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Introduction

In this thesis, we study periods in characteristic p. In particular we treat pos-
itive characteristic multizeta values over function fields and the values of Carlitz
multiple polylogarithms at algebraic points. We prove several results on algebraic
independence of them.

Classical case

The multiple zeta values (MZVs) in characteristic 0 was defined by Euler (depth
two) and Hoffman (higher depth). These are defined by

1 X
<Z<E) _CZ(nla"'and) T Z m?1-~-msd cR
mi1>-->mg>1

for a d-tuple of positive integers n = (ni,...,ng) € (Z>;)? with n; > 2. The sum
wt(n) := Y. n; is called the weight and dep(n) := d is called the depth of (z(n).
One of the goals of this topic is to determine all algebraic relations over Q among the
MZVs. Although many relations among MZVs are known, very few linear/algebraic
independence results on MZVs are known. For example, Euler proved that when
d = 1, the ratio (z(n)/(2m/—1)" is a rational number if and only if n > 2 is a
positive even integer. However, we do not know whether (z(n)/7" is a transcendental
number for each odd integer n > 3. It is conjectured that 7, (%(3), (z(5), (z(7), . ..
are algebraically independent over Q.

For each integer w > 2, we denote by 3, the Q-vector space spanned by the
MZVs of weight w. We also define 3p := Q, 3; := {0} and 3 := > 3,. The
harmonic product formula shows that the product of two MZVs of weights w; and
wy is described as a sum of MZVs of weight w; +wy. The simplest case is as follows:

(z(n1)Cz(n2) = Cz(n1, n2) + Cz(nz, m) + Cz(ny + n2).
Goncharov ([G1]) conjectured that MZVs of different weights are linearly indepen-
dent over QQ; this means
3 = @Sw

w>0
Thus it is conjectured that 3 is a graded Q-algebra graded by weights. Zagier ([Z])
conjectured that
dim@ 311) = dw,
where dy := 1, dy := 0, dy := 1 and d,, := dy_2 + dy_3 for w > 3. Goncharov
([G2]) and Terasoma ([Te]) showed that the inequality dim 3,, < d,, holds for each
w > 0. To show the converse inequalities, we need linear/algebraic independence
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6 INTRODUCTION

results of MZVs, and thus this seems to be very difficult. André ([Andr, p. 231])
asked whether there exists n such that (z(n) & Q[(z(2), (z(3), (z(4), (z(5), ...]. Note
that this comes from the above two conjectures because dg = 4 and the weight 8
monomials of single zeta values are only (z(2)*, (z(2)(z(3)? and (z(3)¢z(5) up to
non-zero rational factors. We do not also have an answer to this question. These
conjectures are also formulated when we replace Q by Q. In this thesis, consequences
of our main result are to give some lower bounds of the dimension of the vector space
spanned by the positive characteristic MZVs of fixed weight and an affirmative
answer to the function field analogue of a question of André.

Positive characteristic multizeta values

Let K := F,(#) be the rational function field over the finite field of ¢ elements
with variable 6, p the characteristic of K, K, := F,((6~1)) the oc-adic completion
of K, K a fixed algebraic closure of K., Co the co-adic completion of K, and
K the algebraic closure of K in Co,. We fix a (¢ — 1)-st root of —f and let

0 N -1 1
o= (-0 ] (1 - 91—q1> € (—0)71 - KX

i=1
be the fundamental period of the Carlitz module. This is a generator of the kernel of
the exponential map of the Carlitz module and a function field analogue of 2my/—1
which is a generator of the kernel of the usual exponential map. Wade ([W]) proved
that 7 is transcendental over K. As #F,[0]* = ¢ — 1, we say that an integer n is
“odd” if ¢ — 1 does not divide n, and “even” if ¢ — 1 divides n. In this thesis, an
index means an element of (Zs;)? for some positive integer d > 1. Thakur ([Th1])
defined the positive characteristic multizeta values (also denoted by MZVs) by

1
C(ﬂ) :C(nla'--and) :Zal’“—azd EK;

for indices n = (n1,...,nq), where the sum is over all monic polynomials a; in IF,[6]
such that dega; > -+ > degag > 0. It is clear that ((p°n) = ((n)?" for all e > 0,
where we set p°n := (p°ny,...,png). These are called the p-th power (Frobenius)

relations. As in the classical case, we want to determine all algebraic relations among
the MZVs over K.

The MZVs of depth one had been studied by Carlitz ([Ca]) and they are called
the Carlitz zeta values. He showed that if n > 1 is a positive “even” integer, then
we have the Fuler-Carlitz relation

@ _ B e K*,
o 1—‘n-l—l
where B,, € F,[0] is the Bernoulli-Carlitz number and I,y € F[0] is the factorial of
Carlitz (see Chapter 1). This is an analogue of the relations of the special zeta values
at positive even integers. Thus the Carlitz zeta values at positive “even” integers are
transcendental over K. Anderson and Thakur ([AT1]) showed that the Carlitz zeta
value ((n) appears as an integral point of the logarithm of the n-th tensor power of

the Carlitz module for each n > 1. Yu ([Y1]) proved that ((n),{(n)/7" ¢ K for



POSITIVE CHARACTERISTIC MULTIZETA VALUES 7

each positive “odd” integer n > 1. In [Y2], he also determined all linear relations
over K among the Carlitz zeta values and the powers of 7. Finally, Chang and
Yu ([CY]) proved that all algebraic relations over K among the Carlitz zeta values
come from the p-th power relations or the Euler-Carlitz relations. Note that Chang,
Papanikolas and Yu ([CPY]) also showed the algebraic independence of MZVs when
the constant field F, varies.

Several results on the higher depth case were also proved. Thakur ([Th2])
showed that MZVs are non-zero. Anderson and Thakur ([ATZ2]) showed that the
MZVs have an interpretation as periods of t-motives. For each w > 1, we denote by
Z,, the K-vector space spanned by the MZVs of weight w in C. We also define
Zy:=Kand Z := Y ow Z,,. In positive characteristic, the harmonic product formula
does not hold in general. Thakur ([Thl, Theorem 5.10.6]) showed that if weight
is not more than ¢, then MZVs satisfy the classical harmonic product formula. In
particular, the harmonic product formula

¢(n1)¢(n2) = ¢(n1,n2) + C(n2,n1) + ((n1 + n2)

holds if ny +ny < ¢ (see Remark 1.2). In [Th4], he also showed that the product of
two MZVs of weights w; and ws is described as a sum of MZVs of weight wy + ws.
Chang ([Ch2]) showed that

Z-Pz..

Thus Z is a graded K-algebra graded by weights.

The above results do not give the algebraic independence of MZVs of higher
weights. In this thesis, we study algebraic relations over K among the elements of
the set

(7T u{C(ng,njg1, ..., n)) 1 < j <i < dj}

for a fixed index n = (ny,...,nq) such that n; is “odd” for each i. For a positive
“odd” integer n > 1, we prove that 7, ((n) and {(n,n) are algebraically independent
over K if 2n is “odd” (Theorem 2.7). If furthermore 3n is “odd”, then 7, ((n), ¢(n,n)
and ((n,n,n) are algebraically independent over K (Theorem 2.13). We also prove
that the elements of the above set are algebraically independent over K if n; is
“odd” for each ¢ and n;/n; is not an integral power of p for each i # j (Theorem
2.17). We also treat some cases where n;/n; may be an integral power of p for some
1 # j. Then under some conditions, we prove that the elements of the above set
have only the p-th power relations (Theorems 2.23 and 2.24). A consequence of our
results is to give an affirmative answer to the function field analogue of a question
in [Andr, p. 231]. By using these results, we also obtain non-trivial lower bounds
of the dimension of Z,. In particular, we determine the dimension of Z, in any p
and Z3 when p # 2,3. These results are proved in [M3] and [M4].



8 INTRODUCTION

Carlitz multiple polylogarithms
In [Ch2], Chang defined the Carlitz multiple polylogarithms (CMPLs) by

q' q'd

Li, (21, ..., 24) :== i1>;d>0 (6—69)--(6— qul))lm — (Zg —09) - (0 — gqid))nd

e
for indices n. It converges if |z < |0]&% " for each i, where | — |, is an ooc-adic
valuation on C,. In [AT1], Anderson and Thakur showed that ((n) is described
as a K-linear combination of the values of CMPLs of weight n and depth one at
rational points for each n > 1. Moreover, in [Ch2|, Chang showed that for each
index n with wt(n) = w and dep(n) = d, {(n) is described as a K-linear combination
of the values of CMPLs of weight w and depth d at rational points. He also proved
that CMPLs take non-zero values when z; # 0 for each i. We are interested in
the algebraic independence of their values at algebraic points over K. Let n >

1 be a positive integer, and let ay,...,q, € K be algebraic points such that
ng

lajloo < |0]&" for each j. Papanikolas ([P]), Chang and Yu ([CY]) proved that if
7", Liy(oq), ..., Lin_(ar) are linearly independent over K, then they are algebraically

independent over K. Let nq,...,nq > 1 be positive integers such that n;/n; is not
an integral power of p for each i # j. For each i, let a;1,..., a4, € K™ be algebraic

n;4q

points such that |a;;|e < |0]% " for each j. Chang and Yu ([CY]) also proved that
if 7, Li,, (1), - - -, Liy, (qr, ) are linearly independent over K for each i, then the
elements of the set {7} U {Li,, ()i, j} are algebraically independent over K. As
in the case of the MZVs, several results on the higher depth case were also proved.
Chang ([Ch2]) showed that values of Carlitz multiple polylogarithms at algebraic
points of different weights are linearly independent over K.

In this thesis, we study algebraic relations over K among the elements of the set

{%} U {Linj,njﬂ ----- m(ajvaj-i—h s aai)“ S ] S { S d}

for a fixed index n = (ny, ..., ny) and a d-tuple of algebraic points a = (aq, ..., aq) €

(K )% such that |as]e < |0]&" for each i. For agositive “odd” integer n > 1 and
a rational point o € K* such that |ale < |0|& ', we prove that 7, Li,(a) and
Li,»(, @) are algebraically independent over K if 2n is “odd” (Theorem 2.30). If
furthermore 3n is “odd”, then 7, Li,(«), Li, (o, «) and Li, (o, a, ) are alge-
braically independent over K (Theorem 2.31). We also prove that the elements of
the above set are algebraically independent over K if 7, Li,, (a1),. .., Li,,(aq) are
algebraically independent over K (Theorem 2.33). If n; is “odd” and a; € K*
for each ¢ and n;/n; is not an integral power of p for each i # j, then the above
assumption is satisfied. These results are proved in [M3] and [M4].

Outline of this thesis

In Chapter 1, we define notations which are used in this thesis. In Chapter
2, we state our results on algebraic independence of MZVs and values of CMPLs.
In Chapter 3, at first we review the (pre-)t-motives which were originally defined
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by Anderson ([Ande]). We explain the way how we obtain periods from pre-t-
motives following the work of Anderson and Thakur ([AT1], [AT2]). Then we
recall Papanikolas’ theory ([P]) which states that the transcendental degree of the
field generated by periods in question over a base field coincides with the dimension
of the “motivic Galois group” of a pre-t-motive. As an example (see Example 3.5),
we see that MZVs and CMPLs at algebraic points appear as periods of some pre-t-
motives. The primary tools of proving the main results are Papanikolas’ theory. In
Chapter 4, we give proofs of our theorems by using the arguments of Chapter 3.
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his adviser Yuichiro Taguchi who carefully read a preliminary version of this thesis
and gave him many pieces of useful advice on his works. He would also like to thank
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and Dinesh S. Thakur for informing him of some relations among multizeta values
in Remark 2.9 and Corollary 2.11. He would also like to thank Masanobu Kaneko
for careful reading and giving a remark on classical MZVs, and Seidai Yasuda for
many helpful discussions on the topics studied in this thesis. The author thanks
his family for their warm encouragement. This work was supported by the JSPS
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CHAPTER 1

Notations

We continue to use the notations of the Introduction. Let ¢ be a variable inde-
pendent of 0. Let T := {f € C[t]|f converges on [t|oc < 1} be the Tate algebra
and L the fractional field of T. We set

E = {Z Cliti c (Coo[[t]] lim \/i |ai‘oo = 07 [K00<a07a17 e ) : KOO] < OO}

For any integer n € Z and any formal Laurent series f = > a;t* € Coo((1)), let

)= Z agnti

i

be the n-fold twist of f, and set o(f) := f(-Y. The fields L and K(t) are stable
under the operation f + f(™ and we have L7=! = F,(t) where (—)°=! is the o-fixed
part.

DEFINITION 1.1. Let d > 1 be a positive integer. We set
Ij={(i,j) €Z* 1 <j<i<d+1}.

We define a depth of (i,j) € I; by dep(i,j) := i — 7 and a total order on I; by
setting (i,7) < (k,¢) if either dep(i,j) = dep(k,¢) and j < ¢ (hence i < k), or
dep(i,j) < dep(k,?). For example, the order on I, is illustrated as the following
diagram:

depth 1
depth 2 g‘ |
depth 3 \o ;

depth 4 2 ZN
oixo\o\‘ém?

For each (i, j) € I3 and a d-tuple of symbol y = (y1,...,ya), we set

g,. = (yj7yj+17 s 7yi—1)'

ij

So, we have
{y,16.) € I} = {5, vy, w1 <G < i<}

Note that the MZV ((ny,...,nq) appears as a period of a t-motive of rank d+ 1
(Example 3.5). Moreover, the MZV ((n;,...,n;—1) for (i,j) € I; appears as an
(1, 7)-th component of a matrix of periods of that t-motive.

11



12 1. NOTATIONS

We set

o

o) = (-0 1 (1- 5 ) € Kl

i=1

which is in fact an element of E. Since {2 has a simple zero at 07 for eachi = 1,2, ..
it is transcendental over K(t). It satisfies the equation

QY = (t—6)Q

*

and we have

We set Dy := 1 and D; := H;;B(@qi —07) for i > 1. For each integer n > 0 with
g-adic expansion n = >, n;¢' (0 < n; < q), the Carlitz factorial is defined by

Fn+1 = H D;M

Let n = (n1,...,nq4) be an index and u = (uy, ..., uq) € (K[t])* a d-tuple of poly-
nomials. For a polynomial u = Y7, a;t/ € K[t], we set |u]o := max; |aj|o. When

n;q
Juilloo < |«9|<‘,’oil for each 4, we set

Lun() = i1>;d>0 ((t—09)---(t— qul);m .. ((C; —01) - (t — gqid))nd < K_m[[t]]’

which converges on [t|,, < |6]%, and satisfies the equation

L= — ug V) L Lun
wno (t — 0)n1+---+nd,1 LarRay T (t — 9)n1+~~+nd’

19

where we set Ly n,, = Lopg =1 Whenu=a € K with |ti]oo < |0]3&" for each i,
we have L, ,(0) = Li, (). Anderson and Thakur (J[AT1], [AT2]) showed that there

exists a polynomial H,_; € F,[0,] for each n > 1 such that |H, ;] < |0]% " and
Luwyn(0) =Ty, - T, ((n) where H(n) := (Hy,—1,..., Hpyo1)-

REMARK 1.2. We can easily show that

LalynlLOé27n2 = Lal,az,nlmz + Laz,a1,n27n1 + La1a2,n1+n2
for each a; and n; (for more general cases, see [Ch2]. He treated L, ,(f), but the
arguments are the same). By definition, I',, = 1 for each 1 < n < ¢, and by the
construction in [AT1], we know that H, ; =1 for 1 <n < g¢. Thus if ny +ns < ¢,
we have
LHn1—1Hn2—1,n1+7L2 = Ll,m-l—ﬂz = LHn1+n2—1,n1+n2'
Therefore, we obtain the harmonic shuffle product formula in Remark 2.9.



CHAPTER 2

Algebraic independence

In this chapter, we state linear/algebraic independence results on MZVs (Section
1) and values of CMPLs (Section 2). These are special cases of theorems in Chapter
4 and we will prove our theorems there in general settings.

1. Independence of multizeta values
Wade showed the following theorem:

THEOREM 2.1 ([W, Theorem 6.1]). The Carlitz period 7 is transcendental over
K.

Thus, ¢(n) is transcendental over K for each positive “even” integer n > 1 by
the Euler-Carlitz relation. Yu showed the transcendence of the Carlitz zeta values
at the positive “odd” integers:

THEOREM 2.2 ([Y1, Theorem 3.1, Corollary 3.4]). For each “odd” positive in-
teger n > 1, the elements ((n) and ((n)/7" are both transcendental over K.

Eherefore all Carlitz zeta values are transcendental over K. He also determined
all K-linear relations among the powers of 7 and the Carlitz zeta values:

THEOREM 2.3 ([Y2, Theorem 4.1]). Let my,...,m, > 0 be distinct non-negative
integers and ny,...,ng > 1 distinct positive “odd” integers. Then 7™, ... 7",
C(ny), ..., ((ng) are linearly independent over K.

Finally, Chang and Yu determined all algebraic relations over K among the
Carlitz zeta values:

THEOREM 2.4 ([CY, Corollary 4.6]). Let ny,...,ng > 1 be positive “odd” inte-
gers such that n;/n; is not an integral power of p for each i # j. Then 7, ((ny),
.., C(ng) are algebraically independent over K.

Thus all algebraic relations over K among the Carlitz zeta values come from the
Euler-Carlitz relations and the p-th power relations.
For the higher depth case, Thakur showed that any MZVs are non-zero:

THEOREM 2.5 ([Th2, Theorem 4]). For any index n, we have {(n) # 0.

Note that although the same statement in the classical case is trivial, this theo-
rem is non-trivial.

The following theorem gives an affirmative answer to the function field analogue
of Goncharov’s conjecture:

13



14 2. ALGEBRAIC INDEPENDENCE

THEOREM 2.6 ([Ch2, Theorem 2.2.1]). We have
Z=F2Z,.

w>0

Next, we state algebraic independence results of MZVs of higher depth. These
are proved in Chapter 4. We treat the set

(2.1 A7 Clipl(i,5) € Loy = {7} U{C(ny, njia, - mi)|[L < j < i < d}
for a fixed index n = (ny,...,nq) such that n; is “odd” for each 1.
First, we consider cases where ny =ny = --- = ngy.

THEOREM 2.7. Let n > 1 be a positive “odd” integer. Then 7, ¢(n) and ¢(n,n)
are algebraically independent over K, or ((n)?> —2((n,n) € 7" - K*. If 2n is “odd”,
then we have the former case.

REMARK 2.8. If p = 2, then 2n is “odd” if and only if n is “odd”. Thus 7, {(n)
and ((n,n) are algebraically independent over K for each positive “odd” integer n.
On the other hand, in characteristic zero, 2n is always even. Thus the second
part of Theorem 2.7 does not occur in this case. In fact, we have the relation

Cz(n)? = 2¢z(n, n) = (z(2n) € 7" - Q.

REMARK 2.9. If p¢ divides n; and ny and ny/p®+ns/p® < g for some e > 0, then
we have the harmonic shuffle product ((n1)¢(n2) = ((n1, n2) +(na, n1) + (g + no)
([Th2, Theorem 1], or see Remark 1.2). In particular, if 2n = p°(¢—1) then we have
the relation ¢(n)? — 2¢(n,n) = ((2n) € 7" - K* (when p = 2, this follows directly,
but in this case n is “even”). Thus, the latter case of the first part of Theorem
2.7 actually occurs when p > 3. We do not know what happens in the case where
2n = m(q — 1) for general m (including the case where n is “even”).

Since 7 and ((n) are algebraically independent over K for each “odd” integer n
([CY]), we have the following corollary:

COROLLARY 2.10. Let n > 1 be an “odd” integer. Then any two elements of T,
¢(n) and {(n,n) are algebraically independent over K.

COROLLARY 2.11. We have
dimz Z, = { 2 (2>2)

1 (g=2).

PRrOOF. Note that by Remark 2.9, we have ((1)2 = 2¢(1,1) + ¢(2) € Z, for
each ¢q. If ¢ > 4 then 2 is “odd”. Thus ((1) and ((1,1) (and 7) are algebraically
independent over K by Theorem 2.7. Thus (1) and ¢(1,1) form a basis of Z,. If
q = 3 then 2 is “even”, and hence we have ((2) € 7 - K*. However 7 and ((1)
are algebraically independent over K ([CY]). Thus ¢(1)? and ((2) form a basis of
Z,. When ¢ = 2, we have the relation ((1,1) = ((2)/(#* + 0) ([Thl, Theorem
5.10.13]). 0

REMARK 2.12. If p # 2 then ¢(1) and ((2) are algebraically independent over K
([CY]). Thus a new result in Corollary 2.11 is the characteristic 2 case with ¢ # 2.
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THEOREM 2.13. Let n > 1 be a positive “odd” integer and set

s :=tr.degs K (7,¢(n),((n,n),{(n,n,n)).

Then one and only one of the following holds:
(i) s=4,
(i) s=3 and {(n)®> —2((n,n) € #" - K*,
(iit) s =3 and ((n)®> —3¢(n)¢(n,n) + 3¢((n,n,n) € #" - K*.
If 2n is “odd”, then we have (i) or (iii). If 3n is “odd”, then we have (i) or (ii).

REMARK 2.14. If p = 3, then 3n is “odd” if and only if n is “odd”. Thus (i) or
(7) holds for each positive “odd” integer n > 1.

In characteristic zero, 3n is always odd if n is odd. Thus it is conjectured that
the condition (ii) always occurs in this case.

REMARK 2.15. In Theorems 2.7 and 2.13, we do not know about the K *-factors
of the relations when MZVs satisfies the relations as in the theorems. In these cases,
we expect that the harmonic product formulas

((n)* = 2¢(n,n) = ¢(2n) = 7 ran
2n+1
and
C(n)® = 3¢(n)C(nyn) + 3¢(n,n,n) = C(3n) = 7" B,
I‘3n+1
hold.

We also have the following corollary:

COROLLARY 2.16. Let n > 1 be a positive “odd” integer. Then ((n,n,n) and
any two elements of the set {m,((n),((n,n)} are algebraically independent over K.

The algebraic independence of 7 and ((n,n) (resp ((n,n,n)) in Corollary 2.10
(resp. Corollary 2.16) also follows from the “Eulerian” criterion ([CPY]) and the
fact that if a multizeta value is not “Eulerian” then it is algebraically independent
from 7 over K ([Ch2]).

Next, we consider the case where the depth one MZVs do not have relations.

THEOREM 2.17. Let d > 1 be a positive integer, and let nqy,...,ng > 1 be d
distinct positive integers. If n; is “odd” for each i and n;/n; is not an integral power
of p for each i # j, then the the following 1 + @ elements

%7 C(nl)’ C<n2)> g(ni’))v C(n4)7 """"" ) C(nd),
C(n17n2)> C(nQan?))? C(n37n4)v """" > C(nd—land)v
C(nl,ng,ng),C(ng,ng,m), Sy C(nd—%nd—land)a
C(n1,ng, ... ,nd_l)., C(n2,ng,...,ng),
C(ny,ng,...,ng)

are algebraically independent over K.
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Theorem 2.17 provides many MZVs which are algebraically independent over K.
The next theorem gives a positive answer to the function field analogue of a question
in [Andr, p. 231].

THEOREM 2.18. For each positive integer d > 1, we set K4 to be the field gen-
erated by the MZVs of depth 1 or d over K. When q # 2, we have
tr.degy, K4 = 00
for each d > 2.

PROOF. Since ¢ # 2, the set Z>; \ ((¢ — 1)Z>1 U pZ>1) is an infinite set. We

denote the elements of this set by ny,ns,ns3,.... Hence we have
Kl - K(%q_lu C(nl)a <<n2)7 ((n?))u R )
By Theorem 2.17, the elements ((n1,...,n4), ((Nas1, .-, 124), C(N2di1, - - -, N3d), -

are algebraically independent over K.

D
REMARK 2.19. (1) Similarly, we can prove that for any integers dy, do, d3, - - - > 2,
there exist indices 1, ny,n3, ... such that dep(n;) = d; for each j and ((n,), ((n,),
((ng), ... are algebraically independent over K.

(2) When ¢ = 2, Chang ([Ch2]) showed that either ((1,2) or ((2,1) is transcen-
dental over K. However we do not know whether there exist infinitely many MZVs
which are algebraically independent over K; when ¢ = 2.

By Theorem 2.17, we may obtain some lower bounds of the dimension of the
vector space over K (or K) spanned by the MZVs of fixed weight. We do not
pursue this problem in this thesis and content ourselves with stating the following
easily obtained lower bounds of the transcendental degree of the field generated by
the MZVs of bounded weights and the dimension of Zj:

COROLLARY 2.20. Let w > 1 be a positive integer. If there exist positive integers
di,...,d, > 1 and an “odd” positive integer n;; > 1 for each 1 < i < r and
1 < j < d; such that n;j/nyj is not an integral power of p for each (i,7) # (i',j")
and Zj ni; < w for each i, then we have

— i(d; 1
tr.dege K (7, C(n)| wt(n) < w) > 1+Z .
COROLLARY 2.21. We have
=4 (p#2,3)
dimz Z3 i g EZ : 2)01“ 34723
>2 (¢g=2).

PROOF. Note that dimz Z3 < 4. Assume that p # 2,3. By Theorem 2.17, {(1),
€(2), ¢(3) and ((1,2) are algebraically independent over K. Thus ¢(1)%, ¢(1)¢(2),
¢(3) and ((1,2) form a K-basis of Z3. Next assume that ¢ # 2. By Corollary
2.16, ¢(1), ¢(1,1) and ¢(1,1,1) are algebraically independent over K. Thus ((1)?,
¢(1)¢(1,1) and ¢(1,1,1) are linearly independent over K. When ¢ = 3, we have
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¢(1,2) = ¢(3)/(0 — 6%) (]Th3, Theorem 5]). When ¢ = 2, since ((1) and either
¢(1,2) or ¢(2,1) are algebraically independent over K (see Theorem 2.1 and Remark
2.19), ¢(1)% and either ¢(1,2) or {(2,1) are linearly independent over K. O

Next, we consider cases where indices may have p-th power relations. We fix an
index n = (nq,...,nq) such that n;’s are “odd” and distinct from each other.

DEFINITION 2.22. We say that elements (i,7), (k,¢) € I; are equivalent and
denote by (i,7) ~ (k,£) if dep(i,j) = dep(k,¢) and there exists an integer ¢ € Z
such that n,; = p°ng, = (p°ne, ..., p°nk—1). When (i,j) ~ (k,{) and dep(i,j) =
dep(k, () = 1, we write j ~ ¢ instead.

Of course, this equivalence relation depends on the fixed index n. When (4, j)
and (k, () are equivalent, we have the p-th power relation ((n;;) = ((n,)"" where
e € Z is an integer such that n;; = p°ny,. We expect that when n satisfies some
“good” condition, the p-th power relations are the only relations among the elements
of the set (2.1). This means that the equality

(2.2) tr.degg K (7, ((1;)[(3,5) € 1) = 1+ #(La/ ~)
holds for certain n. The equality (2.2) does not hold in general. For example, set
n = (ny,ng, p°ng, p°ni,ny + ny) for ny + ny < ¢ and e > 1. Then the harmonic
product formula for {(n,){(ns) holds and we have the relation

(C(n1)¢(n2) — C(n1, na) = ¢(n1 +na2))?" = C(p°na, pna).
We show that the equality (2.2) holds in some cases.

THEOREM 2.23. Let n = (nq,...,nq) be an index such that n;’s are “odd” and
distinct from each other. If there exists exactly one pair j1 # jo such that ji ~ jo in
1y, then the equality (2.2) holds. This means that we have

— o d(d+1
tr.degze K (7, (ni;)|(4, ) € la) = #1a = %
THEOREM 2.24. If d < 3, then the equality (2.2) holds.

2. Independence of values of Carlitz multiple polylogarithms

The following lemma is used as a criterion whether values of CMPLs satisfy
assumptions of our theorems.

LEMMA 2.25. Let m > 1 be a positive “odd” integer, n = (nq,...,nq) an index

and a = (ay, ..., aq) € (K*)* a d-tuple of non-zero rational points such that || <
i 4

0|&" for each i. Then 7" and Li,(a) are linearly independent over K.

PROOF. We have 7" ¢ K, and Li,(a) € KX for such m, n and «a (see Theorem
2.28). O

First we state algebraic independence results in depth one cases. Papanikolas
(n = 1), Chang and Yu (n > 1) proved the following theorem. This gives a criterion
of the algebraic independence of the values of CMPLs at algebraic points of depth
one.
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THEOREM 2.26 ([P, Theorem 6.3.2], [CY, Theorem 3.1]). Let n > 1 be a positive

—_ _ng_
integer, and let oq,...,a, € K be algebraic points such that |ojle < |05 for
each j. If @, Li,(aq),...,Li,(a,) are linearly independent over K, then they are

algebraically independent over K.

By Lemma 2.25 and Theorem 2.26, 7 and Li,(«) are algebraically independent
over K if n > 1 is a positive “odd” integer and o € K* is a non-zero rational point

such that |a|w < ]9[{,’?
Chang and Yu studied the algebraic independence of values of CMPLs of depth
one when weights vary.

THEOREM 2.27 ([CY, Theorem 4.5]). Let ny,...,ng > 1 be positive integers
such that n;/n; is not an integral power of p for each i # j. For each i, we
nya
take algebraic points oy, ...,y € K with |ijloe < 0|&T for j = 1,...,ri. If
7 Ly, (1), - - -, Lip, (auy,) are linearly independent over K for each i, then the
1+ Zle r; elements {7, Li,, (cu;)|1 < i < d, 1 < j < r;} are algebraically in-
dependent over K.

For the higher depth case, Chang showed that any values of the CMPLs at
non-trivial points are non-zero:

THEOREM 2.28 ([Ch2, Proposition 6.1.1]). For any index n = (ni,...,nq) and

a d-tuple of non-zero points o = (au, ..., aq) € (CX)4 such that |ayle < |0|% ", we

have Li,(a) # 0.

The following theorem gives an affirmative answer to the CMPLs analogue of
Goncharov’s conjecture:

THEOREM 2.29 ([Ch2, Theorem 6.4.3]). Values of CMPLs at non-trivial alge-
braic points of different weights are linearly independent over K.

Next, we state algebraic independence results of the values of CMPLs at algebraic
points of higher depth. These are proved in Chapter 4. We treat the set

{7~T7 Liﬂi]- (Qz])’(la]) € Id} = {7~T} U {Linj,anrl,‘..,ni(aja O7ES PI 7052')|1 < j < l < d}
for a fixed index n = (ny, ..., ng) and a d-tuple of algebraic points a = (aq, ..., aq) €
— nig
K" such that | < |0]3" for each i.

First, we consider cases where ny =ngs =--- =ngand o = s = - - - = ay.

THEOREM 2.30. Let n > 1 be a positive integer and o € K an algebraic point

such that |a|s < |0]&". Assume that T and Li, () are linearly independent over K.
Then 7, Li,(a) and Li, (o, ) are algebraically independent over K, or Li,(a)* —
2Li,n(a,a) = Lig,(a?) € 7 - K*. If ©" and Liy,(a?) are linearly independent

over K, then we have the former case.

Note that by Lemma 2.25, the assumption of Theorem 2.30 is satisfied if n is
“odd” and o € K*. Similarly, the assumption of the second part of Theorem 2.30
is satisfied if 2n is “odd” and o? € K*.
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THEOREM 2.31. Let n > 1 be a positive integer and o € K an algebraic point

_ng_
such that |a|s < [0|&". Assume that T and Li,(«) are linearly independent over

K. Set
s := tr.deg K (7, Li, (), Liy o (v, @), Lip pn(e, o, @)).
Then one and only one of the following holds:
() s=4
(ii) s =3 and Li,(a)? — 2Li,,(a, ) = Lig,(a?) € 7" - K%,
(iit) s =3 and Li, () —3Li, () Liy (o, @) +3 Liy pn (o, , a) = Liz,(a?) €
%371 . KX,
(tv) s =2 and the above two relations are satisfied.
If T and Liy,(a?) are linearly independent over K, then we have (i) or (iii). If

7" and Lis,(o®) are linearly independent over K, then we have (i) or (ii).

Note that the assumption of the second (resp. third) part of Theorem 2.31 is
satisfied if 2n (resp. 3n) is “odd” and a? € K* (resp. o® € K*).
We have the following corollary:
COROLLARY 2.32. Letn > 1 be a positive “odd” integer and oo € K* a non-zero
_ng_
rational point such that |a|s < [0|5%". Then Liypn(a, a,«) and any two elements
of the set {7, Li, (), Liyn(c, )} are algebraically independent over K.

The next theorem gives many values of CMPLs of higher depth which are alge-
braically independent over K.

THEOREM 2.33. Let nq,...,ng > 1 be positive integers. For each i, we take o; €
n;q

K™ such that |oy]e < |0]%" for each i. If X, Li,, (1), . .., Lin,(aq) are algebraically
independent over K, then the cardinality of the set

{77} U {Linj,nj+1,...,m (O-/jv C7EE P aai)“— < ] <i< d}
15 1+ @ and all elements of this set are algebraically independent over K.

By Lemma 2.25 and Theorem 2.27, the assumption of Theorem 2.33 is satisfied
when n; is “odd” and a; € K* for each ¢ and n;/n; is not an integral power of p for
each i # 7.






CHAPTER 3

Review of pre-t-motives

In this chapter, we review the notions of pre-t-motives and Papanikolas’ theory
for pre-t-motives. For more details, see [P]. A pre-t-motive is an étale p-module
over (K(t),o); this means a finite-dimensional K (t)-vector space M equipped with
a o-semilinear bijective map ¢: M — M. A morphism of pre-t-motives is a K (t)-
linear map which is compatible with the ¢’s. A tensor product of two pre-t-motives
are defined naturally. For any pre-t-motive M, the Betti realization of M is defined
by

M? = (Leg M)UWI
: K(t) )
where (—)7®¥=! is the 0 ® p-fixed part. A pre-t-motive M is called rigid analytically
trivial if the natural injection L ®p, ) M By L Q%) M is an isomorphism. The
category of rigid analytically trivial pre-t-motives forms a neutral Tannakian cate-
gory over F,(t) with fiber functor M +— MP. For any such M, we denote by G the
fundamental group of the Tannakian subcategory generated by M with respect to
the Betti realization. By definition, Gy is an F,(t)-subgroup scheme of GL(M?7).

Let ® € GL,(K(t)) be a matrix. We consider the system of Frobenius difference

equations

(3.1) oD = o

with solution entries of ¥ = (¥;;) in L. The matrix ¢ defines the pre-t-motive

Mg = K(t)" with
o(x1,..., @) = (33(71), a1,

rrr

The pre-t-motive Mg is rigid analytically trivial if and only if the system of Frobenius
difference equations (3.1) has a solution matrix ¥ in GL, (L), and in this case ¥"'m
forms an FF,(t)-basis of (Mg)®, where m is the standard basis of K (t)” on which the
action of ¢ is presented as ®. Such matrix ¥ is called a rigid analytic trivialization
of @, and the values W;;(6) of its components at ¢t = § (if they converge) are called
periods of Mg. For such ¥, we set ¥ := U7'U, € GL,(L @%@ L), where Uy (resp.
Uy) is the matrix in GL, (L®z(, L) such that (¥;);; = U;;®1 (resp. (V)i = 10Vy;).
Let X = (X;;) be the r x r matrix of independent variables X;;. We define an F,(¢)-
algebra homomorphism v by

and set
Gy := Spec(F,(t)[X, 1/ det X]/ kerv) C GL, k) -
21



22 3. REVIEW OF PRE-t-MOTIVES

For each IF,(t)-algebra R, we have the map given by
(3.2) Gy(R) = Gpp(R); g— (f- U 'm s fg~! - ¥ 'm)
where f runs over all elements of Mat; ., (R).

THEOREM 3.1 ([P, Theorems 4.3.1, 4.5.10, 5.2.2]). Let ® and ¥ be matrices
satisfying (3.1), and let Gy, and Gy be as above.

(1) The scheme Gy is a smooth subgroup scheme of GL,r, ) and the above map
Gy — G, is an isomorphism of group schemes over F(t).

(2) Let K(t)(V) be the field generated by the entries of ¥ over K(t). Then we
have

dim Gy = tr.degz, K(t)(P).

(3) Assume that ® € Mat,(K[t]), ¥ € GL,(T) N Mat,(E), and det ® = c(t — 0)¢
for some c € K" and d > 0. Let K(U(0)) be the field generated by the entries of
U(0) over K. Then we have

tr.degz,) K(t)(¥) = tr.degz K (V(0)).

REMARK 3.2. The result (3) in Theorem 3.1 is rooted in the deep result in
[ABP)], which is addressed as ABP-criterion. However, the restriction of the con-
dition on det ® originated from Anderson ¢-motives but such restriction indeed can
be relaxed (see [Ch1]). But for our purpose, the above is sufficient and so we do
not state the refined version given in [Ch1].

REMARK 3.3. Let v € [F,[t] be an irreducible monic polynomial. Then we can
consider v-adic realizations and v-adic periods of t-motives. In [M1] and [M2], we
proved a v-adic analogue of (1) and (2) of Theorem 3.1. However, we do not know
whether a v-adic analogue of ABP-criterion holds.

ExAMPLE 3.4. The Carlitz pre-t-motive C' is the pre-t-motive defined by the
1 x l-matrix [t —#6]. Since QY = (¢ — 0)Q, the Carlitz pre-t-motive is rigid
analytically trivial. Since € is transcendental over K (t), we have dim Gjg = 1, and
thus Go = Gig) = Gy,

EXAMPLE 3.5. Let n = (ni,...,n4) be an index and u = (uy,...,uy) € (K[t])

n;q

be a d-tuple of polynomials such that |u]o < [0]5%" for each i. We consider (d +
1) x (d + 1)-matrices

(t — G)mttna 0 0 .. 0

Wt — gymttna (p—gnettna 0

o= 0 us (t — g)rattna :
: t—6)m 0

I 0 0 ui V-6 1
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and
— Qn1++nd O O . 0_
ni+-+ng na+-+ng .
Q Luy, ny, Q 0 0
R ni+--+ng na+-+ng . .
U= Q Lﬂgpﬂm Q LH32@32 : N

: : Qna 0

ni+-+ng na+-+ng nq
_Q L2d+1,1vﬁd+l,1 Q L2d+1,2’ﬂd+1,2 Q Lﬂdﬂ,d:ﬂdﬂ,d 1_

where the notations n,;; and w;; are defined in Definition 1.1. These satisfy the
Frobenius difference equations (3.1). Hence V is a rigid analytic trivialization of .
Let M be the pre-t-motive defined by ®. By Theorem 3.1, we have an isomorphism
Gy — Gy and

tr.degw K (7, Ly, n,, (0)](4,)) € 1g) = dim Gy.

— nig
Thus when u = H(n) (resp. u = a € K with |i]oo < |0]&" for each i), the
mult1zﬁeta values ((n;;) (resp. the Carlitz mult}Ple polylogarithms Li, (gl-j)') appear
as periods of the pre-t-motive M. By the definition of Gy, we also have the inclusion
an1+--'+nd
qnet+na

T21
G\p -

Td4+1,1 T LTd+1,d 1

We can calculate ¥ explicitly as
CI/[Z] — (Q—l ® Q)’flr‘r—i-’VZd Z Z(_l)’f’ Z Lz’lio L. Li7,iT71 ® Qn]-+--~+ni_1 sz

s=j r=0 s=10<11 <"+
<ip_1<ir=1

for each (7, 7) € Iz, where we write Lyg := Ly, n,,-






CHAPTER 4

Proofs

In this chapter, we prove our results in Chapter2. For square matrices A and B,
we denote by A® B the diagonal block matrix made of A and B. We use the letters
a and z;;’s as coordinate variables of algebraic groups. We use also these variables
to define various algebraic groups. For example, we denote by

1)

the subgroup of GLjy over IF,(t) whose valued points are of the form

-1

To prove our theorems, we use the following lemma. This lemma is clear, but very
useful.

LEMMA 4.1. Let V. C G," be an algebraic subgroup of dimension zero. Let
ma,...,m, € Z be non-zero integers. Assume that V is stable under the G,,-action

on G," defined by

a.(zy,...,x.) = (a™zy,...;,a"x.) (a € Gy, (x;) €G,").

Then V(F,(t)) is trivial.

1. Depth one case

We state several algebraic independence results concerning the case of depth one.
Papanikolas, Chang and Yu proved the following theorem which states a criterion of
the algebraic independence of MZVs and CMPLs at algebraic points of depth one.

— _ng_
Note that they discussed only the case where u; = a; € K with |a;]ec < |0]&" (see
Theorem 2.26), but their arguments work also for any u; € K[t] with |u;]e < 0% "

THEOREM 4.2 ([P, Theorem 6.3.2], [CY, Theorem 3.1]). Let n > 1 be a pos-
itive integer and uy, ..., u, € K[t] polynomials with |u;|e < |0|&" for each j. If

-_n

7" Ly n(0), ..., Ly, n(0) are linearly independent over K, then they are algebraically
independent over K.

Thus 7 and ((n) (or Li,()) are algebraically independent over K for each “odd”

integer n > 1 and o € K* with |a|s < |0|% ", because T ¢ Ko, and ((n), Li,(a) €
KZ for such n and « (see also Lemma 2.25).

25
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THEOREM 4.3. Let ny,...,ng > 1 be positive integers such that n;/n; is not an
integral power of p fm’ each 1 7& j. For each i, we take polynomials us, . .., uy, € KJt]
with |uijle < 10|%" forj = 1,...,7m. If T, Ly, ni(0)s ooy Ly, 0, (0) are linearly
independent over K for each i, then the 1+ 3" r; elements {7, Luyn,(0)[1 <i <
d, 1 <j<r;} are algebraically independent over K.

This is almost proved in [CY]. In [CY], they treated some special case, but their

_ g
proof works also for any n; not divisible by p and any «;; € K[t] with |ajfe < 0|5
By a slight modification of their proof, we can weaken the condition on n;’s as in
our statement. Note that when «;; € K or o;; = H,,,_1, we can reduce Theorem 4.3
to the case where n; is not divisible by p, and we do not need the following proof in
such cases.

In our proofs, our purpose is to show that the dimension of the algebraic group in
question is maximal as large as possible, and so we always work on the F,(t)-valued

points without studying the reduced/non-reduced structures, where F,(¢) is a fixed
algebraic closure of F,(¢). So for an algebraic group G over F,(t), when it is clear
from the context, without confusion we still denote by G the F,(¢)-valued points of

G.

PROOF OF THEOREM 4.3. We set [ :={(i,j) € Z*1 <i<d, 1 <j<r;}. In
this proof, (7,7) and (k,¢) are always assumed to be elements of I. We define an
order on I by the lexicographic order; this means (7,7) < (k,¢) if and only if i = k

and j < /¢, ori < k. For (k,¢) € I, we define 2 x 2-matrices
- (t — )™ 0
ot = [ L )

Then they satisfy the Frobenius difference equations W[k, (]Y = ®[k, (] U[k, ).
Let Mk, ¢] be the pre-t-motive defined by ®[k,¢] and G(k,¢) (resp. Gi(¢)) the
fundamental group of the pre-t-motive

Mk, 0) =Co® @ MTi, j] (resp. Mi(0) =Co® @ M[k:,j]) :
(1,5)<(k,0) Jj<t
We identify G(k,?) (resp. Gi(¢)) with the algebraic group defined by

[Q} &) @ Ui, j] (resp. [Q] & @‘P[k,j])

(4,5)< (kL) j<e

as in Theorem 3.1. Then we have the inclusion (resp. equality)

awocfie @ [} (wao-{ued[ 1))

(i) <(k,0)

QL 1

} and W[k, (] = { o 0] :
Qpe,Nk

for each (k,¢). By Theorem 3.1, it suffices to show that the above inclusion is
actually an equality for each (k,¢). We prove this by induction on (k,{) € I with
respect to the total order “<”.
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By the assumption, this is true for (1,1) < (k,¢) < (1,71). Let (k,£) > (2,1) and
assume that the inclusion is an equality for the greatest element (k',¢") of {(i,]) €
I|(i,j) < (k,0)}. Thus (K',0') = (k,—1)if ¢ # 1 and (K',0') = (k—1,1x_q) if £ = 1.
By definition, M (K, ¢") and M (¢) are subobjects of M (k,¢) and C' is a subobject
of M(k,0), M(K',¢') and My(¢). By the Tannakian duality, we have surjections
v: Gk, 0) = GK', ), Yp: Gk, l) = Gr(0), m: G(k,l) = Gy, 7' G(K ) = Gy
and 7: Gp({) — G,,, where we identify G¢ with G,,. The projections 7, 7" and
7" map the matrices of the above forms to a and ¥ (resp. ) maps them to the
same matrices with the (k, £)-th component matrices (resp. all (7, j)-th component
matrices (i # k)) removed. We set V := Kern, V' := Ker7’ and V" := Ker " to be
the unipotent radicals of G(k, ), G(k',¢') and Gg(¢). Then we have the following
diagram

1

1 Vv Gr(l) —=G,, 1
Td’klv ka
1 1% G(k,0) ——~G,, 1

.

1 —— V' —— G )~ G,, 1

which is commutative and whose rows are exact.

It is clear that |y is surjective. Note that the coordinate variable xy, of G(k, )
is the only coordinate variable which does not appear as a coordinate variable of
G(K',¢'). Thus we know that dim G(k', ') < dim G(k,¢) < dim G(K',¢') + 1. This
also follows from Theorem 3.1 (2). It suffices to show that the second inequality is
an equality.

Now, assume that dim G(k,¢) = dim G(k’,¢). Then dim Ker(¢|) = 0. We
identify V' C I[ij1<r.o) Gar V' = Iliijy<(rp) Ga and V" = [[,., G, by means of the
coordinates x;;. The G,,-action on V' (resp. V', resp. V") defined by a.X :=a ' Xa,
where a € G(k,0) (resp. G(K',0'), resp. Gi({)) is a lift of a € G,,, is described as
xi; — a™z;; on each coordinate. By Lemma 4.1 we have Ker(¢|y) = 1. Thus the
morphism |y is bijective (but not necessary an isomorphism of varieties) and we
have the surjective map

¢k|\/ o w|‘—/1: V/ é V N VH.

For each (7,7) # (k, (), we set Vi; (vesp. V};) to be the subvariety of V' (resp.
V') defined by zy; = 0 for each (¢, j') # (i,7), (k,£). Then 9|y, : Vij — Vi, = G,
is a bijective G,,-homomorphism. Thus we have dim V;; = 1. Hence the algebraic
set! Vj; is defined by a separable polynomial of the form miz >, bnxf; for some

e,m > 0 and b, € F (t) (See [Co, Corollary 1.8]). Now we take i # k and assume
that the G,,-homomorphism |y;; ozb\‘ji, is non-zero. Then we can take b,, # 0 and

we have (> by(a™z;)P" )P " = a™ (Y, bn:cf;)p% for each a € G,,. By comparing

IMore precisely, the smooth algebraic group (Vij @ Fg(t))rea is defined by such a polynomial.
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the coefficients of :ch]m ~°, we have n;p™ ¢ = ny, which is a contradiction. Thus we
conclude that 1q|y;, 01/1|‘_/$_ = 0. Therefore we have 9|y (1] (G, ")) = V", whence
a contradiction since dim V" = /. O

2. Proofs of Theorems 2.7, 2.13, 2.30 and 2.31

Let F be a fixed algebraic closure of F' := F,(t) and F*® the separable closure
of Fin F. For a scheme S over F, we write Sg for its base extension to F. The
following lemma is proved by using the same argument as in [Ch2, Lemma 5.3.1]
and we omit the proof.

LEMMA 4.4. Let n = (ny,...,nq) be an index and u = (uy, ..., uq) € (K[t])? a

niq
d-tuple of polynomials such that |u;|« < |0|&" for each i. For each non-negative
integer N > 0, we have

N

o) - (220 )

Tnittng

THEOREM 4.5. Let n > 1 be a positive integer and u € K[t] a polynomial such

that |u|e < |t9|£?q1 Then the following conditions are equivalent:
(1) ® and L, (0) are algebraically independent over K,
(2) Q and L., are algebraically independent over K(t),
(3) 7 and L, ,(0) are linearly independent over K,
(4) Q"Ly,, — 1 and Q" are linearly independent over K(t) for each c¢; € F,(t).

ProOOF. Let L; := L,,,,. We set

B, = {u(_(f)&e_)n@)n J € GLy(K(1)) and W, = [Qf}; 1} € GLa(L).

Let M, be the pre-t-motive defined by ®; and G its fundamental group. Then the
n-th tensor power C'®" of the Carlitz pre-t-motive (Example 3.4) is a subobject of

M1 by

C®" — My; z+ (z,0).
By Tannakian duality and Theorem 3.1, we have a diagram of smooth group schemes
over [

st
G1 —— Geon

Gy, Gogn —=G,, .
In the following, we identify the upper group schemes with the lower group schemes

in the above diagram. At first, we describe the morphism m; in the above diagram
explicitly. By definition, we have

ST QRO
Lo +100"L, 1
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Thus we have the inclusion
Ia) a
G =Gy, C Gy ::{L 1]} C GL,.

By using the above identification, we can write
T Gy Gy |© —a
1- 1 mroe ] .

This follows from the description of the map (3.2). The arguments are the same as
in [P, §6.2.2], [CY, §4.3] and [CPY, Remark 2.3.2]. We set V; := Kerm; to be the
unipotent radical of G;. Then we have

cer-{[ )

and obtain the following diagram

1 v el G 1

I

1 Vi Gy

which is commutative and whose rows are exact.

The group scheme V; is smooth over F. Indeed, take ag € G,,(F) \ G,,(F,) and
its lift ap € G1(F). Let T C Gi g be the Zariski closure of the group generated
by ag. Then T is a rank one torus and isomorphic to G, # via 7, . In particular,
Lie(m 7): Lie(G17) — Lie(G,, 7) is nonzero. Since G  and G,, 7 are smooth over

F, we have dim Vlf = dim Lie(Vlf), and hence V] is smooth over F.

In view of the above short exact sequence, we let G,,(F) act on Vi(F) by a.X :=
a'Xa for a € G, (F) and X € Vi(F), where a € G1(F) is a lift of a. In term of
matrices, this action is given by

1] 1
“lz 1]~ ez 1]°
By Theorem 3.1, we have
tr.degz K (7, L1(0)) = tr.degz K@) (9, L) = dim G,

and this value is one or two. Thus we have

B)= 1)« (2)= ).
Assume that the condition (4) does not hold. Then there exists ¢; € F,(t) and
f € K(t) such that

QnLl — C = an

For some positive integer N > 1, the rational function f has no pole at t = V.

Then we have N
L q
( 1(9)> _ cl(Q)QN -0

T
by Lemma 4.4. Thus the condition (3) does not hold. This means that (3) = (4).
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From now on, we suppose that the condition (1) does not hold. Thus we have
dim G; = 1 and hence dim V; = 0. By Lemma 4.1, we conclude that V; = {1}. Next,
we determine the group scheme G;. Fix an element ag € G,,(F) which has infinite
order and set ag € G,,(F) to be the geometric point above ag. Since the geometric
fiber G g5 of m over ag is a V; -torsor, it is isomorphic to Vi & which is smooth over
F. Thus the fiber G 4, is smooth over F. By [L, Chapter 3, Proposition 2.20], we
have Gy 4, (F*P) # 0, and hence we can take a lift @y = {ZO 1] of ag in G1(F™P).

0
Then for each integer r € Z, we have
~r ag
ap = | » , :

Since ag has infinite order, we have

{Ll(la— a) 1]} C G,

where ¢; := oo € FPP. Since (1 7 is a one-dimensional irreducible reduced group

scheme, we conclude that the above inclusion is actually an equality.
We set a polynomial

Q = X21 — Cl(l — Xll) € Fsep[Xll,Xgl] C Fsep[XH’ Ce ,XQQ, l/detX]

Then Gy = Spec F[Xi1, Xo1, X11']/(Q). Since Gy is defined over F, the ideal
(Q) is stable under the action of Gal(F*?/F) = Aut(F/F). Therefore for each
o € Gal(F®*?/F), we can write 0(Q) = P,Q for some P, € F[X11, Xo1, X;;']. By
comparing the degree of each variables, P, must be a constant. Comparing the both

sides again, we have P, = 1 and o(c¢;) = ¢; for each o € Gal(F*?/F). Hence we
have ¢; € F' and @ € F[X,1/det X]. Since Q = 0 on the reduced scheme G , we

have Q(CI/\;) = 0. By the definition of @1, this is equivalent to the equality
(QnLl - Cl) X Qr =" (059 (QnLl - Cl)
in L ®%(, L. Thus the condition (4) does not hold. This means (4) = (1). O

REMARK 4.6. By the proof of Theorem 4.5, when the equivalent conditions are

satisfied, we have
a
a-{ls o}

When the equivalent conditions are not satisfied, we have

= en=n 1]}

for some ¢; € Fy(t). Such ¢; gives the linear dependence of Q™ and Q"L,, ,, — ¢; over
K(t), and ¢; is uniquely determined by




2. PROOFS OF THEOREMS 2.7, 2.13, 2.30 AND 2.31 31

THEOREM 4.7. Let n > 1 be a positive integer and v € KIt] a polynomial

such that |us < |0|%". Assume that the equivalent conditions of Theorem 4.5 are
satisfied. Then the following conditions are equivalent:
(1) 7, Lyn(0) and Lyynn(0) are algebraically independent over K,
(2) Q, Ly, and Ly, are algebraically independent over K(t),
(3) T and Ly, (0)? — 2Ly unn(0) are linearly independent over K,
(4) QL2 — 20%" Ly ynn — c2 and Q*" are linearly independent over K(t)
for each co € Fy(t).

REMARK 4.8. The equivalent conditions of Theorem 4.7 are satisfied if p = 2.
For example, we can easily check the condition (3).

PrROOF OF THEOREM 4.7. We continue to use the notations in the proof of
Theorem 4.5. Let Ly 1= Ly yn.n. We set

(t o 9>2n
Oy = | — 0 (t— )" € GL3(K(t))
w0 1
and
QZn
U, = [Q*L, Q" € GLs(LL),

0L, "Ly 1

Let M, be the pre-t-motive defined by &, and G its fundamental group. Then we
have a homomorphism of pre-t-motives

My — My, (331,552,5153) — (152,933)-

By Tannakian duality and Theorem 3.1, we have a diagram of smooth group schemes
over F
P12

T

G2 Gl GC@n
Gy, Gy, Gon —G,, .

In the following, we identify the upper group schemes with the lower group schemes
in the above diagram. At first, we describe the morphism ;5 in the above diagram
explicitly. By Remark 4.6, we have

o-{: I}

By the definition of Wy = ((@)U), we have the relations
(Vo) = (T2)3, (V)2 = Q7" Q" (Vo)ss =1,
(D)o = (V2)22(Wa)sz, (Va)sy = 1@ Q" Ly — Ly @ Q"
(‘/I’VQ)sl = (L~ L) @0 — L1 @ V"L + 1@ Q™" Ly,
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and (@;)U = 01if ¢ < 5. Thus we have the inclusion

2

a
GQ%G%CG_Q:: ar a C GL3.
y o 1

By using the above identifications, we can write
2

a
¢122 G2 — G17 ar a — |:Z 1:|
y x 1

as in the proof of Theorem 4.5. We set my := w1 0 9015 and V5 := Kermy to be the
unipotent radical of G5. Then we have

Vo C Vo=

< 8
S

and obtain the following diagram

| V=G =Gy ——1

I

1 Vs Go G, 1

l¢12|v2 idﬂQ

1 1% G —~G,, 1

which is commutative and whose rows are exact. Clearly 13|y, is surjective. The

group scheme V5 is smooth over F as in the proof of Theorem 4.5. A G,,,(F')-action

on Vo(F') is given by

1 1
a. |z 1 =lax 1
y o 1 a’y ax 1

By Theorem 3.1, we have
tr.degs K (7, L1(0), Ly (0)) = tr.degz K(t)(Q, Ly, Ly) = dim Gy
and this value is two or three. Thus we have
B)=1)«2)=1)

and (3) = (4) as in the proof of Theorem 4.5.
From now on, we suppose that the condition (1) does not hold. We have

d_imgg = 2 and hence dim V5 = 1. Then Ker(i1a|v,: Va(F) — Vi(F)) = Vo(F) N
Vs o(F') has dimension zero, where we set

o 1
Voo = 1
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Since Va(F) N Vao(F) is closed under the G,,(F)-action on Va(F), we conclude that
Vo(F) NVoo(F) = {1} by Lemma 4.1. For a matrix

1
X=|z 1 e Vo(F),
y x 1
we have
1
X" = ro 1 € Vu(F)
—(Tgl)er—l—ry re 1

for each integer r € Z. Thus if r is not divisible by p, we obtain

1
Vao(F) 3 (r X)X " = 0 1 € Vao(F).
D2y —a?) 0 1

Since Vo(F) N Vo o(F) = {1}, we have the relation

—1
4 5 (2y — 2%) = 0.
We take 7 # 1 mod 2p. Then we have the relation
2y — 2% = 0.

When p = 2, we have x = 0. This contradicts the surjectivity of 1s|y,. Thus when
p = 2, we always have dim Gy = 3. In the following, we assume that p # 2. Since
dim V5 = 1, we conclude that

1
Lé = xXr 1
|

2

Next, we determine the group scheme Gs. Fix an element ag € G,,(F") which
has infinite order. As in the proof of Theorem 4.5, the fiber G ,, is smooth over
F and we have Gy ,,(F*P) # 0. Let ao be a lift of ag in G2(F*P). Since Go(F*P)
contains V5(F*®P), we can eliminate the z-coordinate of ag. Thus we may assume

that
2

o
ag = ao € Gy(F*P).
Yo 1
Then for each integer r € Z, we have
_ o
il IO B
>(1 —ag") 1

| 1—a§

Since ag has infinite order, we have

a C GQF,
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) . . . . . .
where ¢y = —1_3/22 € F®P. Since G2 is a two-dimensional irreducible reduced
O k2

group scheme which also contains V5 7, we conclude that

a2

GQF = ax a

2

E—-2(1-d®) o 1

As in the proof of Theorem 4.5, we have ¢y € F'. We set a polynomial
Q = 2X31 — Xopy + (1 — X3,) € F[Xp9, X31, X30] C F[X11,. .., X33,1/det X].
Then we have Q(@;) = 0. By the definition of {—I;;, this is equivalent to the equality
(P"L3 — 207" Ly — ) @ 2" = Q" @ (V" L3 — 2Q0*" Ly — )
in L @z, L. Thus the condition (4) does not hold. This means (4) = (1). O

REMARK 4.9. By the proof of Theorem 4.7, when the equivalent conditions are
satisfied, we have
a2
Gy = ar a

y x 1

When the equivalent conditions are not satisfied, we have

CL2

Gy = ax a

%2 - 21— a?) © 1
for some ¢y € F,(t). Such ¢y gives the linear dependence of Q2"L12w —20%" Loy ynn—C2

and Q2" over K (t), and ¢, is uniquely determined by

Lun62_2Luunn9 Lu2 ne
62(9): 7() 77,(): ~,22n()

ren T

PrRoOOFS OF THEOREMS 2.7 AND 2.30. First we prove Theorem 2.7. We fix a
positive “odd” integer n > 1 and set u := H,_y. Since 7 ¢ K, and L,,(f) =
I'¢(n) € KX, they are linearly independent over K. Thus the equivalent conditions
of Theorem 4.5 are satisfied. By Theorem 4.7, the elements 7, I',,{(n) and I'2((n,n)
are algebraically independent over K, or 72" and I'2(¢(n)? — 2¢(n,n)) are linearly
dependent over K.

Now we assume that 2n is “odd”. Then 7" ¢ K, and I'2(¢(n)? — 2¢(n,n)) €
K. Since [{(n)|s = 1 and |((n,n)|s < 1, we have ((n)* — 2((n,n) # 0. Thus the
condition (3) of Theorem 4.7 holds.

Theorem 2.30 is proved similarly. U

Next, we consider depth three cases. To show the classifications of Theorems
2.13 and 2.31, we prove Theorems 4.10 and 4.13.

THEOREM 4.10. Let n > 1 be a positive integer and u € K[t] a polynomial

_ng_
such that |u|w < |01%". Assume that the equivalent conditions of Theorem 4.7 are
satisfied. Then the following conditions are equivalent:



2. PROOFS OF THEOREMS 2.7, 2.13, 2.30 AND 2.31 35
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depenéient over K (t) for each c3 € F,(t).

REMARK 4.11. The equivalent conditions of Theorem 4.10 are satisfied if p = 3.
For example, we can easily check the condition (3).

PROOF OF THEOREM 4.10. We continue to use the notations in the proofs of

(t _ 9)3n
u(—l) (t _ 9)371 (t _ 9)271
uHD({E—0) (L —)"
uV(t -0 1

e QLK (1))

and

Q?m
Q?m Ll Q2n
QBn L2 QQn Ll Qn
BnLs "L, Q"L 1
Let M3 be the pre-t-motive defined by ®3 and G5 its fundamental group. Then we
have a homomorphism of pre-t-motives

\113 = S GL4(]L)

My — My; (21, %2, T3, 24) — (Zo, T3, Ta).

By the Tannakian duality and Theorem 3.1, we have a diagram of smooth group
schemes over F'

G o3 Gy P12 G 1 G o
G\y3 G\yz G‘Pz Gogn —G,, .

In the following, we identify the upper group schemes with the lower group schemes
in the above diagram. At first, we describe the morphism )93 in the above diagram
explicitly. By Remark 4.9, we have

2

a
Gy = ar a
y x 1

By the definition of :I/\;, = ((\fllvg)w), we have the relations
(T)i1 = (U3)ds, (Ua)az = (U3)ds, (Ua)ss = Q" @Q", (U3)as = 1,
(\17;)21 = (@)%3(@)437 (‘1’3)32 = (@)33(@)43, U =L @O0+ 10 Q" Ly,
(U3)31 = (U3)33(V3)a0, (VU3)yo = (L3 — Ly) @ Q™" — L1 @ Q*"Ly + 1 ® Q%" Lo,
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(U3)ay = (=L34+2L1Ly — L) @ Q" + (L> — Ly) @ 0¥ Ly — Ly @ Q" Ly + 1 ®@ Q3" L,
and (\?3)” = 01if ¢ < 7. Thus we have the inclusion

3

a
~ — a’r a?
Gs = Gy, C G5 := w ar a C GLy .
z y x 1

By using the above identifications, we can write
3

a .2
a’r a® ¢
77[}235 G3 — GQ; = |lar a
ay ar a
y x 1
z y x 1 L

as in the proof of Theorem 4.5. We set 73 := w9 01093 = T 01150193 and V3 := Ker m3
to be the unipotent radical of G'3. Then we have

1

—_

Vs C Vs =

IS IS
< R

—
—_

and obtain the following diagram

1 Vs Gs G, 1

I

1 Vs G G, 1
l¢23|v3 iwm
1 Vs Gy =G, 1

which is commutative and whose rows are exact. Clearly 93y is surjective. The

group scheme Vj is smooth over F' as in the proof of Theorem 4.5. A G,,,(F')-action

on V3(F') is given by

1 1
o |Z 1 _laxr 1
ly 1 T ld’y ax 1
z y x 1 atz a*y ar 1

By Theorem 3.1, we have
tr.degs K (7, L1(0), Lo(6), L3(0)) = tr.degz(, K(t)(, L1, Ly, L) = dim G5
and this value is three or four. Thus we have
(3) = (1) & (2) = (4)
and (3) = (4) as in the proof of Theorem 4.5.
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From now on, we suppose that the condition (1) does not hold. We have
dimG3 = 3 and hence dim V3 = 2. Then Ker(¢as|v;: Va(F) — Va(F)) = V3(F) N
V3 o(F) has dimension zero, where we set

1
73,0 =
z 1

Since V3(F) N V3 o(F) is closed under the G,,(F)-action on V3(F), we conclude that
V3(F) N V3,4(F) = {1} by Lemma 4.1. For a matrix

1
x=|¢ 1 € V3(F)
- Yy x 1 3 )
z y x 1
we have
1
X" = " ! Vi(F
- re=l) g2y gy re 1 € Vs(F)
r(rfli)i(r 2)[E +T(T’ . 1)1’y+7”2 T(T 1)1. +ry rx 1
for each integer r € Z. Thus if r is not divisible by p, we obtain
1
)X 0 1
(T' ) - 7"(7’_1) (2y 2) 0 1

2
W—TH(?)Z 3zy + 2°) T(T—;U(2y —z?) 0 1
If s is not divisible by p, we obtain
1

- —r\—s 0 1
(VE((r X)X ) (X)X ) = 0 -
s(y/s — 1) (3, ey +2%) 0 0 1

which is contained in V3(F) N V3 o(F) = {1}. Thus we have the relation

(\/g_l)(r—l)g(r+1)

When p # 2, we take r # +1 mod 3p and s # 1. Then we have the relation
3z —3zy + 2% = 0.

(32 — 3wy + 2°) = 0.

Assume p = 2. We denote by Y{, ., the inverse image of

1
v 1
)
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via the group isomorphism g3y : V3(F) — Va(F). We take ¢y € F such that

1
1 1
Yoo =19 1 1
o 0 1 1
Then if x,y # 0, we have
1
— T 1
V3(F) 2 (2.Y0,0)(v3-(Yio) = ) s 1 | T Yen =X
ry+crd y x 1
If v # 0 and y = 0, we have
1
= z 1
V3<F> 2 (x‘Y(LU)) = 0 =z 1 = Y(%O) = X.
cor® 0 x 1
If x =0 and y # 0, we have
1
— 9 0 1
V3(F) 2 (Vy-Yi) = y 0 1 = Yoy = X.
0y 01

Thus in any case, we have z = zy + coz®. We can compute Y (vy, w;)Y (vq, w) as
follows:

1
V1 + Uy 1
w1 + vV1U9 + wo V1 + Uy 1

(Ul + Ug)(wl “+ v1v9 + ’wg) + Co(Ul + Ug)3 + ﬁ Wy + U1V2 + We U1 + Vg 1

for each vy, wy, vy and wy, where f = —vyva(vy + ’U2>(3@ + 1). Since V3(F) is
a group, the matrix Y (vy,w;)Y (vg, wy) is contained in V3(F') and  must be zero.
Thus we have ¢g = —1/3. Therefore in any characteristic case, we have the relation

3z — 3wy + 2 = 0.

When p = 3, we have x = 0. This contradicts the surjectivity of ta3]y,. Thus
when p = 3, we always have dim G5 = 4. In the following, we assume that p # 3.
Since dim V3 = 2, we conclude that

1
x 1
Vs = Y rz 1
3
y—% y z 1

Next, we determine the group scheme G3. Fix an element ay € G,,(F") which
has infinite order. As in the proof of Theorem 4.5, the fiber G ,, is smooth over
F and we have Gj ,,(F*P) # 0. Let ag be a lift of ag in G3(F*P). Since G3(F*P)
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contains V3(F®P), we can eliminate the z- and y-coordinates of ay. Thus we may

assume that

)
a2
apg = 0 a € Gg(Fsep).
0
20 1
Then for each integer r € Z, we have
3r
)
ad’
ay = o € G3(F*P).
; 0
Z0 _ T
f (1—ay") 1
Since ag has infinite order, we have
0 )
a3
2
a
CGszm
a 3,F7
c3 .3
where c3 = 13_‘2&03 € F®P. Since G377 is a three-dimensional irreducible reduced
O b

group scheme which also contains V3 7, we conclude that

3

a
a’x a?
Gs =
, ay ar a

xy—%%—%(l—ag) y x 1

As in the proof of Theorem 4.5, we have c3 € F'. We set a polynomial
Q =3Xy —3X3Xpo + X3y — e3(1 — Xi3) € F[Xu1, ..., Xua, 1/ det X].
Then we have Q(:If\;) = 0. By the definition of W3, this is equivalent to the equality

(L3 — 30" L1 Ly +3Q°" L3 — c3) @ 0*" = Q¥ @ (V" L3 — 3% L1 Ly +30°" Ly — c3)

in L @z, L. Thus the condition (4) does not hold. This means (4) = (1).

REMARK 4.12. By the proof of Theorem 4.10, when the equivalent conditions

are satisfied, we have
3

a
Gy = a’r a?

ay ar a

z y x 1
When the equivalent conditions are not satisfied, we have

a3

a’x a?

Gs =
ay ar a

ry—2+%(1-d%) y 1

O
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for some c3 € F,(t). Such c3 gives the linear dependence of

77777

Lu,n(9)3 - SLU,H(Q)LU,U,n,n(9> + BLU,’LL,U,H,TL,TL(e) Lu3,3n(0>
03((9) = = .

73n B 73n
THEOREM 4.13. Let n > 1 be a positive integer and u € K[t] a polynomial

_ng
such that |u|w < |0|%". Assume that the equivalent conditions of Theorem 4.5 are
satisfied but the equivalent conditions of Theorem 4.7 are not satisfied. Then the
following conditions are equivalent:

77777

) Q, Lun and Ly yynnn are algebraically independent over K(t),

77777

2
3) 7" and Ly, (0)® — 3Lun(0)Luunn(0) + 3Lywunnn(0) are linearly inde-

(
(3) 7" and Lyn(0)” — 3Lun(0) Luunn(0) + 3Luuunn,
(4) Q3”L§,n — 3" Ly Ly + 3" Ly — c3 and Q3" are linearly in-

dependent over K (t) for each c3 € F,(t).

REMARK 4.14. The equivalent conditions of Theorem 4.13 are satisfied if p = 3.
For example, we can easily check the condition (3).

PROOF OF THEOREM 4.13. We continue to use the notations in the proofs of
Theorems 4.5, 4.7 and 4.10. By Remark 4.8, we have p # 2. By Remark 4.9, there
exists ¢o € F such that Q?"L? — 2Q?" Ly, — ¢, and Q" are linearly dependent over
K(t) and

a
Gy = ar a
Z_2(l-d?) z 1
Thus we have the inclusions
a3
. a’x a?
GggG\I/3CG3 = a(%_%l_a2>> aT CGL4
z % —2(1-0a® =z 1
and
1
e =45 !
3 C Vs = % z 1
P |

By Theorem 3.1, we have
tr.degff(%, Ll (9), L2(9)7 L3(9)) = tr.degf(t) F(Zf) (Q, L17 LQ, Lg) = dim Gg
and this value is two or three. Thus we have

B)=M)e(2)= 1
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and (3) = (4) as in the proof of Theorem 4.5. From now on, we suppose that the
condition (1) does not hold. We have dim G3 = 2 and hence dim V3 = 1. Then we
have V3(F) N V3 o(F) = 1, and for a matrix

1
r 1 _
X=|o e Vi(F),
5 T ].
x2
z 5o 1
we have the relation
3
T
32— — =0
S

as in the proof of Theorem 4.10.

When p = 3, we have x = 0. This contradicts the surjectivity of ta3]y,. Thus
when p = 3, we always have dim G3 = 3. In the following, we assume that p #£ 2, 3.
Since dim V3 = 1, we conclude that

1
r 1

N O

Next, we determine the group scheme G3. Fix an element ay € G,,(F") which
has infinite order. As in the proof of Theorem 4.5, the fiber G5 ,, is smooth over
F and we have G5, (F™P) # 0. Let ag be a lift of ay in G3(F*P). Since G3(F5P)
contains V3(F®P), we can eliminate the z-coordinates of ag. Thus we may assume
that

3

g
- 0 a?
ag = G3(F®P
0 —ag2(1 —ad) 0 o 3(F7)
20 —2(1—af) 0 1
Then for each integer r € Z, we have
ag’
~r 0 a%r sep
apg = 632(1—01 ) 0 a6 EGg(F )
2=(l—a) —%(1—ay) 0 1
Since ag has infinite order, we have
a3
0 a?
—a%(1 —a?) 0 a < Gsp
%3(1_@3) —2(1—-a% 0 1
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where c3 := 13_323 € F*P. Since (3 7 is a two-dimensional irreducible reduced group

scheme which also contains V3 7, we conclude that

3

a
e a’x a®
3P a(":—z2 — 2(1—a?) ax a
%—%(1—&2)$+C§3(1—a3) x—;-%(l—ﬁ) x 1

As in the proof of Theorem 4.5, we have c3 € F'. We set a polynomial
Q= 6Xy4 — X5 +3co(1 — X2) Xy3 — 2c3(1 — X3,) € F[Xy1, ..., Xy, 1/ det X].
Then we have Q(:I/\;,) = 0. By the definition of U5 and the assumption L? — 2L, —
272 € K(t), this is equivalent to the equality
(L3 — 30" L1 Ly +3Q°" Ly — c3) @ *" = Q¥ @ (V" L3 — 3Q0°" Ly Ly +30°" Ly — c3)
in L @z, L. Thus the condition (4) does not hold. This means (4) = (1). O

REMARK 4.15. By the proof of Theorem 4.13, when the equivalent conditions
are satisfied, we have
3

a
a’x a?
Gy = a (%2 — %2(1 — a2)> ax a
:E2 C:
z Z—-2(1-a®) z 1

When the equivalent conditions are not satisfied, we have
3

a
o a’x a?
- z? c
3 . (% — 2(1—-a?)) , .o a
E-_2(1-a)z+2(1-a*) L -%2(1-0d°) = 1

for some c3 € F,(t). Such c3 gives the linear dependence of

77777

Lu,n(e)g - 3Lu,n(9)Lu,u,n,n(9) + 3Lu,u,u,n,n7n<0) Lu3,3n(9)
C3(0) = = .

’7‘{371 - %311

PrROOF OF THEOREMS 2.13 AND 2.31. First we prove Theorem 2.13. We fix
a positive “odd” integer n > 1 and set w := H,,_y. Since 7" € K and L, ,(0) =
I',((n) € KX, they are linearly independent over K. Thus the equivalent conditions
of Theorem 4.5 are satisfied.

By Theorem 4.10, when the equivalent conditions of Theorem 4.7 are satisfied
(thus 7, ¢(n) and ((n,n) are algebraically independent over K ), one and only one
of the following holds:

(i) 7, Tn¢(n), T2{(n,n) and I'3((n,n,n) are algebraically independent over
K?

(i12) 7" and T3 ({(n)® — 3¢(n)¢(n,n) + 3¢(n,n,n)) are linearly dependent
over K.
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By Theorem 4.13, when the equivalent conditions of Theorem 4.7 are not satisfied
(thus 72" and T'2({(n)* —2((n, n)) are linearly dependent over K), one and only one
of the following holds:

(i1) 7, ['nC(n), and T3¢ (n,n,n) are algebraically independent over K,

(iv) 7" and I'?(¢(n)* — 3¢(n)¢(n,n) + 3¢(n,n,n)) are linearly dependent

over K.
Now we assume that 2n is “odd”. Then 72" € K, and I'2({(n)? — 2¢(n,n)) €

K. Since |¢(n)]|e = 1 and [¢(n,n)|s < 1, we have ((n) — 2¢(n,n) # 0. Thus 72"
and T'2({(n)? — 2¢(n,n)) are linearly independent over K, and hence we have (i)
or (i77). Assume that 3n is “odd”. Then 7" & K., and I'3({(n)? — 3¢((n)((n,n) +
3¢(n,n,n)) € K. Since |{(n,n,n)|w < 1, we have

C(n>3 - 3((n)§(n, n) + 3@(”, n, n) 7é 0.

Thus 73" and '3 ({(n)? —3¢(n)¢(n,n) +3¢(n,n,n)) are linearly independent over K,
and hence we have (i) or (i7). Since n is “odd”, either 2n or 3n is “odd”. Therefore,
the condition (iv) does not occur.

Theorem 2.31 is proved similarly. 0

3. Proofs of Theorems 2.17 and 2.33

Next, we prove Theorems 2.17 and 2.33. As in the proof of Theorem 4.3, for an
algebraic group G over F,(t), when it is clear from the context, without confusion
we still denote by G the FF,(t)-valued points of G.

Recall that I, is the set defined in Definition 1.1. The notations n;; and u;; are
also defined there. Clearly, Theorems 2.17 and 2.33 follow from Theorems 4.2, 4.3
and 4.16.

THEOREM 4.16. Let n = (nq,...,ng) be an indexr and u = (uy, . .., uq) € (K[t])?

a d-tuple of polynomials such that |u;]~ < ]9|§? for each i. If T, Ly, n,(0), ...,
Luyn,(0) are algebraically independent over K, then we have

- . d(d +1
tr'degFK(ﬂ-7LMijvﬂij (9)|(’L,j) € ]d) =1+#L=1+ ( 9 )

PROOF. In this proof, (i, ) and (k, ¢) are always assumed to be elements of the
totally ordered set I;. Let ® and W be the (d + 1) x (d + 1)-matrices defined in
Example 3.5. These satisfy the Frobenius difference equations (3.1). For (k,¢) € I,
we define (dep(k, £) 4+ 1) x (dep(k, ¢) + 1)-matrices ®[k, (] = (P[k, (];;) and Y[k, (] =
(V[k, ¢);;) which are sub-matrices of ® and ¥, where @[k, (];; = ®;1 41 j4¢—1 and
Uk, l];j = Witr_1,+0-1. In particular, the lower left corner of @[k, ¢] (resp. Y[k, ¢])
is the (k,¢)-th entry of ® (resp. ¥). The following is an illustration of the relative
positions of the matrices:

<~— O (resp. V)
[k, (] (resp. V[k,(])
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Let M|k, ] be the pre-t-motive defined by ®[k, ¢] and G(k, ¢) the fundamental group
of the pre-t-motive

Mk, 0) :=C & ) M, 5],
dep(ivj)ZdeP(kve)_l
(1,5)< (kL)
where C' is the Carlitz pre-t-motive (see Example 3.4). The o’s below illustrate the
range in which (7, j) runs in the above direct sum:

(k:,ﬁ) _|o-e e e

o o o e O:

We identify G(k,¢) with the algebraic group defined by [Q} & @(i,j) Uz, 5] as in
Theorem 3.1. Then we have the inclusion

gt
€T . a1t T
J+Lj
dep(4,j)>dep(k,£)—1 : »
(Z)])S(k7€) l'l] . e x’i,ifl a/nz+ +ngq

for each (k,¢). Note that some different entries/coordinates of different block matri-
ces may be the same and denoted by same letters; this means that for (i, j), (¢, j')
and r,7’ s, with 1 < s <r <dep(i,j)+1and 1 < s < < dep(i,j) + 1, if
(r+j—-1,s+j—1)=(0"+j -1, 45 —1), then the (r, s)-th entry of the (7, j)-th
component matrix and the (', s')-th entry of the (¢, j')-th component matrix are
the same and they are denoted by ,4;_1 s1;—1. In fact, since W is a lower triangular

matrix, the (7, s)-th entry of W[z, j] is equal to the (r+j—1,s+ 7 — 1)-th entry of U

(for the explicit description of ¥, see Example 3.5). Thusif (r+j—1,s+j5—1) =

(r'+j — 1,5 4+ 5" — 1), then the (r, s)-th entry of W[i, j| and the (', s’)-th entry of
U[i’, j'] coincide. Therefore the values of these entries in the algebraic group G(k, ¢)
are the same.

By Theorem 3.1, it suffices to show that the above inclusion is actually an equal-
ity for each (k,¢). We prove this by induction on (k,¢) € I; with respect to the
total order “<”.

By the assumption, this is true for (2,1) < (k,¢) < (d + 1,d), the depth one
cases. Let (k,¢) > (3,1) (this means dep(k,¢) > 2) and assume that the inclusion
is an equality for (k’,¢") the greatest element of {(i,7) € I4|(z,7) < (k, )}, which
means that (K, ¢)=(k—1,0—1)if ¢ #1and (K',0')=(d+1,d+3—k)if £ =1.
By definition, M (k', ') is a subobject of M(k,¢) and C' is a subobject of M(k,?)
and M(K',¢"). By Tannakian duality, we have surjections ¢: G(k,{) — G(K' ('),
w: G(k,l) - Gy, and 7": G(K', V') — G,,, where we identify G¢ with G,,. These
are projection maps. More precisely, 7 and 7’ map the matrices of the above forms
to a and ¢ maps them to the same matrices with the (k, ¢)-th component matrices
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removed. This follows from the description of the map (3.2). The arguments are
the same as in [P, §6.2.2], [CY, §4.3] and [CPY, Remark 2.3.2]. We set V := Kerr
and V' := Ker 7’ to be the unipotent radicals of G(k, ) and G(k, ('), respectively.
Then we have the following diagram

11—V ——G(k () —= G, 1

b

1 —V' —=GK V) G, 1,

which is commutative and whose rows are exact.

It is clear that 1|y is surjective. Since V' is non-commutative, the G(k, ¢)-action
AX = A'XAonV (X € V, A e G(k,()) depends not only on 7(A) but also
on the other entries of A. Note that the coordinate variable zy, of G(k,{) is the
only coordinate variable which does not appear as a coordinate variable of G (&', ¢').
Thus we know that dim G(F,¢') < dim G(k, ) < dim G(k’,¢") + 1. This also follows
from Theorem 3.1 (2). It suffices to show that the second inequality is an equality.

Now, assume that dim G(k,¢) = dim G(k’,¢'). Then dim Ker(¢|,,) = 0. It is
clear that Ker(¢|y) is a normal subgroup of G(k, () and A.xy, = mw(A)™t g, for
each zgy € Ker(¢|y) and A € G(k, ¢), where we identify Ker(¢|y) C G, by means
of the coordinate x,. By Lemma 4.1 we have that Ker(¢]y) is trivial. We take any
elements

1
Tjy1,5 1
x=[1e @ S %
dep(%,j)>dep(k,£)—1 ’ ’
(4,5)<(k,€) Tij e X 1
and
1
1

A=[1] @ & 0

dep(%]):dep(k’z)_l

Qi 1
- )
1
; eV,
dep(i,j)=dep(k ¢ . .
pgiégﬁ(k% ) Ai—1,j O
L Qij G511 1]

where we can take any z;; € Fy(t) (resp. any a;; € Fy(t)) for each (i,7) € Iy
such that (i,j) # (k,¢) (resp. dep(i,j) > dep(k,f) — 1 and (i,5) < (k,¥)) by the
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assumption on (', ¢') and the surjectivity of ¢|;;. Then X 1(A71X A) is equal to

1
e & -
dep(4,7)=dep(k,¢)—1 1
— 1 =
1
o D
dep(i,j)=dep(k,?) O
(4,)<(k,€)
L Ai—1,Tii—1 — Q4 j+1TL5+1,5 1 i

Now we take a;; = 0 for (k—¢,1) < (¢,5) < (k,f+1) and aj ¢+1 = 1. Then we see that
X YA XA) € Ker(¢o|v) = {0} and so we have x1 0 = 0. Since (¢ +1,¢) # (k,{),
this is a contradiction. Therefore we have dim G(k, () = dim G(K', ') + 1. O

4. Proofs of Theorems 2.23 and 2.24

We prove Theorems 2.23 and 2.24. For an index n = (nq,...,nq), we set
L, = Lymyn, Q%:=Q""" 7 and n' = (nq,...,n4-1).

First, we determine the relation between L, and L, for a non-negative integer
e > 0. For a positive integer n > 1, we set I',(¢) to be the inverse image of T',, via
the F,-isomorphism F,(t) — F,(0);t — 0.

LEMMA 4.17. For each positive integer n > 1 and each mon-negative integer
e > 0, we have

Hpen—l o (Hn—l)pe
Ppen(®)  \Tu(t)/)

PROOF. By definition, we have

(H,_1Q%)9(9) = sti(s)

7TS

for each s > 1 and i > 0, where

Si(s) == Z é

a€Fy[6]:monic
deg(a)=1

(see [AT1, 3.7.4], [AT2, 2.4.1]). Thus we have

i1

(F7e) - (58) 0=
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(I{Ipff&iwq_i))qi: (9(2 @~ o @)i
() ) = () o)

for each ¢ > 0. Thus we have

Therefore

e

Hpen,]_ i Z‘
b= ()
Fp"'n(t)
for each 7 > 0. O
We set " L)
pen—1 pen X
VYen = e = . € F (t)
HY o Tap
and
d
Yen = H%,ni
i=1
for any index n = (nq,...,nq).

LEMMA 4.18. For each index n and each non-negative integer e > 0, we have
Lyen = YenL? .

ProOOF. We prove this equality by induction on d. When d = 0, it is clear. We
take d > 1 and assume that the above equality holds for any indices whose depths
are lower than d. Then we have

(QPEEL en ’Ye,@(QﬂLﬂ)pe)(_l)

H( 1) ( e)pendecﬂLpeﬂ/ + QpeﬂLpeg — Yem (H(*i)l (t _ 9>ndQﬂLﬂ/ 4 QﬂLﬂ>p

peng—1 ng

peng—1 ng—1

= QpenLPeﬂ - Ve,ﬁ(QﬂLﬂ)pe + (t 0);: QP n<H( g Lpeﬂ’_'Ve,ﬁ’%,nd(H( Y )p Lp)

= O 2Ly = YL+ (6= 0P 2 Ly (Hyh) s = Yena(H D))

peng—1 ng—1
_ Op'n _ ny \p° _ p\PEna (PR (=1 (=1 (1) yp©
= WP Lper, = Ve (L))" 4 (t = 0)P ™ QP 2 Lpers ( Hpep) 1 = Yerny (Hp,—1)
= P2 en — Ve (L, )P
Thus QP2L,e,, = Yen(Q2L,)P" + ¢ for some ¢ € F,(t). Then we have
n e Fperu Fpen Fn1 e Fndé—(ﬂ) v
(76@(97[/2)1) )(0> = PZ‘? T Fflild ( Tnite+ng

r

peny " PpendC(peﬂ)
PNt +ping

= (QpeﬂLpeﬂ) (0).
Therefore we have ¢(6) = 0, and hence ¢ = 0. O
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LEMMA 4.19. Let n = (nq,...,nq) be an index and ¥ € GLg11(L) a matriz
defined in Evample 8.5 for w = H(n). Take (i,j), (k,{) € Iq such that n,; = p‘ny,

for some non-negative integer e > 0. Then we have
CI}U/CI}” = /yeaﬂk[({f]kﬁ/(fjkk)pe

Proor. By Example 3.5, we have

Uy /Wy = DG Ly, - Ln,,  ©Q%Ly

s=j r=0 s=ig<i1<--
<tp_1<tr=1
k k—s
_ T o P Ty
=33 YT Ly, Ly, @ e
s=/ 7":0 s=i0<t1<--
<ir—1<ir:k
k k—s
r n €
= E (=1) E Teng iy =" Vem . Ven Z(L@ Ly, @QEL, g)p
1110 Qg s 1110 ity 1 s
s=¢ r=0 s=i0<t1<--
<tp_1<ir=k
k k—s p°
— E —1)" E R v
= Ten ( 1) Lﬂilio Lﬂiri,,_l ® Lﬂse
s={ r=0 s=i0<t1<-
<bp_1<ir=k
=~ =~ e
= Yeu, (Vie/Vir)”

O

PrOOF OF THEOREM 2.23. We use the notations of the proof of Theorem 4.16.
By Lemma 4.19, G(k, ¢) is an algebraic subgroup of

anj+"‘+nd

M ® @ ijJ:rl,j

dep(i,j)>dep(k,£)—1 . .

‘/I“T's/x'r'r = ’}/67EMU (mvw/xvv>pe

for (T78)7 (v,w) € lge>1
such that n,, = p°n,,

for each (k, ). By Theorem 3.1, it suffices to show that this inclusion is actually an
equality for each (k,¢). We prove this by induction on (k,¢) € I; with respect to
the total order “<”.

By Theorem 2.4, this is true for (2,1) < (k,¢) < (d + 1,d), the depth one cases.
Let (k,¢) > (3,1) (this means dep(k,¢) > 2) and assume that the inclusion is an
equality for (k',¢') the greatest element of {(i,7) € I4|(i,7) < (k,¢)}. We know that
dim G(K', V') < dimG(k,¢) < dim G(K',¢') + 1. It suffices to show that the second
inequality is an equality.

Now, assume that dim G(k, ¢) = dim G(k’, ¢'). We shall induce a contradiction.
The strategy is the same as the proof of Theorem 4.16 except that a,;’s and z;;’s
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may not be independent. By the same arguments, the ¢ — 1 equalities

Al 1 Th—t4 1, —0 — Al—p41,2T21 = 0
Ak—011,2Tk—042,k—041 — Qgp—ry2,3T32 = 0
(4.1) Ak—042,3Tk—04+3 k—04+2 — Qk—r434T43 = 0

A—2,0—1Tk—1k—2 — Ak—1,0Tgo—1 = 0
imply the equality
(4.2) Q-1 0Tk -1 — Q410410 = 0.

When the equivalence class of (k, ¢+ 1) has one element, we can take ax_p; =
co = ap—1¢ = 0 and ag 1120410 7# 0 by the induction hypothesis. Then the equal-
ities (4.1) hold, and hence we have the equality (4.2) ajg+17011, = 0. This is
a contradiction. When the equivalence class of (k,¢ + 1) has two elements, then
dep(k, ¢+ 1) = 1 by the assumption. We set a; := a;4+1; and x; := x;41 ;. Then the
equalities (4.1) become

1T — A1 = 0
Aoz — A3T9 = 0
(4.3) agxry — ayrs = 0

g1y — ayxe—1 = 0
and the equality (4.2) becomes
(44) ATyl — Ap1Tp = 0.

There exists 1 < w < £ such that w ~ £+ 1. This means that there exists a non-zero
integer e # 0 such that n,, = p°ny; 1 and hence we have the relations

(e} e

Qw = Yempsrpr1 N T = Yoy Tpas
where we set Ve, = (Y_epen) P if € < 0 and n is divisible by p~¢.
If 1 <w < /¢ —2, then we can take
1 =" =Qp1 =01 ="=a; =0, Ty 1==Tw1 =0 and ap12s #0

by the induction hypothesis (if w = 1, then we ignore z,,_1). Then the equalities
(4.3) hold and the equality (4.4) does not hold. This is a contradiction.
If w= ¢ —1, then the last equality of the equalities (4.3) becomes

P pe N
78,n2+1(a£+1x€ - a€x£+1> =0

and we can take

e

P
Qg1 Qy

ay=-=ap2=0, wp9=0, xpxp11 #0 and <—) =— g F e
Le+1 Ty

by the induction hypothesis. Then the equalities (4.3) hold and the equality (4.4)
does not hold. This is a contradiction.
If w = ¢, then the equality (4.4) becomes

p°© pe N
Ve,ne+1<a£+1x€+1 - a€+1xé+1) =0
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and we can take

ay=-=ap-1=0, x,1=0, xp1 #0 and Qo1 Z el
Le+1
by the induction hypothesis. Then the equalities (4.3) hold and the equality (4.4)
does not hold. This is a contradiction. 0

PROOF OF THEOREM 2.24. We may assume that d = 3. We use the notations
of the proofs of Theorems 4.16 and 2.23. By Theorem 3.1, it suffices to show that
the inclusion from G(k,{) to the algebraic group defined in the beginning of the
proof of Theorem 2.23 is actually an equality for each (k, /).

By Theorem 2.4, this is true for (2,1) < (k,¢) < (4,3), the depth one cases.
Let (k,¢) = (3,1) (resp. (4,1)) and assume that the inclusion is an equality for
(4,3) (resp. (4,2)). Assume that dim G(k,¢) = dim G(4,3) (resp. dimG(4,2)).
Since ¢ = 1, the equality (4.2) always holds. We can check easily that this is a
contradiction even if (kK —1,¢) ~ (k, ¢+ 1) (and hence (¢ + 1,¢) ~ (k,k — 1)).

Let (k,¢) = (4,2), and assume that (4,2) 7 (3,1) and dim G(4,2) = dim G(3,1).
In this case, the equality a;xs — asx; = 0 implies the equality aszrs — azzs = 0. We
may assume that 1 ~ 2 ~ 3, otherwise we obtain a contradiction from Theorems
4.16 and 2.23. For each j, we have n; = p%n for some n > 1 and e; > 0 with
min{e;} = 0. We set a := a;, and = := z;, for some j, such that e;; = 0. Thus we
have a; = %jvnapej and z; = %mepej for each 5. Then

aP™ 2P — P 2P =0 implies afa?” — a2 =0

for any a,z € F,(t). Since e; # ey, we conclude that e; — ey divide ey — e3. By
symmetric arguments, since es # ez, we conclude that e3 — ey divide ey — e; This
means that e; — ey = £(ey — e3). However this is a contradiction because we assume
that (4,2) ¢ (3,1) and e; # es. O
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