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REPRESENTATIONS OF CLANS
AND THE BASIC RELATIVE INVARIANTS

HIDETO NAKASHIMA

ABSTRACT. The basic relative invariants on clans are generalizations of the prin-
cipal minors of real symmetric matrices obtained by focusing on the relative in-
variance. In this paper, we present an explicit expression of the basic relative
invariants on the clans extended by representations of a given clan. We also get
an explicit expression of the corresponding parameters of one-dimensional repre-
sentations in a matrix form which we call the multiplier matrix.

INTRODUCTION

Non-associative algebras called clans introduced by Vinberg [10] are significant
algebraic objects in studying homogeneous convex domains. Among them, those
which have the unit element correspond to homogeneous open convex cones con-
taining no entire line (homogeneous cones for short in what follows). Moreover, we
know by Ishi [4] that any homogeneous cone is described as a positivity set of the
irreducible polynomials called the basic relative invariants. On the other hand, ho-
mogeneous cones provide many examples of non-reductive prehomogeneous vector
spaces (see Kimura [7] for definition), and the basic relative invariants are keys to
analysis on those spaces. These facts form the backgrounds of our study.

In the previous paper [9], we construct a clan from a symmetric cone € paired
with a representation ¢ of the associated Euclidean Jordan algebra, and calculate
the basic relative invariants of the resulting clan. The crucial facts there are that ¢
is automatically a representation of the associated clan in the sense of Ishi [5] and
that the quadratic map associated with ¢ is (2-positive. In this paper, we generalize
the results of [9] by starting with the homogeneous cone ) corresponding to an
arbitrary clan (V, A) with unit element. However, the quadratic map associated with
a representation of V' is no longer {2-positive in general, but 2*-positive, where 2*
is the dual cone of §2. This forces us to switch to a representation (¢, E') of the dual
clan (V, V) corresponding to Q*. As in the previous paper [9], we construct a clan
V2 from V and ¢, and obtain an explicit expression of the basic relative invariants
of V. We note that in [9] we are led to divide the cases in order to have an explicit
expression of the basic relative invariants of V) according to the non-regularity states
of the Jordan algebra representation in the sense of Clerc [1]. This phenomenon is
captured in this paper by introducing the notation of e-representations which are
related to the range of the quadratic map associated with .
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2 HIDETO NAKASHIMA

We now describe the body of this paper. Let V be a clan with unit element e
associated with a homogeneous cone €2, and an inner product (-|-) of V given by an
admissible linear form. We know that the split solvable Lie group H generated by
exponentials of the left multiplication operators of V' acts simply transitively on 2.
We fix a complete system cq, ..., ¢, of orthogonal primitive idempotents and denote
the corresponding normal decomposition by €P i<k Vi The dual clan product V is
defined through -

(zVylz)=(ylzLz) (z,y,z€V).
Let E be a Euclidean vector space with inner product (-|-)g and ¢ a linear map
from V' to the vector space L(E) of linear operators on E. We call ¢ a selfadjoint
representation of the clan (V,V) if p(z) is a selfadjoint operator for every z € V
and if the following condition is satisfied:

ez Vy) =o(@)e(y) +ee() (z,yeV),

where B(z) (resp. ¢(x)) is the upper (resp. lower) triangular part of () (see (2.1)).
Denoting by @ the bilinear map E x F — V associated with ¢ defined through

(QE&nz)=(p@)|n)e (EneEL, zeV),
we introduce a product A in the space Vg := E® V by

E+z)An+y) =p@m+(QEn+zAy) (EnekE, z,yeV).

Then (Vg, A) is indeed a clan (Theorem 3.1). If dim £ > 0, we make an adjunction
of a unit element e to Vi and obtain a clan V2 := Re®Vg. Putting u := e—ey, we also
have V2 = Ru@® Vg and denote a general element v of V2 by v = A+ &+ without
any comments. In Proposition 4.1, we calculate Det R? for the right multiplication
operators R of V2 to obtain

0 _ \14+dim F—dim V'

where R is the right multiplication operator of V' and Q[¢] := Q(£,€). Let Aj(z)
(j =1,...,r) be the basic relative invariants of V. Then we see in Proposition 4.2
and Theorem 4.3 that the basic relative invariants Pj(v) (j = 0,1,...,7) of V2 are
described as
0.1) { Po(Au+&+x) = A,

' Pi(Au+&+x) =X %A;(Ar —3Q[8]) (G=1,...,7),

where «; are non-negative integers. The determination of a;; will be done in Section
5. As an application of Theorem 4.3, we are able to give an expression of the positive

integers nq, ..., n, appearing in the formula
Det R, = Ay(z)™ -+~ Ap(z)™ (z e V).
The row vector n = (ny,...,n,) is called the basic index of V' in this paper. Using
the normal decomposition that we are fixing, we put m; := Zkz ;dim Vi; and m =
(mq,...,m,). Then the basic index n is described in Theorem 4.4 as
n=mo '

where o = oy is the multiplier matrix of V' (see (1.4) for definition).
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In order to describe the non-negative integers «; that appeared in (0.1), we define
an e-representation (e € {0,1}") to be a representation of (V,V) such that the
range Q[E] of the associated quadratic map Q[] is equal to the closure O, of the
H-orbit O, through ¢1¢; + -+ - + €,¢,.. Using the results due to Graczyk and Ishi
[3], we see in Proposition 2.4 that for every representation ¢, there exists a unique
e(p) € {0,1}" such that ¢ is an e(p)-representation. Then we see in Theorem 5.1
that a = *(ay, ..., q,) is given by

o = Uv(]_ - €>,

where 1 = (1,...,1). Moreover the multiplier matrix o of V2 is written as

0 ( 1 0 )
o = .
OyE€ Oy

Our final objective is to determine the multiplier matrix oy of V', and this com-
pletes Theorems 4.3, 4.4 and 5.1. Let VI and E (k = 1,...,r—1) be the subspaces
of V' defined respectively by

V= @ Vi, EYM =V

k<l<m<r m>k

Then V¥ is a subclan and we have E 7 VI ¢ EF The latter property enables
us to define a representation R¥ of V¥ on EW by RIF(2)¢ := ¢ V x (Proposition
2.3). For each k, there exists el®l = e(RIF) € {0,1}77% such that (R¥, EM) is an
elMl_representation. Putting

I,y O 0
=0 1 0 (k=1,....,r—1),
0 E[k] ]r—k

we see in Theorem 5.3 that the multiplier matrix oy of V' is given by
oy = gr—lgr—Z T gl-

We organize this paper as follows. Section 1 collects definitions and facts about
clans and homogeneous cones. In Section 2, we define a representation ¢ of the dual
clan and study its basic properties. In particular, we attach an € € {0,1}" to .
Section 3 is devoted to describing the clans Vg and V2. At the end of this section,
we describe an inductive structure of V', which is used in later sections during the
induction arguments. In Section 4, we express the basic relative invariants P;(v)
(=0,1,...,7) of V2 with non-negative integers «; as in (0.1). In the last section,
Section 5, we write down «; in terms of the multiplier matrix oy of V' and the
e € {0,1}" attached to ¢. Finally, we obtain an explicit expression of oy .

1. PRELIMINARIES

Let V be a finite-dimensional real vector space with a bilinear product 2A. We do
not assume the existence of unit element for the moment. For x € V', we denote by
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L, the left multiplication operator L,y = 2 Ay (y € V). The pair (V, A) (or simply
V') is called a clan if the following three conditions are satisfied:

(C1) (V,A) is left-symmetric: LyL, — LyL, = Lypy—yn, forall z,y € V,
(C2) there exists s € V* such that s(z A y) defines an inner product in V,
(C3) for each x € V, the operator L, has only real eigenvalues.

Linear forms s with the property (C2) are said to be admissible.

Let V be a clan. By Vinberg [10, p. 369], V' has a principal idempotent ¢ by which
V' can be decomposed as

V=V ® Vay,
where
Viy={xeV; Lax=x}, Vap = {:L‘ eV, L.x = %x} .
Denoting by R, the right multiplication operator R,y = yAx (x,y € V), we also
have
V(l):{*%EVQ Rex =z}, V(1/2):{£L'€V; R.x =0}.

We note here that if V' has a unit element e, then ¢ = e and evidently we have
Viiy =V and V1 9) = {0}. The following multiplication rules hold:

Viy AV € Vi), Vi & Viayey C Vg,
Vi AViay ={0}, Viuyz) A Ve C V.

Clearly V{y itself is a clan with unit element c. Let 7 be the rank of the clan V{3
and let ¢y,..., ¢, be a complete system of orthogonal primitive idempotents in V),
so that we have ¢; + - -+ + ¢, = ¢. Then, after relabeling ¢y, ..., ¢, if necessary, we
have the following decomposition of V{y):

Vo = EB Vijs Vii=Re; (j=1,...,7),

1<j<k<r

Vij i= {x € Viuy; Lex = %((51-]- + i)z, Reyx =05z (i=1,. .. ,r)} (7 < k).
The multiplication rules are

(1.1) Vii AVy = {0} (ifi Ak, 1), Vi AV C Vi,
' Vii A Vi C Vi or Vi;  (according to j > k or j < k).

We assume from now on that V' has a unit element eg. By (C1) and (C3), the
space b := {L,; x € V} of left multiplication operators forms a split solvable Lie
algebra. We note here that b is linearly isomorphic to V. Let H := exph be the
connected and simply connected Lie group corresponding to . We denote by €2 the
H-orbit in V' through eq. We know that €2 is a proper open convex cone in V', and
H acts on €2 simply transitively.

We fix a complete system cy, ..., ¢, of orthogonal primitive idempotents and de-
note the corresponding normal decomposition of V' by

(12) v @ Vi
1<j<k<r

By introducing the lexicographic order in (1.2), we see that every L, (z € V) is
simultaneously represented by a lower triangular matrix. Then for each h € H,
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there exist unique h;; >0 (j =1,...,7) and vy; € Vi; (1 < j < k <r) such that by
setting Tj; := (2log hj;) Le; and Lj ==} Ly, we have

(1.3) h = (expTi1)(exp L1)(exp Ty2) - - - (exp Ly—1)(exp T}).

A function f on €2 is said to be relatively invariant under the action of H if
there exists a one-dimensional representation x of H with which we have f(hz) =
X(h)f(x) for all h € H and = € Q. To each such x, there corresponds an r-tuple
7:=(7,...,7) € R" so that

x(h) = (h11)*™ - -+ (hy)*™  (for h as in (1.3)).
We call 7 the multiplier of a relative invariant function f and write x = x;.

Theorem 1.1 (Ishi [4]). There exist irreducible relatively H-invariant polynomial
functions Ay, ..., A, by which any relatively H-invariant polynomial function p on
V' is written as

p(z) = (const)- Ay ()™ -+ Ap(z)"  ((ny,...,n,) € ZL,).
Moreover ) is described as
Q={zeV; Ay(z)>0,...,A,(z) > 0}.

The polynomials Ay(z),...,A(x) are called the basic relative invariants of the
cone (). They are also called the basic relative invariants of the clan V. We assume
that the numbering of the basic relative invariants is given by the procedure of Ishi
[4] according to cy,...,¢,. For j =1,...,7, let g; = (0j1,...,0j) be the multiplier
of the relative invariant A;(z), and we place them in an r X r matrix as

g,

(1.4) oy = | 1| = (o)

g,

In this paper, we call oy the multiplier matriz of the clan V. We note that by the
procedure of Ishi [4], oy is a lower triangular matrix with all oj; € Z>¢ and 0;; =1
(7 =1,...,r). In particular, oy is invertible. We put d; := deg A, for j =1,... 7.
Then by definition, we have

For every € := t(e1,...,&,) € {0,1}", we put ¢, := e1¢; + -+ &,¢.. Then ¢, € Q
and we denote by O the H-orbit in V' through c.. Note that O; = Q, where
1 =7"1,...,1). Then by Ishi [3, Theorem 3.5], the H-orbit decomposition of 2 is

described as
Q= || 0.
ec{0,1}"
Now we assume that the inner product (-|-) of V' is given by an admissible linear

form sy. Let us define a bilinear product YV in V' through
(1.6) <:UVy]z>:<y]:UAz> (x,y,z€ V).
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Then it turns out that the product V defines a clan structure in V. The clan (V, V)
is called the dual clan of (V, AA). The linear form sy is also an admissible linear form
for (V,V). In fact, we have so(x Vy) = (xVyleg) = (y|x). Moreover it is easy
to see from (1.6) that e is also a unit element of (V, V). The cone corresponding
to (V,V) is the dual cone Q* of 2 with respect to the inner product (-|-), where

Q* :={zeV; (z]y) >0foral y € O\{0}}.
Let L):V 3y oV y be the left multiplication operator by = € V of (V, V).

Proposition 1.2. The following relationships hold between /\ and \/.
(1) Forx,y €V, we haovex Ay+axVy=ylAx+yVu.
(2) Fori=1,...,r, one has L, = Le,.

Proof. (1) For any z € V, we have by (C1)

(zhy—yQz|z)=so((zLhy—yLz)Az)=s0(z L (yLz)—yA(zAz))
=(z|lyLz)—(ylzAz)=(yVae—zVy|z).

Hence, the assertion is proved.
(2) Suppose zy; € Vi; (j < k). Then for any y € V, we have

1
(i Varly) = (zrj|ci Dy) = (zrjl e Dyey) = 5((5ij+(5ik)<$kj|y>,

where y; is the Vi;-component of y. Thus we get L7 zy; = %(&j + 0k )Trj = Le,Tpj
for any x; € Vi;. This shows L] = L. O

Proposition 1.2 (2) shows that ¢y, ..., ¢, form also a complete system of orthog-
onal primitive idempotents of the dual clan (V,V). We denote by R the right
multiplication operator of (V,V) by x € V. By (1) and (2) of Proposition 1.2, we
get R} xy; = dpay; for any xp; € Viy (j < k)and i =1,...,r. Thus we have

Vij={2€V; Lix=1%(6;+ )z, Rix =gz (i=1,...,7)}.

This implies that the decomposition (1.2) also serves as a normal decomposition of
(V, V) relative to ¢y, ..., ¢, with the multiplication rules

ViV Vi ={0} (ifj#k1), ViV Vi C Vi,

(17) Vii V' Vi; C Vjior Vi;  (according to i < j or i > j).

2. REPRESENTATIONS OF CLANS

We keep to the clan notation used in Section 1. Let F be a real Euclidean
vector space with inner product (-|-)g. We denote by L(E) the vector space of
linear operators on F. For a linear map ¢: V — L(F), let ¢ and @ be the “lower
triangular part” and the “upper triangular part” of ¢ respectively associated with
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C1,...,Cp given by

1 T

p(x) =5 > wjele) + ) eler)p(ai)e(e),
(21) jjl i<k

_ 1

Ba) =5 ) wieleg) + ) eleg)ela)elen),

j=1 i<k

where we write © = »_x;c; + >, Ty, according to (1.2). A linear map : V' —
L(FE) is called a selfadjoint representation of the clan (V, V) if p(z) is a selfadjoint
operator for every x € V and if the following condition is satisfied:

(2.2) p(xVy) =2(@)py) +ey)e(z) (z,y€V).

We always require that ¢(eg) is the identity operator. In this paper, we only consider
selfadjoint representations of (V, V). Thus we often drop the adjective selfadjoint
for simplicity.

Let (¢, E) be a representation of (V, V).

Proposition 2.1. The following statements hold.

(1) o(c;) (7 =1,...,7r) are mutually orthogonal projection operators.

(2) Each ¢(x) can be simultaneously expressed as a lower triangular matriz by
an appropriate choice of orthonormal basis of E.

(3) For allx €V, one has p(x)* = p(x) and p(x) +P(r) = p(v).

Proof. (1) Recalling ¢; V ¢, = 0,,c;, we have by (2.2)

(2.3) djp(cs) = ¢(c; V ar) = 5(0(es)pler) + wler)p(cy)).

Letting k = j, we obtain ¢(c;) = ¢(c¢;)?, so that ¢(c;) is a projection operator. Next
we assume that j # k. Then (2.3) implies ¢(c;)¢(cr) = —p(cr)e(c;). Multiplying
both sides from the left by ¢(c;), we get p(cj)p(ck) = (ck)p(cj). From this, we
conclude ¢(c;)¢(cx) = 0.

(2) Let us put E; := ¢(¢;)E (j =1,...,7). Since ¢(c;)’s are mutually orthogonal,
we have an orthogonal direct sum E = ; Ej. Form an orthonormal basis of E' by
first taking the one from F;, then from Fj, ..., and finally from F,. By this choice
of orthonormal basis, every operator p(z) for x € Vi; (j < k) is represented by a
strictly lower triangular matrix. Since each ©(c;) is clearly diagonal, we conclude
that ¢(z) is lower triangular. B

(3) Since () is selfadjoint for any = € V, the first assertion follows from (2.1).
The second assertion is proved by putting y = eg in (2.2). O

Associated with ¢, we define a symmetric bilinear map @: E x E — V through
(2.4) (e@)elne =(QEn)|z) (EnekE, zeV)
For simplicity, we put Q[¢] := Q(&,§) and Q[E] :={Q[¢]; € € E}.

Proposition 2.2. One has the following properties:
(1) 2AQ(E&n) = Qe(x)&,n) + Q& p(z)n) (z €V, {,n € E),
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(2) Q is Q-positive, that is, Q[¢] € Q\{0} for all ¢ € E\{0}.
Proof. (1) For any y € V', we have by (2.2) and Proposition 2.1 (3)

(xAQEN |y) =(QEN 2V y) = (p(xVy)E|n)e
= (P(@)p(W)E + oW e(x)E|n) e
= (oW le@)n)e + (e e@)é|n)e
= (Q(& @(x)n) + Qle(x)é,n) |y ) -

Hence we obtain the assertion.
(2) The formula in (1) gives rise to

(25)  (expLy)Q(&,m) = Q((exp ()€, (exp p(x))n) (v €V, &,n € E).
For each = € (0%, we take zo € V such that (exp L] )ep = x. Since L] = (L,)* by
(1.6), we have

(Qlellz) = ((exp Lyy)QIE] [ eo) = (Ql(expp(0))¢] | eo) = l|(exp ¢(w0))¢ |5 > 0.

Hence Q[¢] € Q. Moreover, since exp (o) is invertible, we see that Q[¢] = 0 if and
only if £ = 0. Hence the proposition is proved. U

Let € € {0,1}". A representation (¢, E) of (V,V) is called an e-representation if
the associated symmetric bilinear map @ satisfies Q[E] = O.. Any e-representation
arises from the right multiplication operators as we now show. For k =1,2,...,r—1,
let V¥ and E* be the subspaces of V defined respectively by

(2.6) V= @B Viu, E¥ =D Vi
k<Il<m<r m>k

We note that the multiplication rules (1.7) yield that for any k = 1,...,r — 1, V[
is a subclan of (V, V) and EF 7 VI¥ ¢ E¥| The latter property allows us to define
RIF: VIE 5 £(EM) by

R =6V (xeVW c¢e EMandk=1,2,...,r—1).
Proposition 2.3. For cach k, the pair (R¥, E) is a selfadjoint representation of
(VIH, V).
Proof. We only prove the proposition for £ = 1, and the proof for general k is similar.
For simplicity, we write
(2.7) V=Vl (¢, E) = (RY, EN).

Let £ € E' and z € V'. By (1.1), we have { Ax = 0, so that Proposition 1.2 (1)
yields

(2.8) Pa)=EVe=aoANE+aVE= (L, + L))

Since L) = (L,)*, we see that ¢'(x) is selfadjoint. Furthermore for all x,y € V' and
¢ € E', we have by (C1) and (2.8)

PaVy)=aV(EVY) +(EVe-—zVEVy

(2.9)
=V ({Vy) + (@A Vy.
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Taking the lower and the upper triangular part of '(z) in (2.8), we see that ¢'(z) =
L, and @'(z) = L. Then the last term of (2.9) is equal to (¢'(z)¢' (y)+¢'(y)¢' (2))&.
Since ¢'(eg) is obviously the identity operator, the pair (¢, E’) is now a selfadjoint
representation of the clan (V/, V). O

For k = 1,2,...,r — 1, let m,: V. — V¥ be the orthogonal projection. By
the multiplication rules in (1.7), we see that m(zVy) = mi(z) V me(y). Thus
Ry = R o7, defines a selfadjoint representation of the clan (V,V). Take any
e="(e1,...,&) €{0,1}" with e # 0. We put E. := €D, _, EV! and define a linear
map Re: V — L(E;) by |

Re(z) (Zajzl gj) =2 (R (weV g e E).
Clearly, (R., E¢) is a selfadjoint representation of (V,V). If € = 0, then Ry is
defined to be the zero-dimensional zero-representation. Let (). be the symmetric
bilinear map associated with R.. Then, by Graczyk and Ishi [2, Proposition 3.5],
we have Q.[F.] = O, and hence R, is an e-representation.

Now let (¢, F') be any selfadjoint representation of (V, V) and @ the corresponding
bilinear map. The Riesz measure pg associated with the quadratic map Q[¢] is, by
definition, the image of the Lebesgue measure d§ on E by Q[¢] (cf. Graczyk and Ishi
[2]). In other words, we have

/V f (@) qldz) = / F(Qle)de

for any measurable function f on V. On the other hand by (2.4) and (2.5), we
obtain

Det o(h*z) = Det(h*p(z)h) = (Det h)? Det ()

for any 2 € V and h € H. Thus Det () is a relatively H-invariant polynomial and
its multiplier I = *(ly,...,[.) € Z%, satisfies

Det o(Mcp + -+ Me) = (M) - ()" (A,..., M €ER)

with I; = dimp(¢;)E (j =1,...,7). Let Z5 (s € R") be the Gindikin-Riesz distri-
bution defined in Ishi [3] (in that paper, it is simply called the Riesz distribution).
Then, by [2, (3.29)], we have

(2.10) g = mmER g,

Since @ is (2-positive, the measure ji¢ is a positive measure, and hence %, is also
a positive measure. Let = be the Gindikin-Wallach set (cf. Ishi [3]), which is the
set of s for Zs to be a positive measure. By (2.10) and [3, Theorem 6.2], we obtain
1/2 € E. Putting d; := dim V4, for 1 < j < k <7, we define I e R” (i =1,...,7)
inductively by IW:=1and for2<i<r,

o . J U =10, 0 i) 1LY >0,
R A if 11
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Further we define e(¢) = (ey,...,5,) € {0,1}" by

1 it >0
62': ZZ' ’ .:].,..., .
{o <o ")

Then by [2, p. 183], %,/» is a measure on Og(,). Using Proposition 3.10 and Theorem
3.13 of [2], we see that the support of %, is equal to Og(y), the closure of Og(y.
These observations together with (2.10) give the following proposition.

Proposition 2.4. ¢ is an e(yp)-representation.

3. CLANS DEFINED BY REPRESENTATIONS OF A CLAN

In this section, we define a clan starting from a representation of a clan. Let
(V,A) be a clan of rank r with unit element ey and (¢, E') a representation of the
dual clan (V, V) on a real Euclidean vector space £ with inner product (-|-)g. First
we assume that dim £ > 0. Let us keep to the notation used in the previous sections.
Put Vg := E® V and we define a product A on Vg by

E+a)AMm+y)=pl@n+(QEn) +xzlhy) (EneE, v,yeV).

Theorem 3.1. The algebra (Vg, A) is a clan with an admissible linear form s' given
by s'(E+x)=5s0(x) (E€E, z€V).

Once we have the following Lemma 3.2, we can prove Theorem 3.1 in exactly the
same way as [9, Theorem 3.2]. Thus we omit the proof.

Lemma 3.2. Put [xr Ayl =1 Ay —yAx. Then one has o([v Ay]) = [o(z), o(v)]
forx,yeV.

Proof. Let us also put [yVz] := yVa —a2Vy. By Proposition 1.2 (1), we have
[z Ay] = [y V z]. Then by (2.2) and Proposition 2.1 (3), we obtain

e([r Dyl) = oy Vr]) =B(y)e(z) + p(z)e(y) — P(z)e(y) — (y)e(r)

= (@), ()] + (le(x), 2(¥)])"
Taking the lower triangular part, we get the lemma. ([l

Now we consider the algebra V2 := Re @ Vg obtained by the adjunction of a unit
element e to the clan Vg. Since dim E > 0, we have u := e — ¢y # 0 and hence
V2 = Ru & Vg. By this decomposition, the clan product of V) is written as

(Au+& +2) & (pu+n +y)

= (Awu+ (€ + 32 + o(z)n) + (Q(E,n) + z Ay),
where A\, u € R, £, € E and x,y € V. As an admissible linear form of V3, we take
s given by s®(A\u+ &+ x) := A+ so(z). We call (V2,A) the clan obtained by the
clan V' and the representation (¢, F).

Next we assume that dim £ = 0. In this case, we take a one-dimensional extension
VO =Ru @V of V and define a product A by

(M+z)A(puty)=Au+zldhy (ALpeR, z,yeV).

(3.1)
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Clearly the algebra (V°, A) is a clan. This clan coincides with the clan (V2, A) in
(3.1) with E formally equal to {0}. Therefore we also use the notation V2 in this
particular case.

Before closing this section, we write down here some formulas needed in the later
sections during the induction arguments. Let the subclan V'’ and the representation
(¢', E') be as in (2.7). The associated symmetric bilinear map Q': E' x E' — V' is
given by

(3.2) Q) =&ALn (el
In fact, we have for any 2’/ € V'
(Q(& ) ]a") = (@) |n') =('Va'|n') = (2’| An').
Let b’ := {L,; 2’ € V'} be the Lie algebra of left multiplication operators of V' and
H' := exp b’ the corresponding Lie group. Any h € H is written as in (1.3). Putting

E=vy+---+v€E, h =expTynexpLy---expT,, € H,
we have h = (exp T11)(exp Le/ )R-
Lemma 3.3. Let y =y1ic1+7 +y € Rey & E' @ V'. Then

! /i 1 / ! / ! !/ !/
hy=y11(h11)261+h11(y11§ + h'n'") + (éynQ €] —i—Q(f,hn)—i—hy).

Proof. We first note that the multiplication rules (1.1) tell us that
Wey=c¢, hWneFE, hyeV.
Next we have again by (1.1)
R |p =idg, E'AE CV', E AV ={0},
so that recalling (3.2)
(expLeg)er =c1+ & Ay + %f/ A DAa)=a++ %Q/[il],
(exp Le)n =0+ Q¢ n), (expLe)y =y
Finally,
(expTii)er = (h11)2C1, (expTu)n' = hun's (expTu)y' =y
These observations yield that
her = expThi(er + & + %Q/[€/]> = (h11)?c1 + b€ + %Q/[f,],
hn' = expTu(h'n" + Q' (€, k') = huh'n' + Q'(€', k'),
hy =n'y'.
Hence we obtain the formula in the lemma. O

Let (V,A) be the clan obtained by V' and ¢’. Then the linear map v: V — V
defined by

(3.3) VI MAE T — A+ + 2 €V
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is a clan isomorphism and hence (‘7, A) is isomorphic to (V;A). Thus this (\7, A)
can be identified with (V, A).

4. BASIC RELATIVE INVARIANTS

We keep to the notation of the previous sections. In this section, we study the
basic relative invariants of the clan V2. To do so, we consider the right multiplication
operators of the clan (V2, A). The reason for this is that by Ishi and Nomura [6], the
basic relative invariants are the irreducible factors of the determinant of the right
multiplication operators.

Let (V2,/\) be the clan obtained by the clan V' of rank r and the representation
(o, E) of (V, V) introduced in Section 3. Let RY be the right multiplication operators
by v € V2 of the clan (V2,A). By (3.1), we have

A0 0
R§u+§+w = | 5 Xidp R Au+ €4+ € VD),
0 R R,

where R, is the right multiplication operator of V', and we note that Rg(V) CcFE
and RY(E) C V. Asin [9, Proposition 4.1], we have the following proposition.

Proposition 4.1. For \u+ ¢ +x € V2, one has

Det R(})\H&m _ \I+dim B—dimV [yt (Rm;—%@[f])'

Let Ay(z),...,A.(x) be the basic relative invariants of V. Then we have
(4.1) Det R, = Ay(z)™ - A (z)™ (z€V),

with positive integers ny,...,n,. Proposition 4.1 together with (4.1) tells us that
the basic relative invariants of (V2,A\) are exhausted by the polynomial A and the
irreducible factors of A;(A\z — 3Q[€]) (j=1,...,7).

Proposition 4.2. For each j = 1,...,r, the only possible factor of the polynomial
Aj(Ax —3Q[€]) is A% for some non-negative integer ;.

Proof. First, we note that any basic relative invariant is a homogeneous polynomial.
Let d; be the homogeneous degree of A; and we put

Pi(Au+ &+ 2) == Aj(Ax — 3Q[€]).

Since Au+E&+x — Az —3Q[¢] is a quadratic map, the polynomial f}()\u—l—f%—x) is a
homogeneous polynomial of degree 2d;. In particular, the degree of each monomial
of JBJ()\U + & 4 x) with respect to A is equal to that of x. Moreover since Aj(\z) =
A5 A;(z), the degree of the polynomial }ij(/\u + & + x) with respect to A is d; and
the coefficient of A% is the irreducible polynomial A;(x). Hence Pj(Au+ € + ) is
written as

Pi(hu+ € +2) = AN A () + MM (@, ) + -+ i (2, €),
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where pg.k) (x,&) are polynomials of x and ¢ of degree d;+k. In particular, the degree
of the polynomial pgk) (x,&) with respect to z is strictly lower than d;. Since A;(z)
is irreducible, ]BJ(/\U + £ + x) is factorized as

(4.2) B+ € +2) = X9 (A5 A () + X5 p0 (@, ) + -+ pl (2, €)),

where «; is the maximal integer such that p§-dj_aj) #0. Thus A% P;(A\u+ & + ) is

irreducible. The proof is now completed. U
Propositions 4.1 and 4.2 immediately give the following theorem.

Theorem 4.3. The basic relative invariants Pj(Au+&+x) (7 =0,1,...,7) of V2
are given by
Po(Au+ &+ ) = A,
Pi(Au+&+2) =AM\ — 3Q[E]) (5 > 1).
We will determine the non-negative integers «; in Section 5.
Let us return to (4.1). Theorem 4.3 enables us to give an answer to the question

of expressing nq,...,n, in terms of the data of the clan V. Considering the degree
of (4.1), we have
(4.3) dimV =nidy + - - - + n,d,.
We set n := (nq,...,n,) in the form of row vector and call n the basic index of V.
Let
(4.4) My ::Zdim‘/}k (k=1,....7),

1>k
and we put them also in the form of row vector as m := (mq, ..., m,). We note that
my, = 1+ dim E¥ for any k. In what follows, we write the bold symbol a for the
column vector *(z1,...,2,). Now we have the following theorem.

Theorem 4.4. Let o = oy be the multiplier matriz of V. Then one has
n= ma‘l.

Proof. We shall prove the theorem by induction on r. Let V' be the subclan and

(¢', E') the representation in (2.7). Then we have the decomposition V' = Re; @ E' &

V', Let Q" be the symmetric bilinear map associated with ¢, and A (j =2,...,7)

the basic relative invariants of (V' A). Applying Theorem 4.3 to the clan V' obtained

by V" and (¢, E') via (3.3), we have for some o € Z>

(4.5) Ar(z) =211, Aj(r) = (z0) A (zna’ — 3Q[E]) (F=2,...,7),

where © = x1101+ &+ 2 (x11 €R, & € E', 2’ € V'). We denote by ¢’ the multiplier
matrix of V' and put d; = deg A} (j = 2,...,r). Comparing the degree in (4.5), we
see that o is described as

(4.6) o= ( P 2) .
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Let R’ be the right multiplication operators of V' and n’ the basic index of V', By

(4.3), we have dim V' = nydy + --- +nd, = n'd’. Since V' = @, ;4c, Vij is the

normal decomposition of V', we have mj, = lek dim Vj, = my, for k =2,3,...,7.

Now Proposition 4.1 applied to the situation (3.3) together with (4.5) gives

1+dim E'—dim V’ /
Det R$11$'—%Q/[§']

= Ay () FAm B @A) A (YA ()

Det RJ»‘11C1+§/+$’ - (1‘11)

This tells us that
(4.7) n=(1+dmE +n(a —d), n)=(m +1n'(a —d), n).
Then by the induction hypothesis n'c’ = m’, we obtain by (4.6) and (4.7)

no = (my +n'(a' —d'), n) (d’ i o 0(_),) = (my, m') = m.

The proof is now completed. U

5. MULTIPLIER MATRIX

In this section, we calculate the non-negative integers «; that appeared in Propo-
sition 4.2. We keep to the notation of the previous sections. Let us put € = e(yp).
Since Q[F] = O, we consider the polynomials Aj(Ar—z.) (A €R, z € V, 2. € O,).
If x € ), then putting x = heg with h € H, we have by the relative invariance

(5.1) Ax —z.) = Aj(2)Aj(Neg — hta,).
Let us put
P, xe) = Aj(Aeo — 7e) = X+ X710 () + - + ¢ (w),

J

where q](-k) (k = 1,...,d;) are polynomial functions on O, of degree k. By the
coefficient comparison of (5.1) with (4.2) relative to A, the polynomials qj(-k) (xe)
are the zero-polynomials on O, for k = d; — a; +1,...,d;j, and the polynomial

q(dj ﬂj)(xs) is non-zero. In particular, A=%P5 (A, x¢) is an irreducible polynomial.

By (5.1), we see that A™* A;(Ax — z) is also irreducible.

Theorem 5.1. Let 0 = oy be the multiplier matriz of V.. Then with € as above,
one has o = oy (1 — €), that is,

(5.2) aj =Y op(l—e) (G=1,....7).

Moreover, if 0° is the multiplier matriz of the clan (V2, ), then

(5.3) o (Uls 2) .
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Proof. We shall prove the theorem by induction on rank r. Let V' and (¢, E') be
as in (2.7). We put e; = eg — ¢y, which is the unit element of V’. By (4.6), the
multiplier matrix ¢’ := oy of V' is equal to the (r — 1) x (r — 1) matrix ¢’ =
(0jk)2<jk<r. We consider the Lie algebra h' = {L,; 2’ € V'} of left multiplication
operators of V' and the corresponding Lie group H' = expl’. Let €' := H'eq, the
homogeneous cone associated with (V’ A). For each § = *(y,...,0,) € {0,1}",
we put ¢ := daca + - -+ 6,¢,. Then ¢ € Q' and let O :=H'cs C Q. Moreover, let
a;: {01} — Zzo and polynomials Pf()\,y(;) (ANeR, ys € (9’) be

(5.4)  a;(8) ;:Zajka—(sk), PPN ys) == Al(Ner —y5) (j=2,...,7).

We note that a(d) = o’(1—4). By the induction hypothesis, there exist irreducible
polynomials .7-"5()\ ys) (j = 2,...,r) such that

(55) Pj&<)‘7y5) = )\&j(é)'f}s()\a y5) ()\ € R? Ys € 0_/5)

For j =1,...,7, let us consider the polynomial functions P5 (), z.) (A € R, z. € O.)
defined by

(56) PJE()\, fs) = A]‘()\GO — ZL’E).

In order to know what power of A is factored out from Pf (A, z.), it is clearly
sufficient by continuity that we argue by restricting the variable x. to O.. Thus
we assume . € O, and take h € H such that x. = hc.. Let Q' be the symmetric

bilinear map associated with ¢’ and we put €' := e(¢) = ¥(&},...,¢.) € {0,1}77L.
By the induction hypothesis and (4.5), we have
(5.7 A1) = (o) SN (s’ — LQIED (=21,

where z = zy1¢; + & + 2’ € V. Let us put € = ¥(eg,...,¢,) € {0,1}"1. Applying
Lemma 3.3 to y = ¢, we obtain

Te = hee = €1(h11)%c1 + e1hii € + (h, : + Q [3 ])

Putting yz = h/c, we have
£
(5.8) Aeo — ze = (A —e1(hi)?)er — erhin€ + </\€1 —Ye — é@l[flm -

(i) The case j = 1. In this case, we have P§(\,zc) = A —e1(hy1)% If e; = 0 then
Ps(\,xe) = A, and if ¢; = 1 then P§(\, xze) does not have the factor A\. Hence in
both cases we have a; = 1 — &;1. Since oy, = 01 (k= 1,...,r), we obtain (5.2) for
1.

(ii) The case j = 2,...,r. (a) We first assume that ¢; = 0. In this case, (5.8)
reduces to Aeg — ze = Acp + (Aeg — yz). Using (5.7) and (5.5), we obtain

Aj(Aer + (Ner —yz)) = A EAL (A Ner — ye)) = A DENTEDE(N ye)
. —&j El d;- aj € ~E -
= A HEHGTRE TN, ge).
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Here the induction hypothesis for (5.3) says 0j1 = >, _, 0j,c). By using (1.5) for
d;, we can rewrite 0;; as 01 = —a;(€’) + d;. Thus we get

aj:0j1+&j(g):Zij(1—€k) (]:2,,T>
k=1

(b) Next let us consider the case €1 = 1. We assume that A is in a small neighborhood
Uy of 0 and hy; in a small neighborhood U, of 1, so that putting ay := —(A— (h1)?),
we have ay > 0. Then by (5.7) and (5.8)

Aj(Aeg — xe) = (—ax) 9N ((—ar)(Aer — ye — 3Q'€]) — 3Q'[hné'])
= (—ax) YA (=Marer + 3Q'E) + anve)-
Since ay > 0 and Q'[¢'] € O, C Q, we have aye; + 1Q'[¢'] € ' for any A € U;
and hy; € Uy. Thus for each such A and hqy, there exists a unique gy € H' so that
gre1 = aye; + %Q’ [¢']. The one-dimensional representation associated with A’ being
Xo, we have xor(gr) = Al(axer + 5Q'[¢']). Using the relative H-invariance of A
and (5.5), we obtain
Aj(deg — ze) = (—ak)’aj(E')A;-(—)\g,\el + a\ye)

= (—a0) " xgr (92) A (—Aer + argy ve)

= (—1)*%(—ax) SN ((—ar)er — 3Q'[€]) Aj(Aer — argy 've)

= NYEOFF (—ar, 5Q €D FF (A, argy 've)-

To continue, we introduce a rational function F;(\, z.) defined by

Fi(hae) := A HOPI (N o) = Ff (—an, 5Q[E1)FS (A axgy 'e)-
We shall show that J;(\, v¢) is actually an irreducible polynomial. Since P§ (A, z.)
is a polynomial, it is sufficient to prove the existence of a non-zero limit of F;(\, z.)
as A — 0. Since both of ¢ and F¢ are polynomial functions, and since the map

j j
g Ui A— g/(l € H' is continuous as well as A — gy, we obtain

}\EI(IJE(A, Te) = -7?]'5,(—@07 %Q/[fl])}tjg((), aogy 'Ye)-

In order to see that this limit is non-zero, we put hi; = 1 and £ = 0. Then we have
ap = 1 and gpe; = ey, that is, go is the unit element of H'. By (5.5) and (5.4), we
have

e’ _ —a;(e")pe(_ — (_1\—a(
F5(=1,0) = (=1)" PS5 (=1,0) = (=) 5.
On the other hand, since .7-"]5()\, ye) does not have the factor of A, we can take zz € O%
such that ]T}E(O, 2z) # 0. Thus we obtain
Fi(0,e1 + z) = F5 (=1,0)F5 (0, 28) = (—=1)% % FF(0, ) # 0.

Hence F;(\, zc) does not have the factor of A. Since U; and U, are open sets and
since we now know that F;(\, z¢) is a polynomial, the function F;(\, z.) is extended
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to R x O, and does not have the factor of A. Therefore P£(X, zc) = A% F;(X, zc)
is an irreducible factorization. This shows

o =a0;(8) =Y opl—ex) (j=2,...,7).

It remains to prove (5.3). Since a = 0(1 — €) and d = o1 by (1.5), we obtain by

(4.6)
o= (d_la 2) - (018 2)

This completes the proof. (l

Remark 5.2. If we put xe := Y, _, s ek (A > 0) in (5.6), then we have

r

PiA o) = [T — eudn) o = A=a=07 TT (A = A) .

k=1 EkZI

But this only implies that a; < Y. _goj, = > p_; ojk(1 — &), since, in general,
the restriction to a lower dimensional set of an irreducible polynomial need not be
irreducible.

Let n be the basic index of V. By Proposition 4.1 and Theorem 4.3, the determi-
nant of the right multiplication operators RO of the clan V2 is described as

Det R? = Py(v)'tdimE-dmVinap (ym. .. p ()™ (v € V).

Let us verify here that 14-dim £/ —dim V +na > 1. Indeed we first note that Ishi 3,
Lemma 3.3 (ii)] tells us that dim O, = me. Then the fact that Q[E] = O, together
with Theorem 4.4 implies

dim E > dim O, = me = noe.
Recalling dim V' = nd = n(o1) and Theorem 5.1, we obtain
dim £ —dimV + na > noe —nol +no(l1 —€) =0.

Finally we determine the multiplier matrix ¢ = o of a given clan V. This
completes Theorems 4.3, 4.4 and 5.1. Let V¥ be the subclan defined in (2.6)
and (R, E) the representation of (V*,¥/) appearing in Proposition 2.3. For
kE=1,2,...,r — 1, we put e := g(RI¥) € {0,1}"* and consider the r x r matrix
&y defined by

E = 0 1 0 (k=1,...,7r—1).
0 el I,
Theorem 5.3. The multiplier matriz o = oy of the clan V is given by

0= gr—lgr—2 T gl-
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Proof. We shall prove the theorem by induction on rank r. Let V' and (¢, E') be
as in (2.7). Then we have V = Re¢; @ E' @ V', By the induction hypothesis, the
multiplier matrix o’ of V' is described as

I, O 0
(5.9) o =& & ,---&, & = 0 1 0 (k=2,3,...,r—1).
0 ef 1,

Let us put € = e(¢’). Applying Theorem 5.1 with V' regarded as in (3.3), we have
by (5.9)

(1 0\ _ (1 oY 1t 0\(1t 0 (1 0\/1 0
7= \oe /) "0 o) \e 1,_,)\0 & 0 &)\e I,1)

By noting &, = <(1) 59’) (k=2,3,...,r—1), the proof is completed. O
k

Remark 5.4. Let {2 be a symmetric cone with rank r» > 3. The corresponding clan
is V = Herm(r,K) (r > 3, K= R,C,H). Since the basic relative invariants A (z)

(k = 1,...,r) are the left upper corner principal minors det!* (x), the multiplier
1

matrix o = (o)) of V' is given by o = <
i1
E, := Mat(r x p,K) and define a linear map ¢,: V' — L(E,) by

pp(x)§ =128 (x €V, €Ly,
where the multiplication on the right hand side is the ordinary matrix multiplication.
Then (p,, E,) is a representation of (V, V). If we put

1,...,1,0,...,0) (1<p<r),
——

0
> . For a positive integer p, we put

e(p) == P
a,....1) (r <p),
then ¢, is an e(p)-representation. By Theorem 5.1, we have
Y0,...,0,1,2,...,r—p) (1<p<r),
N——
a=o(l-ep)= v
t0,...,0) (r <p).

This a is first obtained in [9]. We note that the representation is regular if and only
if e(p) = 1.
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