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Preface

The purpose of this paper is to investigate the asymptotic behavior of Laplace inte-

grals defined by
Litig)i= [ e p(a)do. (1)

Here, f is a real-valued smooth function, ¢ is a complex-valued smooth function which
has a sufficiently small support and ¢ is a real parameter. Functions f and ¢ are called
the phase and the amplitude, respectively. When n = 1, the Laplace integral can be
regarded a generalization of the two-sided Laplace transform, which is defined by
o
o)) = [ e pla)dn
About the Laplace transform, see also §7.1.
Before investigating Laplace integrals, let us consider the asymptotic behavior of

oscillatory integrals defined by

It ) == / (). 2)

Here, f is a smooth real-valued function, ¢ is a smooth complex-valued function and
t is a real parameter. Also in this case, functions f and ¢ are called the phase and
the amplitude, respectively. When n = 1, the oscillatory integral can be regarded as a
kind of generalization of the Fourier transform of ¢, which is expressed as

FoO = [ pla)d.

We always assume f has some critical points (in particular, V f(0) = 0), otherwise
I(t;) = O(t™N) for any N € N (see Propositions 3.1.2 and 3.1.4). Suppose that
the support of the amplitude ¢ is sufficiently small and contains the origin. If the
Hessian matrix is invertible, one can easily get the asymptotic expansion of I(¢; )
by calculating. In this case, Morse’s lemma gives that the phase f can be f(z) =
x4+ — i, — - — a2 by exchanging the variables.

When the Hessian matrix is not invertible, by using Hironaka’s resolution of singu-

larities, the asymptotic expansion of I(t; y):

I(t; ) ~ et Z Z Cor(p)t*(logt)*™,  (ast — o0) (3)

a k=1
is obtained by P. Jeanquartier (|9], 1970) and B. Malgrange (|13|, 1974) in the case when
f is real-analytic. A. N. Varchenko achieved the oscillatory index and the multiplicity
specifically, which are indices of ¢ and logt in the leading term ([|21], 1976).
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Recently, J. Kamimoto and T. Nose [11| gave a generalization of the work of A.
N. Varchenko. One of their themes is to extend the condition of the phase f. They
innovated a class of C°(U) functions which is denoted by £(U). Roughly speaking,
every element of £ (U) can be expressed as a product of a polynomial and a smooth
function. In fact, £(U) includes all real-analytic functions (see §2.3). The asymptotic
expansion is same as (3) in such a case. One of essential tool is the Newton polyhedron,
which is defined from the Taylor expansion of a smooth function. Details for local zeta

functions are in Chapter Chapter 8.

On the other hand, the asymptotic behavior of L(t;¢) as t — oo is obtained by
Arnold, Gusein-Zade and Varchenko in the case that the phase function f is real-

analytic and so on (see [1] and Theorem 5.1.2):

L(t;p) ~ Y D Canlp) t*(logt)*, (4)
a k=1
as t — oo, where each C, x(¢) is a constant which depends on ¢ and {a} belongs to
finitely many arithmetic progressions.

The main theme of this paper is to get the asymptotic expansions of the Laplace
integrals for f € £(U), which is analogous to the work of Kamimoto and Nose [11].
Also in this case, we can get the same expansion as (4) and the indices of ¢ and logt
in the leading term of the expansion specifically (see Theorem 5.2.1).

This paper is organized as following. We define Newton polyhedra (in Chapter 1)
and the function class £(U) (in Chapter 2) and observe some properties for oscillatory
integrals in Chapter 3. In Chapter 4, we show fundamental propositions along [19]. In
Chapter 5, we introduce the prior research and the main theme of this paper. To obtain
more precise results, we study toric variables (in Chapter 6) and local zeta functions

(in Chapter 7 and Chapter 8). Finnaly, in Chapter 9, we show the main theorem.



Notations and Symbols

The set of natural numbers, integers, rational numbers, real numbers and complex
numbers are denoted by N, Z, Q, R and C, respectively, and the set of non-negative
integers and real numbers are denoted by Z., R, respectively. The complex space C
can be regarded as the 2-dimensional real space R?. For z € C, R(z) and J(z) mean
the real part and the imaginally part of z, respectively.

The standard inner product on R" is expressed as (x,y) := x1y1 + - - - + T, ¥, and the
standard norm of R" is ||z|| := v/(z,z) = \/|z1]2 + - + |2,[>. The symbol B(a,r)
means an open ball in R” whose center is a € R" and radius is 7 > 0, that is, B(a,r) :=
{z e R ||z —a|| < r}.

For a = (aq,...,a,) € Z7, define ® := 2" -+ 20", (@) == aq + -+ + oy, al =

op— (92N (2N

Sometimes we write 0% = 0.

Let A, B be subsets in R" and ¢ be a non-zero real constant. Then A + B :=
{a+beR"ac A be B}, c-A:={ca € R" a € A}. In particular, when A = {a},
A+ B =a+B={a+0beR" be B} For a finite set A, we write the number of
elements of the set A with #A.

For a C* function f on R", we call the set {z € R"; f(x) # 0} the support of f,
and write it with Supp(f). Here A means the closure of the set A in the sense of the

op! -+ a,! and

standard topology in R™. If the support of f is compact, we write f € C§°(R").
Some symbols used in this paper will be found in P.69.
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Chapter 1 Newton Polyhedra

In this chapter, we define the Newton polyhedra of C* functions and see some
examples. First, we recall inportant concepts about convex rational polyhedra. After
that, we define the y-part of f in §1.3.

§1.1 Polyhedra

For (a,l) € R" xR, let H(a,l) and H*(a,l) be a hyperplane and a closed half-space
in R" defined by

H(a,l) = {xeR"; (a,z) =1},
H*(a,]) = {zeR" (a,2) > 1}
respectively. It is clear that H " (a,!) is a convex set in R™ and H (a, 1) is the topological

boundary of H*(a,l) unless a = 0.

Definition 1.1.1
P C R" is called a (convex rational) polyhedron if P is expressed as an intersection

of some closed half-spaces, that is,
N
P=(H* 1), (1.1)
j=1

for (a/,1;) €Z"XZ (j=1,...,N).
Definition 1.1.2

A pair (a,l) € Z" X Z is wvalid for P if P is contained in H*(a,l). A set v C P is
called a face if v = H*(a,l) N P for some valid pairs (a,l) € Z™ x Z.
Remark 1.1.3
(i) Since R™ = H*(0,0), R™ is a polyhedron and valid for any polyhedron. Thus, P is
a trivial face, and the other faces are called proper faces.
(ii) The pair (0,—1) is valid for any polyhedron and H (0, —1) N P = @. This implies
that the empty set is also a face of the polyhedron P.
(iii) Every pair (a’,;) in (1.1) is valid for P.

From the definitions above, we can easily know every proper face ~ is contained in
M
N H(a.1,) (1.2)
j=1

for some {(a’,1;) € Z" x Z}.
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Definition 1.1.4
The dimension of the face v is defined by the intersection of all affine flats such as
(1.2) and denoted by dim(vy). The face whose dimension is 0, 1, dim(P) — 1 is called

vertex, edge, facet, respectively.

Notice dim(vy) <n — M, where M is as in (1.2).
In this paper, we always consider tha case that the dimension of the polyhedron P
equals to the dimension n. In this case, the dimension of a facet of P is n — 1. In

particular, when n = 2, the only facet is P.

§1.2 Definition of Newton Polyhedra
Definition 1.2.1
Let U be an open neighborhood of the origin and f be a real-valued C'*° function
on U. Write the Taylor series of f around the origin by
f(x):= ") car®, (1.3)
a€Z’l
where ¢, = 0°f(0)/al. The Newton polyhedron I'y(f)Newtonpolyhedron of f is de-

fined as the convex hull of the set

D= J(a+RY),
ca#0
where ¢, is as in (1.3). In other words, the Newton polyhedron of f is the smallest set
of all convex sets which contain the set ®. The union of all compact faces of I', (f) is
called Newton diagram T'(f) of f. We define the principal part of f by

fe(x) = Z Cax”.
€l (f)nZ7
Immediately we can know I'y (f) = I', (f.). It has been already known that the Newton
polyhedron I'y (f) of f is a polyhedron. (See [22].)
In this paper, we usually assume that f is nonflat, that is, I', (f) # @. For example,
fi(x) :=0and fo(x) := x1-exp (—x3) are flat, but every non-zero polynomial is nonflat.

In particular, the Newton polyhedron of f =1 is RY}.

Definition 1.2.2

Define the Newton distance of Ty (f) by d(f) := min{t > 0; (¢,...,t) € T.(f)}, the
principal face T, as the smallest face of I'\ (f) that contains ¢, := (d(f),...,d(f)) and
the Newton multiplicity m(f) of I'y(f) as the codimension of 7.
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A smooth function f is called convenient if the Newton polyhedron I'\(f) of f

intersects all coordinate axes.

For instance, when n = 2, f;(z) := 2% 4+ 23 is convenient, however, fo(z) := 2% + 23 -
exp (—1/x?) is not convenient.

If g, is a vertex of the Newton polyhedron I', (f), then 7, = ¢. and m(f) = n. From
the definitions above, we can immediately get that 7, is compact if f is convenient.
However, the converse does not hold, that is, f is not always convenient even though

the principal compact.

§1.3 The ~v-part of f

The function f € C>(U) is called real-analytic at x = 0 if

f(z) = Z CoZ”
agzn
on a sufficiently small open neighborhood of the origin, where ¢, is as in (1.3). If the
same property is satisfied at every point in U, f is called real-analytic on U. Denote
by C¥(U) the set of all real-analytic functions on U.
Let U be an open neighborhood of the origin. When 7 is compact or f is real-analytic
on U, the y-part of f is defined by

Fil@) =) can®, (1.4)
acy
where each ¢, is same as in (1.3). Notice that this is well-defined on U. However,
this definition can’t be generalized in the case when ~ is noncompact or f is not real-
analytic. Therefore, we must look for another definition of the y-part.
From now, we always assume that U is an open neighborhood of the origin in R",
a function f is real-valued and C° on U and a nonempty polyhedron P satisfies
P+ R} C P CRY, unless otherwise stated.

Definition 1.3.1
Let v be a nonempty face of P. If for any x € U, the limitation

lim fltmzy, ... tx,)

t—0 t

(1.5)

exists whenever (a,l) € Z'y xZ is a valid pair for P defining v (that is, H (a,[)NP =),
then we say that f admits the y-part on U. For each x € U, we denote the limitation
(15) by 1, ().
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Figure 1: The Newton polyhedron I'y (f) [left| and the polyhedron P [right|

Since H(0,0) = R", for any C* function f, every polyhedron P has the P-part and
fp(x) is equal to f(z). If v is contained in some coordinate plane, then [ = 0 and the
limitation (1.5) exists.

In Proposition 2.2.5, we show that f always admits the y-part and f,(x) is equal to
(1.4) if v is compact. On the other hand, for a noncompact face v, f does not always

admit the v-part (see the example below).

Example 1.3.2
Assume n = 2 and define fi.(z1,22) := x1 + 2} - exp (—1/23) for k € Z,. Then the
Newton polyhedron of f; is Iy (fx) = (1,0) +R? for each k and has three proper faces

7 = {(,0); ay > 1},
72 = {(1,0)} and
v = {(1,a9); ag > 0}.

On the other hand, P = Ri also has three proper faces

71 = {(,0); oy > 0},
= {(0,0)} and
3 = {(0,a9); ag > 0}.

T2

Shapes of these polyhedra and their faces are seen in Figure 1. The v;-parts and ;-
parts of fr (j =1,2,3 and k € Z,) are as below.

(fi)n (@) | (fie)r (@) | (fr)pe(2) | (fi)m(@) | (fi)ys () (fi)r (@)
k=0 Not Defined! | exp (—1/z3)
k=1 x 1 0 fi(zq, x2)
k>2 1

0
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Chapter 2 The class £(U)

In this chapter, we always assume that U is an open neighborhood of the origin in
R”, a function f is smooth on U and P C R’ is a convex rational polyhedron which

contains the Newton polyhedron I, (f).

§2.1 The definition of £(U)

Definition 2.1.1

Let U be an open neighborhood of the origin in R™ and P be a convex rational
polyhedron satisfying P + R’} C P C R. Then

EPIU) = 1{f € C=(U); I'(f) € P},
E[P|(U) :={f € E[P](U); f admits the y-part on U for any face v C P} (P # @),
2)(U) = {0},

[
(U) = {f € C=(U); f € EL(HIW)}-
In this paper, we call é(U) the Kamimoto-Nose class and sometimes write it by

“K-N class”. The K-N class £(U) contains C*(U) (see Proposition 2.2.6). The Denjoy-

Carleman quasianalytic class, which is referred in [2], [20], [11] and so on, contains all

£
&

real-analytic functions and is contained in the K-N class £(U) (see [11]).

Remark 2.1.2
If P = R?, the polyhedron P always contains the Newton polyhedron of any f €

A

O (U). Accordingly, E[R?](U) = E[R](U) = C=(U).

Remark 2.1.3
Consider the case when n =1 and P = [p, 00) for p € Z,. Since I';(f) is contained

in P, every function in E[P](U) has a non-zero k-th derivative for some k& > p unless
f =0, that is, E[P|(U) = E[P](U) = {z*¢(z); a € Z, with o > p, ¢p € C®(U)}U{0}.

From this fact, we can easily specify the K-N class as £(U) = {z*(z); o € Zy, ) €
C>*(U) with ¢(0) # 0} U {0}. In other words, the K-N class is the set of all nonflat

smooth functions and f = 0.

Example 2.1.4

Let n = 2.
(i) Suppose P = {(a1, @) € R; a;+ay > 2}. Define functions f and g as f(z1,z2) :=
22 + 12, g(xy, 25) == 22 + x; + 22 Then f belongs to £[P)(U). But g does not belong
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~

to E[P](U), because
9g

One can prove that those functions f and g above belong to £ (U). In fact, all real-
analytic functions belong to £(U). (See the next section.)

(ii) The function fy, which is defined in Example 1.3.2; belongs to é(U) if K > 1. This
is because the Newton polyhedron of fi is expressed as I'\(fx) = {a = (a1, a2) €
R%; g > 1}

From the definition of £(U), it is trivial

cuyc  |J  EP).

PCR?Y :polyhedron

But, in general, £(U) is a proper subset of UE[P](U). To know the properties of £(U),

we define another function class £[P](U) and show

‘o= Y Erw (2.1)
@#PCR :polyhedron
in §2.3. In order to achieve the purpose, we will analyze the phase function and its

~v-part in the next section.

§2.2 Analysis of the phase function
Definition 2.2.1

We denote by B({1,...,n}) theset of all subsetsin {1,...,n}. For I € P({1,...,n}),
define the mapping 77 as

(yla s 7yn) = T;<x1’ s 7xn)7
where y; equals to r for j € I and otherwise y; = z;.

In particular, we denote by 77 when r = 0.
For example, let n = 3, 1 = {3} and U = {x € R3 2? + 23 + 22 < 1}, then
Ti(U) = {y € R% y? + 42 < 1 and y3 = 0}. This is the image of the projection from

R3 to the zz5-plain.
Remark 2.2.2

Let V be an element of B({1,...,n}), W :={1,...,n}\ V. Then Ty (2)+Tw(z) =z
for all x € R".



12 Masahiro Narazaki

The definition above gives the proof of this fact.

Lemma 2.2.3
Let V € B{1,...,n}), W :={1,...,n}\V, N be a natural number, Ay, (N) =
{a e Ty (ZY); (o) < N} and By(N) := {a € Ty/(Z7); (o) = N}. Then one can get

@)= Y L@ N@w@e+ Y Rl

ac€Ay (N) a€By(N)
for any x € U, where
N 1

ol Jo

R (z) (1= t)N"10 /) (tTy () + Ty (x))dL.

Proof.
Let § be a positive constant and ¢ be a smooth function on the interval (=4, 14 ).

Integrating by parts, we have

v(1) = (O)+ [ P(t)dt

N-1 1
¥ ™®(0) 1 / N-1(N)
= 1—-t t)dt.
o +(N_1)!0( )
k=0
Putting ¢(t) = f(tTv(x) + Tw(z)), one can get the conclusion. O

From now, we consider the vy-part of f. First, we prepare the following sets of
integers V() and W (7).

Definition 2.2.4

]

Let e; = (ej ,....e)) be a unit vector with eg] =

= 0; %, where 0;; is Kronecker’s
delta. Suppose that v be a proper face of P. Then we define the sets V() and W ()
by V(v):={je{l,....n}; v+ Rye; Cy} and W(y) :={1,...,n}\V.

By the definition above, it is obvious that V(v) = @ if and only if 7 is compact.

For an arbitrary valid pair (a, () defining v, V'(7) is the set of j with a; = 0. This fact
implies that W (y) = {j € {1,...,n}; a; # 0}, and thus, sets {j € {1,...,n}; a; =0}
and {j € {1,...,n}; a; # 0} are independent of the vector a € R™, only depend on 7.

Hereafter in this section, V() and W () are simply denoted by V and W, respec-
tively. Then Ty (t"z1,...,t"z,) = Tw(z) for t € [0,1] and x € U, where (a,l) is a
valid pair defining v and Lemma 2.2.3 yields that

ftan, ) =Y %(aaf)(TW(x))xatw

O(GAV (N)
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+ Y Ra(tmmy,. .t et o), (2.2)
aEBv(N)

where IV is an integer such that H (a,l) N Ty (Z7) is contained in Ay (V).

Proposition 2.2.5
For any compact face v C P, f always admit the vy-part and

fy(z) = Z CaZ?, (2.3)
a67021

where each ¢, is a coefficient of the Taylor expansion of f as in (1.3).

Proof.
Calculating the first term in the right-hand side of (2.2), we get

S L@@ = S (@ ot

a€Ay(N) (a)<N

= Z Com .
(a)<N

Since the polyhedron P contains the Newton polyhedron of f, the coefficient ¢, is equal
to 0 if (a,a) <! and (a,a) — [ is positive if (a) = N. Thus we obtain

flt9zy, ... tx,)
#

= Z Caxat(a,oO—l + Z Ra(talxh o ’tanxn)xatm,a)—l

(a)<N (a)=N

— g Cal®,

(a)<N with (a,a)=l

ast — 0. O

From the proof above, we can immediately get that, if f admits the y-part, then

ORI S (2.4
aeyNTy (Z1)
because (a,a) > [ for all @« € By(N) and (0°f)(Tw(z)) = 0 if (a,a) < [. Since
V =V(y) = @, the expression (2.4) holds for every compact face 7.
The y-part f, is smooth on U. In addition, if f is real-analytic on U, the y-part is

also real-analytic on U. This fact is shown from the equation (2.4).

Proposition 2.2.6

If f is real-analytic on U, then f always admits the v-part even if v is not compact.
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Proof.
Since f is real-analytic, 0*f is also real-analytic on U. If a € Ay () satisfies
(a,a) < 1, then (0“f)(Tw(x)) = 0 on U, because the Newton polyhedron of f is

contained in P and (a,l) is valid. Similarly as above, we get the conclusion. 0J

This proposition implies that every real-analytic function f belongs to the class

E[P](U) while P contains I’y (f). In particular, all real-analytic functions are elements
of the class £(U).

§2.3 Properties of £(U)

It is time-consuming to check whether f belongs to the K-N class. Hence, we consider
an equivalent condition in this section. For that goal, we define a class £[P](U) and

prove the relation (2.1).

Definition 2.3.1

Let P C R’} be a polyhedron.
(i) Denote by S[P] and V(P) the set of finite set in P N Z" and the set of vertices of
P, respectively.
(ii) Let U be a neighborhood of the origin. Denote by E[P](U) the set of functions
f € E[P)(U) which are expressed as

fla) = aPiy(), (2.5)
peS

where V(P) C S € S[P], ¢, € C(U) and ,(0) # 0 for p € V(P).
(iii) Define the class £(U) by

E(U) = {Zmpwp(x); S e SR ], ¢, € C*(U) with ¢,(0) # 0 for p € S} .

peES
If the set S in (ii) or (iii) is empty, we regard the summation
f(z) =) ay(x)
peS

as f = 0. Indeed, the function f = 0 is real-analytic on U, and thus, it belongs to
the K-N class. However, if the phase function constantly equals to 0, then the Laplace

integral is
L) = [ s
Supp()

This is a complex constant which is independent of the parameter ¢.
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Proposition 2.3.2
If f belongs to the K-N class, then f can be expressed as (2.5), where P = T"(f).

Proof.
Since P = I",(f) is a polyhedron, there exists a family {(a’,;)}}Z; such that

M
= ﬂ H"(a
j=1

and H(a’,1;) N P is a facet of P for every j =1,...,
Put Py := R’} and

M. This fact is referred in [22].

P.=FnN (ﬂ H+(aj,lj)> y

J=1

for k=1,...,M. Then Py; = P. Now we start to prove the lemma by induction with

respect to k.
It is trivial for £ = 0.
Suppose that the lemma holds for k£ — 1 and show that it holds for k& (k =1,..., M).

From the assumption, f can be expressed as

Z 2Py 1 p()

PESK_1

where Sy_1 € S[P;_1] with V(P;_1) C Sk_1 and each 9;_1, is smooth on U. Let
Y= PN H(a* 1), V=V(y) and W = W (). Applying Lemma 2.2.3 to functions

Vr—1,p, We get

Br1p( Z C (T () + R ()", (2.6)
(N)

aGAV aEBy

for each p, where Cpa and RH are smooth on U and N is an integer such that

H(a* Iy) N Ty (Z") C Ay(N). Substituting (2.6) to (2.5), one can find

flx) = > CH(Ty (z))a?t + > RM (x)zPte
pESK_1,a€Ay (N) pESK_1,a€By (N)

= fi(z) + falz).

1] ™). The assumption f € E[P](U) follows that the function f

Write a* = (a1, ..., an’).
admits the v;-part, that is, the following limitation exists:

[k] [k]
A )

t—0 tlk
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Since H(a*, 1) NTy(Z7}) C Ay(N), the set By (N) is contained in H* (a*, i) N Ty (Z7),
and thus, (a,p + o) = (a,p) + (a,a) > 0+ 1, =l for @ € By(N). This inequality
yields that the following limitation exists:

] ]

[k [k
. Ja (tal Tpye. .t xn) : (k] (4l alF (a,pt+a)—l .pt+a
15% m = 151(1) Z Ry (" g, 1 )t xPre,

PESK_1,a€By (N)
Consequently,
[k] [] (k] [] (k] []

lim fl(tal Ti,... ,ta” .I'n) — lim f(tal Ly 7tan xn) ~ lim f2(t‘l1 L1y .- >tan $n> (2 7)
0 tl 10 th 0 th '

must have a limitation, because the limitations in the right-hand side exist. Since the

left-hand side of (2.7) is expressed as

]

(k] [k

ity ttr,) [K] (apta) 1y,  pto

lim 0 = lim > Cpa(Tw ()t b,
pESK_1,a€Ay (N)

the function C},]fg[ = 0 for each pair (p, «) with (a,p+ a) < li, otherwise, the limitation
does not exist. Now we get the expression (2.5).

Assume that there exists p € V(P) such that ¢,(0) = 0 or V(P) is not contained in
S. Then I't (> 2Pv,) C T (f), this is a contradiction. O

The proposition above holds even if P # I'y(f). It is suffice that we suppose
f € E[P)(U). When we prove for P D Ty (f), the condition “i4,(0) # 0 for p € V(P)”
is not necessary. Conversely, if f has an expression as (2.5), then f belongs to the class

E[P](D).

Corollary 2.3.3
The set E[P)(U) can be written as follows:

E[P|(U) = {prwp(x); S € S[P] and ¢, € C*(U) for p € S} :
peS
Corollary 2.3.4
The relationship (2.1) holds.

These facts imply that every function which belongs to E[P](U) or £(U) is expressed
as a product of a polynomial and a smooth function. Indeed, all polynomials are

contained in such a function class, but some smooth function are not contained.
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Remark 2.3.5
Applying the proposition above, we get the expression
fv(x) = Z xpwp(TW(’y)(x»a (2'8)
peEYNS

where S and v, are as in (2.5) and W (7) is same as in Definition 2.2.4.

Next, we consider the relationship between £(U) and £(U). Definitions of these
classes lead the containment relationship £(U) € £(U). When n = 1, it is obvious

E(U) = £(U). Hence, from now, we consider the case when n > 2.

Proposition 2.3.6
When n = 2, every function f € £(U) belongs to the class £(U).

Proof.
Applying Proposition 2.3.2 to f, we get that there exist a set S € S[I'y(f)] and
functions v, € C*(U) for p € S such that V(I'}.(f)) C S, ¥,(0) # 0 for p € V(I'y(f))

and

fla) =" aPiy(x). (2.9)

peS
Applying Taylor’s theorem to x%),(x) for ¢ € S\ V(I'+(f)), we have
() = Py(z) + Y 2%Ygal(a), (2.10)
aeV(T'y(f))

where P, is a polynomial and every 1, is smooth on U. Substituting (2.10) to the

equation (2.9), one can obtain

fay=" Y PR+ Y a"dlx) (2.11)

PES\V(I'(f)) peV(I+(f)
where every ¢, € C*°(U) satisfies 1,,(0) # 0. This equation implies that the function
f belongs to E(U). d

At the last part of the proof above, the reason that ﬁp(O) does not equal to 0 is as
following. Each term in the last summation in the right-hand side of (2.11) is made
from some 1y and 9,. Since 10,4(0) = 0 for any ¢ € S\ V(I'.(f)), the value ,(0)
equals to 1,(0), which is not equal to 0.

At the end of this section, ket us consider the case when n > 3.

Proposition 2.3.7
If n. > 3, then £(U) C E(U). In other words, there exists a function f € E(U) such

that f ¢ E(U).
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Proof.
Define the function f by

n—1
f(x):= Zx? + 22 - e/,
j=1

Then the Newton polyhedron of f is explicitly written as T, (f) = {(aq,...,ay) €
R%Y; a1 + -+ -+ a1 > 4 and oy, > 0} and the set of vertices is V(I'y(f)) = {4e;; j =
1,...,n — 1}, where each e; means same as in Definition 2.2.4. From the definition
above, it is clear that f can be expressed as (2.5). This implies f belongs to £[P)(U)
for P = T'y(f), and thus, f belongs to the K-N class. Nevertheless, f is not an
element of £(U), because exp (—1/22) can’t be rewritten as a product of a monomial
(or polynomial) and a smooth function which does not vanish on a neighborhood of

the origin. O

One of differences between n < 2 and n > 3 is the convenience of f. When n =1
or 2, every nonflat function is expressed as a product of a monomial and a convenient
function. On the other hand, though the function f defined in the proposition above
is nonflat, it can’t be rewritten in such a product, because of the shape of the Newton

polyhedron.
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Chapter 3 Known results for oscillatory integrals

In this chapter, we study some properties about the oscillatory integrals. See also
[21], [12], [19], [11] and so on.

§3.1 Analysis of oscillatory integrals

Definition 3.1.1
Let F be a function defined on (0, 00). We call F' rapidly decreasing as u — oo if
lim v F(u) = 0,
U—00
for any N € Z,.
Generally, F' is called a rapidly decreasing function if F' € C*°((0,00)) satisfies
lim u™ F™)(y) =0,
uU—00

for arbitrary N, M € Z.. However, since we do not need to consider the differentia-

bility in this paper, we adopt Definition 3.1.1.

Proposition 3.1.2
Let n =1 and ¢ be a smooth function satistying Supp(p) C (a,b). If f'(x) # 0 for
all z € [a,b], then

b
I(t;p) = / eitf(w)go(x)dx =0 (t_N) ,

as t — oo, for any non-negative integer N. Here, O(+) is the Landau notation, that is,

tN1(t; ) has a limitation as t tends to infinity.

Proof.

Let Dy be an operator defined by
1 d

Dy= itf'(x) dx

and let ‘D denote the transpose of Dy, that is,

=)

Since Dy (exp (itf(x))) = exp (itf(z)) for any non-negative integer N, integrating by

parts, we get

b b
itf(x itf(x N
Iti9) = [ DTN plade = [ (D))" oo
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Thus, |I(t; )| < Ct™ for some C' > 0 which is independent of ¢. O

It is clear that I(¢; ) in the proposition above is rapidly decreasing as ¢ — oo in
the sense of Definition 3.1.1. In fact, I(¢;¢) is differenciable with respect to ¢ and
M

0
tlgnoot atM](t, v) =0

in such a case, where N and M are (arbitrary) natural numbers.

To discuss about the cases when n > 2, we define a critical point as below.

Definition 3.1.3
Suppose that f is a partial differentiable function near zo € R™. The point zq is

called a critical point if

=0.

) = (5 o)

T=x0
Proposition 3.1.4

Suppose that ¢ has a sufficiently small support and f has no critical points on
Supp(p). Then

I(t; ) =/ ¢ Pp(x)de =0 (t),
as t — oo, for any non-negative integer N.

Applying Proposition 3.1.2 (if necessary, choosing a coordinate system), one can
prove this proposition. This fact shows that the behavior of an oscillatory integral
depends on critical points of f. Indeed, in the theorems in the next section, f is
required to have some critical points. To simplify, we usually assume that f(0) = 0,
Vf(0) = (0,...,0) and the origin is the only critical point in the support of the
amplitude .

Proposition 3.1.5 ([19])

Suppose that f has a critical zero point at the origin and the Hessian matrix

Pf oy ... 9f
0x10x1 0x10xy,
Hess f(0) = : : (3.1)
0*f o*f
01,011 (0) -+ 0,01, (0)

is invertible. Then the asymptotic expansion is

I(t) ~ 23 agt (32)
=0



Chap. 3. Known results for oscillatory integrals 21

as t — oo, where each a; is a constant depending f and . In particular,

_ (2m0)"2 - o(0)

N Hes f(0)]

§3.2 Recent results for oscillatory integrals

Theorem 3.2.1 (Varchenko, [21])

Let U be a sufficiently small open neighborhood of the origin in R™. Suppose that
f is real-analytic on U, the Newton polyhedron of f is not an empty set, the support
of ¢ is contained in U and f has only one critical zero point at 0 in Supp(p). If f

satisfies that o7 o7
_ ([ Y)y v
o= (L 2 40

on UN(R\ {0})" for every compact face v of 'y (f), then one can obtain the n asymp-

totic expansion: .
I(tip) ~ > Y Caklp) t*(logt) ", (3.3)
a k=1
as t — oo, where each C, () is a constant which depends on ¢ and {a} belongs to
finitely many arithmetic progressions which are determined by the Newton polyhedron
of f. Moreover, following facts hold.
(i) The value Byo(f) = max{w; (a,k) € So(f)} is not larger than —1/d(f), where
So(f) == {(a, k) € So(f); the value Cy, in (3.3) is not equal to 0}.
(ii) If at least one condition of the followings (a)-(c) is satisfied, then By(f) is equal to
—1/d(f) and the value ny(f), which is defined by no(f) := max{k; (6o(f),k) € So(f)},
is equal to m(f).
(@) d(f) > 1.
(b) f is non-negative or non-positive on U.
(c) 1/d(f) is not an odd integer and f., does not vanish on U N (R\ {0})".
(iii) The constants By(f) and no(f) defined as above are called the oscillation-index
and the multiplicity of f, respectively. They depend functions f and ¢ and satisfy

/ et @ () dx

for some C(y) > 0 and sufficiently large t > 0.

(iv) The limitation

1(t; )| = < Cp)t*(log t)™),

lim ¢=5o(f) (log t)*no(f)[(t; 90)

t—00

exists. Indeed, the limitation is equal to Cg,(f)me(s)(¥)-
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Theorem 3.2.2 (Kamimoto, Nose, [11])
Suppose that f € (‘:’(U) and the other assumptions are same as Theorem 3.2.1. Then

we can get the asymptotic expansion
I(t;0) ~ Y ) Canly) t*(logt)* (3.4)
a k=1

as t — oo, where C,x(p) and {a} are also same as above. Furthermore, properties
(i)-(iv) in Theorem 3.2.1 also hold.
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Chapter 4 Elementary properties of Laplace integrals

In this chapter, we study fundamental properties of Laplace integrals. First, we
assume n = 1 in §4.1. Next, we deal with some simple cases in §4.2.
Now we define the Laplace-index (f) and the multiplicity (of the Laplace integral)

n(f) as following. If we can obtain the symptotic expansion

~y Z Co(0) t*(log )"~ (4.1)

a k=1

as t — oo, then S(f) := max{a; (o, k) € S(f)} and n(f) := max{k; (Bo(f), k) €
S(f)}, where S(f) := {(c, k) € S(f); there exists p € C§°(U) such that C,, x(¢) in (5.2)
is not equal to 0}.

§4.1 One variable cases

When we consider Laplace integrals, we should suppose f(x) > 0. If f has no zero

point, the integral L(t; o) is rapidly decreasing (see the proposition below).

Proposition 4.1.1
Let f be a smooth function which satisfies f(x) > 0 for all x € [a,b] and ¢ be a
complex-valued smooth function whose support is a relatively compact set of an finite

open interval (a,b). Then

b
L(t; o) = / e @ p(z)de =0 (),
as t — oo, for any non-negative integer N.

Proof.
Since f is continuous and Supp(yp) is compact in R, there exists a constant ¢ > 0
such that f(z) > ¢ on Supp(p). Then

b b b
[ @) < [l pwide < o [ @l = e ol

This estimate yields the conclusion, because the last integral is a constant which is
independent of ¢. U

Of course, we can prove this proposition with operators

1 d o d(
PrE e e P @ (tf’(x)) ’
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as with the proof of Proposition 3.1.2. It is clear that L(¢; ) is smooth and rapidly

decreasing with respect to ¢ in the sense of Definition 3.1.1.

Remark 4.1.2
Notice that the Newton polyhedron I, (f) is Ry and d(f) = 0 in this case.

Hereafter, we always assume that f has some zeros on the support of the amplitude
¢. In particular, we often assume f(0) = 0. The assumption f(z) > 0 shows that

every zero point of f satisfies f'(z) = 0, otherwise, f is negative near the point.

Proposition 4.1.3
Suppose that there exists an integer k such that |f*)(x)| > 1 for any = € (a,b).

Then there exists a positive ¢, which independent of f and t such that

b
/ o—tF@) g

First we show in the case k = 1. Integrating by parts, we can immediately get

b —tf(x)7? b d 1
(@) gy = | / (@) L dz. 4
[emow= -]+ [ () @ 43)

Since |f'(z)| > 1 for all x € (a,b),

o—tf(@)7°
Pﬁ@ﬂﬁa

The absolute value of the second term in (4.3) is less than (or equal to)

L )< ()

Next, let us assume the case k is proved and start to show the case k + 1. There
exists only one constant ¢ € [a, b] such that |f®)(x)| > | f®)(c)|, because |f*+)(z)| > 1
on [a, b].

If f*)(c) is equal to 0, then |f*)(x)| > & on [a,b]\(c — 6, c+ §) for any § > 0. Thus,

the integrals on [a, ¢ — d] and [c + 0, b] are estimated as

c—0 c—90
/ eftf(a:)dx / eftéF(x) dr
‘ b ab
/ e—tf(w)dx / e—t(SF(J:)dx
c+0 ct+0

< cptVE, (4.2)

Proof.

eftf(b) eftf(a)

:kﬁ%ﬁfﬂw

- 1 /e tf) e—tf(a) - 2
—Z(W@VWNMO—?

1
de < —
t

2
< Z
1

< (o) F,

< c(to)~VE,
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where f(z) = 0F(z). On the other hand,

c+0
/ ot @) gy
c—0

Therefore, the following estimate holds:

b
/ @) gy

If ¢ =a or b, then we similarly get

b
a

Since ¢ is arbitrary, substituting § = ¢~/**1) we get

b
/ ot @) gy

Therefore, we had better take cx41 = 2(c, + 1).

c+6
< / le=t7@)|dz < 26.
c—4

< 24 (t6) Mk 4 26.

< cp(t0)TVF £ 5 < 2¢,(t6) M + 26.

< 2¢ (t*’“/(’““))l/k 4ot VD) 9y 4 1) /D)

From the recurrence relation in the proof above, we get ¢, = 2871 — 2 = 2 (2F

Corollary 4.1.4

Under the same assumption as Proposition 4.1.3, we get

b
/ e @ p(z)dx

< et |l oo my-

Proof.

From the definition of || - || (), we can immediately get

b b
/e_tf(x)go(:v)d:v < /‘e_tf(x)gp(x)‘da:

b
< ||g0||Loo(R)/6_tf(z)dx-

The previous proposition gives the conclusion.

g

).

(4.4)

g

Consider the case that k = 1, f'(x) > 1, a = 0 and b = 1. Since f’ is always positive,
f is strictly monotone increasing function. Accordingly, f(0) = 0 or f(x) > 0 on [0, 1].

If £(0) > 0, by Proposition 4.1.1, the integral in (4.2) is rapidly decreasing as t — oc.

If f(0) =0, from the assumption of the proposition above, f(x) > z for x > 0. Thus

we have

1 0 1
/ e @y < / ey = =,
0 0 3
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For odd integer k > 3, we get

> 1 1 1
—tak —1/k —1/k
de = —1 I =] =t N B I
/0 ¢ * k <k) ( k>’

where I' is the Gamma function defined by

for ®(z) > 0. Of course, this equation is true for £ = 1. But, unfortunately we can’t
estimate like f(x) > 2% /k! under the assumption k > 3.

Indeed, neither (4.2) nor (4.4) is always the best estimate. Roughly speaking, it is be-
cause the proof of Proposition 4.1.3 does not require the information of f, f, ..., f*&=1.

For example, f(z) := z(z — 3)? satisfies f”’(x) = 6. By the proposition, we have

4 4
/ ot @) g / ot @) gy
0 2

where C'is a positive constant (independent of f and t). However, we can get that the

< Ct™1/3, < Ct7V3,

second integral is O (¢t~/2) from the proposition below.

Proposition 4.1.5
Let k > 2 be an even integer and suppose that f satisfies f(xo) = f'(z¢) = -+ =
fE U (z0) =0 and f®)(x4) # 0 for a point 2o € R. If the support of ¢ is contained in

a sufficiently small neighborhood of xy, then
L(t; ) ~ t/k Z a;t=I/k, (4.5)
j=0

where each a; is a complex constant. Here the symbol ~ means

d\" N .
(E) (L(t; 4’0) . t—1/k Zajt—g/k> -0 (t—M—(N+1)/k) :
j=0

as t — oo, for any non-negative integers N and M.

Proof.
First, we assume that 2o = 0, f(z) = 2* and Supp(p) C (=46, 9) for a sufficiently
small constant 6 > 0. Write the Taylor expansion of ¢:

M
p(x) =) b’ + 2" oy (x),

J=0
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where @) is a smooth function. Then

00 M 00 0o
/ e p(x)dr = Z/ bje ™" 2l dx +/ e MM gy (2)da. (4.6)
j=0 7= -

—00

When j is even, the integrand is an even function. Putting y = ta*, we obtain

& k > k
/ e ldy = 2/ el dy
—00 0

t—U+D/k oo ,
— % .T (‘%) t—U+D/k (4.7)

In particular, when k = 2 and j > 2, one can know I'((j +1)/2) = (7 — D)!l\/7/27.
On the other hand, if 7 is odd, then

/ e ide = 0. (4.8)

[e.9]

Next let us estimate the second term of (4.6). Assume that xy € C§°(R) such that
x(x) =0 for |x] > 2 and x(z) =1 for || < 1. Then, for small € > 0, one has

/ e_mkxM+1g0M(x)dx

= /00 e Mg (1) ¥ (f) dx + /_ e M () (1 — X (E)) dx

oo €

Since x(x/e) =0 for |x| > 2¢, Li(t) is estimated as
2e X T
Lol < [ e @ (2)|do

e s Jeutein(2)]

< (20)MT sup
x€[—2¢,2¢]

— 01€M+2’

for some C; > 0. To estimate Ly(t), define an operator D by

1 d

PI= =g

f?

then its transpose 'D is expressed as
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Since there exists C” > 0 such that ¢y, ¢, x and X’ are less than C”/x, we get
x

(" eut (1-x(3)))]

1 (’(M — k4 2)aM oy (z (1 - X <E>)‘

kt M €

st (2 ()t ()

£ S

IN

¢’ M-k
—k+1
=30

for some C” > 0. Thus, Ly(t) is estimated as

Lo(t)] = ‘/ DN (et )M+ () (1—X<§))dx
| i)

S t_N |$|M kNJrld(IJ
|z|>e
Co o
S t_NEM kN-&-Z7 (49)

for some é’, Co>0if M —kEN+2< —1.
Since € > 0 is arbitrary, putting ¢ = 1//¢, we obtain
‘Ll(t)‘ < C tf(M+2)/k
|L2(t)‘ < 02 M+2)/k

Y

M is also arbitrary, thus we get the conclusion in a special case.

From now, we prove in general cases. The assumption gives the expression f(x) =
a(z — 20)" + O (Jz — o|"*!) with a # 0. Let 1 be a smooth function satisfying f(z) =
a(x — x0)*(1 +n(z)). By the definition, n(z) = O(|z — x¢|) as z — x¢ and |n(z)| < 1
on a sufficiently small neighborhood U = U(x). Taking smaller U (if necessary) and
setting y = (z — o) (1 + n(x))/*, the mapping = + y is a diffeomorphism from U to
U, where U is a small open neighborhood of the origin. If Supp(yp) C U, then

| e tade = [ e ptay,

where ¢ € Cg°(R). By the proof of a simple case, we can similarly prove. O

Remark 4.1.6
Together with (4.6), (4.7) and (4.8), estimates of L; and Ly yield

_2 - —1/k 1
a = - ?(0)a F(k)
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Since ¢(0) = ¢(xo) and f*)(z9) = a - k!, the first coefficient is rewritten as

ao — % - (o) ( f(kf(!x0)>l/k r (%) | (4.10)

In particular, when k = 2,
2m
=4/ . . 4.11
Qg f”(l‘o) SO('ZUO) ( )
Remark 4.1.7

It is clear that ag is not equal to 0 unless ¢(zg) = 0. In this case, the value Gy(f)

equals to —1/2 and the value 7y(f) equals to 1.

§4.2 Several variables cases

In this section, we discuss about some Laplace integrals in the case when n > 2.

Proposition 4.2.1
If f(z) > 0 on Supp(y), then

L{t;p) = / e T Pp(z)dr =0 ()
as t — oo, for any non-negative integer N.

Outline of the proof.

The way to prove this fact is same as Proposition 4.1.1. U

It is clear that L(t; ) is smooth with respect to t and rapidly decreasing as t — oc.
From the proposition above, one can know that the behavior of the Laplace integral
L(t; ) is independent of critical points z1,...,z, with f(x;) # 0, though all critical

points affects to the asymptotic behavior of the oscillatory integral.

Remark 4.2.2
Similarly as Remark 4.1.2, I, (f) = R} and d(f) = 0 in this case.

Hereafter, unless otherwise stated, we always assume the conditions (A) and (B):
(A) The support of ¢ is contained in a sufficiently small neighborhood of the origin.
(B) f(z) > 0 on Supp(p), f(0) =0 and f has a critical point at x = 0.
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Proposition 4.2.3

Suppose that k is a natural number, Supp(¢) C B(0,1) and there exists a multi-
index B with () = k such that |0°f| > 1 on B(0,1). Then there exists ¢, > 0 which
depends on f and is independent of ¢ and t such that

/ e IO o(w)dr| < & t7VF o]l e mo,1).
B(0,1)

Define Py, := {>_ coz®; () = k}, the set of homogeneous polynomials of degree k. If
every coefficient ¢, is equals to 0, then P = 0 (we assume Py, contains this monomial).
Then {z%; (o) = k} is a basis for this linear space. Write the dimension of Py as dj.
Of course, di depends on not only k£ but also n.

To prove the proposition, we need the lemma below (see also [19]).

Lemma 4.2.4
There are unit vectors of R" &, ..., &y, such that {(¢;, z)¥; 1 < j < d} is a basis of
Py, where (-,-) means the standard inner product in R™ (not the inner product in the

L2-space).

Proof.
Define P := {(§,2)* = (&1 + - + &20)F; € € S"71} and an inner product of Py

as

(P,Q)p, = Z alagby,
(a)=k

where P(z) =Y a,x® and Q(x) = > byz®. It is clear that P is a subset of P. Since
0 o\ o \" o\
¢ (%) B @Z:kba (%> R <a>z=kba (5_5’?1) (3%) ’

then we obtain
(@(5:)) )= ram.

If there exists a polynomial P € Py, \ {0} such that (P, (¢, m)k>Pk =0forall £ € S"1
(that is, Pe C Py), then ((¢, V), P>7>k = 0 for any £ € R". For an arbitrary multi-
index S,

9% HBn 0 (if 5; > «; for at least one j),
g n

[0}

1 n . | | — g otherwise).
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Now, we consider the case (5) = (o) = k, thus we have

0 = (PEV)p(2) = ) aal6, V)"

(a)=k

<a):k: aq (679
= Y al”k! = KkIP(E).

(ay=k

The equation above shows P = 0, this is a contradiction, that is, P = P.
Therefore, there are &, ...,&;, € S™ ! such that {(£, )"} is a basis of Pj. O

Proof of Proposition 4.2.3.

By the assumption, there exists a unit vector & = £(z¢) such that [(£, V)* f(z0)| > o
for any zq € B(0, 1), where (8) = k and gy, is a constant depending on f (independent of
zo and ). Thus, there exists 7 = r(zg) such that | (£, V) f(z0)| > ox/2 on B(xo, r(z0)).

Since

Supp(p) € | )  Blx,r(x))
x€Supp(p)
and the support of ¢ is compact, there exist 1, ...,zy € Supp(p) such that

Supp(p) C U B(zj,r(z;)).

We take a partition of unity such that each n; satisfies Supp(n;) C B(x;,7(x;)) and
0 < n;j(z) < 1. It is clear that ¢; := ¢ - n; belongs to C§°(B(x;,r(z;))). For each
J, choose a coordinate system which satisfies £(z;) = (1,0,...,0). Then there exist

constants u;, v; and a rectangle D; C R"™!' such that B(x;,r(z;)) C (uj,v;) X D;.

v
// e @ (x)dx da’!
Dj Ju;

v

/ / e_tf(x)gpj (x)dzy
D.

Y Wi

th —-1/k
< / Cr (7) sup |p;(z1, 29, ..., xy)|de’
D; z1€(uj,v5)

< ot Mgl

Therefore,

/ e @ (z)da
B(zj,r(z;))

dz’

IN

where c;, is same as in Proposition 4.1.3 (and Corollary 4.1.4) and ¢j; = /2 ckg,zl/k

(2r(x;))"". Defining & := ), ¢jx, we get the conclusion. O
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Since 7(z;) < 1 and ¥/2 < 2, we can put ¢j; = 2" - ckglzl/k and ¢, = Ncjg.

Proposition 4.2.5

Suppose that f(0) = 0 and f has a nondegenerate critical point at 0, that is, V f(0) =
0 and the matrix Hess f(0) is invertible. If 0 € Supp(p) C B(0,6) for sufficiently small
0 >0, then

L(t;p) ~ 72 "ajt™, (4.12)
j=0

as t — oo, where each a; is a constant depending f and ¢ and the notation ~ is same

as in Proposition 4.1.5.

Proof.

First we assume f(x) = 2% + --- + x2. Write the Taylor expansion of ¢ as

where each ¢y, is smooth on B(0,9). Decompose the Laplace integral in the same

way as 4.6. Since

n
_ 2 ... 2 4,2
/ e tEittan) oy = H (/e twéx?‘dxz)
n T \JR

~ ﬁ <t_(1+°‘j)/2 i a&jet_”)

=1 je=0
— ¢ (nH{@)/2 H (Z a&jgt_j‘f) (4_13)
=1 \j¢=0
for (o) < M and
/ e_t($%+"'+z%)xo‘g0M,a(x)dx =0 (t_(M+1+”)/2) (4.14)

for (a«) = M + 1, one can obtain the expansion (4.12) for a special case.
When we show in general cases, we had better apply Morse’s lemma (see [19] and
Lemma 4.2.7). Then

Lit;p) = / R (0 0 W) ()| TU (y)]dy.

where ¥ is a diffeomorphism and JW is its Jacobian. Since (¢ o ¥) - |JV¥| belongs to
C°(R™) and Supp(yp) is sufficiently small, we get the conclusion. O
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Lemma 4.2.6
The estimate (4.14) holds.

Proof.

Fix a multi-index a such that (o) = M + 1 and write o = (av,..., ;). Let x be
a cut-off function which satisfies y(z) = 1 for ||z|| < 1 and x(z) = 0 for ||z| > 2. If
necessary, we suppose 0 < x(z) <1 on R™. Then

/ eft(xf+---+x%)xa(pM7a(w)da:
- / e g oy o (2)x (5 do +/ ettt tige gy (@) (1-x (2)) de,

for an arbitrary € > 0.

Since x(z/e) = 0 for ||z|| > 2, we have

L) < / .

< (20)M- sup
Jal<2e

ettt Ry (o) ()| do
£

Pua(T)X (g)‘ (4e)r = CyeMrn

for some C7 > 0. From the same reason as (4.9), Lo(t) can be estimated as

C
|L2<t)’ < _28M+1+n—2(N>

>~ t<N> 9
where Cy > 0 and N = (Ny,...,N,) such that a; — 2N; < —1 for every j=1,...,n.
Substituting € = 1/v/¢, we obtain (4.14). O

Lemma 4.2.7 (Morse’s lemma, [19])
The assumption is same as Proposition 4.2.5. Then there exists a diffeomorphism
U : U — U such that foVU(y)=y?+---+y2, where U and U are open neighborhoods

of the origin.

Proof.

Let U be a sufficiently small open neighborhood of the origin. We can express
f@) =" wjanfix(),
k=1
where each f;; is smooth on U. Then we get

1 0f
2 0x;0xy, (0)-

fix(0) =
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Now we assume that f is written as

FW) =D+ > vFiny), (4.15)
I<r Jk>r
where r € {0,1,...,n — 1} and every Fjj is smooth function. It is clear that the
equation (4.15) holds for r = 0. From now, let us show that (4.15) holds for r + 1
under the assumption that (4.15) holds for 7.
We may suppose F,.,.(0) # 0 (if necessary, we had better change variables). Then

F,, has no zeros in a sufficiently small neighborhood of 0. Furthermore, since f(y)

must not be negative, we may suppose F; ,(0) > 0. Define new variables i, ..., 9, as
Yk (k 7é 7“)
Ur = 1
Fr,r(y) Yr + == y'F',r(y) : (k: = T’)
( Frr(y) ; m
Substituting there new variables, we have the equation (4.15) for r + 1. O

Remark 4.2.8
From the proofs of Proposition 4.2.5 and Lemma 4.2.7, we can find ag in (4.12). The

Jacobian matrix of ¥ at x = 0 is written as

8:1:1 81‘1
—(0 —(0
JU(0) = S
oz, oz,
0) --- 0
8y1< ) 8yn( )
By a simple calculation, we get
Pf gy ... 2
2 0 8x13x1 8x16xn
: = 'JU(0) S : JU(0),
O 2 o*f o
01,011 (0) 01, 0%y, (0)

and thus |JW(0)[* = 2"/|Hess f(0)|. By (4.11), (4.13) and (4.14), we obtain

(2m)""2 - (0)

 /[Hess f(0)]

In particular, if f(z) =22 + -+ + 22, then ag = V7" - ¢(0).
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It is well-known that, if the matrix

Hi1 - Hin
M- . :
Hn1l °°° Hnn
is positive-definite, then every diagonal element y;; (j =1,...,n) is positive.

Since |Hess f(0)| # 0 and f does not have a saddle point at z = 0, the Hessian
matrix Hess f(0) is positive-definite. Consequently, we obtain that
0 f

J
for each j = 1,...,n. The inequality implies that f is convenient. Furthermore, the

principle face of the Newton polyhedron I', (f)is 7. = {a = (v, ..., ); a1+ - +a,, =
2} and the principle part of f is

Remark 4.2.9

In this case, the Newton polyhedron of f is expressed as I'y (f) = {(aq,...,an) €
R%; ai+---+a, > 2} and its principle face is 7. = {(ov, ..., an) €ERY; a1+ -+ oy, =
2}. Then one can immediately get d(f) = 2/n and m(f) = 1. On the other hand,
the expansion (4.12) imply that G(f) = n/2 and n(f) = 0. Therefore, the equations

A(f) = =1/d(f) and n(f) = m(f) hold.
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Chapter 5 Main theorem of this paper

§5.1 Known results on Laplace integrals

Next, we consider the case that f is degenerate, that is, the matrix (3.1) is not reg-
ular. One variable case is already shown in Proposition 4.1.5 under some assumptions.
Now we assume thet U is a sufficiently small neighborhood U of the origin and
introduce the condition (C) as below:
(C) f belongs to the Kamimoto-Nose class £(U) and

_ (9  Of
Vi, = (a—%,...,ax) £(0,...,0)

on UN(R\{0})" for every compact face v of T', (f).

The condition (C) is sometimes called nondegenerate over R with respect to the

Newton polyhedron T, (f). Let us see the example below.

Example 5.1.1

Let n = 2 and g(z1,72) := (11 — 22)?(x1 + 22)?. This function is real-analytic, and
thus, g € £(U). Of course, ¢ is always non-negative on R2. Consider the Newton
polyhedron of g. An edge v = {(a1,) € R%; a; + ay = 4} is compact and the
y-part is g, (z1,12) = f(z) = (x1 — x2)* (21 + 22)?, however, the gradient of g, vanishes
on {(u,u) € R* u € R} and {(v,—v) € R* v € R}. Therefore, g(z1,7s) := (z1 —

19)%(z1 + 22)? is degenerate over R with respect to ', (g).

Putting y; := 1 — x5 and y, := 1 + 22 to the definition of f above, we can make a

new function f(y1,y2) = y3y5. The only compact face of f is a vertex v = {(2,2)} and
the y-part of fis f,(y1,v2) = f(y1,y2) = y}y3. Partial derivatives of f are
g—i(y) = 2113, g—;z(y) = 2yi Y.
Thus, the set {(y1,y2) € R%* Vf(y) = (0,0)} does not intersect to (R\ {0})?, that is,
this function satisfies the condition (C). The argument above implies that the condition
(C) (in fact, the Kamimoto-Nose class £(U7)) is not closed in the sense of changing of
coordinates.

Let fi(xy,m0) := 22 + af + 22 - exp (=1/23), fo(wy,22) := —23, f3(x1,20) 1= (11 —
)2 + exp (—1/22) and consider fi(xy,x5) + fo(21,23). Then one can find that £(U)

is not closed in the sense of summation.
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Theorem 5.1.2 (Arnold, Gusein-Zade, Varchenko, [1])

Let U be a sufficiently small open neighborhood of the origin in R™. Suppose that
f is real-analytic on U, the Newton polyhedron of f is not an empty set, the support
of ¢ is contained in U, f has only one critical zero point at 0 in Supp(p) and f is non-
negative on Supp(yp) and satisfies the condition (C). Then the asymptotic expansion
(4.1) holds as t — oo, where each C, () is a constant which depends on ¢ and {«a}

belongs to finitely many negative arithmetic progressions. Furthermore, 5(f) equals
to —1/d(f) and n(f) equals to m(f).

Consider the case that:
(M) f has the global minimum at the origin and f(0) # 0.

Under such an assumption, we can get the asymptotic expansion of L(¢; ) as following:

L(t:g) ~ 1O 373" Cuplip) 9 log 1) (1)

a k=1
It is clear that the right-hand side of (5.1) does not converge when f(0) < 0 and is
rapidly decreasing when f(0) > 0 as t — 0.

§5.2 Main Results on Laplace integrals

Theorem 5.2.1 (Main Theorem)
Suppose that f € E(U) and ¢ € C®(U) satisfy the conditions (A), (B) and (C),
that is,

e Supp(y) is contained in a sufficiently small open neighborhood of the origin U,
e f(x) > 0 and the origin is the only critical zero point in Supp(p),

e V[, (x)#0 for every compact face v C I't(f) and any x € U N (R\ {0})™.

Then one can get the asymptotic expansion:

/n e @ p(z)dr ~ Z Z Cor(p) t*(logt)*, (5.2)

a k=1
as t — oo, where each C, () is a constant and {a} belongs to finitely many negative

arithmetic progressions. Moreover, the following equations hold:

B(f) = —ﬁ, (5.3)
n(f) = m(f), (5.4)

where 5(f) and n(f) are indices defined in Chapter 4 and d(f) and m(f) are constants
defined in §1.2.
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We prove this theorem in §9.3.
Remark 5.2.2

There exists a positive constant C' such that
L(t; ) < Ct~ Y4 (Jog t)mH—1 (5.5)

for sufficiently large ¢t > 1.

This fact follows from (5.2), (5.3) and (5.4).

Compare this property to Theorem 3.2.1 or 3.2.2. In cases of oscillatory integrals,
f can be negative near the origin, and thus, the equations (5.3) and (5.4) don’t always
hold. On the other hand, in cases of Laplace integrals, the condition (ii) in Theorem
3.2.1 always holds under the condition (B). When we consider the case (M), we should
put F(x) = f(z) — f(0). Then F has the global minimum value 0 at the origin.

Remark 5.2.3
The limitation
lim /9 (log t) "™ DT L(t; ) (5.6)

t—o00

exists. In fact, (5.6) equals to Ca(s)ncr)(¢)-
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Chapter 6 Fans and toric varieties

§6.1 Fans associated with polyhedra

In this section, we always assume that P is a nonempty n-dimensional convex poly-
hedron satisfying P + R’} C P C R’.. Now we introduce the following definitions and

lemmas.

Definition 6.1.1

A k-dimensional cone o is a rational polyhedral cone if there are linearly independent
vectors a'(0), ..., a"(o) suct that o = {via'(0)+- - +uvpa®(o); v; > 0 for j =1,...,k}.
The set of such vectors {a'(c),...,a"(0)} is called a skeleton of o. If a cone o satisfies

o N (—o) = {0}, o is called a strongly convez cone.

Definition 6.1.2
Y is a fan if 3 consists of finitely many cones and satisfies the following (i)-(iii):
(i) Every o € ¥ is a strongly convex rational polyhedral cone.
(ii) If 0 € ¥ and 7 is a face of o, then 7 is also an element of X.
(iii) If both o and 7 are elements of 3, then ¢ N 7 is a face of each cone o, 7.

For an arbitrary fan Y, the support of X is defined by
|X| = U o.
oeX
For k =0, ...,n, we denote by ©® the set of k-dimensional cones in X.

Definition 6.1.3
We define F(P) as the set of nonempty faces of the polyhedron P,

y(I,0) = H( (o), U(a(0)) N P,

jel
where I € B({1,...,n}), 0 € ¥™ and {a'(0),...,a"(0)} is a skeleton of o, and
I(y,0) :={j €{1,...,n}; v C H(d(0),1(a’(2)))},
where v € F(P), 0 € ™. If [ = &, we define y(@,0) := P.
Here, the notation P({1,...,n}) is same as in Definition 2.2.1.

Example 6.1.4
Let n =2, P:={(a1,02) €ERZ; oy > 2, ap > 2 and a3 + g > 6}, 01 := {(a, a2) €

R%; as > oy} and o9 := {(a,2) € R%; ay > as}. Then a skeletons of o1 and o5 are

a'(o)) = (0,1), d*(o1) = (1,1), a'(os) =(1,0), a*(oy) = (1,1).
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il P
Y2
V3
Vs 01

Y4 o

Figure 2: The polyhedron P and its faces [left], cones oy and oy [right]

Write faces v; (j =1,...,5) as

7= {(2,00); ap > 4},

2 o= {(2,4)},

v = {(o1,00); a1 +as =06 and 2 < a; <4},
7= {(4,2)},

o= {(a1,2); o = 4}

(See also Figure 2.) By the definitions above, one can find the following facts.
(i) I(v;,0%) and y(1, 04) are as below.

Iviow) | | %2 || 1 | (I, on) | {1} | {2} | {1,2}
01 ) {2} {2} {172} {1} 01 Y5 | V3 V4
03 {1y {2} [ {2}] {2} | @ o9 Yol |

(ii) The tables in (i) yield that faces v(I(v;, 0%), 0x) are as below.

YT (i, 0%)s0k) || 71 | 2 | 3| Y4 | Vs

o1 Plys|vs| 74|

P Y2 ||| P
(iii) B0 (1) = B (12) = {02}, B (v3) = {01, 02} and T (y4) = B (35) = {01}
Lemma 6.1.5

Let 0 € ¥, v € §(P) and I € B({1,...,n}). Then
(i) v Cv(I(y,0),0) and dim(y) < n —#I(y,0).
(i) y=~,0) = I CI(y,0) = dim(y) <n—#I.

Proof.
(i): For each j € I(v,0), the face 7 is contained in H (a’(c),l(a’(c)))NP. Hence, 7 is
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contained in v(I(v,0),0). Since vectors a'(o),...,a" (o) are linearly independent, we
get dim(y(I,0)) = n — #I1, in particular, dim(y) < dim(y(I(y,0),0)) =n—#I(y,0).

(ii): If v = (I, 0), then every j € I satisfies v C H(a’(0),l(a’(c))) N P. This
implies I C I(v,0). Since v C y(I(v,0),0), the same discussion as (i) yields dim(~y) <
dim(y(I(y,0),0)) <n—H#I(vy,0) <n—#I forany I C I(v,0). O

Definition 6.1.6
We denote by (R™)* the dual space of R™ with respect to the standard inner product

and we can equate (R")* with R" in the natural way. For a € (R™)*, we define [(a) as
l(a) := min{(a, a); a« € P} (6.1)

and
v(a) :=={a € P; {(a,a) =l(a)}.
Then one can immediately show that y(a) = H(a,l(a)) N P. Now we consider the

equivalence relation ~ in (R™)* defined as
a~b & (a) =),
Moreover, for every face v, there is an equivalence class v* defined by
v i={a€ R"); v(a) =yand a; >0 for j =1,...,n},
and, in particular, P* := {0}. From the definition above, one can get
v ={ae R");vy=H(a,l(a)) NP and a; >0 for j=1,...,n}.
Define the closure v* of v* as

v i={a€e R")";vC H(a,l(a))NPand a; >0for j=1,...,n}.

Lemma 6.1.7
Let 0 € X, v € F(P), I € P({1,...,n}) and ~* be as above. Define XM () :=
{o € W; dim(y) =n — #I(7y,0)}. Then
(i) #1(y,0) = dim(y" N o).
(ii) 2™ (y) = {o € ™, dim(y* N o) = dim(y*)} # 2.
(iii) For any o € X(™ (%), one has v = y(I(v,0),0).

Proof.

(i): For any j € I(7,0), the face 7 is contained in the hyperplane H (a’ (o), (a?(0))),
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and thus @’ (o) € v*. Since {a’(0)} is a skeleton of the cone o, we have a’(c) € v*No.
The converse also holds, that is, j € I(v,0) is equivalent to a’/(c) € v* N 0.

(ii): From (i), it is obvious that dim(v) equals to n — dim(y* N o) for ¢ € R (y).
Since dim(y*) = n — dim(7y), one can get dim(y* N o) = dim(y*). The condition that
the support of the fan ¥ is R’ implies that there exists a cone o € ¥ such that
dim(y* N o) = dim(y*), that is, the set £ (v) is not empty.

(ili): Lemma 6.1.5 (i) and the previous facts yield that dim(y) < n — #I(y,0) <
dim(y(I(7y,0),0)) < n—dim(y*) = dim(vy) for any o € £ (). Hence dim(v) is equal
to dim(y(I(v,0),0)), and moreover, v = v(I(,0),0) holds, because 7 is contained in
Y(I(y,0),0). O

Remark 6.1.8
It is clear that (™ (P) = £,

Definition 6.1.9
Let Xy be the set of all v*. We call X the fan associated with P. Moreover, ¥ is
called a simplicial subdivision of ¥ if the following conditions (i)-(iii) hold:
(i) IZ] = 2ol
(ii) Every cone o of X lies in some cone of 3.
(iii) A skeleton of an arbitrary cone o of ¥ can be completed to a base of the lattice
dual to Z™.
Remark 6.1.10
An arbitrary fan 3, associated with P satisfies || = R’ and has a simplicial

subdivision X.

From now, > is the fan associated with P and > is a simplicial subdivision of ¥,

unless otherwise noted. For a n-dimensional vector a’(c), we usually write a/(0) =

(a1(0), ..., a}(0)).

§6.2 Real toric varieties

In this section, the polyhedron P is always the Newton polyhedron I'y(f) of f.
Definition 6.2.1

Let 0 € X be a n-dimensional cone. We associate a copy of R which is denoted by
R™(0). Define the map n(co) : R"(0) — R" by (x1,...x,) = n(0)(y1,...,yn) with

" al (o) al(o al (o
Ty = Hyjk( :ylk( )ynk( )7
j=1
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for k=1,...,n, where {a'(c),...,a"(0)} is a skeleton of the cone o.

Definition 6.2.2
Let Y5 be the union of R"(¢) for o which are glued along the image of (o). We
call the manifold Y5, the (real) toric variety associated with the fan X.

Remark 6.2.3
The following facts are known.
(i) Yy is an n-dimensional real algebraic manifold.
(ii) The map = : Y5, — R™ defined on each R"(0) as n(0) : R"(c) — R is proper.
(iii) The set of points in R™(o) in which n(¢) is not an isomorphism is a union of
coordinate planes.

(iv) The Jacobian of the mapping n(o) equals to

n

0 (o))~
Jn(a):ﬁ.Hy]<, (o)-1

j=1
where 9 is equal to 1 or —1.
Proot.

Here, we prove only (iv). Proofs of the others are fererred in [6], [5].

From the definition of the Jacobian and the determinant, we have

at(o)—1 a?(c at (o n al(o) a?(o al(o)—1
a%(o.)yll( ) y21( )ynl( ) al(U)yll( )y21( ) ynl( )
ay(o)—1 a3(o ajy (o n ai(o) a2(c ay(o)—1
a%(o.)ylﬂ ) y22( )ynQ( ) a1(0)912( )y22( )ynz( )
|Jn(0)(y)| = . ) .
al(o)-1 a2 ap n n 2 (o n(o)—1
al(0)yi Ty @ an(o)y Ty g
. @)/ . al(o)/vn
al (o . . .
_ (Hyf ()>> , : . :
= an(0)/yr - an(o)/yn
. (o) ... al(o)
al(o))—1 . . .
- (Hy§ ”> ) T (6.2)
=t al(o) ... a’(o)

The determinant of the last matrix in (6.2) equals to 1 or —1, because of the construc-

tion of the simplicial subdivision (the condition (iii) in Definition 6.1.9). O
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Chapter 7 Local zeta functions and transforms

§7.1 Laplace transform and Mellin transform

First, we introduce the Laplace transform and the Mellin transform. Some properties
of these transforms have already been known, thus, in this paper, we omit proofs of
them. Details are in [15], [18], [4] and so on.

Definition 7.1.1
Let a, b be real constants with a < b. Assume that ¢ is continuous and locally
integrable on R and satisfies the following conditions (i) and (ii).
(i) g(y) = O (e“r9¥) as y — +o0.
(i) g(y) = O (e®™) as y — —oc.
Then the Laplace transform of g is defined by

(Lo)(s) = C(s) = / e g(y)dy, (7.1)

[e.e]

where s € C with a < R(s) < b.

This integral is sometimes called the two-sided Laplace transform or the bilateral

Laplace transform. Usually the integral defined by

G(s) = /Ooo e *g(y)dy,

is called the Laplace transform of g. However, we use the definition (7.1) in this paper.
The integral in (7.1) converges absolutely on the set {s € C; a < R(s) < b}. Indeed,
Lg is holomorphic in the strip.

The inverse transform of the (two-sided) Laplace transform is expressed

(L'C) () = = /A " e (s)ds,

2 Sy
where A = R(s) and the contour path is contained in the region of convergence of G

that is, a < A < b. The expression above is independent of .
On the other hand, the Mellin transform is defined as the integral below.

Definition 7.1.2
Let a, b be real constants with @ < b. Assume that f is continuous and locally

integrable on R and satisfies the following conditions (i) and (ii).
(i) f(z) = O(z=@*9)) as z — +0.
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(ii) f(z) =0 (z79) as v — —oo.
Then the Mellin transform of f is defined by
(M) = F(s) = [ o
0

where s € C with a < R(s) < b.

Now, substituting y = —logz and f(z) = g(—logz), one can immediately get

(Lg)(s) = / N e *g(y)dy

—0o0

0
d
= —/ e_s(_bgm)g(—logm)%

o0

_ / T ) = (MF)(s).

0
This equation shows that there is a strong relationship between the Laplace transform
and the Mellin transform and the conditions (i), (ii) in Definition 7.1.2 stand to reason.

The inverse transform of the Mellin transform is
1 At+ioco

(MF)(2) = — r °F(s)ds.

2mi A—ioo

where a < A < b. This is sometimes expressed as

(M™IF)(z) = ! /OO =M RN+ iv)dy.

T om

The integral is also independent of the constant A, while it satisfies a < A < b. Here,
the function F' is required that F' is analytic in the strip {s € C; a < R(s) < b}.

By the definition of the gamma function, it is clear that I' (s) is the Mellin transform
of f(z) = exp (—x) for R(s) > 0. It is known that, if f(x) = cos (ax), then (M f)(s) =
a—*T'(s) cos (ms/2) for a > 0 and 0 < R(s) < 1. See Appendix 1 and [17], [14], [18] for

more information.

§7.2 Relationship between Z(s; ) and L(t; )

Let U be a sufficiently small open neighborhood of the origin. For s € C, define

Z(s;0) = - | (@) P ()de,

which is called the local zeta function, and

Zu(sig) = [ (f@)2) pla)da,
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where f(x)y = max{f(z),0} and f(z)- = max{—f(x),0}. Since |f(z)| is equal to
F@): + f()_ and f(z), - f(z)- =0, we obtain Z(s;¢) = Z:(s;) + Z_(5:0).
Define W, := {z € R"; f(z) = u} for u € R and

K(fpo)i= [ ol

u

where w is a differential form which satisfies du A w = dxy A - -+ A dz,,. This function
K(f, ¢, u), which is often denoted by K(u), is called the Gelfand-Leray function. If
f(z) > 0, then K is identically zero on (—o0,0).

Changing the integral variables, we have

/OOOUSK(U)du _ /Ooous ( /W go(x)w)du

_ /OOO [ peyew) dun
= [ U@ e = Ziisi0)

This equation means that the local zeta function is expressed as the Mellin transform
of the Gelfand-Leray function. Since K =0 on (—o0,0),

Z_(s;¢) —/ 0du = 0.
0

Indeed, since f_ is identically zero under the condition (B), we have Z_(s;¢) = 0.

On the other hand, similarly calculating, we get

[remwon - [ )
_ /Ooo/ue_tf(w)gp(x) df Aw

_ / U@ p(a)de = Lit; ).

This means that the Laplace integral is the Laplace transform of the Gelfand-Leray
function.

We will analyze the local zeta function more precisely in Chapter 8.
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Chapter 8 Analysis of the local zeta function

§8.1 The function f,
Proposition 8.1.1

For an arbitrary o € (™| there exists a function f, which is smooth on n(c)~*(U)
such that f,(0) # 0 and

fn (ﬁ ‘“”) (v), (8.1)

for y € n(o)~H(U).

Proof.
Putting x = n(0)(y) and P = I, (f) into the equation (2.5), one can easily get

f(x(0) Z(H e ) (x(0) (1),

peS \Jj=1

where S € ST, (f)] with V('L (f)) € S[T4(f)] and 9, € C=(U). Define

foaly) = (Hyj< et )%( (@)(y) and fo(y) ==Y fpoly) (8.2)

peES

Then, we obtain the equation (8.1). We remark that the definition of I(a) and the
condition that p belongs to I'y (f), imply (a’/(c), p) — I(a’(c)) is a non-negative integer
for every j.

Next, let us show f,(0) # 0. If there exists a number j such that (a’(o),p) —
[(a?(c)) > 0, then f,,(0) equals to 0. Now, v({1,...,n},0) is a vertex of I'y(f),
which is denoted by p(c). Since S contains the vertex p(c), f,(0) equals to fp(»)-(0) =

Up()(0) # 0. O
Define T} (R") := {y € R™; y; =0 if and only if j € I} for I € P({1,...,n}).

Theorem 8.1.2
Let f be a function satisfying conditions (B) (in P.29) and (C) and assume (o) (T} (R™)) =
0. Then Vf, # (0,...,0) on the set {y € T} (R"); f,(y) = 0}.

From this theorem, it is clear that f is negative at some zero points in U. However,
f must be non-negative on the support of ¢. This is a contradiction. Thus we see that
f» does not vanish on U \ {0}. Furthermore, by the equation (8.1), it can be seen that
every [(a’(c)) is even integer and f on(o) does not vanish on (o) H(U) N (R\ {0})".
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Proof of Theorem 8.1.2.

First, we show that v = ([, o) is compact. Let y € T;(R") and J := {1,...,n}\ I.
Then, for every k € {1,...,n}, there exists j € I such that a](c) > 0. On the other
hand, every valid pair (a,l) for T, (f) defining v must satisfy a; = 0 for any k € V(v),
which is defined in Definition 2.2.4. Thus one can see that W (vy) = {1,...,n} and the

face ~ is compact.

By the equation (2.8), we get
= Z 21, (0)
peEYNS

for any compact face ~, where S is a finite subset of Z'}. Since (a’(0),p) = l(a’ (o)) for

Jj € I and p € 7, one can see that f, has the quasihomogeneous property:
f'Y(ta{(U)xlu ce 7ttl%(0')xn) = tl((lj(U))fﬁAx). (83)
Taking the derivative of the left-hand side of (8.3) with respect to ¢, we obtain

0

0 j
5 (@) gy, . 10 Zak )@ 1y, f”(tal0>x1,...,tan<o>xn). (8.4)

8$k

The right-hand side of (8.4) tends to

Z @k (9f7 (@).

as t — 1. Bven if a] (o) = 0 for some k, similar arguments are available. On the other

hand, taking the derivative of the right-hand side of (8.3) with respect to ¢, we have

A (@) = 1! (@)D, ()

and this tends to I(a’(0))f,(x) as t — 1, for j € I. Accordingly, we get the Fuler
identity:

S al(0)ax 2 () = (e (0)) 1, (2). (8.5)

1 a$k
Next, we show the following lemma.

Lemma 8.1.3
For a face v of Ty (f), a cone ¢ € ¥™ and y € n(0)~(U), the following equation

holds: .
fo(x (H @ ) £o(Ti(y)). (8.6)
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Proof.
From the definitions of n(c) and W (v), one can easily get n(c) o Ty = Ty () o n(0).
This fact and the equations (2.8) and (8.2) yield

hia@w) = 3 (H )wp (Tiwy 0 7(0))(9))

peEYNS

=< ! “)> (Hyﬁ“””’”) (T 0 7(0) (1)
jerI peEYNS \jeJ

_ ( >> (Hyﬁ‘“"“) “””)wp«()om(y»
peyNS \jeJ
- (H “’“>>fUT1< ).

The last equation is from the condition that, for any j € I, (a/(0),l(a’())) is valid
pair for the Newton polyhedron I', (f) defining ~. OJ

Let us return the proof of the theorem. Taking the partial derivatives of (8.6) with
respect to y; (j € J) and putting x = n(0)(y), we have

of, - - af; (o) 9fy
2. o)t ;(Ey ) (1) 06

B ((eﬂ ) )fo Tily >>>

— @) | [ )fa (Tily (H )WU A(Ti(y).

=1 Y

and

Here, 6;, is Kronecker’s delta. These equations follow that

> ddlon gl - (Hyé“*‘””) (10N 2T + 15T (5

Now we suppose that there exists a point b € T;(R™) such that

_ Of 1y
f-(b) = Oanda—y]()—o
for a certain j € J and define U;(b) := {z € U; z = =n(o)(T7(b)) for r € R\ {0}}.

Since the k-th coordinate of x = n(0)(77 (b)) is expressed by

s (1) (1)



50 Masahiro Narazaki

for any £ € {1,...,n}. Since b; is not equal to 0 for j € J, z; does not equal to
0 for every k, and thus, the set U;(b) is a subset of (R\{0})". Putting y = 77(b)
(r € R\ {0} is arbitrary), one can get

fa(TI(y)) = fa(TI(b)) - fa(b) = 07

because the point b belongs to 77 (R"). Since n(c)(y) is an element of U;(b) and (8.6)
holds, f, = 0 on the set U;(b). Hence, the equations (8.5) and (8.7) yield that, for any
je{l,...,n} and z € Uy(b),

3f7
Z ak axk )

Define the matrix A, by

ai (o) a(0)
Ay = :
at (o) (o)
Since the vectors a!(c),...,a" (o) are linealy independent, the matrix A, is invertible.
Multiplying A;! on the left to
é?f7
(%1( ) 0
Acr = ’
5’]‘3W 0
o ox, (z)
we have o7
xja—x;(f) =0,
for any j € {1,...,n}, and thus,
dfy
() =0
o)
for € Uy(b) and j € {1,...,n}. This is a contradiction to the condition (C). O
§8.2 Poles of Z(s; )
Lemma 8.2.1
Let 6(yi,...,Yn; ) be a smooth function of y with a complex parameter p and

Supp(6) is compact in R"™. Then the function A defined by

A1, T 1) 12/ (Hy?) 6(Y1, -+ Yni ) dys - - - dyn
R% \j=1
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can be analytically continued at all the complex values of 71, ...,T, and p as a mero-
morphic function. Furthermore, all poles of the integral A(Ty, ..., Ty; ) are simple and
lieont; =—1,-2,...forj=1,...,n.
Proof.

Integrating by parts, one can easily obtain. U

Remind that the local zeta function is defined by
Z(sip) = | |f(x)]e(x)dz
R

and it is easy to see that Z(s; ) is decomposed into

Zso)= 3 [ seayetoos
ge{—1,13n Y RY
where 0x = (0121, ..., 60,x,). Now, to know properties of Z(s; ¢), we had better analyze

Z(s; @) defined by
Zsip)i= [ fa)ealds

+

Generally, the functions Z.(s; ) are defined by

Zu(si) = / (f(2)2)" p(x)dz,

n
respectively. However, condition (B) implies that Z_(s; ) is constantly equal to 0.

Theorem 8.2.2

Let f and ¢ be smooth functions satisfying conditions (A), (B) and (C) in P.29 and
P.36. If Supp(y) is contained in a sufficiently small neighborhood of the origin, then the
function Z(s; ) can be analytically continued to the complex plane as a meromorphic
function, which is also denoted by the same symbol. Moreover, the poles of Z(s; p) is

contained the following set:

{—%; veZy,ac XV with i(a) > 0} : (8.8)
a
where [(a) is as in (6.1) with P =T, (f).
Proof.

Let Vs := Yo N} (R?) and s € C satisfying R(s) > 0. Now we consider {x,} such
that
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(i) For every o € (™ Supp(x,) is contained in R"(c) and y, = 1 in some neighbor-
hood of the origin,

(i) > pesm Xo =1 on Supp(x o n).
It can be easily seen that there exists {x,} satisfying (i) and (ii). Then the local zeta

function Z(s; ) is expressed as

Z(sip) = f(@)*o(x)de

= Z / F () ()" (W(0) W)X (1) [ oo ()l dy

cex(n)
l(ad (o - a’ (o)) —
-y (Hy; < ))fo—(y)> T ot
cextm TEE \j=1 i=1
where dy is a volume element in Yy and ¢, (y) := ¢(n(0)(y))xo (y). Next, we consider

{Xx : R" = R} such that
(i) For each k, Supp(x,) is sufficiently small,

(i) >, Xx =1 on Supp(p,).
Define "/’n(y) = WU(Q)X& (y> and

ouls) = [ (r_[ @O Gy ) _

/ (H NN )fa()%(y)dy- (8.9)

n

H aJ(U

Then we get

©)= > ) Couls)

cex(n) kK
Lemma 8.2.1 yields that every (,.(s) can be analytically continued to the complex

plane as a meromorphic function and the poles are contained in the set

_<a—j(g)>+y-y ] nt} wi a (o
{ CIOR €Zy.j€{l,...,n} with I( ())#o},

and thus, Z(s; ) can be also analytically continued. O
Now define the value 5(f) b

B(f) = max{ l<((;>) a € 2 with I(a) > 0} :

and consider the lemma below.
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Lemma 8.2.3
For a € W with I(a) > 0, we define the point q(a) by q(a) := H(a,l(a)) N
{(t,...,t); t > 0}. Then one has

_(Ua)  Ua)
q(a)(<a>,...,<a>). (8.10)

In addition, if l(a) > 0, then the following conditions are equivalent:
i) B(F) = —(a)/i(a).

(ii) ¢« = q(a).

(iii) ¢« € H(a,l(a)).

Proof.

The equation (8.10) and the equivalence of (ii) and (iii) are trivial. Hence, we should
prove (i) < (ii).

Remind ¢, = (d(f),...,d(f)). By the definition of the function [(-), we obtain that
l(a) < {a,(d(f),...,d(f))) = (a)-d(f). Therefore, —(a)/l(a) is at most —1/d(f).

If ¢, = q(a) for a € ¥V with I(a) > 0, then —(a)/l(a) = —1/d(f), that is, such a
vector a € X satisfies the condition (i).

Next, we assume that a € XY satisfies ¢, # q(@) and show that the condition (i) is
not satisfied for such a vector a. From the argument above, one can find —(a)/l(a) <
—1/d(f). On the other hand, there exists a valid pair (ao,ly) defining the principle
face 7., that is, H (ag,lo) D I't(f) and 7. = H(ag,lo) NT'L(f). Then we get I(ag) = lo
and (ao, (d(f),...,d(f))) = lo. They imply that —(ao)/l(ao) = —1/d(f) > —(a)/l(a).
Now we get a conclusion. U

Lemma 8.2.4
The value m(f) is equal to max{#A(c); o € ™}, where

A(o) = {J € {1,...,n}; l(a’(0)) and f(f) = ~ e }

l(a?(0))
Proof.

From the proof of the lemma above, one can easily get A(o) = {j € {1,...,n}; ¢. €
H(a'(0),l(a’(0))} = {j € {1,...,n}; 7. C H(a’(0),l(a’(c)))}. By the definition
of I(-,-), we have A(os) = I(7,,0). Lemma 6.1.5 (i) leads n — m(f) = dim(r.) <
n — #I1(1,,0) = n — #A(c), that is, #A(c) < m(f) for an arbitrary o € £, By
Lemma 6.1.7 (i), there exists a cone gg € ™ such that dim(r,) = n — #A(0y), that
is, #A(00) = m(f). O
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Proposition 8.2.5
Under the same assumption as Theorem 8.2.2, the largest element of (8.8) is —1/d(f).
If the local zeta function Z(s; @) has a pole at s = —1/d(f), then the order of the pole

is at most m(f).

Proof.
Applying Lemma 8.2.1 to (8.9), one can obtain that, if (, .(s) has a pole at s = B(f),
then the upper bound of the order is #A(c). Consequently, if Z(s;¢) has a pole at

s = (), then the upper bound of the order is max{#A(c)} = m(f). O

§8.3 The first coefficient of Z(s; )

In this section, we consider the first coefficient of the local zeta function. Put

Blfp) = B = _lim (s+1/d(f)"VZ(s:00)
SR m(f) 7 ( .
B o= lm (s 1/d(f)" O L),

Z0(s) = 3 Gouls),

K

and 2 = {o € TM; A(6) = m(f)}. Sometimes B is denoted by B(f, ) and it is
obvious that

B= Y B(fsp)

oc{-1,1}"

where fy(x) = f(0x) and @p(x) = p(Ox) for x € R’. This implies that we had better
consider the coefficient B to know about B.

Now, this set 2 is not empty. By the definitions of 7., m(f) and A(o), If 0 € E&"),
then one can immediately get

r.= [ H(@(0),U(a’(0))) NTL(f).
j€A(0)
In other words, v = (I, 0) holds, where v = 7, and I = A(c). Notice that the order
of the pole of Z()(s) at s = —1/d(f) is less than m(f) if o € £\ £ Since
Z(sip) = Y Z)s),

cex(n)

the first coefficient B is expressed as

B= Y lm (s+1/d(f)2(s) = Y B
s——1/d(f)
cex™ cex(™
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Lemma 8.3.1
If f satisfies conditions (B) and (C), then there exists a cone o € > such that
fo © Ta(s) does not vanish on Rt N n(o) ' (U), where U is a sufficiently small open

neighborhood of the origin in R".

Proof.
Theorem 8.1.2 shows that f, has no zero point near y = 0. U

Lemma 8.3.2

Let ® be a smooth function defined on R and A be a natural number. Then

1
O — 1)

lim (w+ \) /000 y e (y)dy = d*-1(0).

w——A

Here, w is a complex number near —\. In particular, when A = 1,

lim (w+ 1) /000 y O (y)dy = ¢(0).

w——1

Proof.
Trivial. U

Theorem 8.3.3
The first coefficient B is expressed by

/ (pom(0)(Ta)) 1 v ay,. (8.11)

B =
R Jo(Tago) (y)) /45 j¢A(o)

l(a

jEA(o)

where Z;(0) = —l(a’(0))/d(f) + (a’(0)) — 1 and

11 ’y] " dy; = H 1T v

J¢EA(o J¢EA(o JEA(o)

In particular, when m(f) = n, the first coefficient is specified as

= (171 ¢ (0)
b= (sz(a») 72 (07 (&1

Proof.

First, we assume m(f) < n. Using (8.9) and the lemma above, we will show

=> G"(0), (8.13)
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where

1 Vu(Ta)(y)) =5(0)
G (o) = H — / T H y; " dy;.
n—m /d(f) J J
W 5@y ) Jeeo Ty H
Then (8.13) and the equation ) 1, = ¢, yield the expression (8.11).
Put w; = l(a’(0))s + (a/ (o)) — 1 for j € A(0). If s tends to —1/d(f), then w; goes
to —1. Define operators X,..., X, as following:
(i) If j € A(o) and ®;_y € C*°, then

N XD ) = lim 1Y [T, |
2@ = X(m) = (8 i d(f)> /0 Di-1(0)dys,

where § = (Y1, .., Yj—1,Yjt1, - Un)-
(11) Ifj ¢ A(O'), then (I)j = Xj(q)j—l) = q)j—l-
Notice that, for j € A(o),

_ . 1 % (ad (0))s+{al (o)) =1 5
Xo(P — L . & |
i (@5-1)(9) ol (S+d(f))/0 Y; i—1(y)dy;
1

= Tai(o)) w0+ Dy 2 (v)dy;

;1(T(v)

(di(0))
where
y G () = D (y).
Putting
o (y) = (H y;@”””s““”””l) Lo () V4D (),
j=1
we have

Cuy) = ((Xno-+0X1)(®0))(y)

= ! Un(Tao) () -
) H)l(aj(g)) fo(Tag) ()45 H Yt

JEA(o J¢A(o)

Indeed, (8.2) implies that f, does not have any effect on the limitation as s — —1/d(f)
and terms which satisfy (a’(c),p) > I(a’(c)) also have no effect.

When m(f) = n, similar calculation gives the conclusion. O
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Remark 8.3.4
The equations (8.11) and (8.12) are rewritten as

5 = R (2 © 7(0)) (Tae () eyt |
b= 1l l(a?(0)) /Ri_m(f) (fr. om(o))(T],) y))ude Yj dy; (8.11)

<A J#A(0)

and
- - 1 ©(0) B i 1 (d(f)1)™4D p(0) |
b = (H l(aj(a))> £ (1, A (]1_[1 l(aj(g>)> (0 F)(0) /4 (8.12)

respectively. Notice that the principle face 7, is a vertex ¢. = (d(f),...,d(f)), and
thus, d(f) is an integer, when m(f) = n.

From the equations (8.11) and (8.12), it is clear that R(5) > 0 if R(¢(0)) > 0.
In particular, consider the case m(f) = n and ¢(0) # 0. Then we can assume that
the value ¢(0) equals to 1 without loss of generality. Indeed, we should regard the new

smooth function ¢(x)/¢(0) as new ¢. From (8.12) or (8.12)’, one can see that:

(i) R(B) > 0 if and only if R(¢(0)) > 0,
(i) R(B) < 0 if and only if R((0)) < 0,
(iii) I(B) > 0 if and only if I(p(0)) > 0,
(iv) (B) < 0 if and only if 3((0)) < 0.
These properties imply that the first coefficient is not equal to 0 unless ¢(0) does not

equal to 0.

Remark 8.3.5
If 7, is compact, then n(c) o Ty (R") = 0 and (8.11)" is rewritten as

B = ; 90(0) <aj(a)>_1 ‘ ”
b= H I(ai(0)) /Ri—M(f) (fr. 0 7(0)(Th () () /4D H Y; dy;. (8.11)

j€A(o) J¢A(0)
Remark 8.3.6
Let n =1 and P = [k,00) (k € Z,). Then the principle face is the point {k} and

we have

1 (EYYkp(0)
B(f1,041) = T W

from (8.12)", where

fri(z) = { /(@) (i i 0 pr1(z) = { ole) (@ i 0)’
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Similarly we get

B(f—h(p—l)
where
] 0 x >0),
d M—{ f(@) (x<0).
Therefore,

B = B(f1,041) + B(f-1,9-1)

This is equal to (4.10).

1 (kY)Y*p(0)
Tk (f®(0)k

2 (k)*p(0)

GO0
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Chapter 9 Proof of the main theorem

§9.1 Asymptotic expansion of the Gelfand-Leray function

Before the proof of the main theorem, we show the asymptotic expansion of the

Gelfand-Leray function K as below and some important lemmas.

Theorem 9.1.1

Let 0 < 81 < s9 < .... Suppose that Z(s; ) has poles at s = —s;, the order of the
pole at s = —s; is k; for every j = 1,2,... and bj is the coefficient of (s + s;)™" of
Z(s; ). Then one has

ZZ@ pus (logu)F 1, (9.1)

as u — +0, and
(_]_)kfl
Gk = o) bjk-
Outline of the proof.
Details are written in |7], [12].

First, we should choose A > 0 large enough. Notice that the integral

1 A+-ioco
— u s Z(s; p)ds

21 Jyino

converges in the sense of distributions. Applying Cauchy integral formula, for A€eR
with A < X\ and \ # s; for any j, one can get

1 A+ioco .
K = — T Z(s;p)d

1 5\+ioo . .
= — A )d A ds, (9.2
i s 3 o [ e s, 02

A<—s5;<A

where T is the boundary of a sufficirntly small open neighborhood of s = —s;. To
simplify, we suppose each neighborhood of s = —s; is simply connected. Now, the first

term in the right-hand size of (9.2) can be eatimated as

1 Aico
— / u S Z (85 0)ds
X

<R-u,
270 5 ico
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where R is a sufficiently large (positive) constant. On the other hand, by Cauchy’s

residue theorem, the last term in (9.2) gives

-1 1 < )"~ lb -1
3 27”/ Z(sip)ds = 3 u® Z (logu)*.
A<—s;<A A<—s; k=1
Consequently, the asymptotic expansion (9.1) holds. O

In particular, a;y, equals to (—1)"*~'B(f,)/(k; — 1)I. Therefore, the coefficient
of the leading term in (9.1) is not 0 if and only if the coefficient of (s + s;)™* in the

Laurent series of Z(s;¢) is not 0.

§9.2 Lemmas for the main theorem

Lemma 9.2.1
Let x € C{°(R) satisties x(u) = 1 on [—6,6] for a sufficiently small § > 0 and
0 < x(u) <1 forall u € R. Then

Zn(t;p) = /OOO e~ uP (log u)™x (u)du — (dip)m (%)

is rapidly decreasing ast — oo, if p > —1 and m € Z.

Proof.
Changing the integral variables, we get

> r 1
/ e P du = M (9.3)
0

tp—l—l

By exchanging the integral and derivatives, Z,,(t; p) is calculated as
Lp) = [ e wlogu () - du
0
- /500 e "uP(logu)™(x(u) — 1)du
- /00 e7tOF (5 4 u)P(log (6 + u))™ (x(6 4 u) — 1)du
0
= " /000 e (0 +u)P(log (6 + u))™ (x (6 + u) — 1)du. (9.4)

For sufficiently large u > 0, we see that [(6 + w)P(x(6 + u)(log (0 +u))™ — 1)| is less
than exp (tu/2), thus the absolute value of the integral in (9.4) is less than

o 2
R/ e 2y = =
0 t
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where R is a large constant which is independent of ¢. The estimate shows that Z,,(t; p)

is rapidly decreasing as t — oo. U

Lemma 9.2.2

Let m be a non-negative integer and p > —1. Then one has

R m d\" (T(p+1) m
/0 e "uP(log u)™du = (d_p) < pres] > tpHZ ! ] - (log t)?, (9.5)

as t — oo, where

cg-m] (p) = (—1) (m) /000 e "uP(log u)™ /du. (9.6)

In particular, ¢’ (p)=(—1)"T'(p+1).

Proof.
Let us prove this lemma by induction on m.
From the definition of cg-m}, it is trivial that (9.5) holds for m = 0. When m = 1, we

get
d (T(p+1) logt g L[~ .,
d_p(tpT __tp+1/0 du—i—tpT i e “uP logu du.

Next, let us assume that the lemma holds for m = k (k > 1) and show for m = k+1.

Similarly as above, we have

dp (tP—H ZC - (log?) )

logt % ) 1 d o 4
T ZCE () - (log )’ + s} Z d_pcg ') - (log 1)’

=0 =0
k
1 k & , ,
= — Z 1)7+t / e "uP(logu)*du | (logt)’™!
tp ]:0 ] 0
1 < K\ [
o Z ((—1)j ( ) / e "“uP(log u)kj“du) (logt)!
_ J 0
7=0

1 o0 1 (o.)
— W ((—1)k+1/ e_uupdu) (lOgt>k+l + tp? (/ e—uup(logu)k+1du)
0 0

SE ) (L)) Lo
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1 2 [k k
- tm(Cé;:”(p)-<logt>’f“+co“ +Z A 1ogt>>

At the end, we should show the integral in (9.6) converges. Since exp (—u) < 1 on
the closed interval [0, 1], we get

< (—m /0 P (log )" du

_ (_1)m<[“p+1 (logu)my _m Olu”(logu)m_ldu>

1
/ e “uP(log u)"du
0

p+1 o p+1

m) 1 m!
— e == — updu = -
(p+1)m /0 (p+1)m*

Since log u is non-negative and less than u for © > 1, we obtain
[e.e]
< / e U uP T du,
1

< / e "uPt"ds = T(p+m+1).
0

/ e "uP(log u)"du
1

Now we get the conclusion. 0

§9.3 Proof of Theorem 5.2.1

Let N be a sufficiently large natural number and € > 0 be a sufficiently small number

such that syy1 — sy < €. Rewrite (9.1) to

k;

N
Z a;pu® " logu)* + o(usN’l) ,
7j=1 k=1

as u — +0. Lemmas 9.2.1 and 9.2.2 show that, for 7 =1,2,..

/ e ut logu)*x (u)du = / e~ "u~ (logu)*du + T (t; 55 — 1)
0 0
k—1

1 _
- Z 155 e (s, —1) - (log ) + o(t~tnFe)y.
J
=0

If the support of ¢ is sufficiently small, then the maximum of f is also small and K(u)

is constantly equal to 0 for large © > 0. Finnaly we obtain

/OOO e K (u)x(u)du
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o0 N kj
= / e ZZ@ pu(logu)" o (uN ) | du
0 j=1 k=1
N kj k—1
= ( sy 1) - (log )’ +o(t<8N+E>)) +o (17 9)
j=1 k=1 \ /=0
N ki kj
=y a; kA (s;— 1) -t (log )" + o (¥ ) | (9.7)
j=1 =1 k=t

as t — oo, and thus,
L(t;p) = O (t ™ (logt)™1).

F=1in (9.7) is specified as

['(s1)

Moreover, the coefficient of t~°*(log t)

al,klcg?:ll}(sl — 1) = m . bl,kl
F<81>

To know B(f, ¢), look back §8.3. O
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Appendix

Here, we introduce several propositions which have been already known or can be

easily obtained.

Appendix 1

About the Mellin transformation, the following facts are known. See also [17], [14],
[18] and so on. — cf. §7.1.
(i) Mfr)(s) =T (m+1—s)- (Mf)(s —m)/T(1—s). In particular, (Mf')(s) =

—(s=1)- (M[)(s —1).
(i) Let g(s) = (M[)(s). Then )
(a) If ~(:lc) = f(ax) for a > 0, then (./\/l]i)( s) =a"*g(s).
(b) If]f(x) = f(z*) for a > 0, t{le (Mf)(s) =g(s/a)/a.
(c) If f(z) = 2" f(x), then (Mf)(s) = g(s + a).
(d) If f(x) = f(L/x), then (Mf)(s) = g(~ 8)
(e) If f(z) = (log )™ f(x), then (M [)(s) = ¢"(s).
(iii) Define functions f; (j =1,..., 8) by
1 <a<y o foose<y
hi(@) .—{ ) o i >.—{ Lo
)t (02 <) _J 0o (0g2<)
fal@) _{ 0 (z>1), fal@) _{ z* (x> 1),
) logz (0<2<1) 2 e 0 (0<z<1)
fs(@) _{ 0 (x > 1) fol@) _{ logz (z>1)
Then each (Mf;)(s) is calculated as below.
(MR =+ (R(s) > 0) (M) == (R(s) <)
M) = —— () > —R(@), (M) =———  (R(s) < —R(a)
ME)S) = -5 RE>0, MR =5 (R) <0,
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Appendix 2

Calculating with Mathematica, one can get the approximate values of

/ e “uP(logu)"du.
0

are as below. — cf. P.61, (9.6).

p || m=o0 1 2 3 4 5
—0.9 9.51351 | —99.1665 | 1998.67 | —59996 | 2.4 x 10°| —1.2 x 10%
—0.8 || 4.59084 | —24.2812 | 249.013 | —3747.14 | 74990.7 | —1.9 x 10°
—0.7] 2.99157 | —10.478 | 73.3325 | —738.647 | 9870.36 | —164584
—0.6 | 2.21816 | —5.68156 | 30.6906 | —232.793 | 2339.55 | —29281.1
—0.5 | 1.77245 | —3.48023 | 15.5802 | —94.7686 | 765.092 | —7669.52
—0.4 | 1.48019 | —2.29428 | 8.94962 | —45.3095 | 306.604 | —2564.85
—0.3 | 1.20806 | —1.58366 | 5.61085 | —24.1747 | 141.363 | —1014.92
—0.2|| 1.16423 | —1.12349 | 3.7613 | —13.9542 | 72.2398 | —454.082
—0.1] 1.06863 | —0.806737 | 2.66351 | —8.53425 | 39.9613 | —223.032
0 1 —0.577216 | 1.97811 | —5.44487 | 23.5615 | —117.839
0.1 || 0.951351| —0.40314 | 1.5344 | —3.57675 | 14.658 | —65.9802
0.2 || 0.918169 | —0.265387 | 1.24037 | —2.3883 | 9.56259 | —38.6929
0.3 | 0.897471 | —0.151844 | 1.04365 | —1.59662 | 6.52221 | —23.5257
0.4 | 0.887264 | —0.0544643 | 0.913105 | —1.04536 | 4.64961 | —14.684
0.5 | 0.886227 | 0.0323384 | 0.820627 | —0.643769 | 3.47149 | —9.30277
0.6 | 0.803515| 0.112625 |0.781218 | —0.33682 | 2.72416 | —5.88978
0.7 || 0.908639 | 0.189495 |0.760281 | —0.089717 | 2.2554 | —3.63176
0.8 || 0.931384 | 0.265436 |0.762053 | 0.120498 | 1.9749 | —2.0669
0.9 | 0.961766 | 0.342566 |0.783685 | 0.309698 | 1.82811 | —0.922708
1 1 0.422784 | 0.823681 | 0.489462 | 1.78198 | —0.0320378
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Symbols

(+,+) (the standard inner product) ... 3
<> (the length of the index) oo 3
V[ (gradient of f) oo, 20
|- || (the standard norm) oo 3
O e, 3
B oo 54
S , 54
S 54
B(f) (Laplace-index) oo 23
Bo(f) (oscillation-index) -rrrroviiiioerrri. 21
C 52
Ok (Kronecker’s delta) oo 12
n(f) (multiplicity (Laplace)) oo 23
No(f) (multiplicity (oscillatory)) -.--o- 21
[(+) (Gamma function) -eeeoooooooiioiiineee 26
(@) oo 41
U ) N 39
A e 41
37 (the closure of 4*) ororeiieiniens 41
D(f) (Newton diagram) oo 7
T (f) oo 7
W (differential form) .o 46
D%, OF oo 3
TU(O) oo 492
Uiy o 14
O (rational polyhedral cone) - oo 39
D3 (FAD) oo 39
) (the set of k-dimensional cones) .- 39
S () o 41
D30 (the set Of 7%) rrerreeirrrmreieeseerceeee 42
Ty (principle face) oo 7
= (o) S 55
Coke (18) oo 52

A(U) ............................................................... 53
A G e 50
Z (the closure of A) ....................................... 3
a’ (o’) .............................................................. 39
aiz (o’) .............................................................. 42
A (N) o 12
B (-, ) (DALl) oroemeemreemee e 3
By (N) o 12
C (the set of complex numbers) oo 3
cg.m] (p) ........................................................... 61
CUY o 8
Df (diﬂerential Operator) .......................... 19
d(f) (Newton distan(;e) ............................... 7
dZm( . ) (dimension) .................................... 7
dk AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 30
E[PI(U) i 14
E[P(U) i 10
(‘f(U) (Kamimoto-Nose class) oo 10
€; (basis vector of R™ along xj-axis) - 12
EIPYU) 10
E(U) it 14
f’Y (ry_part of f) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 8
(fg@) (t) (Fourier transform) ...................... 1
fg ..................................................................... 47
F(P) oo 39
f (x) b 45
G () it 56
H(a,’ l) (a hyperp]ane) ................................ 6
H+(CL, l) (a closed half-space) «ovoeeenn: 6

HeSS f (Hessian matrix) ........................... 20
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S(Z) (the imaginally part) AAAAAAAAAAAAAAAAAAAAAAAAAAA

](t; gO) (oscillatory integral) oo

m(f) (Newton multiplicity) e

(M f) (S) (Mellin transform) oo

Pk (set of all homogeneous polynomials)

Q (the set of rational numbers) oo
Qi ooveeeeeeeee e
@)
R (the set of real numbers) ...........................
Ry o
§R(Z) (the real pa_rt) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
(Rn)* (dual space) ....................................
R™ (o’) ..........................................................
So(f) o
SCF)
S[P] (the set of finite set in PNZ7Y) -
Supp(f) (the support of f) .......................
T e

TIT .................................................................... 11
Ur(B) oo 49
V(fy) ............................................................... 12
V(P) (the set of Vertices) ......................... ]_4
W('y) ............................................................. 12
YZ ((real) toric variety) ............................. 43
Z (the set of integers) « e 3
/A 3
Al ) 54
Z(S; gD) (local zeta function) oo 45
Z(s; 90) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 51
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Index
amplitude .o 1
CASE (M) oovrrrrisisiei 37
condition (A),(B) i 29
condition (C) o 36
CONVENIENT oo 8
critical PoInt oo 20
Denjoy-Carleman class ... 10
dimension (of a face) 7
edge .................................................................. 7
Euler identity oo 48
F A oo 6
FACOt oo 7
FAIL oo 39
fan associated with P oo, 49
gamma-part [y-part] ..o 8
Gelfand-Leray function ... 46
Kamimoto-Nose class ..o, 10
Laplace integral ... 1
Laplace transform ... 44
Laplace-index ... 23
local zeta function ..o 45
Mellin transform .o 45
Morse’s lemma oo 33
multiplicity (Laplace) ... 23
multiplicity (oscillatory) ... 21
Newton diagram ... 7
Newton diStance oo 7
Newton multiplicity ..o 7

Newton polyhedron ... 7

nondegenerate critical point ... 32
nondegenerate w.r.t. I'y (f) - 36
nonflat .o 7
oscillation-index oo 21
oscillatory integral ... 1
phase AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 1
polyhedron ... 6
principal face o 7
principal part ... 7
proper face . 6
quasihomogeneous property ... 48
rapidly decreasing ... 19
rational polyhedral cone ... 39
real-analytic ... 8
simplicial subdivision ... 42
skeleton oo 39
strongly convex cone ... 39
support (of a C* function) ... 3
support (of a fan) .. 39
tOriC variety 43
valid (for P) o 6
VETTEX oottt 7






