some the real world applications, so a surrogate model

needs to be established for fitness evaluation. Several methods were proposed to
be used in surrogate model, such as ANN [34, 72], statistical model [40], regression

[126], radius based function [93] and Markov model [8].

2.2.3.3 Engineered Conditioning Operation Methods

Engineered conditioning operator [66, 86, 102] is the same conventional optimization

search strategy, i.e. moving to the best adjacent point in the search space. Engineered
conditioning uses the dominant individuals of the current population in a search
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space and compares their strength. Three local searches are performed, the superset
test, the substitute test, and the subset evaluation test. These tests search for better

individuals of greater cardinality, equal cardinality, and lesser cardinality.
Reference [86] proposed the engineered conditioning operator based GA to accel-

erate convergence on multiple fault diagnosis application. Reference [66] extended
the research work of [86], and considered engineered conditioning operator as local

improvement operators [24] that is specified by domain. A more substitute test was
implemented in the engineered conditioning operator (E2C based GA) to accelerate

GA convergence.

2.2.3.4 Age Conception Evolution Based Directed Search Method

Age conception evolution based directed search method is based on two conceptions

in evolution process. One is the age, the other is direction [42]. The age shows a
diversity feature of population, and the direction shows whether the next evolution

is forwarding to a global optimum region.
The advantage of this method accelerates EC convergence without decreasing

diversity of the individuals by two operations. One is a direction operation that
determines search direction according to the fitness. The other is a zero mean

Gaussian operation, which is used for a perturbation and is added to a parent to
generate an offspring. Reference [42] uses this approach to solve the seven parameters

friction model optimization problem in system cybernetics.

2.2.3.5 Elitist Model

Some EC algorithms use elitist model to preserve the best fitness individual obtained

so far [9]. Reference [6] proposed two methods to keep individual with the best

fitness. One makes two copies of the best fitness individual in the last population,

and places one of them in the new population. The other compares the child and
its parent, the better one survives.

In recent EC research, most of the EC algorithm use the elitist model strategy.
Some EC convergence theory is based on the elitist model. For EC application and

convergence theory without the elitist model, it may be a challenging topic in future
EC research

In single objective GA (SGA), elitism is an operation that ensures the best chro-
mosome found so far exists in the next generation. This can be realized by simply

copying the best individual to the next generation. For multi-objective optimiza-
tion, the elitism strategy no longer remains trivial, as there is no longer a single

best design to copy. Because of this, various elitist strategies have been proposed
[128]. A simple elitist method is that parents compete with offspring [13]. The off-

spring population is combined with their parent population, and entire individuals
are ranked. The best of these individuals are retained as the parents for the next

generation.
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2.2.4 Hybrid EC Search Methods

2.2.4.1 Local Search Algorithm

Local search algorithms move from one solution to another solution in a search space,
until a global optimum is found or a time bound is elapsed. Adding a randomization

step to a gradient search algorithm can improve local search performance. However,
for many large and complex search spaces, this method may not be efficient. Many

experiments have shown that such randomization has little effect. For hybrid EC
with a local search algorithm, different neighbour relation strategy constructs differ-

ent accelerated EC algorithm [11, 118]. Reference [127] proposed local search and
global search with a surrogate model to accelerate EC algorithm.

2.2.4.2 Constraint Satisfaction

Constraint satisfaction is a process of finding a solution to a set of constraints that

impose conditions that some variables must satisfy. A solution is therefore a vector of
variables that satisfies all constraints. The techniques used in constraint satisfaction

depend on the kind of constraints being considered. Most of constraint satisfaction

based EC are incomplete in general, because they may prove it unsatisfied, but not
always [121]. This method uses some constraint rule, which is based on specialty

domain knowledge to modify the unsatisfied individuals after crossover and mutation
operation, It conducts the local search near the unsatisfied individual space to check

whether the optimum exists.

2.2.4.3 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic meta heuristic method for the
global optimization problem, namely locating a good approximation to the global

optimum of a given function in a large search space. There is an ability to escape
the local optimum by incorporating a probability function in accepting or rejecting

a new solution. A cooling schedule has been used to accelerate convergence. It is
often used when the search space is discrete.

Reference [59] proposed a SA method, which is used to accelerate convergence

of GA by applying a SA test for all populations. The SA test allows the acceptance
of any individuals at the initial steps in search, but only the good individuals have

the priority to be accepted as the generation increases. The experimental evaluation
shows that the SA method is efficient in helping GA to escape from local optimum

to prevent the premature convergence.

2.2.4.4 Artificial Neuron Network

The artificial neuron network (ANN) is a mathematical model or computational
model that simulates the structure and/or functional aspects of biological neural

networks. It consists of an interconnected group of artificial neurons and processes
information using a connectionist methodology to compute. An ANN is an adaptive

system that changes its structure based on external or internal information that
flows through the network during the learning phase. Modern neural networks are
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nonlinear statistical data modelling tools. They are usually used to model complex
relationships between inputs and outputs or to find patterns in data [107].

There are two promising research topics in ANN based EC. Firstly, EC uses ANN
as a directional tool to find the best search direction. It uses landscape information

of an EC search space to train the ANN and with this information the search direc-
tion is decided [62]. Secondly, EC uses a trained ANN to confirm an input-output

relationship for special applications with domain knowledge. Normally, three layer
structure ANN, which has an input layer, a hidden layer and an output layer, is con-

sidered to be used in these applications. Multilayer feed forward ANN with error
back propagation algorithm has been applied to accelerate GA [46].

2.2.5 Stop Criteria and Performance Definitions

An important but always ignored problem that is to design proper stop criteria for
EC algorithm. EC convergence concept is a good tool for designing the stop criteria,

such as Markov chain, fixed point theory, etc. However, the convergence concept
is time unlimited in describing the system behavior. For some complex problem,

we cannot use it to design the stop criteria. There are several methods proposed

for designing the stop criteria [4, 27, 94]. They include fitness boundary value
method, time boundary value method, individual or generation number boundary

value method, individual or generation number boundary value method and fitness
number boundary value method, etc.

Algorithm performance is based on static relations applied during the execution
of an algorithm. There are two types of performance in EC [26]. On-line perfor-

mance is defined to reflect the character of average fitness of the individuals. During
execution of EC algorithm, on-line performance converges to a stable value, i.e. sta-

tionary state, and the solutions formed by the algorithm become stable. The off-line
performance is similar to the on-line performance, but it gives a lot of importance

to the best fitness value. Off-line performance converges to a stable value while the
number of evaluations is increasing, and the probability of finding a better solution

is decreasing quickly. Therefore, the optimization process can be stopped to avoid
any waste of time.

2.2.6 Parameter Setting

An important topic on EC operations is the parameter value setting problem. For

example, GA mutation operation adjusts diversity of a population and partially

decides GA convergence. If mutation rate is small, but the convergence speed is high,
the population has lack of diversity, and GA often converge to a local optimum and

lead to the premature convergence. However, mutation with a high rate may result
in the loss of the better individuals. Another primary genetic operation is crossover,

which is designed to generate offspring in the hope that better fitness is achieved
through exchanging partial genetic information of two parents. A valuable research

topic is how to balance EC convergence and performance by tuning EC parameter,
and design an adaptive EC operation rate or find more efficient operations [118].
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2.3 Discussions on Prospective Researches

We have given an overview of accelerating EC convergence methods in the last two
decades in section 2.2, and presented the related research works of EC acceleration

approaches applications. In this section, we will present some brief proposals for
further research on topics of EC acceleration.

EC operations do not directly use the landscape information of search space. If
we can use more landscape information directly, EC convergence may be accelerated.

For this idea, there are three concrete approaches. The first is the approximation of

landscape with a simpler shape to find new elite in the new search space. The second
is to project search space to other dimensional search space to obtain easy search

information to find the global optimum in the projected space. The third is that
we may conduct efficient search strategies in the original space and projected space,

it can help accelerating or observing the EC convergence, and adjusting different
search strategies adaptively. The three concrete approaches on accelerating EC

convergence are the primary works in our further research.

2.3.1 Fitness Landscape Approximation

If we can reduce the complexity of the search space, it can become easier to reach
to a global optimum in a approximation search space. It is not the real global

optimum but may be a neighbour around the global one. From this viewpoint,
we can use the gradient search, local search or some related search algorithms to

find the global optimum in the approximation search space. Therefore, it is easy
to reach to the real global optimum from the neighbour point. For the concrete

approximation landscape methods, there are so many mathematical approaches or
computation based that can be used, such as space frequency information, curves,

signal processing filtering, differential information, polygons, and clustering, etc.

2.3.2 Search Space Dimensionality Transformation

If we can use some projection algorithms to project EC individuals from its original
space to other higher or lower spaces, and conduct some search strategies to search,

it should be efficient and EC convergence may be accelerated.

Suppose that original search space is n-D space and projection space is k-D space
(k > n), support vector machine projects data onto a higher dimensional space and

finds linear separation in the k-D space for the nonlinear separation of classification
in the n-D space. If we can apply the same way of thinking to global optimization,

we can reach to the global optimum in the k-D space quickly, and then search the
global optimum in the n-D space from the neighbour point.

Suppose that we project search points, which are in a n-D, onto m-D space
(m < n), it reduces dimensional complexity though some pieces of information are

gone. In the lower dimensional search space, we search the global point in a simpler
space, and then search the real global optimum in its original search space. This is

the same approach mentioned above.
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2.3.3 Search Strategy

When we transfer a search space from A to B (SpaceA to SpaceB), there are several

search or observation strategies, which can provide the information for the algorithm

execution. Suppose that the original search space is SpaceA (the individuals are all
in SpaceA), and we use some projection methods to map the SpaceA’s individual

into another space, and we call it SpaceB. In SpaceB, we create the new individuals
(the neighbours of the old ones), and then three strategies are possible.

The first strategy is to map new neighbour individuals back to SpaceA as a new
generation, then to search in SpaceA, and then to map to SpaceB again to find

new individuals, looping this process until the global optimum is found. The second
strategy is to keep search in space B, and when the some fitness values meet a certain

condition, we map the individuals back to SpaceA again to judge how to deal with
them further, then stop or map to SpaceB to continue to search. The third strategy

is to search a global optimum in the SpaceA as the similar to conventional EC
search, but to monitor the search situation of the SpaceA in SpaceB and feedback

search control to the search in the SpaceA.
The main research point of the search strategy is to find or design the projection

that helps EC search. The choice for strategies mentioned above will be decided

after analyzing the characteristics of the projection.

2.3.4 Fusion with Other Soft Computing Methods

Conventional computational methods could model and precisely analyze only rela-
tively simple systems. More complex systems arising in biology, medicine, humani-

ties, management sciences, and similar fields often remained intractable to conven-
tional mathematical and analytical methods. So in the early 1990s, a so called soft

computing [125] technology was proposed, which includes EC, neural network (NN),
fuzzy system (FS) and other computation intelligence technologies. Ever since their

proposal, fusion of these technologies has been an active research direction [106, 107],
such as EC+NN, NN+FS, and so on.

Soft computing deals with imprecision, uncertainty, partial truth, and approx-
imation to achieve tractability, robustness and low solution cost. For a different

technique in soft computing that has its unique features. It is worth investigating
how to use one technique’s advantage to compensate the other technique’s deficiency.

For example, NN has the memorial function, and the GA is a search optimization
tool. It might be good to fuse both techniques in such a way that the memorial func-

tion of NN is used to direct the search direction of GA so that the GA convergence
can be accelerated [62]. Fusion of multiple soft computing techniques is a promising

research direction for obtaining an accelerated EC algorithm in EC community.
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Chapter 3

Accelerating IEC and EC Searches
with Elite Obtained in Projected
Lower-Dimensional Spaces

3.1 Introduction

The success of evolution in nature outstrips that of evolutionary computing even
though it is based on the same principles. This can be attributed primarily to the

abundance of resources in nature, such as time and memory, which are constrained in
a computer system. This is especially true in the case of systems that involve human

interactivity, such as Interactive Evolutionary Computation (IEC). Consequently,
accelerating EC is necessary for many EC applications to improve the performance

of their target systems. Consider the case of an IEC that optimizes a target system
based on the IEC user’s subjective evaluations. User fatigue is a serious problem

limiting such a system’s practical application. Multiple trials for accelerating EC
have therefore been proposed [108].

In this Chapter we introduce interpolation or approximation approaches to ob-
tain the fitness landscape in a dimensionally reduced search space. Reaching the

global optimum is easier in the regression space by finding the elite. Although it is

not an actual global optimum, it may be close to the global optimum in the original
search space [74, 75]. Finding the actual global optimum from the elite is therefore

an easier task.
Here, regression space refers to a lower dimensional space consisting of k dimen-

sional (k-D) axes of the original n-D axes, where we use k = 1 in this chapter. In
other words, individuals are projected onto the k-D space to simplify finding the

elite. This elitism does not destroy the original EC search space by approximation,
but can accelerate the EC convergence with less computational cost by conducting

the elite search in the n regression spaces of k-D (k = 1). This is the originality
contributed by this work.

Following this introduction, we explain in detail the elite collaborative search ap-
proach enabled by a technique for reducing the dimensionality of the search space,

and we show how the elite can be obtained from the regression search space in sec-
tion 3.2. In sections 3.3, experimental evaluations are performed using a Gaussian

mixture model with various differing dimensions and 34 benchmark functions, the

results are compared with the previous work of [111]. Finally, we discuss our pro-
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posed methods and obtained results in section 3.4. In section 3.5, we conclude on
the performance of our proposed approaches presented here and discuss some open

topics, further opportunities and future works.

3.2 Obtaining Elite From Regression Search Spaces

3.2.1 Dimensionality Reduction Method

It is not easy for conventional interpolation or approximation approaches to find
an accurate regression search space corresponding to the original multi-dimensional

space. An alternative approach is to reduce the dimensionality of the original search
space and find approximate curve expressions in the lower dimensional spaces.

However, if the parameter variables of the fitness function are dependent, when
they are separated into the lower dimensional space, the dimensionality reduction

approach will destroy the original search space information and the dependent pa-
rameter variables’ relationship. Although there is this risk that some information

will be lost when reducing the search space dimensionality, it is easy to interpolate or
approximate the search space to obtain landscape information in lower dimensional

search spaces with e.g. one or two dimensions of the original search space.

Our approach for reducing the dimensionality of the search space uses only one
of the n parameter axes at a time instead of all n parameter axes, and projects

individuals onto each 1-D regression space. The landscape of the n-D parameter
space is given by a fitness function, y = f(x1, x2, ..., xn), and the fitness value of the

m-th individual is given by Eq. (3.1).

ym = f(x1m, x2m, ..., xnm) (m = 1, 2, ...,M) (3.1)

There are M individuals with n-D parameter variables. We project the individ-

uals onto the n 1-D spaces in i-th dimension as follows.

(xi1, y1) (xi2, y2) ... (xim, ym)

Each of the n 1-D regression spaces has M projected individuals. The original

search space and dimensionally reduced search space are shown in Figure 3.2. The
dimensionality reduction approach simplifies the regression computations, and it is

easy to obtain a regression search space in lower dimension, which can be helpful in
situations which involve a higher dimensional nonlinear search space.

3.2.2 Method for Simplifying Fitness Landscape to Select
Elite

We interpolate or approximate the landscape of each 1-D regression space using
the projected M individuals and select elite from the n approximated 1-D land-

scape shapes. In this chapter, we test two approaches for approximating the 1-D
regression search spaces; in the first approach we use a Lagrange two-degree poly-

nomial interpolation and in the other linear least squares approximation. Elite are
generated from the resulting approximated shapes (see Figure 3.1).

Finding the elite corresponds to a kind of local search in the area where rela-
tively better individuals exist in the original search space. The global optimum is
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expected to be near this area and we may be able to find it with a probability higher
than chance [111]. So the elite selection approach is a critical step in the proposed

acceleration processes.
As the elite obtained by the two elite selection approaches is different, it is ex-

pected that the acceleration performance will also differ. Further, the regression EC
search space obtained by approximation or interpolation has its own characteristics

and particularities, and we must use an efficient approach to obtain an elite from
this simplified search space after analyzing its characteristics.

Lagrange two-degree polynomial interpolation simplifies a regression space with
a non-linear curve, and it is easy to obtain its inflection point from its gradient,

using the inflection point as the elite. The linear least squares approximation uses
a linear function to approximate the regression space. Its gradient is either descent

or ascent. Unlike an inflection point, a safer approach, taking into account both

descent and ascent, is to select the average point of the linear approximation line as
the elite (see Figure 3.1).

inflection point
average point

Figure 3.1: New elite selection approaches from a regression search space. Left: by
Lagrange interpolation approach; Right: by least squares approximation approach.

Our proposed approaches replace the worst individual in each generation with

an elite selected as above. Although we cannot deny the small possibility that the
global optimum is located near the worst individual, the possibility that the worst

individual will become a parent in the next generation is also low; removing the
worst individual therefore presents the least risk and is a reasonable choice.

3.2.3 Method for Synthesizing Elite

The methods in section 3.2.2 select n elite points in n 1-D regression spaces, re-

spectively: x1−elite, x2−elite, ..., and xn−elite. The n-D elite used for accelerating EC
convergence in the next generation is obtained as follows:

New Elite = (x1−elite, x2−elite, .., xn−elite).

It is easier to calculate elite in a lower dimensional space than a higher dimen-
sional space. Although we use 1-D as the lower dimensional space in this chapter,

in general the method need not be restricted to 1-D. After we obtain the elite, we
only use this one elite into the next generation, if its fitness is better than that of

worst individual.
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Figure 3.2: Method for synthesizing elite. This proposed method represents a novel
local search approach for accelerating EC convergence.

Once a new elite has been obtained, there are two approaches for how it can be

handled. In one cautious approach, the fitness value of this elite is calculated to
determine whether the new elite is really useful for acceleration, and in the other

straightforward approach, the new elite is inserted into the next EC iteration process
without any prior consideration or judgement. In our proposed approaches, we

choose the first method. If the fitness of elite is better than the worst one, we place
it into next generation.

Our proposed method is based on the hypothesis that elite calculated by in-
terpolation or approximation from relatively better individuals will also have good

fitness; synthesizing an n-D elite from n elite points in n 1-D regression spaces will
also produce a good elite; the probability of the global optimum being located near

to the synthesized elite is high. (see Figure 3.2)
In general, this proposed method represents a novel local search approach for

accelerating EC convergence, and it is this approach that represents this method’s

original contribution.

3.3 Experimental Evaluation

3.3.1 Methods for Comparison

Table 3.1 shows our proposed methods and conventional methods for comparison.
We use differential evolution (DE) [103] in our experiments, as mentioned above,

our proposed methods can be considered as a framework embedded in any IEC and
EC algorithms to accelerate their searches, not limited in DE.
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Table 3.1: Conventional and our proposed methods for experimental comparisons.
(I)DE-N Canonical DE. [103]
(I)DE-TB fitting a single peak function using n best

individuals.[111]
(I)DE-TN fitting a single peak function using n distance

nearest best individuals.[111]
(I)DE-TA fitting a single peak function using all

individuals.[111]
(I)DE-LS fitting a linear function using least square ap-

proximation.
(I)DE-LR fitting a binomial function using Lagrange in-

terpolations.

3.3.2 IEC Experimental Evaluation and Analysis

3.3.2.1 IEC User Model and Experimental Conditions

Experimental evaluations frequently request many repeated experiments under the

same conditions, and evaluations with an IEC user model is necessary for this case
rather than a real human IEC user. Our IEC user model [69] was designed based

on four specifications of (1) a relatively simple fitness landscape, (2) a multimodal
fitness landscape, (3) a big valley structure, and (4) parametrically controlled the

shape and complexity of a fitness landscape. The rationale of the (1) is that a
human IEC user cannot distinguish differences less than the differential threshold

of perceptions nevertheless he/she can obtain practical solutions. That of the (2)

is the fact that there are graphics, design, music, and others whose fitness values
are high but their expressions are quite different. That of the (3) is that an IEC

user can reach to the global optimum area easily in spite of the (2).The feature of
the (4) is essential to conduct experiments with gradually changed several fitness

landscapes.
A Gaussian mixture model (GMM) was established as pseudo-IEC user to sim-

ulate the user’s evaluation in Reference [69, 113]. The GMM consists of different
means, variances and peaks mixed together to express the characteristics of a human

user conducting an IEC evaluation experiment. We use GMM for evaluation in this
section. Concretely, we combine four Gaussian functions (k = 4) and realize the

characteristics expressed by F27 in the Appendix in 3 dimensions (3-D), 5-D, 7-D,
and 10-D. Its 3-D example of a Gaussian mixture mode is shown in the Appendix

as well.
The big difference between an IEC user model and ordinary fitness functions is

the implementation of (a) relative and (b) discrete fitness evaluations of a human

user. Human IEC user compares given individuals relatively and does not give
absolute fitness values unlike fitness functions. He or she also cannot give precise

fitness values but discrete ones, e.g. 1 to 5 points, every generation, while ordinary
fitness functions give continuous values. When the difference of individuals is less

than the minimum discrete fitness range, i.e. an evaluation threshold, a human IEC
user cannot distinguish the difference, and it becomes fitness noise that IEC user

models should realize.
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Table 3.2: IEC experiment parameters setting.
population size 20
search range of parameters [−5.12, 5.12]
scale factor F 0.9
crossover rate 0.8
IDE operation IDE/best/1/bin
max. search generation, MAXNFC 20
dimensions of Gaussian mixture model, D 3,5,7,10
# of trial runs 50

IDE user simulation in this section randomly chooses either a trial vector or a

target vector and leave it as offspring in the next generation when the difference

of their fitness values are less than a certain value to simulate an unavailability
of a human IDE user’s comparison; we set the difference threshold as 1/50 of the

difference between the maximum fitness value and the minimum fitness value in
population at each generation. IDE parameters are set as the Table 3.2. Population

size, 20, is decided to take account of IEC experiments with a real human user.

3.3.2.2 Evaluations of the Proposal

Figure 3.3 shows the average convergence curves of the best fitness values for 50
trial runs of IDE-LS and IDE-LR with their competitors using GMM with 3D, 5D,

7D and 10D. Table 3.3 shows the average fitness value at the 20th generation.
From these results, in general, our proposed methods are able to accelerate all

Gaussian mixture models, i.e., our proposed methods are significantly better than
normal IDE, except IDE-LR method applied to a 3-D model. It indicates that our

proposed acceleration methods can be effectively used in some IEC applications.

However, for some cases, our proposed method are not more effective than the
previously proposed acceleration method.

To obtain an estimation of the performance of our proposed acceleration methods
under real IEC application conditions, we conducted IEC evaluation experiments

with 20 individuals per generation. In Table 3.3, it can be seen that the acceleration
performance improves with higher dimensions, i.e. the 10D, 7D and 5D GMM

with 20 individuals is more efficient than in the 3D case. This indicates that our
proposed methods increase the diversity of the population in higher dimensions more

significantly than in lower dimensions. When the dimension of the GMM is higher,
our proposed methods seem to offer the same performance.

The proposed method IDE-LS and IDE-LR can significantly outperform IDE-TB
in lower dimensional problems (3-D and 5-D) and IDE-TN in higher dimensional

problems (7-D and 10-D), respectively. These observations indicate that our pro-
posed methods may work better than IDE-(TB, TN, TA) when the distribution

of individuals in a search space has less diversity, while IDE-(TB, TN, TA) have

better performance even in such cases. Compared with IDE-TA method, all of our
proposed methods outperform better than it, except IDE-LS applied in a 7-D modal.
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Figure 3.3: Average convergence curves of 50 trial runs for (a) 3D, (b) 5D, (c) 7D
and (d) 10D Gaussian mixture model with population size of 20. Average fitness
values at 20th generation are shown in Table 3.3.

Table 3.3: Average fitness values at 20th generation of 3-D, 5-D, 7-D and 10-d
Gaussian mixture models (pseudo-IDE user). Bold font, †, ‡, §marks values mean
IDE-LS or IDE-LR significantly better than IDE, IDE-TB, IDE-TN and IDE-TA,
respectively, by Wilcoxon sign-ranked tests (p < 0.05).

Method 3-D 5-D 7-D 10-D
IDE -5.59 -3.28 -2.77 -2.76
IDE-TB -5.59 -3.37 -3.25 -3.14
IDE-TN -5.76 -3.38 -3.22 -2.74
IDE-TA -5.58 -3.33 -2.83 -2.98
IDE-LS -5.75†§ -3.39†‡§ -2.78 -3.03§
IDE-LR -5.58§ -3.37§ -3.27‡§ -3.07‡§
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Table 3.4: Benchmark functions used in experimental evaluations, where Range
is the scale of the parameters, n is the dimension of the function, C is the
function’s characteristics, respectively. U=Unimodal, M=Multimodal,Sh=Shifted,
Rt=Rotated, GB=Global on Bounds, N=non-separable, and S=separable.
No. Name Test function Range n C
F1 Sphere f(x) =

∑n
i=1 x

2
i [-5.12,5.12] 3 U-S

F2 Rosenbrock f(x) = 100(x2
1 − x2)

2 + (1− x1)
2 [-2.048,2.048] 2 U-N

F3 DeJong-Step f(x) =
∑n

i=1⌊xi⌋ [-5.12,5.12] 5 U-S
F4 Quantic & Noise f(x) =

∑n
i=1 ix

4
i +Gauss(0, 1) [-1.28,1.28] 30 U-S

F5 Shekel’s Foxholes f(x) = [0.02 +
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)6

]−1 [-65.536,65.536] 2 M-S

F6 Rastrigin f(x) = (10n) +
∑n

i=1(x
2
i − 10 cos(2πxi)) [-5.12,5.12] 5 M-S

F7 Schwefel 2.26 f(x) =
∑n

i=1(−xi sin(
√

|xi|)) [-512,512] 5 M-S

F8 Griewank f(x) = 1 +
∑n

i=1
x2

i

4000
−∏n

i=1 cos(
xi√
i
) [-512,512] 5 M-N

F9 Schaffer 1 f(x) = 0.5 +
sin2(

√
(x2

1
+x2

2
))−0.5

[1.0+0.001(x2

1
+x2

2
)]2

[-100,100] 2 M-N

F10 Schaffer 2 f(x) = (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1.0] [-100,100] 2 M-S
F11 Schwefel 2.22 f(x) =

∑n
i=1 |xi|+

∏n
i=1 |xi| [-10,10] 30 U-N

F12 Schwefel 1.2 f(x) =
∑n

i=1(
∑i

j=1(xj))
2 [-10,10] 30 U-N

F13 Hartman-3 f(x) = −
∑4

i=1 ci exp[−
∑3

j=1 aij(xj − pij)
2] [0,1] 3 M-N

F14 Step f(x) =
∑n

i=1(⌊xi + 0.5⌋)2 [-10,10] 30 U-S
F15 Beale f(x) = (1.5− x1 + x1x2)

2

+(2.25− x1 + x1x
2
2)

2

+(2.625− x1 + x1x
3
2)

2 [-4.5,4.5] 2 U-N

F16 Kowalik f(x) =
∑11

i=1[ai −
x1(bi+bix2)

b2i+bix3+x4

]2 [-5,5] 4 M-N

F17 Carnel-Back f(x) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 − 4x4
2 [-5,5] 2 M-N

F18 Branin f(x) = (x2 − 5.1
4π2x

2
1 +

5
π
x1 − 6)2

+10(1− 1
8π
) cos(x2) + 10 [-5,10]*[0,15] 2 M-S

F19 Goldstein-Price f(x) = [1 + (x1 + x2 + 1)2∗
(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]∗

[30 + (2x1 − 3x2)
2∗

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)] [-2,2] 2 M-N

F20 Hartman-6 f(x) = −
∑4

i=1 ci exp[−
∑6

j=1 aij(xj − pij)
2] [0,1] 6 M-N

F21 Sh Sphere same as F1 [-100,100] 50 Sh-U-S
F22 Sh Schwefel 1.2 same as F12 [-100,100] 50 Sh-U-N

F23 Sh Rt Elliptic f(x) =
∑n

i=1(10
6)

i−1

n−1x2
i [-100,100] 50 Sh-Rt-U-N

F24 F21 with Noise same as F22 add noise [-100,100] 50 Sh-U-N
F25 Sh Schwefel 2.6 GB f(x) = Max|Aix− Bi| [-100,100] 50 Sh-U-N
F26 Sh Rosenbrock same as F2 [-100,100] 50 Sh-M-N
F27 Sh Rt Griewank same as F8 [0,600] 50 Sh-Rt-M-N

F28 Sh Rt Ackley GB f(x) = −20 exp(−0.2( 1
n

∑n

i=1 x
2)

1

2 ) [-32,32]
− exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e [-32,32] 50 Sh-Rt-M-N

F29 Sh Rastrigin same as F6 [-5,5] 50 Sh-M-S
F30 Sh Rt Rastrigin f(x) = (10n) +

∑n
i=1(x

2
i − 10 cos(2πxi)) [-5,5] 50 Sh-Rt-M-N

F31 Sh Rt Weierstrass f(x) =
∑n

i=1(
∑kmax

k=0 [ak cos(2πbk(xi + 0.5))]

−n
∑kmax

k=0 [ak cos(2πbk ∗ 0.5)]) [-0.5,0.5] 50 Sh-Rt-M-N
F32 Schwefel 2.13 f(x) =

∑n

i=1(
∑n

j=1(aij sin xi + bij cos xi))
2 [−100, 100] 50 Mul-N

F33 Sh Expanded F8F2 f(x) = F8F2(x1, x2, ..., xn) [-3,1] 50 Sh-M-N

F34 Sh Rt Scaffer F6 f(x) = 0.5 +
sin2(

√
(x2

1
+x2

2
))−0.5

[1.0+0.001(x2

1
+x2

2
)]2

[-100,100] 50 Sh-Rt-M-N
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Table 3.5: EC experiment parameters setting.
population size 100(D=50, D=30)/30(others)
scale factor F 0.9
crossover rate 0.8
DE operations DE/best/1/bin
max. search generation 50
# of trial runs 50

3.3.3 EC Experimental Evaluation and Analysis

3.3.3.1 Benchmark Functions and Experimental Conditions

We evaluate our proposed methods with 34 benchmark functions. Our proposed

methods aim to reduce IDE user fatigue by accelerating IDE search. However, they
are not limited to use only for IEC but applicable to any EC searches with fitness

functions. The information about some of these functions and their related param-
eters can be found in the Appendix. See definitions, search ranges of optimization

parameters, and characteristics of the benchmark functions in Table 3.4.
Evaluation indexes for comparing our proposed methods applied for EC are

average fitness value until convergence reaches to the maximum search generation,
Wilcoxon signed-rank test at the maximum search generation and total time cost

statistics and analysis, which can show how time-saving proposals are our proposed
methods.

EC experimental parameters are set as the Table 3.5. We use differential evo-
lution (DE/best/1/bin) as the optimization method to evaluate the methods. The

evaluation is conducted under a hard search condition; only 100 individuals search
50-D/30-D functions whose search parameter ranges are expanded, and other uses

30 individuals.

3.3.3.2 Evaluations of the Proposal

Convergence characteristic of 34 benchmark functions is shown in Tables 3.6 and

3.7. In the tables, Wilcoxon signed-rank tests were applied between our proposed
methods with canonical DE and previous acceleration methods [111], which con-

ducts approximation in original search space. It is mentioned that, for the higher
dimensional problems (F21-F34), previous acceleration methods require the # of

population size must be 2D + 1 = 2 ∗ 50 = 101, which exceeds the experimental
setting, so our proposed methods can be applied to such a higher dimensional prob-

lem rather than the previous methods. It shows the advantages of our proposed

methods.
Proposed methods converged faster than the conventional methods at the same

generation for both lower and higher dimensional problems except a few functions.
This effect cannot be observed for F3, F5, F7, F8, F23, F28, F31, F32 and F34 func-

tions because there were no significant difference between normal DE and DE with
either of our proposed methods. Our proposed method’s acceleration performance
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Table 3.6: Average fitness value of F1-F20 benchmark functions. Bold font, †, ‡,
§marks values mean IDE-LS or IDE-LR significantly better than canonical IDE,
IDE-TB, IDE-TN and IDE-TA, respectively, by Wilcoxon signed-rank tests (p <
0.05).

Fun. DE-N DE-TB DE-TN DE-TA DE-LS DE-LR
F1 2.02E-06 9.40E-10 1.65E-11 0.00E+00 2.97E-08 4.28E-03
F2 7.12E-07 5.64E-07 2.66E-07 5.99E-07 2.20E-07†‡§ 3.81E-07†§
F3 -3.00E+01 -3.00E+01 -2.99E+01 -3.00E+01 -2.99E+01 -3.00E+01‡
F4 1.33E+01 5.56E-01 1.38E+00 1.86E-01 9.22E-01‡ 1.67E+00
F5 1.10E+00 1.04E+00 1.61E+00 1.10E+00 1.18E+00 1.58E+00
F6 6.85E+00 3.78E+00 3.53E+00 3.79E+00 4.38E+00 4.92E+00
F7 -1.97E+03 -1.98E+03 -1.94E+03 -1.96E+03 -1.96E+03 -1.95E+03
F8 3.60E-01 3.60E-01 3.60E-01 3.60E-01 3.60E-01 3.60E-01
F9 1.01E-02 8.45E-03 1.13E-02 8.19E-03 9.10E-03 8.11E-03
F10 7.78E-02 3.59E-03 6.27E-03 1.10E-02 1.56E-02 9.25E-03§
F11 6.26E+02 2.32E+01 2.54E+01 5.46E+00 7.72E+00†‡ 4.60E+01
F12 3.25E+04 1.70E+03 5.20E+03 4.88E+02 3.58E+03‡ 8.51E+03
F13 6.38E+00 2.70E+00 4.05E+00 1.25E+00 3.85E+00 4.82E+00
F14 1.93E+02 2.64E+01 4.69E+01 9.86E+00 3.69E+01‡ 6.72E+01
F15 1.78E+01 8.57E+00 1.21E+01 5.46E+00 1.00E+01‡ 1.26E+01
F16 3.49E-03 1.77E-03 4.16E-03 9.54E-04 1.67E-03†‡ 2.58E-03
F17 2.82E-09 5.20E-13 2.00E-13 1.20E-11 2.65E-11 8.15E-06
F18 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01‡ 3.98E-01
F19 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00‡§ 3.00E+00
F20 -3.26E+00 -3.27E+00 -3.27E+00 -3.26E+00 -3.27E+00‡ -3.26E+00

looks similar, and if there is any difference, the superiority depends on the task being
performed. From the Wilcoxon signed-rank tests comparison of our proposed meth-

ods with previous acceleration methods, the performance of our proposed methods
is better than one of them in F2, F3, F4, F10, F11, F12, F14, F15, F16, F18, F19

and F20 in lower dimension problems. For higher dimensional benchmark functions
(F21-F34), our proposed methods also show the capability to accelerate EC search

except some cases, even to the problems with shifted and rotation characteristics.
The DE-LS method’s performance is better than that of DE-LR method in com-

parison with previous mentioned acceleration methods, i.e. DE-TB, DE-TN and
DE-TA.

3.4 Discussions

3.4.1 Discussion on Acceleration Performance

With the exception of F3, F5 F7 and F8, our proposed methods can accelerate all

lower dimensional benchmark functions. There were no cases where the proposed
methods were significantly poorer than canonical DE. Although our proposed ac-

celeration methods use a dimensionality reduction technique to obtain new elite in

a lower dimensional search space, which would seem to imply more efficiency in
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Table 3.7: Average fitness value of F21-F34 benchmark functions. Bold font values
mean DE-LS or DE-LR significantly better than canonical DE by Wilcoxon signed-
rank tests (p < 0.05).

Fun. DE-N DE-LS DE-LR
F21 1.58E+05 1.16E+05 1.39E+05
F22 4.04E+05 3.81E+05 3.98E+05
F23 5.07E+09 4.97E+09 5.07E+09
F24 4.95E+05 4.40E+05 4.51E+05
F25 4.97E+04 4.65E+04 4.91E+04
F26 1.28E+11 7.97E+10 1.07E+11
F27 6.01E+03 4.76E+03 5.84E+03
F28 -1.19E+02 -1.19E+02 -1.19E+02
F29 5.69E+02 4.78E+02 5.52E+02
F30 1.10E+03 9.07E+02 1.06E+03
F31 1.68E+02 1.68E+02 1.68E+02
F32 6.86E+06 6.86E+06 6.84E+06
F33 2.62E+03 1.28E+03 1.47E+03
F34 -2.76E+02 -2.76E+02 -2.76E+02

problems with the characteristic of variable separability (i.e. F1, F4, F6, F10, F14

and F18), the experimental results show that DE-LR and DE-LS also exhibit better
performance when the variables are non-separable (i.e. F2, F9, F11-F13, F15-F17,

F19 and F20). For uni-modal and multimodal problems, the experimental results

indicate that our proposed methods have the same capability to accelerate these two
kinds of problems.

As the global optimum of F3 is on the edge of a search space, the elite obtained
around the global optimum by function approximation may be located outside of

the search range. Our experiment did not use the elite in this case, and DE using
our proposed methods became identical to canonical DE. This would explain why

there was no significant difference between DE-N, DE-LR and DE-LS.
F4 is a quartic function with Gaussian noise and has its global optimum in the

center of the search space. Although it is a multimodal function due to the quartic
function and fluctuations due to noise, the influence of the noise is relatively small

and its whole shape is close to a quadratic function such as in F1. Elite from an
approximated function using individuals that fluctuate slightly should be located in

the center, and the performance of DE-LR and DE-LS should be better, as with F1,
while that of canonical DE is negatively influenced by the fluctuations. This may

explain the good performance of our proposed method with F4.

For higher dimensional problems (F21-F34), our proposed methods are also ef-
fective except F23, F28, F31, F32 and F34; most of them have complex fitness land-

scapes with a rotation characteristic. As rotated fitness landscape changes the real
location of global optimum dramatically, our projected one-dimensional landscape

can not use other dimensional search space information collaboratively. Obtained
elite are not correct in each lower dimension. Maybe this is the reason why our
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proposed methods are ineffective in those benchmark tasks.
Except in special cases, the performance of DE-LR and DE-LS are better than

that of DE-TN. This demonstrates that the original search space landscape fitted by
those individuals with the lowest distance from the best individual is not accurate

as a regression of the original search space; i.e. individuals near the best individual
are not necessarily in regions of better fit in the original search space.

3.4.2 Discussion on Computational Complexity

Reducing computational cost is the greatest feature offered by our methods. This

method of approximating landscapes and using the peak of an approximated function
belongs to the same category as [111], but we extended the work by introducing

projection onto a 1-D space, synthesizing an elite from the elites on multiple 1-D
functions, and thus further reducing computational cost. Let’s examine the efficiency

of the methods by calculating the time cost in [80].
We calculated the run times of 50 trials of DE-N, DE-LR, DE-LS, DE-TB, DE-

TN and DE-TA, and obtained the average running time cost of one computation.
The system used to run the experiment was powered by a Core2 Duo 2GHz CPU

with 1GB RAM running Windows XP (SP2).

The time cost table in [80] shows that the time cost of our proposed methods is
more than canonical DE and less than the previous acceleration methods. The time

cost of our proposed method is almost the same for a certain benchmark function.
The three previous acceleration methods are costly for a certain benchmark function.

It concludes that our proposed methods can save the time cost of optimization when
compared to previous acceleration methods.

To further evaluate the significance of our proposed methods as compared with
the previous methods, we conduct a time cost variance analysis with the time cost

data sampled from our tests. Before calculating the F distribution value of the
multiple groups’ sampled time cost data for significance evaluation, we should check

whether the sampled data fit a normal distribution in theory. For a large data
set (data > 30 samples), it must fit a normal distribution in accordance with the

Central Limit Theorem. We use the Jarque-Bera test to check each time cost data
set for goodness-of-fit to a normal distribution, and for abnormal data we smooth

it for fitting to a normal distribution. We calculate the F value for each of the

lower dimensional benchmark functions (F1-F20) in [80] with r = 5, n = 250.
F0.05(r − 1, n− r) = F0.05(4, 245), i.e, F0.05(4,∞) = 2.37. From confidence interval

table in [80], it shows that all the F values are greater than 2.37, indicating that our
proposed methods time cost means are not equal to those of the previous methods,

significantly.
From the above discussion, we can conclude that the proposed methods can

significantly save time over previous methods. A comparison of DE-(LR and LS)
with DE-(TB, TN and TA) shows that our proposed acceleration methods seem more

beneficial than previous ones. However, before the regression and fitting process,
it is necessary to select the sampled data. In the selection process, there are more

searches and sorting operations, and these take as much as or more time than the
regression and fitting processing. This shows how important an issue the sample
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data selection is when accelerating EC by obtaining the landscape of the search
space. Improving the performance of data selection will a subject of our future

research.

3.4.3 Regression Function Selection for Fitness Landscape
Approximation

Approximation function selection is a critical issue in the approximation of the

IEC/EC landscape. From a practical viewpoint, we should select an appropriate

approximation function after analyzing the characteristic of the IEC/EC landscape.
In this study, we select binomial Lagrange interpolation and linear function least

squares approximation as the regression methods for our study.
How to obtain the regression IEC/EC search space is a promising research di-

rection. In our study, we try to use the nonlinear and linear curve expressions to
approximate the IEC/EC search space, to obtain the approximation relationship

between the approximation and the original IEC/EC search space, and to find the
global optimum from the new elite by chance. However, the approximation process

influences the performance of the IEC/EC algorithms, so using efficient approxima-
tion method is another topic to be considered when designing accelerated IEC/EC

algorithms. We should use the lowest possible degree of interpolation and approxi-
mation functions in the lowest possible dimensional spaces to reduce the time cost

required for the entire IEC/EC algorithm.

3.4.4 Regression Model Establishment and Usage

The experimental results in this study show that both linear (DE-LS) models and

nonlinear (DE-LR) models can be used to efficiently accelerate IEC/EC convergence.
However, the methods are mostly effective in the initial generations in most of the

cases by sign tests, and an alternative solution is to use this kind of acceleration
method to speed IEC/EC convergence only in the early generations.

Constructing and selecting different models to better approximate the IEC/EC
search space is a worthwhile topic for further future research. To achieve optimal

performance, we should choose approximation methods that are suited to the char-
acteristics of the search space. For regression in the discrete domain, a more powerful

tool than continuous domain Lagrange interpolation and least squares approxima-
tion is required. It is a valuable research topic that to find how best to approximate

the search space in the discrete domain.
Another point deserving special attention is the method used for dimensionality

reduction. The objective of the dimensionality reduction is to simplify the compu-

tation of the search space regression by performing it in a lower dimension. The
dimensional reduction loses much search space information, however, such as the

relationship between the parameters in non-separable problems. How we can reduce
the search space dimension as much as possible while simultaneously preserving

the necessary search space information for the next generation of the search is a
challenging problem for further research into the dimensionality reduction method.

The new elite selection method is also a key step in the acceleration process.
The elite selection method is determined by the different search space regression
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methods. They can be categorized as linear and nonlinear models, corresponding to
the the classification method of the regression model. A new elite selection method

should be decided by analyzing the characteristics of the regression model.

3.4.5 Data Sampling Technique

It is necessary to sample the data to obtain the original search space information that
is used in the approximation processes. The data sampling technique determines

the quality of the approximation model, indirectly influencing the model usage and
obtained elite. Several data sampling methods have been proposed [82]. These

include best data strategy, distance nearest data strategy, whole data strategy and
random data strategy. For comparison in those sample studies, we discuss the

advantages and disadvantages of the methods as follows.
First, obtaining suitable data for the approximation of the IEC/EC landscape

requires time in searching and sorting operations. With a view to maximizing per-
formance and saving time, we need to select an easy way to obtain the sampled

data. Secondly, from the experimental results, distance nearest data strategy is
more costly than any of the other sampling data strategies. The acceleration per-

formance of the approximation model combined with distance nearest data is not

as good as the others. So with a view to practical application, the distance nearest
data strategy exhibits low performance. Third, our proposed acceleration methods

that use the best data strategy to approximate the model in the lower search space
perform better than the previous acceleration methods in some cases. However, if

we select a data sampling strategy that is even more time efficient and does not
require searching and sorting, such as the random data strategy, the performance

of our proposed methods may be further improved. This is a direction for further
research.

3.5 Chapter Summary

We proposed to approximate fitness landscape to accelerate IEC/EC convergence
by a dimensionality reduction technique. The novel feature in these acceleration

methods was to use elite synthesized from elite points found in lower dimensional
spaces. The main contribution of this study was utilizing the notion of dimension-

ality reduction to approximate fitness landscape for accelerating IEC/EC searches.
Our experimental evaluations with a Gaussian mixture model and 34 benchmark

functions showed that the proposed methods can accelerate IEC and EC searches
with lower computational cost. The acceleration performance can be obtained in

both lower and higher dimension problems, especially when the landscape of the
tasks takes on a roughly big valley structure. We also analyzed the relationship

between the performance of the proposed methods and the landscape shapes.
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Chapter 4

Fourier Analysis on Fitness
Landscape for Evolutionary Search
Acceleration

4.1 Introduction

The Fourier transform is a powerful mathematical tool for analyzing the frequency

information of signals using orthogonal trigonometric functions and has been used
in signal processing [92], bioinformatics [117], and many other areas. The Fourier

transform can also be used in EC as a mathematical tool for studying an EC model,

resolving the complexity of a fitness landscape and accelerating EC convergence. It
was used to obtain the model parameters of polynomial harmonic models and used

for genetic programming in [70]. Taylor series and Fourier series were respectively
used for local and global approaches to analyzing the fitness landscape in [119].

EC was also used as an optimization tool to research time-frequency analysis in
signal processing [18]. However, little research literature has reported on EC fitness

landscape analysis and EC algorithm design where convergence is accelerated using
the Fourier transform.

The objective of this work is to propose a method that analyzes a fitness land-
scape by considering points on it as signal samples, obtaining the frequency char-

acteristics of same, approximating the fitness landscape by filtering its primary
frequency component, and finally accelerating the EC search by obtaining elite from

the approximated landscape. Concretely speaking, the method re-samples a fitness
landscape at uniform intervals, calculates the corresponding fitness values, applies a

discrete Fourier transform (DFT) to them, filters only the primary frequency com-

ponent(s), applies the inverse DFT to the filtered frequency components to obtain
an approximate fitness landscape, obtains rough location information for the global

optimum from the approximated landscape, and subsequently uses it to accelerate
the EC search.

The key points of this proposed method are finding the primary frequency com-
ponent(s) and filtering it (them) to approximate the original fitness landscape with

one or more trigonometric function. We also propose an approach for global ap-
proximation, which approximates the whole landscape, and for local approximation,

which estimates the landscape around the best individual. Both sampling meth-
ods obtain the elite from the approximated surface and use it to accelerate the EC
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search.
We use a DFT to analyze a fitness landscape on which we can then define primary

frequency components. The primary frequency components are used to construct
an approximate model for the EC acceleration in section 4.2. We also propose two

resampling methods in section 4.2 to obtain corresponding frequency components;
one approximates the whole fitness landscape and the other a local area in the

landscape. We evaluate the proposed methods by applying differential evolution
(DE/best/1/bin) to eight benchmark functions in section 4.3 and section 4.4. We

analyze the proposed methods and discuss their future possibilities in section 4.5.
Finally, we conclude this research and describe our future research directions in

section 4.6.

4.2 Fourier Analysis of a Fitness Landscape

4.2.1 Concept of the Proposed Method

EC search is based on the fitness of the individuals. As we do not use information
about the EC search surface but rather the fitness of a limited numbers of individuals

distributed in the search space, less obtained search information is a restriction
on our ability to extending the EC search capability. In a complex search space,

the limited number of fitness values cannot adequately express the search space
characteristic and direct the EC interaction process.

If we can obtain EC fitness landscape information during EC search, EC search
performance and applicability can be improved and extended. Obtaining EC fit-

ness landscape information is a promising area for research [77]. Jin has investi-

gated fitness landscape approximation approaches and basis evolution management
strategies [38].

Fig. 4.1 shows the flow diagram of our proposed method. Frequency character-
istics of a fitness landscape are obtained by resampling a search space at regular

intervals and applying the DFT to a sequence of fitness values for the resampled
points. We can approximate the original fitness landscape with a trigonometric func-

tion by filtering a primary frequency component and applying inverse DFT to the
filtered frequency components. Our proposed method that aims to accelerate EC

search using information of an approximated function obtained by Fourier transform
can be considered as a regression model for the trigonometric functions Eq. (4.1).

EC(X) =
N
∑

i=0

ai sin(2πωiX +Bi) (4.1)

4.2.2 Fourier Transform of a Fitness Landscape and Ap-
proximation of the Landscape Using Trigonometric
Functions

Although individuals generated by EC operations are distributed at irregular inter-

vals within the search space, samples used for a DFT must be at uniformly sampled.
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Figure 4.1: Flow diagram of our proposed method. The search space is resampled at
uniform intervals. Fitness values are calculated and their frequency characteristics
are calculated by DFT. The primary frequency component is filtered, and an original
fitness landscape is approximated with a trigonometric function by applying the
inverse DFT to the filtered frequency components. The elite is obtained from the
approximated landscape and used to accelerate EC search by substituting it for the
worst individual.

The search space must therefore be resampled, and then their fitness values must

be recalculated.
In obtaining the frequency characteristics of a fitness landscape, there are two

issues we must first decide: (1) the number of resampling points, (2) the sampling
period and DFT base frequency points, i.e. the interval between sample points,

which decides frequency resolution.

First, we cannot perform a DFT without deciding on the number of sample
points (M). The more sample data we use, the higher the frequency resolution we

can obtain. However, in deciding upon the number of sample points, we must take
into account the balance between computational cost and convergence speed under

the conditions of the application task because fitness values must be recalculated
for the resampled data and the computational cost (M log 2M) of the Fast Fourier

Transform (FFT) depends on the number of sample points (M). In our experiment
in this chapter, we set M = 16 and applied the FFT to a sequence of these 16 fitness

values.
Regarding sampling dimension, there are two possible resampling methods we

can use. In one method we resample the search space separately for each dimension,
and in the other we resample the whole n-D search space (n-D sampling) at once.

Additionally, we have two choices regarding where we choose to resample; in one
method we resample the whole search space (global sampling) and in the other we
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only resample the area around the best individual (local sampling). As a preliminary
experiment, we evaluate how these resampling methods influence the approximation

of the fitness landscape in the next section.
The second issue, sampling period, depends on the # of sampling points and

the sampling area (area to be approximated) which is determined by the the first
issue above. Sampling over the entire search range is one approach, and sampling

over a range of distributed individuals and narrowing the range according to the
narrowing range of its distribution is another. A third technique would limit the

sampling area.
Because both global and local properties are valuable to the EC search, we design

two resampling methods. In the first method, the entire search space is uniformly
sampled in each dimension to obtain resampled data. We call this GLB. In the

second, the resample area is centered on the area around the best individual. We

call this LOC. These are respectively our global and local sampling approaches.
The third issue to resolve is in which dimension we should approximate the

fitness landscape. If each dimension is being resampled separately, there are an
additional two options that must be considered. If it is sufficient to resample in

just one dimension, we can resample the 1-D space with a uniform sampling interval
and then use parameter values for the best individuals in the other corresponding

dimensions.
If we are to obtain the full multi-dimensional landscape, we use GLB or LOC.

In this case there are a total of 4 ways the sampling methods can be combined
(4 = 2× 2). These combinations are also evaluated below.

4.2.3 Filtering in the Frequency Domain

The trigonometric functions that determine the main structure of a fitness landscape
are the most important in the regression model of Eq. (4.1), and they are determined

by the amplitude and phase information at the peaks in the power spectrum. Let us
define them as principal frequency components and call them the principal frequency

component, the second, and so on according to their maximum power ranking.
Although the original fitness landscape is not always periodical with 2π , we can

universally approximate the local landscape with arbitrary accuracy if we use an

arbitrary number of trigonometric functions. In practice, however, too many base
functions introduce too much computational complexity, so in this chapter we will

approximate the original fitness landscape with just use one trigonometric function,
i.e. we use only the first principal frequency component.

4.2.4 Approximation of a Fitness Landscape by Inverse DFT
and Acceleration of the EC Search

Once a concrete regression model of trigonometric functions is obtained by applying
the inverse DFT to the frequency characteristics containing only the filtered principal

frequency components, the regression model is used as an approximation of the
local or global EC fitness landscape in 1-D dimension or n-D dimensions. With this

approximated landscape characteristic, we can obtain more EC search information
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than that which is directly provided by the individuals who’s population size is
limited.

There are several approaches for using the obtained landscape approximation
information to accelerate EC search. For example, in one approach we can determine

the EC search direction by analyzing the approximated fitness landscape and in
another approach can obtain new elites from the approximated landscape and use

them for the EC search in the next generation [36]. For optimization problems
which involve finding the maximum point, we expect that the global point should

be around the points of k(1/4ω) + b (x > 0) and k(3/4ω) + b (x < 0); whereas for
optimization problems which involve finding the minimum point, we expect that the

global point should be around the points of k(3/4ω) + b (x > 0) and k(1/4ω) + b
(x < 0). We may be able to accelerate the EC search by using the global point

as the elite for the next generation. So if we can locate the individuals with this

characteristic in the corresponding original search space and put them into the next
generation, it should be possible to accelerate the EC. We use this acceleration

method using elites obtained from an approximated function in our experimental
evaluation in the next section.

4.3 EC Acceleration Experimental Evaluation

4.3.1 Experimental Conditions

We use the De Jong five standard functions (F1 - F5) , Rastrigin function (F6),
Schwefel function (F7) and Griewank function (F8) as benchmark functions to eval-

uate the proposed approaches. The dimensions and search ranges for all parameters

are listed in Table 4.1. All these function optimization tasks are posed as mini-
mization problems with the optimal solution being the point with the lowest value.

Their fitness landscapes have a variety of characteristics. They include both contin-
uous and discontinuous, convex and non-convex, unimodal and multimodal, and low

dimensional, variable separable and non-separable, and high dimensional shapes.

Table 4.1: Benchmark functions used in EC experimental evaluations, where Range,
n, and C refer respectively to the ranges of the parameter values, the dimension of
the function, and its characteristics. M, U, N, and S refer respectively to multimodal,
unimodal, non-separable (non additional) and separable (additional).
No. Name Test function Range n C
F1 Sphere f(x) =

∑n
i=1 x

2
i [-5.12,5.12] 3 US

F2 Rosenbrock f(x) = 100(x2
1 − x2)

2 + (1− x1)
2 [-2.048,2.048] 2 UN

F3 DeJong-Step f(x) =
∑n

i=1⌊xi⌋ [-5.12,5.12] 5 US
F4 Quantic & Noise f(x) =

∑n
i=1 ix

4
i +Gauss(0, 1) [-1.28,1.28] 30 US

F5 Shekel’s Foxholes f(x) = [0.02 +
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)6

]−1 [-65.536,65.536] 2 MS

F6 Rastrigin f(x) = (10n) +
∑n

i=1(x
2
i − 10 cos(2πxi)) [-5.12,5.12] 5 MS

F7 Schwefel 2.26 f(x) =
∑n

i=1(−xi sin(
√

|xi|)) [-512,512] 5 MS

F8 Griewank f(x) = 1 +
∑n

i=1
x2

i

4000
−∏n

i=1 cos(
xi√
i
) [-512,512] 5 MN

We compare the EC acceleration method proposed in this chapter with our
previously proposed acceleration method [74] and normal non-accelerated EC as
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Figure 4.2: Average convergence curves of 50 trial runs. See F1 - F8 in Table 4.1.
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references, using the same benchmark functions.
We use differential evolution (DE/best/1/bin) as our optimization method to

compare the proposed approach with the reference conventional ones. The ap-
proaches are applied to 8 benchmark functions for up to 50 generations with 50

trial runs, and a sign test is used to determine if there a significant difference.
Here, we abbreviate the four variations of our DFT-based methods proposed in

this chapter as DE-FR-GLB-1D, DE-FR-GLB-nD, DE-FR-LOC-1D, and DE-FR-
LOC-nD. These refer, respectively, to DE with elite obtained by global sampling in

1-D, global sampling in n-D, local sampling in 1-D, and local sampling in n-D. We
use the same abbreviations in the other EC acceleration approaches, i.e. DE-LR and

DE-LS mean DE with elite obtained by a two-degree Lagrange interpolation and
a line power function least squares approximation. Finally, canonical DE without

any acceleration method is referred to as DE-N. These abbreviations are also used

in Figures 4.2 and 4.3.
Figure 4.2 shows the average convergence curves for the best fitness values over

50 trial runs of these methods, and Figure 4.3 shows the sign test results between
DE-N and DE with each acceleration method at each generation.

4.3.2 Experimental Results

The following observations can be made from these experimental results.

1. Our proposed methods were able to accelerate the EC well for all benchmark
functions except F2.

2. The proposed methods did not accelerate DE convergence well for F2.
3. The performances of the four proposed methods look similar and their relative

superiority depends on the task if there even is a difference between their
performances.

4. The proposed method, DE-FR-GLB-nD, demonstrated better performance
than all the other proposed methods, i.e. global sampling is the best method

for obtaining the whole fitness landscape characteristic and efficiently finding
the global optimum.

5. Our proposals in this chapter have shown better performance for F3, F5, F6,

F7, F8 than the acceleration approaches which we previously outlined in [74].

4.4 Comparative Evaluation of EC Acceleration
by 1-D FFT and n-D FFT

4.4.1 Experimental Conditions

We use the same benchmark function described in Table 4.1. All these function

optimization tasks are posed as minimization problems with the optimal solution
being the point with the lowest value. For comparing the performance with the

previous acceleration methods, we use the EC acceleration approaches of works
[74, 79, 111] to test those benchmark functions and make a comparative evaluation.

Differential evolutionary (DE/best/1/bin) is as well as used as an optimization
method to evaluate the proposed approaches. We test each benchmark function
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                                                                                        Generations

                                                     0                  10                 20                 30                 40                 50

                                                     |__________|__________|__________|__________|__________|

F1: DE_N vs. DE_LR                    +++++++++++++++++++++++++++++++++++++++++++++++++

F1: DE_N vs. DE_LS                    +++++++++++++++++++++++++++++++++++++++++++++++++

F1: DE_N vs. DE_FR_GLB_nD    +    +++++++++++++++++++++++++++++++++++++

F1: DE_N vs. DE_FR_LOC_nD       ++ ++++++++++++++++++++++++++++++++++++

F1: DE_N vs. DE_FR_GLB_1D    +    +++++++++++++++++++++++++++++++++++++

F1: DE_N vs. DE_FR_LOC_1D      +++ ++++++++++++++++++++++++++++++++++++

F2: DE_N vs. DE_LR                          + ++++++++++++++++++++++++++++++++++++++++++

F2: DE_N vs. DE_LS                           ++++++++++++++++++++++++++++++++++++++++++++

F2: DE_N vs. DE_FR_GLB_nD

F2: DE_N vs. DE_FR_LOC_nD

F2: DE_N vs. DE_FR_GLB_1D

F2: DE_N vs. DE_FR_LOC_1D

F3: DE_N vs. DE_LR

F3: DE_N vs. DE_LS

F3: DE_N vs. DE_FR_GLB_nD    ++++++++++++++++++++++++

F3: DE_N vs. DE_FR_LOC_nD

F3: DE_N vs. DE_FR_GLB_1D 

F3: DE_N vs. DE_FR_LOC_1D    + +

F4: DE_N vs. DE_LR                     +++++++++++++++++++++++++++++++++++++++++++++++++

F4: DE_N vs. DE_LS                     ++++++++++++++++++++++++++++++++++++++++++++++++++

F4: DE_N vs. DE_FR_GLB_nD     ++++++++++++++++++++++++++++++++++++++++++++++

F4: DE_N vs. DE_FR_LOC_nD

F4: DE_N vs. DE_FR_GLB_1D  + ++++++++++++++++++++++++++++++++++++++++++++++

F4: DE_N vs. DE_FR_LOC_1D     ++++++++++++++++++++++++++++++++++++++++++++++

F5: DE_N vs. DE_LR                           + ++     +

F5: DE_N vs. DE_LS

F5: DE_N vs. DE_FR_GLB_nD  +++++++++++++++++++                                                      

F5: DE_N vs. DE_FR_LOC_nD          ++

F5: DE_N vs. DE_FR_GLB_1D  +++                                                                                      

F5: DE_N vs. DE_FR_LOC_1D    +

F6: DE_N vs. DE_LR                          ++++++++++++  +        +++++++

F6: DE_N vs. DE_LS                           +++++++++++++++++++++++++++++++++++ +++++

F6: DE_N vs. DE_FR_GLB_nD  + + +++++++++++++++++++++++++++++++++++

F6: DE_N vs. DE_FR_LOC_nD        +++++++++++++++++++++++++++++++++

F6: DE_N vs. DE_FR_GLB_1D  + + +++++++++++++++++++++++++++++++++++

F6: DE_N vs. DE_FR_LOC_1D         +++++++++ ++++++++++++++++++++++   +++

F7: DE_N vs. DE_LR                          +

F7: DE_N vs. DE_LS

F7: DE_N vs. DE_FR_GLB_nD                      ++++++ + ++

F7: DE_N vs. DE_FR_LOC_nD            +

F7: DE_N vs. DE_FR_GLB_1D              +

F7: DE_N vs. DE_FR_LOC_1D

F8: DE_N vs. DE_LR                           +++++++++++++++++++++++++++++++++++

F8: DE_N vs. DE_LS                       ++++++++++++++++++++++++++++++++++++++++++++++++

F8: DE_N vs. DE_FR_GLB_nD    +++++++++++++++++++++++++++++++++++++++++++++++

F8: DE_N vs. DE_FR_LOC_nD   +

F8: DE_N vs. DE_FR_GLB_1D                +++++++++++++++++++++++++++++++++++

F8: DE_N vs. DE_FR_LOC_1D  +++ +++++++++++++++++++++++++++++++++++++++++++++

Figure 4.3: Sign test results for 50 trial runs of (DE-N vs. DE-LR), (DE-N vs.
DE-LS), (DE-N vs. DE-FR-GLB-1D), (DE-N vs. DE-FR-GLB-nD), (DE-N vs.
DE-FR-LOC-1D), and (DE-N vs. DE-FR-LOC-nD) per generation. See F1 - F8
in Figure 4.2. The (+,−) marks show whether our proposed methods converge
significantly better or poorer than canonical DE, respectively, (p≤0.05).

up to 100 generations with 50 trial runs. Figure 4.4 shows the average convergence
curves of the best fitness values of 50 trial runs for all eight benchmark functions, and

Figures 4.5 and 4.6 show their sign test results at each generation. Abbreviations
used in Figures 4.4, 4.5 and 4.6 are given in Table 4.2.

4.4.2 Experimental Results

Accordance with those test results, we can conclude that:

1. Our proposed n-D DFT approximation approach can accelerate all eight bench-
mark functions, except F3, F4, and F5.

2. Our proposed n-D DFT approximation approach has the better acceleration

performance than that of 1-D DFT approximation approach, except F3, F4,
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Table 4.2: Abbreviations used in Figures 4.4, 4.5 and 4.6.
abbreviations DE whose fitness landscape is regressed by
DE-N no any method (canonical DE)
DE-F1D, DE-F2D 1-D or 2-D FFT approach
DE-LR a two-degree Lagrange interpolation
DE-LS a line power function least squares approx-

imation
DE-TB a two-degree power function least squares

approximation in original search space
with the best sampling [74, 75]

and F5.

3. N -D DFT approximation approach can accelerate F7’s search, but 1-D DFT

approximation approach cannot.

4.5 Discussions

4.5.1 EC Acceleration Performance

We obtained information about a fitness landscape using four proposed methods
(DE-FR-GLB-nD, DE-FR-GLB-1D, DE-FR-LOC-nD or DE-FR-LOC-1D) and ap-

proximated the landscape by filtering its principal frequency component. From the
comparison between global and local sampling methods, we can say that DE-FR-

GLB-nD and DE-FR-GLB-1D are suitable for global exploration over a whole search

space and DE-FR-LOC-nD and DE-FR-LOC-1D are suitable for local exploration
in the local search space near the best individual, because different sampling meth-

ods obtain different frequency and phase information from the global/local and 1
dimension/ n dimensions.

From the experimental results, the global sampling methods, DE-FR-GLB-nD
and DE-FR-GLB-1D, demonstrated better acceleration performance, i.e obtained

a better final solution. This is because they can obtain more accurate frequency
information about a given fitness landscape than the other methods. Even though

the current best individuals are in local optimum areas, we can acquire information
about the global optimum from DE-FR-GLB-nD and DE-FR-GLB-1D.

From average convergence curves and sign test results of F1, F4, F6, F7, and
F8, the local sampling methods, DE-FR-LOC-nD and DE-FR-LOC-1D, are useful

for problems in which the fitness landscape has local valleys.
The shape of the global optimum area of F2 is a long, narrow, parabolic, and flat

valley. As each of its dimensions has this similar shape, our proposed methods are

unavailable for problems with this kind of shape. Although this valley shape looks
trivial, convergence to the global optimum is difficult; our proposed methods seem

inefficient and leave room to be improved.
F4 is a function with Gaussian noise. As noise made by a Gaussian random

number is white Gaussian noise, its spectrum is flat and therefore does not influence
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Figure 4.4: Average convergence curves of 50 trial runs for F1-F8.
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                                        Generations

                0                  10                   20                   30                   40                   50

                |___________|___________|___________|___________|___________|

F1: DE_F1D vs. DE_F2D  --    +++++++++++++ 

F2: DE_F1D vs. DE_F2D  ++++++++++++++++++++++++++++++ 

F3: DE_F1D vs. DE_F2D  +  

F4: DE_F1D vs. DE_F2D    +                    +           +                 + 

F5: DE_F1D vs. DE_F2D  

F6: DE_F1D vs. DE_F2D  ++++++++++++++++++++++++++++++++++++++                    

F7: DE_F1D vs. DE_F2D  +++++++++++++++++++++++++++++++++++++++++ 

F8: DE_F1D vs. DE_F2D -++++++++++++++++ 

Figure 4.5: Sign test results for 50 trial runs of (DE-F1D vs. DE-F2D) per gener-
ation. The + and − marks mean that A is significantly better and poorer than B,
respectively, for “A vs. B” (p < 0.05).

                                        Generations

                0                  10                   20                   30                   40                   50

                |___________|___________|___________|___________|___________|

F1: DE_N vs. DE_F1D      +++++++++++++++++++++++++ 

F1: DE_N vs. DE_F2D      +++++++++++++++++++++++++ 

F2: DE_N vs. DE_F1D      +++++++++++++++++++++++++++++++++++++

F2: DE_N vs. DE_F2D      +++++++++++++++++++++++++++++++++++++

F3: DE_N vs. DE_F1D 

F3: DE_N vs. DE_F2D      ++ 

F4: DE_N vs. DE_F1D             -  

F4: DE_N vs. DE_F2D      +   +       + 

F5: DE_N vs. DE_F1D      +++++++++++++++++++++++++ 

F5: DE_N vs. DE_F2D      +++++++++++++++++++++++++ 

F6: DE_N vs. DE_F1D      +++++++ ++++++ +  +++++++     ++++++++      

F6: DE_N vs. DE_F2D      ++++++++++++++++++++++++++++++++++++++++                  

F7: DE_N vs. DE_F1D 

F7: DE_N vs. DE_F2D      +++++++++++++++++++++++++++++++++++++++++ 

F8: DE_N vs. DE_F1D      +++++++++++++++++++ 

F8: DE_N vs. DE_F2D      -+++++++++++++++++++

Figure 4.6: Sign test results for 50 trial runs of (DE-N vs. DE-F1D), (DE-N vs.
DE-F2D) per generation. The + and − marks’ meaning as in Figure 4.5.

the principal frequency components. Consequently, our proposed method can reduce
the effect of the noise significantly. Our experimental results indicate that our

proposed methods can significantly accelerate F4 in most generations. Local areas
of F4 are not approximated well by a cosine curve and significant performance

improvement was not obtained for F4 when DE-FR-LOC-nD was used.
For multimodal problems, such as F5, our methods can accelerate the conver-

gence in the initial generations. However, when individuals migrate towards a single
local optimum and their diversity is decreased, the performance of the elite accelera-

tion drops. When individuals gather at one point over the generations, the frequency

spectrum obtained from the area covered by the individuals no longer has enough
information to approximate the fitness landscape.

The objective of this work is to reduce the complexity of a fitness landscape
by obtaining an approximation of it from the frequency characteristics of the fit-

ness landscape. Simplifying a fitness landscape by reducing the noise that makes
a fitness landscape complex realizes this objective, and the subsequent global and

local exploration is the biggest contribution of our proposed method for accelerating
EC convergence. Experimental results have shown that our proposed methods can

accelerate EC.
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4.5.2 Acceleration Performance by 1-D and n-D FFT

Our proposed n-D DFT approach can obtain the better acceleration performance

than 1-D DFT approach from the evaluation results, except F3, F4, and F5, which

the global optima locates in bound. N -D DFT approach can obtain more frequency
information and transfer to relative full-scale fitness landscape thanks to conducting

1-n DFT in each dimensional several time. However, the 1-D DFT approach just
conduct 1-D DFT with certain point one time in each dimension. This is the reason

why the acceleration performance by n-D DFT approach better than 1-D DFT
approach.

Although n-D DFT approximation approach can obtain relatively enough fre-
quency information than that obtained by 1-D DFT approximation approach, its

performance depends on the location of sampling points for n-D DFT conducts. If
each location is around the global optimum, n-D DFT approximation approach can

obtain the better acceleration performance, but when they are far from the global
optima, its performance may not be great. The acceleration performance obtained

by n-D DFT approximation approach also depends on base frequency setting and
sampling data number.

Theoretically, the computational complexities of n-D FFT and 1-D FFT are

(Πmi)N logN and nN logN , respectively. It means that n-D FFT computational
complexity is (Πmi)/n times of that of 1-D FFT; n-D FFT approximation approach

is costly approach. For practical applications, if the 1-D FFT approximation ap-
proach has the relatively acceptable acceleration performance, which is similar to

that of n-D FFT approximation approach, we should consider to use 1-D FFT ap-
proximation approach, of course, it depends on benchmark tasks and real world

applications.

4.6 Chapter Summary

We proposed a family of landscape approximation methods that analyze the fre-

quency characteristics of a fitness landscape using a DFT, obtain principal frequency
components, filter the components, and apply the inverse DFT to the filtered fre-

quency characteristics. Our methods accelerate EC by substituting an elite obtained
from the approximated landscape for the worst EC individual. We evaluated the

methods with eight benchmark functions and demonstrated that this strategy of

approximating fitness landscapes is effective for accelerating EC search. We also
analyzed the performance of our proposed methods and discussed them in detail.

It is difficult to applied this acceleration method in a real IEC application, be-
cause the real human user would give fitness when the re-sampling the data in a

search space. This process increases the human fatigue even though it can obtain
a better final result. So using an established human model or other method should

be investigated for this method in a real IEC application. We will study this topic
in the future.

The original contribution of this work is to direct our attention to the frequency
characteristics of fitness landscapes, to use this observation to simplify the land-

scapes, and to apply our simplification so that we can accelerate EC search.
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Chapter 5

Fourier Niche Method for
Multimodal Optimization

5.1 Introduction

There are several reasons that we need to obtain not only a global optimum but
also some local ones in real world EC applications. On the one hand, the global

optimum solution may be difficult to be implemented in the actual system for some
EC applications. On the other hand, we need to obtain a variety of optimal solutions,

so the alternative solutions should be found in the EC results. This is the original
motivation of solving multimodal optimization problems, which have multiple modal

in their search space including global and local optima.
The conventional methods for solving multimodal optimization problems are

point-to-point methods. They find one optimum in one time and conduct the same
operation several times to obtain all the solutions. EC has a niche in its population

to solve multimodal optimization problems. Niche methods conduct an optimization
once to find all the solutions rather than applying the conventional methods with

multiple times.
All the existing niche methods focus on either fitness tuning or restricted opera-

tions. Most of them ignore to consider a fitness landscape in their search algorithms.

If the number of multimodal peaks or local region information can be obtained, op-
timization performance of niche methods can be enhanced using these information.

In this chapter, we propose a Fourier niche method that uses frequency informa-
tion of a fitness landscape. It can support information about potential multimodal

regions and their number. After we obtain the frequency, phase and amplitude in-
formation of a fitness landscape using fast Fourier transform (FFT), approximate

multimodal regions and the number of the local peaks are calculated. We can use
this information to implement a novel niche method - Fourier niche method.

This chapter is structured as follows. An overview of niche method is given in sec-
tion 5.2. The fundamental of the Fourier niche method is introduced in section 5.3.

In section 5.4, we use differential evolution (DE/best/1/bin) as an evaluation tool
to analyze the proposed algorithms’ performance with six multimodal benchmark

functions. In section 5.5, we discuss the proposed algorithm in detail. An outlook
on open topics and potential opportunities are presented. Finally, we present the

further research direction and conclusion (section 5.6).
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5.2 State-of-the-Art on Niche Method

EC has capability to find a global optimum quickly and easily, but lacks the capa-
bility to find all peaks of multimodal optimization problems, i.e., global and local

optima. Several so-called niche preserving techniques therefore were proposed.
The breaking work of the multimodal optimization problems was fitness sharing

method [21]. Its mechanism is shown in Eq. (5.1), where Fshared(i) is a shared
fitness and Foriginal(i) is a original fitness. Sh(dij) presents a sharing function,

which is defined in Eq. (5.2), where dij is a distance between two individuals, σshare

is a constant parameter which regulates the shape of the sharing function.

Fshared(i) =
Foriginal(i)
∑N

j=i SH(dij)
(5.1)

SH(dij) =

{

1− (
dij

σshare
)α if dij > σshare

0 otherwise
(5.2)

A clustering method divides a population into niches, and fitness calculations are
based on the distance between an individual and niche centroid (i.e., the centroid

point of niches) [123]. The concept of crowding was originally proposed in [41], which
was motivated by phenomena on competition for limited natural resource among the

species. Two crowing techniques, deterministic crowing and probabilistic crowing,
were proposed by replacement with restriction in [57, 63]. Restricted tournament

selection for multimodal optimization was introduced in [28]. A clearing procedure
simulates a process of sharing the limited resource by characterized individuals [85].

Species conserving GA was proposed to solve multimodal optimization problems in
[52].

5.3 Fourier Niche Method

5.3.1 Obtaining Frequency Information

In order to obtain frequency information, we should re-sample the data in a search

space with equal interval and calculate their fitness value. Some data sampling
method were proposed in [79]. In this study we choose the global 1 dimension

sampling method in our experimental part. One of FFT method, i.e. decimation
in frequency algorithm, is shown in Eq. (5.3), where W kn

N is W kn
N = e− 2kπ

N
, and

0 ≤ k ≤ N − 1 . The terms x(n), X(k), n and N are the original signal series,
frequency signals by DFT in frequency space, the number of sample points of original

signals and the number of transform base frequency, respectively.

X(k) =

N
2
−1
∑

n=0

[x(n) + (−1)kx(n +
N

2
)]W nk

N (5.3)

Figure 5.1 shows two multimodal benchmark functions, F1 and F2, which ex-
pressions are shown in Table 5.1. F1 has five global and local optima located equally,

and F2 has those with different amplitude located unequally. Their power spectrum
are shown in Figure 5.2.

50



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test Function 1

x

F
u

n
c
ti
o

n
 V

a
lu

e

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Test Function 2

x

F
u

n
c
ti
o

n
 V

a
lu

e

(a) (b)

Figure 5.1: Power spectrum of F1 and F2.
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Figure 5.2: Frequency content of F1 and F2 by FFT.

5.3.2 Calculating Peak Range and Number

After we obtain the frequency (Fi), phase (bi) and amplitude (Ai) information in

each dimension, principal frequency components [79] with relative larger amplitude
are filtered. We use these principal frequency components to calculate peak regions

and their number of original fitness landscape.
Inverse FFT of the principal frequency components can approximate the orig-

inal fitness landscape as shown in Eq. (5.4). In our proposed method, we only
use the powerful amplitude as the approximation model, so it can be expressed

as apcos(ωpx) + cpsin(ωpx), i.e.
√

a2p + c2pcos(ωpx+ bp), and bp = arctan(ap
cp
). For

the cos(x) function, the minimum should local at (Ti

2
) + bi, Ti =

1
Fi

(Fi =
ωp

2∗π ), so
in each dimension, the peak appears in locations within the search range around

points ki(
1

2∗Fi
) + bi. ki = 1, 2, ..., n are the number of peaks in the ith dimension

calculated by Eq. (5.5). The total number of peaks in a search space is calculated

by Eq. (5.6). In experimental part, we use a maximum value of the total number

of peaks.
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Table 5.1: Benchmark functions used in experimental evaluations. Range is a range
of parameter, n is dimension of the benchmark function. C means function’s char-
acters. M, U, N, and S mean multimodal, uni-modal, non-separable, and separable,
respectively.
No. Name Test function Range n C
F1 Niching1 f(x) = sin6(5πx) [0,1] 1 MN

F2 Niching2 f(x) = e−2(ln2)(x−0.01
0.8

)2sin6(5π(x0.75 − 0.05)) [0,1] 1 MN

F3 Shekel’s Foxholes f(x) = [0.02 +
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)6

]−1 [-65.536,65.536] 2 MS

F4 Rastrigin f(x) = (10n) +
∑n

i=1(x
2
i − 10 cos(2πxi)) [-5.12,5.12] 2 MS

F5 Schwefel 2.26 f(x) =
∑n

i=1(−xi sin(
√

|xi|)) [-512,512] 2 MS

F6 Griewank f(x) = 1 +
∑n

i=1
x2

i

4000
−
∏n

i=1 cos(
xi√
i
) [-20,20] 2 MN

f(x) = a0 +

n
∑

i=1

(aicos(ωix) + cisin(ωix) + bi) (5.4)

ki = Interityx
Rangei

Ti

y (5.5)

n
∑

i=1

ki < N <

n
∏

i=1

ki (5.6)

5.3.3 Inserting Elite and Setting Search Radius

With the peak region and number information, we can roughly obtain elite in original
search space. We insert these elite into a population and replace with individuals

with relative worse fitness value. However, inserting those elites cannot ensure
obtaining the final peak. Because in some of EC algorithms, such as DE used in

experimental part, a parent is replaced by new offspring with better fitness value,

which can locate anywhere. So we should restrict the change range of the elite, the
concept of elite search radius is proposed.

Search radius restricts search range of elite to ensure it searches for a optimum
within a peak region. In this work, we set the search radius as shown in Eq. (5.7),

m is a tuned parameter, in our study, we set it to 2.

SearchRadiusi =
Rangei
m ∗ ki

(5.7)

5.4 Experimental Evaluation

5.4.1 Multimodal Benchmark Functions

We use six multimodal benchmark functions to evaluate our proposed Fourier niche

method. F1 has local optima locating equally with the same amplitude, F2 has those
locating unequally with different amplitude, and F3, F4, F5 and F6 are Shekel’s

Foxholes function, Rastrigin function, Schwefel function and Griewank function,
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Figure 5.3: Final results of F1 and F2 with 100 population size at the 50th generation
and F3, F4, F5 and F6 with 1000 population size at the 50th generation.
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respectively. Their shape curves are shown in Figure 5.1 and in the Appendix (F5,
F6, F7, F8). Their mathematical expressions are shown in Table 5.1.

5.4.2 Experimental Conditions

We use differential evolution (DE/best/1/bin) with a proposed Fourier niche method
to evaluate multimodal benchmark functions mentioned above. For the F1 and F2,

the parameter range is 0 ≤ x ≤ 1, and population size is 100. For F3, F4, F5 and
F6 in Table 5.1, the parameter range is as in Table 5.1. The dimensions of F3, F4,

F5 and F6 are set to 2, and population size is 1000. We conduct each evaluation
until the 50th generation.

Fourier niche method uses the search radius that is set as Eq. (5.7) accordance
with the number of obtained peaks. We compare the performance of the proposed

Fourier niche method with the sharing method and a hybrid method (sharing +
Fourier method), which fuses fitness sharing method and Fourier niche method.

The parameter setting of fitness sharing method is σsharing = 0.3 in Eq. (5.2). We
set base frequency number of FFT to 256, and sampling data number to 256 for F1,

F2 and F4; 64 for F3 and F6; and 8 for F5. Since the number of optima is known in

benchmark functions, we use the number of peaks (NPeak) and computational time
as performance metrics. We test each function with 50 trail runs and obtained the

result in Table 5.2 and Figure 5.3.

Table 5.2: Computational time of one time optimization in F1 and F2. The exper-
iment is conducted by a Core2 Duo 2GHz CPU with 1GB RAM running Windows
XP (SP2).

function. method time(ms) NPeak

F1 Normal 14.09 1
F1 Sharing 99.99 2
F1 Fourier 17.83 5
F1 Sharing+Fourier 107.46 5
F2 Normal 8.11 1
F2 Sharing 100.33 2
F2 Fourier 16.24 5
F2 Sharing+Fourier 106.12 5

5.4.3 Experimental Results

Table 5.2 shows the number of peaks and computational time of each method.

Figure 5.3 shows the results with the 1000 population size at the 50th generation.
Accordance with these test results, we can conclude as follows.

1. the Fourier niche method can obtain all of the peaks in F1 and F2,

2. the Fourier niche method can obtain more peaks of F3, F4, F5 and F6 than

the ordinary DE and fitness sharing method,
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3. fitness sharing method can obtain two peaks once for F1 and F2, and only one
peak for F3, F4, F5 and F6, so our proposed method is better than the fitness

sharing method in aspect of peak number,
4. for F3, F4, F5 and F6, the Fourier niche method can obtain almost the same

number of peak as that obtained by sharing + Fourier method, and
5. the computational time of the Fourier niche method is less than the fitness

sharing method and sharing+Fourier method.

5.5 Discussions

We use six multimodal benchmark functions to evaluate the Fourier niche method.
The method could obtain more peaks than the fitness sharing method in all the

cases. Our method could obtain all peaks of F1 and F2 with less computational cost
as shown in Table 5.2. For F3, F4, F5 and F6, our method could obtain almost the

peaks but not all. It is because we use the 1-D FFT for obtaining the rough location

information of multi-dimensional fitness landscape, and restrict the number of elite
by consideration of performance. We must ensure that the population size is set to

more than the number of peaks when applying our Fourier niche method to obtain
a better final result for larger scale multimodal problems.

The main purpose of applying Fourier transform is to find rough regions from
frequency information, where the global or local optima in original fitness landscape

locate. Obtaining accuracy frequency information is a important step for the success
of Fourier niche method. Several data sampling method were therefore proposed in

[79]. In order to achieve better performances for concrete multimodal optimization
problems, we should select a proper sampling method and parameter setting of FFT

for obtaining the frequency.
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Figure 5.4: Final results of F5 with different sampling number.

Frequency resolution is an important concept to obtain the correct frequency and
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influences the parameter setting of FFT. Eq. (5.8) shows the definition of frequency
resolution, where ∆f is the frequency resolution that is the minimum difference

between two neighbor frequencies, fs is the sampling number, N is the number of
the base frequency in the FFT that should be an integer, which can be expressed as

2n usually.

∆f =
fs
N

(5.8)

We evaluated F5 with different sampling numbers of 8, 16, 32, 64, 128, and 256
(see Figure 5.4). The evaluation results implies that more sampling data do not

always obtain higher accurate frequency information from the search space, which

depends on the frequency resolution, i.e. the proportion of the sampling number
and the base frequency number. In Figure 5.4, the number of the peaks obtained by

the Fourier niching method becomes fewer accordance with the increasing sampling
number. It is because the frequency resolution value becomes lower and hard to

distinguish the lower frequency, and with the restriction of elite number limitation
(it can not more than the population size), all the elite points search within a massive

area in a search space.
We propose a search radius concept in Fourier niche method to restrict search

range of elite. It is a crucial parameter for certain elite to find a global optimum or
several local optima, so tuning its value for each elite is a promising research topic

to improve performance of our proposal.
Compared with conventional fitness sharing method, Fourier niche method can

save computational cost because it conducts special operations (FFT, etc.) only one
time after initializing a population. Meanwhile fitness sharing method tunes fitness

value of each individual every generations or (after) several generations. Reduc-

ing computational complexity presents our proposal’s advantage. Compared with
sharing + Fourier method, it still spends more computational time than that of the

Fourier niche method. The number of the final peaks found by Fourier niche meth-
ods is more than that of sharing + Fourier methods. Form Figure 5.3, the Fourier

niche method has better convergence performance than sharing + Fourier method.

5.6 Chapter Summary

In this chapter, we propose a Fourier niche method for solving multimodal optimiza-

tion problem. There are three main steps to implement this method:

1. obtaining frequency information,

2. calculating the potential peaks’ locations and their number, and
3. putting elite and setting their search radius for restricting search range.

From the evaluation results, we conclude that our proposed Fourier niche method
is feasible and practical, especially with the less computational complexity.
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Chapter 6

Triple and Quadruple Comparison
Based Interactive Differential
Evolution and Differential
Evolution

6.1 Introduction

This chapter studies a method of reducing IEC user fatigue by accelerating the EC

search. There have been several EC acceleration approaches proposed in the past,
including a gradient method; a hill-climbing method; combining other meta-heuristic

approaches [77]; and approximating the EC fitness landscape [38]. There are also
several approaches of landscape approximation that have been investigated, includ-

ing a method approximating the landscape with a unimodal function and estimating
the global optimum area that is defined as the area located around the global opti-

mum [36, 111], accelerating the approximation by using a lower dimensional function
[74, 75, 76, 82] and landscape approximation using the Fourier transform and esti-

mating the global optimum area [78, 79].
In this chapter, we propose and evaluate IEC acceleration methods that embed

opposition-based learning (OBL) into differential evolution (DE). OBL is embedded
into two stages of the DE: initial value determination and offspring generation. The

conventional paired comparison-based IDE is as discussed later in section 6.2. We
propose the new methods for embedding OBL into IDE in section 6.3. The proposed

methods demand triple or quadruple comparisons, and the IDE user fatigue for a

single comparison stage is therefore greater than in the case of conventional paired
comparison-based IDE. However, the proposed methods are based on the hypothesis

that IDE user fatigue may not increase drastically when the number of comparing
individuals is less than a memorable number, such as three individuals, and the

thought that the total fatigue of a human user can be decreased by accelerating the
IDE search. We evaluate the methods using an IDE simulation in section 6.4. The

proposed methods can be used not only for IDE but also for DE, and we evaluate
their performance as DE accelerators using 24 benchmark functions in section 6.5.

Finally, we conclude this research and describe our future research directions in
section 6.6.
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6.2 Paired Comparison Based Interactive Differ-
ential Evolution

In most instances of IEC, as typified by interactive genetic algorithm (IGA), all
individuals are presented to the IEC user and the user is then required to input a

fitness evaluation for each of them. In the case where the individuals are still images,
it is easy for an IEC user to compare them spatially and evaluate them. For this

reason, most IEC approaches use this method of display and evaluation.
However, when the individuals are sounds or movies, an IEC user has to compare

each individual with others held in their memory and the mental load and fatigue
increase. It was been pointed out that humans possess limited memory and cannot

process more than five to nine different items simultaneously [65]. The population
sizes of many IEC systems frequently exceed this memory limitation, and displaying

10 to 20 sounds or movies to an IEC user is not practical.
Paired comparison-based IEC solves this problem by replacing the comparison

of all individuals with paired comparisons and is thus expected to reduce IEC user

fatigue. The first proposed approach is a tournament IGA [39, 53]. N − 1 paired
comparisons are iterated for N individuals per generation, and fitness values are

calculated using the number of winnings and fitness differences between each pair.
The disadvantage of tournament GA is that the obtained fitness necessarily includes

noise because the tournament is not a round robin competition against the origi-
nal GA algorithm. The noise influences the GA selection operation and results in

reduced GA search performance.
Differential evolution (DE) is a type of population-based optimization algorithm

[87, 103]. It searches for the global optimum using a differential vector between
two individuals for which the length is in proportion to the distribution size of the

individuals in general and for which each parent individual generates its offspring.
The following description outlines the main steps of a DE implementation.

(1) Chose one individual to be the target vector. Select two other individuals as
parameter vectors at random and derive a difference vector from them; the

best individual from the rest of the individuals or another individual selected
at random is the base vector.

(2) Create a mutant vector by adding a weighted differential vector to the base
vector.

(3) Generate a trial vector by crossing the target vector and the mutant vector.

(4) Compare the target vector with the trial vector, and select whichever one is

better as the offspring for the next generation.

(5) Go to (1) and generate other offspring until all individuals are processed using

the same operations,. Then proceed with the next generation.

Paired comparison-based IDE [113] does not modify any parts of its algorithm

because the algorithm already includes paired comparison by nature in step (4)
of the above algorithm. Since pairs of individuals are presented to the IDE user

for comparison without modifying the DE algorithm, the IDE is expected to be a
promising IEC method.
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Table 6.1: Conventional paired comparison-based DE/IDE and proposed triple and
quadruple comparison-based DE/IDE. Target-OB and trial-OB refer to the oppo-
sition vectors for target vectors and trial vectors. We use the center point of an
individual distribution to calculate an opposition point.
conventional method #1 Ordinary DE [87] / paired comparison-based IDE

[113] (pair comparison of a target vector and a trial
vector).

conventional method #2 Switching between ordinary DE and paired compar-
ison of a target vector and target-OB according to a
jumping rate [90].

proposed method #1 Triple comparison-based DE among target, trial, and
target-OB.

proposed method #2 Triple comparison-based DE among target, trial,
trial-OB.

proposed method #3 Quadruple comparison-based DE among target, trial,
target-OB, trial-OB.

proposed method #4 Triple comparison-based DE among target, trial, ran-
dom.

6.3 Proposal of a New Opposition Based Differ-
ential Evolution

Table 6.1 shows our proposed OBDE along with conventional methods for compar-

ison. As the first OBL technique, using OBL for the initialization of individuals

as mentioned, is applicable to all the methods compared in this chapter, we only
use the second OBL technique – opposition-based individual selection with jumping

rate – for comparing with the proposed methods.
It is necessary to consider (a) the computational cost of a fitness value, (b) that

of an introduced acceleration method, and (c) convergence speed when we use or
develop EC acceleration methods. Since (c) has higher priority than (b) for tasks

where (a) takes the most time, total time until convergence reaches the goal is
frequently used as an evaluation index.

On the other hand, user fatigue is an important factor in the evaluation of
IEC. When the mental demand for evaluating individuals is otherwise the same, we

may say that the IEC user fatigue is in proportion to the total time until the IEC
user finds a satisfactory individual. However, when the mental load for evaluating

individuals is different due to different IEC interfaces, this relation is not always
true. There are cases where IEC user fatigue becomes low thanks to easy evaluation

even if total evaluation time until the goal is reached is long. Likewise there are

opposite cases where IEC user fatigue can be lowered thanks to short total evaluation
time even if the mental load for a single evaluation is high. We need to evaluate

acceleration methods by analyzing the load of a single evaluation along with the
convergence characteristics through IEC simulation, and after that we must conduct

a human subjective evaluation to confirm the simulation results. This chapter deals
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with the IEC simulation of the first stage.
Our idea is to use not only a target vector and a trial vector but also their

opposition vectors at every comparison in the DE search. Our proposed method #1
functionally includes conventional method #2 because it conducts the comparison

of a trial vector and its opposition vector as in the conventional method #2. For the
same reason, we may say that proposed method #3 includes the proposed methods

#1 and #2 functionally. In order to compare the effectiveness of the opposite
mechanism, i.e., the proposed methods #1, #2 and #3, we also propose to use

a random vector as a third vector to compare the optimization performance with
proposed methods #1, #2 and #3, we refer to it as proposed method #4 in this

chapter.
When the proposed methods are applied to non-interactive DE, whereas con-

ventional paired-comparison-based DE had twice the number of calculations, the

proposed methods require three or four times the number of calculations. In other
words, the calculation time of (a) mentioned above is 1.5 or 2.0 times that is re-

quired for the conventional paired comparison DE case. The crux of our study into
the application of the proposed methods for ordinary non-interactive DE is whether

the acceleration performance gains of the proposed methods exceed the increased
time required for their fitness calculations, allowing the total calculation time to be

reduced.
The number of fitness calculations is not the final evaluation index for IDE be-

cause IDE user fatigue is not in proportion to it. Consider the case of user fatigue
from choosing the best still image between two images or from among three or four

images. The former must be less than the latter, but the mental load in the latter
case is not 1.5 or 2.0 times that of the former. Even when the IDE requires the

comparison of sounds or movies that we cannot compare spatially and simultane-
ously, the IDE user’s mental load must increase, but the ratio will not necessarily

increase by 1.5 or 2.0 times. Generally speaking, when the number of individual

comparisons is within the number that an IDE user can memorize, IEC user fatigue
is lower; when it exceeds the maximum memory capacity, user fatigue increases dras-

tically. We focus on this fact in developing our proposed methods requiring triple
and quadruple comparisons, and aim to reduce the total user fatigue by accelerating

IDE search even if the user fatigue for each single comparison increases.
One mirror point for calculating opposition points is used in this chapter. Refer-

ence [90], i.e. conventional method #2, uses the center gravity point of an individual
distribution as the mirror point. This appears reasonable for narrowing the distri-

bution of the opposition vectors according to the DE individual distribution.

6.4 IDE Experimental Evaluation and Analysis

6.4.1 IDE User Model and Experimental Conditions

We use Gaussian mixture models for evaluation in this section. Concretely, we
combine four Gaussian functions (k = 4) and realize the characteristics expressed

by F27 in the Appendix with 3 dimensions (3-D), 5-D, 7-D, and 10-D. The IDE user

simulation in this section randomly chooses either a trial vector or a target vector
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and leaves it as offspring in the next generation when the difference of their fitness
values are less than a certain value to simulate the unavailability of a human IDE

user’s comparison; we set the difference threshold as 1/50 of the difference between
the minimum and maximum fitness value in the population at each generation.

Experimental evaluations are conducted as follows. The four dimensional Gaus-
sian mixture models are run for 1,000 generations. 30 trial runs of these searches

with different initial search points are conducted. A Wilcoxon signed-rank test is
applied at the 20th generation and the 1,000th generation to test for a significant

difference between them. IDE parameters are set as described in Table 6.2. Popula-
tion size, 20, is decided upon to take match the sort of population size used in IEC

experiments with a real human user.
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Figure 6.1: Average convergence curves for 30 trial runs with 3-D, 5-D, 7-D and
10-D Gaussian mixture models. Dot line and solid lines represent the conventional
method #1 (ordinary IDE) and the proposed method #1, respectively.

6.4.2 Experimental Evaluation of the Proposed Methods

Comparisons between ordinary IDE and proposed method #1 are shown in Figure

6.1. They show how the proposed method converges faster than normal IDE at each
generation.

Convergence comparisons with practical conditions, i.e. at the 20th generation
with a population size of 20, are shown in Table 6.3(a). There was no significant
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Table 6.2: IDE experiment parameters setting.
population size 20
search range of parameters [−5.12, 5.12]
scale factor F 0.3
crossover rate 0.7
DE operation DE/best/1/bin
max. search generation, MAXNFC 1,000
dimensions of Gaussian mixture model, D 3,5,7,10
# of trial runs 30

difference between ordinary IDE and others for a 3-D Gaussian mixture model. How-

ever, convergence speed of the proposed methods became significantly faster than

ordinary IDE as the task complexity increases, i.e. the dimensions of model functions
increase. The proposed methods were superior to both conventional methods.

We can easily imagine the reason for the superiority from Figure 6.1. That is,
for the simple 3 dimensional case, all methods converged sufficiently by the 20th

generation that no significant difference could be observed. However, convergence
at the 20th generation was still ongoing for the higher dimensional Gaussian mixture

models, and the convergence acceleration of the proposed methods became effective.
The evaluation results in Table 6.3(b) showed the same tendency as with Table

6.3(a) though the evaluation at the 1,000th generation is not realistic for IDE but
should be considered in the evaluation conducted in section 6.5.

Comparisons using only Table 6.3(a) cannot be fair because proposed meth-
ods #1, #2, #3 and #4 are triple, triple, quadruple and triple comparison-based

searches, respectively, while the two conventional methods are paired comparison-
based ones. Table 6.4 is another evaluation that compares convergence at the same

number of fitness calculations. Since conventional methods #1 and #2 calculate

fitness 40 times (= 20 individuals × 2 for each paired comparison) per generation,
1200 and 1600 fitness calculations equate to the evaluations at the 30th and the

40th generations, respectively. Likewise, they correspond to the 20th, the 20th and
the 28th generation for he triple comparison-based proposed methods #1, #2 and

#4, and the 16th generation for the quadruple comparison-based proposed method
#3.

The results here are the same as in Table 6.3; there is no significant difference
between ordinary IDE and the others when the tasks are simple, such as with a

3-D Gaussian mixture model, and they have converged in early generations. On the
other hand, the proposed methods converge significantly faster than conventional

methods when the complexity of tasks increases, such as for the higher dimensional
Gaussian mixture model.

6.4.3 Discussion on Convergence Characteristics

We applied a Wilcoxon-signed rank test for comparison of the proposed methods

#1, #2 and #3 with #4 at 20th generation, 1000th generation, 1200th fitness cal-
culation and 1600th fitness calculation. The results show only proposed method
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#3 outperforms significantly proposed method #4 in all cases with the 10-D Gaus-
sian mixture model. There is not a significant difference between the three triple-

comparison methods (proposed methods #1, #2 and #4) for the entire 4 Gaussian
mixture models in all the cases.

The same statistical test is applied to compare proposed method #3 with pro-
posed method #1 and #2. From the results, it is demonstrated that proposed

method #3 performs significantly better than proposed method #1 and #2 in the
10-D Gaussian mixture model in 20th generation, 1000th generation, and 1600th

fitness calculation.
We can draw some conclusions from the above observations. First, the triple-

comparison mechanism using the random method offers the same enhancement
to performance as the opposite method. Second, for the IDE case, the triple-

comparison mechanism implemented by opposition does not show any advantages

over randomness. Third, for the higher dimension problem (10-D Gaussian mixture
model), proposed method #3, i.e., the quadruple-comparison method, significantly

shows better performance than any other proposed methods.

6.5 DE Experimental Evaluation and Analysis

6.5.1 Test Functions and Experimental Conditions

We evaluate our proposed methods with 24 benchmark functions. Our proposed
methods aim to reduce IDE user fatigue by accelerating IDE search even if user fa-

tigue for a single comparison is increased. However, their use is not limited to IDE
but rather they are applicable to any DE searches with a fitness function. We com-

pare them with conventional methods of ordinary DE and OBDE using minimum
optimization problems made by 24 benchmark functions [104]. Definitions, search

ranges for optimization parameters, the global optimum values, and characteristics
of the benchmark functions can be seen in Table 6.5.

Because there is no need to evaluate IDE user fatigue, as was done in section

6.4, the evaluation indices used in this section for comparing our proposed method
applied to DE are the number of fitness calculations (NFC) until the convergence

threshold (CT ) is reached and the success ratio (SR) for those that reach the CT .
The lower NFC is, the faster convergence is.

Evaluations trial runs are 30, and the maximum generation is MAXNFC =1,000.
A successful convergence is counted when a convergence reaches the CT defined by

Eq. (6.1). All benchmark functions are evaluated by an acceleration ratio, AR, too,
to evaluate convergence speed. It is defined using NFC at the maximum generation,

the 1,000th generation, in Eq. (6.4), and AR > 1 means that the proposed method
converges faster than ordinary DE. Success ratio, SR, is defined by the number

of trials that reached the convergence threshold, CT , in Eq. (6.3). Furthermore,
average acceleration ratio and average success ratio are calculated and used for the

final evaluation results.
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Table 6.3: Average fitness values at the 20th and 1000th generation for 3-D, 5-D, 7-D,
and 10-D Gaussian mixture models (pseudo-IDE users). Conventional method #2
is opposition-based generation jump with a jumping rate of 37% [90]. See details for
the conventional and proposed methods in Table 6.1. Bold values and daggers mean
that Wilcoxon sign-ranked tests showed significant differences between conventional
method #1 and the proposed method and between conventional method #2 and
the proposed method, respectively (p <0.05).

(a) Average fitness at the 20th generation.
method 3-D 5-D 7-D 10-D

conventional method #1 -5.71 -3.42 -2.98 -2.40
conventional method #2 -5.70 -3.46 -3.03 -2.48
IDE-proposed method #1 -5.72 -3.78† -3.22† -2.98†
IDE-proposed method #2 -5.73 -3.57 † -3.19 † -2.87 †
IDE-proposed method #3 -5.72 -3.73† -3.25† -3.14†
IDE-proposed method #4 -5.70 -3.66† -3.12 -2.93†

(b) Average fitness at the 1,000th generation.
method 3-D 5-D 7-D 10-D

conventional method #1 -5.71 -3.42 -3.00 -2.44
conventional method #2 -5.70 -3.47 -3.04 -2.49
IDE-proposed method #1 -5.72† -3.78† -3.22† -3.00†
IDE-proposed method #2 -5.73 † -3.62† -3.24† -2.93†
IDE-proposed method #3 -5.72 -3.73† -3.25† -3.18†
IDE-proposed method #4 -5.70 -3.66† -3.13 -2.95†

Table 6.4: Average fitness values when the number of fitness calculation reaches
1200 and 1600. For details, see the values indicated in bold or with daggers in Table
6.3 and those of the others in Table 6.1.

(a) Average fitness at the 1200th fitness calculation.
mrthod 3-D 5-D 7-D 10-D

conventional method #1 -5.71 -3.42 -2.99 -2.43
conventional method #2 -5.70 -3.47 -3.04 -2.49
IDE-proposed method #1 -5.72 -3.78† -3.22† -2.99†
IDE-proposed method #2 -5.73 -3.57† -3.20† -2.89†
IDE-proposed method #3 -5.72 -3.73† -3.22† -3.08†
IDE-proposed method #4 -5.70 -3.66† -3.13 -2.93†

(b) Average fitness at the 1600th fitness calculation.
method 3-D 5-D 7-D 10-D

conventional method #1 -5.71 -3.42 -3.00 -2.43
conventional method #2 -5.70 -3.47 -3.04 -2.49
IDE-proposed method #1 -5.72 -3.78† -3.22† -3.00†
IDE-proposed method #2 -5.73 -3.61† -3.22 † -2.92†
IDE-proposed method #3 -5.72 -3.73† -3.25† -3.14†
IDE-proposed method #4 -5.70 -3.66† -3.13 -2.95†
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Table 6.5: Twenty-four benchmark functions adopted from [104] are used in
the experimental evaluations. (Uni=Unimodal, Mul=Multimodal, Rt=Rotated,
GB=Global on Bounds, HC=Hybrid Composition, NM=Number Matrix, NS=Non-
Separable, and S=Separable.)

No. Name Range Optima Characters
F1 Sphere [-100,100] -450 Uni-S
F2 Schwefel 1.2 [-100,100] -450 Uni-NS
F3 Elliptic [-100,100] -450 Uni-NS
F4 F2 with Noise [-100,100] -450 Uni-NS
F5 Schwefel 2.6 GB [-100,100] -310 Uni-NS
F6 Rosenbrock [-100,100] 390 Mul-NS
F7 Griewank [0,600] -180 Mul-NS
F8 Ackley GB [-32,32] -140 Mul-NS
F9 Rastrigin [-5,5] -330 Mul-S
F10 Rt Rastrigin [-5,5] -330 Rt-Mul-NS
F11 Weierstrass [-0.5,0.5] 90 Mul-NS
F12 Schwefel 2.13 [-100,100] -460 Mul-NS
F13 Expanded F8F2 [-3,1] -130 Mul-NS
F14 Scaffer F6 [-100,100] -300 Mul-NS
F15 HC Function [-5,5] 120 HC-S
F16 Rt HC F1 [-5,5] 120 Rt-HC-NS
F17 F16 with Noise [-5,5] 120 Rt-HC-NS
F18 Rt HC F2 [-5,5] 10 Rt-HC-NS
F19 F18 with Basin [-5,5] 10 Rt-HC-NS
F20 F18 with GB [-5,5] 10 Rt-HC-NS
F21 Rt HC F3 [-5,5] 360 Rt-HC-NS
F22 F21 with NM [-5,5] 360 Rt-HC-NS
F23 NC Rt F2 [-5,5] 360 HC-NS
F24 Rt HC F4 [-5,5] 260 Rt-HC-NS

converg. threshold, CT = average fitness of each

method at MAXNFC − th

generation. (6.1)

NFC = average# of fitness

calculation until convergence

reaches CT. (6.2)

success ratio, SR =
# of reached to CT

# of MAXNFC

(6.3)

acceleration ratio, AR =
NFCordinaryDE

NFCproposal

(6.4)

The DE experimental parameters are set as shown in Table 6.6. The evaluation

is conducted under difficult search conditions; only 50 individuals are used to search
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10-D functions for which search parameter ranges have been expanded.

Table 6.6: DE experiment parameters setting.
population size 50
scale factor F 0.3
crossover rate 0.7
DE operations DE/best/1/bin
max. search generation, MAXNFC 1,000
convergence threshold, CT CT in Table 6.7
dimensions of benchmark functions, D 10
# of trial runs 30

6.5.2 Experimental Evaluation of the Proposed Methods

Convergence characteristics for the 24 benchmark functions are shown in Table 6.7.
Numerical values in the table are the average fitness values over 30 trial runs at the

1,000th generation. Convergence thresholds, CT ’s, for convergence success ratio,
SR, in Table 6.8 are also listed in this table. Comparisons of computational cost

are listed in Table 6.8.

The proposed methods converged faster than the conventional methods at the
same generation for all but a few functions. This effect cannot be observed for

the F12 function, where all methods failed to approach its global optimum. The
global optimum of the F12 function is −460, but the fitness values of all methods

at the 1,000th generation are still large positive values, which means there was no
convergence at all. It must be too difficult to search the 10-D F12 function with

only 50 individuals. These methods have not reached the global optima of F15 -
F24 functions at the 1,000th generation, but their average fitness values are close to

the global optima and their convergence are largely better than that of the ordinary
DE. As a general remark, the acceleration effectiveness of the proposed methods is

significant except in the case of F12 and F18-F20, which proved to be too difficult
for all the methods under the given experimental conditions.

Comparative evaluations of the computational costs, i.e. the number of fitness
calculations, and the success ratios, SR, of reaching a convergence threshold, CT ,

are shown in Table 6.8. It is hard for the ordinary DE to search 10-D benchmark

functions with only 50 individuals; the average SR for the 24 benchmark functions
was 17%, and the SR of only 3 of the 24 functions exceeded 50%. The average

SR of conventional method #2 was better than that of #1 and was 60%, but our
proposed methods achieved around 60%-80%. They showed better performance for

all benchmark functions except for the F12 and F18-F20 functions where none of the
methods converged with the difficult experimental conditions given in this section.

The average number of fitness calculations, NFS, before reaching the conver-
gence threshold, CT , was lower using our proposed methods than when using the

conventional methods. Not only convergence evaluation at the same generation as
shown in Table 6.7, but also NFS in Table 6.8 showed that the proposed methods
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reached the CT quickly with less computational cost. From these results, we can
say that the proposed methods can realize an effective acceleration of convergence.

The generation number for when a DE search reaches the convergence threshold,
CT , is calculated as:

generation# = NFC/(population size× p),

where p is the number of individuals being compared per comparison, and p =
2, 3, and 4 for paired comparison-based conventional methods #1 and #2, triple

comparison-based proposed methods #1 #2 and #4, and quadruple comparison-
based proposed method #3, respectively.

As a summary of the experimental results, all four kinds of our proposed methods

#1 – #4 are better than or equal to the conventional methods for all 24 benchmark
functions by number of fitness calculations, the success ratio for reaching a conver-

gence threshold, acceleration ratio, and fitness value at each generation.

6.5.3 Discussion on Functional Inclusion and Convergence
Characteristics

Although proposed method #1 includes the conventional method #2 and proposed

method #3 includes the proposed methods #1 and #2 functionally as mentioned in
section 6.3, methods that included the functionality of one or more methods did not

always perform better than the method(s) they included, though they outperformed
them in general. We now discuss this point in more detail.

The reason for this result is that it is not guaranteed that the continuous selection
of the best individual at each comparison as best-best-best will become the total

best; in other words, the principle of optimality [5] does not hold in this case.
Probabilistically speaking, it is expected that areas around better individuals are

more likely to reach the global optimum than other areas. However, monotonicity,
which is a requirement of the principle of optimality, does not stand up in multimodal

tasks, and it is not guaranteed that the areas where opposite vectors are chosen are

advantageous to reach the global optimum even if the opposite vectors are the best
among the triple or quadruple individuals used for comparison. Additionally, if a

non-advantageous individual is chosen, subsequent selections will also be affected by
this choice.

From these two points, when method A includes method B functionally, we can
say that the method A is expected to converge faster than the method B proba-

bilistically but this expectation is not guaranteed. For further investigation of the
enhancement to performance among our proposed methods, we applied Wilcoxon

signed rank test to compare the performance between proposed method #3 and
proposed methods #1 and #2. The results show that proposed method #3 is sig-

nificantly better than proposed methods #1 and #2 for F3, F6-F9, F11 and F24,
and only worse than proposed methods #1 and #2 in F3. The experimental results

in Tables 6.7 and 6.8 are consistent with this discussion.
The effectiveness of the third vector from the random mechanism and the opposi-

tion mechanism is compared by applying Wilcoxon signed rank test on the proposed

method #1, #2, #3 and #4. The results show the proposed method #4 is signifi-
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Table 6.7: Average fitness values for the benchmark function, F1 – F24 at the 1,000th
generation over 30 trial runs. Bold values and daggers mean that Wilcoxon sign-
ranked tests showed significant differences between conventional method #1 and the
proposed method and between conventional method #2 and the proposed method,
respectively (p <0.05). Conventional and proposal mean respectively conventional

method and proposed method.
method F1 F2 F3 F4 F5 F6

conventional #1 -354.71 -250.18 192113.06 -141.32 2359.79 733669.47
conventional #2 -413.53 -359.01 308946.65 -448.03 26.70 287810.81
DE-proposal #1 -440.88† -438.45† 67357.98 -416.28† -39.89 10528.84†
DE-proposal #2 -444.75† -441.15† 26538.41† -433.12† -127.78† 7668.20†
DE-proposal #3 -447.59† -440.02† 12532.29† -443.62† -120.31† 1042.11†
DE-proposal #4 -440.47† -377.29 70371.76† -418.67† 179.05 13491.41†

CT -423.66 -384.35 112976.69 -383.51 379.59 175701.81

method F7 F8 F9 F10 F11 F12
conventional #1 -170.87 -119.60 -313.48 -302.79 95.21 3374.60
conventional #2 -179.41 -136.56 -320.56 -320.56 91.16 18078.54
DE-proposal #1 -179.74† -137.68† -323.89† -323.89† 90.89 12610.21
DE-proposal #2 -179.84† -138.29† -323.44† -323.44† 90.92 13725.32
DE-proposal #3 -179.87† -138.72† -324.02† -324.02† 90.73† 14801.29
DE-proposal #4 -179.76† -138.23† -321.11 -321.11† 90.63 15473.06

CT -178.25 -134.85 -321.08 -319.30 91.59 13010.50

method F13 F14 F15 F16 F17 F18
conventional #1 -127.92 -296.71 498.21 299.84 306.39 990.61
conventional #2 -128.18 -297.98 158.22 158.22 157.13 992.86
DE-proposal #1 -128.99† -298.90† 148.68† 148.68† 147.75† 959.60
DE-proposal #2 -129.09† -298.97† 147.01† 147.01† 145.43† 962.36
DE-proposal #3 -129.06† -299.01† 143.99† 143.99† 144.87† 966.31
DE-proposal #4 -129.23† -298.85† 153.54 153.54 154.76 936.51†

CT -128.75 -298.40 208.27 175.21 176.05 968.04

method F19 F20 F21 F22 F23 F24
conventional #1 990.25 992.80 1463.61 1253.51 1546.75 1077.70
conventional #2 1006.69 1005.34 414.45 414.45 400.56 911.72
DE-proposal #1 958.27 959.23 403.18† 403.18† 385.85† 354.11†
DE-proposal #2 970.57 965.20 400.62† 400.62† 386.21† 339.78†
DE-proposal #3 965.93 964.67 398.10† 398.10† 384.86† 310.60†
DE-proposal #4 942.82† 935.39 † 400.61† 400.61† 387.76† 381.16†

CT 972.42 970.44 580.09 545.08 582.00 562.51
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Table 6.8: Evaluation indices for 30 trial runs of benchmark functions, F1 – F24. See
Eq.s (6.2), (6.3), and (6.4) for the # of fitness calculations, NFC, convergence suc-
cess ratio, SR, and acceleration ratio, AR, respectively. conventional and proposal

are defined as in the caption of Table 6.7.
conventional #1 (DE) conventional #2 (OBDE) DE-proposal #1

function NFC SR AR NFC SR AR NFC SR AR

F1 60897 0.39 51644 0.62 1.18 16750 0.89 3.64
F2 70757 0.29 65527 0.52 1.08 3040 0.98 23.28
F3 38357 0.62 69391 0.49 0.55 31590 0.79 1.21
F4 79197 0.21 8741 0.94 9.06 23085 0.85 3.43
F5 86620 0.13 11047 0.92 7.84 7315 0.95 11.84
F6 47300 0.53 15390 0.89 3.07 1520 0.99 31.12
F7 83683 0.16 10791 0.92 7.75 1455 0.99 57.51
F8 100000 0.00 28802 0.79 3.47 6455 0.96 15.49
F9 86913 0.13 65710 0.52 1.32 29415 0.80 2.95
F10 100000 0.00 38812 0.72 2.58 14655 0.90 6.82
F11 100000 0.00 47352 0.65 2.11 36685 0.76 2.73
F12 43357 0.57 92557 0.32 0.47 120095 0.20 0.36
F13 67763 0.32 88169 0.36 0.77 37470 0.75 1.81
F14 100000 0.00 101910 0.26 0.98 62850 0.58 1.59
F15 100000 0.00 2069 0.98 48.34 2050 0.99 48.78
F16 100000 0.00 7234 0.95 13.82 7680 0.95 13.02
F17 100000 0.00 20600 0.85 4.85 3330 0.98 30.03
F18 70373 0.30 105422 0.23 0.67 105405 0.30 0.67
F19 67060 0.33 100891 0.26 0.66 95620 0.36 0.70
F20 70370 0.30 105390 0.23 0.67 95640 0.36 0.74
F21 100000 0.00 1238 0.99 80.80 800 0.99 125.00
F22 100000 0.00 1375 0.99 72.75 955 0.99 104.71
F23 100000 0.00 1196 0.99 83.58 695 1.00 143.88
F24 96700 0.03 51489 0.62 1.88 6845 0.95 14.13

average 0.17 0.60 10.65 0.80 18.34

DE-proposal #2 DE-proposal #3 DE-proposal #4
function NFC SR AR NFC SR AR NFC SR AR

F1 11585 0.92 5.26 2273 0.99 26.79 21595 0.86 2.82
F2 2915 0.98 24.27 3993 0.98 17.72 56860 0.62 1.24
F3 11665 0.92 3.29 2253 0.99 17.02 41370 0.72 0.93
F4 13405 0.91 5.91 4040 0.98 19.60 34880 0.77 2.27
F5 6985 0.95 12.40 3033 0.98 28.56 37010 0.75 2.34
F6 1305 0.99 36.25 1593 0.99 29.69 6420 0.96 7.37
F7 1380 0.99 60.64 1753 0.99 47.73 1510 0.99 55.42
F8 1430 0.99 69.93 1880 0.99 53.19 1495 0.99 66.89
F9 33680 0.78 2.58 39620 0.80 2.19 62675 0.58 1.39
F10 18920 0.87 5.29 20167 0.90 4.96 47920 0.68 2.09
F11 17260 0.88 5.79 22833 0.89 4.38 17320 0.88 5.77
F12 119970 0.20 0.36 163673 0.18 0.26 136445 0.09 0.32
F13 27450 0.82 2.47 49427 0.75 1.37 12735 0.92 5.32
F14 38135 0.75 2.62 47420 0.76 2.11 49055 0.67 2.04
F15 2050 0.99 48.78 3260 0.98 30.67 2225 0.99 44.94
F16 7785 0.95 12.85 4580 0.98 21.83 8030 0.95 12.45
F17 3260 0.98 30.67 5720 0.97 17.48 8540 0.94 11.71
F18 95735 0.36 0.74 121227 0.39 0.58 85925 0.43 0.82
F19 95580 0.36 0.70 127660 0.36 0.53 85935 0.43 0.78
F20 90775 0.39 0.78 127753 0.36 0.55 85860 0.43 0.82
F21 755 0.99 132.45 947 1.00 105.63 875 0.99 114.29
F22 930 0.99 107.53 1200 0.99 83.33 1045 0.99 95.69
F23 590 1.00 169.49 807 1.00 123.97 735 1.00 136.05
F24 11765 0.92 8.22 9060 0.95 10.67 16810 0.89 5.75

average 0.80 21.98 0.60 17.11 0.71 16.76
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cantly worse than the proposed method #1, #2 and #3 for most of the benchmark
functions. This shows that the the third vector is more effective when selected from

the opposition than at random, which also confirms the previous work in [91].

6.6 Chapter Summary

We proposed new OBDE methods embedding opposition-based learning into DE and
evaluated them. The proposed methods are triple and quadruple comparison-based

methods. Fitness calculation cost per comparison is higher than ordinary DE and
ordinary OBDE based on paired comparison. However, experimental evaluations

using an IDE simulation and 24 benchmark functions showed better acceleration
performance than conventional methods on converged fitness values at same genera-

tions, the number of fitness calculations, the success ratio for reaching a convergence

threshold, and acceleration ratio.
There are many IDE tasks where the IDE user can memorize three or four individ-

uals. In these cases, we expect that IDE user fatigue for our proposed methods will
not become 1.5 or 2.0 times of that of paired comparison-based conventional meth-

ods. Taking account of their fast convergence performance and the non-proportional
characteristics of IDE user fatigue, we conclude that the proposed methods are ef-

fective, especially for IDE.
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Chapter 7

EC Acceleration by Accelerating
Transition from Exploration to
Exploitation

7.1 Introduction

The objective of this work is to propose an acceleration method for EC by acceler-
ating transition from exploration to exploitation, observe their behavior, and obtain

hints to further accelerate EC. The proposed acceleration method deletes poor in-
active individuals for several generations and generates their alternative individuals

around the top individuals. To generalize this method, we observe its behavior by
combining it with canonical DE.

Following this brief introductory, a new proposal of EC acceleration by transition
from exploration to exploitation is reported in section 7.2. A series of experimental

evaluation is conducted and discussed to analyze the proposal in section 7.3. We
discuss the experimental results and some related issues in section 7.4. Finally, we

conclude the whole work in section 7.5.

7.2 Acceleration from Exploration to Exploita-
tion

It is important for generic EC algorithms to search better solutions widely in early

generations, i.e. exploration, and gradually shift to exploitation. Important but
difficult point is how to transfer from the exploration to the exploitation or change

their balance. Simple GA does not have this kind of mechanism, and it is difficult to
control the balance. Sometimes EC algorithm convergence is slow and sometimes a

premature convergence happens. Keeping statistical characteristics of parent popu-
lation to the next generation [43] is one of indexes or guidelines for adequate control

of the balance. DE has this mechanism in its algorithm. Average length of differ-
ential vectors is in proportion to the distribution size of population and becomes

shorter gradually according to the search convergence. DE controls the transition
speed from exploration to exploitation taking account of the shrinking speed of the

distribution size.
Basic idea behind our proposed method is that EC search can be accelerated

by eliminating useless individuals for exploration and accelerating the shift to ex-
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ploitation. The proposed method is to delete poor individuals that do not evolve
for several generations and generate the same number of new individuals around

better individuals as shown in Figure 7.1. This idea can be express in the below
rule parametrically.

N

M, G

Figure 7.1: The concept of our proposed method. Poor individuals whose fitness
values are low and that do not change for several continuous generations are deleted,
and the same number of new individuals are generated around better individuals
randomly.

IF the fitness values of individuals among
theM worst individuals do not change
in continuous past G generations,

THEN delete them and generate the same
number of new individuals around the
N best individuals.

There are several variations of generating new individuals around the N best
individuals. As one of them, we generate new individuals by adding normally dis-

tributed random values to the best individuals selected by a roulette wheel selection
among the N best individuals in section 7.3.

Our proposed method cannot be applied to GA and other EC approaches that
generate an offspring set from a parent set, and its applicability is limited to DE,

PSO, and other EC approaches that each of parent individuals generates one off-
spring.

7.3 Experimental Evaluations of the Proposed Method

7.3.1 Experimental Conditions

We evaluate our proposed method using DE under the experimental condition shown

in Table 7.1.

There are several realizations of our proposed method because of parameters (M ,
N , G) described in section 7.2, a method for selecting individuals among the N best

individuals (we use a roulette wheel selection in this chapter), and a parameter that
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Table 7.1: DE conditions used in experimental evaluations.
population size 500

scale factor (F ) 1.0

crossover rate 0.9

DE operations DE/best/1/bin

max. generations 200 (F1 – F7), 400 (F8 – F14)

# of trial runs 30

tasks 14 10-D benchmark functions in Table 7.2

decides neighbor positions around the selected best individuals (we use Gaussian

distributed noise with a standard deviation σi: σi = search range of the i-th variable
× k. See Table 7.3.).

Task characteristics and these parameters must influence to the performance

of the proposed method, too. As the first stage of this research, we observe its
performance by changing these parameters.

Benchmark functions used in this evaluations are 10 dimensional (10-D) F1 – F14

in the CEC2005 benchmark function set [104] (see Table 7.2.) They are minimization

tasks for finding the global optimum whose fitness is 0.

Table 7.2: Fourteen benchmark functions for experimental evaluations. The
below symbols express their characteristics: Uni=Unimodal, Mul=Multimodal,
Sh=Shifted, Rt=Rotated, GB=Global on Bounds, NS=non-separable, and
S=separable.

function benchmark search function
No. functions ranges characteristics

F1 Sh Sphere [-100,100]10 Sh-Uni-S
F2 Sh Schwefel 1.2 [-100,100]10 Sh-Uni-NS
F3 Sh Rt Elliptic [-100,100]10 Sh-Rt-Uni-NS
F4 F2 with Noise [-100,100]10 Sh-Uni-NS
F5 Schwefel 2.6 GB [-100,100]10 Uni-NS
F6 Sh Rosenbrock [-100,100]10 Sh-Mul-NS
F7 Sh Rt Griewank [0,600]10 Sh-Rt-Mul-NS
F8 Sh Rt Ackley GB [-32,32]10 Sh-Rt-Mul-NS
F9 Sh Rastrigin [-5,5]10 Sh-Mul-S
F10 Sh Rt Rastrigin [-5,5]10 Sh-Rt-Mul-NS
F11 Sh Rt Weierstrass [-0.5,0.5]10 Sh-Rt-Mul-NS
F12 Schwefel 2.13 [-100,100]10 Mul-NS
F13 Sh extended F8,F2 [-3,1]10 Sh-Mul-NS
F14 Sh Rt Scaffer F6 [-100,100]10 Sh-Rt-Mul-NS

7.3.2 Preliminary Experiments

Firstly, we observed convergences of DE with/without the proposed method with
the parameter values of the preliminary experiment, Exp1-1, in Table 7.3. Its results

were: the performance of (DE + the proposed method) is almost similar to that of
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normal DE or slightly better at the final generation for five benchmark functions,
F3, F8, F11, F12, and F14; critical acceleration effect were observed for other nine

functions.

Table 7.3: Parameter conditions of two preliminary experiments. PS and SR mean
a population size and DE search ranges of optimization variables, respectively. See
section 7.2 for M , N , and G and section 7.3.1 for k.

experiment No. M N k G

Exp1-1 PS×0.25 PS ×0.01 SR×0.05 5

Exp1-2 PS ×0.30 PS ×0.30 SR×0.37 6

Secondly, we tried to optimize rule parameters themselves using DE. Unfortu-

nately, the computational cost of this optimization is quite high, and its calculations
do not finish within several days under the condition of Table 7.1. There is nothing

for it but to do it under the simplified condition of Table 7.4; it is based on the
thought that we should be satisfied if better parameters than those of the prelimi-

nary experiment, Exp1-1, are obtained. The obtained average values of (M , N , k,
and G) of 14 benchmark functions are shown as the preliminary experiment, Exp1-2,

in Table 7.3.

Table 7.4: Simplified experimental conditions for optimizing the parameters of the
proposed method.

population size 100

scale factor (F ) 1.0

crossover rate 0.9

DE operations DE/best/1/bin

max. generations 20

# of trial runs 30

tasks 14 5-D functions in Table 7.2

Contrary to our expectation, an acceleration effect of the preliminary experiment,
Exp1-2, was clearly poorer than that of the Exp1-1, and its performance is almost

similar to that of the normal DE (see Figure 7.2). Of course, it is hard to say that the
parameter values of Exp1-2 is really optimized due to fewer population size, fewer

generations, different dimensions of used benchmark functions, and averaged values

for 14 functions. Even though, the performance difference between two preliminary
experiments with Exp1-1 and Exp1-2 is big. To analyze the difference, we observe

the relationship between parameter values of the proposed method and convergence
characteristics in the next section.

7.3.3 Parameter Values of Our Proposal and Convergence
Characteristics

We observe convergence performances by replacing each of four Exp1-2 parameter
values with those of Exp1-1 whose performance was better than Exp1-2 one by one.
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These experimental conditions are shown in Table 7.5.

Table 7.5: Experimental conditions that combine parameters of two preliminary ex-
periments. PS and SR mean a population size and DE search ranges of optimization
variables, respectively.

experiment No. M N k G

Exp2-1 PS×0.25 PS×0.30 SR×0.37 6

Exp2-2 PS×0.30 PS×0.01 SR ×0.37 6

Exp2-3 PS×0.30 PS×0.30 SR ×0.05 6

Exp2-4 PS×0.30 PS×0.30 SR ×0.37 5

Exp1-1 PS×0.25 PS×0.01 SR ×0.05 5

Exp1-2 PS×0.30 PS×0.30 SR ×0.37 6

Their results are shown in Figure 7.2. Significances between normal DE and (DE

+ proposed method with different Exp conditions in Table 7.5) at the 10th, 100th,
and 200th generation are tested using the Wilcoxon’s signed-rank test and shown in

Table 7.6.

7.4 Discussions

7.4.1 Performance of the Proposed Method

From Table 7.6 and Figure 7.2, there is a tendency that an acceleration performance

becomes better when N and k are small, i.e. Exp1-1, Exp2-2, and Exp2-3. The
methods of DE + the proposed method with bigger values of N and k are better

than normal DE from Table 7.6, but their effectiveness is not big as you see in Figure
7.2. One of its reasons would be that the performance of normal DE is not bad and

converges relatively fast.
When the complexities of given tasks increase, their convergences become slow

and the number of inactive individuals increases. It results to increase the number
of applying a proposed rule that deletes poor inactive individuals and generates new

individuals around the best individuals. According to its increase, we can expect
that the effect of proposed method increases, too.

To confirm this point, we evaluate the proposed method with the same bench-
mark functions with higher complexity. Although there are several ways to increase

a complexity, such as decreasing population size or increasing task dimensions, we
increase the complexities of 14 benchmark functions by expanding search ranges.

Concretely speaking, initial population is randomly generated within the search

ranges in Table 7.2, but restricting search ranges is not applied during DE search.
Non-use of the range restriction causes the individuals to be outside of the range in

Table 7.2, expands the distribution of individuals, and makes DE search difficult.
The convergence results under this condition are shown in Figure 7.3. The

discussion points mentioned in the above became prominent.
Our observation was that it was better to generate new individuals quite near

(normal distribution noise of standard deviation was 5% of search range in our
experiment in section 7.3) around the quite top individuals (top 1% among all
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individuals in our experiment). It means that quicker transition from exploration to
exploitation accelerates search convergences well if we delete poor individuals and

generate new individuals as their alternatives.
In general, this policy looks risky and to have a tendency of premature conver-

gence. However, it is also true that keeping poor individuals for long generations
is not a solution of the premature convergence. Nevertheless, we need further risk

assessments of our proposed method by observing whether it causes premature con-
vergence and how it frequently cause the premature convergence if it surely causes.

Table 7.6: Wilcoxon’s signed-rank test results for the differences between conver-
gence of DE and (DE + our proposed method) at the 10th, 100th, and 200th gen-
eration in Figure 7.2. See Exp numbers in Table 7.5. ** and * mean significance of
(p < 0.01) and (p < 0.05), respectively.

test generation DE vs. F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Exp1-1 ** * ** ** ** **
Exp1-2

at the 10th Exp2-1
Exp2-2 ** * ** ** ** ** ** **
Exp2-3 ** ** * * * **
Exp2-4
Exp1-1 ** ** ** ** ** ** ** ** **
Exp1-2 ** ** ** * * **

at the 100th Exp2-1 ** ** ** ** ** * **
Exp2-2 ** ** ** ** ** ** ** ** **
Exp2-3 ** ** ** ** ** ** ** ** ** ** * **
Exp2-4 ** ** * ** ** * **
Exp1-1 ** ** ** ** ** ** ** ** * **
Exp1-2 ** ** * ** ** ** ** *

at the 200th Exp2-1 ** ** ** ** ** ** * **
Exp2-2 ** ** ** ** ** ** ** ** * ** **
Exp2-3 ** ** ** ** ** ** ** ** ** ** * ** **
Exp2-4 ** ** * ** * ** ** *
Exp1-1 ** ** ** ** ** **
Exp1-2 ** * *

at the 300th Exp2-1 **
Exp2-2 ** ** * * ** **
Exp2-3 **
Exp2-4 ** *
Exp1-1 ** ** ** ** **
Exp1-2 *

at the 400th Exp2-1
Exp2-2 ** ** **
Exp2-3 *
Exp2-4 ** *

7.4.2 Distribution of Individuals

Next, we observe how distributions of all individuals change according to conver-
gence. The below average value of standard deviations for 10-D and 30 trials is used
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as its index at the i-th generation.

σi-th generation =
1

dimensions

dimensions
∑

d=1

(

1

trials

trials
∑

t=1

σidt

)

Figure 7.4 shows the transition of the standard deviation of Figure 7.2. A unique

feature in this figure is the following; when σi-th generation becomes small, i.e. a distri-

bution of whole individuals becomes small, DE search works well and our proposed
method is effective, too; when σi-th generation becomes big, DE convergence is poor

and the proposed method is not effective or a few. Although the same figures for
Figure 7.3 are not posted in this chapter, this feature appeared in the figures clearly.

As σi-th generation is an average standard deviation over dimensions at the i-th gener-
ation of 30 trial runs, the increase of this simplified index does not tell us whether it

happens in whole dimension or in only certain dimension. Through further analyses
in the next step, we may obtain hints to know the difficulty of tasks and switch

search strategies though the analyses

7.5 Chapter Summary

We proposed an idea to accelerate EC search by deleting poor individuals and gen-

erating their alternatives around the best individuals. In this chapter, we observe
the convergence characteristics and a distribution of population by changing param-

eters of the rule. Through the observations, we (1) found that the proposed method

accelerated DE well for almost tasks and did not become worse than normal DE
for other few cases, (2) found the relationship between parameters of the proposed

method and their performance, (3) pointed out the possibility that we can further
improve an acceleration performance by optimizing the parameters and observing

convergence with the optimized parameters, and (4) may be able to obtain new find-
ings that can improve acceleration performance from the observation of distribution

of population.
We would like to continue to analyze the behaviors as described in section

7.4 since there are possibilities of obtaining hints to further improve our proposed
method and new acceleration approaches.
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Figure 7.2: Convergence characteristics of normal DE and (DE+proposed method);
search ranges in Table 7.2 are used. See Table 7.5 for Exp numbers in these graphs.
Used benchmark functions are F1 – F3, F4 – F6, F6 – F9, F10 – F12, and F13 and F14

from left to right and from the top to the bottom.
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Figure 7.3: Convergence characteristics of normal DE and (DE+proposed method);
search ranges in Table 7.2 are NOT used except initialization. See Table 7.5 for Exp
numbers in these graphs. Used benchmark functions are F1 – F3, F4 – F6, F6 – F9,
F10 – F12, and F13 and F14 from left to right and from the top to the bottom.
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Figure 7.4: Transitions of standard deviations of all individuals when parameters of
the proposed method are changed. See Table 7.5 for Exp numbers in these graphs.
Used benchmark functions are F1 – F3, F4 – F6, F6 – F9, F10 – F12, and F13 and F14

from left to right and from the top to the bottom.
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Chapter 8

Chaotic Evolution: A New EC
Algorithm and Framework

8.1 Introduction

Conventional EC algorithms simulate biological phenomena or behaviors to imple-
ment a biological process for optimization. These algorithms encompass two com-

ponents in their search mechanism. One is a search method by a variety of imple-
mentations, and the other is an iterative process. Most of EC algorithms do not

require the optimization problem to have some specific characteristics, and few of
them do not use any mathematical characteristics or mechanisms to make sure al-

gorithm convergence. If we introduce mathematical property or mechanism, such
as chaotic ergodicity, into an optimization iteration, we may be able to implement

new EC algorithms that make sure their convergence partially. It helps to improve
the global convergence characteristics of an algorithm.

In this chapter, we propose a novel EC algorithm that fuses an evolutionary
iteration of EC and an ergodic property of chaos. We call it as Chaotic Evolution

(CE). The CE adopts a mutation operation with simulating chaotic behaviour of
every individual in each dimension. Only when fitness of offspring is better than

that of its parent, the parent will be replaced. To direct search directions of an

individual in each dimension, a new control parameter, direction factor rate (DR) is
proposed. Compared with differential evolution (DE), our proposed CE algorithm

can optimize most of the benchmark problems with a higher convergence speed and
better final solution quality.

For properties of a great practical optimization algorithm, CE has its robust
search capability, parallelizability, simplicity and consistent convergence. First, CE

is designed as a stochastic directed search method. The stochastic directed search is
implemented by simulating chaotic motion with the new parameter DR, which can be

set to a certain rate, a random rate or an adaptive rate, etc. The design of stochastic
directed search and the simulation of chaotic ergodic motion ensure robust search

capability of the proposal. Second, CE uses a population where chaotic perturbation
of the population can be conducted independently to implement parallelizability

of the proposal. The perturbation is conducted by every individual in a chaotic
way. Third, to optimize a certain system, the conventional EC algorithm must

select pertinent algorithm parameters. However, there are population size (PS),

chaotic system parameter (CP ), crossover rate (Cr) and direction rate (DR) in
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CE. Cr can be set to 100% and DR can be randomly set within the range of
(0, 1], so only PS and CP need to be considered. These characteristics ensure the

proposal’s simplicity. The originality of this work is not only to introduce a new EC
algorithm by simulating chaotic ergodic motion for optimization, but also to propose

a new algorithm design philosophy that is to implement a mathematical principle
(i.e. chaotic ergodicity) into a search algorithm to make sure the convergence of an

algorithm.
Following this introductory section, an overview of chaos theory used in EC is

reported in section 8.2. We introduce the novel EC algorithm, Chaotic Evolution

in section 8.3. In section 8.4, experimental evaluations are performed using 12

benchmark functions, the results are compared with DE. Finally, we discuss our
proposed CE and obtained evaluation results in section 8.5. In section 8.6, we

conclude the whole work and some open topics, further opportunities and future

works are presented.

8.2 Chaos Theory Meets Evolutionary Computa-
tion

EC is a field of computational intelligence. It can solve optimization problems that
are difficult to obtain the optimum by using conventional methods. Chaos theory is a

tool and method for describing a nonlinear system, which has many great properties,

such as chaotic ergodicity. Evolution and chaos have more same features in common.
First, the two words, evolution and chaos, are used to refer simultaneously both to

phenomena that need to be explained and to theories that are supported to do the
explanation [101]. Second, there must be an iterative process in both evolution and

chaos. Third, the concept of evolution contributes to discussion of chaos and vice
versa.

There are three directions in current research that chaos is used in EC. They
are local search method, parameter tuning mechanism and new EC algorithm in-

spiration. Chaos is used as a local search method in the memetic algorithm that
benefits from the local search. A chaos search method is used in memetic algorithm

to improve the performance of multi-objective optimization [71]. A chaotic system
is used as a generator to replace the random one in conventional EC [33, 49, 54].

Reference [10] compares optimization performance of random and chaotic genera-
tors by benchmark functions in GA. Numerous examples and statistical tests show

an improvement of GA, when chaotic generators are used to replace the random

one. The scale factor of DE is tuned by the logistic map to improve its perfor-
mance [16, 48]. Some new EC algorithms are inspired by the chaotic property and

phenomenon [37, 73].
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Algorithm 1 Chaotic Evolution. PS: population size; Dim: dimension; D: direction; DR:
direction rate; CP: chaotic parameter; G: generation; maxIter: maximum generation.

1: Generate an initial population.
2: Evaluate the fitness for each individual.
3: /*D and CP initialization*/
4: for i = 1 to PS do
5: for j = 1 to Dim do
6: /*DR as a random value*/
7: if rand[0, 1) < DR then
8: Di,j = −1
9: else

10: Di,j = +1
11: end if
12: CPi,j = rand(0,1)
13: end for
14: end for
15: /*Chaotic Search*/
16: for G = 1 to maxIter do
17: for i = 1 to PS do
18: k=rand(1,Dim)
19: for j = 1 to Dim do
20: if rand[0, 1) < Cr or j == k then
21: mutanti,j = targeti,j ∗ (1 +Di,j ∗ CPi,j)
22: chaotici,j = mutanti,j
23: else
24: chaotici,j = targeti,j
25: end if
26: end for
27: /*Selection*/
28: for i = 1 to PS do
29: if f(chaotici) < f(targeti) then
30: replace targeti with chaotici
31: end if
32: end for
33: end for
34: /*D and CP update*/
35: for i = 1 to PS do
36: for j = 1 to Dim do
37: CPi,j = ChaoticSystem(CPi,j)
38: if rand[0, 1) < DR then
39: Di,j = −1
40: else
41: Di,j = +1
42: end if
43: end for
44: end for
45: end for
46: return the optimum

83



8.3 A Chaotic Ergodicity Based Evolutionary Al-
gorithm

8.3.1 Concept of the Proposal

Exploitation and exploration functions of DE depend on differential vector produc-

tion, population distribution, crossover rate and the scale factor parameter setting.
It is easy to fall into premature convergence and the evolution speed becomes slow,

when it has a lack of population diversity. This is one of the drawbacks of DE.
Several strategies for improving DE performance have been proposed, such as SaDE

[88], JADE [89], jDE [7] and JASaDE [25]. Their strategies include: setting DE pa-
rameters randomly [7], choosing better strategies from search histories [88], creating

new mutation and crossover strategy [89], and fusing those strategies together [25].
Approaches for improving DE performance are roughly categorized into three: pa-

rameters tuning methods, strategy setting methods, i.e. strategy pool architecture,
and strategy selection methods.

We propose to use chaotic vector to solve the low population diversity problem

mentioned above and establish a new EC search framework and an optimization
principle by simulating chaotic ergodic motion in a search space. We call this novel

population-based algorithm as Chaotic Evolution (CE). The principle of CE is to
simulate chaotic ergodic motion for implementing search. CE generates a mutant

vector from a target vector with a chaotic system and a chaotic vector by crossing
the mutant vector and the target vector in its algorithm framework. CE reserves

the improved chaotic vector into the next generation by greedy selection method.
There are three new concepts, i.e., direction factor, chaotic parameter and chaotic

vector in CE.
Suppose there is a best point in a closed bottle (a global optimum in a search

space), an air molecule (an individual) randomly moves in the closed bottle for a
long time. Because of the molecular motion with ergodic property, it may visit the

best point in the closed bottle at least once (finding the global optimum). In the
process, the motion with ergodic property guarantees the search convergence. This

is an ideal model and simple explanation of the optimization process of our proposal.

Table 8.1: 12 benchmark functions used in experimental evaluations.
(Uni=Unimodal, Mul=Multimodal, GB=Global on Bounds, NS=non-separable,
and S=separable.)
No. Name Form Range Optimum Characters

F1 Sphere f(x) =
∑n

i=1 x
2
i [-100,100] -450 Uni-S

F2 Schwefel 1.2 f(x) =
∑n

i=1(
∑i

j=1(xj))
2 [-100,100] -450 Uni-NS

F3 Elliptic f(x) =
∑n

i=1(10
6)

i−1

n−1x2i [-100,100] -450 Uni-NS

F4 F2 with Noise f(x) =
∑n

i=1(
∑i

j=1(xj))
2 ∗ (1 + 0.4|N(0, 1)| [-100,100] -450 Uni-NS

F5 Schwefel 2.6 GB f(x) = Max|Aix−Bi| [-100,100] -310 Uni-NS
F6 Rosenbrock f(x) = 100(x21 − x2)

2 + (1− x1)
2 [-100,100] 390 Mul-NS

F7 Griewank f(x) = 1 +
∑n

i=1
x2

i

4000 −∏n
i=1 cos(

xi√
i
) [0,600] -180 Mul-NS

F8 Ackley GB f(x) = −20 exp(−0.2( 1
n

∑n
i=1 x

2)
1

2 )− exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e [-32,32] -140 Mul-NS

F9 Rastrigin f(x) = (10n) +
∑n

i=1(x
2
i − 10 cos(2πxi)) [-5,5] -330 Mul-S

F10 Weierstrass f(x) =
∑n

i=1(
∑kmax

k=0 [ak cos(2πbk(xi + 0.5))] − n
∑kmax

k=0 [ak cos(2πbk ∗ 0.5)]) [-0.5,0.5] 90 Mul-NS
F11 Schwefel 2.13 f(x) =

∑n
i=1(

∑n
j=1(aij sinxi + bij cos xi))

2 [−100, 100] -460 Mul-NS

F12 Expanded F8F2 f(x) = F8F2(x1, x2, ..., xn) = F8(F2(x1, x2) + ...+ F8(F2(xn, x1)) [-3,1] -130 Mul-NS
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8.3.1.1 Chaotic Vector

Generating a chaotic vector is the crucial operation in CE. Amutant vector (mutanti)

is generated from a target vector (targeti) by simulating the chaotic motion in a

search space (Eq. (8.1)). A chaotic vector (chaotici) is generated by crossing the
target vector and the mutant vector (Eq. (8.2)). In Eq. (8.1), Di is the direction

factor, which value is either +1 or −1; CPi is the chaotic parameter, which is ini-
tially set to random value within the range of (0, 1] and is updated every generation

by a chaotic system. A chaotic vector implements the actual search function of CE.

mutanti = targeti ∗ (1 +Di ∗ CPi) (8.1)

chaotici = Crossover(targeti;mutanti) (8.2)

There are two strategies to generate a chaotic vector, one is with the crossover

operator, on the contrary, the other is without it (i.e. mutanti = chaotici). It
means we have two CE implementation methods, i.e., with and without a crossover

operation.

8.3.1.2 Direction Factor

The direction factor (Di) is a new control parameter in our proposal. It decides

the search direction of every individual in each dimension. We define a direction
factor rate (DR) to control the Di percentage of positive and negative values. For

example, if the DR = 0.9, it means 90% of Di is +1 and 10% of Di is −1, when
generating a mutant vector from a target vector.

In this chapter, we set the DR as a random value, however, the direction factor
rate setting method is not limited to that. A static rate or an adaptive rate ac-

cording to the search condition, or other setting methods, can be as well as used by
considering the output distribution of a chaotic system.

Although it is difficult to make a proper setting ofDR, CE keeps the DR concept
for its further investigation in two perspectives. One is that we can obtain some

potential knowledge about the optimized problems from the statistical results of

DR. The other is that we can develop a variety of CE algorithms by considering
the different DR setting.

8.3.1.3 Chaotic Parameter from Chaotic System

The chaotic parameter (CP ) from a chaotic system decides the CE search range

in a search space. It is set initially to random value within range of (0, 1] , and is
updated by a chaotic system in every generation. When the output of a chaotic

system is beyond the range of (0, 1], we should consider to project this value within
(0, 1]. Chaotic parameter value influences the exploration and exploitation functions

of CE algorithm.
We use the logistic map (Eq. (2.25)) as the chaotic system to update the chaotic

parameter. Actually, the rule for updating the CP is not limited to the logistic map.
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All the nonlinear systems that can show the chaotic output characteristic can be as
the update rule. This strategy shows the scalability of our proposal. It is another

original contribution of this method.

8.3.2 Proposed Algorithm

As mentioned above, our proposed CE algorithm is shown in Algorithm 1. The
following description outlines the main steps of a CE implementation.

1. Line 1 is for generating initial population and line 2 is for evaluating for each
individual of the population.

2. From lines 4 to 14, chaotic parameter (CP ) and search direction (D) are
initialized with rand(0, 1] and {+1,−1}, respectively.

3. It is the main search part of CE algorithm from lines 16 to 33. Line 21 shows
the mutant vector production. From the lines 19 to 26, it is the crossover and

mutation operations of CE. It is the selection operation from line 28 to 32,
and only a new generated chaotic vector needs a fitness evaluation.

4. Lines 35 to 44 shows the process of updating parameters CP and D in each
generation.

5. Line 46 returns the optimum.

8.4 Experimental Evaluation

8.4.1 Experimental Conditions

To investigate our proposals’ performance, we evaluate CE using 12 benchmark

functions comparing with DE. The definition of the benchmark functions, range,
the global optimum and characteristics are listed in Table 8.1. Some of them are

adopted from [104].
We test each benchmark function up to 105 generations with 50 trial runs. Fig-

ures 8.1 and 8.2 show the average convergence curves of the best fitness values of 50
trial runs for all 12 benchmark functions. Table 8.2 shows their means and variances,

the bold font shows that our proposed chaotic evolution is significantly better than
DE by Wilcoxon signed rank test (p < 0.05).

To investigate the chaotic evolution optimization performance by the same chaotic
system setting with the different system output behaviours, we set the parameter

of Eq. (2.25) as µ = 1, 3, and 4, i.e., convergence output, analogical chaotic output
and chaotic output. Abbreviations used in Figures 8.1, 8.2 and Table 8.2 are given

in Table 8.3.

Experimental parameters are set in the Table 8.4. Those value were used as
better DE parameter setting for some of the benchmarks in [81]. The evaluation is

conducted under a hard search condition; only 50 individuals search 30-D functions.
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Table 8.2: Means at the 105th generation of 50 trail runs of 12 benchmark functions.
The bold font numbers show that CE is better than DE by Wilcoxon signed rank
test (p < 0.05).

Methods F1 F2 F3 F4 F5 F6
DE 7.85E+03 1.15E+04 5.45E+07 1.32E+04 7.50E+03 8.97E+08

CE-1-01 -4.35E+02 -2.10E+02 1.47E+05 4.07E+04 -1.68E+02 3.32E+05
CE-3-01 -4.47E+02 -4.45E+02 5.65E+03 -4.48E+02 -2.89E+02 5.98E+03
CE-4-01 -4.48E+02 -4.47E+02 4.08E+03 -4.42E+02 -2.90E+02 1.23E+04
CE-1-03 3.53E+04 6.45E+04 3.37E+08 8.01E+04 1.91E+04 1.17E+10
CE-3-03 2.57E+04 4.99E+04 1.59E+08 6.16E+04 1.64E+04 8.88E+09
CE-4-03 2.56E+04 4.54E+04 1.16E+08 4.99E+04 1.52E+04 8.82E+09
CE-1-05 5.56E+04 9.32E+04 1.08E+09 1.09E+05 2.27E+04 2.16E+10
CE-3-05 4.87E+04 8.70E+04 7.56E+08 1.02E+05 2.20E+04 1.86E+10
CE-4-05 4.70E+04 7.95E+04 6.63E+08 9.01E+04 2.08E+04 1.81E+10
CE-1-07 6.32E+04 1.06E+05 1.66E+09 1.26E+05 2.41E+04 2.72E+10
CE-3-07 6.06E+04 1.08E+05 1.44E+09 1.30E+05 2.39E+04 2.61E+10
CE-4-07 5.87E+04 1.05E+05 1.32E+09 1.17E+05 2.30E+04 2.48E+10
CE-1-09 6.41E+04 1.23E+05 1.99E+09 1.38E+05 2.46E+04 2.84E+10
CE-3-09 6.39E+04 1.25E+05 1.93E+09 1.42E+05 2.47E+04 2.81E+10
CE-4-09 6.34E+04 1.17E+05 1.88E+09 1.33E+05 2.38E+04 2.76E+10

CE-1-random 1.30E+03 1.94E+03 3.23E+07 7.31E+04 4.55E+03 1.82E+07
CE-3-random -4.50E+02 -4.50E+02 -4.50E+02 -4.50E+02 -3.10E+02 4.18E+02
CE-4-random -4.50E+02 -4.50E+02 -4.50E+02 -4.50E+02 -3.10E+02 4.18E+02

Methods F7 F8 F9 F10 F11 F12
DE -1.04E+02 -1.26E+02 -2.25E+02 1.12E+02 1.54E+05 4.77E+01

CE-1-01 -1.79E+02 -1.32E+02 -4.20E+01 1.17E+02 1.58E+06 -8.06E+01
CE-3-01 -1.80E+02 -1.40E+02 -3.30E+02 9.00E+01 1.03E+06 -1.16E+02
CE-4-01 -1.80E+02 -1.40E+02 -3.30E+02 9.00E+01 6.70E+05 -1.16E+02
CE-1-03 1.42E+02 -1.20E+02 2.05E+01 1.26E+02 1.54E+06 2.82E+03
CE-3-03 5.61E+01 -1.22E+02 -1.24E+02 9.10E+01 7.26E+05 1.78E+03
CE-4-03 5.50E+01 -1.23E+02 -1.77E+02 9.01E+01 5.17E+05 1.70E+03
CE-1-05 3.25E+02 -1.20E+02 4.91E+01 1.31E+02 1.53E+06 9.34E+03
CE-3-05 2.63E+02 -1.20E+02 3.45E+00 9.58E+01 6.01E+05 6.48E+03
CE-4-05 2.48E+02 -1.20E+02 -5.41E+01 9.30E+01 4.65E+05 6.50E+03
CE-1-07 3.94E+02 -1.20E+02 6.81E+01 1.37E+02 1.52E+06 1.40E+04
CE-3-07 3.71E+02 -1.20E+02 7.61E+01 1.05E+02 6.15E+05 1.18E+04
CE-4-07 3.54E+02 -1.20E+02 3.16E+01 1.01E+02 4.91E+05 1.12E+04
CE-1-09 4.02E+02 -1.20E+02 7.48E+01 1.39E+02 1.53E+06 1.67E+04
CE-3-09 4.00E+02 -1.20E+02 8.80E+01 1.19E+02 6.81E+05 1.60E+04
CE-4-09 3.96E+02 -1.20E+02 7.25E+01 1.11E+02 5.45E+05 1.57E+04

CE-1-random -1.63E+02 -1.22E+02 -1.82E+02 1.30E+02 -1.63E+02 6.95E+01
CE-3-random -1.80E+02 -1.40E+02 -3.30E+02 9.00E+01 6.33E+05 -1.17E+02
CE-4-random -1.80E+02 -1.40E+02 -3.30E+02 9.00E+01 2.71E+05 -1.18E+02
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Figure 8.1: Average convergence curves of 50 trial runs for F1-F6.
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Figure 8.2: Average convergence curves of 50 trial runs for F7-F12.
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Table 8.3: Abbreviations used in Figures 8.1 and 8.2, and Table 8.2.
abbreviations Meaning
DE standard DE
CE-1 chaotic evolution with CP updated by Eq. (2.25), µ = 1
CE-3 chaotic evolution with CP updated by Eq. (2.25), µ = 3
CE-4 chaotic evolution with CP updated by Eq. (2.25), µ = 4

Table 8.4: DE and CE experiment parameters setting.
population size 50
max. search generation 105

dimensions of benchmark functions, D 30
# of trial runs 50

DE DE/best/1/bin
scale factor F 0.3
crossover rate 0.7

CE direction factor rate DR 0.1,0.3,0.5,0.7,0.9,random
CE crossover rate 0.7,1.0

8.4.2 Experimental Results

From Figures 8.1 and 8.2, and Table 8.2, we can conclude as follows: (1) CE-3
and CE-4 methods are better than CE-1 method, (2) CE-3 and CE-4 performances

are almost the same for most of benchmark functions, and (3) our proposed CE is
significantly better than DE in the final results, except by all methods in F11, and

the CE-1 method in F4, F9 and F10.

8.5 Discussions

8.5.1 Chaotic Evolution Work Mechanism

Combination of chaotic ergodicity and evolutionary iteration is a characteristic of
CE algorithm’s optimization principle and framework. There are three techniques

to support CE works well. First, the mutation operation of CE is based on a chaotic

system. That means CE optimization performance highly depends on the chaotic
system output and its distribution. The ergodicity supports that the CE individuals

can visit any locations of a search space, which makes sure the convergence of
CE algorithm. Second, a parent individual is replaced by its offspring only if the

fitness of offspring is better than that of its parent. It is a greedy criterion. So the
best solution is kept and the whole population is towards to the better evolution.

However, other selection methods can be as well as used in CE. Third, we introduce
a new control parameter, DR, to guide its search direction for every individual in

each dimension. CE optimization performance also depends on the DR setting.
The offspring of CE (chaotic vector) is generated by crossing the target vector

and the mutant vector, and the mutant vector depends on a chaotic system. CE
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optimization performance depends on the chaotic parameter from a chaotic system
in the view points of global exploration and local exploitation. When its value is

larger, the chaotic vector searches beyond the target vector and conducts the global
exploration. On the contrary, when its value is smaller, the chaotic vector searches

around the target vector and conducts the local exploitation. However, the offspring
of DE depends on the base vector and the differential vector, which comes from two

random vectors. Its search performance of global exploration and local exploitation
depends on the population distribution. This is the main mechanistic difference

between CE and DE.

8.5.2 Optimization Performance of Chaotic Evolution

The total number of fitness evaluations in CE is the same as that in DE. CE algo-

rithm calls a fitness function at two places. One is after population initialization,

and all individuals need to be evaluated by a fitness function. The other is when
the chaotic vector is compared with the target vector; the chaotic vector needs to

be evaluated by a fitness function (Algorithm 1).
Our evaluation results have shown that our proposed CE outperformed DE ex-

cept some cases. First, as these results were obtained from only 12 benchmark
functions, it cannot strongly prove that CE must outperform DE though the best

performance was obtained at least for the 11 benchmark functions. Second, the
CE-3 and CE-4 methods were better than the CE-1 methods, which shows that the

logistic map with the chaotic outputs and the analogical chaotic outputs can obtain
better optimization performances.

Table 8.5: Distribution characteristics of a logistic map (µ = 4), a quadratic-like
distribution ( N(0, 0.152) +N(1, 0.152)) and a uniform distribution.

Interval logistic quadratic-like uniform
(0, 0.1] 18.60% 22.80% 11.20%

(0.1, 0.2] 7.50% 16.80% 9.70%
(0.2, 0.3] 8.60% 6.10% 9.60%
(0.3, 0.4] 7.70% 2.30% 9.30%
(0.4, 0.5] 5.10% 0.40% 11.30%
(0.5, 0.6] 6.20% 0.80% 11.80%
(0.6, 0.7] 7.00% 1.60% 9.80%
(0.7, 0.8] 8.90% 6.70% 9.10%
(0.8, 0.9] 9.70% 15.90% 9.40%
(0.9, 1] 20.70% 26.60% 8.80%

We conduct an additional experiment to investigate the relationship between
an output distribution of a chaotic system and CE optimization performance. The

output distribution of the logistic map has a characteristic that most of the out-
puts cover the intervals [0, 0.1] and [0.9, 1] (Figure 8.5). From the exploration

and exploitation viewpoint, this characteristic decides the CE’s exploration and
exploitation functions. To confirm this hypothesis, we compare the optimization

performance by CE with chaotic parameter CP from a logistic map (µ = 4), a
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quadratic-like distribution ( N(0, 0.152) + N(1, 0.152)) and a uniform distribution.
We abbreviate the CE algorithms with CP set by these distribution as CE-logistic,

CE-quadratic and CE-uniform, respectively.
The experiment uses 10-D functions from Table 8.1 with 50 individuals, 100

generations and 30 running trails. Because most of the benchmark functions obtain
the global optimum by the 100th generation, we conduct as Wilxocon signed rank

test at the 10th generation. Table 8.6 shows means of 12 benchmark functions and
results of Wilxocon signed rank test (p < 0.05). Most of the CE-logistic method

significantly outperforms CE-uniform, and significant difference could not found
between CE-logistic method and CE-quadratic method. It indicates that output

distribution characteristic of the logistic map decides optimization performance of
CE algorithm. CE-quadratic and CE-uniform outperform DE in some benchmark

tasks, it indicates that evolution strategy-like algorithm (CE-quadratic and CE-

uniform) can obtain better optimization performance.

Table 8.6: Means of CE algorithm with CP generated by a logistic map (µ = 4)
(CE-logistic), a quadratic distribution (N(0, 0.152) + N(1, 0.152)) (CE-quadratic),
a uniform distribution (CE-uniform) and DE. The marks ‡ and ‡ mean CE-logistic
method significantly outperforms CE-quadratic and CE-uniform, respectively, by
Wilcoxon signed test (p < 0.05). The marks △ and � mean CE-quadratic and
CE-uniform outperform DE, respectively, by Wilcoxon signed test (p < 0.05).

Fucntion CE-logistic CE-quadratic CE-uniform DE
F1 -342.18 ‡ -134.26 -74.69 -127.17
F2 20.41 ‡ 340.60 △ 547.68 � 934.95
F3 234550.49 ‡ 446507.86 △ 1485224.95 2223488.16
F4 -13.31†‡ 107.20△ 299.30 � 1288.93
F5 335.98 ‡ 865.73 △ 1146.03 � 1641.78
F6 1950824.34 2589855.58 △ 4794977.98 3731426.17
F7 -178.12 ‡ -176.27△ -175.62 -176.09
F8 -135.68 ‡ -134.63△ -132.87 -133.00
F9 -320.12 ‡ -316.09△ -306.51 � -280.64
F10 92.09 ‡ 92.94 △ 93.81 � 94.90
F11 85301.58 91033.36 88215.97 89324.51
F12 -124.42 ‡ -124.61 -123.47 -124.01

8.5.3 Chaotic Evolution Parameters

In CE, there are some parameters and a chaotic system should be set and selected;

one is direction factor rate, one is crossover rate, and one is a chaotic system equa-
tion. Those settings decide the optimization performance of CE.

Direction factor rate is a new control parameter in our proposal, and it guides
the search direction in the whole search space. From the Table 8.2, the proposed

methods with DR = 0.1 and DR = random can significantly better than DE. The
optimum of benchmark functions in our evaluation are vector 0̄, i.e., {0, 0..., 0}. We

set DR to 0.1, 0.3, 0.5, 0.7, 0.9, and random, which means that the 10, 30, 50, 70,
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90 and random percent values in the whole dimension of an offspring will become
smaller than its parent in one generation. This is the reason why CE performance

with the less DR value setting becomes better.
From the observation above, the random direction rate is a robust setting for all

the benchmark tasks. However, for an unknown problem, which DR value is better,
it should depend on the landscape and problem complexity. We need to investigate

this issue in the future. Using an adaptive DR setting is also a valuable study in
our future work.

Crossover rate borrows from the DE, and whether it is a necessary parameter
for CE is an issue of further investigation. Crossover operation is borrowed from

GA originally, and its work principle is to simulate crossover phenomenon of the
biological gene. However, investigation of crossover operation for CE is a valuable

topic for deeply and better understanding the working mechanism of CE.

Chaotic system selection shows the scalability of chaotic evolution algorithm.
Chaotic system selection is a key step to make a better CE algorithm, and the

chaotic system should be with the following properties. First, it must be with the
chaotic output or analogy the chaotic output. Second, it must be easy to obtain its

output, i.e., with the less computational complexity. The different chaotic system
selection must result in the different optimization performance. It is a valuable work

to study which chaotic system can obtain the best optimization performance to a
certain landscape, or a category of benchmarks, or real world applications. Our

future work will involve this topic.

8.6 Chapter Summary

In this chapter, a new EC algorithm, Chaotic Evolution has been introduced and

investigated preliminarily. A chaotic vector is generated from a chaotic system
to implement exploration and exploitation functions of CE algorithm based on the

chaotic ergodic property. By introducing this property into an evolutionary iterative

optimization process, some new control parameters and operating principles of CE
algorithm were proposed, analyzed and studied.

The main motivation for the current work is introducing a mathematical mecha-
nism (chaotic ergodic property) into an evolutionary optimization process to design

a new EC algorithm. Our proposed CE outperforms DE and some of its variants
in the convergence speed and solution quality from the experimental results. Di-

rection factor rate, crossover rate, chaotic system and its parameter are the related
parameter setting problems that we have discussed in this chapter. Further studies

are still required to investigate their benefits, weaknesses, and limitations. In the
search mechanism of CE, individuals search for the optimum independently. That

means CE algorithm does not use the population information, such as population
distribution, fitness landscape, etc., to enhance its optimization performance. We

will consider this drawback to improve CE performance in the future.
The main contribution of this chapter is establishing a novel search framework

that fuses the chaotic ergodicity and evolutionary iteration. We point out that the

chaos theory is used not only to describe and explain a nonlinear system, but also
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to implement a variety of optimization algorithms based on its ergodic property.
Possible directions for future work include chaotic system selection, setting method

investigation of the direction factor rate and theoretical study of crossover rate
necessity, etc. We will conduct these works in the future.
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Chapter 9

Conclusion and Future Works

9.1 Main Contributions

Enhancing and improving search capability and optimization performance of evolu-
tionary computation (EC) algorithms is a promising research subject in EC commu-

nity. In this dissertation, we proposed six novel approaches on this subject within
three research directions and discussed them. They include:

1. approximating fitness landscape in lower dimensional search space and elite
local search,

2. Fourier analysis on fitness landscape and its enhancement methods,
3. Fourier niche method for multimodal optimization,
4. triple and quadruple comparison based interactive differential evolution (IDE)

and differential evolution (DE),
5. EC acceleration by accelerating transition from exploration to exploitation,

and
6. a new EC algorithm – chaotic evolution.

Fitness landscape approximation, new search mechanism development and new EC
algorithm design are primary three research directions in this dissertation.

The fitness landscape approximation method tries to obtain knowledge of prob-
lem structure and EC search condition in a search space. Once we obtain these

kinds of information, we can design special search strategies and local search meth-
ods to enhance search capability of EC algorithms. In this dissertation, we originally

proposed two methods to achieve this objective. The one is to approximate fitness
landscape in a lower dimensional search space, the other is to use Fourier analysis

to obtain frequency information in a search space for approximating fitness land-
scape. A novel niche method for multimodal optimization, Fourier niche method,

was proposed and initially investigated by the same principle of obtaining frequency

information in a search space. The philosophy of these two approaches presents orig-
inality and innovation of this dissertation. Proposed methods and search strategies

are not limited within any special EC algorithm, but it is general to all of them.
This is also a feature of this work.

Developing a new search mechanism is the second research direction of this dis-
sertation. Since user fatigue is a serious issue of applying interactive evolutionary

computation (IEC), reducing the user fatigue is a practical requirement for its ap-
plications. In this dissertation, we developed two new comparison mechanism in
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canonical DE algorithm, we call the first one as a triple and quadruple comparison
method that can not only improve IDE performance as well as reducing user fa-

tigue, but also DE search capability. The second one is an EC acceleration method
by accelerating transition from exploration to exploitation by monitoring inactive

poor individuals. These two acceleration methods present the originality of this
dissertation in the second research direction.

It is a feature that inspiration of all EC algorithms comes from physical, mathe-
matical or biological phenomena and work schemes. To obtain philosophies behind

these phenomena and work schemes is a forever and not yet a completed subject.
Chaotic ergodicity is a great property to be used for implementing a search mech-

anism in an iterative EC process. We used it to develop a new EC algorithm. we
call it as Chaotic Evolution that fuses chaotic ergodicity and evolutionary iteration.

The design philosophy of chaotic evolution presents the main originality and contri-

bution in this dissertation. We hope that it can enrich researches of EC community
by further studying and investigating the chaotic evolution algorithm principle and

philosophy behind ergodicity and iteration.

9.2 Limitations

As our proposed acceleration methods need additional time to approximate an

IEC/EC fitness landscape, their computational complexities increase. The perfor-
mances of our acceleration methods is a biggest issue for their applications. Al-

though our proposed methods show better performance than previously proposed
acceleration methods, their performances are remained critical issues for their ap-

plications. When we apply them to concrete applications, we must consider their
performances taking account of a balance between their computational complexities

and their convergence speed. It restricts applications of these methods. Especially
in the Fourier analysis method, we have to re-sample individuals and conduct DFT

to obtain frequency information. It needs more computational time for high dimen-

sional problems. Computational time is a primary key that may restrict practical
applications of these methods.

Population diversity is a key consideration for obtaining the final global optimum
in IEC/EC. Acceleration methods may lead to a premature convergence to a local

optimum under special landscape conditions. When the almost same elite is inserted
generation by generation, our proposed methods may lead to premature convergence.

Selection of an elite strategy is a considerably important topic when our proposed
acceleration methods is applied to concrete IEC/EC applications.

When we introduce some new mechanisms to extent EC algorithms, additional
fitness evaluations or statistical metrics calculations need more computational time.

Even though the proposed methods, such as triple and quadruple comparisons and
search transition from exploration to exploitation, can significantly enhance the

performance of the original algorithm, the additional time used in some process is a
main problem for their applications, too, especially for IEC applications. Their real

world applications will be involved for further investigation.

Chaotic evolution is a new proposed EC algorithm in this dissertation; however,
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its work principles are still not well clear. Distribution of the outputs from a chaotic
system decides the optimization performance of chaotic evolution. We do not know

whether there are some hidden philosophy and effective mechanism behind the work
scheme of chaotic evolution; it should be studied and investigated in the future.

Other limitation of our proposals is practicability and effectiveness in a real world
applications. We evaluated our proposed approaches in some benchmark functions.

They are well explored and suitable for algorithm performance assessment. However,
there are more challenging characteristics in real world problems, such as dynamical

systems, large-scale problems, constraint problems, etc. How about the optimization
performance when we apply our proposed six approaches in real world applications.

We will conduct this work in the future.

9.3 Future Works

We proposed three research directions and six concrete approaches to study the

subject on EC and IEC algorithm enhancement and acceleration. We should develop
more concrete approaches to enrich the contents of these three research directions.

We should especially concentrate on the following works and research topics for
concrete methods reported in this dissertation.

It is an initial theoretical work to approximate fitness landscape in lower dimen-
sional search space. Theoretical research is but one part of this scientific research.

The ultimate objective of our research is to apply this novel method and technique
to actual applications with societal benefit. We conducted simulation evaluations

to compare characteristics of several methods with multiple different initializations
under the same experimental conditions. In the next step, we should quantitatively

evaluate IEC user fatigue and collect basic experimental data together with con-

vergence experiments’ results of this work. After then, we need to conduct human
subjective tests with human IEC users, evaluate user fatigue and acceleration per-

formance synthetically, and conclude the evaluations of the proposed methods. It is
important to obtain conclusions through its application and directions as to how we

can improve our work. We expect that these developments will occur on the topics
such as selection of linear or nonlinear model, actual interpolation or approximation

methods used and expression of regression space.
In the Fourier analysis on fitness landscape study, we can increase precision with

which we approximate fitness landscapes and improve acceleration performance by
using elite that is located closer to the global optimum by using multiple primary

frequency components, although we used only one primary frequency component in
our experiments of this work. Using multiple primary frequency components will

be a topic of future research. We expect that it may be possible to extend the
proposed approach into evolutionary multi-objective optimization. That is, unlike

with conventional Pareto concept, we may be able to handle multiple objectives in

one domain, i.e, the frequency domain, by projecting each objective landscape into
its corresponding frequency domain. A further investigation of this idea will form

the basis of another future study in multi-objective optimization. Another topic is
wavelets transform can be applied in this analysis method, we will investigate it in
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the future.
The frequency resolution setting is a successful factor for Fourier niche method.

The lower frequency resolution cannot distinguish high frequency in an original
search space. We have to apply different frequency resolution settings in Fourier

niche approach for discovering a correct frequency for an unknown landscape. It is
the best way to set a proper frequency resolution to obtain a wide frequency scale.

This is a topic in our future work. The search radius is an important parameter for
success of the proposal. If the search radius is large, elite may escape from peak

location by chance, on the contrary, it will lead a slow convergence when it is too
small. Adaptive tuning search radius value for each elite may be the best way to

solve this problem.
In the triple and quadruple comparison based DE and IDE study, we conducted

simulation evaluations as well to compare the characteristics of several methods with

multiple different initializations under the same experimental conditions. In the next
step, we should quantitatively evaluate IDE user fatigue with a largest population

size that is hard for a human being to memorize and collect basic experimental data
together with convergence experiment results in this work. After that, we need to

conduct human subjective tests with human IDE users, evaluate user fatigue and
acceleration performance synthetically, and thus conclude our evaluation of methods

proposed here.
In the study of EC acceleration method by accelerating transition from explo-

ration to exploitation, parameter setting of the proposal is an important factor
to obtain a better acceleration performance. Development of an adaptive tuning

method for parameters by observing search condition is an effective way to improve
this method. Other possibility is to obtain new acceleration methods by observing

a population distribution.
The main contribution of chaotic evolution is introducing a novel evolutionary

optimization algorithm that fuses chaotic ergodicity and evolutionary iteration. Pos-

sible directions for future work include chaotic system equation selection, direction
factor rate setting method investigation and crossover rate necessity issue. We will

conduct these works in the future.
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Appendix: Benchmark Functions

F1:Sphere Function

f(x) =
∑n

i=1 x
2
i

Properties: x ∈ [−5.12, 5.12], uni-modal, separable

F2: Rosenbrock Function
f(x) = 100(x2

1 − x2)
2 + (1− x1)

2

Properties: x ∈ [−2.048, 2.048], multi-modal, non-separable
F3: Step Function

f(x) =
∑n

i=1⌊xi⌋
Properties: x ∈ [−5.12, 5.12], uni-modal, separable

F4: Quantic Function
f(x) =

∑n
i=1 ix

4
i +Gauss(0, 1)

Properties: x ∈ [−1.28, 1.28], uni-modal, separable
F5: Shekel’s Foxholes Function

f(x) = [0.02 +
∑25

j=1
1

j+
∑

2

i=1
(xi−aij)6

]−1

Properties: x ∈ [−65.536, 65.536], multi-modal, separable

F6: Rastrigin Function
f(x) = (10n) +

∑n
i=1(x

2
i − 10 cos(2πxi))

Properties: x ∈ [−5.12, 5.12], multi-modal, separable
F7: Schwefel 2.26 Function

f(x) =
∑n

i=1(−xi sin(
√

|xi|))
Properties: x ∈ [−512, 512], multi-modal, separable

F8: Griewank Function
f(x) = 1 +

∑n

i=1
x2

i

4000
−∏n

i=1 cos(
xi√
i
)

Properties: x ∈ [−512, 512], multi-modal, non-separable

F9: Schaffer 1 Function

f(x) = 0.5 +
sin2(

√
(x2

1
+x2

2
))−0.5

[1.0+0.001(x2

1
+x2

2
)]2

Properties: x ∈ [−100, 100], multi-modal, non-separable
F10: Schaffer 2 Function

f(x) = (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 1.0]
Properties: x ∈ [−100, 100], multi-modal, separable

F11: Schwefel 2.22 Function
f(x) =

∑n
i=1 |xi|+

∏n
i=1 |xi|

Properties: x ∈ [−10, 10], uni-modal, non-separable
F12: Schwefel 1.2 Function

f(x) =
∑n

i=1(
∑i

j=1(xj))
2

Properties: x ∈ [−10, 10], uni-modal, non-separable
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F13: Hartman-3 Function
f(x) = −

∑4
i=1 ci exp[−

∑3
j=1 aij(xj − pij)

2]

Properties: x ∈ [0, 1], n = 3, multi-modal, non-separable
a[4][3] = {3, 10, 30, 0.1, 10, 35, 3, 10, 30, 0.1, 10, 35}
c[4] = {1, 1.2, 3, 3.2}
p[4][3] = {0.3689, 0.1170, 0.2673, 0.4699, 0.4387, 0.7470,
0.1091, 0.8732, 0.5547, 0.038150, 05743, 0.8828}
F14: Step Function

f(x) =
∑n

i=1(⌊xi + 0.5⌋)2
Properties: x ∈ [−10, 10], uni-modal, separable

F15: Beale Function
f(x) = (1.5− x1 + x1x2)

2+(2.25− x1 + x1x
2
2)

2+(2.625− x1 + x1x
3
2)

2

Properties: x ∈ [−4.5, 4.5], n = 2, uni-modal, non-separable

F16: Kowalik Function
f(x) =

∑11
i=1[ai −

x1(bi+bix2)
b2i+bix3+x4

]2

Properties: x ∈ [−5, 5], n = 4, multi-modal, non-separable

F17: Carnel-Back Function
f(x) = 4x2

1 − 2.1x4
1 +

1
3
x6
1 + x1x2 − 4x2

2 − 4x4
2

Properties: x ∈ [−5, 5], multi-modal, non-separable
F18: Branin Function

f(x) = (x2 − 5.1
4π2x

2
1 +

5
π
x1 − 6)2 + 10(1− 1

8π
) cos(x1) + 10

Properties: x ∈ [−5, 10] ∗ [0, 15], multi-modal, non-separable

F19: Goldstein-Price Function
f(x) = [1 + (x1 + x2 + 1)2∗(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]∗

[30 + (2x1 − 3x2)
2∗(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

Properties: x ∈ [−2, 2], multi-modal, separable
F20: Hartman-6 Function

f(x) = −
∑4

i=1 ci exp[−
∑6

j=1 aij(xj − pij)
2]

Properties: x ∈ [−2.048, 2.048], n = 6, multi-modal, non-separable

F21: Elliptic Function
f(x) =

∑n
i=1(10

6)
i−1

n−1x2
i

Properties: x ∈ [0, 1], uni-modal, non-separable
F22: Schwefel 1.2 Function with Noise

f(x) =
∑n

i=1(
∑i

j=1(xj))
2 ∗ (1 + 0.4|N(0, 1)|)

Properties: x ∈ [−100, 100], uni-modal, non-separable

F23: Schwefel 2.6 Function
f(x) = max{|x1 + 2x2 − 7|, |2x1 + x2 − 5|}
Properties: x ∈ [−100, 100], uni-modal, non-separable
F24: Ackley Function

f(x) = −20 exp(−0.2( 1
n

∑n
i=1 x

2)
1

2 )− exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

Properties: x ∈ [−32, 32], multi-modal, non-separable
F25: Weierstrass Function

f(x) =
∑n

i=1(
∑kmax

k=0 [ak cos(2πbk(xi + 0.5))]− n
∑kmax

k=0 [ak cos(2πbk ∗ 0.5)])
Properties: x ∈ [−0.5, 0.5], a = 0.5, b = 3, Kmax = 20, multi-modal, non-

separable
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F26: Schwefel 2.13 Function
f(x) =

∑n
i=1(
∑n

j=1(aij sin xi + bij cosxi))
2

Properties: x ∈ [−π, π], multi-modal, non-separable
F27: Gaussian Mixture Function

GMM(x) =
∑k

i=0 ai exp(−
∑n

j=0
(xij−µij)2

2σ2

ij

)

Properties: x ∈ [−5.12, 5.12], multi-modal, non-separable

σ =









1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2









µ =









−1 1.5 −2 2.5 −1 1.5 −2 2.5 −1 1.5
0 −2 3 1 0 −2 3 1 0 −2

−2.5 −2 1.5 3.5 −2.5 −2 1.5 3.5 −2.5 −2
−2 1 −1 3 −2 1 −1 3 −2 1









ai =
(

3.1, 3.4, 4.1, 3
)T
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