
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Symbolic-Numeric Quantifier Elimination with
Industrial Applications

岩根, 秀直

https://doi.org/10.15017/1441053

出版情報：九州大学, 2013, 博士（数理学）, 課程博士
バージョン：
権利関係：全文ファイル公表済

Doctoral Thesis

Symbolic–Numeric Quantifier Elimination

with Industrial Applications

Guidance

Professor Hirokazu Anai

Hidenao Iwane

岩根 秀直

Graduate School of Mathematics

Kyushu University

January, 2014

Contents

List of Algorithms vi

1 Introduction 2

1.1 History and background . 2

1.2 Our aim and approach . 4

1.3 Contents of this thesis . 5

2 Symbolic-Numeric CAD 7

2.1 Introduction . 7

2.2 Our Strategy for Speeding up CAD . 9

2.2.1 Outline of CAD and its Computational Problems 10

2.2.2 Quick Tests for Reducing Symbolic Computation 12

2.2.3 Quick Tests for Reducing Stack Construction 13

2.2.4 Quick Tests for Reducing the Number of Projection Factors . . 14

2.2.5 Cylindrical Algebraic Decomposition 14

2.3 Avoidance of Symbolic Computations 16

2.3.1 Avoidance of Unnecessary Symbolic Computations by Numeric

Computation . 17

2.3.2 Use of Sign Information . 21

2.4 Avoidance of Lifting Cells . 25

2.4.1 Avoidance of Merging and Sorting 25

2.4.2 Trial Evaluation Using the Structure of Formulas 26

2.5 Reduction of Projection Factors . 28

2.5.1 Projection Operator for Bounded CAD 29

2.6 Procedures of Bounded CAD . 32

2.6.1 Region Ur . 32

2.6.2 Evaluation of the Sub-QE Problem 33

i

CONTENTS ii

2.6.3 Evaluation of the Truth Value in Region Ur 33

2.7 Behavior Analysis . 36

2.7.1 Practical Performance of Our Implementation 36

2.7.2 Analysis of Our Implementation 37

2.7.3 Statistical Data . 41

2.8 Conclusion . 49

2.9 Examples . 51

3 A Special QE algorithm for SDC 57

3.1 Introduction . 57

3.2 Quantifier Elimination for Sign Definite Condition 58

3.2.1 Sign Definite Conditions and Real Root Counting by Sturm-

Habicht Sequences . 58

3.2.2 A specialized QE algorithm for SDC 61

3.3 Necessary Condition for SDC . 62

3.4 Simplification of Boolean Expressions 66

3.4.1 Boolean Algebra and Simplification of Boolean Expressions . . . 66

3.4.2 Simplification of ϕn based on Boolean Expression Minimization 68

3.5 Computational Results . 68

3.5.1 Results . 71

3.6 Conclusion . 77

4 Symoblic-Numeric Approach to POPs 79

4.1 Introduction . 79

4.2 Optimization . 80

4.2.1 Multi-Objective Optimization 81

4.2.2 Parametric Optimization . 82

4.2.3 Minimax Optimization . 82

4.3 Known Approaches to MOO . 83

4.3.1 Evolutionary Algorithms . 83

4.4 The Quantifier Elimination Method . 84

4.4.1 The Symbolic Method . 84

4.4.2 The Symbolic-Numeric Approach 87

4.5 Application . 89

4.5.1 Problem Statements . 89

4.5.2 Computational Results . 91

CONTENTS iii

4.6 Conclusions . 101

5 Conclusion 103

List of Figures

2.1 Flow of CAD . 11

2.2 Sample points of adam1 . 21

2.3 Sample points in CAD of {x21 + x22 − 1, x1} 29

2.4 Relation between computing time and the number of cells 40

2.5 Rate of computing time in each phase 50

3.1 Boolean operations (AND, OR, and NOT) 66

3.2 Input (left side) and output (right side) file for the 3rd SDC problem for

the ESPRESSO command . 78

4.1 Symbolic approach to MOO . 86

4.2 Numeric approach to MOO . 86

4.3 Example of minimax problem . 87

4.4 SEM picture of SRAM cell . 89

4.5 SRAM schematic diagram . 89

4.6 Feasible region given by φ(z, x2) . 93

4.7 PSO-based method (2000 samples) . 97

4.8 QE + PSO (2000 samples) . 97

4.9 QE + PSO + bisection (2000 samples) 98

4.10 GA-based method (2000 samples) . 98

4.11 QE + GA (2000 samples) . 98

4.12 Non-dominated solution of GA (+) and QE + GA (�) 99

4.13 QE + GA + bisection (2000 samples) 99

4.14 GA-based method (5000 samples) . 99

4.15 QE-based method (τ ′(9/2, y
(1)
3 , y

(2)
3)) 99

4.16 GA-based method (5000 samples) . 101

4.17 QE + GA (5000 samples) . 101

iv

LIST OF FIGURES v

4.18 QE + GA + bisection (2000 samples) 102

List of Tables

2.1 Number of projection factors of Example 26. 31

2.2 Timing data (sec) . 38

2.3 Timing data (sec) . 39

2.4 Number of cells (leaf) . 41

2.5 Numbers of projection factors . 42

2.6 Numbers of occurrences: §2.3–2.5 . 43

2.7 Numbers of cells . 44

2.9 Timing data at each level . 44

2.9 Timing data at each level . 45

2.9 Timing data at each level . 46

2.10 Number of cells (nodes): §2.3–2.5 . 46

2.10 Number of cells (nodes): §2.3–2.5 . 47

2.10 Number of cells (nodes): §2.3–2.5 . 48

2.10 Number of cells (nodes): §2.3–2.5 . 49

2.8 Rate of timing data in each phase . 51

2.11 Number of projection factors: §2.3–2.5 52

3.1 ϕ2: sign conditions for the 2nd SDC problem 62

3.2 Computational results for the SDC problems 70

vi

List of Algorithms

1 SubstSamplePointCoef(c, s) . 18

2 IntvRealRootIsol(f , s) . 20

3 ProjMC(Fk+1, xk+1) . 22

4 Lifting(C(k), Fk+1) . 26

5 BProj(Fk, Uk, xk) . 30

6 CompTF(ψ, IT , IF) . 34

7 CompAtom(ψ, IT , IF) . 35

8 Bisection((x1, . . . , xk), [zl, zu], φ(z, x1, . . . , xk)) 97

vii

Acknowledgements

It would not have been possible to write this thesis without the help and support of the

kind people around me, to only some of whom it is possible to give particular mention

here.

First of all, I would especially like to thank my supervisor Professor Hirokazu Anai.

He has offered many opportunities for me and his knowledge, kindness, support, pa-

tience, and vision have provided a good basis for this investigation.

I am deeply grateful to Professor Kazuhiro Yokoyama for his detailed comments

and helpful advice.

I am deeply grateful to Professor Nobuki Takayama and Professor Masayuki Noro.

They introduced me to computer algebra and have taught me computer programming

skills.

I am also thankful to Dr. Hitoshi Yanami. His guidance helped me during my

research and while writing papers.

I am thankful to Dr. Christoper W. Brown. He has given me helpful comments

about my implementation of SyNRAC and taught me solution formula construction in

quantifier elimination for cylindrical algebraic decomposition.

I am grateful to Professor Hoon Hong. He has been invaluable in improving my

writing and presentation skills.

I thank Dr. Adam Strzeboński for suggesting the use of sign information in the

lifting phase of cylindrical algebraic decomposition.

In addition, this research was supported in part by FUJITSU LABORATORIES

LTD.

Finally, I give my special thanks to my family. Words cannot express how grateful

I am to my parents for their love and lasting support. I am very much thankful to my

wife, my daughter and my son for their love, understanding, and continued support

while I have completed this thesis — they allowed me to spend most of the time on

this thesis.

1

Chapter 1

Introduction

1.1 History and background

Many mathematical and engineering problems can be naturally translated to formulae

consisting of polynomial equations, inequalities, quantifiers (∀, ∃) and Boolean opera-

tors (∧, ∨, ¬, →, etc). Such formulae construct sentences in the first-order theory of

real closed fields (RCFs) and are called first-order formulae (FOFs). A quantifier elim-

ination (QE) is an algorithm for computing an equivalent quantifier-free formula for a

given FOF, and thus, QE is a very powerful concept for solving problems containing

real algebraic constraints. For example, QE can exactly prove real theorems, perform

geometric reasoning, network analysis, sizing and diagnosis, solve polynomial optimiza-

tion problems, transportation problems, scheduling problems, mechanical engineering,

and stability analysis, and so on.

In the 1930’s, A. Tarski [79] showed that RCF allows QE: for any RCF formula

φ(x1, . . . , xr), there exists an equivalent quantifier-free formula ψ(x1, . . . , xr) in the

same vocabulary. He also gave the first QE procedure for RCFs. For example, the

formula ∃x(x2 + ax + b ≤ 0) can be reduced to a quantifier-free formula a2 − 4b ≥ 0

by QE. If all variables are quantified, QE decides whether the given formula is true

or false (this is a decision problem). However, his algorithm was totally impractical.

Moreover, J.H. Davenport and J. Heints [24] proved that the asymptotic worst-case

complexity of QE over the reals is doubly exponential with respect to the number of

quantifier alternations in the input FOF. Therefore, to realize practical and effective

methods using QE, the most significant issue is increasing the speed of the procedure.

In 1975, G.E. Collins [19] discovered a new method based on cylindrical algebraic

2

CHAPTER 1. INTRODUCTION 3

decomposition (CAD) that was far more efficient than any previous approach. However,

QE based on CAD is not considered to be practical on computers yet, since CAD

usually consists of many purely symbolic computations and has high computational

complexity. CAD, even restricted to a linear signature, is known to have a doubly

exponential lower-bound [14], and problems containing only six variables may be hard

for today’s computers.

To circumvent the inherent computational complexity of a QE algorithm based

on CAD, several researchers have focused on developing QE algorithms specialized to

particular types of input formulae by exploiting this specificity; see [18, 82, 39, 80, 77].

V. Weispfenning and R. Loos [81, 55] gave algorithms for the cases where the

bounded variables are only linear and quadratic. These algorithms have been developed

and applied to various problems. In [42], H. Hong gave an algorithm for constructing

a quantifier-free formula constrained by quadratic equations in the form ∃x (a2x
2 +

a1x+ a0 = 0∧F (x, x1, . . . , xn)), where a2, a1 and a0 are represented by x1, . . . , xn and

the system {a2 = a1 = a0 = 0} has no solution.

For QE problems in the form ∀x(f(x) > 0) where the degree of f is an even

integer, L. González-Vega [35] proposed a combinatorial algorithm based on the Sturm-

Habicht sequence which is a theory on root classification of polynomials. The real

root classification method [89] of a univariate polynomial with parameter coefficients

can also apply the special QE problem. H. Anai and S. Hara [2] showed that many

practical engineering problems such as control system design problems can be recast

using a condition ∀x(x ≥ 0 → f(x) > 0), which is called a sign definite condition

(SDC), and proposed a special QE algorithm for SDCs.

Moreover, a one-block QE algorithm [40] has been proposed. Allowing measure-zero

error in the output formula makes this algorithm efficient.

These directions are quite promising in practice since a number of important prob-

lems in engineering have been successfully reduced to such particular input formulae

and resolved efficiently using the specialized QE algorithms. Examples of concrete

successful applications are found in [83, 78, 29, 34, 2, 6, 87].

However, there still remain many significant problems in engineering that cannot

be recast as such particular formulae. Therefore, it is highly desirable to develop an

efficient algorithm for CAD, and many researchers have proposed improvements of the

CAD algorithm, such as improved projection operators [19, 41, 58, 12], partially for

CAD construction [21, 57, 74, 47], use of numerical methods [43, 73, 22, 66, 7, 75, 49],

efficient projection order [27], use of equation constraints [59, 60, 74, 11], solution

CHAPTER 1. INTRODUCTION 4

formula construction [44, 10], computing CAD via triangular decompositions [17, 16],

preprocessing input formulae by Gröbner bases [85] and so on. Practically efficient

software systems for QE have been developed on several computer algebra systems,

such as QEPCAD [13], REDLOG [28], Mathematica [75] and SyNRAC [50].

Another promising direction is to use generalized critical values for global optimiza-

tion, which originates from the scheme of sums of squares [72]. Within the framework

of the critical point method (see [8] for details), which is proved to have computa-

tional complexity that is doubly exponential with respect to the number of alternates

of quantifiers, generalized critical values were first used [69]. In the case of the sums

of squares approach, we note that algebraic certificates are provided to compute lower

bounds on the global infimum (see [64]). The computation of “symbolic” algebraic

certificates (instead of “numerical” ones) has also been proposed [51]. Moreover, the

problem of obtaining theorems on the existence of algebraic certificates based on sums

of squares is caused by [37].

1.2 Our aim and approach

As described in the previous section, since many industrial applications can be naturally

translated to FOFs, improvements of QE algorithms are required. In particular, we

believe that improvements of CAD, which is a general QE algorithm, is one of the most

important. This thesis focuses on further improvement of QE algorithms.

To achieve our goal, we use three approaches:

• First, we improve QE algorithms algebraically. In Section 2.3.2, we show avoid-

ance of heavy symbolic computations by using previous computations. In Section

3.3, we show a necessary condition for a special QE algorithm and remove redun-

dant formulae.

• Second, we improve QE algorithms by using numeric methods. We can avoid

heavy symbolic computation by interval arithmetic techniques without loss of

exactness, for example, real root isolation in an algebraic extension field. We

show our numeric approaches in Sections 2.3.1, 2.4.1, 2.4.2 and 2.5.1.

• Finally, we focus on special types of input formulae for industrial applications.

We verify the effectiveness of our approaches by applying them to industrial prob-

lems.

CHAPTER 1. INTRODUCTION 5

1.3 Contents of this thesis

This thesis consists of five chapters, Chapters 1 through 5.

In Chapter 2, we consider an improvement of CAD, which is a general QE algorithm,

by using symbolic–numeric methods without loss of exactness. We present an effective

symbolic–numeric cylindrical algebraic decomposition (SNCAD) algorithm for QE in-

corporating several new devices, which we call “quick tests”. The simple quick tests are

run beforehand to detect unnecessary procedures that may be skipped without violat-

ing the correctness of results, thus considerably reducing the computing time without

loss of exactness. In this chapter, we utilize the structure of input formulae such that

the truth value of a certain subset is easily decided by numerical computation. We see

quite often but not always this structure in industrial problems. The effectiveness of

the SNCAD algorithm is examined in a number of experiments including practical en-

gineering problems, which also reveal the quality of the implementation. Experimental

results show that our implementation significantly improves efficiency compared with

our previous work.

In Chapter 3, we focus on one particular input formula,

∀x (x ≥ 0→ f(x) > 0) (1.1)

where f(x) is a polynomial with real parameters, which we call a sign definite condition

(SDC). This formula is important because several practical engineering problems such

as control system design problems can be recast as SDCs [3]. We note that we mainly

consider the case where the coefficients of f contain some parameters. An effective QE

algorithm for SDCs was proposed in [45] based on a combinatorial approach using a

real root counting technique. To improve the algorithm, simplification of the output

formula is needed. For this purpose, we propose two approaches. First, we show

a necessary condition for the SDC to simplify an output formula algebraically. The

necessary condition enables us to eliminate extraneous sign combinations derived from

real root counting using the Sturm-Habicht sequence. Second, we show an approach to

simplify formulae using a logic minimization method. We obtain simple formulae by

using the idea of don’t cares for handling sign conditions that no real numbers satisfy.

A don’t care is an input where a function is not specified. Experimental results show

that our approach significantly simplifies formulae.

In Chapter 4, we focus on optimization problems derived from some real engineering

problems. When all constraints and objective functions are expressed as polynomials,

CHAPTER 1. INTRODUCTION 6

the algebraic method QE based on a CAD algorithm can compute those as semi-

algebraic sets. But, for aiming practical computation and dealing with non-polynomial

objective functions, we propose a new method new optimization methods for classes

based on a symbolic QE algorithm, combined with numerical computation, are pro-

posed. The total efficiency of the design process is improved by reducing the number

of numerical yield-rate evaluations. In addition, useful information such as the explicit

relations among design variables, objective functions, and the yield rate, is provided.

Discussion and some concluding remarks are made in Chapter 5.

Chapter 2

Symbolic-Numeric Cylindrical

Algebraic Decomposition

2.1 Introduction

Cylindrical algebraic decomposition (CAD) is a general-purpose symbolic method used

in quantifier elimination (QE), and is an effective tool for solving real algebraic con-

straints (in particular, parametric and non-convex cases) arising in many engineering

and industrial problems. However, QE based on CAD is not considered to be practical

on computers, since CAD usually consists of many purely symbolic computations and

has high computational complexity.

A CAD algorithm consists of three phases, namely the projection phase, the base

phase and the lifting phase, and uses symbolic and algebraic computations to obtain

exact results.

The main improvements of CAD have been achieved in the projection phase by

focusing on the projection operator (e.g., [19, 41, 58, 12]), because this is the most

effective way to reduce the computational time. Computational difficulties in the lift-

ing phase stem from symbolic computation over towers of algebraic extensions and

combinatorial explosion in CAD construction.

An effective method of CAD construction is to use numerical computation, rather

than symbolic treatment, with as much derived numerical information for algebraic

numbers as possible without violating the correctness of the results. Existing attempts

to introduce numerical computation into CAD construction include [43, 73, 22, 66, 7,

75, 49]. In general, to achieve more effective and practical implementation of algebraic

7

CHAPTER 2. SYMBOLIC-NUMERIC CAD 8

algorithms, the research has pursued hybrid methods combining computer algebra

with numerical verification [67, 68]. From the viewpoint of symbolic–numeric CAD

methods, one can see that such an approach provides new validated numerical methods

for non-convex optimization problems, with the help of symbolic computation, that are

difficult to treat using ordinary numerical methods. Both aspects are surely of practical

importance.

Additionally many improvements of the CAD algorithm tailored to QE problems

have been proposed. Partial CAD [21] avoids unnecessary lifting procedures by evalu-

ating truth values and using quantifier information of input formulae. This reduces the

computing time in the lifting phase. Furthermore, many approaches for special types

of input formulae have been proposed, such as those found in [57, 59, 60, 74, 11].

Meanwhile, turning to optimization problems, there have been several attempts

to develop symbolic–numeric algorithms for solving polynomial optimization problems

(POPs). Efficient algorithms based on CAD have been developed to exactly solve

semidefinite programming [5] and to construct explicit optimal value functions [47].

Although QE based on CAD may at a glance seem far from practical applications

owing to its inefficient computation, with doubly exponential behavior in the worst

case, extensive research has been done to improve its efficiency as mentioned above

and some progress has been made. There is still plenty of room for further exploration

of possible refinement in view of practical efficiency and implementation methodology.

This chapter focuses on further improving the practical efficiency of CAD and extending

its practical applicability to science and engineering problems. Our main focus is on

two time-consuming phases, namely the projection phase and the lifting phase.

We thus employ as our basis a scheme for symbolic–numeric cylindrical algebraic

decomposition (SNCAD) that was roughly introduced (without detailed procedures) in

[7]. In the lifting phase, the scheme uses certified numerical computation over algebraic

extensions and the dynamic evaluation technique in [26] with successive representations

of algebraic extensions. For efficient realization of the scheme, we refine it by incorpo-

rating several new devices, which we call “quick tests” (see Section 2.2), in a concrete

way shown in the following sections. We employ quick tests because we expect that

one can often detect an unnecessary procedure that may be skipped without violating

the correctness of the results by running a simple test beforehand.

Here, we outline the results obtained in this chapter. The main computational

difficulties in the lifting phase are symbolic computation over algebraic extension fields

and combinatorial explosion in making stacks. We devise quick tests to avoid symbolic

CHAPTER 2. SYMBOLIC-NUMERIC CAD 9

computation over algebraic extension fields using numerical computation (see Section

2.3) and to avoid making stacks irrelevant to the output before actually making a stack

(see Section 2.4). We confirm that these tests save computing time in many practical

examples (see Section 2.7). In the projection phase, the explosion of projection factors

is a crucial issue. We propose a test to verify if a polynomial in a projection factor

can be removed by exploiting the structure of the input formula (see Section 2.5). It

turns out that this approach works well for many practical engineering problems, in

particular for POPs (see Section 2.7). All proposed improvements are implemented in

the Maple package SyNRAC [50] to solve real algebraic constraints.

The rest of this chapter is organized as follows. Section 2.2 provides an outline

of our strategy for improving the practical efficiency of QE by CAD. The scheme

for a standard CAD algorithm and QE based on CAD are also briefly reviewed in

Section 2.2. Section 2.3 presents quick tests using numerical computation that avoid

symbolic computation over an algebraic extension field in the lifting phase of CAD.

Tests for reducing the number of stacks in the lifting phase are described in Section 2.4.

Section 2.5 explains a technique for decreasing the number of projection factors by

exploiting the structure of an input formula. Section 2.6 shows procedures for our

CAD algorithm. Behavior analysis of the proposed improvements for speeding up QE

is discussed using the experimental results reported in Section 2.7. Concluding remarks

are made in Section 2.8.

2.2 Our Strategy for Speeding up CAD

In this section we introduce our strategy for improving the efficiency of QE based on

CAD. We begin by showing a brief sketch of Collins’s CAD algorithm, which plays a

central role in his QE. We then state our strategy which consists of six quick tests.

Each quick test is thoroughly described later in Sections 2.3 through 2.5. We give a

full description of the Collins CAD algorithm at the end of the section to clarify the

terms used from the next section on.

The Collins QE algorithm based on CAD [19] is a general-purpose QE first published

in 1975. Since then, there have been many papers that have improved the algorithm

or that have discussed its computational complexity. Although it has been proved that

CAD-based QE has in the worst case doubly exponential behavior [24, 14], there is

much room for enhancing its efficiencies from practical and implementational points of

view. We propose a strategy for improving the Collins QE algorithm, part of which

CHAPTER 2. SYMBOLIC-NUMERIC CAD 10

has already been presented [7]. We confirm the effectiveness of our implementation by

investigating statistical data for many example problems in Section 2.7. We stress that

our algorithm works effectively for many practical problems coming in engineering and

scientific fields.

2.2.1 Outline of CAD and its Computational Problems

We briefly outline the Collins CAD algorithm, the most important subalgorithm of the

Collins QE. Let us denote the fields of rational numbers and real numbers by Q and

R, respectively. We assume that we are given as an input formula for QE a prenex

first-order formula ϕ over the elementary theory of real closed fields:

ϕ(x1, . . . , xr) ≡ Qq+1xq+1 · · ·Qrxr ψ(x1, . . . , xr),

where Qj ∈ {∃,∀} and ψ is a quantifier-free formula. Note that x1, . . . , xq are called

free variables and xq+1, . . . , xr quantified variables. A QE algorithm takes ϕ as an

input and returns a quantifier-free formula in the free variables that is equivalent to

the input. We can assume, without loss of generality, that every atomic formula in ψ

is represented in the form f ρ 0, where f ∈ Q[x1, . . . , xr] is a polynomial with rational

coefficients on x1, . . . , xr and ρ is a relational operator in {≤, <,=, 6=}. Winkler [86]

calls such an expression ϕ a standard formula.

A CAD algorithm takes a set of r-variate polynomials Fr as an input and returns

a partition of the r-dimensional real space Rr into sign-invariant subsets with respect

to Fr. For the standard input formula ϕ above the CAD input consists of the left-

hand-side polynomials collected from its free part ψ. A CAD algorithm itself consists

of three phases: projection, base and lifting phases.

A projection procedure takes a finite subset of Q[x1, . . . , xr] and computes a family

of subsets {Fi}i=1,...,r−1, where Fi ⊂ Q[x1, . . . , xi]. Any factor of a polynomial in

Fi is called a projection factor. A projection operator applied to the CAD input

Fr ⊂ Q[x1, . . . , xr] returns a set Fr−1 ⊂ Q[x1, . . . , xr−1] and it is repeatedly applied to

the preceding output till a set F1 ⊂ Q[x1] of univariate polynomials is obtained. Note

that a projection operator should be defined so that {Fi}i=1,...,r has some property,

which is briefly explained in Section 2.2.2.

In the base phase a base procedure carries out real root isolation for F1. The

real line R1 is partitioned into the set of the real roots in F1 and the remaining open

intervals.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 11

Lifting proceeds in the opposite direction of projection, constructing a partition

of Ri+1 from that of Ri. Let C be a member, called a cell, in a partition of Ri. A

cylinder C × R can be partitioned into sign-invariant subsets for Fi+1, called a stack

on C. This is realized in a cylindrical manner: i.e., the space is cut by the graphs of

Fi+1, each component of which is homeomorphic to C. This is always the case owing to

the requirement of the projection operator. The components as well as the remaining

cylinders, piled up alternately, consist of a partition of C × R. See Section 2.2.5 in

more detail. A union of the stacks on all the cells in Ri becomes a partition of Ri+1

and this process is repeated until we obtain a partition of the r-dimensional space Rr,

the output of CAD. Figure 2.1 illustrates the three phases of CAD.

In an actual lifting procedure a sample point s ∈ C is chosen and substituted for

(x1, . . . , xi) in each of the polynomials Fi+1 to obtain a set of univariate polynomials

on xi+1. Root isolation is applied for the set as in the base phase and all the real roots

found determine the structure of a stack over C.

Fr ⊂ Q[x1, . . . , xr] −→ Rr =
⊔
C(r)

↓ projection ↑ lifting
Fr−1 ⊂ Q[x1, . . . , xr−1] Rr−1 =

⊔
C(r−1)

↓ projection ↑ lifting
...

...

↓ projection ↑ lifting
F2 ⊂ Q[x1, x2] R2 =

⊔
C(2)

↓ projection base ↑ lifting
F1 ⊂ Q[x1] −→ R1 =

⊔
C(1)

Figure 2.1: Flow of CAD

Once a partition of the full space Rr into sign-invariant subsets with respect to Fr

is obtained, it is straightforward to construct the output for QE by evaluating a sample

point from each cell; a Boolean expression is constructed by collecting the quantifier-

free formulae for appropriate regions. This is called the solution formula construction

phase, and it is the last part of the QE algorithm.

Of the three phases in CAD, the most time-consuming part is the lifting phase. We

ascribe the difficulty in the lifting phase to three sources: (i) symbolic computation

over algebraic extension fields, (ii) combinatorial explosion in making stacks and (iii)

superfluous projection factors.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 12

To avoid symbolic computation in an extension field we use numerical computation

as far as its result is confirmed. Simple, quick numerical computation can tell us

if precise symbolic computation is needed and in many cases numerical computation

suffices. This preceding trial saves us from unnecessary symbolic computation.

To reduce cell lifting, we deploy two types of procedures. One is used in the lifting

phase before the lifting of a cell. The other is used in the projection phase to reduce

projection factors. Reducing the number of stacks in lifting saves computing time. A

full decomposition of Rr is not always needed to compute a quantifier-free equivalent

of the input. We carry out tests before making a stack, which allows us to avoid

making stacks that are irrelevant to the output. A smaller number of projection factors

results in a smaller number of real roots in real root isolation in the base and lifting

phases, which also reduces computing time. Information on the input formula might

be exploited to detect needless projection factors. We thus prepare tests to check if a

polynomial in a projection factor can be removed.

On the above basis, we believe that it is worth carrying out a simple test that takes

little time before carrying out a procedure that might be skipped without affecting the

exactness of the output and that would probably take considerable time if performed,

or that detects superfluous projection factors in advance. We prepare six such quick

tests in total. Each quick test is outlined in the following three subsections. Detailed

descriptions are found in Sections 2.3 through 2.5. From a practical viewpoint, these

tests work satisfactorily in most example problems that we have tried. The effectiveness

of the quick tests is fully investigated in Section 2.7.

2.2.2 Quick Tests for Reducing Symbolic Computation

In the lifting phase, every algebraic number appears as a root of a univariate poly-

nomial over an algebraic number field. That algebraic number field itself has been

generated by the algebraic numbers adjoined by real root isolation in previous liftings.

A typical way of dealing with computation on an extension field is to use a primitive

element of the field over Q, represented by its minimal polynomial with an isolating

interval. However, computing a primitive element in towers of extensions is very heavy,

because factorization and GCD computation over algebraic number fields are required.

We adopt a successive representation for towers of extension fields with the dynamic

evaluation technique in [26]. We use a ‘defining’ polynomial, which is, unlike the min-

imal polynomial, not necessarily irreducible, with an isolating interval to identify an

CHAPTER 2. SYMBOLIC-NUMERIC CAD 13

algebraic number.

We use numerical quick tests for a possible short cut to determining the sign of an

algebraic expression. Isolating intervals are used to approximately evaluate an algebraic

number using interval arithmetic techniques. In the lifting phase, instead of a univari-

ate polynomial over an algebraic extension field, we deal with a univariate polynomial

whose coefficients are intervals. We call such a polynomial an interval polynomial. To

carry out real root isolation for interval polynomials, we need to decide whether a poly-

nomial expression of algebraic numbers is zero. This procedure is heavy if implemented

purely symbolically. Instead we substitute intervals for respective algebraic numbers

to obtain an interval in which the exact value lies. It is possible to determine the sign

of a number if the number is actually nonzero and the intervals have sufficiently high

precision. We call this quick test sign determination using interval arithmetic (Section

2.3.1).

We remark that, in our computation, it is necessary for a defining polynomial to

be square free. We prepare a quick test for square freeness for interval polynomials

(Section 2.3.1). We carry out symbolic computation only if this quick test fails.

The sign information for a cell in Ri for a projection factor can be reused when

carrying out real root isolation of an interval polynomial at the above level. These data

are stored and looked up later in a quick test using a previous computation (Section

2.3.2).

2.2.3 Quick Tests for Reducing Stack Construction

Constructing a stack over a cell C in Ri partitions the cylinder C×Ri. The number of

cells dramatically grows as the lifting phase proceeds and the nested structure easily

results in combinatorial explosion and prevents a CAD procedure from completing a

partition of the full space Rr.

To complete full CAD computation, every cell in Ri, i < r, should be lifted to a set

of cells in Ri+1 until we obtain a partition of the full space Rr. However, it might be

unnecessary for a QE algorithm to construct a full CAD. What we need to do is not

decompose Rr but compute a quantifier-free equivalent of the QE input. To improve

efficiency, it is important not to lift the cells that are irrelevant to the QE output. We

can use cell information to check if further computation is needed. From this point of

view, we can skip a considerable number of cell liftings and still obtain a correct output.

G.E. Collins and H. Hong proposed partial CAD [21], based on the above idea. Before

CHAPTER 2. SYMBOLIC-NUMERIC CAD 14

lifting a cell, they try evaluating an atomic formula on it. If the evaluation turns out

to be a truth value, the information is used to judge if the cell is lifted. They called

this evaluation before lifting a trial evaluation. To improve efficiency, this test should

be done before merging and sorting the real roots found (Section 2.4.1).

We propose quick tests using the information on the variables in the input formula.

When, for example, the input formula has a quantified variable that is bounded by

an interval, it is not at all necessary to make stacks outside the interval. This can be

checked by a quick test called trial evaluation for bounded CAD (Section 2.4.2).

If the input formula is existential and it implies some equational constraint f = 0,

the polynomial f is used to check if a cell lifting can be skipped. We call such a

polynomial f a section polynomial and prepare a quick test using section polynomials

(Section 2.4.2). We note that the quick tests in this section are symbolic–numeric

computations because they call quick test subroutines described in in Section 2.2.2.

2.2.4 Quick Tests for Reducing the Number of Projection Fac-

tors

A projection operator takes a subset of i-variate polynomials as input and returns a

subset of (i−1)-variate polynomials. The lifting phase produces cells corresponding to

the distinct real roots and the regions between those roots. This implies that reducing

the number of projection factors helps reduce the number of cell liftings: i.e., it is

important to remove irrelevant polynomials from the projection factors in as an early

stage as possible. A constraint in the input represented by an interval might be used

to reduce the number of projection factors. We prepare a quick test for removing

projection factors using interval constraints (Section 2.5.1).

2.2.5 Cylindrical Algebraic Decomposition

We describe cylindrical algebraic decomposition in more detail to prepare the terms

used in the rest of this chapter; see [19] for a full description. Assume that we are given

a prenex standard formula ϕ as in Section 2.2.1:

ϕ(x1, . . . , xr) ≡ Qq+1xq+1 · · ·Qrxr ψ(x1, . . . , xr),

where Qj ∈ {∃, ∀} and ψ is a quantifier-free formula. Let F ⊂ Q[x1, . . . , xr] be the

set of polynomials appearing in ψ as the left hand sides of atomic formulae. A subset

CHAPTER 2. SYMBOLIC-NUMERIC CAD 15

C ⊆ Rr is said to be sign-invariant for F if every polynomial in F has a constant sign

on all the points in C; i.e., ψ(s) is either “true” or “false” for all s ∈ C.
Suppose we have a finite sequenceD1, . . . ,Dr for F that has the following properties.

1. Each Di is a partition of Ri into finitely many connected semi-algebraic sets called

cells.

2. Di−1, 1 < i ≤ r, consists exactly of the projections of all cells in Di along the

coordinate of the i-th variable in (x1, . . . , xr). For each cell C ∈ Di−1, we can

determine its preimage P (C) ⊆ Di under the projection.

3. Each cell C ∈ Dr is sign-invariant for F . Moreover for each cell C ∈ Dr, we are

given a sample point s ∈ C in such a form that we can determine the sign of f(s)

for each f ∈ F and thus evaluate ϕ(s).

The partition Dr of Rr for F is then called an F -invariant cylindrical algebraic decom-

position of Rr. A CAD algorithm computes such a sequence D1, . . . ,Dr and it consists

of three phases: the projection phase, base phase, and lifting phase.

Projection Phase: We first construct from F ⊂ Q[x1, . . ., xr] a new finite set

F ′ ⊂ Q[x1, . . ., xr−1] that satisfies a special condition called delineability, where the

order of the real roots of all polynomials in F as univariate polynomials in xr does not

change above each connected subsets of Rr−1 on which polynomials of F ′ have constant

signs.

The step constructing F ′ from F is called a projection and is denoted by F ′ :=

Proj(F, xr). We call polynomials in F ′ projection polynomials and their irreducible

factors projection factors. Iterative application of the operator Proj leads to a finite

sequence

Fr, . . . , F1, where Fr := F, Fi := Proj(Fi+1, xi+1)

for 1 ≤ i < r. The operator Proj, in general, computes certain coefficients, discrimi-

nants, and resultants derived from polynomials in Fi+1 and their higher derivatives by

regarding those as univariate polynomials in xi+1. The final set F1 consists of univariate

polynomials in x1.

Base Phase: In the base phase, we construct a partition D1 of one-dimensional

real space R1 into finitely many intervals that are sign-invariant for F1. This step

is implemented by isolating real roots of the univariate polynomials in F1. The real

roots of the polynomials in F1 are symbolically computed. That means each root s is

CHAPTER 2. SYMBOLIC-NUMERIC CAD 16

expressed as a pair of a polynomial f ∈ Q[x1] and an interval I, where f has a unique

real root in I. We call such an interval an isolating interval of s.

Lifting Phase: The partitions Di+1 of Ri+1 for 1 ≤ i < r are computed recursively.

The roots of all polynomials in Fi+1 as univariate polynomials in xi+1 are delineated

above each connected cell in a CAD produced from F ′. Thus, we can cut the cylinder

above C into finitely many connected semi-algebraic sets (cells). This is done in the

following way. Take a sample point s = (s1, . . . , si) ∈ C and substitute s for (x1, . . . , xi)

in every polynomial in Fi+1, and obtain a set Li+1 of univariate polynomials in xi+1.

Apply the real root isolation for the polynomials in Li+1 and merge and sort the results.

A finite sequence D1, . . . ,Dr for F has a tree structure: The first level of nodes

under the root of the tree corresponds to the cells in D1. The second level of nodes

stands for the cells in D2; i.e., the cylinders over the cells of R1. The leaves represent the

cells of Dr; i.e., a CAD of Rr. A sample point of each cell is stored in its corresponding

node or leaf.

2.3 Avoidance of Symbolic Computations

In CAD construction, many symbolic and algebraic computations are required and

they tend to be very time consuming. Thus avoidance of symbolic computation can

make CAD construction efficient. In this section, we present quick tests carried out to

avoid symbolic computation using numeric computation and sign information obtained

in CAD construction. We provide some definitions and notations here.

Definition 1. Let f be a non-constant polynomial in Q[x1, . . . , xr]. The level of f is

defined as the largest integer k such that the degree in xk of f is positive. That is, for

a polynomial f of the level k, f ∈ Q[x1, . . . , xk−1, xk] but f /∈ Q[x1, . . . , xk−1].

Let f be a polynomial in Q[x1, . . . , xk, xk+1], c a polynomial in Q[x1, . . . , xk], and

s = (s1, . . . , sk) a point in Rk which is a k-tuple of algebraic numbers. We denote

f(s1, . . . , sk, xk+1) and c(s1, . . . , sk) by f(s, xk+1) and c(s), respectively.

For k ≥ 1 an algebraic number sk is also expressed by a pair of a polynomial fk ∈
Q[x1, . . . , xk] and an isolating interval Ik, where sk is a real root of fk(s1, . . . , sk−1, x)

uniquely in Ik. From now on, we identify sk ∈ R with a pair (fk, Ik) and simply write

sk for (fk, Ik).

Definition 2. Let I = [a, b] be a closed interval in R. The precision of I is defined as

b− a.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 17

Definition 3. For a real root r of a polynomial, when a closed interval I that contains

r is given, the precision of I is set as that of r.

The precision of r is said to be improved when we choose another isolating interval

I ′ for r whose precision is finer than that of I. For a closed, bounded interval I, the

lower and upper boundaries are denoted I(l) and I(u), respectively.

2.3.1 Avoidance of Unnecessary Symbolic Computations by

Numeric Computation

Here we present quick tests to avoid unnecessary symbolic computation using numeric

computation.

Real Root Isolation and Sign Determination over Algebraic Extension Fields

If we use only symbolic computation in the lifting phase, the calculations must be

performed in an algebraic extension field, which is computationally expensive.

In each step of CAD we have to find the real roots of a polynomial f(x1, . . . , xk, xk+1)

at s = (s1, . . . , sk), where each si is an algebraic number, given as a real root of

another polynomial, or to determine the sign of such a polynomial f at s. To do the

above symbolically, we need heavy algebraic computation such as a tower of algebraic

extension fields. However, we can replace such heavy computation with numerical

computation using interval arithmetic techniques.

We introduce an interval polynomial as follows: for a polynomial f(x1, . . . , xk, xk+1)

with degree d algebraic numbers si (1 ≤ i ≤ k) with its isolating interval Ii we

consider a univariate polynomial f(I1, . . . , Ik, xk+1) =
∑d

i=1[li, ui]x
i
k+1 obtained by

substituting Ii for xi. The polynomial f(I1, . . . , Ik, xk+1) is “rough evaluation” of

f at s used to find real roots of f(s, xk+1). We note that an interval polynomial

f̃(xk+1) = f(I1, . . . , Ik, xk+1) can be thought of as a set of polynomials:

f̃(xk+1) =

{
d∑

i=0

cixk+1 ∈ R[xk+1] | ci ∈ [li, ui] for i = 0, . . . , d

}
.

Using this definition, a usual univariate polynomial can be considered an interval poly-

nomial according to ci = [ci, ci].

We consider a set L of closed intervals, where each J ∈ L contains only one root in

f(s, xk+1) without multiplicities counted and L is pairwise disjoint. We call each J of

L an isolating interval of a real root of f .

CHAPTER 2. SYMBOLIC-NUMERIC CAD 18

To obtain isolating intervals of real roots for an interval polynomial, it is required

that the leading coefficient interval does not contain zero. In our setting, we consider

the real root isolation in lifting a cell C(k) ∈ Dk as follows. The degree of f ∈ Fk+1

is invariant on all points in C(k) because of the delineability. To determine the degree

of f(x1, . . . , xk, xk+1) =
∑d

i=0 ci(x1, . . . , xk)x
i
k+1 at a sample point s ∈ Rk for C(k), we

determine the sign of ci(s) from i = d by decreasing order while ci(s) is equal to zero.

We can determine the sign of a polynomial c(x1, . . . , xk) at s ∈ Rk using Algo-

rithm 1. To do so, we make good use of numerical computation, by which we can avoid

symbolic zero determination.

Algorithm 1 SubstSamplePointCoef(c, s)

Input: polynomial c in Q[x1, . . . , xk], sample point s = (s1, . . . , sk) in Rk

Output: interval J , which substitutes sj for xj in c where J (l) · J (u) > 0 or J (u) =

J (l) = 0 (J 63 0 or J = [0, 0])

J ← substitute each isolating interval of sj for xj in c

(J ← c(I1, . . . , Ik))

if J (l) ≤ 0 and J (u) ≥ 0 then

if SymbolicZeroChk(c, s) then

return [0, 0]

end if

end if

while J (l) ≤ 0 and J (u) ≥ 0 do

s← IncreasePrecision(s)

J ← c(I1, . . . , Ik)

end while

return J

In this algorithm, we first substitute the isolating intervals Ii for xi in c using

interval arithmetic, and we then obtain the closed interval J , which contains c(s). If

J does not contain zero, we can determine the sign of c(s) correctly through only

numeric computation. When J contains zero, we switch to the symbolic computation

SymbolicZeroChk(c,s) to check whether c is exactly zero at s. If c is found not to

equal zero at s, we only improve the precision of s while J contains zero to determine

the sign of c(s).

CHAPTER 2. SYMBOLIC-NUMERIC CAD 19

Remark 4. In our implementation we use a recursive expression for a multivariate

polynomial. When we evaluate the range of a polynomial by applying the interval arith-

metic, we apply the Horner’s scheme.

Remark 5. Since extension of intervals is generally restrained, each coefficient I =

[I(l), I(u)] of an input interval polynomial is sign definite (i.e., I(l) ·I(u) > 0 or I(l) =

I(u) = 0) in our implementation.

Avoidance of Unnecessary Factorization

If an algebraic number is not equal to zero, we can decide the sign of the algebraic

number using only numeric computation. However, as shown in Algorithm 1, we need

symbolic computation for zero determination because numeric computation cannot al-

ways determine exactly. As algebraic numbers are recursively given, we need field

extension computation. To carry out such computation precisely, we need heavy sym-

bolic computations such as factorization over an extension field or prime decomposition

of an ideal.

We use dynamic evaluation (DE) [26, 30] to represent algebraic extensions in our

scheme, by which we can avoid heavy computation of the algebraic factorization of

defining polynomials, because DE requires only the square freeness of the defining

polynomials. Square-freeness tests are known to be much easier to carry out than

irreducibility tests.

Proposition 6. We use the same notation as in the previous subsubsection. If f is

square free at s, each polynomial in f̃(xk+1) is also square free, and the coefficient

intervals of f̃(xk+1) have enough precision, then the isolating intervals of real roots of

f can be computed by interval arithmetic.

In fact, we can employ a concrete method IntvRealRootIsolSqfr based on

Krawczyk’s method [52]; see [49] for details.

Remark 7. Under the assumption, f is delineable on I1 × · · · × Ik. Therefore, the

number of the real roots is constant.

To avoid square-free decomposition in an extension field, we use a numeric real

root isolation algorithm. The method IntvRealRootIsolSqfr outputs isolating

intervals J1, . . . , Jt of the real roots of an interval polynomial f̃(x), which are pairwise

disjoint, and for all f(x) ∈ f̃(x), f has a unique real root in Ji. When we apply

CHAPTER 2. SYMBOLIC-NUMERIC CAD 20

the method IntvRealRootIsolSqfr to an interval polynomial f̃(xk+1) obtained by

substituting each isolating interval Ii of si for xi in f(x1, . . . , xk, xk+1) computed by

interval arithmetic, the method IntvRealRootIsolSqfr returns an error if

1. the polynomial f(s, xk+1) is not square free, or

2. the coefficient intervals of the interval polynomial f̃(xk+1) do not have enough

precision.

Therefore, we have to call a symbolic square free decomposition method Symbol-

icSqfr for f(s, xk+1) only when IntvRealRootIsolSqfr(f̃(xk+1)) fails.

Algorithm 2 isolates real roots of a polynomial f(s, xk+1), and IncreasePrecision

increases the precision of the isolating interval of each coordinate of a sample point s.

Algorithm 2 IntvRealRootIsol(f , s)

Input: polynomial c in Q[x1, . . . , xk], sample point s = (s1, . . . , sk) in Rk

Output: isolating intervals of the real roots of f(s, xk+1)

f̃ ← substitute each isolating interval of sj for xj in f

Lf ← IntvRealRootIsolSqfr(f̃)

if error then

f ← SymbolicSqfr(f)

loop

f̃ ← substitute each isolating interval of sj for xj in f

Lf ← IntvRealRootIsolSqfr(f̃)

if not error then

break

end if

s← IncreasePrecision(s)

end loop

end if

return Lf

Remark 8. Since we only deal with the real roots of f(s, xk+1) in CAD construction,

DE works correctly when f(s, xk+1) is not square free but has only simple real roots. In

this case SymbolicSqfr is not used in this algorithm. Hence the method IntvReal-

RootIsol guarantees square freeness of only the real roots of f(s, xk+1).

CHAPTER 2. SYMBOLIC-NUMERIC CAD 21

Example 9. (adam1 [75])

∀x∀y ((x < 0 ∧ x2 + y2 <
99438

100000
)⇒ f(x, y) < 0),

where

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

600
,

f(x, y) = R(x+ jy)R(x− jy)− 1,

where j denotes the imaginary unit.

In the base phase, by isolating the real roots of projection factors F1, we obtain the

sample points as shown in Figure 2.2. Filled circles and open circles show the section

cells and sector cells, respectively.

Let g(x) be the discriminant of f(x, y) with respect to y. We obtain sample points

x(2) = (g, [−3.33,−3.32]), x(4) = (g, [−3.31,−3.30]), and x(6) = (g, [−1.88,−1.87])
from the condition that f(x, y) has a multiple root. However, f(x, y) has a multiple

real root only when x = x(4). In particular, since f(x(2), y) does not have a real root, we

can avoid factorization over an algebraic extension field even if we do not use dynamic

evaluation.

Figure 2.2: Sample points of adam1

2.3.2 Use of Sign Information

In this subsection, we present another technique that is inspired by A. Strzeboński’s

suggestion, to avoid symbolic computation using the sign information of cells. The

CHAPTER 2. SYMBOLIC-NUMERIC CAD 22

quick tests presented in the previous subsection do not work well when the inter-

vals are not sufficiently precise. In such cases sign information may work effectively.

A. Strzeboński proposed the usage of sign information described in [75]. The differ-

ences between our approach and that of [75] are that our approach requires only the

real roots of projection factors and A. Strzeboński’s approach does not use the dynamic

evaluation technique.

Let Fk+1 ⊂ Q[x1, . . . , xk, xk+1] be a finite set of polynomials, Fk ⊂ Q[x1, . . . , xk] an

output of a projection operator Proj, and Dk a CAD of Fk. Here we consider lifting

a cell C(k) ∈ Dk in which Fk is sign invariant. In this step, we have already obtained

the signs of Fk at s ∈ C(k). As Fk is computed by Proj from Fk+1, we can use this

sign information to avoid symbolic computation.

Of course, this technique depends on the choice of projection operator. Here we

explain the technique using S. McCallum’s projection operator ProjMC from [58],

shown in Algorithm 3. The sub-procedures Coeffs(f, x), Discriminant(f, x), and

Resultant(f, g, x) return the set of all the coefficients of f w.r.t. x, the discriminant

of f w.r.t. x, and the resultant of f and g w.r.t. x, respectively.

Algorithm 3 ProjMC(Fk+1, xk+1)

Input: polynomials Fk+1 ⊂ Q[x1, . . . , xk+1] (k ≥ 1), main variable xk+1

Output: projection factors Fk ⊂ Q[x1, . . . , xk]

G← ∅
for f ∈ Fk+1 do

G← G ∪Coeffs(f, xk+1)

G← G ∪ {Discriminant(f, xk+1)}
end for

for f, g ∈ Fk+1 (f 6= g) do

G← G ∪ {Resultant(f, g, xk+1)}
end for

return irreducible factors of G

Avoidance of Symbolic Zero Determination

As mentioned in Section 2.3.1, to isolate the real roots of f ∈ Fk+1 at s in C(k) in the

lifting phase, we determine the signs of all the coefficients of the interval polynomial

CHAPTER 2. SYMBOLIC-NUMERIC CAD 23

obtained by substituting each isolating interval of si for xi in f . Since Fk contains the

coefficients of Fk+1 with respect to xk+1 and the signs of Fk at s are already computed,

we can reuse them for zero determination in Algorithm 1.

We note that some of the projection operators (e.g., [59, 12]) may not produce all

the coefficients of input polynomials.

Avoidance of Unnecessary Square-free Decomposition

Using sign information of discriminants, we can skip the unnecessary symbolic square-

free computation. Moreover, we can do more for quadratic polynomials.

A Quick Test of Square Freeness: In Section 2.3.1, we mentioned that we use DE

to represent algebraic extensions, which requires the square freeness of defining polyno-

mials. However, employing the numeric real root isolation method we can avoid most

of the unnecessary symbolic square-free decomposition applied to square-free polyno-

mials. Still, we might execute an unnecessary square-free decomposition if the precision

of the isolating intervals of the sample point is not sufficient. Here we show how we

can avoid the symbolic square-free decomposition using the sign of the discriminant of

f(x1, . . . , xk, xk+1) at s.

Lemma 10. Let f(x1, . . . , xk, xk+1) =
∑d

i=0 ci(x1, . . . , xk)x
i
k+1 be a polynomial of de-

gree d, D(x1, . . . , xk) the discriminant of f with respect to xk+1, and s a point in Rk.

The discriminant D(x1, . . . , xk) vanishes at s if and only if cd(s) and cd−1(s) are equal

to zero or f(s, xk+1) has a multiple root.

Since the discriminant D(x1, . . . , xk) of f(x1, . . . , xk, xk+1) belongs to Fk, we have

already obtained the sign of D(s). When D(s) is not equal to zero, we do not need

to carry out symbolic square-free decomposition and we thus incorporate this quick

test into Algorithm 2. Through this incorporation, we can avoid most of the symbolic

square-free decomposition when f(s, xk+1) does not have a multiple real root. Thus,

DE is a very useful tool for CAD implementation.

Square-free Decomposition of Quadratic Polynomials: Using the sign infor-

mation of the discriminant, we can avoid symbolic square-free decomposition for poly-

nomials of degree two over algebraic extension fields.

Lemma 11. Let f(x) = c2x
2+c1x+c0 be a polynomial (c2 6= 0). If f(x) has a multiple

root, there exists w ∈ R such that

f(x) = c2x
2 + c1x+ c0 = w(2c2x+ c1)

2,

CHAPTER 2. SYMBOLIC-NUMERIC CAD 24

where sgn(w) = sgn(c2).

The function sgn(x), defined for all real values of x, is zero if x is equal to zero, and

x/|x| otherwise.
From Lemmas 10 and 11, we have the following lemma.

Lemma 12. Let f(x1, . . . , xk, xk+1) =
∑d

i=0 ci(x1, . . . , xk)x
i
k+1 be a polynomial of de-

gree d, D(x1, . . . , xk) the discriminant of f with respect to xk+1, and s a point in Rk.

If the degree of f(s, xk+1) is two, D(s) is equal to zero, and d = 2 or d = 3, then up to

a positive constant number, f(s, xk+1) is factorized as

sgn(c2(s))(2c2(s)xk+1 + c1(s))
2. (2.1)

Since we are interested only in the signs of projection factors in CAD construction,

we can replace the symbolic square-free decomposition of f(s, xk+1) with a polynomial

in (2.1). We note that the sign of c2(s) is already known from the sign information.

Hence we can avoid the heavy symbolic computation in an algebraic extension field.

Sign Invariance of Quadratic Polynomials: We also use the following lemma in

the lifting phase.

Lemma 13. Let f(x1, . . . , xk, xk+1) be a polynomial, D(x1, . . . , xk) the discriminant of

f with respect to xk+1, and s = (s1, . . . , sk) a point in Rk. If the degree of f(s, xk+1) is

two and D(s) is negative, f(s, xk+1) is sign definite for all xk+1 in R.

By applying this lemma in the truth value evaluation, we can avoid lifting more

cells. We present the details in Section 2.4.2.

Avoidance of the Symbolic Equality Check of Algebraic Numbers

Let f, g ∈ Fk+1 be projection factors, C(k) ∈ Dk a cell, and s = (s1, . . . , sk) ∈ Rk a

sample point for C(k). We denote the set of isolating intervals of the real roots of f

and g at s by Lf and Lg, respectively. In our implementation, if If ∈ Lf intersects

Ig ∈ Lg, then we check whether two isolating intervals stand for the same algebraic

number in a symbolic sense using their defining polynomials. Here we show that the

sign information of their resultant enables us to avoid symbolic computation.

Lemma 14. Let f, g be polynomials in Fk+1, and s a point in Rk. If the resultant of

f and g with respect to xk+1 is not equal to zero at s, then they have no common root.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 25

This is a well-known fact and very important for CAD computation. From Lemma

14, when their resultant is not equal to zero at s, we can isolate the intervals by

improving the precision of isolating intervals of s. When the resultant of f and g is

equal to zero, If and Ig give the same algebraic number if three conditions hold:

1. The leading coefficients of f and g in xk+1 are not equal to zero at s,

2. either f or g has only real roots at s and

3. Jf does not intersect Jg for all Jf (6= If) ∈ Lf and Jg(6= Ig) ∈ Lg.

Remark 15. By computing all the complex roots of projection factors, we might avoid

more symbolic computations as described in [75].

2.4 Avoidance of Lifting Cells

Reducing the number of lifting cells is a fundamental idea for making CAD construction

efficient. Using this idea, G.E. Collins and H. Hong presented partial CAD in [21].

Their partial CAD algorithm improves the efficiency of CAD by evaluating a cell before

lifting it to reduce the number of cells. We call this evaluation a trial evaluation, and

as a quick test, it checks if the input formula has a constant truth value on a cell and

if so, the algorithm skips further construction on the cell.

The following simple example given in [21] illustrates the effect of trial evaluation.

Let ϕ(x1, x2) = ∃x2(ψ1(x1) ∧ ψ2(x1, x2)) be a formula where ψ1 and ψ2 are quantifier

free. Now, we consider lifting a cell C(1) ∈ D1. We have obtained the signs of the

projection factors F1, because F1 is sign-invariant in C(1). Thus we can evaluate the

formula ψ1. If ψ1 is false in cell C(1), then the formula ϕ is false for all x2. Thus we do

not need to lift C(1).

In this section we consider the “k-th lifting step” where we lift a cell C(k) ∈ Dk. We

will further discuss trial evaluation with the help of numerical computation to avoid

unnecessary lifting cells C(k) ∈ Dk.

2.4.1 Avoidance of Merging and Sorting

When we solve QE problems using a CAD algorithm, we can avoid lifting the cells

whose truth values are determined beforehand. We can apply Algorithm 4 if xk+1 is

quantified. If the truth value of a cell is determined by a quick test, sorting the real

root can be skipped.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 26

Algorithm 4 Lifting(C(k), Fk+1)

Input: a cell C(k), projection factors Fk+1

s← a sample point of C(k)

Qk+1 ← the quantifier of xk+1

for f ∈ Fk+1 do

Lf ← IntvRealRootIsol(f , s)

for J ∈ Lf do

T ← trial evaluation at (s1, . . . , sk, J) using numeric computation

if (T = true and Qk+1 = ∃) or (T = false and Qk+1 = ∀) then
truth value of C(k) ← T

return

end if

end for

end for

Merge the results above and sort the roots

2.4.2 Trial Evaluation Using the Structure of Formulas

The partial CAD algorithm evaluates only atomic formulae whose levels of polynomials

are less than or equal to k in the k-th lifting step. By evaluating truth values of all

atomic formulae we have a good chance of avoiding unnecessary lifting cells. In this

subsection, we explain how we can exploit the structure of a formula to decide truth

values for more cells.

A first but simple approach is to use Lemma 13, which is applicable to only

quadratic polynomials.

Example 16. (adam2-1 [75]) Let us consider the following QE problem.

ϕ ≡ ∀x∀y∀z ((x ≥ 0 ∧ y ≥ 0 ∧ h(x, y) < 0)⇒ ψ(x, y, z),

where h(x, y) = 4(x2 + y2)− 1 and ψ is quantifier free.

The discriminant of h with respect to y is −16(2x− 1)(2x+1). When the discrim-

inant is negative, h is positive for all y. Thus ϕ is true for all y and we can avoid

lifting cells for x < −1/2 and 1/2 < x.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 27

Bounded CAD Construction

We might determine the truth value of a formula in a restricted region specified by the

given problem using numeric computation. In this case we do not need to construct a

CAD in the whole space. We present an effective approach for CAD constructed in a

given restricted connected region Ur ⊆ Rr, where each subregion Ui = {(x1, . . . , xi) ∈
Ri|∃xi+1(x1, . . . , xi, xi+1) ∈ Ui+1} for i = 1, . . . , r − 1 is also connected. We will call

this specially constructed CAD a bounded CAD construction.

Now we explain the trial evaluation for bounded CAD. Let ϕ(x1, . . . , xr) be an

input formula, and Di a CAD of Ri for i = 1, . . . , r. The trial evaluation in partial

CAD uses the following lemma [21].

Lemma 17. Let C(k) be a cell in Dk of Rk for 1 ≤ k < r, and s = (s1, . . . , sk) a sample

point for C(k). If ϕ(s1, . . . , sk, xk+1, . . ., xr) has a constant truth value, then we do not

need to lift C(k).

The trial evaluation deals with only the polynomials such that their levels are less

than or equal to k in the k-th step in the lifting phase. Since we construct CAD only

in Ur, the following lemma is immediate.

Lemma 18. Let C(k) be a cell in Dk for 1 ≤ k < r, Ur a connected region, and

s = (s1, . . . , sk) a sample point for C(k). If ϕ(s1, . . . , sk, xk+1, . . . , xr) has a constant

truth value in Ur, then we do not need to lift C(k) in bounded CAD construction in Ur.

Using Lemma 18 as a quick test, we can recognize truth values for more cells, which

improves the efficiency.

In our approach, we try to evaluate all the polynomials in input formulae. Hence,

we can avoid lifting more cells, and the computation time might decrease.

Additionally, we can avoid symbolic computation in bounded CAD construction. In

Section 2.3.2, we presented a quick test to determine whether two isolating intervals If ,

Ig stand for the same algebraic number. However, if If , Ig 6⊆ Uk+1, then we can skip the

check, because its result is unnecessary for the bounded CAD construction. We note

that if xk+1 is quantifier free, then this approach has an effect on the solution formula

construction phase, because some solution formula construction algorithms require the

signs of Fk+1 for all cells in Dk+1.

Remark 19. Since it is difficult to implement bounded CAD construction for general

Ur, Ur should be given as a hyperrectangle and a sample point of a cell should be in Uk
when the boundary of Uk is contained in the cell.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 28

Section Polynomials

We first give a definition of a section polynomial.

Definition 20. For a formula ϕ without universal quantification, a section polynomial

of ϕ is defined as a polynomial f , where ϕ implies f = 0.

QE problems sometimes have section polynomials as projection polynomials. Some

projection operators have been proposed for formulae with section polynomials: e.g.,

[59]. Here we assume that a formula ϕ has two or more section polynomials and does

not have a universal quantifier. In other words, we consider that ϕ becomes true only

when those polynomials vanish simultaneously.

Lemma 21. Let ϕ be a formula without a universal quantifier. If f1 and f2 are section

polynomials of ϕ, then so is the resultant of f1 and f2.

We reformulate this lemma for our purpose.

Lemma 22. Let ϕ be a formula without a universal quantifier, f1, f2 ∈ Fk+1 section

polynomials of ϕ, C(k) ∈ Dk a cell, and s ∈ Rk a sample point for C(k). The resultant

of f1 and f2 with respect to xk+1 is also a section polynomial and if it is different from

zero at s, then the truth value of C(k) is false.

Since the resultant of f1 and f2 belongs to Fk, we have already obtained its sign

information. Thus, we can avoid lifting cells using this condition without symbolic

computation.

2.5 Reduction of Projection Factors

Many researchers [41, 58, 12] have worked on reducing the number of projection factors,

because it is one of the most effective ways to reduce the number of cells produced in

CAD and improve the efficiency of CAD computation. Some have discussed how they

can reduce projection factors for a special type of formulae. As examples, formulae

with strict inequalities [57, 74] and with equational constraints [59, 60] have been

investigated. Here we consider bounded CAD construction as a special type of formulae

for which we can reduce the number of projection factors.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 29

2.5.1 Projection Operator for Bounded CAD

We do not need to decompose the whole space when we solve QE problems using

CAD. From a viewpoint of solving QE problems, there may be unnecessary redundant

polynomials among projection factors. We introduce a projection operator specialized

to bounded CAD.

Let us consider a short example of how we find unnecessary projection factors in

bounded CAD construction. We consider the following QE problem.

ϕ ≡ ∃x2 (x21 + x22 < 1 ∧ x1 ≥ 0),

where x1 is bounded. We obtain the projection factors using a conventional projection

operator:

F1 = {x1 + 1, x1, x1 − 1}.

Since the formula ϕ is obviously false when x1 < 0, we do not need to construct CAD

in x1 < 0. Thus, the projection factor x1+1 is unnecessary in solving the QE problem

ϕ. See Figure 2.3.

Figure 2.3: Sample points in CAD of {x21 + x22 − 1, x1}

The output of a CAD algorithm is a partition of a variable space, where all input

polynomials are sign invariant within each cell. Therefore the following lemma holds.

Lemma 23. Let F ⊂ Q[x1, . . . , xr] be a finite set of polynomials, g(x1, . . . , xr) a poly-

nomial that does not vanish for any (x1, . . . , xr) ∈ Rr, and Dr an output of a CAD

algorithm for F . Then g is sign invariant in Rr and thus F ∪ {g} is sign invariant in

each cell C(r) ∈ Dr.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 30

Lemma 23 states that a sign-definite polynomial is not needed for CAD construc-

tion. The following lemma shows that we might reduce the number of projection factors

in our bounded CAD construction.

Lemma 24. Let F ⊂ Q[x1, . . . , xr] be a finite set of polynomials, Ur ⊆ Rr a connected

region, g(x1, . . . , xr) a polynomial that does not vanish for any (x1, . . . , xr) ∈ Ur, and
Dr an output of a CAD algorithm for F . If C(r) ∈ Dr is a connected subregion of Ur,
then g is sign invariant in C(r) and thus F ∪ {g} is sign invariant in C(r).

Using Lemma 24, we propose a new projection operator BProj in Algorithm 5

that can refine any other projection operator Proj by removing unnecessary projection

factors in a restricted connected region before applying Proj.

Algorithm 5 BProj(Fk, Uk, xk)
Input: polynomials Fk ⊂ Q[x1, . . . , xk] (k > 1), connected bounded region Uk ⊆ Rk

given as a semialgebraic set defined by polynomials Bk, main variable xk

Output: projection factors Fk−1 ⊂ Q[x1, . . . , xk−1] for bounded CAD construction in

Uk
G← ∅
for f(x1, . . . , xk) ∈ Fk do

if ∃x1 · · · ∃xk((x1, . . . , xk) ∈ Uk ∧ f(x1, . . . , xk) = 0) then

G← G ∪ {f(x1, . . . , xk)}
end if

end for

return Proj(G ∪Bk, xk)

Remark 25. Since a formula might have redundant conditions, we check whether each

of the input polynomials of BProj is sign definite in Ur. BProj does not remove a re-

dundant polynomial in F1. However, unnecessary projection factors of F1 are naturally

removed in the base phase.

Example 26. We consider the following optimization problem [65, p. 31].

CHAPTER 2. SYMBOLIC-NUMERIC CAD 31

Table 2.1: Number of projection factors of Example 26.

s

LV var 1 1/2 1/4 1/16

5 x2 4 4 4 4

4 x1 5 5 5 5

3 θ2 8 8 8 8

2 θ1 22 21 21 20

1 z 335 312 309 289

total 374 350 347 326

time(sec) >3600 283.2 99.1 66.4

Problem P(x0, x1), 0 ≤ θ1 ≤ s, 0 ≤ θ2 ≤ s :

Minimize f(x1, x2) ≡ x31 + 2x21 − 5x1 + 2x22 − 3x2 − 6

subject to 2x1 + x2 ≤ 5/2 + θ1,

1/2x1 + x2 ≤ 3/2 + θ2,

x1 ≥ 0, x2 ≥ 0.

This problem can be formulated as the following first-order formula:

∃x1∃x2 (z = f(x1, x2) ∧ 2x1 + x2 ≤ 5/2 + θ1∧
1/2x1 + x2 ≤ 3/2 + θ2∧
x1 ≥ 0 ∧ x2 ≥ 0 ∧ 0 ≤ θ1 ≤ s ∧ 0 ≤ θ2 ≤ s).

Table 2.1 shows the number of projection factors in each level when s is 1, 1/2, 1/4,

and 1/16. We solved the QE problems by using a bounded CAD approach with U5 :=

0 ≤ θ1 ≤ s ∧ 0 ≤ θ2 ≤ s. We can see that the number of projection factors become

smaller when s is small. This result shows that when we can not solve a QE problem

by divide the parameter space we might solve it.

The next example shows another effect of our bounded CAD approach incorporated

with McCallum’s restricted projection operator.

Example 27. (kimura5) Let us consider the following first-order formula.

∃x3∃x4∃x5∃x6 (f1 = 0 ∧ f2 = 0 ∧ f3 = 0 ∧ f4 = 0 ∧
x1 ≥ x2 ≥ 1 ∧ x5 > x3 ≥ x4 ∧ x25 ≥ x26 ∧ x5 ≥ 0),

CHAPTER 2. SYMBOLIC-NUMERIC CAD 32

where

f1 = (x1x2 + x1 + x2)x3x4 − (x21x2 + x1x
2
2 + x1x2),

f2 = (x1x2 + x1 + x2)(x3 + x4)− (x21 + x22 + x21x2 + x1x
2
2 + x1 + x2),

f3 = (x21x
2
2 + x21 + x22)x5x6 − (x41x

2
2 + x21x

4
2 + x21x

2
2),

f4 = (x21x
2
2 + x21 + x22)(x5 + x6)− (x41 + x42 + x41x

2
2 + x21x

4
2 + x21 + x22).

Now, the formula is evaluated as false outside the region defined by U6:

U6 = (x1 ≥ 1 ∧ x2 ≥ 1 ∧ x5 ≥ 0).

Thus we consider bounded CAD construction in U6. Note that we can obtain U6 through
numeric computation.

At the top level six, there are section polynomials f1 and f2, and we can apply the

restricted equational projection operator ProjEQ proposed by McCallum [59] at level

six. There are no section polynomials of level five in the formula. The resultant of

section polynomials h = h21h
2
2 is a section polynomial of the formula, where

h1 = x22x
2
1 + x22 + x21,

h2 = −x22x41 + x41x
2
5x

2
2 + x25x

4
1 − x21x42 + x25x

4
2x

2
1 − x22x21 − x45x22x21

−x45x21 + x25x
2
1 + x25x

4
2 − x45x22 + x25x

2
2.

We cannot apply the semi-restricted equational projection ProjEQ∗ [60] at level five

because h has two irreducible factors with different level. However, its factor h1 does

not vanish except at x1 = x2 = 0, that is, it never vanish at any point in U6. Thus

the cofactor h2 can be treated as the unique irreducible section polynomial with level

five and we can apply ProjEQ∗ at level five. That is, we can obtain a smaller set of

projection factors.

2.6 Procedures of Bounded CAD

Here we explain three procedures for bounded CAD construction presented in Sections

2.4.2 and 2.5.1.

2.6.1 Region Ur
As preprocessing of bounded CAD, we compute a region Ur where the truth value of

an input formula ϕ is not trivial. We denote a quantifier-free part of ϕ by ψ. We call

CHAPTER 2. SYMBOLIC-NUMERIC CAD 33

a region where the truth value of a formula is true or false a true region or false region,

respectively.

In general computing a true region or false region exactly is difficult, but it is often

the case that the truth value of a certain subset is easily decided from an atomic formula

or two appearing in ϕ. We refer to such points that are directly detected true as a

white region. Similarly we use the term a black region for a ‘trivially’ false subset. Note

that detecting white/black regions is important because we can possibly remove some

of the projection factors and avoid lifting cells in those regions, which reduces total

computing time.

First we compute a white region and a black region according to CompTF(ψ∧(0 =

0), (−∞,∞), ∅). The outputs are Tr and Fr expressed by Cartesian products of unions

of open intervals. The sub-procedure CompAtom outputs a white region and a black

region of a given atomic formula. Let Tr,Fr ⊆ Rr be a white region and a black region

of an input formula ϕ. Using Tr and Fr, we easily obtain Ur = Rr \ (Tr ∪ Fr).

In our implementation Ur is expressed by a Cartesian product of closed intervals:

i.e., Ur = [I
(l)
1 , I

(u)
1] × · · · × [I

(l)
r , I

(u)
r]. This is the reason why evaluations are easy in

the following procedures of 2.6.2 and 2.6.3.

2.6.2 Evaluation of the Sub-QE Problem

Since we express Ur by a Cartesian product of intervals as Section 2.6.1 it is easy to

evaluate the sub-QE problem in Algorithm 5 in the algorithm BPROJ using numerical

computation. We simply substitute each interval [I
(l)
i , I

(u)
i] for xi, and compute a range

of values using interval arithmetic. If the range contains zero, we deal with the QE

problem as true.

For a necessary projection factor this approach always returns a true value. There-

fore we do not lose the correctness as a projection operator.

2.6.3 Evaluation of the Truth Value in Region Ur
Here we use the same notation as in lemma 18. In a similar way as 2.6.2, to evaluate

the formula ϕ we substitute isolating intervals of si for xi (i = 1, . . . , k) and intervals

[I
(l)
j , I

(u)
j] for xj (j = k + 1, . . . , r) in each polynomial appearing in ϕ, and compute a

range of values using interval arithmetic without losing correctness. If ϕ has a constant

truth value in Ck over Ur, then we avoid lifting Ck.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 34

Algorithm 6 CompTF(ψ, IT , IF)

Input: quantifier-free formula ψ(x1, . . . , xr), regions IT , IF ⊆ R
Output: white region and black region

if ψ is atomic formula then

return CompAtom(ψ, IT , IF)

end if

ψ ← equivalent conjunction & disjunction formula to ψ

r ← false

if ψ is conjunction then

T0, F0 ← (−∞,+∞), ∅
for p in element of conjunction do

T , F ← CompTF(p, (−∞,∞), ∅)
if error then

continue

end if

T0, F0 ← T0 ∩ T, F0 ∪ F
r ← true

end for

else

T0, F0 ← ∅, (−∞,+∞)

for p in element of disjunction do

T , F ← CompTF(p, ∅, (−∞,∞))

if error then

continue

end if

T0, F0 ← T0 ∪ T, F0 ∩ F
r ← true

end for

end if

if r = false then

return error

end if

return T0, F0

CHAPTER 2. SYMBOLIC-NUMERIC CAD 35

Algorithm 7 CompAtom(ψ, IT , IF)

Input: atomic formula ψ = f(x1, . . . , xr)ρ 0, where ρ ∈ {<,≤,=, 6=}, regions IT , IF
⊆ R

Output: white region and black region

Tj ← IT for j = 1, . . . , r

Fj ← IF for j = 1, . . . , r

if f is univariate polynomial in xi then

Li ← a union of isolating intervals of the real roots of f

Ji ← R \ Li (union of open intervals)

Ti ← {si ∈ Ji | f(si) ρ 0}
Fi ← {si ∈ Ji | si 6∈ Ti}

else

for i = 1 to r do

if all coefficients of xi are rational number except constant term then

F ← substitute (−∞,∞) for xj (j 6= i)

transpose F ρ 0 to g(xi) ρ [I(l), I(u)]

update Ti, Fi from g(xi) ρ [I
(l), I(u)] by same manner as univariate polynomial

end if

end for

if Ti, Fi do not update then

return error

end if

end if

return T1 × · · · × Tr, F1 × · · · × Fr

CHAPTER 2. SYMBOLIC-NUMERIC CAD 36

Note that we have already obtained the sign information of the polynomial f such

that n(f) ≤ k, and if sk is not contained in the interval [I
(l)
k , I

(u)
k] then a sample point

S belongs to Tk or Fk.

2.7 Behavior Analysis

Here we examine and discuss the effects of our improvements according to compu-

tational experiments. In more detail, we first analyze the practical behavior of our

implementation, and then demonstrate its actual practicality. Since doubly exponen-

tial complexity of QE based on CAD in the worst case has been proved, there is no

point considering the practicality in a general setting. Instead, we focus on the prac-

ticality for actual problems. Here we summarize our improvements. In Section 2.3,

we presented ways to use numerical computation (interval arithmetic) to avoid heavy

symbolic computation. In Sections 2.4 and 2.5, we presented several improvements to

reduce the number of cells.

All the computational experiments were executed on a personal computer with an

Intel(R) Core(TM) i3 CPU U330 1.20 GHz and 2.92 GByte memory, and all timing

data are given in units of seconds. The mark “-” implies that the program failed to

obtain a result because of a shortage of memory. As for the projection phase and

solution formula construction phase, we employ the projection operators proposed by

[12] and also restricted one by [59] when we can apply it at the top level, and the

solution formula construction algorithm shown in [10]. Note that we do not apply the

projection operator proposed in [60] even for cases we can apply it.

2.7.1 Practical Performance of Our Implementation

In this subsection, we show the practicality of our implementation on actual computa-

tion.

Comparison of Computing Time for Each Improvement: We first present

the timing data of our implementation in Table 2.2. The first column “§2.3” gives

the timings of computations with only the improvements presented in Section 2.3.

The second column “§2.3–2.4” gives those with only the improvements presented in

Sections 2.3 and 2.4. The last column “§2.3–2.5” gives those with all improvements.

The problems we deal with here are presented in Section 2.9. The four problems in

the first block of the table are taken from [75] concerning with stability study and

CHAPTER 2. SYMBOLIC-NUMERIC CAD 37

control design. The second block consists of typical control design problems that are

very obstinate for numerical methods of semi-definite programming [63, 54]. Two well-

known problems from QE-related papers [55, 10] are given in the third block. The

fourth and fifth blocks are QE problems for single–objective optimization [71] and

multi–objective optimization [25, 84, 53], respectively. The sixth block is taken from

theorem proving problems.

Our improvements presented in Sections 2.4 and 2.5 certainly decreased the com-

puting time in all the problems. The effects of improvements described in Section 2.4

are seen in the problems “mooea” and “wilson”, and those described in Section 2.5 are

seen in the problems “portfolio” and “kimura5”. It will be shown in the next subsec-

tion that this good effect on the timing could result from a reduction of the number of

cells produced in CAD construction.

Comparison of Computing Time with Other Implementations: Comparisons

with other implementations are shown in Table 2.3, where SyNRAC represents our

implementation with all improvements in Section 2.3 through Section 2.5. QEPCAD

B 1.58 [13] was executed with options “+N40000000 +L10000”.

SyNRAC was more effective than QEPCAD for relatively large problems that re-

quired many symbolic computations over algebraic extension fields. This was due to

the avoidance of symbolic computation introduced in Section 2.3 because QEPCAD

uses symbolic implementation only. On the other hand, QEPCAD was more effective

than SyNRAC for small problems, such as the problems “pl01”, “lass”, “candj”, and

“xaxis”. We think that these results are due to the overheads of the quick tests.

Mathematica 8.0 [75] solved most of the problems effectively, since it is an im-

plementation with validated numerics. SyNRAC was more effective in the problems

derived from optimization; e.g., the problems “portfolio” and “wilson”. It seems that

in those cases, the bounded CAD improvements presented in Sections 2.4.2 and 2.5.1

certainly reduced the number of cells.

2.7.2 Analysis of Our Implementation

In this subsection, using practical computational data, we show that our improvements

presented in Sections 2.4 and 2.5 reduced the number of cells, and our improvements

presented in Sections 2.3 avoided much of the symbolic computation.

Number of Cells: Table 2.4 presents the number of leaf cells produced for each

problem in each improvement, where a leaf cell is a cell that is not lifted in CAD con-

CHAPTER 2. SYMBOLIC-NUMERIC CAD 38

Table 2.2: Timing data (sec)

problem §2.3 §2.3–2.4 §2.3–2.5
adam1 0.26 0.13 0.13

adam2-1 9.23 1.83 1.77

adam2-2 4.37 4.23 4.03

adam3 5.82 4.82 4.84

pl01 0.14 0.15 0.13

lass 0.34 0.28 0.30

candj 0.33 0.30 0.33

xaxis 0.59 0.52 0.55

portfolio - 9.16 1.42

port-nox3 6.67 5.98 6.07

port-para - 11.44 11.33

kinoshita 3.71 1.93 1.92

mooea 195.89 40.93 42.54

wilson 119.36 27.00 25.54

lampinen 31.17 17.17 16.98

kimura5 - 622.82 253.89

kimurac - 78.66 54.35

struction. Since the improvements presented in Section 2.3 do not reduce the number of

cells, the first column “§2.3” corresponds exactly to the implementation without any

improvements in this chapter. For the problems “adam1”, “lass”, “port-nox3”, and

“port-para,” the number in the second column “§2.3–2.4” is equal to that in the last

column “§2.3–2.5”. This is because the number of projection factors was not reduced

by the improvement presented in Section 2.5.1.

In many problems, our improvements reduced the numbers of cells. We see that the

improvements presented in Section 2.5 greatly reduced the numbers of cells in some

problems. This result illustrates that the reduction of projection factors is one of the

most important techniques in CAD. The numbers of cells were greatly reduced in the

problems “mooea” and “wilson” by our improvements presented in Section 2.4, and

in the problems “portfolio” and “kimura5” by our improvements presented in Section

2.5.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 39

Table 2.3: Timing data (sec)

problem SyNRAC Mathematica 8.0 QEPCAD B 1.58

adam1 0.13 0.88 0.95

adam2-1 1.77 2.75 326

adam2-2 4.03 4.15 806

adam3 4.84 2.31 -

pl01 0.13 0.19 0.08

lass 0.30 0.43 0.10

candj 0.33 0.32 0.11

xaxis 0.55 0.29 0.18

portfolio 1.42 272 524

port-nox3 6.07 52.55 9.62

port-para 1.33 103 128

kinoshita 1.92 6.54 -

mooea 42.54 9.74 -

wilson 25.54 28.92 -

lampinen 16.98 13.94 239.48

kimura5 253.89 9.84 >3600

kimurac 54.35 >3600 -

Figure 2.4 shows the relation between computing time and the number of cells.

From Figure 2.4 and comparing Table 2.2 with Table 2.4, we see that the reduction in

the number of cells makes CAD construction efficient.

Number of Projection Factors: Table 2.5 presents the number of projection fac-

tors. The labels “original”, “§2.5” and “removed” stand for an implementation without

any improvements, an implementation with the projection operator for bounded CAD

construction presented in Section 2.5.1 and the number of the projection factors re-

moved by Algorithm 5, respectively.

Our bounded CAD reduced the number of projection factors in some problems;

e.g., problems “adam2-1”, “portfolio”, and “kimura5”.

The problem “portfolio” is a special case where bounded CAD worked very well

in reducing the number of projection factors. It has a redundant constraint x3 ≥ 0.

Interestingly, there were fewer projection factors for the problem “portfolio” than for

CHAPTER 2. SYMBOLIC-NUMERIC CAD 40

Figure 2.4: Relation between computing time and the number of cells

the problem “port-nox3”, which does not have the redundant constraint.

Avoidance of Symbolic Computation: Table 2.6 tells us the numbers of oc-

currences of important events in our implementation. The first three columns “zero

test” give the information of the symbolic zero test. The second column “done” gives

the number of executed symbolic zero tests, or the number of calls of the function

SymbolicZeroChk, the first column “worked” gives the number of cases in which

SymbolicZeroChk returns a true value, and the third column “QT” gives the num-

ber of executed the quick test presented in §2.3.1. The next four columns give the

information of symbolic square-free decomposition. The sixth column “done” gives

the number of calls of symbolic square-free decomposition SymbolicSqfr, the fifty

column “worked” gives the number of cases that the input of SymbolicSqfr has a

multiple root, the fourth column “deg2” gives the number of avoidances of symbolic

computation over algebraic extension fields using Lemma 12 for the quadratic polyno-

mials, and the seventh column “QT” gives calls of IntvRealRootIsol presented in

§2.3.1. The final column “lift” gives the number of lifting cells.

Table 2.6 shows the effect of our improvements presented in Section 2.3. We avoided

most unnecessary symbolic zero tests and square-free decomposition. Unnecessary

symbolic computation was executed only in the problem “kimurac”. Most square-free

computation was applied to second-degree polynomials.

Moreover, there were far fewer calls of symbolic computation than lifting cells,

because we avoided many symbolic computations by reusing the sign information pre-

sented in Section 2.3.2.

Comparison of the Number of Cells with Other Implementations: Finally,

we compare the number of cells produced by SyNRAC with the number produced by

other implementation. Table 2.7 gives the number of cells. All data for Mathematica

were not obtained.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 41

Table 2.4: Number of cells (leaf)

problem §2.3 §2.3–2.4 §2.3–2.5
adam1 49 21 21

adam2-1 5737 2929 2751

adam2-2 11173 10527 9677

adam3 10267 10153 9997

pl01 203 179 121

lass 537 307 307

candj 549 549 547

xaxis 2627 2627 2553

portfolio - 37921 5065

port-nox3 20001 18537 18537

port-para - 43757 43757

kinoshita 12495 4335 4221

mooea 2436623 472069 472531

wilson 1118095 202969 202969

lampinen 129677 69663 69663

kimura5 - 71355 27035

kimurac - 12691 11607

SyNRAC produced fewer cells than QEPCAD. This affected the timing data.

2.7.3 Statistical Data

We present other statistical data of our implementation with all improvements pre-

sented in this chapter.

Computing Time in Each Phase: First, we compare the computing time in each

phase.

Table 2.8 and Figure 2.5 give the rates of computing time in each phase. The labels

“proj”, “base”, “lift”, and “sfc” respectively indicate the projection phase, base phase,

and lifting phase for CAD, and the phase of constructing the solution formula, which

is the final step in QE based on CAD.

In most of the problems, the projection phase and lifting phase required much com-

CHAPTER 2. SYMBOLIC-NUMERIC CAD 42

Table 2.5: Numbers of projection factors

problem original §2.5 removed

adam1 8 8 0

adam2-1 75 68 3

adam2-2 93 83 1

adam3 43 41 2

pl01 12 10 1

lass 21 21 0

candj 19 17 1

xaxis 30 28 2

portfolio 183 68 2

port-nox3 76 76 0

port-para 124 124 0

kinoshita 55 51 1

mooea 255 255 0

wilson 310 310 0

lampinen 73 73 0

kimura5 324 147 12

kimurac 235 168 8

puting time. The problems “wilson” and “lampinen” consumed much time in the phase

of constructing the solution formula, as their sets of projection factors did not contain

all the polynomials needed for the solution formula. Our SyNRAC implementation is

not so efficient for constructing solution formulae, and this must be addressed in our

future work.

Comparison of Levels

We present statistical data for each level.

Computing Time at Each Level: Table 2.9 presents the computing time at each

level of the projection phase and lifting phase. The first column “lv” gives the level.

The next two columns “proj” and the last four columns “lift” give the information of

the projection phase and lifting phase, respectively. The labels “time”, “rate”, “count”,

CHAPTER 2. SYMBOLIC-NUMERIC CAD 43

Table 2.6: Numbers of occurrences: §2.3–2.5
zero test square-free

problem worked done QT deg2 worked done QT lift

adam1 0 0 0 0 0 0 0 0

adam2-1 0 0 132 2 0 0 459 265

adam2-2 41 41 582 34 36 36 2762 1259

adam3 483 483 1047 21 99 99 1481 782

pl01 0 0 0 0 0 0 0 12

lass 6 6 4 0 2 2 5 25

candj 6 6 29 0 1 1 49 76

xaxis 32 32 35 14 14 14 87 302

portfolio 11 11 475 27 27 27 541 621

port-nox3 128 128 5355 580 580 580 6042 7354

port-para 32 32 3750 499 499 499 5555 8514

kinoshita 108 108 769 46 48 48 1134 1235

mooea 3041 3041 16687 582 594 594 22092 70708

wilson 0 0 6918 297 297 297 11221 35157

lampinen 820 820 42908 72 174 174 50950 21252

kimura5 424 437 5331 1 1 1 7635 14222

kimurac 331 321 1839 26 26 26 2619 5694

and “mean” indicate the computing time at each level, the rate of computing time, the

number of lifting cells, and the mean time of computing one cell, respectively.

The computing time at the lower level became longer in the projection phase as

the number of projection factors increased, such as in the problems “portfolio” and

“port-para”. In the lifting phase, the computing time and the mean time of computing

one cell were shorter at the high level, even if the extension degree was high, because

the number of projection factors and that of cells produced by symbolic computation

were smaller.

Types of Cells at Each Level: Table 2.10 shows the information of section cells

at each level. Labels “lv”, “q”, “rational”, “symbolic”, “numeric”, and “total” indi-

cate the level, quantifier, number of cells constructed over the rational number field,

number of cells constructed over an algebraic extension field with symbolic computa-

CHAPTER 2. SYMBOLIC-NUMERIC CAD 44

Table 2.7: Numbers of cells
problem SyNRAC QEPCAD B 1.58

adam1 21 58

adam2-1 2751 6835

adam2-2 9677 11653

pl01 121 225

lass 307 1328

candj 547 685

xaxis 2553 3029

portfolio 5065 763190

port-nox3 18537 76470

port-para 43757 520953

lampinen 69663 410144

tion, number of cells constructed over an algebraic extension field without symbolic

computation, and number of section cells, respectively.

These tables show that our improvement avoided much symbolic computation in

most of the problems. In particular, our improvement required few symbolic computa-

tions at the highest level. We believe that this is one of the reasons why the computing

time was shorter at a higher level in Table 2.9.

Numbers of Projection Factors at Each Level: Table 2.11 presents the number

of projection factors at each level. The lower the level was, the more projection factors

there were. This is another reason why the computing time was shorter at a higher

level in Table 2.9.

Table 2.9: Timing data at each level

proj lift

problem lv time rate time rate count mean

adam2-1 2 0.76 60.28 0.06 12.94 234 0.00026

adam2-1 1 0.50 39.72 0.40 87.06 31 0.01298

adam2-2 2 1.03 56.98 0.51 24.43 1160 0.00044

adam2-2 1 0.78 43.02 1.59 75.57 99 0.01609

CHAPTER 2. SYMBOLIC-NUMERIC CAD 45

Table 2.9: Timing data at each level

proj lift

problem lv time rate time rate count mean

adam3 3 0.32 26.12 1.40 39.58 495 0.00283

adam3 2 0.32 26.36 1.14 32.07 244 0.00465

adam3 1 0.57 47.52 1.00 28.35 43 0.02335

pl01 2 0.06 83.46 0.01 14.50 7 0.00107

pl01 1 0.01 16.54 0.04 85.50 5 0.00882

lass 3 0.00 1.02 0.00 0.29 5 0.00012

lass 2 0.07 71.29 0.09 45.24 14 0.00653

lass 1 0.03 27.69 0.11 54.46 6 0.01835

candj 2 0.15 81.15 0.01 4.18 66 0.00009

candj 1 0.04 18.85 0.13 95.82 10 0.01324

xaxis 4 0.15 47.88 0.05 22.04 152 0.00034

xaxis 3 0.09 29.29 0.08 34.55 112 0.00073

xaxis 2 0.04 14.08 0.09 36.20 32 0.00269

xaxis 1 0.03 8.75 0.02 7.22 6 0.00286

portfolio 3 0.01 4.07 0.14 11.40 305 0.00047

portfolio 2 0.04 31.51 0.47 37.64 226 0.00208

portfolio 1 0.09 64.42 0.64 50.96 90 0.00708

port-nox3 3 0.01 4.05 1.90 32.61 5824 0.00033

port-nox3 2 0.06 29.27 2.90 49.77 1401 0.00207

port-nox3 1 0.13 66.68 1.03 17.62 129 0.00795

port-para 3 0.01 2.65 2.36 21.73 5598 0.00042

port-para 2 0.08 30.72 8.26 76.04 2830 0.00292

port-para 1 0.17 66.62 0.24 2.23 86 0.00281

kinoshita 3 0.04 4.49 0.03 4.49 437 0.00006

kinoshita 2 0.33 32.51 0.20 32.51 230 0.00086

kinoshita 1 0.63 63.00 0.39 63.00 54 0.00713

mooea 4 0.01 1.85 2.68 6.60 46604 0.00006

mooea 3 0.03 6.46 32.07 78.92 17544 0.00183

mooea 2 0.06 15.27 4.00 9.84 6395 0.00063

CHAPTER 2. SYMBOLIC-NUMERIC CAD 46

Table 2.9: Timing data at each level

proj lift

problem lv time rate time rate count mean

mooea 1 0.32 76.42 1.89 4.64 165 0.01143

wilson 3 0.01 2.17 1.74 7.46 26585 0.00007

wilson 2 0.22 41.10 18.91 81.09 8347 0.00227

wilson 1 0.30 56.73 2.67 11.45 226 0.01182

lampinen 3 0.03 10.25 1.46 9.20 17908 0.00008

lampinen 2 0.13 48.92 13.67 86.04 3225 0.00424

lampinen 1 0.11 40.83 0.76 4.77 119 0.00637

kimura5 5 0.42 3.20 0.01 0.00 846 0.00001

kimura5 4 0.46 3.56 1.66 0.70 410 0.00406

kimura5 3 0.09 0.67 0.26 0.11 12490 0.00002

kimura5 2 0.59 4.51 3.75 1.57 410 0.00915

kimura5 1 11.45 88.07 232.75 97.62 66 3.52651

kimurac 4 0.38 4.24 2.90 6.56 44 0.06583

kimurac 3 0.02 0.25 0.07 0.17 5282 0.00001

kimurac 2 0.66 7.40 2.12 4.80 324 0.00654

kimurac 1 7.87 88.11 39.08 88.48 44 0.88815

Table 2.10: Number of cells (nodes): §2.3–2.5

problem lv q rational symbolic numeric total

adam1 2 ∀ 0 0 0 0

adam1 1 ∀ 10 0 0 10

adam1 T 10 0 0 10

adam2-1 3 ∀ 325 0 347 672

adam2-1 2 ∀ 357 0 264 621

adam2-1 1 ∀ 82 0 0 82

adam2-1 T 764 0 611 1375

CHAPTER 2. SYMBOLIC-NUMERIC CAD 47

Table 2.10: Number of cells (nodes): §2.3–2.5

problem lv q rational symbolic numeric total

adam2-2 3 ∀ 1263 0 1307 2570

adam2-2 2 ∀ 1226 69 866 2161

adam2-2 1 ∀ 107 0 0 107

adam2-2 T 2596 69 2173 4838

adam3 4 ∀ 660 348 1344 2352

adam3 3 ∃ 815 179 866 1860

adam3 2 ∃ 470 66 221 757

adam3 1 * 29 0 0 29

adam3 T 1974 593 2431 4998

pl01 3 ∀ 23 0 0 23

pl01 2 ∀ 35 0 0 35

pl01 1 * 2 0 0 2

pl01 T 60 0 0 60

lass 4 ∀ 30 0 0 30

lass 3 ∀ 68 10 0 78

lass 2 ∀ 42 0 0 42

lass 1 * 3 0 0 3

lass T 143 10 0 153

candj 3 ∃ 149 0 50 199

candj 2 * 63 3 0 66

candj 1 * 8 0 0 8

candj T 220 3 50 273

xaxis 5 ∀ 468 10 108 586

xaxis 4 ∀ 410 0 94 504

xaxis 3 * 128 0 16 144

xaxis 2 * 35 0 0 35

xaxis 1 * 7 0 0 7

xaxis T 1048 0 218 1276

portfolio 4 ∃ 5 0 0 5

portfolio 3 ∃ 743 51 406 1200

CHAPTER 2. SYMBOLIC-NUMERIC CAD 48

Table 2.10: Number of cells (nodes): §2.3–2.5

problem lv q rational symbolic numeric total

portfolio 2 ∃ 1062 0 0 210

portfolio 1 * 7 0 0 7

portfolio T 7 0 0 7

port-nox3 4 ∃ 5 0 0 5

port-nox3 3 ∃ 4106 460 2476 7042

port-nox3 2 ∃ 1799 0 358 2157

port-nox3 1 * 64 0 0 64

port-nox3 T 5974 460 2834 9268

port-para 4 ∃ 509 7 174 690

port-para 3 ∃ 14569 46 5048 19663

port-para 2 * 1047 0 368 1415

port-para 1 * 110 0 0 110

port-para T 16235 53 5590 21878

kinoshita 4 ∃ 0 2 6 8

kinoshita 3 ∃ 531 113 741 1385

kinoshita 2 ∃ 369 71 237 677

kinoshita 1 * 40 0 0 40

kinoshita T 940 186 984 2110

mooea 5 ∃ 36 0 373 409

mooea 4 ∃ 82279 0 68673 150952

mooea 3 ∃ 43028 12 35063 78103

mooea 2 * 4584 0 2036 6619

mooea 1 * 182 0 0 182

mooea T 130109 12 106144 236265

wilson 4 ∃ 56 0 224 280

wilson 3 ∃ 50719 0 43375 94094

wilson 2 * 4810 0 2034 6844

wilson 1 * 266 0 0 266

wilson T 55851 0 45633 101484

lampinen 4 ∃ 40 0 524 564

CHAPTER 2. SYMBOLIC-NUMERIC CAD 49

Table 2.10: Number of cells (nodes): §2.3–2.5

problem lv q rational symbolic numeric total

lampinen 3 ∃ 13570 959 17397 31926

lampinen 2 * 1228 32 995 2255

lampinen 1 * 73 0 0 73

lampinen T 14911 991 18279 34818

kimura5 6 ∃ 0 0 0 0

kimura5 5 ∃ 764 0 3948 4712

kimura5 4 ∃ 133 0 686 819

kimura5 3 ∃ 2459 805 2981 6245

kimura5 2 * 844 341 393 1578

kimura5 1 * 163 0 0 163

kimura5 T 4363 1146 8008 13517

kimurac 5 ∃ 2 0 0 2

kimurac 4 ∃ 47 0 40 87

kimurac 3 ∃ 1809 59 2722 4590

kimurac 2 * 553 332 110 995

kimurac 1 * 129 0 0 129

kimurac T 2540 391 2872 5803

2.8 Conclusion

We have proposed our strategy using quick tests aimed at improving the efficiency of

the Collins QE algorithm based on CAD and implemented all our improvements on a

Maple package called SyNRAC. We consider there to be two most important targets

in making QE based on CAD more efficient. One is to reduce symbolic computation

in CAD construction. The other is to reduce the number of cells produced during

CAD. Six quick tests in total were introduced to achieve these goals. These tests

were proposed in Sections 2.3 to 2.5. Quick tests using numerical computation were

explained in Section 2.3, quick tests before lifting a cell in Section 2.4, and quick tests

to produce fewer projection factors in Section 2.5.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 50

Figure 2.5: Rate of computing time in each phase

The effectiveness of our quick tests was verified using statistical data taken from

many example problems. Our implementation showed that numerical quick tests can

avoid heavy symbolic counterparts. Quick tests before lifting a cell help prevent our

CAD algorithm from making unnecessary stacks. These tests save much more time at

a higher level in lifting. Quick tests in the projection phase not only saved computing

time in that phase itself, but also in reduced the number of cells produced in lifting.

The methods proposed in the present chapter will be applied to other algorithms

in real algebraic geometry. Ideas behind bounded CAD, for example, can be used to

improve QE by virtual term substitution [55, 81, 82].

We will study other methods to improve our algorithm. Experimental results

showed that the solution formula construction phase dominates the computing time

when the set of projection factors does not contain all the polynomials appearing in

the solution formula. We are eager to employ methods other than ‘extended Tarski

formulae’. Furthermore it seems promising to combine SNCAD with the ideas of dis-

criminant variety [69] in solving large practical problems.

CHAPTER 2. SYMBOLIC-NUMERIC CAD 51

Table 2.8: Rate of timing data in each phase

problem proj base lift sfc

adam1 90.73 9.22 0.00 0.05

adam2-1 70.77 3.11 26.12 0.00

adam2-2 45.00 2.69 52.31 0.00

adam3 24.92 1.89 73.17 0.02

pl01 59.61 0.56 39.68 0.15

lass 32.39 0.14 67.40 0.07

candj 57.22 0.49 41.86 0.43

xaxis 56.18 0.17 43.16 0.49

portfolio 9.81 2.01 88.02 0.16

port-nox3 3.19 0.85 95.89 0.07

port-para 2.27 0.39 95.87 1.47

kinoshita 31.85 4.58 63.50 0.07

mooea 1.00 0.15 97.11 1.74

wilson 2.12 0.24 92.64 5.00

lampinen 1.47 0.30 83.18 15.05

kimura5 5.19 0.71 94.05 0.04

kimurac 16.77 0.72 81.62 0.28

2.9 Examples

adam1 [75] Stability of Dormand-Prince fifth-order embedded seven-stage method

(Example 4.4 from Hong et al. (1997))

∀x∀y ((x < 0 ∧ x2 + y2 <
99438

100000
)

⇒ R(x+ jy)R(x− jy) < 1),

where

R(z) = 1 + z +
z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

600
.

adam2 [75] Stability of a six-point upwind-based second-order accurate scheme for

approximating a two-dimensional advection equation (Example 5.4 from Hong et

CHAPTER 2. SYMBOLIC-NUMERIC CAD 52

Table 2.11: Number of projection factors: §2.3–2.5
Level

problem 6 5 4 3 2 1 total

adam1 2 6 8

adam2-1 3 12 53 68

adam2-2 4 16 63 83

adam3 2 5 9 25 41

pl01 3 5 2 10

lass 6 6 6 3 21

candj 4 6 7 17

xaxis 2 5 6 8 7 28

portfolio 3 4 10 51 68

port-nox3 3 4 11 58 76

port-para 4 5 17 98 124

kinoshita 5 5 9 32 51

mooea 4 7 13 39 192 255

wilson 4 9 27 270 310

lampinen 4 7 14 59 84

kimura5 4 6 3 8 17 109 147

kimurac 4 3 8 17 136 168

al. (1997))

2− 1 ∀α∀β∀C2 ((α ≥ 0 ∧ β ≥ 0 ∧ 4(α2 + β2) < 1)

⇒ (B ≤ 0 ∨D ≤ 0)),

2− 2 ∀α∀β∀C2 ((0 ≤ α ≤ 1 ∧ 0 ≤ β ≤ 1)

⇒ A ≤ 0 ∧ C ≤ 0 ∧ (B ≤ 0 ∨D ≤ 0)),

where

CHAPTER 2. SYMBOLIC-NUMERIC CAD 53

A = C4
2(α− β + 1)(α− β − 1)(α− β)2,

B = 2C4
2β(3α

2β − 2α2 − 2αβ2 + α+ β3 − β)
+4C3

2αβ(α
2 − α+ β2 − β)

+2C2
2α(α

3 − 2α2β + 3αβ2 − α− 2β2 + β),

C = C4
2β

2(β2 − 1) + 4C3
2αβ

2(β − 1) + α2(α2 − 1)

+2C2
2αβ(3αβ − 2α− 2β + 1) + 4C2α

2β(α− 1),

D = C2
2R + 2C2S + T,

R = 8α2β2 − 12α2β + 5α2 − 8αβ3 + 8αβ2 + 2αβ

−4α+ 4β4 − 4β3 − 3β2 + 4β,

S = 4α3β − 2α3 − 4α2β2 − 2α2β + α2 + 4αβ3

−2αβ2 + 2αβ − 2β3 + β2,

T = 4α4 − 8α3β − 4α3 + 8α2β2 + 8α2β − 3α2

−12αβ2 + 2αβ + 4α+ 5β2 − 4β.

adam3 [75] Robust multi-objective feedback design (Example 4.2 from Dorato et al.

(1997))

Find the set of n
d
satisfying:

∃q1∃q2∀w (q1 > 1 ∧ q2 > 0 ∧ n
d
> 0 ∧

(n
d
− q21)w4 + (n

d
((q1 + 1)2 − 2q2)− (q21 + q22))w

2 + (n
d
− 1)q22 ≥ 0 ∧

(n
d
− q21)w4 + (n

d
((q1 − 1)2 − 2q2)− (q21 + q22))w

2 + (n
d
− 1)q22 ≥ 0).

pl01 [63]

∀t1∀t2 ((−1 ≤ t1 ≤ 1 ∧ −1 ≤ t2 ≤ 1)

⇒ f ≤ t21t
4
2 + t41t

2
2 + 1− 3t21t

2
2)

lass [54]
∀t1∀t2∀ρ ((0 ≤ ρ < 1 ∧ −ρ ≤ t1 ≤ ρ ∧ −ρ ≤ t2 ≤ ρ)

⇒ f ≤ t21t
4
2 + t41t

2
2 + 1− t21t22)

candj: Collins and Johnson 1989b [55]

∃r (0 < r < 1 ∧ b > 0 ∧ a ≥ 1/2 ∧
3a2r + 3b2r − 2ar − a2 − b2 < 0

3a2r + 3b2r − 4ar + r − 2a2 − 2b2 + 2a > 0

xaxis: The x-axis ellipse problem [10]

∀x∀y (0 < a ≤ 1 ∧ 0 < b ≤ 1 ∧
0 ≤ c < 1− a ∧ (c− a < x < c+ a ∧
(b2(x− c)2 + a2y2 − a2b2 = 0) ⇒ x2 + y2 ≥ 1))

CHAPTER 2. SYMBOLIC-NUMERIC CAD 54

portfolio [71]

Minimize 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21
subject to x1 + x2 + x3 ≤ 10000,

5x1 − 4x2 + 15x3 ≥ 100000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧
x1 + x2 + x3 ≤ 10000 ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21).

port-nox3 portfolio problem removed redundant constraint [71]:

Minimize 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21
subject to x1 + x2 + x3 ≤ 10000,

5x1 − 4x2 + 15x3 ≥ 100000,

x1 ≥ 0, x2 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧
x1 + x2 + x3 ≤ 10000 ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21).

port-para parametric optimization problem of [71]:

Minimize 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21
subject to x1 + x2 + x3 = t,

5x1 − 4x2 + 15x3 ≥ 100000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The associated QE problem is given as:

∃x1∃x2∃x3 (x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧
x1 + x2 + x3 = t ∧ 5x1 − 4x2 + 15x3 ≥ 100000 ∧
y = 45x23 − 30x2x3 + 10x1x3 + 3x22 − 40x1x2 + 8x21).

Eliminating x3 using virtual substitution [55] we obtain the following QE problem:

∃x1∃x2 (x1 ≥ 0 ∧ x2 ≥ 0 ∧
t ≥ x1 + x2 ∧ 15t− 10x1 − 19x2 ≥ 100000 ∧
y = 45t2 + 80tx1 + 120tx2 − 43x21 − 70x1x2 − 78x22).

CHAPTER 2. SYMBOLIC-NUMERIC CAD 55

kinoshita

Minimize a1 + a2 + a3

subject to 1 + C2
2 + C2

3 − 100ai ≤ 0 (i = 1, . . . , 3),

ai ≥ 0 (i = 1, . . . , 3),

C2 = a1a3 + a1 + a3 + 1,

C3 = a1a2 + a1 + a2 + 1.

The associated QE problem is given as:

∃a1∃a2∃a3(t = a1 + a2 + a3∧
1 + (a1a3 + a1 + a3 + 1)2 + (a1a2 + a1 + a2 + 1)2 ≤ 100a1 ∧
1 + (a1a3 + a1 + a3 + 1)2 + (a1a2 + a1 + a2 + 1)2 ≤ 100a2 ∧
1 + (a1a3 + a1 + a3 + 1)2 + (a1a2 + a1 + a2 + 1)2 ≤ 100a3 ∧
a1 ≥ 0 ∧ a2 ≥ 0 ∧ a3 ≥ 0).

mooea extended problem of example 1 in [25, p. 11]:

Minimize x21 + x22 + x3 and

minimize (x1 − 1)2 + x22 + x3

subject to −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2,−1 ≤ 10x3 ≤ 1.

The associated QE problem is given as:

∃x1∃x2∃x3 (y1 = x21 + x22 + x3 ∧
y2 = (x1 − 1)2 + x22 + x3 ∧
−2 ≤ x1 ≤ 2 ∧ −2 ≤ x2 ≤ 2 ∧ −1 ≤ 10x3 ≤ 1).

wilson [84]

Minimize (x1 − 2)2 + (x2 − 1)2 and

minimize x21 + (x2 − 6)2

subject to 2/5 ≤ x1 ≤ 8/5, 2 ≤ x2 ≤ 5.

The associated QE problem is given as:

∃x1∃x2 (y1 = (x1 − 2)2 + (x2 − 1)2 ∧ y2 = x21 + (x2 − 6)2 ∧
2/5 ≤ x1 ≤ 8/5 ∧ 2 ≤ x2 ≤ 5).

CHAPTER 2. SYMBOLIC-NUMERIC CAD 56

lampinen [53, p. 6]

Minimize x21 + x2 and

minimize x1 + x22
subject to −10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10.

The associated QE problem is given as:

∃x1∃x2
(y1 = x21 + x2 ∧ y2 = x1 + x22 ∧ −10 ≤ x1 ≤ 10 ∧ −10 ≤ x2 ≤ 10).

kimura5
∃x1∃x2∃y1∃y2 ((l1l2 + l1 + l2)x1x2 = l21l2 + l1l

2
2 + l1l2 ∧

(l1l2 + l1 + l2)(x1 + x2) = l21 + l22 + l21l2 + l1l
2
2 + l1 + l2 ∧

(l21l
2
2 + l21 + l22)y1y2 = l41l

2
2 + l21l

4
2 + l21l

2
2 ∧

(l21l
2
2 + l21 + l22)(y1 + y2) = l41 + l42 + l41l

2
2 + l21l

4
2 + l21 + l22 ∧

l1 ≥ l2 ≥ 1 ∧ y1 > x1 ≥ x2 ∧ y21 ≥ y22 ∧ y1 ≥ 0).

kimurac
∃x1∃x2∃y1∃y2(

3(x1 + x2) = 2(l1 + l2 + 1) ∧
3x1x2 = −l21 − l22 + 2l1l2 + 2l1 + 2l2 − 1 ∧
(l21 + l22 + l21l

2
2)(y

2
1 + y22) = l41 + l42 + l41l

2
2 + l21l

4
2 + l21 + l22 ∧

(l21 + l22 + l21l
2
2)y

2
1y

2
2 = l21l

2
2 + l41l

2
2 + l21l

4
2 ∧

x1 ≥ x2 ∧ y21 ≥ y22 ∧ y1 ≥ 0 ∧ y1 = x1).

Chapter 3

A Special QE algorithm for Sign

Definite Conditions

3.1 Introduction

In this chapter we focus on one particular input formula,

∀x (x ≥ 0→ f(x) > 0) (3.1)

where f(x) is a univariate polynomial with real parameters, which we call a sign definite

condition (SDC). The importance of this formula is that many practical engineering

problems such as control system design problems can be recast as SDCs [3]. We note

that we mainly consider the case where the coefficients of f contain some parameters.

An effective QE algorithm for SDCs was proposed in [45] based on a combinatorial

approach using a real root counting technique. The Sturm-Habicht sequence [36] is

used as the real root counting method.

To improve the efficiency of the proposed method in [45], simplification of output

logical formulae is a critical issue. Our focus is on developing an effective algorithm

which produces formulae that are as simple as possible.

For this purpose, we propose two approaches. First, we use a necessary condition for

the SDC to simplify an output formula algebraically. The necessary condition enables

us to eliminate extraneous sign combinations derived from real root counting using the

Sturm-Habicht sequence. Second, we use Boolean function manipulation. We obtain

simple formulae by using the idea of don’t cares for handling sign conditions that no

real numbers satisfy. A don’t care is an input where a function is not specified. These

57

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 58

improvements significantly simplify the output formula of a specialized QE algorithm

for the SDC. We also present experimental results for demonstrating the effectiveness

of our proposed method.

The organization of this chapter is as follows. Section 3.2 explains the Sturm-

Habicht sequence and also an outline of the specialized QE algorithm for the SDC

using the Sturm-Habicht sequence. In Section 3.3, we show a necessary condition for

the SDC. Simplification of Boolean expressions based on Boolean function manipulation

is shown in Section 3.4. The proposed improvements for speeding up the specialized

QE algorithm for the SDC are discussed based on experimental results in Section 3.5.

Concluding remarks are made in Section 3.6.

3.2 Quantifier Elimination for Sign Definite Condi-

tion

In this section, we define an SDC and a specialized QE algorithm based on the Sturm-

Habicht sequence. Let us denote the fields of real numbers by R.

3.2.1 Sign Definite Conditions and Real Root Counting by

Sturm-Habicht Sequences

We first introduce a sign definite condition.

Definition 28. Let f(x) be a polynomial in x over R. We call the following condition

a sign definite condition (SDC) for f(x):

∀x (x ≥ 0→ f(x) > 0).

In addition, we call this the n-th SDC problem if the leading coefficient of f is not

equal to zero and the degree of f is equal to n.

Many important design specifications frequently used as indices of robustness, such

as H∞ norm constraints and stability margins, reduce to SDCs [3]. A typical example

is the (frequency restricted) H∞ norm constraint. An H∞ norm constraint of a strictly

proper transfer function P (s) = n(s)/d(s) expressed as

‖P (s)‖∞ := sup
ω
|P (jω)| < γ

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 59

is equivalent to ∀ω (γ2d(jω)d(−jω) > n(jω)n(−jω)), where j denotes the imaginary

unit. Since we can find a function f(ω2) which satisfies f(ω2) = γ2d(jω)d(−jω) −
n(jω)n(−jω) > 0, letting x = ω2 leads to an SDC. Similarly, a finite frequency H∞

norm defined by

‖P (s)‖[ω1,ω2] := sup
ω1≤ω≤ω2

|P (jω)| < γ

can be recast as the condition f(x) 6= 0 in [−ω2
2,−ω2

1], which may be reduced to an

SDC for f(z) by the bilinear transformation z = −(x+ω2
2)/(x+ω

2
1). A specialized QE

algorithm for SDCs was proposed in [45]. This algorithm uses the following proposition

and realizes QE by real root counting using the Sturm-Habicht sequence [36].

Proposition 29. The SDC for a polynomial in R[x] with a positive leading coefficient

is equivalent to the condition that the polynomial has no real root in x ≥ 0.

We next describe the Sturm-Habicht sequence.

Definition 30. Let f(x) be a polynomial in R[x] with degree n. The Sturm-Habicht se-

quence associated to f is defined as the sequence of polynomials SH(f) = {SHj(f)}j=0,...,n

such that SHn(f) = f , SHn−1(f) =
df
dx
, SHj(f) = δn−j Sresj(f,

df
dx
) for j ∈ {0, . . . , n −

2}, where δk = (−1)
k(k−1)

2 and Sresk(f, g) is the k-th subresultant which is defined as

the determinant of the k-th Sylvester matrix of f and g.

Definition 31. We define the sign of a real number as 1, 0, or −1 if the number is

positive, zero, or negative, respectively. Let A = {am, . . . , a0} be a finite sequence of

real numbers. We define the number of sign variations V (A) by the following rules:

• we count 1 sign variation for the groups: {−1,+1}, {+1,−1}, {−1, 0,+1},
{+1, 0,−1}, {−1, 0, 0,+1}, {+1, 0, 0,−1},

• we count 2 sign variations for the groups: {+1, 0, 0,+1}, {−1, 0, 0,−1}.

Let S(x) = {Sn(x), Sn−1(x), . . . , S0(x)} be a finite sequence of polynomials in R[x]
and let α be a real number. We construct a sequence {hs, . . . , h0} of polynomials in

R[x] obtained from S(x) by deleting polynomials identical to zero. The number of sign

variations Vα(S) is defined by V ({hs(α), . . . , h0(α)}).

We note that the sign sequences {+1, 0,+1}, {−1, 0,−1} and {0, 0, 0} cannot ap-
pear by [36].

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 60

Theorem 32. (real root counting by the Sturm-Habicht sequence [36]) Let f be a

polynomial in R[x] and let α, β in R ∪ {−∞,+∞} with α < β and f(α)f(β) 6= 0.

Then Vα(SH(f))−Vβ(SH(f)) is equal to the number of real roots of f(x) in the interval

[α, β].

Using Theorem 32, we can obtain the number of real roots of a polynomial in the

interval [0,+∞).

In the rest of this chapter, we denote the sign of SHk(f) at x =∞ and x = 0 by sk

and ck, respectively.

Remark 33. Let SHk(f) = ak,kx
k + ak,k−1x

k−1 + · · ·+ ak,0. Then sk = 0 is equivalent

to ak,i = ak,k−1 = · · · = ak,0 = 0 and sk > 0 is equivalent to (ak,k > 0) ∨ (ak,k =

0∧ ak,k−1 > 0)∨ · · · ∨ (ak,k = ak,k−1 = · · · = ak,1 = 0∧ ak,0 > 0). That is, sk = 0 if and

only if SHk(f) is identically zero. We note that ck is equivalent to the sign of ak,0.

Example 34. Let f(x) = 25x5 + 25x4 + 10x3 + 2x2 + 25x + 1. The Sturm-Habicht

sequence associated to f is as follows:

SH5(f) = f(x) = 25x5 + 25x4 + 10x3 + 2x2 + 25x+ 1,

SH4(f) = df
dx
(x) = 125x4 + 100x3 + 30x2 + 4x+ 25,

SH3(f) = δ5−3Sres3(f,
df
dx
) = −(310000x),

SH2(f) = δ5−2Sres2(f,
df
dx
) = −(0),

SH1(f) = δ5−1Sres1(f,
df
dx
) = +(1906624000000x),

SH0(f) = δ5−0Sres0(f,
df
dx
) = +(945685504000000).

Thus
{s5, s4, s3, s2, s1, s0} = {+1,+1,−1, 0,+1,+1},
{c5, c4, c3, c2, c1, c0} = {+1,+1, 0, 0, 0,+1}.

Therefore f(x) has no real root for x ≥ 0 because V0(SH(f)) = V∞(SH(f)) = 2.

Remark 35. We note that sn = sn−1 and s0 = c0 for a polynomial with degree n.

Definition 36. SHk(f) is regular when the degree of SHk(f) is equal to k.

Theorem 37. (Sturm-Habicht Structure Theorem [36]) Let f be a polynomial in R[x]
with degree n. Then for every k ∈ {1, . . . , n − 1} such that SHk+1(f) is regular and

deg(SHk(f)) = r ≤ k, we have:

(A) if r < k − 1, then SHk−1(f) = · · · = SHr+1(f) = 0,

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 61

(B) if r < k, then lc(SHk+1(f))
k−rSHr(f) = δk−rlc(SHk(f))

k−rSHk(f),

(C) lc(SHk+1(f))
k−r+2SHr−1(f) = δk−r+2Prem(SHk+1(f), SHk(f)),

where lc(g) is the leading coefficient of the polynomial g, and Prem(g, h) is a pseudo

remainder of the polynomial g by the polynomial h defined by

Prem(g, h) = remainder(lc(h)deg(g)−deg(h)+1g, h).

3.2.2 A specialized QE algorithm for SDC

In this subsection, we describe an implementation for a specialized QE algorithm for

SDCs [45]. The flow of the algorithm for the n-th SDC problem is as follows:

1. consider all the 32n+1 (at most) possible sign conditions over sk and ck,

2. choose all sign conditions ϕn which satisfy V0(SH(f))− V∞(SH(f)) = 0,

3. compute the Sturm-Habicht sequence associated to f ,

4. construct semi-algebraic sets generated by coefficients of polynomials in SH(f)

for each selected sign condition and take their union.

Since steps 1 and 2 are independent of the input polynomial, we can execute these

steps beforehand and store the results in a database. This greatly improves the total

efficiency of the algorithm. In fact, a QE computation for the fifth SDC problem

∀x(x ≥ 0→ x5 +
∑4

i=0 aix
i > 0) using the cylindrical algebraic decomposition (CAD)

algorithm [20], which is a general QE algorithm and a real root classification algorithm

[89] implemented as a Maple command, did not terminate after an hour. In contrast,

the specialized algorithm took less than a second.

The result obtained from the above procedure obviously tends to be large and

complicated, and hence we should reduce the admissible sign conditions ϕn as much

as possible. The simplification of ϕn makes the algorithm and post-processing, for

example drawing the feasible regions, more efficient. For example, formulae can be

simplified by using these well-known rules:
< ∪ > ↔ 6=,
< ∪ = ↔ ≤,
> ∪ = ↔ ≥ .

(3.2)

The goal of this chapter is to obtain an output formula equivalent to the SDC by

simplifying the possible sign conditions ϕn.

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 62

Table 3.1: ϕ2: sign conditions for the 2nd SDC problem

s2 s1 s0 c2 c1 c0 V0(SH)

+ + − + − − 1

+ + − + 0 − 1

+ + − + + − 1

+ + 0 + 0 0 0

+ + 0 + + 0 0

+ + + + + + 0

Example 38. Let f be a quadratic polynomial in R[x]. We consider the second SDC

problem ∀x (x ≥ 0 → f(x) > 0). Table 3.1 shows sign conditions which satisfy

V0(SH(f))−V∞(SH(f)) = 0. Each row shows the signs of sk and ck when f has no real

root in x ≥ 0. We note that s2 = s1 > 0 and s0 = c0 from Remark 35, and that c2 > 0

because f(0) > 0 implies c > 0. From Table 3.1, we obtain the following quantifier-free

formula:

(s0 < 0 ∧ c2 > 0 ∧ c1 < 0) ∨
(s0 < 0 ∧ c2 > 0 ∧ c1 = 0) ∨
(s0 < 0 ∧ c2 > 0 ∧ c1 > 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 = 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 > 0) ∨
(s0 > 0 ∧ c2 > 0 ∧ c1 > 0).

(3.3)

The formula (3.3) can be simplified as follows by using (3.2):

(s0 < 0 ∧ c2 > 0) ∨
(s0 = 0 ∧ c2 > 0 ∧ c1 ≥ 0) ∨
(s0 > 0 ∧ c2 > 0 ∧ c1 > 0).

(3.4)

By constructing formula (3.4) beforehand, the QE computation is done by computing

the Sturm-Habicht sequence and substitution for sk and ck. Moreover, simplification of

ϕ2 reduces the number of substitutions.

3.3 Necessary Condition for SDC

Now we again consider the formula (3.4) in Example 38. For any quadratic polynomial

f ∈ R[x], s0 = 0 ∧ c2 > 0 ∧ c1 = 0 does not hold. In fact, the Sturm-Habicht sequence

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 63

associated to f(x) = x2 + p1x + p0 is SH(f) = {x2 + p1x + p0, 2x + p1, p
2
1 − 4p0}. In

this case, if s0 = p21 − 4p0 = 0 and c1 = p1 = 0, we have p1 = p0 = 0. Thus, we obtain

c2 = p1 = 0. From this fact, we can reduce formula (3.4) to the following:

(s0 < 0 ∧ c2 > 0) ∨
(s0 ≥ 0 ∧ c2 > 0 ∧ c1 > 0).

In this section, to simplify the formula derived from the possible sign conditions ϕn, we

give a necessary condition for a sign sequence of the Sturm-Habicht sequence associated

to a polynomial which satisfies the SDC. We use the notation introduced in the previous

section.

The following theorem provides a necessary condition.

Theorem 39. Let f =
∑n

i=0 pix
i be a polynomial in R[x] where pn 6= 0, and let u be

the smallest nonnegative integer k such that sk 6= 0. We define sk and ck to be zero

when k < 0 or k > n. When f satisfies p0 > 0 and pn > 0, the following conditions

hold:

sn > 0, sn−1 > 0, cn > 0, s0 = c0,

sk = 0→ ck = 0, (∀k ∈ {0, . . . , n− 2}),
cu 6= 0,

cn−1 = 0→ cn−2 < 0,

sn−2 = 0→ sn−3 = · · · = s0 = 0,

ck+2 6= 0 ∧ ck+1 = 0→ ck 6= ck+2, (∀k ∈ N = {u, . . . , n− 2}),
ck = ck+1 = 0 ∧ ck−1ck+2sksk+1 6= 0→ sksk+2 < 0, (∀k ∈ N),

ck = · · · = ck+m = 0→ sk+1 = · · · = sk+m−1 = 0, (∀k ∈ N ,m > 1),

sk+2 = 0 ∧ sk+1 6= 0→ sk 6= 0, (∀k ∈ N),

sk−1 6= 0 ∧ sk = · · · = sk+m = 0 ∧ sk+m+1 6= 0→ smk+m+2sk−1 = δm+2s
m+1
k+m+1

∧smk+m+2ck−1 = δm+2s
m
k+m+1ck+m+1, (∀k ∈ N ,m ≥ 0).

The theorem was proved by proving the following ten lemmas. Lemma 42 and part

of Lemma 45 are already mentioned in [36]. We note that p0 > 0 because f(0) = p0 > 0,

and pn > 0 so that f(x) > 0 is satisfied for sufficiently large x > 0.

The following lemma is obvious.

Lemma 40. Let f =
∑n

i=0 pix
i be a polynomial in R[x]. When p0 > 0 and pn > 0,

sn = sn−1 = cn > 0 and s0 = c0 hold.

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 64

For the rest of this section, we assume that the leading coefficient pn and the

constant term p0 of a given polynomial f are positive. For the sake of simplicity, we

denote SHk(f) by SHk.

Lemma 41. For k ∈ {0, . . . , n}, sk = 0 implies that ck = 0.

Proof. From Remark 33, sk = 0 implies that SHk = 0. Then ck = 0.

Lemma 42. cu 6= 0, where u is the smallest nonnegative integer k such that sk 6= 0.

Proof. This lemma is mentioned in [36]. From the definition of u, SHu is the greatest

common factor of f and df/dx. Because of the assumption f(0) 6= 0, SHu(0) 6= 0. Thus

cu 6= 0.

Lemma 43. cn−1 = 0 implies cn−2 < 0.

Proof. By definition, we have SHn−1(0) = p1 and SHn−2(0) = p1pn−1pn−n2p0p
2
n. Since

pn and p0 are positive by the assumption, and cn−1 is the sign of p1, SHn−2(0) =

−n2p0p
2
n < 0 .

Lemma 44. sn−2 = 0 implies sn−3 = · · · = s1 = s0 = 0.

Proof. Suppose that there exists some integer k ≤ n − 3 such that sk 6= 0. From

Theorem 37, the degree of SHn−1 must be less than n− 2. Since the leading coefficient

of f is positive and SHn−1 = df/dx, this is a contradiction.

Lemma 45. For k ∈ {1, . . . , n− 1}, ck−1 6= ck+1 if ck+1 6= 0 and ck = 0.

Proof. We only need to consider five cases. Case (1) is proved in [36].

(1) deg(SHk) = r, deg(SHk+1) = k + 1, SHk(0) = ck = 0:

(a) r = k: From Theorem 37 (C), lc(SHk+1)
2SHk−1 = −Prem(SHk+1, SHk).

Then ck−1 = −ck+1. Since f(0) 6= 0, x is not a common divisor of SHk and

SHk+1. Then ck+1 6= 0. Hence we obtain ck+1 6= ck−1.

(b) r < k: From Theorem 37 (A) and (C), ck−1 = 0.

(2) deg(SHk+1) = r < k + 1, deg(SHk+2) = k + 2, SHk(0) = ck = 0:

(a) r < k − 1: From Theorem 37 (A), ck−1 = 0.

(b) r = k − 1: From Theorem 37 (B), lc(SHk+2)
2SHk−1 = −lc(SHk+1)

2SHk+1.

Then SHk−1SHk+1 ≤ 0.

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 65

(c) r = k: From Theorem 37 (B), ck+1 = 0.

Lemma 46. For k ∈ {u + 1, . . . , n − 2}, ck−1 6= 0 ∧ ck = ck+1 = 0 ∧ ck+2 6= 0 ∧ sk 6=
0 ∧ sk+1 6= 0→ sk+2sk < 0.

Proof. From Lemma 41, SHk+2 6= 0 because ck+2 6= 0. We first consider the case

where SHk+2 is not regular. From Theorem 37 (A), SHk+1 is regular. In addition,

from Theorem 37 (B), SHk+1 is a constant multiple of SHk+2. Thus when SHk+2 is not

regular, ck+2 6= 0 and ck+1 = 0 are not satisfied simultaneously.

We next consider the case where SHk+2 is regular. We assume that SHk+1 is regular.

From Theorem 37 (C), lc(SHk+2)
2SHk = δ2Prem(SHk+2, SHk+1) . Since ck = ck+1 = 0,

x must be a common divisor of SHk and SHk+1. This is a contradiction to f(0) 6= 0.

Therefore SHk+1 is not regular and the degree of SHk+1 is k from Theorem 37 (A).

From Theorem 37 (B), we obtain sk+2sk < 0.

Lemma 47. For k ∈ {u+1, . . . , n−2} and m ∈ {2, . . . , n−k−1}, ck+m+1 6= 0∧ck+m =

· · · = ck = 0→ sk+m−1 = · · · = sk+1 = 0 .

Proof. (i) Case sk+m 6= 0. By the proof of Lemma 46, SHk+m+1 is regular and SHk+m

is not. We denote the degree of SHk+m by d1. When d1 > k, by Theorem 37

(C), SHd1−1 is a constant multiple of a pseudo remainder of SHk+m+1 divided

by SHk+m. Since SHd1−1(0) = SHk+m(0) = 0, x is a common divisor of SHd1−1

and SHk+m. This is a contradiction since f(0) 6= 0. Thus d1 ≤ k. Therefore by

Theorem 37 (A), we have sd1+1 = · · · = sk+m−1 = 0.

(ii) Case sk+m = 0. We denote the degree of SHk+m+1 by d2. When d2 ≥ k, by

Theorem 37 (B), SHd2 is a constant multiple of SHk+m+1. This is a contradiction

since SHd2−1(0) = 0 and SHk+m+1(0) 6= 0. Thus d2 < k. Therefore, by Theorem

37 (A), we have sd2+1 = · · · = sk+m−1 = 0.

Lemma 48. For k ∈ {u, . . . , n− 3}, sk+2 = 0 ∧ sk+1 6= 0 implies sk 6= 0.

Proof. The polynomial SHk+1 is regular from Theorem 37 (B). From Theorem 37 (C),

SHk is a pseudo remainder of SHr divided by SHk+1 for some r > k + 1. Since k ≥ u,

we obtain SHk 6= 0.

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 66

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1

x y x+ y

0 0 0

0 1 1

1 0 1

1 1 1

x x′

0 1

1 0

Figure 3.1: Boolean operations (AND, OR, and NOT)

Lemma 49. For k ∈ {u+1, . . . , n−3} and m ∈ {0, . . . , n−k−1}, sk+m+1 6= 0∧sk+m =

· · · = sk = 0 ∧ sk−1 6= 0 implies that smk+m+2sk−1 = δm+2s
m+1
k+m+1 ∧ smk+m+2ck−1 =

δm+2s
m
k+m+1ck+m+1 .

Proof. This is obtained from Theorem 37 (B).

3.4 Simplification of Boolean Expressions

In this section, we explain an approach to simplifying logical formulae by using a

simplification method for Boolean expressions based on Boolean function manipulation

[9].

3.4.1 Boolean Algebra and Simplification of Boolean Expres-

sions

In this subsection, we define a Boolean algebra and a Boolean function.

Definition 50. A Boolean algebra is an algebraic system consisting of the set B =

{0, 1}, two binary operations called AND and OR denoted by the symbols · and +

respectively, and a unary operation called NOT denoted by a prime, ′. The definitions

of the AND, OR, and NOT operations are as in Figure 3.1.

Definition 51. A Boolean variable is a two-valued variable which can take either of

the two distinct values 0 and 1. A literal is a Boolean variable or its complement. A

product term is a literal or a conjunction of literals where no literal appears more than

once. A sum of products is a product term or a disjunction of product terms.

Definition 52. A Boolean expression is a combination of a finite number of Boolean

variables and Boolean constants by means of the Boolean operations defined in Defi-

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 67

nition 50. A (completely specified) Boolean function with n variables is a mapping

f : Bn → B.

Definition 53. An incompletely specified Boolean function of n variables is a Boolean

function which is defined over a subset of Bn. An input combination for which the

function is not specified is called a don’t care.

In general, there are a number of Boolean expressions that represent a Boolean

function. For example, the Boolean expressions (x+ y)′ and x′ + y′ represent the same

Boolean function. In this chapter, finding a Boolean expression with a relatively small

number of product terms is called simplification of Boolean expressions.

Example 54. Consider an incompletely specified Boolean function f whose truth table

is defined as follows. Entry d in the column “f” means that the corresponding function

value is unspecified.

x y z f

0 0 0 1

0 0 1 d

0 1 0 0

0 1 1 0

1 0 0 d

1 0 1 1

1 1 0 1

1 1 1 1

For incompletely specified Boolean functions, we can expand the notion of sim-

plification of Boolean expressions, because an incompletely specified Boolean function

represents a set of completely specified Boolean functions. We can choose a completely

specified Boolean function by assigning 0 or 1 to each don’t care entry d. By consid-

ering both assignments to don’t cares and the expressions of these functions, we may

obtain better expressions. In the above example, when we assign 1 to every d, we obtain

the simplified Boolean expression f = x+ y′.

In integrated circuit design, simplification of Boolean expressions directly corre-

sponds to minimization of the area of the designed circuit. Hence, many efficient

techniques have been proposed, such as the heuristic method called ESPRESSO [9]

and several exact methods based on binary decision diagrams (BDDs) [23, 61].

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 68

3.4.2 Simplification of ϕn based on Boolean Expression Mini-

mization

In this subsection, we consider simplification of ϕn presented in Subsection 3.2.2 by

using simplification techniques for Boolean expressions.

First, since the signs of polynomials handled in this chapter are three-valued, we

need two Boolean variables to represent them. In this chapter, we use the variables x

and y to represent zero, positive, and negative as x′y′, xy′, and x′y, respectively. We

then obtain a simplified representation of ϕn by applying simplification techniques for

Boolean expressions.

Example 55. Consider formula (3.3) again. Let us use x1y1, x2y2, x3y3 to represent

the signs of s0, c2, c1, respectively. Then we can represent formula (3.3) as the following

Boolean expression:

x′1y1x2y
′
2x

′
3y3 + x′1y1x2y

′
2x

′
3y

′
3 + x′1y1x2y

′
2x3y

′
3+

x′1y
′
1x2y

′
2x

′
3y

′
3 + x′1y

′
1x2y

′
2x3y

′
3 + x1y

′
1x2y

′
2x3y

′
3.

As mentioned in Subsection 3.4.1, introduction of don’t cares is likely to simplify

Boolean expressions further. For the specialized QE algorithm for the SDC, we can

introduce don’t cares as follows.

1. As mentioned above, we use two Boolean variables x and y to represent the sign

of a polynomial. While the sign is three-valued, the two Boolean variables can

represent four values. Since we do not use xy here, we can consider xy as a don’t

care.

2. Since we do not need to consider sign conditions which do not satisfy Lemma 41

through Lemma 49, we consider them as don’t cares .

3. In the same way, since it never happens that V0(SH(f)) < V∞(SH(f)), we can

introduce don’t cares in this case.

3.5 Computational Results

In this section, we present computational results.

Table 3.2 shows the results of simplification by our approach. All the computational

experiments were executed on a personal computer with an Intel(R) Core(TM) i7-

3540M CPU 3.0 GHz and 2.0 GByte memory. We used the ESPRESSO logic minimizer

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 69

[1] to simplify formulae. The first column “deg” gives the degree of an input polynomial.

The second column “var” gives the number of Boolean variables which are inputs

to the ESPRESSO logic minimizer. When the degree of an input polynomial is n,

the Sturm-Habicht sequence contains n + 1 elements. Since sn = sn−1 = cn > 0

and s0 = c0 by Lemma 40, we only consider the sign sequence for 2(n + 1) − 4 =

2n − 2 polynomials. Hence the number of Boolean variables is 2(2n − 2) = 4n −
4. The column “SyN” gives the number of product terms for the previous SyNRAC

implementation in [45]. The column “DC” gives the number of product terms for the

implementation with an approximate ESPRESSO method in which we introduce a don’t

care only when a sign condition satisfies condition 1 presented in Subsection 3.4.2 or

Lemma 41. Both conditions can be obtained without using Theorem 37. The columns

“ESP app” and “ESP ex” give the number of product terms for the implementation

presented in this chapter with an approximate ESPRESSO method and with an exact

ESPRESSO method, respectively. The seventh column “terms” gives the number of

sign conditions which satisfy Theorem 37. The last two columns “time app” and

“time ex” give the computing times for the approximate and the exact minimization

algorithms, respectively. Computing times are given in seconds. We note that since

this simplification step is executed beforehand, a comparison of the computing times

is not an essential problem in QE computation.

We see that our improvements greatly reduce the number of product terms by

comparing “SyN” and “ESP app”, and that don’t cares are important for simplifying

a formula by comparing “DC” and “ESP app”. We have not obtained the solutions for

the seventh and the eighth SDC problems by an exact ESPRESSO method. However,

we see that “ESP app” outputs good approximate solutions up to the sixth SDC

problem.

Figure 3.2 presents the input and output files for the ESPRESSO software [1] for

the third SDC problem. Rows 5 to 42 of the input file indicate output values for

each sign condition by Boolean expressions. Rows 6 to 9 of the output file present

the simplified formula by Boolean expressions. Each row shows a truth table row

consisting of 8 inputs and 1 output. Each position in the input plane corresponds

to an input variable, where “0” indicates that the corresponding input literal appears

complemented in the product term, and “1” indicates that the input literal appears

uncomplemented in the product term, and “-” indicates that the input literal does not

appear in the product term. The numbers 1 and 2 at the end of a row indicates that

a sign condition is true and a don’t care, respectively. The symbol “-” in the input file

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 70

Table 3.2: Computational results for the SDC problems

deg var SyN DC ESP app ESP ex term time app time ex

2 4 5 2 2 2 5 0.01 0.01

3 8 17 7 4 4 21 0.01 0.01

4 12 64 24 10 10 99 0.01 0.04

5 16 302 85 18 18 480 0.05 1.12

6 20 1229 299 57 57 2352 0.72 61.92

7 24 5238 1096 121 - 11656 21.40 >350h

8 28 20468 4037 353 - 58284 757.59 >350h

implies the input literal does not appear. The products of the Boolean variables x0y0,

x1y1, x2y2 and x3y3 show the signs of s1, s0, c2 and c1, respectively. For example, row

18 shows that s1 < 0 ∧ s0 = c0 = 0 ∧ c2 > 0 ∧ c1 > 0 and that this sign condition is

a don’t care, because V0(SH(f)) = 0 < 1 = V∞(SH(f)) which satisfies condition 3 in

Section 3.4.2. Rows 28 to 31 show that xy is a don’t care. Rows 32 to 33, 34 to 35, 36

to 37, 38 to 39 and 40 to 42 are from Lemmas 44, 41, 45, 43 and 42, respectively.

By our approach, the 22 sign conditions for the third SDC problem were reduced

to four conditions and we obtained the following formula:

(s1 < 0 ∧ s0 > 0) ∨ (s1 < 0 ∧ c1 < 0) ∨ (s0 < 0 ∧ c1 < 0) ∨ (c2 ≥ 0 ∧ c1 ≥ 0).

Let f(x) = x3+ax2+bx+c. The Sturm-Habicht sequence associated to f is {SH3 = f ,

SH2 = df/dx = 3x2+2ax+ b, SH1 = (2a2− 6b)x+ ab− 9c, SH0 = −4b3+a2b2− 4a3c+

18bac− 27c2}, so we obtain a simple quantifier-free formula:

c > 0 ∧ ((2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ SH0 > 0 ∨
(2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ ab− 9c < 0 ∨
SH0 < 0 ∧ ab− 9c < 0 ∨ b ≥ 0 ∧ ab− 9c ≥ 0).

(3.5)

The formula we obtained using our approach is significantly simpler than that using

[45] which has 17 product terms. However, the formula can be simplified further. For

example, there do not exist real numbers a, b, and c such that

c > 0 ∧ ((2a2 − 6b < 0 ∨ 2a2 − 6b = 0 ∧ ab− 9c < 0) ∧ SH0 > 0),

which is the first product term in (3.5), and thus, we can reduce the formula more.

The necessary condition for the SDC presented in Section 3.3 considers only the case

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 71

that sk or ck is zero. To obtain the simpler formula, using ϕn to find necessary and

sufficient conditions is a promising direction which will be part of our future work.

Remark 56. CAD is an algorithm that constructs simple quantifier-free formulae be-

cause CAD uses sign information of many projection factors. In fact, in the third

SDC problem we obtain the following simpler formula by CAD [10, 13, 50] using six

projection factors:

c > 0 ∧ (b ≥ 0 ∧ a ≥ 0 ∨ SH0 < 0).

3.5.1 Results

In this subsection, we show the solution formulae of SDC problems by our algorithm.

2nd problem

p2 > 0 ∧ p0 > 0 ∧ (

c1 > 0 ∨
s0 < 0)

3rd problem

p3 > 0 ∧ p0 > 0 ∧ (

s1 < 0 ∧ s0 > 0 ∨
s1 < 0 ∧ c1 < 0 ∨

s0 < 0 ∧ c1 < 0 ∨
c2 ≥ 0 ∧ c1 ≥ 0)

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 72

4th problem

p4 > 0 ∧ p0 > 0 ∧ (

s2 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∨
s2 < 0 ∧ c3 ≥ 0 ∧ c1 < 0 ∨

s1 < 0 ∧ c3 ≥ 0 ∧ c1 < 0 ∨
s1 < 0 ∧ c2 < 0 ∧ c1 < 0 ∨

s2 < 0 ∧ c2 < 0 ∧ c1 ≤ 0 ∨
s0 < 0 ∧ c3 ≥ 0 ∧ c1 < 0 ∨
s0 < 0 ∧ c2 < 0 ∧ c1 < 0 ∨

s1 < 0 ∧ s0 > 0 ∧ c1 ≥ 0 ∨
s2 < 0 ∧ s1 > 0 ∧ c1 ≥ 0 ∨

c3 ≥ 0 ∧ c2 ≥ 0 ∧ c1 ≥ 0)

5th problem

p5 > 0 ∧ p0 > 0 ∧ (

s3 < 0 ∧ s2 > 0 ∧ s1 < 0 ∧ s0 > 0 ∨
s1 < 0 ∧ s0 > 0 ∧ c4 ≥ 0 ∧ c1 ≥ 0 ∨
s1 < 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨

s0 < 0 ∧ c3 < 0 ∧ c2 < 0 ∧ c1 < 0 ∨
s1 < 0 ∧ s0 > 0 ∧ c2 ≥ 0 ∧ c1 > 0 ∨

s3 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c1 ≤ 0 ∨
s3 < 0 ∧ s2 > 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ c2 ≥ 0 ∧ c1 > 0 ∨
s2 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c1 ≤ 0 ∨

s1 < 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∧ c1 < 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨

s1 < 0 ∧ s0 > 0 ∧ c3 ≤ 0 ∧ c1 ≥ 0 ∨
s3 < 0 ∧ s2 > 0 ∧ s1 < 0 ∧ c1 ≤ 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∨
c4 ≥ 0 ∧ c3 > 0 ∧ c2 ≥ 0 ∧ c1 ≥ 0 ∨

s0 < 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨
s2 ≤ 0 ∧ s1 ≥ 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∨

s3 < 0 ∧ s2 ≥ 0 ∧ c3 ≤ 0 ∧ c2 ≤ 0)

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 73

6th problem

p6 > 0 ∧ p0 > 0 ∧ (

s4 < 0 ∧ s3 ≥ 0 ∧ s2 ≤ 0 ∧ s1 > 0 ∧ s0 < 0 ∨
s4 < 0 ∧ s3 ≥ 0 ∧ s2 ≤ 0 ∧ c5 ≥ 0 ∧ c1 ≤ 0 ∨

s0 < 0 ∧ c5 ≥ 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨
s4 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c3 ≥ 0 ∧ c1 < 0 ∨

s0 < 0 ∧ c4 ≤ 0 ∧ c3 < 0 ∧ c2 < 0 ∧ c1 < 0 ∨
s3 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨
s3 < 0 ∧ c5 ≥ 0 ∧ c4 > 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨

s4 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c5 ≥ 0 ∧ c1 < 0 ∨
s1 < 0 ∧ c4 < 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨

s3 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c5 ≥ 0 ∧ c1 < 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ c3 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨

s4 < 0 ∧ s3 ≥ 0 ∧ s2 < 0 ∧ s1 ≥ 0 ∧ c2 ≤ 0 ∨
s2 > 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨

s4 < 0 ∧ s3 ≥ 0 ∧ s2 < 0 ∧ c4 ≤ 0 ∧ c1 < 0 ∨
s4 < 0 ∧ s1 > 0 ∧ c5 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨
s4 < 0 ∧ s3 ≥ 0 ∧ s1 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c5 ≥ 0 ∧ c1 < 0 ∨
s3 ≤ 0 ∧ s2 > 0 ∧ s1 ≤ 0 ∧ c5 ≥ 0 ∧ c2 ≥ 0 ∨

s4 < 0 ∧ s1 > 0 ∧ s0 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨
s4 < 0 ∧ s1 ≥ 0 ∧ c4 < 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨
s3 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨

s4 < 0 ∧ s1 > 0 ∧ c5 > 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∨
s4 < 0 ∧ s1 > 0 ∧ s0 < 0 ∧ c4 < 0 ∧ c1 < 0 ∨

s1 < 0 ∧ s0 > 0 ∧ c3 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨
s3 ≤ 0 ∧ s2 > 0 ∧ c5 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨

s2 ≥ 0 ∧ s0 < 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨
s2 < 0 ∧ s1 ≥ 0 ∧ c3 > 0 ∧ c2 ≥ 0 ∧ c1 > 0 ∨

s3 ≤ 0 ∧ s2 ≥ 0 ∧ s1 < 0 ∧ s0 > 0 ∧ c1 > 0 ∨
s2 < 0 ∧ c4 < 0 ∧ c3 < 0 ∧ c2 < 0 ∧ c1 ≤ 0 ∨

s4 < 0 ∧ s3 > 0 ∧ s1 < 0 ∧ s0 > 0 ∧ c1 ≥ 0 ∨
s4 < 0 ∧ s3 ≥ 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c3 ≥ 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c2 ≤ 0 ∨
s1 < 0 ∧ c5 > 0 ∧ c4 > 0 ∧ c3 > 0 ∧ c2 ≥ 0 ∨

s4 < 0 ∧ s3 > 0 ∧ c3 ≥ 0 ∧ c2 > 0 ∧ c1 ≥ 0 ∨
s1 < 0 ∧ s0 > 0 ∧ c4 < 0 ∧ c3 ≤ 0 ∧ c1 ≥ 0 ∨

s4 < 0 ∧ s3 ≥ 0 ∧ c4 ≤ 0 ∧ c2 ≥ 0 ∧ c1 ≥ 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ s1 ≤ 0 ∧ c3 ≥ 0 ∧ c2 > 0 ∨

s4 < 0 ∧ s3 > 0 ∧ s2 < 0 ∧ s1 > 0 ∧ c1 ≥ 0 ∨
s1 < 0 ∧ s0 > 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c1 ≥ 0 ∨

s3 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c4 ≤ 0 ∧ c1 ≤ 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ c4 < 0 ∧ c3 < 0 ∧ c2 ≤ 0 ∨

s2 ≤ 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨
s3 < 0 ∧ s2 > 0 ∧ s1 ≤ 0 ∧ c4 < 0 ∧ c2 ≥ 0 ∨

s2 < 0 ∧ s1 > 0 ∧ c5 > 0 ∧ c3 ≤ 0 ∧ c1 ≥ 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ s1 < 0 ∧ c2 ≤ 0 ∧ c1 ≤ 0 ∨

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 74

s3 ≤ 0 ∧ s0 > 0 ∧ c4 ≤ 0 ∧ c2 ≥ 0 ∧ c1 > 0 ∨
s3 ≤ 0 ∧ s1 ≥ 0 ∧ c4 ≤ 0 ∧ c2 ≥ 0 ∧ c1 > 0 ∨

s4 < 0 ∧ s3 > 0 ∧ s2 ≤ 0 ∧ c3 > 0 ∧ c1 ≤ 0 ∨
s1 < 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c2 ≤ 0 ∧ c1 < 0 ∨

s2 < 0 ∧ s1 ≥ 0 ∧ s0 < 0 ∧ c4 ≤ 0 ∧ c1 ≤ 0 ∨
s4 < 0 ∧ s2 ≥ 0 ∧ s1 < 0 ∧ c3 ≥ 0 ∧ c1 ≤ 0 ∨

s2 ≤ 0 ∧ s1 > 0 ∧ c4 < 0 ∧ c3 ≤ 0 ∧ c1 ≥ 0 ∨
s3 < 0 ∧ s2 ≥ 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0 ∧ c2 ≤ 0 ∨

s2 ≤ 0 ∧ s1 ≥ 0 ∧ c5 ≥ 0 ∧ c4 > 0 ∧ c3 ≥ 0 ∨
s4 < 0 ∧ s3 ≥ 0 ∧ s1 ≤ 0 ∧ c4 ≤ 0 ∧ c3 ≤ 0 ∨
s4 ≤ 0 ∧ s3 ≥ 0 ∧ s1 ≤ 0 ∧ c5 ≥ 0 ∧ c4 ≥ 0)

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 75

7th problem

p7 > 0∧p0 > 0∧ (

s5 < 0∧ s4 ≥ 0∧s3 < 0∧s2 > 0∧s1 < 0∧s0 > 0 ∨
s4 < 0 ∧c6 ≥ 0∧c5 > 0∧c4 ≥ 0∧c3 > 0 ∧c1 < 0∨

s5 < 0∧ s4 > 0 ∧s2 < 0∧s1 ≥ 0 ∧c2 ≥ 0∧c1 > 0∨
s5 < 0∧ s4 > 0 ∧s1 < 0∧s0 > 0 ∧c2 ≥ 0∧c1 > 0∨

s4 ≤ 0∧s3 > 0 ∧s1 < 0∧s0 > 0∧c6 ≥ 0 ∧c1 > 0∨
s3 ≤ 0∧s2 ≥ 0 ∧c6 ≥ 0∧c5 > 0∧c4 ≥ 0 ∧c1 > 0∨

s5 < 0∧ s4 ≥ 0 ∧s1 < 0∧s0 > 0∧c6 ≥ 0 ∧c1 > 0∨
s3 < 0∧s2 ≥ 0∧s1 < 0∧s0 > 0∧c6 ≥ 0 ∧c1 > 0∨

s5 < 0∧ s4 > 0∧s3 < 0∧s2 ≥ 0 ∧c2 > 0∧c1 ≥ 0∨
s4 < 0 ∧s1 ≥ 0∧s0 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨

s3 < 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s5 < 0 ∧s1 > 0∧s0 < 0 ∧c5 < 0∧c4 ≤ 0 ∧c1 < 0∨

s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 > 0∧c4 ≥ 0∧c3 ≥ 0 ∧c1 < 0∨
s4 < 0∧s3 ≥ 0 ∧s1 < 0∧s0 > 0 ∧c5 ≤ 0 ∧c1 > 0∨

s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 ≤ 0∧c1 < 0∨
s3 < 0∧s2 ≥ 0∧s1 < 0∧s0 > 0 ∧c5 ≤ 0 ∧c1 > 0∨
s3 ≥ 0∧s2 < 0 ∧c6 < 0∧c5 = 0∧c4 ≤ 0∧c3 ≥ 0∧c2 > 0 ∨

s5 < 0 ∧s1 > 0∧s0 < 0 ∧c4 ≥ 0 ∧c2 ≤ 0∧c1 < 0∨
s1 ≥ 0∧s0 < 0 ∧c5 < 0∧c4 ≤ 0∧c3 ≤ 0∧c2 ≤ 0∧c1 < 0∨
s1 < 0∧s0 > 0∧c6 ≥ 0 ∧c3 > 0∧c2 ≥ 0∧c1 > 0∨
s1 < 0∧s0 > 0∧c6 ≥ 0∧c5 ≥ 0∧c4 > 0 ∧c1 > 0∨

s3 < 0∧s2 ≥ 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0 ∧c1 > 0∨
s5 < 0∧ s4 ≥ 0∧s3 < 0∧s2 ≥ 0 ∧c4 ≥ 0 ∧c1 ≥ 0∨

s3 < 0 ∧s1 ≥ 0∧s0 < 0 ∧c4 ≥ 0∧c3 > 0 ∧c1 < 0∨
s3 < 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s3 ≥ 0∧s2 < 0∧s1 ≥ 0∧s0 < 0 ∧c4 ≥ 0∧c3 ≥ 0 ∧c1 < 0∨

s5 < 0 ∧s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 ≥ 0 ∧c1 < 0∨
s4 < 0 ∧s1 ≥ 0∧s0 < 0 ∧c5 < 0∧c4 ≤ 0 ∧c1 < 0∨

s2 < 0∧s1 > 0 ∧c6 ≥ 0 ∧c3 > 0∧c2 > 0∧c1 ≥ 0∨
s4 < 0∧s3 > 0 ∧s1 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨

s3 ≥ 0∧s2 < 0∧s1 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0∧c4 ≥ 0∧c3 ≥ 0 ∨
s3 ≥ 0∧s2 < 0∧s1 ≥ 0 ∧c5 < 0∧c4 ≤ 0∧c3 ≤ 0∧c2 ≤ 0∧c1 ≥ 0∨
s3 < 0 ∧s1 ≥ 0∧s0 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨

s1 < 0 ∧c6 ≥ 0∧c5 ≥ 0∧c4 > 0∧c3 > 0 ∧c1 < 0∨
s4 < 0 ∧s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 ≥ 0 ∧c1 < 0∨

s5 < 0∧ s4 > 0 ∧s1 < 0∧s0 > 0 ∧c5 ≤ 0 ∧c1 ≥ 0∨
s3 < 0∧s2 ≥ 0∧s1 < 0∧s0 > 0 ∧c4 ≥ 0 ∧c1 ≥ 0∨

s5 < 0 ∧s3 > 0 ∧s1 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s5 ≥ 0∧ s4 < 0∧s3 ≥ 0 ∧s1 < 0 ∧c4 ≥ 0∧c3 ≥ 0 ∧c1 < 0∨

s2 < 0∧s1 > 0 ∧c5 ≤ 0∧c4 < 0 ∧c2 > 0∧c1 ≥ 0∨
s4 < 0∧s3 ≥ 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 < 0 ∨

s2 < 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s2 < 0∧s1 ≥ 0∧s0 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨

s5 < 0∧ s4 ≥ 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 < 0 ∨
s1 < 0∧s0 > 0 ∧c4 ≥ 0∧c3 > 0∧c2 > 0∧c1 > 0∨

s5 < 0∧ s4 ≥ 0 ∧s1 < 0∧s0 > 0 ∧c4 ≥ 0 ∧c1 ≥ 0∨
s5 < 0∧ s4 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0∧c4 ≥ 0∧c3 > 0 ∨

s1 > 0 ∧c5 ≤ 0∧c4 ≥ 0∧c3 = 0∧c2 > 0∧c1 ≥ 0∨

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 76

s3 < 0∧s2 > 0∧s1 < 0 ∧c4 ≥ 0∧c3 > 0 ∧c1 < 0∨
s3 < 0 ∧s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 ≥ 0 ∧c1 ≤ 0∨
s3 < 0∧s2 ≥ 0∧s1 < 0∧s0 > 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨

s5 < 0∧s4 ≥ 0∧s3 < 0∧s2 ≥ 0∧s1 < 0 ∧c1 ≤ 0∨
s5 < 0 ∧s2 ≥ 0 ∧s0 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨

s2 ≥ 0∧s1 < 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 ≤ 0∧c1 < 0∨
s4 < 0∧s3 ≥ 0∧s2 < 0∧s1 > 0 ∧c2 ≥ 0∧c1 > 0∨
s4 < 0∧s3 ≥ 0∧s2 < 0∧s1 ≥ 0∧s0 < 0 ∧c1 ≤ 0∨
s4 < 0∧s3 > 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 < 0 ∨

s5 < 0∧s4 ≥ 0∧s3 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 ≤ 0∨
s1 ≥ 0∧s0 < 0 ∧c5 ≤ 0∧c4 ≥ 0∧c3 = 0∧c2 > 0 ∨

s3 < 0∧s2 ≥ 0∧s1 < 0∧s0 > 0 ∧c2 ≥ 0∧c1 > 0∨
s5 < 0∧s4 ≥ 0∧s3 < 0∧s2 > 0 ∧c6 ≥ 0∧c5 ≥ 0 ∨
s5 < 0 ∧s1 > 0∧s0 < 0 ∧c4 ≥ 0∧c3 > 0 ∧c1 < 0∨

s2 < 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 < 0∧c1 ≤ 0∨
s5 < 0 ∧s3 ≥ 0∧s2 < 0 ∧c4 ≥ 0 ∧c2 ≤ 0∧c1 < 0∨

s2 > 0 ∧c5 < 0∧c4 = 0∧c3 ≤ 0∧c2 ≥ 0∧c1 ≥ 0∨
s4 ≤ 0∧s3 ≥ 0 ∧s1 < 0∧s0 > 0 ∧c4 ≥ 0 ∧c2 < 0 ∨

s5 ≥ 0∧s4 < 0∧s3 ≥ 0 ∧s0 < 0 ∧c4 ≥ 0∧c3 ≥ 0 ∧c1 ≤ 0∨
s2 ≤ 0∧s1 > 0∧s0 < 0 ∧c5 < 0∧c4 < 0 ∧c1 ≤ 0∨

s4 < 0∧s3 ≥ 0∧s2 < 0∧s1 ≥ 0 ∧c3 ≤ 0∧c2 < 0 ∨
s5 < 0∧s4 > 0 ∧s2 < 0∧s1 ≥ 0 ∧c5 < 0∧c4 ≤ 0 ∨

s4 < 0∧s3 ≥ 0∧s2 < 0∧s1 ≥ 0 ∧c4 ≥ 0∧c3 > 0 ∨
s3 ≤ 0∧s2 ≥ 0 ∧c5 < 0∧c4 < 0 ∧c2 > 0∧c1 ≥ 0∨

s2 < 0∧s1 > 0 ∧c4 ≥ 0∧c3 > 0∧c2 > 0∧c1 ≥ 0∨
s5 < 0∧s4 > 0∧s3 < 0∧s2 ≥ 0 ∧c5 < 0∧c4 ≤ 0 ∨

s3 < 0∧s2 > 0 ∧s0 < 0 ∧c5 < 0∧c4 ≤ 0 ∧c1 ≤ 0∨
s5 < 0∧s4 ≥ 0 ∧s2 < 0∧s1 ≥ 0∧s0 < 0 ∧c1 ≤ 0∨

s4 < 0∧s3 > 0 ∧s1 < 0∧s0 > 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨
s1 < 0∧s0 > 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0 ∧c1 ≥ 0∨

s5 < 0∧s4 > 0∧s3 < 0∧s2 ≥ 0 ∧s0 < 0 ∧c1 ≤ 0∨
c6 ≥ 0∧c5 > 0∧c4 > 0∧c3 > 0∧c2 ≥ 0∧c1 ≥ 0∨

s5 < 0∧s4 ≥ 0 ∧c4 > 0∧c3 > 0∧c2 ≥ 0∧c1 ≥ 0∨
s4 < 0∧s3 > 0 ∧s1 < 0 ∧c5 < 0∧c4 ≤ 0 ∧c1 ≤ 0∨

s5 < 0 ∧s3 > 0∧s2 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 ≤ 0∨
s3 < 0∧s2 ≥ 0 ∧c4 ≥ 0∧c3 > 0∧c2 > 0∧c1 ≥ 0∨
s3 < 0 ∧s1 ≥ 0 ∧c5 < 0∧c4 < 0∧c3 ≤ 0∧c2 ≤ 0∧c1 ≥ 0∨

s4 ≤ 0∧s3 ≥ 0 ∧s1 < 0∧s0 > 0 ∧c2 ≥ 0∧c1 > 0∨
s1 < 0∧s0 > 0 ∧c5 ≤ 0∧c4 ≤ 0∧c3 ≥ 0∧c2 ≥ 0∧c1 > 0∨

s5 < 0∧s4 > 0 ∧s1 < 0∧s0 > 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨
s4 < 0∧s3 > 0 ∧s1 < 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c1 ≤ 0∨

s3 < 0 ∧s1 ≥ 0∧s0 < 0 ∧c4 ≥ 0∧c3 ≥ 0∧c2 ≤ 0∧c1 ≤ 0∨
s5 < 0∧s4 ≥ 0∧s3 < 0∧s2 ≥ 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨
s5 < 0 ∧s3 ≥ 0 ∧s1 < 0 ∧c4 > 0∧c3 ≥ 0 ∧c1 ≤ 0∨
s5 < 0∧s4 ≥ 0 ∧s1 < 0 ∧c6 ≥ 0∧c5 > 0 ∧c1 ≤ 0∨

s3 ≤ 0∧s2 ≥ 0∧s1 < 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s4 < 0 ∧s2 ≥ 0∧s1 < 0 ∧c4 ≥ 0 ∧c2 ≤ 0∧c1 < 0∨

s1 < 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 < 0∧c1 < 0∨
s1 < 0 ∧c6 ≥ 0∧c5 > 0∧c4 ≥ 0∧c3 ≥ 0∧c2 ≤ 0∧c1 ≤ 0∨

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 77

s4 < 0∧s3 > 0 ∧c5 < 0∧c4 ≤ 0 ∧c2 ≥ 0∧c1 ≥ 0∨
s3 ≤ 0 ∧s1 ≥ 0 ∧c6 > 0∧c5 > 0∧c4 > 0∧c3 ≥ 0 ∨

s4 < 0∧s3 ≥ 0 ∧c4 ≥ 0∧c3 > 0∧c2 ≥ 0∧c1 ≥ 0∨
s4 < 0∧s3 > 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c2 ≥ 0∧c1 ≥ 0∨

s2 ≤ 0∧s1 > 0∧s0 < 0∧c6 ≥ 0∧c5 ≥ 0 ∧c1 ≤ 0∨
s4 ≤ 0 ∧s2 ≥ 0∧s1 ≤ 0 ∧c5 ≤ 0 ∧c3 ≥ 0∧c2 > 0 ∨

s5 < 0∧s4 ≥ 0 ∧s2 < 0∧s1 ≥ 0 ∧c4 ≥ 0∧c3 > 0 ∨
s5 < 0∧s4 ≥ 0 ∧s2 < 0∧s1 > 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨

s2 < 0∧s1 > 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨
s3 ≤ 0∧s2 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c2 > 0∧c1 ≥ 0∨
s3 ≤ 0∧s2 ≥ 0∧s1 < 0∧s0 ≥ 0 ∧c5 < 0∧c4 ≤ 0 ∧c1 ≤ 0∨

s4 ≤ 0∧s3 ≥ 0 ∧c6 ≥ 0∧c5 > 0∧c4 ≥ 0 ∧c2 ≤ 0 ∨
s1 < 0∧s0 > 0∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨

s5 < 0∧s4 ≥ 0∧s3 ≤ 0∧s2 > 0 ∧c3 ≤ 0∧c2 ≥ 0∧c1 ≥ 0∨
s5 < 0∧s4 ≥ 0 ∧s1 < 0 ∧c5 ≤ 0∧c4 ≤ 0 ∧c1 < 0∨

s3 < 0∧s2 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0 ∧c1 ≥ 0∨
s4 < 0∧s3 ≥ 0∧s2 ≤ 0∧s1 ≥ 0 ∧c5 < 0∧c4 ≤ 0 ∨
s4 < 0∧s3 ≥ 0∧s2 ≤ 0∧s1 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0 ∨

s5 < 0∧s4 ≥ 0 ∧c5 < 0∧c4 ≤ 0 ∧c2 ≥ 0∧c1 ≥ 0∨
s5 < 0∧s4 > 0∧s3 ≤ 0 ∧c4 ≥ 0∧c3 ≥ 0 ∧c1 ≤ 0∨
s5 < 0∧s4 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c2 ≥ 0∧c1 ≥ 0∨
s5 < 0∧s4 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c3 ≤ 0∧c2 ≤ 0 ∨

s3 ≤ 0∧s2 ≥ 0∧s1 < 0 ∧c6 ≥ 0∧c5 ≥ 0 ∧c1 ≤ 0∨
s5 ≤ 0∧s4 ≥ 0 ∧s2 ≤ 0∧s1 ≥ 0 ∧c6 ≥ 0∧c5 ≥ 0)

3.6 Conclusion

This chapter has considered the SDC problem, which is the QE problem ∀x(x ≥ 0→
f(x) > 0) where f is a polynomial in R[x]. To improve the algorithm, simplification

of formulae is important. To simplify a formula, we have shown a necessary condition

for the SDC and have used a logic minimization method. Finally, we have shown the

effect of our approach by computational results.

We expect to make further reductions to ϕn and would like to find necessary and

sufficient conditions for the SDC in our future work. Meanwhile, we did not obtain

an exact solution to the seventh and subsequent SDC problems. To obtain a simpler

formula, we would like to try to simplify formulae by an exact method based, for

example, on BDDs.

CHAPTER 3. A SPECIAL QE ALGORITHM FOR SDC 78

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

.i 8

.o 1

.lib x0 y0 x1 y1 x2 y2 x3 y3

.ob f0

01010101 1

01010001 1

01011001 1

01011000 1

01011010 1

10010101 1

10010001 1

10011001 1

10011000 1

10011010 1

01000101 1

01000001 1

01001001 1

01001010 2

00001000 1

10001010 1

01100101 1

01100001 1

01101001 1

01100100 1

01100110 1

01101010 2

10101010 1

11------ 2

--11---- 2

----11-- 2

------11 2

0010---- 2

0001---- 2

00----1- 2

00-----1 2

--101000 2

--010100 2

----0010 2

----0000 2

1000--00 2

0100--00 2

000000-- 2

.e

.lib x0 y0 x1 y1 x2 y2 x3 y3

.i 8

.o 1

.ob f0

.p 4

-11----- 1

-1-----1 1

---1---1 1

-----0-0 1

.e

Figure 3.2: Input (left side) and output (right side) file for the 3rd SDC problem for

the ESPRESSO command

Chapter 4

Symbolic-Numeric Approach to

Polynomial Optimization Problems

4.1 Introduction

Model-based design has recently attracted attention in manufacturing design, in which

a problem can often be specified by mathematical constraints on the mathematical

model of a target system. Consequently, developments in design processes are of-

ten dependent on the available computational methods — in particular, optimization

methods. Numerical convex optimization methods provide globally optimal solutions

to many design problems that cannot currently be solved analytically. Design meth-

ods based on numerical optimization are becoming more practical because of enhanced

computer performance and the development of algorithms with superior accuracy and

efficiency. However, hurdles remain with such numerical-computing design methods.

To meet manufacturing demands for higher quality, better performance, higher added

value, and smaller batches of a variety of products, will require more accurate globally

optimal solutions of non-convex problems. At the same time, parametric solutions to

problems, such as regions of feasible solutions and optimal solutions in terms of decision

variables, will be required.

Constraint solving and optimization methods based on symbolic and algebraic com-

putation have gained attention recently. Specifically, quantifier elimination (QE), an

algebraic algorithm based on theories of real algebraic geometry, has been success-

fully applied in many fields of science and engineering [4, 76, 88]. However, to realize

practical and effective methods using QE, speed is a significant issue.

79

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 80

In this chapter we consider some important classes of optimization problems that

originate from an optimal design process for boosting the yield rate of static random

access memory (SRAM) products. Numerical approaches based on Monte Carlo meth-

ods and genetic algorithms (GAs) have been commonly used for such optimization

problems. However, more efficient methods that take a broader view of design, en-

compassing the miniaturization of SRAM technologies, are needed. To that end, we

propose new optimization methods based on quantifier elimination combined with nu-

merical computation for optimization problems in which some of the objective functions

depend on some of the decision variables.

The organization of the rest of this chapter is as follows: Section 4.2 explains

multi-objective optimization. Section 4.3 discusses conventional numerical optimization

approaches. Our approach to multi-objective optimization is introduced in Section

4.4. Section 4.5 is devoted to demonstrating our methods with concrete computational

examples. Section 4.6 concludes this chapter.

4.2 Optimization

A typical case of optimization in manufacturing requires engineers to design a product

to satisfy given specifications. For each requirement, a performance-measuring objective

function, with respect to a given set of decision variables, is determined. The design

problem is to optimize the set of objective functions.

Designers normally draft an initial design for the product using computer aided

design software. They then establish some geometric quantities of the product as the

decision variables. After assigning a value to each variable, they evaluate the perfor-

mance of the resulting design with computer simulation. An optimization program can

be used to try various combinations of decision values to find a good design.

In the real world, a design that satisfies some requirements might, at the same

time, not satisfy others. These types of problems require multi-objective optimization

(MOO). At some point in MOO, one can improve an objective function value only at

the expense of another. This problem is typical in MOO, not occurring in the case of

single-objective optimization (SOO). The main source of difficulty is the fact that the

objective space cannot be totally ordered canonically.

In the rest of this section we define some terms and formally state the problem.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 81

4.2.1 Multi-Objective Optimization

Here we give a formal setting of an MOO problem [62].

We denote the real number field by R. Let x = (x1, x2, . . . , xn) be a vector of

decision variables, and f(x) = (f1(x), f2(x), . . ., fr(x)) be a vector of real-valued

functions. These functions are called objective functions, to be optimized in an MOO

problem. Decision variable values are real numbers. Suppose that the vector of decision

variables x varies through a prescribed semialgebraic set P ⊆ Rn of the n-dimensional

Euclidean space, defined by a finite family of equations, inequations, and inequalities,

or a finite union of such sets. Call P a feasible region in the decision space. The image

F = {f(x) ∈ Rr|x ∈ P} of P under f is called the feasible region in the objective

space.

Assume that a lower function value means higher performance. An MOO problem

can be formulated as follows: {
Minimize f(x)

subject to x ∈ P .

We define an order in the objective space to specify what minimize means in the

problem.

Definition 57. Let r be a positive integer, and a = (a1, . . . , ar) and b = (b1, . . . , br)

points in Rr. We say a dominates b when ai ≤ bi for i = 1, . . . , r. Denote a � b to

represent a dominates b.

Thus Rr is a partially ordered set with respect to �. Note that it is a total ordering

only when r = 1 and in that case the relation � meets the usual weak inequality ≤
used in SOO, i.e., x0 ∈ P is optimal when

f(x0) ≤ f(x) , ∀ x ∈ P

holds. If there exists x0 satisfying a similar condition

f(x0) � f(x) , ∀ x ∈ P

in an MOO problem, x0 is called an absolutely optimal solution. However, in most

real problems there does not exist an absolutely optimal solution because there are

trade-offs among objective functions.

In an MOO problem one must consider a solution as a set rather than a single

point.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 82

Definition 58. Let f(x) = (f1(x), f2(x), . . . , fr(x)) be a vector of objective functions,

P ⊆ Rn a semialgebraic set, and F = {f(x) ∈ Rr|x ∈ P} and consider the op-

timization problem. x0 ∈ P is called a Pareto optimal solution if for any x ∈ P,
f(x) = f(x0) or f(x) 6� f(x0). Such points form a set, called a Pareto optimal set.

The image of the Pareto optimal set is called the Pareto optimal front, which is a subset

of the objective space.

We could define that for two points a and b, a strongly dominates b if a � b and

a 6= b. Using this term, x0 is Pareto optimal if no points in F strongly dominate

f(x0).

4.2.2 Parametric Optimization

We consider a parametric optimization problem.

Let x = (x1, . . . , xn) be a vector of decision variables, θ = (θ1, . . . , θt) a vector of

parameters, and fθ(x) = f(θ,x) an objective function. A parametric optimization

problem can be formulated as follows:{
Minimize fθ(x)

subject to θ ∈ T , x ∈ Pθ,

where T ⊆ Rt and Pθ ⊆ Rn are feasible regions in the parameter space and the decision

space, respectively.

The goal of parametric optimization is to obtain the optimal solution as a function

on parameters θ.

4.2.3 Minimax Optimization

Here we discuss a special type of optimization problem called minimax optimization.

Let x = (x1, x2, . . . , xn) be a vector of decision variables, hi(x) a real-valued func-

tion for i = 1, . . . , r, and P ⊆ Rn a feasible region in the decision space. Let fmax(x)

be an objective function defined by fmax(x) ≡ max(h1(x), h2(x), . . . , hr(x)), where

function max returns the maximal entry among h1(x), . . ., hr(x).

A minimax optimization problem can be formulated as follows:{
Minimize fmax(x) ≡ max(h1(x), . . . , hr(x))

subject to x ∈ P .
(4.1)

Note that this is an SOO problem.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 83

4.3 Known Approaches to MOO

Many methods exist for finding solutions to MOO problems. One classical method is

to change the problem into an SOO problem and apply an SOO algorithm. Examples

are the weighted-sum strategy [90] and the ε-constraint method [38]. However, these

methods cannot handle MOO problems with a discontinuous and non-convex Pareto

optimal front.

This section introduces evolutionary algorithms (EAs), the most popular approach

to MOO problems. We compare our symbolic-numeric method with two types of EA

in Section 4.5.2.

4.3.1 Evolutionary Algorithms

EAs are categorized as meta-heuristic search methods, which originated in the principle

of natural selection. An EA starts with a group of points in the decision space, called

a population; these points, or individuals, move or change after the selection and

reproduction processes according to their objective function values. Superior points

survive with a higher probability; they also have a better chance to have descendants.

Mutation prevents a population from falling into a local optimum. One expects a

population to move toward the Pareto optimal front by repeating these processes. For

details, refer to [32] for a comprehensive guide to the area. Approaches using EAs have

been popular because they work well with parallel computing and because efficient

large-scale experiments are realizable.

Genetic Algorithms

Genetic algorithms (GAs), first proposed by J.H. Holland in 1975, simulate genetic re-

production, crossover (recombination), and mutation [33]. An individual is encoded in

a binary string called a gene. A gene is manipulated to produce a new one according to

a crossing rule, with an occasional event of mutation. Adopting a different set of rules

for encoding or crossing can change the future of the population. Collecting the individ-

uals of an entire generation produces information on the feasible region in the objective

space and the Pareto optimal front. But it can be difficult to determine the theoretical

meaning of the operations on genes, such as reproduction and crossover. Since genetic

algorithms are the most popular type of EA, there exist many implementations—for

example, the commercial software Matlab, Optimus, modeFrontier, and Isight.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 84

Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by R. Eberhart and J. Kennedy

[31]. The behavior of a swarm of insects or of a flock of birds are metaphors for

this method. Individuals are placed at random in the decision space. Each of them

simultaneously moves to the sum of relative vectors from itself to: (1) the group’s best

position so far, (2) the individual’s best position, and (3) a random vector, multiplied

by respective constants. A random vector prevents a swarm from falling into a local

optimum.

This process constitutes a generation. As time passes, a generation gathers optimal

points. It masses at one optimal point or splits into smaller groups, each gathering

around a local point. Many variants for PSO have been proposed. Even in the basic

algorithm described above it is left to the user to determine the constant values by which

the three vectors are multiplied. PSO is used in commercial optimization software such

as modeFrontier and Isight.

4.4 The Quantifier Elimination Method

In this section, we present the QE-based symbolic algorithm for MOO.

4.4.1 The Symbolic Method

The symbolic method, proposed by Yanami [87], begins with a polynomial model for

each objective function. In most applications, an optimization process is realized via a

simulator that receives a list of real values for decision variables and returns a collection

of real values representing various physical properties of the product. The objective

functions are computed from these output values.

We need a model that not only fits input-output data well but one that is expressed

simply for symbolic computation to work. A low-degree model is desirable for QE.

Expressing the Pareto Optimal Front

Once the objective functions are expressed as approximated polynomial models in

decision variables, one can formulate a constraint as a first-order formula and compute

a Pareto optimal front by QE. To show how an MOO problem is interpreted as a first-

order formula, recall that a feasible region P in the decision space and a feasible region

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 85

F in the objective space of an MOO problem can be expressed as

P = {x ∈ Rn|ϕP(x)} ,
F = {f(x) ∈ Rr|x ∈ P} ,

where ϕP(x) = ϕP(x1, . . . , xn) is called a defining formula for P . It is straightforward
to construct ϕP when P is semialgebraic. From these notations one can naturally

construct a first-order formula ψPareto with free variables y = (y1, . . . , yr) that is true

at y = y0 if and only if y0 is on the Pareto optimal front:

ψPareto = ∃x∀u (y = f(x) ∧ ϕP(x) ∧ (ϕP(u)→ (f(u) = f(x) ∨ f(u) 6� f(x)))) .

By eliminating x and u from ψPareto we obtain a quantifier-free formula with respect

to y. But in our approach it is natural to construct the feasible region in the objective

space itself, which includes the information on the Pareto optimal front.

Expressing the Feasible Region

In our formulation, expressing the entire feasible region in the objective space is easier

than expressing the Pareto optimal front. Using the same notations as above, naturally

construct a first-order formula ψFeasible with free variables y = (y1, . . . , yr) that is true

at y = y0 if and only if y0 is in the feasible region:

ψFeasible = ∃x (y = f(x) ∧ ϕP(x)) . (4.2)

Obviously ψFeasible, taking away the part that is to remove the dominated points

from ψPareto, is easier to solve than ψPareto. By eliminating x from ψFeasible obtain

a quantifier-free formula with respect to y. This means that QE can compute not only

the Pareto optimal front but the exact feasible region, bringing an enormous advan-

tage compared to numerical optimization methods that usually find only one optimal

point—or at most a finite set of them—at a time. In this approach, we can see the

Pareto optimal front from the plot of the feasible region.

Example 59. The following MOO problem is taken from [25, p. 79].
Minimize f(x1, x2) = x21 + x22 and

minimize g(x1, x2) = 5 + x22 − x1
subject to −5 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 86

The dimensions of both the decision space and the objective space are two. The associ-

ated QE problem is given as:

∃x1∃x2 (f = x21 + x22 ∧ g = 5 + x22 − x1 ∧ −5 ≤ x1 ≤ 5 ∧ −5 ≤ x2 ≤ 5).

Using a QE algorithm we obtain the following exact feasible region in the f − g plane

as a semialgebraic set.

(g − f + 25 ≥ 0 ∧ g2 − 60g − f + 925 ≥ 0 ∧ g ≤ 30 ∧ f ≥ 25) ∨
(4g − 4f − 21 ≤ 0 ∧ g ≥ 30 ∧ 4f ≤ 101) ∨
(g − f + 15 ≥ 0 ∧ g2 − 60g − f + 925 ≤ 0) ∨
(g − f + 25 ≥ 0 ∧ g2 − 10g − f + 25 ≤ 0) ∨
(4g − 4f − 21 ≤ 0 ∧ g ≥ 5 ∧ f ≤ 25 ∧ 4f ≥ 1).

Figures 4.1 and 4.2 show the results of using the QE algorithm and a GA-based method

as a numeric method respectively. Since the shaded part in Figure 4.1 is the exact

feasible region in the objective space, we can see the exact Pareto optimal front. On the

other hand, we can estimate the Pareto optimal front from Figure 4.2. Since the result

of the numerical method is a set of points approximating the entire Pareto optimal

front, we are not able to know how close this is to the Pareto optimal front.

Figure 4.1: Symbolic approach to MOO Figure 4.2: Numeric approach to MOO

A Symbolic Approach to Minimax Optimization Problems

Here we show our symbolic approach to minimax optimization problems. To start,

we are not able to formulate a max function as a first-order formula. Using the same

notations as above, we construct a first-order formula ψminimax with free variable y

that is true at y ≥ y0, where y0 is the minimal value:

ψminimax = ∃x (y ≥ h1(x) ∧ · · · ∧ y ≥ hr(x) ∧ ϕP(x)) . (4.3)

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 87

By eliminating x from (4.3) we obtain a quantifier-free formula φminimax with re-

spect to y. The feasible region in the objective space of (4.1) is not the same feasible

region φminimax. However, they do have the same minimal value. Thus we obtain the

exact minimal value with this approach.

Example 60. Consider the following minimax optimization problem:
Minimize f(x) ≡ max(h1(x), h2(x))

subject to h1(x) ≡ −x2 − 4x+ 1, h2(x) ≡ −x2 + 4x+ 1,

−3 ≤ x ≤ 3.

This is an SOO problem; the dimension of the decision space is one. Figure 4.3 shows

the graph of polynomials h1(x) and h2(x). We can see that the feasible region in the

objective space is expressed as 1 ≤ f(x) ≤ 5.

Using our approach, solve the following QE problem:

∃x (y ≥ −x2 − 4x+ 1 ∧ y ≥ −x2 + 4x+ 1 ∧ −3 ≤ x ≤ 3). (4.4)

Performing QE on (4.4), obtain an equivalent quantifier-free formula y ≥ 1, which is

not equivalent to 1 ≤ y ≤ 5, but both have the same minimal value of y = 1.

Figure 4.3: Example of minimax problem

4.4.2 The Symbolic-Numeric Approach

Here we show our symbolic-numeric approach to MOO problems. Although numerical

methods for MOO problems are effective, it is difficult to know how many iterations are

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 88

sufficient to guarantee a certain precision. On the other hand, the symbolic approach

produces an exact Pareto optimal front for an MOO problem, even if it is non-convex.

Although QE is a powerful tool for MOO problems, it is computationally very

hard; Davenport and Heinz [24] proved that the worst-case computational complexity is

doubly exponential in the number of quantified variables. Consequently, the elimination

x from ψFeasible may not terminate in a reasonable time, or terminate with an error. To

address this issue, we propose a new combined method of QE and a numerical method.

Consider the case where there exist integers m < n and s ≤ r such that fi depends

only on (x1, . . . , xm) for i = 1, . . . , s. In this case, one can subdivide the optimization

problem and solve the sub-problem with our symbolic approach.

Let xM = (x1, . . . , xm) be an m-dimensional vector, xN = (xm+1, . . . , xn) an

(n−m)-dimensional vector, fS(xM) = (f1(xM), . . . , fs(xM)) an s-dimensional vector,

fR(xM ,xN) = (fs+1(x), . . . , fr(x)) an (r− s)-dimensional vector, yS = (y1, . . . , ys) an

s-dimensional vector, and yR = (ys+1, . . . , yr) an (r − s)-dimensional vector.

Reformulate (4.2) as follows:

ψFeasible = ∃xM∃xN(yS = fS(xM) ∧ yR = fR(xM ,xN) ∧ ϕP(xM ,xN))

= ∃xM (yS = fS(xM) ∧ ∃xN (yR = fR(xM ,xN) ∧ ϕP(xM ,xN))).

Obtain the sub-problem:

∃xN (yR = fR(xM ,xN) ∧ ϕP(xM ,xN)). (4.5)

Performing QE on (4.5), obtain an equivalent quantifier-free formula ψP(xM ,yR).

Clearly (4.5) is easier to solve than ψFeasible. Finally, solve the following MOO problem,

equivalent to the original one, using a numerical method:
Minimize yS = fS(xM) and

minimize yR

subject to ψP(xM ,yR) .

(4.6)

In this problem the decision variables are x1, . . . , xm and ys+1, . . . , yr. When the number

of decision variables m + r − s is less than n, our symbolic-numeric approach makes

numerical optimization computations efficient and precise.

Another advantage of numerical methods is that fact that one can apply them di-

rectly for any objective functions that are not expressed as polynomials. However,

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 89

with the symbolic-numeric approach, we might encounter non-polynomial objective

functions. Section 4.5.2 contains an example in which an objective function is expo-

nential.

4.5 Application

This section describes how our methods are applied to actual design problems in man-

ufacturing. We specify a set of example problems and show computational results for

each.

4.5.1 Problem Statements

Our target problems derive from SRAM optimal design. Figure 4.4 shows a scanning

electron microscope (SEM) picture of an SRAM cell.

Figure 4.4: SEM picture of SRAM cell Figure 4.5: SRAM schematic diagram

Figure 4.5 shows a schematic diagram of an SRAM cell of the dotted rectangle part

of Figure 4.4. It is required to design an SRAM cell of small size but with a high yield

rate, which are, of course, conflicting requirements.

We design the layout of an SRAM cell by assigning real values to design variables.

There are six such variables, each of which corresponds to a channel length or channel

width. Denote these design variables by x = (x1, . . . , x6). Each variable runs through

a designated interval Ii = [ai, bi], ai, bi ∈ R, i = 1, . . . , 6. Thus we have P = [a1, b1] ×
· · · × [a6, b6] ⊆ R6 as a design space.

To evaluate the quality of an SRAM cell, two types of estimators, each on a noise

margin, are used. These are functions on the design variables x. We call them g1

and g2, both linear functions on x. We prepare two variables y1 and y2 for these

estimators and write y1 ≡ g1(x) and y2 ≡ g2(x). The yield rate z, the most important

objective function in the design, is expressed as z ≡ min(y1, y2). Note that the yield

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 90

rate is expressed in sigma value, i.e., a deviation from the mean of a standard normal

distribution. Expressions using sigma are often used for an event occurring with very

low probability. Statistically, the higher the minimum of them, the higher the yield

rate.

For the SRAM cell use g
(1)
3 for its width and g

(2)
3 for its length. Both are linear

functions on the design variables x. The cell is viewed as a rectangle; its size g3 is

expressed as g3 = g
(1)
3 · g

(2)
3 . Prepare y3 for the area and write y3 ≡ g3(x).

Another objective function y4 ≡ g4(x) on a leakage current is considered occasion-

ally. The function g4 is exponential with x, the only non-polynomial objective function

in the problems.

To summarize, it is necessary to solve the specified problem by maximizing the yield

rate z and minimizing the cell size y3, or a leakage current y4. This problem is one of

a class of optimization problems such as parametric optimization and multi-objective

optimization. Fundamental problems encountered in the design process, which are

our main concern here, are formulated below. Although we do not discuss combined

problems, such problems are frequently encountered in actual design work. Note that

in Problem 2 we use a design variable x2 as a parameter.

Problem 1 Find the maximal value of the yield rate z:{
Maximize z ≡ min(y1, y2)

subject to y1 ≡ g1(x), y2 ≡ g2(x), x ∈ P ⊆ R6.

Problem 2 Find the relation between the yield rate z and a design parameter x2.

Problem 3 Find the relation between the yield rate z and the cell size y3.

Problem 4 Find the relation between the yield rate z and the objective function y4

on a leakage current, which is exponential on x.

In general, the functions for noise margins g1, g2 and the function for the cell

size g3 are nonlinear with respect to the design variables x. However, note that one

can expect some special structures in the optimization problems derived from the

actual circumstances of SRAM optimal design. In fact, one can assume the following

properties for most problems of SRAM optimal design. Our aim is to develop effective

and efficient algorithms to solve Problems 1, 2, 3, and 4 by exploiting the following

properties.

Structure 1 g1 and g2 are polynomial models generated from simulation data. In

many cases, it is sufficient to employ linear models with respect to x for g1 and g2.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 91

Structure 2 The objective function for the cell size g3 is factored into its width g
(1)
3

and its length g
(2)
3 , each of which is linear with respect to x: g3(x) = g

(1)
3 (x) · g(2)3 (x).

Structure 3 Although the objective function g4 associated with a leakage current is

exponential, only two design variables out of six are involved: g4 = g4(x1, x2).

4.5.2 Computational Results

We briefly show computational results for all four problems. All examples appearing

in this subsection are derived from actual SRAM design processes in our company.

We solve the example problems using SyNRAC [88] and REDLOG [28] on a PC

with a 1.60 GHz CPU and 8.0 GB of memory. A genetic algorithm (GA) [33] and PSO

[31] are used as conventional numerical methods. For a GA tool, we used the Single

and Multiobjective Genetic Algorithm Toolbox [70], developed by K. Sastry. For a PSO

tool, we used modeFrontier 4.2.1.

Problem 1

Here we show an example of our symbolic approach to an SOO problem. The concrete

problem is as follows:
Maximize z ≡ min(y1, y2)

subject to y1 ≡ g1(x), y2 ≡ g2(x),

0 ≤ x1 ≤ 1, . . ., 0 ≤ x6 ≤ 1, x4 + x6 ≥ 2x2,

(4.7)

where

g1(x) = 4.34758037607255 + 0.215813228985934x1 − 0.402110351083682x2

+2.76367763462092x3 + 0.472650590690848x4 − 0.291960906981533x5

+1.48362647919883x6

and

g2(x) = 2.55801233493670− 0.245208280326772x1 + 1.13856413840377x2

−0.219401355823440x3 + 0.0882262731070385x4 + 1.75046245313323x5

−0.615878109869250x6.

Note that the noise margins g1 and g2 are linear in x.

Since we are not able to formulate the min function as a first-order formula, we

apply the approach to minimax optimization problems shown in Section 4.4.1. The

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 92

associated QE problem is given as

∃x1 · · · ∃x6 (z ≤ g1(x) ∧ z ≤ g2(x) ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.8)

The polynomials appearing in (4.8) are all linear. Consequently, we can use a special-

ized QE algorithm [81], which is normally more efficient than a general one. Performing

QE on (4.8), produces an equivalent quantifier-free formula describing the feasible re-

gion for (4.8).

2658334688648708000000000000000z ≤ 13141717076382193194222773397743.

Obtain the exact maximal value

zmax =
13141717076382193194222773397743

2658334688648708000000000000000
' 4.9435901.

Remark 61. The coefficients of g1(x) and g2(x) are expressed as floating point num-

bers. Solving an optimization problem with QE, one converts floating point numbers to

rational numbers and computes over the rational number field.

Problem 2

Here we show an example of our symbolic approach to a parametric optimization prob-

lem. This framework is similar to that of an MOO problem. The concrete parametric

optimization problem is as follows:
Maximize z ≡ min(y1, y2)

subject to y1 ≡ g1(x), y2 ≡ g2(x),

0 ≤ x1 ≤ 1, . . ., 0 ≤ x6 ≤ 1, x4 + x6 ≥ 2x2.

The associated QE problem is given as

∃x1∃x3∃x4∃x5∃x6 (z ≤ g1(x) ∧ z ≤ g2(x) ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.9)

The difference between (4.8) and (4.9) is the quantification of x2. The polynomials

appearing in (4.9) are also all linear; so one can utilize a specialized QE algorithm [81].

Performing QE on (4.9), obtain an equivalent quantifier-free formula φ(z, x2), which

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 93

shows the feasible region in the x2-z plane as a semialgebraic set.

φ(z, x2) = 0 ≤ x2 ≤ 1 ∧
2000000000000000z − 2277128276807540x2 − 8793402122353937 ≤ 0 ∧
149153949522218000000000000000z − 152920034433476877920619588116x2

−657228648976984203286619309831 ≤ 0 ∧
149153949522218000000000000000z − 15262144750829685831781574636x2

−726057593818307799331038316571 ≤ 0 ∧
2000000000000000z + 186384162669460x2 − 10025158342092437 ≤ 0.

The shaded part in Figure 4.6 shows the feasible region given by the above formula

φ(z, x2) in the x2-z plane. By focusing attention on the upper bounds of the feasible

region with respect to z, if they exist, one can see the explicit relation between the

maximal yield rate and the design parameter x2.

Figure 4.6: Feasible region given by φ(z, x2)

Problem 3

Here we show our approach to an MOO problem to find the relation between the yield

rate and the cell size, one of the most important objective functions in SRAM optimal

design. We cannot obtain the feasible region in the objective space by our symbolic

approach due to its computational complexity. Thus we apply our symbolic-numeric

approach to the problem. We compare a conventional numerical method with our

symbolic-numeric approach. Finally, we show a particular advantage of our symbolic

approach.

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 94

The concrete MOO problem is as follows:

Maximize z ≡ min(y1, y2) and

minimize y3 = y
(1)
3 · y

(2)
3

subject to y1 ≡ g1(x), y2 ≡ g2(x), y
(1)
3 ≡ g

(1)
3 (x), y

(2)
3 ≡ g

(2)
3 (x),

g
(1)
3 (x) = 1420 + 250x1 +max(250x5, 250x3 − 60),

g
(2)
3 (x) = 800 + max(40x4 + 40x6, 140x2 − 10),

0 ≤ x1 ≤ 1, . . ., 0 ≤ x6 ≤ 1, x4 + x6 ≥ 2x2.

(4.10)

The associated QE problem is given as

∃x1 · · · ∃x6∃y(1)3 ∃y
(2)
3 (z ≤ g1(x) ∧ z ≤ g2(x) ∧ y3 = y

(1)
3 · y

(2)
3 ∧

y
(1)
3 ≥ 1420 + 250x1 + 250x5 ∧
y
(1)
3 ≥ 1420 + 250x1 + 250x3 − 60 ∧
y
(2)
3 ≥ 800 + 40x4 + 40x6 ∧
y
(2)
3 ≥ 800 + 140x2 − 10 ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.11)

Performing QE on (4.11), obtain an equivalent quantifier-free formula τ(z, y3), which

demonstrates the feasible region in the y3-z plane as a semialgebraic set. By focusing

on the upper bounds of the feasible region with respect to z and the lower bounds with

respect to y3 simultaneously, one can see the trade-off relation between the yield rate

z and the cell size y3.

Since the formula (4.11) has a quadratic polynomial y3 in x, it might significantly

increase the computational complexity. In fact, the computation of QE on (4.11) did

not terminate after an hour. Next, apply the symbolic-numeric approach to (4.11).

Eliminating as many variables as possible increases the effectiveness of the symbolic-

numeric approach. Since the complexity of a QE algorithm depends on the order and

the choice of variables, the selection of a list of quantified variables is important.

We chose six variables x1, . . . , x6 to eliminate. Consider the following QE problem:

∃x1 · · · ∃x6 (z ≤ g1(x) ∧ z ≤ g2(x) ∧
y
(1)
3 ≥ 1420 + 250x1 + 250x5 ∧
y
(1)
3 ≥ 1420 + 250x1 + 250x3 − 60 ∧
y
(2)
3 ≥ 800 + 40x4 + 40x6 ∧
y
(2)
3 ≥ 800 + 140x2 − 10 ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.12)

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 95

The polynomials occurring in (4.12) are also all linear, so we can employ a specialized

QE algorithm [81] as well. This computation time is less than one second. Performing

QE on (4.12), obtain an equivalent quantifier-free formula τ ′(z, y
(1)
3 , y

(2)
3). To obtain

the relation between z and y3, consider the following MOO problem:
Maximize z and

minimize y3 = y
(1)
3 · y

(2)
3

subject to τ ′(z, y
(1)
3 , y

(2)
3) .

(4.13)

Note that the MOO problem (4.13) is not equivalent to the original, although it has

the same Pareto optimal front. From the numerical results obtain a plotting result

in the y3-z plane via y3 = y
(1)
3 · y

(2)
3 . This combined method of QE and a numerical

method is quite efficient and effective compared with conventional methods such as a

GA-based method because one can reduce the number of decision variables optimized

by a numerical method. This reduces the number of repetitions of numerical yield-rate

evaluations required to obtain a comparable result.

A numerical optimization tool usually requires the ranges of the decision variables

to influence computational efficiency. Fortunately, from (4.10) it is easy to obtain the

range of g
(1)
3 (x) and g

(2)
3 (x). In addition, we have the maximal value zmax of z from

Problem 1. There is no minimal value of z from the QE problem (4.12). However, we

can assume that the minimal value of z is zero because we are interested only in a high

yield rate.

Now solve the following MOO problem with a numerical method as our symbolic-

numeric approach:
Maximize z and

minimize y3 = y
(1)
3 · y

(2)
3

subject to τ ′(z, y
(1)
3 , y

(2)
3) ,

1420 ≤ y
(1)
3 ≤ 1920, 800 ≤ y

(2)
3 ≤ 930, 0 ≤ z ≤ zmax .

(4.14)

Now we compare our approach with conventional numerical methods. The conventional

numerical methods apply for the original optimization problem (4.10) directly. Figures

4.7 and 4.8 show the results for the problems (4.10) and (4.14) obtained by a PSO-

based method after 2000 evaluations. We can say that our symbolic-numeric approach

efficiently produces more optimal solutions than the conventional method.

Next we compare our approach with GA as another numerical method. Figures

4.10 and 4.11 show the results for the problems (4.10) and (4.14) obtained by a GA-

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 96

based method after 2000 evaluations, respectively. We can say that in this problem

the GA-based method works more effectively than the PSO-based method.

The result of the GA-based method shows that the samples obtained by a GA-

based method crowd around the boundary, and the boundary is clearer than that of

our symbolic-numeric method. It looks like the GA-based method is closer to optimal

than our symbolic-numeric method. However, our symbolic-numeric method obtains a

better approximation of the Pareto optimal front. Figure 4.12 shows plots of the non-

dominated solution of the GA-based method (+) and our symbolic-numeric method

(�).

In general, we are not able to know clearly whether the Pareto optimal front is

obtained by a numerical method. However, in many cases fewer decision variables

produce a more precise Pareto optimal front. Our method improves the precision of

the Pareto optimal front under the same number of evaluations. In other words, our

method reduces the number of evaluations required to obtain a comparable result.

One can eliminate one more decision variable for greater numerical efficiency. Since

we have the result of a QE algorithm, it is easy to obtain the maximal value of the

yield rate by using a bisection method. Obviously, from the QE problem (4.12) the

following formulae must hold:

∀y(1)3 ∀y
(2)
3 ∀z∀z′ (z′ ≤ z ∧ τ ′(z, y(1)3 , y

(2)
3)→ τ ′(z′, y

(1)
3 , y

(2)
3)).

∀y(1)3 ∀y
(2)
3 ∀z∀z′ (z′ ≥ z ∧ ¬τ ′(z, y(1)3 , y

(2)
3)→ ¬τ ′(z′, y(1)3 , y

(2)
3)).

From this property we find the maximal value of z for all y
(1)
3 and y

(2)
3 by using the

bisection method.

We can reformulate (4.14) with the bisection method as follows:
Maximize z and

minimize y3 = y
(1)
3 · y

(2)
3

subject to z ≡ Bisection((y
(1)
3 , y

(2)
3), [0, zmax], τ

′),

1420 ≤ y
(1)
3 ≤ 1920, 800 ≤ y

(2)
3 ≤ 930 .

(4.15)

Figures 4.9 and 4.13 show the results obtained by our method with the bisection ap-

proach after 2000 evaluations. Since the number of decision variables is two, we can

see a significant effect of the bisection approach for both numerical methods.

There is another advantage of our symbolic-numeric method. A QE algorithm for

the formula (4.12) yields a feasible region τ ′(z, y
(1)
3 , y

(2)
3). We used τ ′(z, y

(1)
3 , y

(2)
3) as

a constraint to form the formula (4.13) before switching the numerical part of the

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 97

Algorithm 8 Bisection((x1, . . . , xk), [zl, zu], φ(z, x1, . . . , xk))

Input: a vector of variables (x1, . . . , xk), an interval [zl, zu] and a semialgebraic set

φ(z, x1, . . . , xk).

Output: maximal value of z for (x1, . . . , xk)

l← zl

u← zu

loop

m← (l + u)/2

if φ(m,x1, . . . , xk) then

l← m

else

u← m

end if

end loop

return l

method. However, the region specified by τ ′(z, y
(1)
3 , y

(2)
3) is (y

(1)
3 , y

(2)
3 , z) where the

cell with width y
(1)
3 and length y

(2)
3 has the yield rate not less than z. A designer

in our company requires a yield rate greater than 9/2. By substituting 9/2 for z in

τ ′(z, y
(1)
3 , y

(2)
3), we obtain the relation between the width and the length of the cell with

Figure 4.7: PSO-based method (2000 sam-

ples)

Figure 4.8: QE + PSO (2000 samples)

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 98

Figure 4.9: QE + PSO + bisection (2000

samples)

Figure 4.10: GA-based method (2000 sam-

ples)

Figure 4.11: QE + GA (2000 samples)

a yield rate of 9/2 or higher, which is nearly optimal as indicated in Figure 4.15:

τ ′(9/2, y
(1)
3 , y

(2)
3) =

89259547528908221148127474957y
(1)
3 ≥ 143167389485961693346259016189475 ∧

427475274237024206508954304121y
(2)
3 ≥ 347697181600191748755206249897360 ∧

119341432828219713253880415952y
(1)
3 13626914956097933778376405925y

(2)
3

−203207353017403438902517865749215 ≥ 0 ∧
835390029797537992777162911664y

(1)
3 955750215209230487003872425725y

(2)
3

−2162362628166052729795129382699505 ≥ 0 ∧
6683120238380303942217303293312y

(1)
3 10686881855925605162723857603025y

(2)
3

−19853240338099901302383052747265040 ≥ 0.

On the other hand, if a numerical method is directly applied one would form an op-

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 99

Figure 4.12: Non-dominated solution of GA

(+) and QE + GA (�)

Figure 4.13: QE + GA + bisection (2000

samples)

timization problem (4.16). Figure 4.14 shows the result for (4.16) with a GA-based

method after 5000 evaluations. Figure 4.15 describes the relation between two sides of

the SRAM cell much more adequately than does Figure 4.14. Our QE-based method

clearly shows the exact Pareto optimal front, while the samples obtained by a GA

method crowd around the point (y
(1)
3 , y

(2)
3) = (1630, 850). It is hard to determine the

trade-off between the sides.

Minimize y
(1)
3 and

minimize y
(2)
3

subject to y1 ≡ g1(x), y2 ≡ g2(x), min(y1, y2) ≥ 9/2,

y
(1)
3 ≡ g

(1)
3 (x), y

(2)
3 ≡ g

(2)
3 (x),

0 ≤ x1 ≤ 1, . . ., 0 ≤ x6 ≤ 1, x4 + x6 ≥ 2x2.

(4.16)

Figure 4.14: GA-based method (5000

samples)

Figure 4.15: QE-based method

(τ ′(9/2, y
(1)
3 , y

(2)
3))

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 100

Problem 4

Our symbolic approach cannot deal with non-polynomial objective functions. Here we

show that our symbolic-numeric approach can be applied to an MOO problem with a

non-polynomial objective function using Structure 3.

Consider the following concrete MOO problem.
Maximize z ≡ min(y1, y2) and

minimize y4

subject to y1 ≡ g1(x), y2 ≡ g2(x), y4 ≡ g4(x1, x2),

0 ≤ x1 ≤ 1, . . ., 0 ≤ x6 ≤ 1, x4 + x6 ≥ 2x2,

(4.17)

where

g4(x1, x2) =
5x2 + 4

x1 + 3
e−2.8x1−25x2−18.4.

The associated QE problem is given as

∃x1 · · · ∃x6 (z ≤ g1(x) ∧ z ≤ g2(x) ∧ y4 = g4(x1, x2) ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.18)

Because g4(x1, x2) is exponential, we cannot apply a QE algorithm to (4.18). Since g4

depends only on two variables, we consider the following sub-problem:

∃x3 · · · ∃x6 (z ≤ g1(x) ∧ z ≤ g2(x) ∧
0 ≤ x1 ≤ 1 ∧ · · · ∧ 0 ≤ x6 ≤ 1 ∧ x4 + x6 ≥ 2x2).

(4.19)

This QE problem consists of only polynomials, so we can apply a QE algorithm. Per-

forming QE on (4.19), obtain an equivalent quantifier-free formula υ′(z, x1, x2). Refor-

mulate (4.17) with υ′(z, x1, x2) as follows:
Maximize z and

minimize y4

subject to υ′(z, x1, x2), y4 ≡ g4(x1, x2),

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ z ≤ zmax,

(4.20)

where the range of z is from (4.14). We note that the MOO problem (4.17) is not

equivalent to the original one but has the same Pareto optimal front where z ≥ 0.

Now we compare our method with a conventional numerical method with the GA

tool, as in Problem 3. Figures 4.16 and 4.17 show the results for the optimization

problems (4.17) and (4.20) obtained by the GA-based method after 5000 evaluations,

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 101

respectively. The conventional numerical method applies GA for the original opti-

mization problem (4.17) directly. On the other hand, our method applies GA for the

optimization problem (4.20), which has only three decision variables. Our method

improves the precision of the Pareto optimal front as in Problem 3.

Finally, we show the results of our symbolic-numeric approach with the bisection

method. From the QE problem (4.19) the following formulae must hold:

∀x1∀x2∀z∀z′ (z′ ≤ z ∧ υ′(z, x1, x2)→ υ′(z′, x1, x2)).

∀x1∀x2∀z∀z′ (z′ ≥ z ∧ ¬υ′(z, x1, x2)→ ¬υ′(z′, x1, x2)).

Thus we can apply the bisection method. Reformulate (4.20) with the bisection method

as follows:
Maximize z and

minimize y4

subject to y4 ≡ g4(x1, x2), z ≡ Bisection((x1, x2), [0, zmax], υ
′),

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

(4.21)

Figure 4.18 shows the result for the optimization problem (4.21) obtained by the GA-

based method after 2000 evaluations. Since the MOO problem (4.21) has only two

variables, we can obtain a closer approximation of the Pareto optimal front than can

other approaches.

Figure 4.16: GA-based method (5000 sam-

ples)

Figure 4.17: QE + GA (5000 samples)

4.6 Conclusions

We have proposed new symbolic-numeric optimization methods based on quantifier

elimination combined with numerical computation for some important classes of opti-

CHAPTER 4. SYMOBLIC-NUMERIC APPROACH TO POPS 102

Figure 4.18: QE + GA + bisection (2000

samples)

mization problems in SRAM optimal design. The methods improve the total efficiency

of the design process by reducing the number of numerical evaluations and also pro-

duce useful information such as more accurate relations among design parameters or

objective functions.

The proposed methods have been employed in an industrial manufacturing process

for a certain type of SRAM. Total design time has been dramatically reduced and, in

one successful case, a design process which took about ten days is reduced to about

nine days.

The contribution of this chapter is to show effective, concrete ways of using symbolic

methods such as QE together with existing numerical methods. Future work includes

exploring other applications in which we can apply the proposed approaches.

Chapter 5

Conclusion

Quantifier elimination (QE) is a powerful technique for solving problems over real

closed fields. In this thesis, we have improved three types of QE approach and have

successfully applied our algorithms in several applications.

First, we have improved cylindrical algebraic decomposition (CAD) for QE by using

quick tests. We employ quick tests because it is expected that one can often detect

an unnecessary procedure that may be skipped without violating the correctness of

the results by running a simple test beforehand. By using quick tests, we have only

constructed CAD sufficient to describe the solutions for a given first-order formula. We

call such a CAD construction a bounded CAD construction. The effectiveness of our

quick tests was verified using statistical data taken from many example problems.

Second, we have improved a special QE algorithm for sign definite conditions

(SDCs) [45]. To improve the efficiency of the algorithm, simplification of output log-

ical formulae is a critical issue. For this purpose, we have proposed two approaches:

we have provided a necessary condition for the SDC problems to remove unnecessary

sign conditions and have demonstrated Boolean function manipulation. We have also

successfully applied our algorithm to a controller design procedure for a power supply

unit [56].

Finally, we have proposed new symbolic-numeric optimization methods based on

QE. We have constructed a first-order formula which expresses the feasible region for

objective functions and eliminated decision variables by QE as much as possible. We

have also applied a numerical optimization method to the smaller problem equivalent

to the given problem. The methods improve the total efficiency of the design process

by reducing the number of numerical evaluations and also produce useful information

such as more accurate relations among design parameters or objective functions.

103

Bibliography

[1] Espresso. http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/.

[2] Hirokazu Anai and Shinji Hara. Fixed-structure robust controller synthesis based

on sign definite condition by a special quantifier elimination. In Proceedings of

American Control Conference, 2000, volume 2, pages 1312–1316, 2000.

[3] Hirokazu Anai and Shinji Hara. A parameter space approach to fixed-order robust

controller synthesis by quantifier elimination. International Journal of Control,

79(11):1321–1330, 2006.

[4] Hirokazu Anai, Shinji Hara, Masaaki Kanno, and Kazuhiro Yokoyama. Parametric

polynomial spectral factorization using the sum of roots and its application to a

control design problem. Journal of Symbolic Computation, 44(7):703–725, 2009.

[5] Hirokazu Anai and Pablo A. Parrilo. Convex quantifier elimination for semidefinite

programming. In Proceedings of the International Workshop on Computer Algebra

in Scientific Computing (CASC 2003), pages 3–11, September 2003.

[6] Hirokazu Anai, Hitoshi Yanami, Shinji Hara, and Kei Sakabe. Fixed-structure

robust controller synthesis based on symbolic-numeric computation: design al-

gorithms with a CACSD toolbox. In Proceedings of CCA/ISIC/CACSD 2004

(Taipei, Taiwan), volume 2, pages 1540–1545, September 2004.

[7] Hirokazu Anai and Kazuhiro Yokoyama. Cylindrical algebraic decomposition via

numerical computation with validated symbolic reconstruction. In Andreas Dolz-

man, Andreas Seidl, and Thomas Sturm, editors, Algorithmic Algebra and Logic,

pages 25–30, 2005.

[8] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real

Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

104

BIBLIOGRAPHY 105

[9] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T. McMullen,

and Gary D. Hachtel. Logic Minimization Algorithms for VLSI Synthesis. Kluwer

Academic Publishers, Norwell, MA, USA, 1984.

[10] Christopher W. Brown. Solution formula construction for truth invariant CAD’s.

PhD thesis, University of Delaware Newark, 1999.

[11] Christopher W. Brown. Improved projection for CAD’s of R3. In Proceedings of

the 2000 international symposium on Symbolic and algebraic computation, ISSAC

’00, pages 48–53, New York, NY, USA, 2000. ACM.

[12] Christopher W. Brown. Improved projection for cylindrical algebraic decomposi-

tion. Journal of Symbolic Computation, 32(5):447–465, 2001.

[13] Christopher W. Brown. QEPCAD B: A program for computing with semi-

algebraic sets using CADs. SIGSAM BULLETIN, 37:97–108, 2003.

[14] Christopher W. Brown and James H. Davenport. The complexity of quantifier

elimination and cylindrical algebraic decomposition. In Proceedings of the 2007

International Symposium on Symbolic and Algebraic Computation, ISSAC ’07,

pages 54–60, New York, NY, USA, 2007. ACM.

[15] Bob F. Caviness and Jeremy R Johnson, editors. Quantifier Elimination and

Cylindrical Algebraic Decomposition (Texts and Monographs in Symbolic Compu-

tation). Springer Vienna, softcover reprint of the original 1st ed. 1998 edition,

April 1998.

[16] Changbo Chen and Marc Moreno Maza. An incremental algorithm for computing

cylindrical algebraic decompositions. CoRR, abs/1210.5543, 2012.

[17] Changbo Chen, Marc Moreno Maza, Bican Xia, and Lu Yang. Computing cylindri-

cal algebraic decomposition via triangular decomposition. CoRR, abs/0903.5221,

2009.

[18] M. D. Choi, T. Y. Lam, and Bruce Reznick. Even symmetric sextics. Mathema-

tische Zeitschrift, 195(4):559–580, 1987.

[19] George E. Collins. Quantifier elimination for real closed fields by cylindrical alge-

braic decomposition. In Automata Theory and Formal Languages 2nd GI Confer-

BIBLIOGRAPHY 106

ence Kaiserslautern, May 20-23, 1975, volume 33 of Lecture Notes in Computer

Science, pages 134–183. Springer-Verlag, 1975.

[20] George E. Collins. Quantifier elimination and cylindrical algebraic decomposition,

pages 8–23. In Caviness and Johnson [15], softcover reprint of the original 1st ed.

1998 edition, April 1998.

[21] George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for

quantifier elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.

[22] George E. Collins, Jeremy R. Johnson, and Werner Krandick. Interval arith-

metic in cylindrical algebraic decomposition. Journal of Symbolic Computation,

34(2):145–157, 2002.

[23] Olivier Coudert, Jean Christophe Madre, and Henri Fraisse. A new viewpoint on

two-level logic minimization. In Proceedings of the Design Automation Conference,

pages 625–630, 1993.

[24] James H. Davenport and Joos Heintz. Real quantifier elimination is doubly expo-

nential. Journal of Symbolic Computation, 5(1/2):29–35, 1988.

[25] Kalyanmoy Deb. Multi-Objective Optimization using Evolutionary Algorithms.

Wiley-Interscience Series in Systems and Optimization. JohnWiley & Sons, Chich-

ester, 2001.

[26] Jean Della Dora, Claire Dicrescenzo, and Dominique Duval. About a new method

for computing in algebraic number fields. In Research Contributions from the

European Conference on Computer Algebra-Volume 2, EUROCAL ’85, pages 289–

290, London, UK, 1985. Springer-Verlag.

[27] Andreas Dolzmann, Andreas Seidl, and Thomas Sturm. Efficient projection orders

for CAD. In Proceedings of the 2004 International Symposium on Symbolic and

Algebraic Computation, ISSAC ’04, pages 111–118, New York, NY, USA, 2004.

ACM.

[28] Andreas Dolzmann and Thomas Sturm. REDLOG computer algebra meets com-

puter logic. ACM SIGSAM Bulletin, 31:2–9, 1996.

BIBLIOGRAPHY 107

[29] Andreas Dolzmann, Thomas Sturm, and Volker Weispfenning. Real quantifier

elimination in practice. In Algorithmic Algebra and Number Theory, pages 221–

247. Springer, 1998.

[30] Dominique Duval. Algebraic numbers: An example of dynamic evaluation. Journal

of Symbolic Computation, 18(5):429–445, 1994.

[31] Russell Eberhart and James Kennedy. A new optimizer using particle swarm

theory. In Proceedings of the Sixth International Symposium on Micro Machine

and Human Science, pages 39–43, Nagoya, Japan, 1995.

[32] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary Computing.

Springer-Verlag, 2003.

[33] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine

Learning. Addison-Wesley, 1989.

[34] Laureano González-Vega. Applying quantifier elimination to the Birkhoff interpo-

lation problem. Journal of Symbolic Computation, 22:83–103, July 1996.

[35] Laureano González-Vega. A combinatorial algorithm solving some quantifier elim-

ination problems, pages 365–375. In Caviness and Johnson [15], softcover reprint

of the original 1st ed. 1998 edition, April 1998.

[36] Laureano González-Vega, T Recio, H Lombardi, and M.-F Roy. Sturm-Habicht

sequences determinants and real roots of univariate polynomials, pages 300–316.

In Caviness, Bob F. and Johnson, Jeremy R [15], softcover reprint of the original

1st ed. 1998 edition, April 1998.

[37] Feng Guo, Mohab Safey El Din, and Lihong Zhi. Global optimization of polyno-

mials using generalized critical values and sums of squares. In Proceedings of the

2010 International Symposium on Symbolic and Algebraic Computation, ISSAC

’10, pages 107–114, New York, NY, USA, 2010. ACM.

[38] Yacov Y. Haimes. Integrated system identification and optimization. In Control

and Dynamic Systems: Advances in Theory and Applications, volume 10, pages

435–518. Academic Press, 1973.

[39] William R. Harris. Real even symmetric ternary forms. Journal of Algebra,

222(1):204 – 245, 1999.

BIBLIOGRAPHY 108

[40] Hong Hong and Mohab Safey El Din. Variant quantifier elimination. Journal of

Symbolic Computation, 47(7):883–901, 2012.

[41] Hoon Hong. An improvement of the projection operator in cylindrical algebraic

decomposition. In Proceedings of the international symposium on Symbolic and

algebraic computation, pages 261–264, New York, NY, USA, 1990. ACM.

[42] Hoon Hong. Quantifier elimination for formulas constrained by quadratic equa-

tions. In Proceedings of the 1993 international symposium on Symbolic and alge-

braic computation, ISSAC ’93, pages 264–274, New York, NY, USA, 1993. ACM.

[43] Hoon Hong. An efficient method for analyzing the topology of plane real algebraic

curves. In Selected papers presented at the international IMACS symposium on

Symbolic computation, new trends and developments, pages 571–582, Amsterdam,

The Netherlands, The Netherlands, 1996. Elsevier Science Publishers B. V.

[44] Hoon Hong. Simple Solution Formula Construction in Cylindrical Algebraic De-

composition Based Quantifier Elimination, pages 201–219. In Caviness and John-

son [15], softcover reprint of the original 1st ed. 1998 edition, April 1998.

[45] Noriko Hyodo, Myunghoon Hong, Hitoshi Yanami, Shinji Hara, and Hirokazu

Anai. Solving and visualizing nonlinear parametric constraints in control based

on quantifier elimination. Applicable Algebra in Engineering, Communication and

Computing, 18(6):497–512, 2007.

[46] Hidenao Iwane, Hiroyuki Higuchi, and Hirokazu Anai. An effective implementation

of a special quantifier elimination for a sign definite condition by logical formula

simplification. In Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Ev-

genii V. Vorozhtsov, editors, CASC, volume 8136 of Lecture Notes in Computer

Science, pages 194–208. Springer, 2013.

[47] Hidenao Iwane, Akifumi Kira, and Hirokazu Anai. Construction of explicit optimal

value functions by a symbolic-numeric cylindrical algebraic decomposition. In

Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov,

editors, CASC, volume 6885 of Lecture Notes in Computer Science, pages 239–250.

Springer, 2011.

[48] Hidenao Iwane, Hitoshi Yanami, and Hirokazu Anai. An effective implementation

of a symbolic-numeric cylindrical algebraic decomposition for optimization prob-

BIBLIOGRAPHY 109

lems. In Proceedings of the 2011 International Workshop on Symbolic-Numeric

Computation, volume 1, pages 168–177, 2011.

[49] Hidenao Iwane, Hitoshi Yanami, Hirokazu Anai, and Kazuhiro Yokoyama. An ef-

fective implementation of a symbolic-numeric cylindrical algebraic decomposition

for quantifier elimination. In Proceedings of the 2009 International Workshop on

Symbolic-Numeric Computation, volume 1, pages 55–64, 2009.

[50] Hidenao Iwane, Hitoshi Yanami, Hirokazu Anai, and Kazuhiro Yokoyama. An

effective implementation of symbolic–numeric cylindrical algebraic decomposition

for quantifier elimination. Theoretical Computer Science, 479:43–69, 2013.

[51] Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification of

global optimality of approximate factorizations via rationalizing sums-of-squares

with floating point scalars. In Proceedings of the twenty-first international sym-

posium on Symbolic and algebraic computation, ISSAC ’08, pages 155–164, New

York, NY, USA, 2008. ACM.

[52] Rudolf Krawczyk. Newton-algorithmen zur bestimmung von nullstellen mit fehler-

schranken. Computing, pages 187–201, 1969.

[53] Jouni Lampinen. Multiobjective Nonlinear Pareto-Optimization. Laboratory of

Information Processing, 2000.

[54] Jean B. Lasserre. Global optimization with polynomials and the problem of mo-

ments. SIAM Journal on Optimization, 11(3):796–817, 2001.

[55] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination.

The Computer Journal, 36(5):450–462, 1993.

[56] Yoshinobu Matsui, Hidenao Iwane, and Hirokazu Anai. Two controller design

procedures using sdp and qe for a power supply unit. In Development of Computer

Algebra Research and Collaboration with Industry, volume 49 of COE Lecture Note,

pages 43–51, 2013.

[57] Scott McCallum. Solving polynomial strict inequalities using cylindrical algebraic

decomposition. The Computer Journal, pages 432–438, 1993.

[58] Scott McCallum. An improved projection operator for cylindrical algebraic de-

composition. In Caviness and Johnson [15], pages 242–268.

BIBLIOGRAPHY 110

[59] Scott McCallum. On projection in CAD-based quantifier elimination with equa-

tional constraint. In Proceedings of the 1999 international symposium on Symbolic

and algebraic computation, ISSAC ’99, pages 145–149, New York, NY, USA, 1999.

ACM.

[60] Scott McCallum. On propagation of equational constraints in CAD-based quanti-

fier elimination. In Proceedings of the 2001 international symposium on Symbolic

and algebraic computation, ISSAC ’01, pages 223–231, New York, NY, USA, 2001.

ACM.

[61] Patirick McGeer, Jagesh Sanghavi, Robert Brayton, and Alberto Sangiovanni Vin-

centelli. ESPRESSO-SIGNATURE: A new exact minimizer for logic functions. In

Proceedings of the Design Automation Conference, pages 618–624, 1993.

[62] Kaisa Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Pub-

lishers, Boston, 1999.

[63] Pablo A. Parrilo and Sanjay Lall. Semidefinite programming relaxations and al-

gebraic optimization in control, 2006. Mini-course on Polynomial Equations and

Inequalities I and II.

[64] Pablo A. Parrilo and Bernd Sturmfels. Minimizing polynomial functions. In

Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics

and Computer Science, volume 60, pages 83–99. ACM, 2001.

[65] Efstratios N. Pistikopoulos, Michael C. Georgiadis, and Vivek Dua. Multi-

parametric programming: theory, algorithms, and applications, volume 1 of Multi-

Parametric Programming. Wiley-VCH, 2007.

[66] Stefan Ratschan. Approximate quantified constraint solving by cylindrical box

decomposition. Reliable Computing, 8(1):21–42, 2002.

[67] Siegfried M. Rump. Algebraic computation, numerical computation and verified

inclusions. In Rainer Janßen, editor, Trends in Computer Algebra, volume 296 of

Lecture Notes in Computer Science, pages 177–197. Springer Berlin / Heidelberg,

1988.

[68] Siegfried M. Rump. Computer-Assisted Proofs and Self-Validating Methods, vol-

ume 18, chapter 10, pages 195–240. Society for Industrial and Applied Mathemat-

ics, Philadephia, PA, 2005.

BIBLIOGRAPHY 111

[69] Mohab Safey El Din. Computing the global optimum of a multivariate polynomial

over the reals. In Proceedings of the twenty-first international symposium on Sym-

bolic and algebraic computation, ISSAC ’08, pages 71–78, New York, NY, USA,

2008. ACM.

[70] Kumara Sastry. Single and multiobjective genetic algorithm toolbox in C++.

http://www.kumarasastry.com/2007/06/11/single-and-multiobjective-

genetic-algorithm-toolbox-in-c/.

[71] Jason Schattman. Portfolio optimization under nonconvex transaction costs with

the global optimization toolbox. http://www.maplesoft.com/applications/

view.aspx?SID=1401&view=html.

[72] Markus Schweighofer. Global optimization of polynomials using gradient tentacles

and sums of squares. SIAM Journal on Optimization, 17:920–942, September 2006.

[73] Adam W. Strzeboński. A real polynomial decision algorithm using arbitrary-

precision floating point arithmetic. Reliable Computing, 5(3):337–346, 1999.

[74] Adam W. Strzeboński. Solving systems of strict polynomial inequalities. Journal

of Symbolic Computation, 29:471–480, March 2000.

[75] Adam W. Strzeboński. Cylindrical algebraic decomposition using validated nu-

merics. Journal of Symbolic Computation, 41(9):1021–1038, 2006.

[76] Thomas Sturm. New domains for applied quantifier elimination. In Victor G.

Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Computer Algebra

in Scientific Computing, volume 4194 of Lecture Notes in Computer Science, pages

295–301. Springer, 2006.

[77] Thomas Sturm and Andreas Weber. Investigating generic methods to solve hopf

bifurcation problems in algebraic biology. In Katsuhisa Horimoto, Georg Re-

gensburger, Markus Rosenkranz, and Hiroshi Yoshida, editors, Algebraic Biology,

volume 5147 of Lecture Notes in Computer Science, chapter 15, pages 200–215.

Springer Berlin / Heidelberg, Berlin, Heidelberg, 2008.

[78] Thomas Sturm and Volker Weispfenning. Rounding and blending of solids by a

real elimination method. In Proceedings of the 15th IMACS World Congress on

Scientific Computation, Modelling, and Applied Mathematics (IMACS 97), pages

727–732, 1997.

BIBLIOGRAPHY 112

[79] Alfred Tarski. A decision method for elementary algebra and geometry. University

of California Press, 2nd edition, 1952.

[80] Vlad Timofte. On the positivity of symmetric polynomial functions. part ii: Lat-

tice general results and positivity criteria for degrees 4 and 5. Journal of Mathe-

matical Analysis and Applications, 304(2):652 – 667, 2005.

[81] Volker Weispfenning. The complexity of linear problems in fields. Journal of

Symbolic Computation, 5:3–27, Febrary 1988.

[82] Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case

and beyond. Applicable Algebra in Engineering, Communication and Computing,

8:85–101, 1993.

[83] Volker Weispfenning. Simulation and optimization by quantifier elimination. Jour-

nal of Symbolic Computation, 24:189–208, August 1997.

[84] Benjamin Wilson, David Cappelleri, Timothy W. Simpson, and Mary Frecker.

Efficient Pareto frontier exploration using surrogate approximations. Optimization

and Engineering, 2:31–50, 2001.

[85] David J. Wilson, Russell J. Bradford, and James H. Davenport. Speeding up cylin-

drical algebraic decomposition by Gröbner bases. CoRR, abs/1205.6285, 2012.

[86] Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts and Mono-

graphs in Symbolic Computation. Springer, 1996.

[87] Hitoshi Yanami. Multi-objective design based on symbolic computation and its

application to hard disk slider design. Journal of Math-for-Industry, 1:149–156,

2009.

[88] Hitoshi Yanami and Hirokazu Anai. The Maple package SyNRAC and its applica-

tion to robust control design. Future Generation Computer Systems, 23(5):721–

726, 2007.

[89] Lu Yang and Bican Xia. Real solution classification for parametric semi-algebraic

systems. In Andreas Dolzmann, Andreas Seidl, and Thomas Sturm, editors, Al-

gorithmic Algebra and Logic, pages 281–289. Books on Demand, 2005.

[90] Lotfi Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Trans-

actions on Automatic Control, 8:59–60, 1963.

