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REPRESENTATIONS OF CLANS
AND THE BASIC RELATIVE INVARIANTS

HIDETO NAKASHIMA

Abstract. The basic relative invariants on clans are generalizations of the prin-
cipal minors of real symmetric matrices obtained by focusing on the relative in-
variance. In this paper, we present an explicit expression of the basic relative
invariants on the clans extended by representations of a given clan. We also get
an explicit expression of the corresponding parameters of one-dimensional repre-
sentations in a matrix form which we call the multiplier matrix.

Introduction

Non-associative algebras called clans introduced by Vinberg [10] are significant
algebraic objects in studying homogeneous convex domains. Among them, those
which have the unit element correspond to homogeneous open convex cones con-
taining no entire line (homogeneous cones for short in what follows). Moreover, we
know by Ishi [4] that any homogeneous cone is described as a positivity set of the
irreducible polynomials called the basic relative invariants. On the other hand, ho-
mogeneous cones provide many examples of non-reductive prehomogeneous vector
spaces (see Kimura [7] for definition), and the basic relative invariants are keys to
analysis on those spaces. These facts form the backgrounds of our study.
In the previous paper [9], we construct a clan from a symmetric cone Ω paired

with a representation φ of the associated Euclidean Jordan algebra, and calculate
the basic relative invariants of the resulting clan. The crucial facts there are that φ
is automatically a representation of the associated clan in the sense of Ishi [5] and
that the quadratic map associated with φ is Ω-positive. In this paper, we generalize
the results of [9] by starting with the homogeneous cone Ω corresponding to an
arbitrary clan (V,△) with unit element. However, the quadratic map associated with
a representation of V is no longer Ω-positive in general, but Ω∗-positive, where Ω∗

is the dual cone of Ω. This forces us to switch to a representation (φ,E) of the dual
clan (V,

△

) corresponding to Ω∗. As in the previous paper [9], we construct a clan
V 0
E from V and φ, and obtain an explicit expression of the basic relative invariants

of V 0
E . We note that in [9] we are led to divide the cases in order to have an explicit

expression of the basic relative invariants of V 0
E according to the non-regularity states

of the Jordan algebra representation in the sense of Clerc [1]. This phenomenon is
captured in this paper by introducing the notation of ε-representations which are
related to the range of the quadratic map associated with φ.
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We now describe the body of this paper. Let V be a clan with unit element e0
associated with a homogeneous cone Ω, and an inner product ⟨ · | · ⟩ of V given by an
admissible linear form. We know that the split solvable Lie group H generated by
exponentials of the left multiplication operators of V acts simply transitively on Ω.
We fix a complete system c1, . . . , cr of orthogonal primitive idempotents and denote
the corresponding normal decomposition by

⊕
j≤k Vkj. The dual clan product

△

is
defined through ⟨

x

△

y |z
⟩
= ⟨y |x△ z ⟩ (x, y, z ∈ V ).

Let E be a Euclidean vector space with inner product ⟨ · | · ⟩E and φ a linear map
from V to the vector space L(E) of linear operators on E. We call φ a selfadjoint
representation of the clan (V,

△

) if φ(x) is a selfadjoint operator for every x ∈ V
and if the following condition is satisfied:

φ(x

△

y) = φ(x)φ(y) + φ(y)φ(x) (x, y ∈ V ),

where φ(x) (resp. φ(x)) is the upper (resp. lower) triangular part of φ(x) (see (2.1)).
Denoting by Q the bilinear map E × E → V associated with φ defined through

⟨Q(ξ, η) |x⟩ = ⟨φ(x)ξ |η ⟩E (ξ, η ∈ E, x ∈ V ),

we introduce a product △ in the space VE := E ⊕ V by

(ξ + x)△ (η + y) := φ(x)η + (Q(ξ, η) + x△ y) (ξ, η ∈ E, x, y ∈ V ).

Then (VE,△) is indeed a clan (Theorem 3.1). If dimE > 0, we make an adjunction
of a unit element e to VE and obtain a clan V 0

E := Re⊕VE. Putting u := e−e0, we also
have V 0

E = Ru⊕VE and denote a general element v of V 0
E by v = λu+ ξ+x without

any comments. In Proposition 4.1, we calculate DetR0
v for the right multiplication

operators R0
v of V 0

E to obtain

DetR0
λu+ξ+x = λ1+dimE−dimV DetRλx− 1

2
Q[ξ],

where R is the right multiplication operator of V and Q[ξ] := Q(ξ, ξ). Let ∆j(x)
(j = 1, . . . , r) be the basic relative invariants of V . Then we see in Proposition 4.2
and Theorem 4.3 that the basic relative invariants Pj(v) (j = 0, 1, . . . , r) of V 0

E are
described as

(0.1)

{
P0(λu+ ξ + x) = λ,
Pj(λu+ ξ + x) = λ−αj∆j(λx− 1

2
Q[ξ]) (j = 1, . . . , r),

where αj are non-negative integers. The determination of αj will be done in Section
5. As an application of Theorem 4.3, we are able to give an expression of the positive
integers n1, . . . , nr appearing in the formula

DetRx = ∆1(x)
n1 · · ·∆r(x)

nr (x ∈ V ).

The row vector n = (n1, . . . , nr) is called the basic index of V in this paper. Using
the normal decomposition that we are fixing, we put mj :=

∑
k≥j dimVkj and m =

(m1, . . . ,mr). Then the basic index n is described in Theorem 4.4 as

n = mσ−1,

where σ = σV is the multiplier matrix of V (see (1.4) for definition).
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In order to describe the non-negative integers αj that appeared in (0.1), we define
an ε-representation (ε ∈ {0, 1}r) to be a representation of (V,

△

) such that the
range Q[E] of the associated quadratic map Q[ξ] is equal to the closure Oε of the
H-orbit Oε through ε1c1 + · · · + εrcr. Using the results due to Graczyk and Ishi
[3], we see in Proposition 2.4 that for every representation φ, there exists a unique
ε(φ) ∈ {0, 1}r such that φ is an ε(φ)-representation. Then we see in Theorem 5.1
that α = t(α1, . . . , αr) is given by

α = σV (1− ε),

where 1 = t(1, . . . , 1). Moreover the multiplier matrix σ0 of V 0
E is written as

σ0 =

(
1 0

σV ε σV

)
.

Our final objective is to determine the multiplier matrix σV of V , and this com-
pletes Theorems 4.3, 4.4 and 5.1. Let V [k] and E[k] (k = 1, . . . , r−1) be the subspaces
of V defined respectively by

V [k] =
⊕

k<l≤m≤r

Vml, E[k] =
⊕
m>k

Vmk.

Then V [k] is a subclan and we have E[k] △

V [k] ⊂ E[k]. The latter property enables
us to define a representation R[k] of V [k] on E[k] by R[k](x)ξ := ξ

△

x (Proposition
2.3). For each k, there exists ε[k] = ε(R[k]) ∈ {0, 1}r−k such that (R[k], E [k]) is an
ε[k]-representation. Putting

Ek :=

Ik−1 0 0
0 1 0
0 ε[k] Ir−k

 (k = 1, . . . , r − 1),

we see in Theorem 5.3 that the multiplier matrix σV of V is given by

σV = Er−1Er−2 · · · E1.

We organize this paper as follows. Section 1 collects definitions and facts about
clans and homogeneous cones. In Section 2, we define a representation φ of the dual
clan and study its basic properties. In particular, we attach an ε ∈ {0, 1}r to φ.
Section 3 is devoted to describing the clans VE and V 0

E . At the end of this section,
we describe an inductive structure of V , which is used in later sections during the
induction arguments. In Section 4, we express the basic relative invariants Pj(v)
(j = 0, 1, . . . , r) of V 0

E with non-negative integers αj as in (0.1). In the last section,
Section 5, we write down αj in terms of the multiplier matrix σV of V and the
ε ∈ {0, 1}r attached to φ. Finally, we obtain an explicit expression of σV .

1. Preliminaries

Let V be a finite-dimensional real vector space with a bilinear product △. We do
not assume the existence of unit element for the moment. For x ∈ V , we denote by
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Lx the left multiplication operator Lxy = x△ y (y ∈ V ). The pair (V,△) (or simply
V ) is called a clan if the following three conditions are satisfied:

(C1) (V,△) is left-symmetric: LxLy − LyLx = Lx△ y−y△x for all x, y ∈ V ,
(C2) there exists s ∈ V ∗ such that s(x△ y) defines an inner product in V ,
(C3) for each x ∈ V , the operator Lx has only real eigenvalues.

Linear forms s with the property (C2) are said to be admissible.
Let V be a clan. By Vinberg [10, p. 369], V has a principal idempotent c by which

V can be decomposed as
V = V(1) ⊕ V(1/2),

where
V(1) := {x ∈ V ; Lcx = x} , V(1/2) :=

{
x ∈ V ; Lcx = 1

2
x
}
.

Denoting by Rx the right multiplication operator Rxy = y△x (x, y ∈ V ), we also
have

V(1) = {x ∈ V ; Rcx = x} , V(1/2) = {x ∈ V ; Rcx = 0} .
We note here that if V has a unit element e, then c = e and evidently we have
V(1) = V and V(1/2) = {0}. The following multiplication rules hold:

V(1)△V(1) ⊂ V(1), V(1)△V(1/2) ⊂ V(1/2),
V(1/2) △V(1) = {0}, V(1/2)△V(1/2) ⊂ V(1).

Clearly V(1) itself is a clan with unit element c. Let r be the rank of the clan V(1)

and let c1, . . . , cr be a complete system of orthogonal primitive idempotents in V(1),
so that we have c1 + · · · + cr = c. Then, after relabeling c1, . . . , cr if necessary, we
have the following decomposition of V(1):

V(1) =
⊕

1≤j≤k≤r

Vkj, Vjj = Rcj (j = 1, . . . , r),

Vkj :=
{
x ∈ V(1); Lcix = 1

2
(δij + δik)x, Rcix = δijx (i = 1, . . . , r)

}
(j < k).

The multiplication rules are

(1.1)
Vji △Vlk = {0} (if i ̸= k, l), Vkj △Vji ⊂ Vki,

Vji △Vki ⊂ Vjk or Vkj (according to j ≥ k or j ≤ k).

We assume from now on that V has a unit element e0. By (C1) and (C3), the
space h := {Lx; x ∈ V } of left multiplication operators forms a split solvable Lie
algebra. We note here that h is linearly isomorphic to V . Let H := exp h be the
connected and simply connected Lie group corresponding to h. We denote by Ω the
H-orbit in V through e0. We know that Ω is a proper open convex cone in V , and
H acts on Ω simply transitively.
We fix a complete system c1, . . . , cr of orthogonal primitive idempotents and de-

note the corresponding normal decomposition of V by

(1.2) V =
⊕

1≤j≤k≤r

Vkj.

By introducing the lexicographic order in (1.2), we see that every Lx (x ∈ V ) is
simultaneously represented by a lower triangular matrix. Then for each h ∈ H,
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there exist unique hjj > 0 (j = 1, . . . , r) and vkj ∈ Vkj (1 ≤ j < k ≤ r) such that by
setting Tjj := (2 log hjj)Lcj and Lj :=

∑
k>j Lvkj , we have

(1.3) h = (expT11)(expL1)(expT22) · · · (expLr−1)(expTrr).

A function f on Ω is said to be relatively invariant under the action of H if
there exists a one-dimensional representation χ of H with which we have f(hx) =
χ(h)f(x) for all h ∈ H and x ∈ Ω. To each such χ, there corresponds an r-tuple
τ := (τ1, . . . , τr) ∈ Rr so that

χ(h) = (h11)
2τ1 · · · (hrr)

2τr (for h as in (1.3)).

We call τ the multiplier of a relative invariant function f and write χ = χτ .

Theorem 1.1 (Ishi [4]). There exist irreducible relatively H-invariant polynomial
functions ∆1, . . . ,∆r by which any relatively H-invariant polynomial function p on
V is written as

p(x) = (const)·∆1(x)
n1 · · ·∆r(x)

nr
(
(n1, . . . , nr) ∈ Zr

≥0

)
.

Moreover Ω is described as

Ω = {x ∈ V ; ∆1(x) > 0, . . . ,∆r(x) > 0} .

The polynomials ∆1(x), . . . ,∆r(x) are called the basic relative invariants of the
cone Ω. They are also called the basic relative invariants of the clan V . We assume
that the numbering of the basic relative invariants is given by the procedure of Ishi
[4] according to c1, . . . , cr. For j = 1, . . . , r, let σj = (σj1, . . . , σjr) be the multiplier
of the relative invariant ∆j(x), and we place them in an r × r matrix as

(1.4) σV :=

σ1
...
σr

 = (σjk).

In this paper, we call σV the multiplier matrix of the clan V . We note that by the
procedure of Ishi [4], σV is a lower triangular matrix with all σjk ∈ Z≥0 and σjj = 1
(j = 1, . . . , r). In particular, σV is invertible. We put dj := deg∆j for j = 1, . . . , r.
Then by definition, we have

(1.5) dj = σj1 + · · ·+ σjj (j = 1, . . . , r).

For every ε := t(ε1, . . . , εr) ∈ {0, 1}r, we put cε := ε1c1 + · · ·+ εrcr. Then cε ∈ Ω
and we denote by Oε the H-orbit in V through cε. Note that O1 = Ω, where
1 = t(1, . . . , 1). Then by Ishi [3, Theorem 3.5], the H-orbit decomposition of Ω is
described as

Ω =
⊔

ε∈{0,1}r
Oε.

Now we assume that the inner product ⟨ · | · ⟩ of V is given by an admissible linear
form s0. Let us define a bilinear product

△

in V through

(1.6)
⟨
x

△

y |z
⟩
= ⟨y |x△ z ⟩ (x, y, z ∈ V ).
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Then it turns out that the product

△

defines a clan structure in V . The clan (V,

△

)
is called the dual clan of (V,△). The linear form s0 is also an admissible linear form
for (V,

△

). In fact, we have s0(x

△

y) =
⟨
x

△

y |e0
⟩
= ⟨y |x⟩. Moreover it is easy

to see from (1.6) that e0 is also a unit element of (V,

△

). The cone corresponding
to (V,

△

) is the dual cone Ω∗ of Ω with respect to the inner product ⟨ · | · ⟩, where

Ω∗ :=
{
x ∈ V ; ⟨x |y ⟩ > 0 for all y ∈ Ω\{0}

}
.

Let L▽
x : V ∋ y 7→ x

△

y be the left multiplication operator by x ∈ V of (V,

△

).

Proposition 1.2. The following relationships hold between △ and

△

.

(1) For x, y ∈ V , we have x△ y + x

△

y = y△x+ y

△

x.
(2) For i = 1, . . . , r, one has L▽

ci
= Lci.

Proof. (1) For any z ∈ V , we have by (C1)

⟨x△ y − y△x |z ⟩ =s0
(
(x△ y − y△x)△ z

)
= s0

(
x△ (y△ z)− y△ (x△ z)

)
= ⟨x |y△ z ⟩ − ⟨y |x△ z ⟩ =

⟨
y

△

x− x

△

y |z
⟩
.

Hence, the assertion is proved.
(2) Suppose xkj ∈ Vkj (j ≤ k). Then for any y ∈ V , we have⟨

ci

△

xkj |y
⟩
= ⟨xkj |ci △ y ⟩ = ⟨xkj |ci △ ykj ⟩ =

1

2
(δij + δik) ⟨xkj |y ⟩ ,

where ykj is the Vkj-component of y. Thus we get L▽
ci
xkj =

1
2
(δij + δik)xkj = Lcixkj

for any xkj ∈ Vkj. This shows L
▽
ci
= Lci . �

Proposition 1.2 (2) shows that c1, . . . , cr form also a complete system of orthog-
onal primitive idempotents of the dual clan (V,

△

). We denote by R▽
x the right

multiplication operator of (V,

△

) by x ∈ V . By (1) and (2) of Proposition 1.2, we
get R▽

ci
xkj = δikxkj for any xkj ∈ Vkj (j ≤ k) and i = 1, . . . , r. Thus we have

Vkj =
{
x ∈ V ; L▽

ci
x = 1

2
(δij + δik)x, R

▽
ci
x = δikx (i = 1, . . . , r)

}
.

This implies that the decomposition (1.2) also serves as a normal decomposition of
(V,

△

) relative to c1, . . . , cr with the multiplication rules

(1.7)
Vji

△

Vlk = {0} (if j ̸= k, l), Vji

△

Vkj ⊂ Vki,
Vki

△

Vkj ⊂ Vji or Vij (according to i ≤ j or i ≥ j).

2. Representations of clans

We keep to the clan notation used in Section 1. Let E be a real Euclidean
vector space with inner product ⟨ · | · ⟩E. We denote by L(E) the vector space of
linear operators on E. For a linear map φ : V → L(E), let φ and φ be the “lower
triangular part” and the “upper triangular part” of φ respectively associated with
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c1, . . . , cr given by

φ(x) :=
1

2

r∑
j=1

xjφ(cj) +
∑
j<k

φ(ck)φ(xkj)φ(cj),

φ(x) :=
1

2

r∑
j=1

xjφ(cj) +
∑
j<k

φ(cj)φ(xkj)φ(ck),

(2.1)

where we write x =
∑

xjcj +
∑

j<k xkj according to (1.2). A linear map φ : V →
L(E) is called a selfadjoint representation of the clan (V,

△

) if φ(x) is a selfadjoint
operator for every x ∈ V and if the following condition is satisfied:

(2.2) φ(x

△

y) = φ(x)φ(y) + φ(y)φ(x) (x, y ∈ V ).

We always require that φ(e0) is the identity operator. In this paper, we only consider
selfadjoint representations of (V,

△

). Thus we often drop the adjective selfadjoint
for simplicity.
Let (φ,E) be a representation of (V,

△

).

Proposition 2.1. The following statements hold.

(1) φ(cj) (j = 1, . . . , r) are mutually orthogonal projection operators.
(2) Each φ(x) can be simultaneously expressed as a lower triangular matrix by

an appropriate choice of orthonormal basis of E.
(3) For all x ∈ V , one has φ(x)∗ = φ(x) and φ(x) + φ(x) = φ(x).

Proof. (1) Recalling cj

△
ck = δjkcj, we have by (2.2)

(2.3) δjkφ(cj) = φ(cj

△

ck) =
1
2

(
φ(cj)φ(ck) + φ(ck)φ(cj)

)
.

Letting k = j, we obtain φ(cj) = φ(cj)
2, so that φ(cj) is a projection operator. Next

we assume that j ̸= k. Then (2.3) implies φ(cj)φ(ck) = −φ(ck)φ(cj). Multiplying
both sides from the left by φ(cj), we get φ(cj)φ(ck) = φ(ck)φ(cj). From this, we
conclude φ(cj)φ(ck) = 0.
(2) Let us put Ej := φ(cj)E (j = 1, . . . , r). Since φ(cj)’s are mutually orthogonal,
we have an orthogonal direct sum E =

⊕
j Ej. Form an orthonormal basis of E by

first taking the one from E1, then from E2, . . . , and finally from Er. By this choice
of orthonormal basis, every operator φ(x) for x ∈ Vkj (j < k) is represented by a
strictly lower triangular matrix. Since each φ(cj) is clearly diagonal, we conclude
that φ(x) is lower triangular.
(3) Since φ(x) is selfadjoint for any x ∈ V , the first assertion follows from (2.1).
The second assertion is proved by putting y = e0 in (2.2). �
Associated with φ, we define a symmetric bilinear map Q : E × E → V through

(2.4) ⟨φ(x)ξ |η ⟩E = ⟨Q(ξ, η) |x⟩ (ξ, η ∈ E, x ∈ V ).

For simplicity, we put Q[ξ] := Q(ξ, ξ) and Q[E] := {Q[ξ]; ξ ∈ E}.

Proposition 2.2. One has the following properties:

(1) x△Q(ξ, η) = Q(φ(x)ξ, η) +Q(ξ, φ(x)η) (x ∈ V, ξ, η ∈ E),
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(2) Q is Ω-positive, that is, Q[ξ] ∈ Ω\{0} for all ξ ∈ E\{0}.
Proof. (1) For any y ∈ V , we have by (2.2) and Proposition 2.1 (3)

⟨x△Q(ξ, η) |y ⟩ =
⟨
Q(ξ, η) |x △

y
⟩
= ⟨φ(x △

y)ξ |η ⟩E
= ⟨φ(x)φ(y)ξ + φ(y)φ(x)ξ |η ⟩E
= ⟨φ(y)ξ |φ(x)η ⟩E + ⟨φ(y)φ(x)ξ |η ⟩E
=

⟨
Q(ξ, φ(x)η) +Q(φ(x)ξ, η) |y

⟩
.

Hence we obtain the assertion.
(2) The formula in (1) gives rise to

(2.5) (expLx)Q(ξ, η) = Q
(
(expφ(x))ξ, (expφ(x))η

)
(x ∈ V, ξ, η ∈ E).

For each x ∈ Ω∗, we take x0 ∈ V such that (expL▽
x0
)e0 = x. Since L▽

x = (Lx)
∗ by

(1.6), we have

⟨Q[ξ] |x⟩ = ⟨(expLx0)Q[ξ] |e0 ⟩ =
⟨
Q[(expφ(x0))ξ] |e0

⟩
= ∥(expφ(x0))ξ∥2E ≥ 0.

Hence Q[ξ] ∈ Ω. Moreover, since expφ(x0) is invertible, we see that Q[ξ] = 0 if and
only if ξ = 0. Hence the proposition is proved. �
Let ε ∈ {0, 1}r. A representation (φ,E) of (V,

△

) is called an ε-representation if
the associated symmetric bilinear map Q satisfies Q[E] = Oε. Any ε-representation
arises from the right multiplication operators as we now show. For k = 1, 2, . . . , r−1,
let V [k] and E[k] be the subspaces of V defined respectively by

(2.6) V [k] :=
⊕

k<l≤m≤r

Vml, E[k] :=
⊕
m>k

Vmk.

We note that the multiplication rules (1.7) yield that for any k = 1, . . . , r − 1, V [k]

is a subclan of (V,

△

) and E[k] △

V [k] ⊂ E[k]. The latter property allows us to define
R[k] : V [k] → L(E[k]) by

R[k](x)ξ = ξ

△

x (x ∈ V [k], ξ ∈ E[k] and k = 1, 2, . . . , r − 1).

Proposition 2.3. For each k, the pair (R[k], E [k]) is a selfadjoint representation of
(V [k],

△

).

Proof. We only prove the proposition for k = 1, and the proof for general k is similar.
For simplicity, we write

(2.7) V ′ = V [1], (φ′, E ′) = (R[1], E [1]).

Let ξ ∈ E ′ and x ∈ V ′. By (1.1), we have ξ△x = 0, so that Proposition 1.2 (1)
yields

(2.8) φ′(x)ξ = ξ

△

x = x△ ξ + x

△

ξ = (Lx + L▽
x )ξ.

Since L▽
x = (Lx)

∗, we see that φ′(x) is selfadjoint. Furthermore for all x, y ∈ V ′ and
ξ ∈ E ′, we have by (C1) and (2.8)

φ′(x

△

y)ξ = x

△

(ξ

△

y) + (ξ

△

x− x

△

ξ)

△

y

= x

△

(ξ

△

y) + (x△ ξ)

△

y.
(2.9)
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Taking the lower and the upper triangular part of φ′(x) in (2.8), we see that φ′(x) =

Lx and φ′(x) = L▽
x . Then the last term of (2.9) is equal to

(
φ′(x)φ′(y)+φ′(y)φ′(x)

)
ξ.

Since φ′(e0) is obviously the identity operator, the pair (φ′, E ′) is now a selfadjoint
representation of the clan (V ′,

△

). �

For k = 1, 2, . . . , r − 1, let πk : V → V [k] be the orthogonal projection. By
the multiplication rules in (1.7), we see that πk(x

△

y) = πk(x)

△

πk(y). Thus
Rk := R[k] ◦ πk defines a selfadjoint representation of the clan (V,

△

). Take any
ε = t(ε1, . . . , εr) ∈ {0, 1}r with ε ̸= 0. We put Eε :=

⊕
εj=1 E

[j] and define a linear

map Rε : V → L(Eε) by

Rε(x)

(∑
εj=1

ξj

)
:=

∑
εj=1

Rj(x)ξj (x ∈ V, ξj ∈ E[j]).

Clearly, (Rε, Eε) is a selfadjoint representation of (V,

△

). If ε = 0, then R0 is
defined to be the zero-dimensional zero-representation. Let Qε be the symmetric
bilinear map associated with Rε. Then, by Graczyk and Ishi [2, Proposition 3.5],
we have Qε[Eε] = Oε and hence Rε is an ε-representation.
Now let (φ,E) be any selfadjoint representation of (V,

△

) and Q the corresponding
bilinear map. The Riesz measure µQ associated with the quadratic map Q[ξ] is, by
definition, the image of the Lebesgue measure dξ on E by Q[ξ] (cf. Graczyk and Ishi
[2]). In other words, we have∫

V

f(x)µQ(dx) =

∫
E

f(Q[ξ])dξ

for any measurable function f on V . On the other hand by (2.4) and (2.5), we
obtain

Detφ(h∗x) = Det
(
h∗φ(x)h

)
= (Deth)2Detφ(x)

for any x ∈ V and h ∈ H. Thus Detφ(x) is a relatively H-invariant polynomial and
its multiplier l = t(l1, . . . , lr) ∈ Zr

≥0 satisfies

Detφ(λ1c1 + · · ·+ λrcr) = (λ1)
l1 · · · (λr)

lr (λ1, . . . , λr ∈ R)

with lj = dimφ(cj)E (j = 1, . . . , r). Let Rs (s ∈ Rr) be the Gindikin–Riesz distri-
bution defined in Ishi [3] (in that paper, it is simply called the Riesz distribution).
Then, by [2, (3.29)], we have

(2.10) µQ = πdimE/2Rl/2.

Since Q is Ω-positive, the measure µQ is a positive measure, and hence Rl/2 is also
a positive measure. Let Ξ be the Gindikin–Wallach set (cf. Ishi [3]), which is the
set of s for Rs to be a positive measure. By (2.10) and [3, Theorem 6.2], we obtain

l/2 ∈ Ξ. Putting dkj := dimVkj for 1 ≤ j < k ≤ r, we define l(i) ∈ Rr (i = 1, . . . , r)

inductively by l(1) := l and, for 2 ≤ i ≤ r,

l(i) :=

{
l(i−1) − t(0, . . . , 0, di+1,i, . . . , dri) if l

(i−1)
i−1 > 0,

l(i−1) if l
(i−1)
i−1 ≤ 0.
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Further we define ε(φ) = t(ε1, . . . , εr) ∈ {0, 1}r by

εi =

{
1 if l

(i)
i > 0,

0 if l
(i)
i ≤ 0

(i = 1, . . . , r).

Then by [2, p. 183], Rl/2 is a measure on Oε(φ). Using Proposition 3.10 and Theorem

3.13 of [2], we see that the support of Rl/2 is equal to Oε(φ), the closure of Oε(φ).
These observations together with (2.10) give the following proposition.

Proposition 2.4. φ is an ε(φ)-representation.

3. Clans defined by representations of a clan

In this section, we define a clan starting from a representation of a clan. Let
(V,△) be a clan of rank r with unit element e0 and (φ,E) a representation of the
dual clan (V,

△

) on a real Euclidean vector space E with inner product ⟨ · | · ⟩E. First
we assume that dimE > 0. Let us keep to the notation used in the previous sections.
Put VE := E ⊕ V and we define a product △ on VE by

(ξ + x)△ (η + y) = φ(x)η + (Q(ξ, η) + x△ y) (ξ, η ∈ E, x, y ∈ V ).

Theorem 3.1. The algebra (VE,△) is a clan with an admissible linear form s′ given
by s′(ξ + x) = s0(x) (ξ ∈ E, x ∈ V ).

Once we have the following Lemma 3.2, we can prove Theorem 3.1 in exactly the
same way as [9, Theorem 3.2]. Thus we omit the proof.

Lemma 3.2. Put [x△ y] := x△ y − y△x. Then one has φ([x△ y]) = [φ(x), φ(y)]
for x, y ∈ V .

Proof. Let us also put [y

△

x] := y

△

x − x

△

y. By Proposition 1.2 (1), we have
[x△ y] = [y

△

x]. Then by (2.2) and Proposition 2.1 (3), we obtain

φ([x△ y]) = φ([y

△

x]) = φ(y)φ(x) + φ(x)φ(y)− φ(x)φ(y)− φ(y)φ(x)

= [φ(x), φ(y)] + ([φ(x), φ(y)])∗.

Taking the lower triangular part, we get the lemma. �
Now we consider the algebra V 0

E := Re⊕ VE obtained by the adjunction of a unit
element e to the clan VE. Since dimE > 0, we have u := e − e0 ̸= 0 and hence
V 0
E = Ru⊕ VE. By this decomposition, the clan product of V 0

E is written as

(3.1)
(λu+ ξ + x)△ (µu+ η + y)

= (λµ)u+ (µξ + 1
2
λη + φ(x)η) + (Q(ξ, η) + x△ y),

where λ, µ ∈ R, ξ, η ∈ E and x, y ∈ V . As an admissible linear form of V 0
E , we take

s0 given by s0(λu + ξ + x) := λ + s0(x). We call (V 0
E ,△) the clan obtained by the

clan V and the representation (φ,E).
Next we assume that dimE = 0. In this case, we take a one-dimensional extension

V 0 = Ru⊕ V of V and define a product △ by

(λu+ x)△ (µu+ y) = (λµ)u+ x△ y (λ, µ ∈ R, x, y ∈ V ).
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Clearly the algebra (V 0,△) is a clan. This clan coincides with the clan (V 0
E ,△) in

(3.1) with E formally equal to {0}. Therefore we also use the notation V 0
E in this

particular case.
Before closing this section, we write down here some formulas needed in the later

sections during the induction arguments. Let the subclan V ′ and the representation
(φ′, E ′) be as in (2.7). The associated symmetric bilinear map Q′ : E ′ × E ′ → V ′ is
given by

(3.2) Q′(ξ′, η′) = ξ′ △ η′ (ξ′, η′ ∈ E ′).

In fact, we have for any x′ ∈ V ′

⟨Q′(ξ′, η′) |x′ ⟩ = ⟨φ′(x′)ξ′ |η′ ⟩ =
⟨
ξ′

△

x′ |η′
⟩
= ⟨x′ |ξ′ △ η′ ⟩ .

Let h′ := {Lx′ ; x′ ∈ V ′} be the Lie algebra of left multiplication operators of V ′ and
H ′ := exp h′ the corresponding Lie group. Any h ∈ H is written as in (1.3). Putting

ξ′ = v21 + · · ·+ vr1 ∈ E ′, h′ = expT22 expL2 · · · expTrr ∈ H ′,

we have h = (expT11)(expLξ′)h
′.

Lemma 3.3. Let y = y11c1 + η′ + y′ ∈ Rc1 ⊕ E ′ ⊕ V ′. Then

hy = y11(h11)
2c1 + h11(y11ξ

′ + h′η′) +

(
1

2
y11Q

′[ξ′] +Q′(ξ′, h′η′) + h′y′
)
.

Proof. We first note that the multiplication rules (1.1) tell us that

h′c1 = c1, h′η′ ∈ E ′, h′y′ ∈ V ′.

Next we have again by (1.1)

Rc1 |E′ = idE′ , E ′△E ′ ⊂ V ′, E ′ △V ′ = {0},
so that recalling (3.2)

(expLξ′)c1 = c1 + ξ′ △ c1 +
1

2
ξ′△ (ξ′△ c1) = c1 + ξ′ +

1

2
Q′[ξ′],

(expLξ′)η
′ = η′ +Q′(ξ′, η′), (expLξ′)y

′ = y′.

Finally,

(expT11)c1 = (h11)
2c1, (expT11)η

′ = h11η
′, (expT11)y

′ = y′.

These observations yield that

hc1 = expT11(c1 + ξ′ + 1
2
Q′[ξ′]) = (h11)

2c1 + h11ξ
′ + 1

2
Q′[ξ′],

hη′ = expT11(h
′η′ +Q′(ξ′, h′η′)) = h11h

′η′ +Q′(ξ′, h′η′),

hy′ = h′y′.

Hence we obtain the formula in the lemma. �
Let (Ṽ ,△) be the clan obtained by V ′ and φ′. Then the linear map ι : Ṽ → V

defined by

(3.3) ι : Ṽ ∋ λu+ ξ′ + x′ 7−→ λc1 + ξ′ + x′ ∈ V
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is a clan isomorphism and hence (Ṽ ,△) is isomorphic to (V,△). Thus this (Ṽ ,△)
can be identified with (V,△).

4. Basic relative invariants

We keep to the notation of the previous sections. In this section, we study the
basic relative invariants of the clan V 0

E . To do so, we consider the right multiplication
operators of the clan (V 0

E ,△). The reason for this is that by Ishi and Nomura [6], the
basic relative invariants are the irreducible factors of the determinant of the right
multiplication operators.
Let (V 0

E ,△) be the clan obtained by the clan V of rank r and the representation
(φ,E) of (V,

△

) introduced in Section 3. Let R0
v be the right multiplication operators

by v ∈ V 0
E of the clan (V 0

E ,△). By (3.1), we have

R0
λu+ξ+x =

 λ 0 0
1
2
ξ λ idE R0

ξ

0 R0
ξ Rx

 (λu+ ξ + x ∈ V 0
E),

where Rx is the right multiplication operator of V , and we note that R0
ξ(V ) ⊂ E

and R0
ξ(E) ⊂ V . As in [9, Proposition 4.1], we have the following proposition.

Proposition 4.1. For λu+ ξ + x ∈ V 0
E , one has

DetR0
λu+ξ+x = λ1+dimE−dimV Det

(
Rλx− 1

2
Q[ξ]

)
.

Let ∆1(x), . . . ,∆r(x) be the basic relative invariants of V . Then we have

(4.1) DetRx = ∆1(x)
n1 · · ·∆r(x)

nr (x ∈ V ),

with positive integers n1, . . . , nr. Proposition 4.1 together with (4.1) tells us that
the basic relative invariants of (V 0

E ,△) are exhausted by the polynomial λ and the
irreducible factors of ∆j(λx− 1

2
Q[ξ]) (j = 1, . . . , r).

Proposition 4.2. For each j = 1, . . . , r, the only possible factor of the polynomial
∆j(λx− 1

2
Q[ξ]) is λαj for some non-negative integer αj.

Proof. First, we note that any basic relative invariant is a homogeneous polynomial.
Let dj be the homogeneous degree of ∆j and we put

P̃j(λu+ ξ + x) := ∆j(λx− 1
2
Q[ξ]).

Since λu+ξ+x 7→ λx− 1
2
Q[ξ] is a quadratic map, the polynomial P̃j(λu+ξ+x) is a

homogeneous polynomial of degree 2dj. In particular, the degree of each monomial

of P̃j(λu+ ξ + x) with respect to λ is equal to that of x. Moreover since ∆j(λx) =

λdj∆j(x), the degree of the polynomial P̃j(λu + ξ + x) with respect to λ is dj and

the coefficient of λdj is the irreducible polynomial ∆j(x). Hence P̃j(λu + ξ + x) is
written as

P̃j(λu+ ξ + x) = λdj∆j(x) + λdj−1p
(1)
j (x, ξ) + · · ·+ p

(dj)
j (x, ξ),
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where p
(k)
j (x, ξ) are polynomials of x and ξ of degree dj+k. In particular, the degree

of the polynomial p
(k)
j (x, ξ) with respect to x is strictly lower than dj. Since ∆j(x)

is irreducible, P̃j(λu+ ξ + x) is factorized as

(4.2) P̃j(λu+ ξ + x) = λαj
(
λdj−αj∆j(x) + λdj−αj−1p

(1)
j (x, ξ) + · · ·+ p

(dj−αj)
j (x, ξ)

)
,

where αj is the maximal integer such that p
(dj−αj)
j ̸= 0. Thus λ−αj P̃j(λu+ ξ + x) is

irreducible. The proof is now completed. �
Propositions 4.1 and 4.2 immediately give the following theorem.

Theorem 4.3. The basic relative invariants Pj(λu + ξ + x) (j = 0, 1, . . . , r) of V 0
E

are given by {
P0(λu+ ξ + x) = λ,
Pj(λu+ ξ + x) = λ−αj∆j(λx− 1

2
Q[ξ]) (j ≥ 1).

We will determine the non-negative integers αj in Section 5.
Let us return to (4.1). Theorem 4.3 enables us to give an answer to the question

of expressing n1, . . . , nr in terms of the data of the clan V . Considering the degree
of (4.1), we have

(4.3) dimV = n1d1 + · · ·+ nrdr.

We set n := (n1, . . . , nr) in the form of row vector and call n the basic index of V .
Let

(4.4) mk :=
∑
l≥k

dimVlk (k = 1, . . . , r),

and we put them also in the form of row vector as m := (m1, . . . ,mr). We note that
mk = 1 + dimE[k] for any k. In what follows, we write the bold symbol x for the
column vector t(x1, . . . , xr). Now we have the following theorem.

Theorem 4.4. Let σ = σV be the multiplier matrix of V . Then one has

n = mσ−1.

Proof. We shall prove the theorem by induction on r. Let V ′ be the subclan and
(φ′, E ′) the representation in (2.7). Then we have the decomposition V = Rc1⊕E ′⊕
V ′. Let Q′ be the symmetric bilinear map associated with φ′, and ∆′

j (j = 2, . . . , r)
the basic relative invariants of (V ′,△). Applying Theorem 4.3 to the clan V obtained
by V ′ and (φ′, E ′) via (3.3), we have for some α′

j ∈ Z≥0

(4.5) ∆1(x) = x11, ∆j(x) = (x11)
−α′

j∆′
j(x11x

′ − 1
2
Q′[ξ′]) (j = 2, . . . , r),

where x = x11c1+ ξ′+x′ (x11 ∈ R, ξ′ ∈ E ′, x′ ∈ V ′). We denote by σ′ the multiplier
matrix of V ′ and put d′j = deg∆′

j (j = 2, . . . , r). Comparing the degree in (4.5), we
see that σ is described as

(4.6) σ =

(
1 0

d′ −α′ σ′

)
.
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Let R′ be the right multiplication operators of V ′ and n′ the basic index of V ′. By
(4.3), we have dimV ′ = n′

2d
′
2 + · · · + n′

rd
′
r = n′d′. Since V ′ =

⊕
2≤j≤k≤r Vkj is the

normal decomposition of V ′, we have m′
k :=

∑
l≥k dimVlk = mk for k = 2, 3, . . . , r.

Now Proposition 4.1 applied to the situation (3.3) together with (4.5) gives

DetRx11c1+ξ′+x′ = (x11)
1+dimE′−dimV ′

DetR′
x11x′− 1

2
Q′[ξ′]

= ∆1(x)
1+dimE′+n′(α′−d′)∆2(x)

n′
2 · · ·∆r(x)

n′
r .

This tells us that

(4.7) n = (1 + dimE ′ + n′(α′ − d′), n′) = (m1 + n′(α′ − d′), n′).

Then by the induction hypothesis n′σ′ = m′, we obtain by (4.6) and (4.7)

nσ = (m1 + n′(α′ − d′), n′)

(
1 0

d′ −α′ σ′

)
= (m1, m

′) = m.

The proof is now completed. �

5. multiplier matrix

In this section, we calculate the non-negative integers αj that appeared in Propo-
sition 4.2. We keep to the notation of the previous sections. Let us put ε = ε(φ).
Since Q[E] = Oε, we consider the polynomials ∆j(λx−xε) (λ ∈ R, x ∈ V, xε ∈ Oε).
If x ∈ Ω, then putting x = he0 with h ∈ H, we have by the relative invariance

(5.1) ∆j(λx− xε) = ∆j(x)∆j(λe0 − h−1xε).

Let us put

Pε
j (λ, xε) := ∆j(λe0 − xε) = λdj + λdj−1q

(1)
j (xε) + · · ·+ q

(dj)
j (xε),

where q
(k)
j (k = 1, . . . , dj) are polynomial functions on Oε of degree k. By the

coefficient comparison of (5.1) with (4.2) relative to λ, the polynomials q
(k)
j (xε)

are the zero-polynomials on Oε for k = dj − αj + 1, . . . , dj, and the polynomial

q
(dj−αj)
j (xε) is non-zero. In particular, λ−αjPε

j (λ, xε) is an irreducible polynomial.
By (5.1), we see that λ−αj∆j(λx− xε) is also irreducible.

Theorem 5.1. Let σ = σV be the multiplier matrix of V . Then with ε as above,
one has α = σV (1− ε), that is,

(5.2) αj =
r∑

k=1

σjk(1− εk) (j = 1, . . . , r).

Moreover, if σ0 is the multiplier matrix of the clan (V 0
E ,△), then

(5.3) σ0 =

(
1 0
σε σ

)
.
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Proof. We shall prove the theorem by induction on rank r. Let V ′ and (φ′, E ′) be
as in (2.7). We put e1 = e0 − c1, which is the unit element of V ′. By (4.6), the
multiplier matrix σ′ := σV ′ of V ′ is equal to the (r − 1) × (r − 1) matrix σ′ =
(σjk)2≤j,k≤r. We consider the Lie algebra h′ = {Lx′ ; x′ ∈ V ′} of left multiplication
operators of V ′ and the corresponding Lie group H ′ = exp h′. Let Ω′ := H ′e1, the
homogeneous cone associated with (V ′,△). For each δ = t(δ2, . . . , δr) ∈ {0, 1}r−1,
we put c′δ := δ2c2 + · · ·+ δrcr. Then c′δ ∈ Ω′ and let O′

δ := H ′c′δ ⊂ Ω′. Moreover, let

α̃j : {0, 1}r−1 → Z≥0 and polynomials P̃δ
j (λ, yδ) (λ ∈ R, yδ ∈ O′

δ) be

(5.4) α̃j(δ) :=
r∑

k=2

σjk(1− δk), P̃δ
j (λ, yδ) := ∆′

j(λe1 − yδ) (j = 2, . . . , r).

We note that α̃(δ) = σ′(1−δ). By the induction hypothesis, there exist irreducible

polynomials F̃δ
j (λ, yδ) (j = 2, . . . , r) such that

(5.5) P̃δ
j (λ, yδ) = λα̃j(δ)F̃δ

j (λ, yδ) (λ ∈ R, yδ ∈ O′
δ).

For j = 1, . . . , r, let us consider the polynomial functions Pε
j (λ, xε) (λ ∈ R, xε ∈ Oε)

defined by

(5.6) Pε
j (λ, xε) = ∆j(λe0 − xε).

In order to know what power of λ is factored out from Pε
j (λ, xε), it is clearly

sufficient by continuity that we argue by restricting the variable xε to Oε. Thus
we assume xε ∈ Oε and take h ∈ H such that xε = hcε. Let Q′ be the symmetric
bilinear map associated with φ′ and we put ε′ := ε(φ′) = t(ε′2, . . . , ε

′
r) ∈ {0, 1}r−1.

By the induction hypothesis and (4.5), we have

(5.7) ∆j(x) = (x11)
−α̃j(ε

′)∆′
j(x11x

′ − 1
2
Q′[ξ′]) (j = 2, . . . , r),

where x = x11c1 + ξ′ + x′ ∈ V . Let us put ε̃ = t(ε2, . . . , εr) ∈ {0, 1}r−1. Applying
Lemma 3.3 to y = cε, we obtain

xε = hcε = ε1(h11)
2c1 + ε1h11ξ

′ +
(
h′c′ε̃ +

ε1
2
Q′[ξ′]

)
.

Putting yε̃ = h′c′ε̃, we have

(5.8) λe0 − xε =
(
λ− ε1(h11)

2
)
c1 − ε1h11ξ

′ +
(
λe1 − yε̃ −

ε1
2
Q′[ξ′]

)
.

(i) The case j = 1. In this case, we have Pε
1 (λ, xε) = λ − ε1(h11)

2. If ε1 = 0 then
Pε

1 (λ, xε) = λ, and if ε1 = 1 then Pε
1 (λ, xε) does not have the factor λ. Hence in

both cases we have α1 = 1− ε1. Since σ1k = δ1k (k = 1, . . . , r), we obtain (5.2) for
α1.
(ii) The case j = 2, . . . , r. (a) We first assume that ε1 = 0. In this case, (5.8)
reduces to λe0 − xε = λc1 + (λe1 − yε̃). Using (5.7) and (5.5), we obtain

∆j

(
λc1 + (λe1 − yε̃)

)
= λ−α̃j(ε

′)∆′
j

(
λ(λe1 − yε̃)

)
= λ−α̃j(ε

′)+d′j P̃ ε̃
j (λ, yε̃)

= λ−α̃j(ε
′)+d′j+α̃j(ε̃)F̃ ε̃

j (λ, yε̃).
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Here the induction hypothesis for (5.3) says σj1 =
∑r

k=2 σjkε
′
k. By using (1.5) for

d′j, we can rewrite σj1 as σj1 = −α̃j(ε
′) + d′j. Thus we get

αj = σj1 + α̃j(ε̃) =
r∑

k=1

σjk(1− εk) (j = 2, . . . , r).

(b) Next let us consider the case ε1 = 1. We assume that λ is in a small neighborhood
U1 of 0 and h11 in a small neighborhood U2 of 1, so that putting aλ := −(λ− (h11)

2),
we have aλ > 0. Then by (5.7) and (5.8)

∆j(λe0 − xε) = (−aλ)
−α̃j(ε

′)∆′
j

(
(−aλ)(λe1 − yε̃ − 1

2
Q′[ξ′])− 1

2
Q′[h11ξ

′]
)

= (−aλ)
−α̃j(ε

′)∆′
j

(
−λ(aλe1 +

1
2
Q′[ξ′]) + aλyε̃

)
.

Since aλ > 0 and Q′[ξ′] ∈ O′
ε′ ⊂ Ω′, we have aλe1 +

1
2
Q′[ξ′] ∈ Ω′ for any λ ∈ U1

and h11 ∈ U2. Thus for each such λ and h11, there exists a unique gλ ∈ H ′ so that
gλe1 = aλe1+

1
2
Q′[ξ′]. The one-dimensional representation associated with ∆′

j being

χσ′
j
, we have χσ′

j
(gλ) = ∆′

j(aλe1 +
1
2
Q′[ξ′]). Using the relative H-invariance of ∆′

j

and (5.5), we obtain

∆j(λe0 − xε) = (−aλ)
−α̃j(ε

′)∆′
j(−λgλe1 + aλyε̃)

= (−aλ)
−α̃j(ε

′)χσ′
j
(gλ)∆

′
j(−λe1 + aλg

−1
λ yε̃)

= (−1)2d
′
j(−aλ)

−α̃j(ε
′)∆′

j

(
(−aλ)e1 − 1

2
Q′[ξ′]

)
∆′

j(λe1 − aλg
−1
λ yε̃)

= λα̃j(ε̃)F̃ε′

j (−aλ,
1
2
Q′[ξ′])F̃ ε̃

j (λ, aλg
−1
λ yε̃).

To continue, we introduce a rational function Fj(λ, xε) defined by

Fj(λ, xε) := λ−α̃j(ε̃)Pε
j (λ, xε) = F̃ε′

j (−aλ,
1
2
Q′[ξ′])F̃ ε̃

j (λ, aλg
−1
λ yε̃).

We shall show that Fj(λ, xε) is actually an irreducible polynomial. Since Pε
j (λ, xε)

is a polynomial, it is sufficient to prove the existence of a non-zero limit of Fj(λ, xε)

as λ → 0. Since both of F̃ε′
j and F̃ ε̃

j are polynomial functions, and since the map

g : U1 ∋ λ 7→ g−1
λ ∈ H ′ is continuous as well as λ 7→ gλ, we obtain

lim
λ→0

Fj(λ, xε) = F̃ε′

j (−a0,
1
2
Q′[ξ′])F̃ ε̃

j (0, a0g
−1
0 yε̃).

In order to see that this limit is non-zero, we put h11 = 1 and ξ′ = 0. Then we have
a0 = 1 and g0e1 = e1, that is, g0 is the unit element of H ′. By (5.5) and (5.4), we
have

F̃ε′

j (−1, 0) = (−1)−α̃j(ε
′)P̃ε′

j (−1, 0) = (−1)d
′
j−α̃j(ε

′).

On the other hand, since F̃ ε̃
j (λ, yε̃) does not have the factor of λ, we can take zε̃ ∈ O′

ε̃

such that F̃ ε̃
j (0, zε̃) ̸= 0. Thus we obtain

Fj(0, c1 + zε̃) = F̃ε′

j (−1, 0)F̃ ε̃
j (0, zε̃) = (−1)d

′
j−α̃j(ε

′)F̃ ε̃
j (0, zε̃) ̸= 0.

Hence Fj(λ, xε) does not have the factor of λ. Since U1 and U2 are open sets and
since we now know that Fj(λ, xε) is a polynomial, the function Fj(λ, xε) is extended
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to R×Oε and does not have the factor of λ. Therefore Pε
j (λ, xε) = λα̃j(ε̃)Fj(λ, xε)

is an irreducible factorization. This shows

αj = α̃j(ε̃) =
r∑

k=1

σjk(1− εk) (j = 2, . . . , r).

It remains to prove (5.3). Since α = σ(1− ε) and d = σ1 by (1.5), we obtain by
(4.6)

σ0 =

(
1 0

d−α σ

)
=

(
1 0
σε σ

)
.

This completes the proof. �

Remark 5.2. If we put xε :=
∑r

k=1 εkλkck (λk > 0) in (5.6), then we have

Pε
j (λ, xε) =

r∏
k=1

(λ− εkλk)
σjk = λ

∑
εk=0 σjk

∏
εk=1

(λ− λk)
σjk .

But this only implies that αj ≤
∑

εk=0 σjk =
∑r

k=1 σjk(1 − εk), since, in general,
the restriction to a lower dimensional set of an irreducible polynomial need not be
irreducible.

Let n be the basic index of V . By Proposition 4.1 and Theorem 4.3, the determi-
nant of the right multiplication operators R0

v of the clan V 0
E is described as

DetR0
v = P0(v)

1+dimE−dimV+nαP1(v)
n1 · · ·Pr(v)

nr (v ∈ V 0
E).

Let us verify here that 1+dimE−dimV +nα ≥ 1. Indeed we first note that Ishi [3,
Lemma 3.3 (ii)] tells us that dimOε = mε. Then the fact that Q[E] = Oε together
with Theorem 4.4 implies

dimE ≥ dimOε = mε = nσε.

Recalling dimV = nd = n(σ1) and Theorem 5.1, we obtain

dimE − dimV + nα ≥ nσε− nσ1+ nσ(1− ε) = 0.

Finally we determine the multiplier matrix σ = σV of a given clan V . This
completes Theorems 4.3, 4.4 and 5.1. Let V [k] be the subclan defined in (2.6)
and (R[k], E [k]) the representation of (V [k],

△

) appearing in Proposition 2.3. For
k = 1, 2, . . . , r − 1, we put ε[k] := ε(R[k]) ∈ {0, 1}r−k and consider the r × r matrix
Ek defined by

Ek :=

Ik−1 0 0
0 1 0
0 ε[k] Ir−k

 (k = 1, . . . , r − 1).

Theorem 5.3. The multiplier matrix σ = σV of the clan V is given by

σ = Er−1Er−2 · · · E1.
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Proof. We shall prove the theorem by induction on rank r. Let V ′ and (φ′, E ′) be
as in (2.7). Then we have V = Rc1 ⊕ E ′ ⊕ V ′. By the induction hypothesis, the
multiplier matrix σ′ of V ′ is described as

(5.9) σ′ = E ′
r−1E ′

r−2 · · · E ′
2, E ′

k =

Ik−2 0 0
0 1 0
0 ε[k] Ir−k

 (k = 2, 3, . . . , r − 1).

Let us put ε = ε(φ′). Applying Theorem 5.1 with V regarded as in (3.3), we have
by (5.9)

σ =

(
1 0
σ′ε σ′

)
=

(
1 0
0 σ′

)(
1 0
ε Ir−1

)(
1 0
0 E ′

r−1

)
· · ·

(
1 0
0 E ′

2

)(
1 0
ε Ir−1

)
.

By noting Ek =
(
1 0
0 E ′

k

)
(k = 2, 3, . . . , r − 1), the proof is completed. �

Remark 5.4. Let Ω be a symmetric cone with rank r ≥ 3. The corresponding clan
is V = Herm(r,K) (r ≥ 3, K = R,C,H). Since the basic relative invariants ∆k(x)

(k = 1, . . . , r) are the left upper corner principal minors det[k](x), the multiplier

matrix σ = (σjk) of V is given by σ =

(
1 0
...
...

1 ··· 1

)
. For a positive integer p, we put

Ep := Mat(r × p,K) and define a linear map φp : V → L(Ep) by

φp(x)ξ := xξ (x ∈ V, ξ ∈ Ep),

where the multiplication on the right hand side is the ordinary matrix multiplication.
Then (φp, Ep) is a representation of (V,

△

). If we put

ε(p) :=


t(1, . . . , 1︸ ︷︷ ︸

p

, 0, . . . , 0) (1 ≤ p < r),

t(1, . . . , 1) (r ≤ p),

then φp is an ε(p)-representation. By Theorem 5.1, we have

α = σ(1− ε(p)) =


t(0, . . . , 0︸ ︷︷ ︸

p

, 1, 2, . . . , r − p) (1 ≤ p < r),

t(0, . . . , 0) (r ≤ p).

This α is first obtained in [9]. We note that the representation is regular if and only
if ε(p) = 1.
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