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Introduction

In this thesis, we study periods in characteristic p. In particular we treat pos-
itive characteristic multizeta values over function fields and the values of Carlitz
multiple polylogarithms at algebraic points. We prove several results on algebraic
independence of them.

Classical case

The multiple zeta values (MZVs) in characteristic 0 was defined by Euler (depth
two) and Hoffman (higher depth). These are defined by

ζZ(n) = ζZ(n1, . . . , nd) :=
∑

m1>···>md≥1

1

mn1
1 · · ·mnd

d

∈ R×

for a d-tuple of positive integers n = (n1, . . . , nd) ∈ (Z≥1)
d with n1 ≥ 2. The sum

wt(n) :=
∑

i ni is called the weight and dep(n) := d is called the depth of ζZ(n).

One of the goals of this topic is to determine all algebraic relations over Q among the
MZVs. Although many relations among MZVs are known, very few linear/algebraic
independence results on MZVs are known. For example, Euler proved that when
d = 1, the ratio ζZ(n)/(2π

√
−1)n is a rational number if and only if n ≥ 2 is a

positive even integer. However, we do not know whether ζZ(n)/π
n is a transcendental

number for each odd integer n ≥ 3. It is conjectured that π, ζZ(3), ζZ(5), ζZ(7), . . .
are algebraically independent over Q.

For each integer w ≥ 2, we denote by Zw the Q-vector space spanned by the
MZVs of weight w. We also define Z0 := Q, Z1 := {0} and Z :=

∑
w Zw. The

harmonic product formula shows that the product of two MZVs of weights w1 and
w2 is described as a sum of MZVs of weight w1+w2. The simplest case is as follows:

ζZ(n1)ζZ(n2) = ζZ(n1, n2) + ζZ(n2, n1) + ζZ(n1 + n2).

Goncharov ([G1]) conjectured that MZVs of different weights are linearly indepen-
dent over Q; this means

Z =
⊕
w≥0

Zw.

Thus it is conjectured that Z is a graded Q-algebra graded by weights. Zagier ([Z])
conjectured that

dimQ Zw = dw,

where d0 := 1, d1 := 0, d2 := 1 and dw := dw−2 + dw−3 for w ≥ 3. Goncharov
([G2]) and Terasoma ([Te]) showed that the inequality dimZw ≤ dw holds for each
w ≥ 0. To show the converse inequalities, we need linear/algebraic independence
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6 INTRODUCTION

results of MZVs, and thus this seems to be very difficult. André ([Andr, p. 231])
asked whether there exists n such that ζZ(n) 6∈ Q[ζZ(2), ζZ(3), ζZ(4), ζZ(5), . . . ]. Note
that this comes from the above two conjectures because d8 = 4 and the weight 8
monomials of single zeta values are only ζZ(2)

4, ζZ(2)ζZ(3)
2 and ζZ(3)ζZ(5) up to

non-zero rational factors. We do not also have an answer to this question. These
conjectures are also formulated when we replace Q by Q. In this thesis, consequences
of our main result are to give some lower bounds of the dimension of the vector space
spanned by the positive characteristic MZVs of fixed weight and an affirmative
answer to the function field analogue of a question of André.

Positive characteristic multizeta values

Let K := Fq(θ) be the rational function field over the finite field of q elements
with variable θ, p the characteristic of K, K∞ := Fq((θ−1)) the ∞-adic completion
of K, K∞ a fixed algebraic closure of K∞, C∞ the ∞-adic completion of K∞, and
K the algebraic closure of K in C∞. We fix a (q − 1)-st root of −θ and let

π̃ := (−θ)
q

q−1

∞∏
i=1

(
1− θ1−q

i
)−1

∈ (−θ)
1

q−1 ·K×
∞

be the fundamental period of the Carlitz module. This is a generator of the kernel of
the exponential map of the Carlitz module and a function field analogue of 2π

√
−1

which is a generator of the kernel of the usual exponential map. Wade ([W]) proved
that π̃ is transcendental over K. As #Fq[θ]× = q − 1, we say that an integer n is
“odd” if q − 1 does not divide n, and “even” if q − 1 divides n. In this thesis, an
index means an element of (Z≥1)

d for some positive integer d ≥ 1. Thakur ([Th1])
defined the positive characteristic multizeta values (also denoted by MZVs) by

ζ(n) = ζ(n1, . . . , nd) :=
∑ 1

an1
1 · · · and

d

∈ K×
∞

for indices n = (n1, . . . , nd), where the sum is over all monic polynomials ai in Fq[θ]
such that deg a1 > · · · > deg ad ≥ 0. It is clear that ζ(pen) = ζ(n)p

e
for all e ≥ 0,

where we set pen := (pen1, . . . , p
end). These are called the p-th power (Frobenius)

relations. As in the classical case, we want to determine all algebraic relations among
the MZVs over K.

The MZVs of depth one had been studied by Carlitz ([Ca]) and they are called
the Carlitz zeta values. He showed that if n ≥ 1 is a positive “even” integer, then
we have the Euler-Carlitz relation

ζ(n)

π̃n
=

Bn

Γn+1

∈ K×,

where Bn ∈ Fq[θ] is the Bernoulli-Carlitz number and Γn+1 ∈ Fq[θ] is the factorial of
Carlitz (see Chapter 1). This is an analogue of the relations of the special zeta values
at positive even integers. Thus the Carlitz zeta values at positive “even” integers are
transcendental over K. Anderson and Thakur ([AT1]) showed that the Carlitz zeta
value ζ(n) appears as an integral point of the logarithm of the n-th tensor power of
the Carlitz module for each n ≥ 1. Yu ([Y1]) proved that ζ(n), ζ(n)/π̃n 6∈ K for
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each positive “odd” integer n ≥ 1. In [Y2], he also determined all linear relations
over K among the Carlitz zeta values and the powers of π̃. Finally, Chang and
Yu ([CY]) proved that all algebraic relations over K among the Carlitz zeta values
come from the p-th power relations or the Euler-Carlitz relations. Note that Chang,
Papanikolas and Yu ([CPY]) also showed the algebraic independence of MZVs when
the constant field Fq varies.

Several results on the higher depth case were also proved. Thakur ([Th2])
showed that MZVs are non-zero. Anderson and Thakur ([AT2]) showed that the
MZVs have an interpretation as periods of t-motives. For each w ≥ 1, we denote by
Zw the K-vector space spanned by the MZVs of weight w in C∞. We also define
Z0 := K and Z :=

∑
w Zw. In positive characteristic, the harmonic product formula

does not hold in general. Thakur ([Th1, Theorem 5.10.6]) showed that if weight
is not more than q, then MZVs satisfy the classical harmonic product formula. In
particular, the harmonic product formula

ζ(n1)ζ(n2) = ζ(n1, n2) + ζ(n2, n1) + ζ(n1 + n2)

holds if n1 +n2 ≤ q (see Remark 1.2). In [Th4], he also showed that the product of
two MZVs of weights w1 and w2 is described as a sum of MZVs of weight w1 + w2.
Chang ([Ch2]) showed that

Z =
⊕
w

Zw.

Thus Z is a graded K-algebra graded by weights.
The above results do not give the algebraic independence of MZVs of higher

weights. In this thesis, we study algebraic relations over K among the elements of
the set

{π̃} ∪ {ζ(nj, nj+1, . . . , ni)|1 ≤ j ≤ i ≤ d}

for a fixed index n = (n1, . . . , nd) such that ni is “odd” for each i. For a positive
“odd” integer n ≥ 1, we prove that π̃, ζ(n) and ζ(n, n) are algebraically independent
overK if 2n is “odd” (Theorem 2.7). If furthermore 3n is “odd”, then π̃, ζ(n), ζ(n, n)
and ζ(n, n, n) are algebraically independent over K (Theorem 2.13). We also prove
that the elements of the above set are algebraically independent over K if ni is
“odd” for each i and ni/nj is not an integral power of p for each i 6= j (Theorem
2.17). We also treat some cases where ni/nj may be an integral power of p for some
i 6= j. Then under some conditions, we prove that the elements of the above set
have only the p-th power relations (Theorems 2.23 and 2.24). A consequence of our
results is to give an affirmative answer to the function field analogue of a question
in [Andr, p. 231]. By using these results, we also obtain non-trivial lower bounds
of the dimension of Zw. In particular, we determine the dimension of Z2 in any p
and Z3 when p 6= 2, 3. These results are proved in [M3] and [M4].
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Carlitz multiple polylogarithms

In [Ch2], Chang defined the Carlitz multiple polylogarithms (CMPLs) by

Lin(z1, . . . , zd) :=
∑

i1>···>id≥0

zq
i1

1 · · · zq
id

d

((θ − θq) · · · (θ − θq
i1 ))n1 · · · ((θ − θq) · · · (θ − θq

id ))nd

for indices n. It converges if |zi|∞ < |θ|
niq

q−1
∞ for each i, where | − |∞ is an ∞-adic

valuation on C∞. In [AT1], Anderson and Thakur showed that ζ(n) is described
as a K-linear combination of the values of CMPLs of weight n and depth one at
rational points for each n ≥ 1. Moreover, in [Ch2], Chang showed that for each
index n with wt(n) = w and dep(n) = d, ζ(n) is described as aK-linear combination
of the values of CMPLs of weight w and depth d at rational points. He also proved
that CMPLs take non-zero values when zi 6= 0 for each i. We are interested in
the algebraic independence of their values at algebraic points over K. Let n ≥
1 be a positive integer, and let α1, . . . , αr ∈ K

×
be algebraic points such that

|αj|∞ < |θ|
nq
q−1
∞ for each j. Papanikolas ([P]), Chang and Yu ([CY]) proved that if

π̃n,Lin(α1), . . . ,Lin(αr) are linearly independent over K, then they are algebraically
independent over K. Let n1, . . . , nd ≥ 1 be positive integers such that ni/nj is not

an integral power of p for each i 6= j. For each i, let αi1, . . . , αiri ∈ K
×
be algebraic

points such that |αij|∞ < |θ|
niq

q−1
∞ for each j. Chang and Yu ([CY]) also proved that

if π̃ni ,Lini
(αi1), . . . ,Lini

(αiri) are linearly independent over K for each i, then the
elements of the set {π̃} ∪ {Lini

(αij)|i, j} are algebraically independent over K. As
in the case of the MZVs, several results on the higher depth case were also proved.
Chang ([Ch2]) showed that values of Carlitz multiple polylogarithms at algebraic
points of different weights are linearly independent over K.

In this thesis, we study algebraic relations over K among the elements of the set

{π̃} ∪ {Linj ,nj+1,...,ni
(αj, αj+1, . . . , αi)|1 ≤ j ≤ i ≤ d}

for a fixed index n = (n1, . . . , nd) and a d-tuple of algebraic points α = (α1, . . . , αd) ∈
(K

×
)d such that |αi|∞ < |θ|

niq

q−1
∞ for each i. For a positive “odd” integer n ≥ 1 and

a rational point α ∈ K× such that |α|∞ < |θ|
nq
q−1
∞ , we prove that π̃, Lin(α) and

Lin,n(α, α) are algebraically independent over K if 2n is “odd” (Theorem 2.30). If
furthermore 3n is “odd”, then π̃, Lin(α), Lin,n(α, α) and Lin,n,n(α, α, α) are alge-
braically independent over K (Theorem 2.31). We also prove that the elements of
the above set are algebraically independent over K if π̃,Lin1(α1), . . . ,Lind

(αd) are
algebraically independent over K (Theorem 2.33). If ni is “odd” and αi ∈ K×

for each i and ni/nj is not an integral power of p for each i 6= j, then the above
assumption is satisfied. These results are proved in [M3] and [M4].

Outline of this thesis

In Chapter 1, we define notations which are used in this thesis. In Chapter
2, we state our results on algebraic independence of MZVs and values of CMPLs.
In Chapter 3, at first we review the (pre-)t-motives which were originally defined
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by Anderson ([Ande]). We explain the way how we obtain periods from pre-t-
motives following the work of Anderson and Thakur ([AT1], [AT2]). Then we
recall Papanikolas’ theory ([P]) which states that the transcendental degree of the
field generated by periods in question over a base field coincides with the dimension
of the “motivic Galois group” of a pre-t-motive. As an example (see Example 3.5),
we see that MZVs and CMPLs at algebraic points appear as periods of some pre-t-
motives. The primary tools of proving the main results are Papanikolas’ theory. In
Chapter 4, we give proofs of our theorems by using the arguments of Chapter 3.

Acknowledgments. The author would like to express his sincere gratitude to
his adviser Yuichiro Taguchi who carefully read a preliminary version of this thesis
and gave him many pieces of useful advice on his works. He would also like to thank
Chieh-Yu Chang for many comments and suggestions about the proof of Theorem
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and Dinesh S. Thakur for informing him of some relations among multizeta values
in Remark 2.9 and Corollary 2.11. He would also like to thank Masanobu Kaneko
for careful reading and giving a remark on classical MZVs, and Seidai Yasuda for
many helpful discussions on the topics studied in this thesis. The author thanks
his family for their warm encouragement. This work was supported by the JSPS
Research Fellowships for Young Scientists.





CHAPTER 1

Notations

We continue to use the notations of the Introduction. Let t be a variable inde-
pendent of θ. Let T := {f ∈ C∞[[t]]|f converges on |t|∞ ≤ 1} be the Tate algebra
and L the fractional field of T. We set

E :=
{∑

ait
i ∈ C∞[[t]]

∣∣∣ lim
i→∞

i
√

|ai|∞ = 0, [K∞(a0, a1, . . . ) : K∞] <∞
}
.

For any integer n ∈ Z and any formal Laurent series f =
∑

i ait
i ∈ C∞((t)), let

f (n) :=
∑
i

aq
n

i t
i

be the n-fold twist of f , and set σ(f) := f (−1). The fields L and K(t) are stable
under the operation f 7→ f (n) and we have Lσ=1 = Fq(t) where (−)σ=1 is the σ-fixed
part.

Definition 1.1. Let d ≥ 1 be a positive integer. We set

Id := {(i, j) ∈ Z2|1 ≤ j < i ≤ d+ 1}.

We define a depth of (i, j) ∈ Id by dep(i, j) := i − j and a total order on Id by
setting (i, j) ≤ (k, `) if either dep(i, j) = dep(k, `) and j ≤ ` (hence i ≤ k), or
dep(i, j) < dep(k, `). For example, the order on I4 is illustrated as the following
diagram:

depth 1
depth 2
depth 3
depth 4

↘
↘
↘
↘


◦

��?
??

◦
��?

?? ◦
��?

??

◦
��?

?? ◦
��?

?? ◦
��?

??

◦ oo ◦
eeKKKKKK◦

ddHHHHHHHHHH◦


For each (i, j) ∈ Id and a d-tuple of symbol y = (y1, . . . , yd), we set

y
ij
:= (yj, yj+1, . . . , yi−1).

So, we have

{y
ij
|(i, j) ∈ Id} = {(yj, yj+1, . . . , yi)|1 ≤ j ≤ i ≤ d}.

Note that the MZV ζ(n1, . . . , nd) appears as a period of a t-motive of rank d+1
(Example 3.5). Moreover, the MZV ζ(nj, . . . , ni−1) for (i, j) ∈ Id appears as an
(i, j)-th component of a matrix of periods of that t-motive.
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12 1. NOTATIONS

We set

Ω(t) := (−θ)−
q

q−1

∞∏
i=1

(
1− t

θqi

)
∈ K∞[[t]],

which is in fact an element of E. Since Ω has a simple zero at θq
i
for each i = 1, 2, . . . ,

it is transcendental over K(t). It satisfies the equation

Ω(−1) = (t− θ)Ω

and we have

Ω(θ) =
1

π̃
.

We set D0 := 1 and Di :=
∏i−1

j=0(θ
qi − θq

j
) for i ≥ 1. For each integer n ≥ 0 with

q-adic expansion n =
∑

i niq
i (0 ≤ ni < q), the Carlitz factorial is defined by

Γn+1 :=
∏
i

Dni
i .

Let n = (n1, . . . , nd) be an index and u = (u1, . . . , ud) ∈ (K[t])d a d-tuple of poly-
nomials. For a polynomial u =

∑
j αjt

j ∈ K[t], we set ||u||∞ := maxj |αj|∞. When

||ui||∞ < |θ|
niq

q−1
∞ for each i, we set

Lu,n(t) :=
∑

i1>···>id≥0

u
(i1)
1 · · ·u(id)d

((t− θq) · · · (t− θq
i1 ))n1 · · · ((t− θq) · · · (t− θq

id ))nd
∈ K∞[[t]],

which converges on |t|∞ < |θ|q∞ and satisfies the equation

L(−1)
u,n =

u
(−1)
d

(t− θ)n1+···+nd−1
Lud1,nd1

+
Lu,n

(t− θ)n1+···+nd
,

where we set Lu11,n11
= L∅,∅ := 1. When u = α ∈ K

d
with |αi|∞ < |θ|

niq

q−1
∞ for each i,

we have Lα,n(θ) = Lin(α). Anderson and Thakur ([AT1], [AT2]) showed that there

exists a polynomial Hn−1 ∈ Fq[θ, t] for each n ≥ 1 such that ||Hn−1||∞ < |θ|
nq
q−1
∞ and

LH(n),n(θ) = Γn1 · · ·Γnd
ζ(n) where H(n) := (Hn1−1, . . . , Hnd−1).

Remark 1.2. We can easily show that

Lα1,n1Lα2,n2 = Lα1,α2,n1,n2 + Lα2,α1,n2,n1 + Lα1α2,n1+n2

for each αi and ni (for more general cases, see [Ch2]. He treated Lα,n(θ), but the
arguments are the same). By definition, Γn = 1 for each 1 ≤ n ≤ q, and by the
construction in [AT1], we know that Hn−1 = 1 for 1 ≤ n ≤ q. Thus if n1 + n2 ≤ q,
we have

LHn1−1Hn2−1,n1+n2 = L1,n1+n2 = LHn1+n2−1,n1+n2 .

Therefore, we obtain the harmonic shuffle product formula in Remark 2.9.



CHAPTER 2

Algebraic independence

In this chapter, we state linear/algebraic independence results on MZVs (Section
1) and values of CMPLs (Section 2). These are special cases of theorems in Chapter
4 and we will prove our theorems there in general settings.

1. Independence of multizeta values

Wade showed the following theorem:

Theorem 2.1 ([W, Theorem 6.1]). The Carlitz period π̃ is transcendental over
K.

Thus, ζ(n) is transcendental over K for each positive “even” integer n ≥ 1 by
the Euler-Carlitz relation. Yu showed the transcendence of the Carlitz zeta values
at the positive “odd” integers:

Theorem 2.2 ([Y1, Theorem 3.1, Corollary 3.4]). For each “odd” positive in-
teger n ≥ 1, the elements ζ(n) and ζ(n)/π̃n are both transcendental over K.

Therefore all Carlitz zeta values are transcendental over K. He also determined
all K-linear relations among the powers of π̃ and the Carlitz zeta values:

Theorem 2.3 ([Y2, Theorem 4.1]). Let m1, . . . ,mr ≥ 0 be distinct non-negative
integers and n1, . . . , nd ≥ 1 distinct positive “odd” integers. Then π̃m1, . . . , π̃mr ,
ζ(n1), . . . , ζ(nd) are linearly independent over K.

Finally, Chang and Yu determined all algebraic relations over K among the
Carlitz zeta values:

Theorem 2.4 ([CY, Corollary 4.6]). Let n1, . . . , nd ≥ 1 be positive “odd” inte-
gers such that ni/nj is not an integral power of p for each i 6= j. Then π̃, ζ(n1),
. . . , ζ(nd) are algebraically independent over K.

Thus all algebraic relations over K among the Carlitz zeta values come from the
Euler-Carlitz relations and the p-th power relations.

For the higher depth case, Thakur showed that any MZVs are non-zero:

Theorem 2.5 ([Th2, Theorem 4]). For any index n, we have ζ(n) 6= 0.

Note that although the same statement in the classical case is trivial, this theo-
rem is non-trivial.

The following theorem gives an affirmative answer to the function field analogue
of Goncharov’s conjecture:

13



14 2. ALGEBRAIC INDEPENDENCE

Theorem 2.6 ([Ch2, Theorem 2.2.1]). We have

Z =
⊕
w≥0

Zw.

Next, we state algebraic independence results of MZVs of higher depth. These
are proved in Chapter 4. We treat the set

{π̃, ζ(nij)|(i, j) ∈ Id} = {π̃} ∪ {ζ(nj, nj+1, . . . , ni)|1 ≤ j ≤ i ≤ d}(2.1)

for a fixed index n = (n1, . . . , nd) such that ni is “odd” for each i.
First, we consider cases where n1 = n2 = · · · = nd.

Theorem 2.7. Let n ≥ 1 be a positive “odd” integer. Then π̃, ζ(n) and ζ(n, n)
are algebraically independent over K, or ζ(n)2−2ζ(n, n) ∈ π̃2n ·K×. If 2n is “odd”,
then we have the former case.

Remark 2.8. If p = 2, then 2n is “odd” if and only if n is “odd”. Thus π̃, ζ(n)
and ζ(n, n) are algebraically independent over K for each positive “odd” integer n.

On the other hand, in characteristic zero, 2n is always even. Thus the second
part of Theorem 2.7 does not occur in this case. In fact, we have the relation
ζZ(n)

2 − 2ζZ(n, n) = ζZ(2n) ∈ π2n ·Q×.

Remark 2.9. If pe divides n1 and n2 and n1/p
e+n2/p

e ≤ q for some e ≥ 0, then
we have the harmonic shuffle product ζ(n1)ζ(n2) = ζ(n1, n2)+ ζ(n2, n1)+ ζ(n1+n2)
([Th2, Theorem 1], or see Remark 1.2). In particular, if 2n = pe(q−1) then we have
the relation ζ(n)2 − 2ζ(n, n) = ζ(2n) ∈ π̃2n ·K× (when p = 2, this follows directly,
but in this case n is “even”). Thus, the latter case of the first part of Theorem
2.7 actually occurs when p ≥ 3. We do not know what happens in the case where
2n = m(q − 1) for general m (including the case where n is “even”).

Since π̃ and ζ(n) are algebraically independent over K for each “odd” integer n
([CY]), we have the following corollary:

Corollary 2.10. Let n ≥ 1 be an “odd” integer. Then any two elements of π̃,
ζ(n) and ζ(n, n) are algebraically independent over K.

Corollary 2.11. We have

dimK Z2 =

{
2 (q > 2)
1 (q = 2).

Proof. Note that by Remark 2.9, we have ζ(1)2 = 2ζ(1, 1) + ζ(2) ∈ Z2 for
each q. If q ≥ 4 then 2 is “odd”. Thus ζ(1) and ζ(1, 1) (and π̃) are algebraically
independent over K by Theorem 2.7. Thus ζ(1)2 and ζ(1, 1) form a basis of Z2. If
q = 3 then 2 is “even”, and hence we have ζ(2) ∈ π̃2 · K×. However π̃ and ζ(1)
are algebraically independent over K ([CY]). Thus ζ(1)2 and ζ(2) form a basis of
Z2. When q = 2, we have the relation ζ(1, 1) = ζ(2)/(θ2 + θ) ([Th1, Theorem
5.10.13]). �

Remark 2.12. If p 6= 2 then ζ(1) and ζ(2) are algebraically independent over K
([CY]). Thus a new result in Corollary 2.11 is the characteristic 2 case with q 6= 2.



1. INDEPENDENCE OF MULTIZETA VALUES 15

Theorem 2.13. Let n ≥ 1 be a positive “odd” integer and set

s := tr.degK K(π̃, ζ(n), ζ(n, n), ζ(n, n, n)).

Then one and only one of the following holds:
(i) s = 4,
(ii) s = 3 and ζ(n)2 − 2ζ(n, n) ∈ π̃2n ·K×,
(iii) s = 3 and ζ(n)3 − 3ζ(n)ζ(n, n) + 3ζ(n, n, n) ∈ π̃3n ·K×.

If 2n is “odd”, then we have (i) or (iii). If 3n is “odd”, then we have (i) or (ii).

Remark 2.14. If p = 3, then 3n is “odd” if and only if n is “odd”. Thus (i) or
(ii) holds for each positive “odd” integer n ≥ 1.

In characteristic zero, 3n is always odd if n is odd. Thus it is conjectured that
the condition (ii) always occurs in this case.

Remark 2.15. In Theorems 2.7 and 2.13, we do not know about the K×-factors
of the relations when MZVs satisfies the relations as in the theorems. In these cases,
we expect that the harmonic product formulas

ζ(n)2 − 2ζ(n, n) = ζ(2n) = π̃2n B2n

Γ2n+1

and

ζ(n)3 − 3ζ(n)ζ(n, n) + 3ζ(n, n, n) = ζ(3n) = π̃3n B3n

Γ3n+1

hold.

We also have the following corollary:

Corollary 2.16. Let n ≥ 1 be a positive “odd” integer. Then ζ(n, n, n) and
any two elements of the set {π̃, ζ(n), ζ(n, n)} are algebraically independent over K.

The algebraic independence of π̃ and ζ(n, n) (resp ζ(n, n, n)) in Corollary 2.10
(resp. Corollary 2.16) also follows from the “Eulerian” criterion ([CPY]) and the
fact that if a multizeta value is not “Eulerian” then it is algebraically independent
from π̃ over K ([Ch2]).

Next, we consider the case where the depth one MZVs do not have relations.

Theorem 2.17. Let d ≥ 1 be a positive integer, and let n1, . . . , nd ≥ 1 be d
distinct positive integers. If ni is “odd” for each i and ni/nj is not an integral power

of p for each i 6= j, then the the following 1 + d(d+1)
2

elements

π̃, ζ(n1), ζ(n2), ζ(n3), ζ(n4), . . . . . . . . . , ζ(nd),
ζ(n1, n2), ζ(n2, n3), ζ(n3, n4), . . . . . . , ζ(nd−1, nd),
ζ(n1, n2, n3), ζ(n2, n3, n4), . . . , ζ(nd−2, nd−1, nd),

...
ζ(n1, n2, . . . , nd−1), ζ(n2, n3, . . . , nd),

ζ(n1, n2, . . . , nd)

are algebraically independent over K.
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Theorem 2.17 provides many MZVs which are algebraically independent over K.
The next theorem gives a positive answer to the function field analogue of a question
in [Andr, p. 231].

Theorem 2.18. For each positive integer d ≥ 1, we set Kd to be the field gen-
erated by the MZVs of depth 1 or d over K. When q 6= 2, we have

tr.degK1
Kd = ∞

for each d ≥ 2.

Proof. Since q 6= 2, the set Z≥1 r ((q − 1)Z≥1 ∪ pZ≥1) is an infinite set. We
denote the elements of this set by n1, n2, n3, . . . . Hence we have

K1 = K(π̃q−1, ζ(n1), ζ(n2), ζ(n3), . . . ).

By Theorem 2.17, the elements ζ(n1, . . . , nd), ζ(nd+1, . . . , n2d), ζ(n2d+1, . . . , n3d), . . .
are algebraically independent over K1. �

Remark 2.19. (1) Similarly, we can prove that for any integers d1, d2, d3, · · · ≥ 2,
there exist indices n1, n2, n3, . . . such that dep(nj) = dj for each j and ζ(n1), ζ(n2),
ζ(n3), . . . are algebraically independent over K1.

(2) When q = 2, Chang ([Ch2]) showed that either ζ(1, 2) or ζ(2, 1) is transcen-
dental over K1. However we do not know whether there exist infinitely many MZVs
which are algebraically independent over K1 when q = 2.

By Theorem 2.17, we may obtain some lower bounds of the dimension of the
vector space over K (or K) spanned by the MZVs of fixed weight. We do not
pursue this problem in this thesis and content ourselves with stating the following
easily obtained lower bounds of the transcendental degree of the field generated by
the MZVs of bounded weights and the dimension of Z3:

Corollary 2.20. Let w ≥ 1 be a positive integer. If there exist positive integers
d1, . . . , dr ≥ 1 and an “odd” positive integer nij ≥ 1 for each 1 ≤ i ≤ r and
1 ≤ j ≤ di such that nij/ni′j′ is not an integral power of p for each (i, j) 6= (i′, j′)
and

∑
j nij ≤ w for each i, then we have

tr.degK K(π̃, ζ(n)|wt(n) ≤ w) ≥ 1 +
r∑
i=1

di(di + 1)

2
.

Corollary 2.21. We have

dimK Z3


= 4 (p 6= 2, 3)
≥ 3 (p = 2 or 3, q 6= 2, 3)
= 3 (q = 3)
≥ 2 (q = 2).

Proof. Note that dimK Z3 ≤ 4. Assume that p 6= 2, 3. By Theorem 2.17, ζ(1),
ζ(2), ζ(3) and ζ(1, 2) are algebraically independent over K. Thus ζ(1)3, ζ(1)ζ(2),
ζ(3) and ζ(1, 2) form a K-basis of Z3. Next assume that q 6= 2. By Corollary
2.16, ζ(1), ζ(1, 1) and ζ(1, 1, 1) are algebraically independent over K. Thus ζ(1)3,
ζ(1)ζ(1, 1) and ζ(1, 1, 1) are linearly independent over K. When q = 3, we have
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ζ(1, 2) = ζ(3)/(θ − θ3) ([Th3, Theorem 5]). When q = 2, since ζ(1) and either
ζ(1, 2) or ζ(2, 1) are algebraically independent over K (see Theorem 2.1 and Remark
2.19), ζ(1)3 and either ζ(1, 2) or ζ(2, 1) are linearly independent over K. �

Next, we consider cases where indices may have p-th power relations. We fix an
index n = (n1, . . . , nd) such that ni’s are “odd” and distinct from each other.

Definition 2.22. We say that elements (i, j), (k, `) ∈ Id are equivalent and
denote by (i, j) ∼ (k, `) if dep(i, j) = dep(k, `) and there exists an integer e ∈ Z
such that nij = penk` := (pen`, . . . , p

enk−1). When (i, j) ∼ (k, `) and dep(i, j) =
dep(k, `) = 1, we write j ∼ ` instead.

Of course, this equivalence relation depends on the fixed index n. When (i, j)
and (k, `) are equivalent, we have the p-th power relation ζ(nij) = ζ(nk`)

pe where
e ∈ Z is an integer such that nij = penk`. We expect that when n satisfies some
“good” condition, the p-th power relations are the only relations among the elements
of the set (2.1). This means that the equality

tr.degK K(π̃, ζ(nij)|(i, j) ∈ Id) = 1 + #(Id/ ∼)(2.2)

holds for certain n. The equality (2.2) does not hold in general. For example, set
n = (n1, n2, p

en2, p
en1, n1 + n2) for n1 + n2 ≤ q and e ≥ 1. Then the harmonic

product formula for ζ(n1)ζ(n2) holds and we have the relation

(ζ(n1)ζ(n2)− ζ(n1, n2)− ζ(n1 + n2))
pe = ζ(pen2, p

en1).

We show that the equality (2.2) holds in some cases.

Theorem 2.23. Let n = (n1, . . . , nd) be an index such that ni’s are “odd” and
distinct from each other. If there exists exactly one pair j1 6= j2 such that j1 ∼ j2 in
Id, then the equality (2.2) holds. This means that we have

tr.degK K(π̃, ζ(nij)|(i, j) ∈ Id) = #Id =
d(d+ 1)

2
.

Theorem 2.24. If d ≤ 3, then the equality (2.2) holds.

2. Independence of values of Carlitz multiple polylogarithms

The following lemma is used as a criterion whether values of CMPLs satisfy
assumptions of our theorems.

Lemma 2.25. Let m ≥ 1 be a positive “odd” integer, n = (n1, . . . , nd) an index
and α = (α1, . . . , αd) ∈ (K×)d a d-tuple of non-zero rational points such that |αi|∞ <

|θ|
niq

q−1
∞ for each i. Then π̃m and Lin(α) are linearly independent over K∞.

Proof. We have π̃m 6∈ K∞ and Lin(α) ∈ K×
∞ for such m, n and α (see Theorem

2.28). �
First we state algebraic independence results in depth one cases. Papanikolas

(n = 1), Chang and Yu (n ≥ 1) proved the following theorem. This gives a criterion
of the algebraic independence of the values of CMPLs at algebraic points of depth
one.
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Theorem 2.26 ([P, Theorem 6.3.2], [CY, Theorem 3.1]). Let n ≥ 1 be a positive

integer, and let α1, . . . , αr ∈ K be algebraic points such that |αj|∞ < |θ|
nq
q−1
∞ for

each j. If π̃n,Lin(α1), . . . ,Lin(αr) are linearly independent over K, then they are
algebraically independent over K.

By Lemma 2.25 and Theorem 2.26, π̃ and Lin(α) are algebraically independent
over K if n ≥ 1 is a positive “odd” integer and α ∈ K× is a non-zero rational point

such that |α|∞ < |θ|
niq

q−1
∞ .

Chang and Yu studied the algebraic independence of values of CMPLs of depth
one when weights vary.

Theorem 2.27 ([CY, Theorem 4.5]). Let n1, . . . , nd ≥ 1 be positive integers
such that ni/nj is not an integral power of p for each i 6= j. For each i, we

take algebraic points αi1, . . . , αiri ∈ K with |αij|∞ < |θ|
niq

q−1
∞ for j = 1, . . . , ri. If

π̃ni ,Lini
(αi1), . . . ,Lini

(αiri) are linearly independent over K for each i, then the

1 +
∑d

i=1 ri elements {π̃,Lini
(αij)|1 ≤ i ≤ d, 1 ≤ j ≤ ri} are algebraically in-

dependent over K.

For the higher depth case, Chang showed that any values of the CMPLs at
non-trivial points are non-zero:

Theorem 2.28 ([Ch2, Proposition 6.1.1]). For any index n = (n1, . . . , nd) and

a d-tuple of non-zero points α = (α1, . . . , αd) ∈ (C×
∞)d such that |αi|∞ < |θ|

niq

q−1
∞ , we

have Lin(α) 6= 0.

The following theorem gives an affirmative answer to the CMPLs analogue of
Goncharov’s conjecture:

Theorem 2.29 ([Ch2, Theorem 6.4.3]). Values of CMPLs at non-trivial alge-
braic points of different weights are linearly independent over K.

Next, we state algebraic independence results of the values of CMPLs at algebraic
points of higher depth. These are proved in Chapter 4. We treat the set

{π̃,Linij
(αij)|(i, j) ∈ Id} = {π̃} ∪ {Linj ,nj+1,...,ni

(αj, αj+1, . . . , αi)|1 ≤ j ≤ i ≤ d}
for a fixed index n = (n1, . . . , nd) and a d-tuple of algebraic points α = (α1, . . . , αd) ∈
K
d
such that |αi|∞ < |θ|

niq

q−1
∞ for each i.

First, we consider cases where n1 = n2 = · · · = nd and α1 = α2 = · · · = αd.

Theorem 2.30. Let n ≥ 1 be a positive integer and α ∈ K an algebraic point

such that |α|∞ < |θ|
nq
q−1
∞ . Assume that π̃n and Lin(α) are linearly independent over K.

Then π̃, Lin(α) and Lin,n(α, α) are algebraically independent over K, or Lin(α)
2 −

2 Lin,n(α, α) = Li2n(α
2) ∈ π̃2n · K×. If π̃2n and Li2n(α

2) are linearly independent
over K, then we have the former case.

Note that by Lemma 2.25, the assumption of Theorem 2.30 is satisfied if n is
“odd” and α ∈ K×. Similarly, the assumption of the second part of Theorem 2.30
is satisfied if 2n is “odd” and α2 ∈ K×.
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Theorem 2.31. Let n ≥ 1 be a positive integer and α ∈ K an algebraic point

such that |α|∞ < |θ|
nq
q−1
∞ . Assume that π̃n and Lin(α) are linearly independent over

K. Set
s := tr.degK K(π̃,Lin(α),Lin,n(α, α),Lin,n,n(α, α, α)).

Then one and only one of the following holds:
(i) s = 4,
(ii) s = 3 and Lin(α)

2 − 2 Lin,n(α, α) = Li2n(α
2) ∈ π̃2n ·K×,

(iii) s = 3 and Lin(α)
3−3 Lin(α) Lin,n(α, α)+3Lin,n,n(α, α, α) = Li3n(α

3) ∈
π̃3n ·K×,

(iv) s = 2 and the above two relations are satisfied.
If π̃2n and Li2n(α

2) are linearly independent over K, then we have (i) or (iii). If
π̃3n and Li3n(α

3) are linearly independent over K, then we have (i) or (ii).

Note that the assumption of the second (resp. third) part of Theorem 2.31 is
satisfied if 2n (resp. 3n) is “odd” and α2 ∈ K× (resp. α3 ∈ K×).

We have the following corollary:

Corollary 2.32. Let n ≥ 1 be a positive “odd” integer and α ∈ K× a non-zero

rational point such that |α|∞ < |θ|
nq
q−1
∞ . Then Lin,n,n(α, α, α) and any two elements

of the set {π̃,Lin(α),Lin,n(α, α)} are algebraically independent over K.

The next theorem gives many values of CMPLs of higher depth which are alge-
braically independent over K.

Theorem 2.33. Let n1, . . . , nd ≥ 1 be positive integers. For each i, we take αi ∈
K

×
such that |αi|∞ < |θ|

niq

q−1
∞ for each i. If π̃,Lin1(α1), . . . ,Lind

(αd) are algebraically
independent over K, then the cardinality of the set

{π} ∪ {Linj ,nj+1,...,ni
(αj, αj+1, . . . , αi)|1 ≤ j ≤ i ≤ d}

is 1 + d(d+1)
2

and all elements of this set are algebraically independent over K.

By Lemma 2.25 and Theorem 2.27, the assumption of Theorem 2.33 is satisfied
when ni is “odd” and αi ∈ K× for each i and ni/nj is not an integral power of p for
each i 6= j.





CHAPTER 3

Review of pre-t-motives

In this chapter, we review the notions of pre-t-motives and Papanikolas’ theory
for pre-t-motives. For more details, see [P]. A pre-t-motive is an étale ϕ-module
over (K(t), σ); this means a finite-dimensional K(t)-vector space M equipped with
a σ-semilinear bijective map ϕ : M → M . A morphism of pre-t-motives is a K(t)-
linear map which is compatible with the ϕ’s. A tensor product of two pre-t-motives
are defined naturally. For any pre-t-motive M , the Betti realization of M is defined
by

MB :=
(
L⊗K(t) M

)σ⊗ϕ=1

,

where (−)σ⊗ϕ=1 is the σ⊗ϕ-fixed part. A pre-t-motiveM is called rigid analytically
trivial if the natural injection L ⊗Fq(t) M

B ↪→ L ⊗K(t) M is an isomorphism. The
category of rigid analytically trivial pre-t-motives forms a neutral Tannakian cate-
gory over Fq(t) with fiber functorM 7→MB. For any suchM , we denote by GM the
fundamental group of the Tannakian subcategory generated by M with respect to
the Betti realization. By definition, GM is an Fq(t)-subgroup scheme of GL(MB).

Let Φ ∈ GLr(K(t)) be a matrix. We consider the system of Frobenius difference
equations

Ψ(−1) = ΦΨ(3.1)

with solution entries of Ψ = (Ψij) in L. The matrix Φ defines the pre-t-motive
MΦ := K(t)r with

ϕ(x1, . . . , xr) = (x
(−1)
1 , . . . , x(−1)

r )Φ.

The pre-t-motiveMΦ is rigid analytically trivial if and only if the system of Frobenius
difference equations (3.1) has a solution matrix Ψ in GLr(L), and in this case Ψ−1m
forms an Fq(t)-basis of (MΦ)

B, where m is the standard basis of K(t)r on which the
action of ϕ is presented as Φ. Such matrix Ψ is called a rigid analytic trivialization
of Φ, and the values Ψij(θ) of its components at t = θ (if they converge) are called

periods of MΦ. For such Ψ, we set Ψ̃ := Ψ−1
1 Ψ2 ∈ GLr(L⊗K(t) L), where Ψ1 (resp.

Ψ2) is the matrix in GLr(L⊗K(t)L) such that (Ψ1)ij = Ψij⊗1 (resp. (Ψ2)ij = 1⊗Ψij).

Let X = (Xij) be the r×r matrix of independent variables Xij. We define an Fq(t)-
algebra homomorphism ν by

ν : Fq(t)[X, 1/ detX] → L⊗K(t) L; Xij 7→ Ψ̃ij

and set

GΨ := Spec(Fq(t)[X, 1/ detX]/ ker ν) ⊂ GLr/Fq(t) .

21
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For each Fq(t)-algebra R, we have the map given by

GΨ(R) → GMΦ
(R); g 7→ (f ·Ψ−1m 7→ fg−1 ·Ψ−1m)(3.2)

where f runs over all elements of Mat1×r(R).

Theorem 3.1 ([P, Theorems 4.3.1, 4.5.10, 5.2.2]). Let Φ and Ψ be matrices
satisfying (3.1), and let GMΦ

and GΨ be as above.
(1) The scheme GΨ is a smooth subgroup scheme of GLr/Fq(t) and the above map

GΨ → GMΦ
is an isomorphism of group schemes over Fq(t).

(2) Let K(t)(Ψ) be the field generated by the entries of Ψ over K(t). Then we
have

dimGΨ = tr.degK(t)K(t)(Ψ).

(3) Assume that Φ ∈ Matr(K[t]), Ψ ∈ GLr(T) ∩Matr(E), and detΦ = c(t− θ)d

for some c ∈ K
×
and d ≥ 0. Let K(Ψ(θ)) be the field generated by the entries of

Ψ(θ) over K. Then we have

tr.degK(t)K(t)(Ψ) = tr.degK K(Ψ(θ)).

Remark 3.2. The result (3) in Theorem 3.1 is rooted in the deep result in
[ABP], which is addressed as ABP-criterion. However, the restriction of the con-
dition on detΦ originated from Anderson t-motives but such restriction indeed can
be relaxed (see [Ch1]). But for our purpose, the above is sufficient and so we do
not state the refined version given in [Ch1].

Remark 3.3. Let v ∈ Fq[t] be an irreducible monic polynomial. Then we can
consider v-adic realizations and v-adic periods of t-motives. In [M1] and [M2], we
proved a v-adic analogue of (1) and (2) of Theorem 3.1. However, we do not know
whether a v-adic analogue of ABP-criterion holds.

Example 3.4. The Carlitz pre-t-motive C is the pre-t-motive defined by the
1 × 1-matrix

[
t− θ

]
. Since Ω(−1) = (t − θ)Ω, the Carlitz pre-t-motive is rigid

analytically trivial. Since Ω is transcendental over K(t), we have dimG[Ω] = 1, and
thus GC = G[Ω] = Gm.

Example 3.5. Let n = (n1, . . . , nd) be an index and u = (u1, . . . , ud) ∈ (K[t])d

be a d-tuple of polynomials such that ||ui||∞ < |θ|
niq

q−1
∞ for each i. We consider (d +

1)× (d+ 1)-matrices

Φ :=


(t− θ)n1+···+nd 0 0 · · · 0

u
(−1)
1 (t− θ)n1+···+nd (t− θ)n2+···+nd 0 · · · 0

0 u
(−1)
2 (t− θ)n2+···+nd

. . .
...

...
. . . (t− θ)nd 0

0 · · · 0 u
(−1)
d (t− θ)nd 1


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and

Ψ :=


Ωn1+···+nd 0 0 · · · 0

Ωn1+···+ndLu21,n21
Ωn2+···+nd 0 · · · 0

Ωn1+···+ndLu31,n31
Ωn2+···+ndLu32,n32

. . .
...

...
...

. . . Ωnd 0
Ωn1+···+ndLud+1,1,nd+1,1

Ωn2+···+ndLud+1,2,nd+1,2
· · · ΩndLud+1,d,nd+1,d

1

 ,
where the notations nij and uij are defined in Definition 1.1. These satisfy the
Frobenius difference equations (3.1). Hence Ψ is a rigid analytic trivialization of Φ.
Let M be the pre-t-motive defined by Φ. By Theorem 3.1, we have an isomorphism
GΨ → GM and

tr.degK K(π̃, Luij ,nij
(θ)|(i, j) ∈ Id) = dimGΨ.

Thus when u = H(n) (resp. u = α ∈ K
d
with |αi|∞ < |θ|

niq

q−1
∞ for each i), the

multizeta values ζ(nij) (resp. the Carlitz multiple polylogarithms Linij
(αij)) appear

as periods of the pre-t-motiveM . By the definition of GΨ, we also have the inclusion

GΨ ⊂



an1+···+nd

x21 an2+···+nd

...
. . . . . .

xd+1,1 · · · xd+1,d 1


 .

We can calculate Ψ̃ explicitly as

Ψ̃ij = (Ω−1 ⊗ Ω)ni+···+nd

i∑
s=j

i−s∑
r=0

(−1)r
∑

s=i0<i1<···
<ir−1<ir=i

Li1i0 · · ·Lirir−1 ⊗ Ωnj+···+ni−1Lsj

for each (i, j) ∈ Id, where we write Lk` := Luk`,nk`
.





CHAPTER 4

Proofs

In this chapter, we prove our results in Chapter2. For square matrices A and B,
we denote by A⊕B the diagonal block matrix made of A and B. We use the letters
a and xij’s as coordinate variables of algebraic groups. We use also these variables
to define various algebraic groups. For example, we denote by{[

a 0
x 1

]}
the subgroup of GL2 over Fq(t) whose valued points are of the form[

a 0
x 1

]
.

To prove our theorems, we use the following lemma. This lemma is clear, but very
useful.

Lemma 4.1. Let V ⊂ Ga
r be an algebraic subgroup of dimension zero. Let

m1, . . . ,mr ∈ Z be non-zero integers. Assume that V is stable under the Gm-action
on Ga

r defined by

a.(x1, . . . , xr) = (am1x1, . . . , a
mrxr) (a ∈ Gm, (xi) ∈ Ga

r).

Then V (Fq(t)) is trivial.

1. Depth one case

We state several algebraic independence results concerning the case of depth one.
Papanikolas, Chang and Yu proved the following theorem which states a criterion of
the algebraic independence of MZVs and CMPLs at algebraic points of depth one.

Note that they discussed only the case where uj = αj ∈ K with |αj|∞ < |θ|
nq
q−1
∞ (see

Theorem 2.26), but their arguments work also for any uj ∈ K[t] with ||uj||∞ < |θ|
nq
q−1
∞ .

Theorem 4.2 ([P, Theorem 6.3.2], [CY, Theorem 3.1]). Let n ≥ 1 be a pos-

itive integer and u1, . . . , ur ∈ K[t] polynomials with ||uj||∞ < |θ|
nq
q−1
∞ for each j. If

π̃n, Lu1,n(θ), . . . , Lur,n(θ) are linearly independent over K, then they are algebraically
independent over K.

Thus π̃ and ζ(n) (or Lin(α)) are algebraically independent over K for each “odd”

integer n ≥ 1 and α ∈ K× with |α|∞ < |θ|
nq
q−1
∞ , because π̃n 6∈ K∞ and ζ(n),Lin(α) ∈

K×
∞ for such n and α (see also Lemma 2.25).

25
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Theorem 4.3. Let n1, . . . , nd ≥ 1 be positive integers such that ni/nj is not an
integral power of p for each i 6= j. For each i, we take polynomials ui1, . . . , uiri ∈ K[t]

with ||uij||∞ < |θ|
niq

q−1
∞ for j = 1, . . . , ri. If π̃ni , Lui1,ni

(θ), . . . , Luiri ,ni
(θ) are linearly

independent over K for each i, then the 1 +
∑d

i=1 ri elements {π̃, Luij ,ni
(θ)|1 ≤ i ≤

d, 1 ≤ j ≤ ri} are algebraically independent over K.

This is almost proved in [CY]. In [CY], they treated some special case, but their

proof works also for any ni not divisible by p and any αij ∈ K[t] with ||αij||∞ < |θ|
niq

q−1
∞ .

By a slight modification of their proof, we can weaken the condition on ni’s as in
our statement. Note that when αij ∈ K or αij = Hni−1, we can reduce Theorem 4.3
to the case where ni is not divisible by p, and we do not need the following proof in
such cases.

In our proofs, our purpose is to show that the dimension of the algebraic group in
question is maximal as large as possible, and so we always work on the Fq(t)-valued
points without studying the reduced/non-reduced structures, where Fq(t) is a fixed
algebraic closure of Fq(t). So for an algebraic group G over Fq(t), when it is clear

from the context, without confusion we still denote by G the Fq(t)-valued points of
G.

Proof of Theorem 4.3. We set I := {(i, j) ∈ Z2|1 ≤ i ≤ d, 1 ≤ j ≤ ri}. In
this proof, (i, j) and (k, `) are always assumed to be elements of I. We define an
order on I by the lexicographic order; this means (i, j) ≤ (k, `) if and only if i = k
and j ≤ `, or i < k. For (k, `) ∈ I, we define 2× 2-matrices

Φ[k, `] :=

[
(t− θ)nk 0

α
(−1)
k` (t− θ)nk 1

]
and Ψ[k, `] :=

[
Ωnk 0

ΩnkLαk`,nk
1

]
.

Then they satisfy the Frobenius difference equations Ψ[k, `](−1) = Φ[k, `]Ψ[k, `].
Let M [k, `] be the pre-t-motive defined by Φ[k, `] and G(k, `) (resp. Gk(`)) the
fundamental group of the pre-t-motive

M(k, `) := C ⊕
⊕

(i,j)≤(k,`)

M [i, j]

(
resp. Mk(`) := C ⊕

⊕
j≤`

M [k, j]

)
.

We identify G(k, `) (resp. Gk(`)) with the algebraic group defined by[
Ω
]
⊕

⊕
(i,j)≤(k,`)

Ψ[i, j]

(
resp.

[
Ω
]
⊕
⊕
j≤`

Ψ[k, j]

)
as in Theorem 3.1. Then we have the inclusion (resp. equality)

G(k, `) ⊂

[a]⊕ ⊕
(i,j)≤(k,`)

[
ani 0
xij 1

]
(
resp. Gk(`) =

{[
a
]
⊕
⊕
j≤`

[
ank 0
xkj 1

]})
for each (k, `). By Theorem 3.1, it suffices to show that the above inclusion is
actually an equality for each (k, `). We prove this by induction on (k, `) ∈ I with
respect to the total order “≤”.



1. DEPTH ONE CASE 27

By the assumption, this is true for (1, 1) ≤ (k, `) ≤ (1, r1). Let (k, `) ≥ (2, 1) and
assume that the inclusion is an equality for the greatest element (k′, `′) of {(i, j) ∈
I|(i, j) < (k, `)}. Thus (k′, `′) = (k, `−1) if ` 6= 1 and (k′, `′) = (k−1, rk−1) if ` = 1.
By definition, M(k′, `′) and Mk(`) are subobjects of M(k, `) and C is a subobject
of M(k, `), M(k′, `′) and Mk(`). By the Tannakian duality, we have surjections
ψ : G(k, `) → G(k′, `′), ψk : G(k, `) → Gk(`), π : G(k, `) → Gm, π

′ : G(k′, `′) → Gm

and π′′ : Gk(`) → Gm, where we identify GC with Gm. The projections π, π′ and
π′′ map the matrices of the above forms to a and ψ (resp. ψk) maps them to the
same matrices with the (k, `)-th component matrices (resp. all (i, j)-th component
matrices (i 6= k)) removed. We set V := Ker π, V ′ := Ker π′ and V ′′ := Ker π′′ to be
the unipotent radicals of G(k, `), G(k′, `′) and Gk(`). Then we have the following
diagram

1 // V ′′ // Gk(`)
π′′

// Gm
// 1

1 // V //

ψ|V
��

ψk|V

OO

G(k, `)
π //

ψ
����

ψk

OOOO

Gm
// 1

1 // V ′ // G(k′, `′)
π′

// Gm
// 1

which is commutative and whose rows are exact.
It is clear that ψ|V is surjective. Note that the coordinate variable xk` of G(k, `)

is the only coordinate variable which does not appear as a coordinate variable of
G(k′, `′). Thus we know that dimG(k′, `′) ≤ dimG(k, `) ≤ dimG(k′, `′) + 1. This
also follows from Theorem 3.1 (2). It suffices to show that the second inequality is
an equality.

Now, assume that dimG(k, `) = dimG(k′, `′). Then dimKer(ψ|V ) = 0. We
identify V ⊂

∏
(i,j)≤(k,`)Ga, V

′ =
∏

(i,j)<(k,`)Ga and V ′′ =
∏

j≤`Ga by means of the

coordinates xij. The Gm-action on V (resp. V ′, resp. V ′′) defined by a.X := ã−1Xã,
where ã ∈ G(k, `) (resp. G(k′, `′), resp. Gk(`)) is a lift of a ∈ Gm, is described as
xij 7→ anixij on each coordinate. By Lemma 4.1 we have Ker(ψ|V ) = 1. Thus the
morphism ψ|V is bijective (but not necessary an isomorphism of varieties) and we
have the surjective map

ψk|V ◦ ψ|−1
V : V ′ V

∼oo // // V ′′.

For each (i, j) 6= (k, `), we set Vij (resp. V ′
ij) to be the subvariety of V (resp.

V ′) defined by xi′j′ = 0 for each (i′, j′) 6= (i, j), (k, `). Then ψ|Vij : Vij → V ′
ij = Ga

is a bijective Gm-homomorphism. Thus we have dimVij = 1. Hence the algebraic

set1 Vij is defined by a separable polynomial of the form xp
e

k` −
∑m

n=0 bnx
pn

ij for some

e,m ≥ 0 and bn ∈ Fq(t) (See [Co, Corollary 1.8]). Now we take i 6= k and assume
that the Gm-homomorphism ψk|Vij ◦ψ|−1

Vij
is non-zero. Then we can take bm 6= 0 and

we have (
∑

n bn(a
nixij)

pn)p
−e

= ank(
∑

n bnx
pn

ij )
p−e

for each a ∈ Gm. By comparing

1More precisely, the smooth algebraic group (Vij ⊗ Fq(t))red is defined by such a polynomial.
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the coefficients of xp
m−e

ij , we have nip
m−e = nk, which is a contradiction. Thus we

conclude that ψd|Vij ◦ψ|−1
Vij

= 0. Therefore we have ψk|V (ψ|−1
V (Ga

`−1)) = V ′′, whence

a contradiction since dimV ′′ = `. �

2. Proofs of Theorems 2.7, 2.13, 2.30 and 2.31

Let F be a fixed algebraic closure of F := Fq(t) and F sep the separable closure
of F in F . For a scheme S over F , we write SF for its base extension to F . The
following lemma is proved by using the same argument as in [Ch2, Lemma 5.3.1]
and we omit the proof.

Lemma 4.4. Let n = (n1, . . . , nd) be an index and u = (u1, . . . , ud) ∈ (K[t])d a

d-tuple of polynomials such that ||ui||∞ < |θ|
niq

q−1
∞ for each i. For each non-negative

integer N ≥ 0, we have

(Ωn1+···+ndLu,n)(θ
qN ) =

(
Lu,n(θ)

π̃n1+···+nd

)qN
.

Theorem 4.5. Let n ≥ 1 be a positive integer and u ∈ K[t] a polynomial such

that ||u||∞ < |θ|
nq
q−1
∞ . Then the following conditions are equivalent:

(1) π̃ and Lu,n(θ) are algebraically independent over K,
(2) Ω and Lu,n are algebraically independent over K(t),
(3) π̃n and Lu,n(θ) are linearly independent over K,
(4) ΩnLu,n − c1 and Ωn are linearly independent over K(t) for each c1 ∈ Fq(t).

Proof. Let L1 := Lu,n. We set

Φ1 :=

[
(t− θ)n

u(−1)(t− θ)n 1

]
∈ GL2(K(t)) and Ψ1 :=

[
Ωn

ΩnL1 1

]
∈ GL2(L).

Let M1 be the pre-t-motive defined by Φ1 and G1 its fundamental group. Then the
n-th tensor power C⊗n of the Carlitz pre-t-motive (Example 3.4) is a subobject of
M1 by

C⊗n ↪→M1; x 7→ (x, 0).

By Tannakian duality and Theorem 3.1, we have a diagram of smooth group schemes
over F

G1
π1 // // GC⊗n

GΨ1

'

OO

GΩn

'

OO

Gm .

In the following, we identify the upper group schemes with the lower group schemes
in the above diagram. At first, we describe the morphism π1 in the above diagram
explicitly. By definition, we have

Ψ̃1 =

[
Ω−n ⊗ Ωn

−L1 ⊗ Ωn + 1⊗ ΩnL1 1

]
.
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Thus we have the inclusion

G1
∼= GΨ1 ⊂ G1 :=

{[
a
x 1

]}
⊂ GL2 .

By using the above identification, we can write

π1 : G1 � Gm;

[
a
x 1

]
7→ a.

This follows from the description of the map (3.2). The arguments are the same as
in [P, §6.2.2], [CY, §4.3] and [CPY, Remark 2.3.2]. We set V1 := Ker π1 to be the
unipotent radical of G1. Then we have

V1 ⊂ V1 :=

{[
1
x 1

]}
and obtain the following diagram

1 // V1
// G1

// Gm
// 1

1 // V1
?�

OO

// G1

?�

OO

π1 // Gm
// 1

which is commutative and whose rows are exact.
The group scheme V1 is smooth over F . Indeed, take a0 ∈ Gm(F )rGm(Fq) and

its lift ã0 ∈ G1(F ). Let T ⊂ G1,F be the Zariski closure of the group generated
by ã0. Then T is a rank one torus and isomorphic to Gm,F via π1,F . In particular,
Lie(π1,F ) : Lie(G1,F ) → Lie(Gm,F ) is nonzero. Since G1,F and Gm,F are smooth over

F , we have dimV1,F = dimLie(V1,F ), and hence V1 is smooth over F .

In view of the above short exact sequence, we let Gm(F ) act on V1(F ) by a.X :=
ã−1Xã for a ∈ Gm(F ) and X ∈ V1(F ), where ã ∈ G1(F ) is a lift of a. In term of
matrices, this action is given by

a.

[
1
x 1

]
=

[
1
ax 1

]
.

By Theorem 3.1, we have

tr.degK K(π̃, L1(θ)) = tr.degK(t)K(t)(Ω, L1) = dimG1

and this value is one or two. Thus we have

(3) ⇐ (1) ⇔ (2) ⇒ (4).

Assume that the condition (4) does not hold. Then there exists c1 ∈ Fq(t) and
f ∈ K(t) such that

ΩnL1 − c1 = fΩn.

For some positive integer N ≥ 1, the rational function f has no pole at t = θN .
Then we have (

L1(θ)

π̃n

)qN
− c1(θ)

qN = 0

by Lemma 4.4. Thus the condition (3) does not hold. This means that (3) ⇒ (4).
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From now on, we suppose that the condition (1) does not hold. Thus we have
dimG1 = 1 and hence dimV1 = 0. By Lemma 4.1, we conclude that V1 = {1}. Next,
we determine the group scheme G1. Fix an element a0 ∈ Gm(F ) which has infinite
order and set a0 ∈ Gm(F ) to be the geometric point above a0. Since the geometric
fiber G1,a0 of π1 over a0 is a V1,F -torsor, it is isomorphic to V1,F which is smooth over

F . Thus the fiber G1,a0 is smooth over F . By [L, Chapter 3, Proposition 2.20], we

have G1,a0(F
sep) 6= ∅, and hence we can take a lift ã0 =

[
a0
x0 1

]
of a0 in G1(F

sep).

Then for each integer r ∈ Z, we have

ã0
r =

[
ar0

x0
1−a0 (1− ar0) 1

]
.

Since a0 has infinite order, we have{[
a

c1(1− a) 1

]}
⊂ G1,F ,

where c1 :=
x0

1−a0 ∈ F sep. Since G1,F is a one-dimensional irreducible reduced group
scheme, we conclude that the above inclusion is actually an equality.

We set a polynomial

Q := X21 − c1(1−X11) ∈ F sep[X11, X21] ⊂ F sep[X11, . . . , X22, 1/ detX].

Then G1,F = SpecF [X11, X21, X
−1
11 ]/(Q). Since G1 is defined over F , the ideal

(Q) is stable under the action of Gal(F sep/F ) = Aut(F/F ). Therefore for each
σ ∈ Gal(F sep/F ), we can write σ(Q) = PσQ for some Pσ ∈ F [X11, X21, X

−1
11 ]. By

comparing the degree of each variables, Pσ must be a constant. Comparing the both
sides again, we have Pσ = 1 and σ(c1) = c1 for each σ ∈ Gal(F sep/F ). Hence we
have c1 ∈ F and Q ∈ F [X, 1/ detX]. Since Q ≡ 0 on the reduced scheme G1,F , we

have Q(Ψ̃1) = 0. By the definition of Ψ̃1, this is equivalent to the equality

(ΩnL1 − c1)⊗ Ωn = Ωn ⊗ (ΩnL1 − c1)

in L⊗K(t) L. Thus the condition (4) does not hold. This means (4) ⇒ (1). �

Remark 4.6. By the proof of Theorem 4.5, when the equivalent conditions are
satisfied, we have

G1 =

{[
a
x 1

]}
.

When the equivalent conditions are not satisfied, we have

G1 =

{[
a

c1(1− a) 1

]}
for some c1 ∈ Fq(t). Such c1 gives the linear dependence of Ωn and ΩnLu,n− c1 over
K(t), and c1 is uniquely determined by

c1(θ) =
Lu,n(θ)

π̃n
.
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Theorem 4.7. Let n ≥ 1 be a positive integer and u ∈ K[t] a polynomial

such that ||u||∞ < |θ|
nq
q−1
∞ . Assume that the equivalent conditions of Theorem 4.5 are

satisfied. Then the following conditions are equivalent:
(1) π̃, Lu,n(θ) and Lu,u,n,n(θ) are algebraically independent over K,
(2) Ω, Lu,n and Lu,u,n,n are algebraically independent over K(t),
(3) π̃2n and Lu,n(θ)

2 − 2Lu,u,n,n(θ) are linearly independent over K,
(4) Ω2nL2

u,n − 2Ω2nLu,u,n,n − c2 and Ω2n are linearly independent over K(t)
for each c2 ∈ Fq(t).

Remark 4.8. The equivalent conditions of Theorem 4.7 are satisfied if p = 2.
For example, we can easily check the condition (3).

Proof of Theorem 4.7. We continue to use the notations in the proof of
Theorem 4.5. Let L2 := Lu,u,n,n. We set

Φ2 :=

 (t− θ)2n

u(−1)(t− θ)2n (t− θ)n

u(−1)(t− θ)n 1

 ∈ GL3(K(t))

and

Ψ2 :=

 Ω2n

Ω2nL1 Ωn

Ω2nL2 ΩnL1 1

 ∈ GL3(L),

Let M2 be the pre-t-motive defined by Φ2 and G2 its fundamental group. Then we
have a homomorphism of pre-t-motives

M2 �M1; (x1, x2, x3) 7→ (x2, x3).

By Tannakian duality and Theorem 3.1, we have a diagram of smooth group schemes
over F

G2

ψ12 // // G1
π1 // // GC⊗n

GΨ2

'

OO

GΨ1

'

OO

GΩn

'

OO

Gm .

In the following, we identify the upper group schemes with the lower group schemes
in the above diagram. At first, we describe the morphism ψ12 in the above diagram
explicitly. By Remark 4.6, we have

G1 =

{[
a
x 1

]}
.

By the definition of Ψ̃2 = ((Ψ̃2)ij), we have the relations

(Ψ̃2)11 = (Ψ̃2)
2
22, (Ψ̃2)22 = Ω−n ⊗ Ωn, (Ψ̃2)33 = 1,

(Ψ̃2)21 = (Ψ̃2)22(Ψ̃2)32, (Ψ̃2)32 = 1⊗ ΩnL1 − L1 ⊗ Ωn,

(Ψ̃2)31 = (L2
1 − L2)⊗ Ω2n − L1 ⊗ Ω2nL1 + 1⊗ Ω2nL2,
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and (Ψ̃2)ij = 0 if i < j. Thus we have the inclusion

G2
∼= GΨ2 ⊂ G2 :=


a2ax a
y x 1

 ⊂ GL3 .

By using the above identifications, we can write

ψ12 : G2 � G1;

a2ax a
y x 1

 7→
[
a
x 1

]
as in the proof of Theorem 4.5. We set π2 := π1 ◦ ψ12 and V2 := Ker π2 to be the
unipotent radical of G2. Then we have

V2 ⊂ V2 :=


1x 1
y x 1


and obtain the following diagram

1 // V2
// G2

// Gm
// 1

1 // V2
?�

OO

//

ψ12|V2
��

G2

?�

OO

π2 //

ψ12
����

Gm
// 1

1 // V1 // G1
π1 // Gm

// 1

which is commutative and whose rows are exact. Clearly ψ12|V2 is surjective. The
group scheme V2 is smooth over F as in the proof of Theorem 4.5. A Gm(F )-action
on V2(F ) is given by

a.

1x 1
y x 1

 =

 1
ax 1
a2y ax 1

 .
By Theorem 3.1, we have

tr.degK K(π̃, L1(θ), L2(θ)) = tr.degK(t)K(t)(Ω, L1, L2) = dimG2

and this value is two or three. Thus we have

(3) ⇐ (1) ⇔ (2) ⇒ (4)

and (3) ⇒ (4) as in the proof of Theorem 4.5.
From now on, we suppose that the condition (1) does not hold. We have

dimG2 = 2 and hence dimV2 = 1. Then Ker(ψ12|V2 : V2(F ) → V1(F )) = V2(F ) ∩
V2,0(F ) has dimension zero, where we set

V2,0 :=


1 1
y 1

 .
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Since V2(F )∩ V2,0(F ) is closed under the Gm(F )-action on V2(F ), we conclude that

V2(F ) ∩ V2,0(F ) = {1} by Lemma 4.1. For a matrix

X =

1x 1
y x 1

 ∈ V2(F ),

we have

Xr =

 1
rx 1

(r−1)r
2

x2 + ry rx 1

 ∈ V2(F )

for each integer r ∈ Z. Thus if r is not divisible by p, we obtain

V2(F ) 3 (r.X)X−r =

 1
0 1

r(r−1)
2

(2y − x2) 0 1

 ∈ V2,0(F ).

Since V2(F ) ∩ V2,0(F ) = {1}, we have the relation

r − 1

2
(2y − x2) = 0.

We take r 6≡ 1 mod 2p. Then we have the relation

2y − x2 = 0.

When p = 2, we have x = 0. This contradicts the surjectivity of ψ12|V2 . Thus when
p = 2, we always have dimG2 = 3. In the following, we assume that p 6= 2. Since
dimV2 = 1, we conclude that

V2 =


 1
x 1
x2

2
x 1

 .

Next, we determine the group scheme G2. Fix an element a0 ∈ Gm(F ) which
has infinite order. As in the proof of Theorem 4.5, the fiber G2,a0 is smooth over
F and we have G2,a0(F

sep) 6= ∅. Let ã0 be a lift of a0 in G2(F
sep). Since G2(F

sep)
contains V2(F

sep), we can eliminate the x-coordinate of ã0. Thus we may assume
that

ã0 =

a20 a0
y0 1

 ∈ G2(F
sep).

Then for each integer r ∈ Z, we have

ã0
r =

 a2r0
ar0

y0
1−a20

(1− a2r0 ) 1

 ∈ G2(F
sep).

Since a0 has infinite order, we have
 a2

a
− c2

2
(1− a2) 1

 ⊂ G2,F ,
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where c2 := − 2y0
1−a20

∈ F sep. Since G2,F is a two-dimensional irreducible reduced

group scheme which also contains V2,F , we conclude that

G2,F =


 a2

ax a
x2

2
− c2

2
(1− a2) x 1

 .

As in the proof of Theorem 4.5, we have c2 ∈ F . We set a polynomial

Q := 2X31 −X2
32 + c2(1−X2

22) ∈ F [X22, X31, X32] ⊂ F [X11, . . . , X33, 1/ detX].

Then we have Q(Ψ̃2) = 0. By the definition of Ψ̃2, this is equivalent to the equality

(Ω2nL2
1 − 2Ω2nL2 − c2)⊗ Ω2n = Ω2n ⊗ (Ω2nL2

1 − 2Ω2nL2 − c2)

in L⊗K(t) L. Thus the condition (4) does not hold. This means (4) ⇒ (1). �

Remark 4.9. By the proof of Theorem 4.7, when the equivalent conditions are
satisfied, we have

G2 =


a2ax a
y x 1

 .

When the equivalent conditions are not satisfied, we have

G2 =


 a2

ax a
x2

2
− c2

2
(1− a2) x 1


for some c2 ∈ Fq(t). Such c2 gives the linear dependence of Ω2nL2

u,n−2Ω2nLu,u,n,n−c2
and Ω2n over K(t), and c2 is uniquely determined by

c2(θ) =
Lu,n(θ)

2 − 2Lu,u,n,n(θ)

π̃2n
=
Lu2,2n(θ)

π̃2n
.

Proofs of Theorems 2.7 and 2.30. First we prove Theorem 2.7. We fix a
positive “odd” integer n ≥ 1 and set u := Hn−1. Since π̃n 6∈ K∞ and Lα,n(θ) =
Γnζ(n) ∈ K×

∞, they are linearly independent over K. Thus the equivalent conditions
of Theorem 4.5 are satisfied. By Theorem 4.7, the elements π̃, Γnζ(n) and Γ2

nζ(n, n)
are algebraically independent over K, or π̃2n and Γ2

n(ζ(n)
2 − 2ζ(n, n)) are linearly

dependent over K.
Now we assume that 2n is “odd”. Then π̃2n 6∈ K∞ and Γ2

n(ζ(n)
2 − 2ζ(n, n)) ∈

K∞. Since |ζ(n)|∞ = 1 and |ζ(n, n)|∞ < 1, we have ζ(n)2 − 2ζ(n, n) 6= 0. Thus the
condition (3) of Theorem 4.7 holds.

Theorem 2.30 is proved similarly. �
Next, we consider depth three cases. To show the classifications of Theorems

2.13 and 2.31, we prove Theorems 4.10 and 4.13.

Theorem 4.10. Let n ≥ 1 be a positive integer and u ∈ K[t] a polynomial

such that ||u||∞ < |θ|
nq
q−1
∞ . Assume that the equivalent conditions of Theorem 4.7 are

satisfied. Then the following conditions are equivalent:
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(1) π̃, Lu,n(θ), Lu,u,n,n(θ) and Lu,u,u,n,n,n(θ) are algebraically independent over
K,

(2) Ω, Lu,n, Lu,u,n,n and Lu,u,u,n,n,n are algebraically independent over K(t),
(3) π̃3n and Lu,n(θ)

3 − 3Lu,n(θ)Lu,u,n,n(θ) + 3Lu,u,u,n,n,n(θ) are linearly inde-
pendent over K,

(4) Ω3nL3
u,n − 3Ω3nLu,nLu,u,n,n + 3Ω3nLu,u,u,n,n,n − c3 and Ω3n are linearly in-

dependent over K(t) for each c3 ∈ Fq(t).
Remark 4.11. The equivalent conditions of Theorem 4.10 are satisfied if p = 3.

For example, we can easily check the condition (3).

Proof of Theorem 4.10. We continue to use the notations in the proofs of
Theorems 4.5 and 4.7. Let L3 := Lα,α,α,n,n,n. We set

Φ3 :=


(t− θ)3n

u(−1)(t− θ)3n (t− θ)2n

u(−1)(t− θ)2n (t− θ)n

u(−1)(t− θ)n 1

 ∈ GL4(K(t))

and

Ψ3 :=


Ω3n

Ω3nL1 Ω2n

Ω3nL2 Ω2nL1 Ωn

Ω3nL3 Ω2nL2 ΩnL1 1

 ∈ GL4(L).

Let M3 be the pre-t-motive defined by Φ3 and G3 its fundamental group. Then we
have a homomorphism of pre-t-motives

M3 �M2; (x1, x2, x3, x4) 7→ (x2, x3, x4).

By the Tannakian duality and Theorem 3.1, we have a diagram of smooth group
schemes over F

G3

ψ23 // // G2

ψ12 // // G1
π1 // // GC⊗n

GΨ3

'

OO

GΨ2

'

OO

GΨ2

'

OO

GΩn

'

OO

Gm .

In the following, we identify the upper group schemes with the lower group schemes
in the above diagram. At first, we describe the morphism ψ23 in the above diagram
explicitly. By Remark 4.9, we have

G2 =


a2ax a
y x 1

 .

By the definition of Ψ̃3 = ((Ψ̃3)ij), we have the relations

(Ψ̃3)11 = (Ψ̃3)
3
33, (Ψ̃3)22 = (Ψ̃3)

2
33, (Ψ̃3)33 = Ω−n ⊗ Ωn, (Ψ̃3)44 = 1,

(Ψ̃3)21 = (Ψ̃3)
2
33(Ψ̃3)43, (Ψ̃3)32 = (Ψ̃3)33(Ψ̃3)43, Ψ̃43 = −L1 ⊗ Ωn + 1⊗ ΩnL1,

(Ψ̃3)31 = (Ψ̃3)33(Ψ̃3)42, (Ψ̃3)42 = (L2
1 − L2)⊗ Ω2n − L1 ⊗ Ω2nL1 + 1⊗ Ω2nL2,
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(Ψ̃3)41 = (−L3
1 +2L1L2 −L3)⊗Ω3n+ (L2

1 −L2)⊗Ω3nL1 −L1 ⊗Ω3nL2 +1⊗Ω3nL3,

and (Ψ̃3)ij = 0 if i < j. Thus we have the inclusion

G3
∼= GΨ3 ⊂ G3 :=



a3

a2x a2

ay ax a
z y x 1


 ⊂ GL4 .

By using the above identifications, we can write

ψ23 : G3 � G2;


a3

a2x a2

ay ax a
z y x 1

 7→

a2ax a
y x 1


as in the proof of Theorem 4.5. We set π3 := π2◦ψ23 = π1◦ψ12◦ψ23 and V3 := Ker π3
to be the unipotent radical of G3. Then we have

V3 ⊂ V3 :=



1
x 1
y x 1
z y x 1




and obtain the following diagram

1 // V3
// G3

// Gm
// 1

1 // V3
?�

OO

//

ψ23|V3
��

G3

?�

OO

π3 //

ψ23
����

Gm
// 1

1 // V2 // G2
π2 // Gm

// 1

which is commutative and whose rows are exact. Clearly ψ23|V3 is surjective. The
group scheme V3 is smooth over F as in the proof of Theorem 4.5. A Gm(F )-action
on V3(F ) is given by

a.


1
x 1
y x 1
z y x 1

 =


1
ax 1
a2y ax 1
a3z a2y ax 1

 .
By Theorem 3.1, we have

tr.degK K(π̃, L1(θ), L2(θ), L3(θ)) = tr.degK(t)K(t)(Ω, L1, L2, L3) = dimG3

and this value is three or four. Thus we have

(3) ⇐ (1) ⇔ (2) ⇒ (4)

and (3) ⇒ (4) as in the proof of Theorem 4.5.
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From now on, we suppose that the condition (1) does not hold. We have
dimG3 = 3 and hence dimV3 = 2. Then Ker(ψ23|V3 : V3(F ) → V2(F )) = V3(F ) ∩
V3,0(F ) has dimension zero, where we set

V3,0 :=



1

1
1

z 1


 .

Since V3(F )∩ V3,0(F ) is closed under the Gm(F )-action on V3(F ), we conclude that

V3(F ) ∩ V3,0(F ) = {1} by Lemma 4.1. For a matrix

X =


1
x 1
y x 1
z y x 1

 ∈ V3(F ),

we have

Xr =


1
rx 1

r(r−1)
2

x2 + ry rx 1
r(r−1)(r−2)

6
x3 + r(r − 1)xy + rz r(r−1)

2
x2 + ry rx 1

 ∈ V3(F )

for each integer r ∈ Z. Thus if r is not divisible by p, we obtain

(r.X)X−r =


1
0 1

r(r−1)
2

(2y − x2) 0 1
r(r−1)(r+1)

3
(3z − 3xy + x3) r(r−1)

2
(2y − x2) 0 1

 .
If s is not divisible by p, we obtain

(
√
s.((r.X)X−r))((r.X)X−r)−s =


1
0 1
0 0 1

s(
√
s− 1) r(r−1)(r+1)

3
(3z − 3xy + x3) 0 0 1


which is contained in V3(F ) ∩ V3,0(F ) = {1}. Thus we have the relation

(
√
s− 1)

(r − 1)(r + 1)

3
(3z − 3xy + x3) = 0.

When p 6= 2, we take r 6≡ ±1 mod 3p and s 6= 1. Then we have the relation

3z − 3xy + x3 = 0.

Assume p = 2. We denote by Y(v,w) the inverse image of1v 1
w v 1


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via the group isomorphism ψ23|V3 : V3(F ) → V2(F ). We take c0 ∈ F such that

Y(1,0) =


1
1 1
0 1 1
c0 0 1 1

 .
Then if x, y 6= 0, we have

V3(F ) 3 (x.Y(1,0))(
√
y.(Y 2

(1,0))) =


1
x 1
y x 1

xy + c0x
3 y x 1

 = Y(x,y) = X.

If x 6= 0 and y = 0, we have

V3(F ) 3 (x.Y(1,0)) =


1
x 1
0 x 1

c0x
3 0 x 1

 = Y(x,0) = X.

If x = 0 and y 6= 0, we have

V3(F ) 3 (
√
y.Y 2

(1,0)) =


1
0 1
y 0 1
0 y 0 1

 = Y(0,y) = X.

Thus in any case, we have z = xy + c0x
3. We can compute Y (v1, w1)Y (v2, w2) as

follows:
1

v1 + v2 1
w1 + v1v2 + w2 v1 + v2 1

(v1 + v2)(w1 + v1v2 + w2) + c0(v1 + v2)
3 + β w1 + v1v2 + w2 v1 + v2 1


for each v1, w1, v2 and w2, where β := −v1v2(v1 + v2)(3c0 + 1). Since V3(F ) is
a group, the matrix Y (v1, w1)Y (v2, w2) is contained in V3(F ) and β must be zero.
Thus we have c0 = −1/3. Therefore in any characteristic case, we have the relation

3z − 3xy + x3 = 0.

When p = 3, we have x = 0. This contradicts the surjectivity of ψ23|V3 . Thus
when p = 3, we always have dimG3 = 4. In the following, we assume that p 6= 3.
Since dimV3 = 2, we conclude that

V3 =




1
x 1
y x 1

xy − x3

3
y x 1


 .

Next, we determine the group scheme G3. Fix an element a0 ∈ Gm(F ) which
has infinite order. As in the proof of Theorem 4.5, the fiber G3,a0 is smooth over
F and we have G3,a0(F

sep) 6= ∅. Let ã0 be a lift of a0 in G3(F
sep). Since G3(F

sep)
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contains V3(F
sep), we can eliminate the x- and y-coordinates of ã0. Thus we may

assume that

ã0 =


a30

a20
a0

z0 1

 ∈ G3(F
sep).

Then for each integer r ∈ Z, we have

ã0
r =


a3r0

a2r0
ar0

z0
1−a30

(1− a3r0 ) 1

 ∈ G3(F
sep).

Since a0 has infinite order, we have


a3

a2

a
c3
3
(1− a3) 1


 ⊂ G3,F ,

where c3 := 3z0
1−a30

∈ F sep. Since G3,F is a three-dimensional irreducible reduced

group scheme which also contains V3,F , we conclude that

G3,F =




a3

a2x a2

ay ax a

xy − x3

3
+ c3

3
(1− a3) y x 1


 .

As in the proof of Theorem 4.5, we have c3 ∈ F . We set a polynomial

Q := 3X41 − 3X43X42 +X3
43 − c3(1−X3

33) ∈ F [X11, . . . , X44, 1/ detX].

Then we have Q(Ψ̃3) = 0. By the definition of Ψ̃3, this is equivalent to the equality

(Ω3nL3
1−3Ω3nL1L2+3Ω3nL3− c3)⊗Ω3n = Ω3n⊗ (Ω3nL3

1−3Ω3nL1L2+3Ω3nL3− c3)

in L⊗K(t) L. Thus the condition (4) does not hold. This means (4) ⇒ (1). �

Remark 4.12. By the proof of Theorem 4.10, when the equivalent conditions
are satisfied, we have

G3 =



a3

a2x a2

ay ax a
z y x 1


 .

When the equivalent conditions are not satisfied, we have

G3 =




a3

a2x a2

ay ax a

xy − x3

3
+ c3

3
(1− a3) y x 1



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for some c3 ∈ Fq(t). Such c3 gives the linear dependence of

Ω3nL3
u,n − 3Ω3nLu,nLu,u,n,n + 3Ω3nLu,u,u,n,n,n − c3 and Ω3n

over K(t), and c3 is uniquely determined by

c3(θ) =
Lu,n(θ)

3 − 3Lu,n(θ)Lu,u,n,n(θ) + 3Lu,u,u,n,n,n(θ)

π̃3n
=
Lu3,3n(θ)

π̃3n
.

Theorem 4.13. Let n ≥ 1 be a positive integer and u ∈ K[t] a polynomial

such that ||u||∞ < |θ|
nq
q−1
∞ . Assume that the equivalent conditions of Theorem 4.5 are

satisfied but the equivalent conditions of Theorem 4.7 are not satisfied. Then the
following conditions are equivalent:

(1) π̃, Lu,n(θ) and Lu,u,u,n,n,n(θ) are algebraically independent over K,
(2) Ω, Lu,n and Lu,u,u,n,n,n are algebraically independent over K(t),
(3) π̃3n and Lu,n(θ)

3 − 3Lu,n(θ)Lu,u,n,n(θ) + 3Lu,u,u,n,n,n(θ) are linearly inde-
pendent over K,

(4) Ω3nL3
u,n − 3Ω3nLu,nLu,u,n,n + 3Ω3nLu,u,u,n,n,n − c3 and Ω3n are linearly in-

dependent over K(t) for each c3 ∈ Fq(t).

Remark 4.14. The equivalent conditions of Theorem 4.13 are satisfied if p = 3.
For example, we can easily check the condition (3).

Proof of Theorem 4.13. We continue to use the notations in the proofs of
Theorems 4.5, 4.7 and 4.10. By Remark 4.8, we have p 6= 2. By Remark 4.9, there
exists c2 ∈ F such that Ω2nL2

1 − 2Ω2nL2 − c2 and Ω2n are linearly dependent over
K(t) and

G2 =


 a2

ax a
x2

2
− c2

2
(1− a2) x 1

 .

Thus we have the inclusions

G3
∼= GΨ3 ⊂ G3

′
:=




a3

a2x a2

a
(
x2

2
− c2

2
(1− a2)

)
ax a

z x2

2
− c2

2
(1− a2) x 1


 ⊂ GL4

and

V3 ⊂ V3
′
:=



1
x 1
x2

2
x 1

z x2

2
x 1


 .

By Theorem 3.1, we have

tr.degK K(π̃, L1(θ), L2(θ), L3(θ)) = tr.degK(t)K(t)(Ω, L1, L2, L3) = dimG3

and this value is two or three. Thus we have

(3) ⇐ (1) ⇔ (2) ⇒ (4)
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and (3) ⇒ (4) as in the proof of Theorem 4.5. From now on, we suppose that the
condition (1) does not hold. We have dimG3 = 2 and hence dimV3 = 1. Then we
have V3(F ) ∩ V3,0(F ) = 1, and for a matrix

X =


1
x 1
x2

2
x 1

z x2

2
x 1

 ∈ V3(F ),

we have the relation

3z − x3

2
= 0

as in the proof of Theorem 4.10.
When p = 3, we have x = 0. This contradicts the surjectivity of ψ23|V3 . Thus

when p = 3, we always have dimG3 = 3. In the following, we assume that p 6= 2, 3.
Since dimV3 = 1, we conclude that

V3 =



1
x 1
x2

2
x 1

x3

6
x2

2
x 1


 .

Next, we determine the group scheme G3. Fix an element a0 ∈ Gm(F ) which
has infinite order. As in the proof of Theorem 4.5, the fiber G3,a0 is smooth over
F and we have G3,a0(F

sep) 6= ∅. Let ã0 be a lift of a0 in G3(F
sep). Since G3(F

sep)
contains V3(F

sep), we can eliminate the x-coordinates of ã0. Thus we may assume
that

ã0 =


a30
0 a20

−a0 c22 (1− a20) 0 a0
z0 − c2

2
(1− a20) 0 1

 ∈ G3(F
sep).

Then for each integer r ∈ Z, we have

ã0
r =


a3r0
0 a2r0

−ar0 c22 (1− a2r0 ) 0 ar0
z0

1−a30
(1− a3r0 ) − c2

2
(1− a2r0 ) 0 1

 ∈ G3(F
sep).

Since a0 has infinite order, we have


a3

0 a2

−a c2
2
(1− a2) 0 a

c3
3
(1− a3) − c2

2
(1− a2) 0 1


 ⊂ G3,F ,
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where c3 :=
3z0
1−a30

∈ F sep. Since G3,F is a two-dimensional irreducible reduced group

scheme which also contains V3,F , we conclude that

G3,F =




a3

a2x a2

a(x
2

2
− c2

2
(1− a2)) ax a

x3

6
− c2

2
(1− a2)x+ c3

3
(1− a3) x2

2
− c2

2
(1− a2) x 1


 .

As in the proof of Theorem 4.5, we have c3 ∈ F . We set a polynomial

Q := 6X41 −X3
43 + 3c2(1−X2

33)X43 − 2c3(1−X3
33) ∈ F [X11, . . . , X44, 1/ detX].

Then we have Q(Ψ̃3) = 0. By the definition of Ψ̃3 and the assumption L2
1 − 2L2 −

c2Ω
−2n ∈ K(t), this is equivalent to the equality

(Ω3nL3
1−3Ω3nL1L2+3Ω3nL3− c3)⊗Ω3n = Ω3n⊗ (Ω3nL3

1−3Ω3nL1L2+3Ω3nL3− c3)
in L⊗K(t) L. Thus the condition (4) does not hold. This means (4) ⇒ (1). �

Remark 4.15. By the proof of Theorem 4.13, when the equivalent conditions
are satisfied, we have

G3 =




a3

a2x a2

a
(
x2

2
− c2

2
(1− a2)

)
ax a

z x2

2
− c2

2
(1− a2) x 1


 .

When the equivalent conditions are not satisfied, we have

G3 =




a3

a2x a2

a(x
2

2
− c2

2
(1− a2)) ax a

x3

6
− c2

2
(1− a2)x+ c3

3
(1− a3) x2

2
− c2

2
(1− a2) x 1


 .

for some c3 ∈ Fq(t). Such c3 gives the linear dependence of

Ω3nL3
u,n − 3Ω3nLu,nLu,u,n,n + 3Ω3nLu,u,u,n,n,n − c3 and Ω3n

over K(t), and c3 is uniquely determined by

c3(θ) =
Lu,n(θ)

3 − 3Lu,n(θ)Lu,u,n,n(θ) + 3Lu,u,u,n,n,n(θ)

π̃3n
=
Lu3,3n(θ)

π̃3n
.

Proof of Theorems 2.13 and 2.31. First we prove Theorem 2.13. We fix
a positive “odd” integer n ≥ 1 and set u := Hn−1. Since π̃n 6∈ K∞ and Lα,n(θ) =
Γnζ(n) ∈ K×

∞, they are linearly independent over K. Thus the equivalent conditions
of Theorem 4.5 are satisfied.

By Theorem 4.10, when the equivalent conditions of Theorem 4.7 are satisfied
(thus π̃, ζ(n) and ζ(n, n) are algebraically independent over K), one and only one
of the following holds:

(i) π̃, Γnζ(n), Γ
2
nζ(n, n) and Γ3

nζ(n, n, n) are algebraically independent over
K,

(iii) π̃3n and Γ3
n(ζ(n)

3 − 3ζ(n)ζ(n, n) + 3ζ(n, n, n)) are linearly dependent
over K.
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By Theorem 4.13, when the equivalent conditions of Theorem 4.7 are not satisfied
(thus π̃2n and Γ2

n(ζ(n)
2−2ζ(n, n)) are linearly dependent over K), one and only one

of the following holds:
(ii) π̃, Γnζ(n), and Γ3

nζ(n, n, n) are algebraically independent over K,
(iv) π̃3n and Γ3

n(ζ(n)
3 − 3ζ(n)ζ(n, n) + 3ζ(n, n, n)) are linearly dependent

over K.
Now we assume that 2n is “odd”. Then π̃2n 6∈ K∞ and Γ2

n(ζ(n)
2 − 2ζ(n, n)) ∈

K∞. Since |ζ(n)|∞ = 1 and |ζ(n, n)|∞ < 1, we have ζ(n)− 2ζ(n, n) 6= 0. Thus π̃2n

and Γ2
n(ζ(n)

2 − 2ζ(n, n)) are linearly independent over K, and hence we have (i)
or (iii). Assume that 3n is “odd”. Then π̃3n 6∈ K∞ and Γ3

n(ζ(n)
3 − 3ζ(n)ζ(n, n) +

3ζ(n, n, n)) ∈ K∞. Since |ζ(n, n, n)|∞ < 1, we have

ζ(n)3 − 3ζ(n)ζ(n, n) + 3ζ(n, n, n) 6= 0.

Thus π̃3n and Γ3
n(ζ(n)

3−3ζ(n)ζ(n, n)+3ζ(n, n, n)) are linearly independent over K,
and hence we have (i) or (ii). Since n is “odd”, either 2n or 3n is “odd”. Therefore,
the condition (iv) does not occur.

Theorem 2.31 is proved similarly. �

3. Proofs of Theorems 2.17 and 2.33

Next, we prove Theorems 2.17 and 2.33. As in the proof of Theorem 4.3, for an
algebraic group G over Fq(t), when it is clear from the context, without confusion

we still denote by G the Fq(t)-valued points of G.
Recall that Id is the set defined in Definition 1.1. The notations nij and uij are

also defined there. Clearly, Theorems 2.17 and 2.33 follow from Theorems 4.2, 4.3
and 4.16.

Theorem 4.16. Let n = (n1, . . . , nd) be an index and u = (u1, . . . , ud) ∈ (K[t])d

a d-tuple of polynomials such that ||ui||∞ < |θ|
niq

q−1
∞ for each i. If π̃, Lu1,n1(θ), . . . ,

Lud,nd
(θ) are algebraically independent over K, then we have

tr.degK K(π̃, Luij ,nij
(θ)|(i, j) ∈ Id) = 1 + #Id = 1 +

d(d+ 1)

2
.

Proof. In this proof, (i, j) and (k, `) are always assumed to be elements of the
totally ordered set Id. Let Φ and Ψ be the (d + 1) × (d + 1)-matrices defined in
Example 3.5. These satisfy the Frobenius difference equations (3.1). For (k, `) ∈ Id,
we define (dep(k, `) + 1)× (dep(k, `) + 1)-matrices Φ[k, `] = (Φ[k, `]ij) and Ψ[k, `] =
(Ψ[k, `]ij) which are sub-matrices of Φ and Ψ, where Φ[k, `]ij = Φi+`−1,j+`−1 and
Ψ[k, `]ij = Ψi+`−1,j+`−1. In particular, the lower left corner of Φ[k, `] (resp. Ψ[k, `])
is the (k, `)-th entry of Φ (resp. Ψ). The following is an illustration of the relative
positions of the matrices:

(k, `)
11ddddddddd


·
◦ ·
◦ ◦ ·
◦ ◦ ◦ ·
◦ ◦ ◦ ◦ ·

oo Φ[k, `] (resp. Ψ[k, `])

oo Φ (resp. Ψ)



44 4. PROOFS

LetM [k, `] be the pre-t-motive defined by Φ[k, `] and G(k, `) the fundamental group
of the pre-t-motive

M(k, `) := C ⊕
⊕

dep(i,j)≥dep(k,`)−1
(i,j)≤(k,`)

M [i, j],

where C is the Carlitz pre-t-motive (see Example 3.4). The •’s below illustrate the
range in which (i, j) runs in the above direct sum:

(k, `)
22eeeeee


◦
• ◦
• • ◦
◦ • • ◦
◦ ◦ ◦ • ◦


We identify G(k, `) with the algebraic group defined by

[
Ω
]
⊕
⊕

(i,j) Ψ[i, j] as in
Theorem 3.1. Then we have the inclusion

G(k, `) ⊂


[
a
]
⊕

⊕
dep(i,j)≥dep(k,`)−1

(i,j)≤(k,`)


anj+···+nd

xj+1,j anj+1+···+nd

...
. . . . . .

xij · · · xi,i−1 ani+···+nd




for each (k, `). Note that some different entries/coordinates of different block matri-
ces may be the same and denoted by same letters; this means that for (i, j), (i′, j′)
and r, r′, s, s′ with 1 ≤ s < r ≤ dep(i, j) + 1 and 1 ≤ s′ < r′ ≤ dep(i′, j′) + 1, if
(r+ j− 1, s+ j− 1) = (r′+ j′− 1, s′+ j′− 1), then the (r, s)-th entry of the (i, j)-th
component matrix and the (r′, s′)-th entry of the (i′, j′)-th component matrix are
the same and they are denoted by xr+j−1,s+j−1. In fact, since Ψ is a lower triangular

matrix, the (r, s)-th entry of Ψ̃[i, j] is equal to the (r+ j−1, s+ j−1)-th entry of Ψ̃

(for the explicit description of Ψ̃, see Example 3.5). Thus if (r + j − 1, s+ j − 1) =

(r′ + j′ − 1, s′ + j′ − 1), then the (r, s)-th entry of Ψ̃[i, j] and the (r′, s′)-th entry of

Ψ̃[i′, j′] coincide. Therefore the values of these entries in the algebraic group G(k, `)
are the same.

By Theorem 3.1, it suffices to show that the above inclusion is actually an equal-
ity for each (k, `). We prove this by induction on (k, `) ∈ Id with respect to the
total order “≤”.

By the assumption, this is true for (2, 1) ≤ (k, `) ≤ (d + 1, d), the depth one
cases. Let (k, `) ≥ (3, 1) (this means dep(k, `) ≥ 2) and assume that the inclusion
is an equality for (k′, `′) the greatest element of {(i, j) ∈ Id|(i, j) < (k, `)}, which
means that (k′, `′) = (k − 1, `− 1) if ` 6= 1 and (k′, `′) = (d+ 1, d+ 3− k) if ` = 1.
By definition, M(k′, `′) is a subobject of M(k, `) and C is a subobject of M(k, `)
and M(k′, `′). By Tannakian duality, we have surjections ψ : G(k, `) → G(k′, `′),
π : G(k, `) → Gm and π′ : G(k′, `′) → Gm, where we identify GC with Gm. These
are projection maps. More precisely, π and π′ map the matrices of the above forms
to a and ψ maps them to the same matrices with the (k, `)-th component matrices
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removed. This follows from the description of the map (3.2). The arguments are
the same as in [P, §6.2.2], [CY, §4.3] and [CPY, Remark 2.3.2]. We set V := Ker π
and V ′ := Ker π′ to be the unipotent radicals of G(k, `) and G(k′, `′), respectively.
Then we have the following diagram

1 // V //

ψ|V
��

G(k, `)
π //

ψ
����

Gm
// 1

1 // V ′ // G(k′, `′)
π′

// Gm
// 1,

which is commutative and whose rows are exact.
It is clear that ψ|V is surjective. Since V is non-commutative, the G(k, `)-action

A.X := A−1XA on V (X ∈ V , A ∈ G(k, `)) depends not only on π(A) but also
on the other entries of A. Note that the coordinate variable xk` of G(k, `) is the
only coordinate variable which does not appear as a coordinate variable of G(k′, `′).
Thus we know that dimG(k′, `′) ≤ dimG(k, `) ≤ dimG(k′, `′)+ 1. This also follows
from Theorem 3.1 (2). It suffices to show that the second inequality is an equality.

Now, assume that dimG(k, `) = dimG(k′, `′). Then dimKer(ψ|V ) = 0. It is
clear that Ker(ψ|V ) is a normal subgroup of G(k, `) and A.xk` = π(A)n`+···+ndxk` for
each xk` ∈ Ker(ψ|V ) and A ∈ G(k, `), where we identify Ker(ψ|V ) ⊂ Ga by means
of the coordinate xk`. By Lemma 4.1 we have that Ker(ψ|V ) is trivial. We take any
elements

X =
[
1
]
⊕

⊕
dep(i,j)≥dep(k,`)−1

(i,j)≤(k,`)


1

xj+1,j 1
...

. . . . . .
xij · · · xi,i−1 1

 ∈ V

and

A =
[
1
]

⊕
⊕

dep(i,j)=dep(k,`)−1


1

1

0 . . .
aij 1



⊕
⊕

dep(i,j)=dep(k,`)
(i,j)≤(k,`)


1

1
. . .

ai−1,j 0 . . .
aij ai,j+1 1

 ∈ V,

where we can take any xij ∈ Fq(t) (resp. any aij ∈ Fq(t)) for each (i, j) ∈ Id
such that (i, j) 6= (k, `) (resp. dep(i, j) ≥ dep(k, `) − 1 and (i, j) < (k, `)) by the
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assumption on (k′, `′) and the surjectivity of ψ|V . Then X−1(A−1XA) is equal to

[
1
]

⊕
⊕

dep(i,j)=dep(k,`)−1

1 . . .
1



⊕
⊕

dep(i,j)=dep(k,`)
(i,j)≤(k,`)


1

1
. . .

0 . . .
ai−1,jxi,i−1 − ai,j+1xj+1,j 1

 .

Now we take aij = 0 for (k−`, 1) ≤ (i, j) < (k, `+1) and ak,`+1 = 1. Then we see that
X−1(A−1XA) ∈ Ker(ψ|V ) = {0} and so we have x`+1,` = 0. Since (`+1, `) 6= (k, `),
this is a contradiction. Therefore we have dimG(k, `) = dimG(k′, `′) + 1. �

4. Proofs of Theorems 2.23 and 2.24

We prove Theorems 2.23 and 2.24. For an index n = (n1, . . . , nd), we set

Ln := LH(n),n, Ωn := Ωn1+···+nd and n′ := (n1, . . . , nd−1).

First, we determine the relation between Ln and Lpen for a non-negative integer
e ≥ 0. For a positive integer n ≥ 1, we set Γn(t) to be the inverse image of Γn via
the Fq-isomorphism Fq(t) → Fq(θ); t 7→ θ.

Lemma 4.17. For each positive integer n ≥ 1 and each non-negative integer
e ≥ 0, we have

Hpen−1

Γpen(t)
=

(
Hn−1

Γn(t)

)pe
.

Proof. By definition, we have

(Hs−1Ω
s)(i)(θ) =

ΓsSi(s)

π̃s

for each s ≥ 1 and i ≥ 0, where

Si(s) :=
∑

a∈Fq [θ]:monic
deg(a)=i

1

as

(see [AT1, 3.7.4], [AT2, 2.4.1]). Thus we have(
Hs−1

Γs(t)
(θq

−i

)

)qi
=

(
Hs−1

Γs(t)

)(i)

(θ) =
Si(s)

π̃s(Ωs)(i)(θ)
.



4. PROOFS OF THEOREMS 2.23 AND 2.24 47

Therefore (
Hpen−1

Γpen(t)
(θq

−i

)

)qi
=

Si(p
en)

π̃pen(Ωpen)(i)(θ)
=

(
Si(n)

π̃n(Ωn)(i)(θ)

)pe

=

((
Hn−1

Γn(t)
(θq

−i

)

)qi)pe

=

((
Hn−1

Γn(t)

)pe
(θq

−i

)

)qi

.

for each i ≥ 0. Thus we have

Hpen−1

Γpen(t)
(θq

−i

) =

(
Hn−1

Γn(t)

)pe
(θq

−i

).

for each i ≥ 0. �
We set

γe,n :=
Hpen−1

Hpe

n−1

=
Γpen(t)

Γn(t)p
e ∈ Fq(t)×

and

γe,n :=
d∏
i=1

γe,ni

for any index n = (n1, . . . , nd).

Lemma 4.18. For each index n and each non-negative integer e ≥ 0, we have

Lpen = γe,nL
pe

n .

Proof. We prove this equality by induction on d. When d = 0, it is clear. We
take d ≥ 1 and assume that the above equality holds for any indices whose depths
are lower than d. Then we have

(ΩpenLpen − γe,n(Ω
nLn)

pe)(−1)

= H
(−1)
pend−1(t− θ)p

endΩpenLpen′ + ΩpenLpen − γe,n

(
H

(−1)
nd−1(t− θ)ndΩnLn′ + ΩnLn

)pe
= ΩpenLpen − γe,n(Ω

nLn)
pe + (t− θ)p

endΩpen
(
H

(−1)
pend−1Lpen′−γe,n′γe,nd

(H
(−1)
nd−1)

peLp
e

n′

)
= ΩpenLpen − γe,n(Ω

nLn)
pe + (t− θ)p

endΩpenLpen′

(
H

(−1)
pend−1 − γe,nd

(H
(−1)
nd−1)

pe
)

= ΩpenLpen − γe,n(Ω
nLn)

pe + (t− θ)p
endΩpenLpen′

(
H

(−1)
pend−1 − γ(−1)

e,nd
(H

(−1)
nd−1)

pe
)

= ΩpenLpen − γe,n(Ω
nLn)

pe .

Thus ΩpenLpen = γe,n(Ω
nLn)

pe + c for some c ∈ Fq(t). Then we have

(γe,n(Ω
nLn)

pe)(θ) =
Γpen1

Γp
e

n1

· · · Γp
end

Γp
e

nd

(
Γn1 · · ·Γnd

ζ(n)

π̃n1+···+nd

)pe
=

Γpen1 · · ·Γpend
ζ(pen)

π̃pen1+···+pend

= (ΩpenLpen)(θ).

Therefore we have c(θ) = 0, and hence c = 0. �
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Lemma 4.19. Let n = (n1, . . . , nd) be an index and Ψ ∈ GLd+1(L) a matrix
defined in Example 3.5 for u = H(n). Take (i, j), (k, `) ∈ Id such that nij = penk`
for some non-negative integer e ≥ 0. Then we have

Ψ̃ij/Ψ̃ii = γe,nk`
(Ψ̃k`/Ψ̃kk)

pe .

Proof. By Example 3.5, we have

Ψ̃ij/Ψ̃ii =
i∑

s=j

i−s∑
r=0

(−1)r
∑

s=i0<i1<···
<ir−1<ir=i

Lni1i0
· · ·Lnirir−1

⊗ ΩnijLnsj

=
k∑
s=`

k−s∑
r=0

(−1)r
∑

s=i0<i1<···
<ir−1<ir=k

Lpeni1i0
· · ·Lpenirir−1

⊗ Ωpenk`Lpens`

=
k∑
s=`

k−s∑
r=0

(−1)r
∑

s=i0<i1<···
<ir−1<ir=k

γe,ni1i0
· · · γe,nirir−1

γe,ns`
(Lni1i0

· · ·Lnirir−1
⊗ Ωnk`Lns`

)p
e

= γe,nk`

(
k∑
s=`

k−s∑
r=0

(−1)r
∑

s=i0<i1<···
<ir−1<ir=k

Lni1i0
· · ·Lnirir−1

⊗ Ωnk`Lns`

)pe

= γe,nk`
(Ψ̃k`/Ψ̃kk)

pe .

�
Proof of Theorem 2.23. We use the notations of the proof of Theorem 4.16.

By Lemma 4.19, G(k, `) is an algebraic subgroup of
[
a
]
⊕

⊕
dep(i,j)≥dep(k,`)−1

(i,j)≤(k,`)


anj+···+nd

xj+1,j
. . .

...
. . . . . .

xij · · · xi,i−1 ani+···+nd


∣∣∣∣∣∣
xrs/xrr = γe,nvw

(xvw/xvv)
pe

for (r, s), (v, w) ∈ Id, e ≥ 1
such that nrs = penvw


for each (k, `). By Theorem 3.1, it suffices to show that this inclusion is actually an
equality for each (k, `). We prove this by induction on (k, `) ∈ Id with respect to
the total order “≤”.

By Theorem 2.4, this is true for (2, 1) ≤ (k, `) ≤ (d+ 1, d), the depth one cases.
Let (k, `) ≥ (3, 1) (this means dep(k, `) ≥ 2) and assume that the inclusion is an
equality for (k′, `′) the greatest element of {(i, j) ∈ Id|(i, j) < (k, `)}. We know that
dimG(k′, `′) ≤ dimG(k, `) ≤ dimG(k′, `′) + 1. It suffices to show that the second
inequality is an equality.

Now, assume that dimG(k, `) = dimG(k′, `′). We shall induce a contradiction.
The strategy is the same as the proof of Theorem 4.16 except that aij’s and xij’s
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may not be independent. By the same arguments, the `− 1 equalities
ak−`,1xk−`+1,k−` − ak−`+1,2x21 = 0

ak−`+1,2xk−`+2,k−`+1 − ak−`+2,3x32 = 0
ak−`+2,3xk−`+3,k−`+2 − ak−`+3,4x43 = 0

...
ak−2,`−1xk−1,k−2 − ak−1,`x`,`−1 = 0

(4.1)

imply the equality

ak−1,`xk,k−1 − ak,`+1x`+1,` = 0.(4.2)

When the equivalence class of (k, ` + 1) has one element, we can take ak−`,1 =
· · · = ak−1,` = 0 and ak,`+1x`+1,` 6= 0 by the induction hypothesis. Then the equal-
ities (4.1) hold, and hence we have the equality (4.2) ak,`+1x`+1,` = 0. This is
a contradiction. When the equivalence class of (k, ` + 1) has two elements, then
dep(k, `+1) = 1 by the assumption. We set aj := aj+1,j and xj := xj+1,j. Then the
equalities (4.1) become 

a1x2 − a2x1 = 0
a2x3 − a3x2 = 0
a3x4 − a4x3 = 0

...
a`−1x` − a`x`−1 = 0

(4.3)

and the equality (4.2) becomes

a`x`+1 − a`+1x` = 0.(4.4)

There exists 1 ≤ w ≤ ` such that w ∼ `+1. This means that there exists a non-zero
integer e 6= 0 such that nw = pen`+1 and hence we have the relations

aw = γe,n`+1
ap

e

`+1 and xw = γe,n`+1
xp

e

`+1,

where we set γe,n := (γ−e,pen)
−pe if e < 0 and n is divisible by p−e.

If 1 ≤ w ≤ `− 2, then we can take

a1 = · · · = aw−1 = aw+1 = · · · = a` = 0, xw−1 = xw+1 = 0 and a`+1x` 6= 0

by the induction hypothesis (if w = 1, then we ignore xw−1). Then the equalities
(4.3) hold and the equality (4.4) does not hold. This is a contradiction.

If w = `− 1, then the last equality of the equalities (4.3) becomes

γe,n`+1
(ap

e

`+1x` − a`x
pe

`+1) = 0

and we can take

a1 = · · · = a`−2 = 0, x`−2 = 0, x`, x`+1 6= 0 and

(
a`+1

x`+1

)pe
=
a`
x`

6∈ Fp|e|

by the induction hypothesis. Then the equalities (4.3) hold and the equality (4.4)
does not hold. This is a contradiction.

If w = `, then the equality (4.4) becomes

γe,n`+1
(ap

e

`+1x`+1 − a`+1x
pe

`+1) = 0
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and we can take

a1 = · · · = a`−1 = 0, x`−1 = 0, x`+1 6= 0 and
a`+1

x`+1

6∈ Fp|e|

by the induction hypothesis. Then the equalities (4.3) hold and the equality (4.4)
does not hold. This is a contradiction. �

Proof of Theorem 2.24. We may assume that d = 3. We use the notations
of the proofs of Theorems 4.16 and 2.23. By Theorem 3.1, it suffices to show that
the inclusion from G(k, `) to the algebraic group defined in the beginning of the
proof of Theorem 2.23 is actually an equality for each (k, `).

By Theorem 2.4, this is true for (2, 1) ≤ (k, `) ≤ (4, 3), the depth one cases.
Let (k, `) = (3, 1) (resp. (4, 1)) and assume that the inclusion is an equality for
(4, 3) (resp. (4, 2)). Assume that dimG(k, `) = dimG(4, 3) (resp. dimG(4, 2)).
Since ` = 1, the equality (4.2) always holds. We can check easily that this is a
contradiction even if (k − 1, `) ∼ (k, `+ 1) (and hence (`+ 1, `) ∼ (k, k − 1)).

Let (k, `) = (4, 2), and assume that (4, 2) 6∼ (3, 1) and dimG(4, 2) = dimG(3, 1).
In this case, the equality a1x2 − a2x1 = 0 implies the equality a2x3 − a3x2 = 0. We
may assume that 1 ∼ 2 ∼ 3, otherwise we obtain a contradiction from Theorems
4.16 and 2.23. For each j, we have nj = pejn for some n ≥ 1 and ej ≥ 0 with
min{ej} = 0. We set a := aj0 and x := xj0 for some j0 such that ej0 = 0. Thus we

have aj = γej ,na
pej and xj = γej ,nx

pej for each j. Then

ap
e1xp

e2 − ap
e2xp

e1 = 0 implies ap
e2xp

e3 − ap
e3xp

e2 = 0

for any a, x ∈ Fq(t). Since e1 6= e2, we conclude that e1 − e2 divide e2 − e3. By
symmetric arguments, since e2 6= e3, we conclude that e3 − e2 divide e2 − e1 This
means that e1− e2 = ±(e2− e3). However this is a contradiction because we assume
that (4, 2) 6∼ (3, 1) and e1 6= e3. �
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