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1 Introduction

In this paper, we will be interested in the multiple zeta value (MZV) related to modular

forms (or their period polynomials) on the full modular group Γ1 = PSL2(Z) and its

subgroup Γ0(2). This paper begins by studying an integer ε(s1,...,srk1,...,kr
) defined by

ε(s1,...,srk1,...,kr
) = δ(s1,...,sr),(k1,...,kr) +

r−1∑
i=1

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1
(si, ki ∈ Z>0),

where Cs1
ki,ki+1

= (−1)ki
(
s1−1
ki−1

)
+ (−1)ki+1−s1

(
s1−1

ki+1−1

)
and δ(s1,...,sr),(k1,...,kr) is 1 if si = ki

for all i, and 0 otherwise. In the case of r = 2, it is known that the integer ε(s1,s2k1,k2
)

is characterized by three different objects: even period polynomials, the Ihara action,

and double Eisenstein series. The first main results of this paper (stated in Section 2)

describe their generalizations: we show that there is an injective linear map from a

certain vector space closely related to even period polynomials to the kernel of the

matrix Ek,r, whose entries are the above integers, and relate the integer ε(s1,...,srk1,...,kr
) with

polynomial representations of the Ihara action developed by Brown [3], and with the

Fourier coefficients of the multiple Eisenstein series.

This work is mostly motivated by Brown’s conjecture [3, Conjecture 5]. It is as

follows. Throughout this paper, the MZV is defined by

ζ(k) = ζ(k1, . . . , kr) =
∑

0<n1<···<nr

1

nk1
1 · · ·nkr

r

for k = (k1, . . . , kr) ∈ Zr
>0 with kr ≥ 2. We call k1 + · · · + kr (=: wt(k)) the weight

and r (=: dep(k)) the depth. Let Z(r)
k be the Q-vector space spanned by all MZV

of weight k and depth less than or equal to r, and (ζ(2)) the ideal generated by ζ(2)

in the MZV algebra Z =
⊕

k≥0Zk, where Z0 = Q and Zk = Z(k−1)
k . We denote by

Zk,r the quotient vector space Z(r)
k

/(
Z(r−1)

k +Z(r)
k ∩ (ζ(2))

)
and ζD(k) the equivalence

class of the MZV ζ(k) of weight k and depth r in Zk,r. When all ki are odd (≥ 3),

we call ζD(k1, . . . , kr) the totally odd MZV. The Q-vector subspace of Zk,r spanned

by all totally odd MZVs of weight k and depth r is denoted by

Zodd
k,r =

⟨
ζD(k1, . . . , kr) ∈ Zk,r | ki ≥ 3 : odd

⟩
Q.

Conjecture 1.1. ([3, Conjecture 5]) The generating function of the dimension of the
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space Zodd
k,r is given by

1 +
∑

k>r>0

dimQZodd
k,r x

kyr
?
=

1

1−O(x)y + S(x)y2
,

where O(x) = x3

1−x2 = x3+x5+x7+ · · · , and S(x) = x12

(1−x4)(1−x6)
= x12+x16+x18+ · · · .

We note that the coefficient of xk in S(x) coincides with the dimension of the space of

cusp forms of weight k on Γ1, and the coefficient of xk in O(x)r gives a trivial upper

bound of the dimension of the space Zodd
k,r , i.e. |Sk,r|. The power series expansion of

the above (1−O(x)y + S(x)y2)−1 at y = 0 is given by

1

1−O(x)y + S(x)y2
=1 +O(x)y +

(
O(x)2 − S(x)

)
y2 +

(
O(x)3 − 2O(x)S(x)

)
y3

+
(
O(x)4 − 3O(x)2S(x) + S(x)2

)
y4 + · · · .

(1.1)

Hence, Conjecture 1.1 suggests that there are Q-linear relations among totally odd

MZVs related to cusp forms. For this conjecture, we have inequalities∑
k>0

dimQZodd
k,2 x

k ≤ O(x)2 − S(x) and
∑
k>0

dimQZodd
k,3 x

k ≤ O(x)3 − 2O(x)S(x),

which follow from results obtained by Goncharov [7, Theorems 2.4 and 2.5]. (Further-

more, we can find explicit relations when r = 2, which is a result of Gangl-Kaneko-

Zagier [6].) Here the notation
∑

k>0 akx
k ≤

∑
k>0 bkx

k means ak ≤ bk for all k > 0.

The second main result of this paper is that the dimension of the space Zodd
k,4 does

not exceed the coefficient of xky4 in the power series expansion of the right-hand side

of (1.1).

Theorem 1.2. We have∑
k>0

dimZodd
k,4 x

k ≤ O(x)4 − 3O(x)2S(x) + S(x)2.

The third main results of this paper (described in Section 4) are concerned with

the double Eisenstein series for Γ0(2). These studies are originated in the previous

work of Gangl, Kaneko and Zagier [6]. We will start with showing the double shuffle

relation, which is satisfied by the double zeta values of level 2 (Euler sums), for the

double Eisenstein series on Γ0(2) (Theorem 4.2 and 4.13), and investigating the formal

2



double shuffle space of level 2 (Theorem 4.3). These results have applications in not

only double zeta values of level 2 but also modular forms on Γ0(2): for example, for

even k ≥ 4, we will prove that

dim
⟨ ∑

m>n>0
m,n:odd

1

m2rnk−2r
∈ R

∣∣∣ 1 ≤ r ≤ k/2− 1
⟩
Q
≤ k/2− 1− dimSk(2)

(Corollary 4.7), and any modular form of weight k on Γ0(2) can be written as a

linear combination of the Eisenstein series on Γ0(2) and its product (Theorem 4.8).

Furthermore, we will show that the 8s power of the standard theta function θ(q) =∑
n∈Z q

n2
can be expressed uniquely as the sum of two products of the Eisenstein

series on Γ0(2) for the cusp∞ (Theorem 4.10), as conjectured by Chan and Chua [5].

The contents of this paper are as follows. In Section 2, we introduce the results

concerning the integer ε(s1,...,srk1,...,kr
), which are used in Section 3 to prove Theorem 1.2.

Section 4 is devoted to the study of the double Eisenstein series for Γ0(2). In the final

section, we develop a connection between the integer ε(s1,...,srk1,...,kr
) and period polynomials

for Γ0(2), and give some observations on the “almost totally odd” MZVs.

2 Main results

Throughout the paper, the integer ε(s1,...,srk1,...,kr
) defined by the formula

ε(s1,...,srk1,...,kr
) = δ(s1,...,sr),(k1,...,kr) +

r−1∑
i=1

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1
(2.1)

plays an important role. Here, we define the Kronecker delta δ(s1,...,sr),(k1,...,kr) by

δ(s1,...,sr),(k1,...,kr) =

1 if si = ki for all i ∈ {1, . . . , r}

0 otherwise
,

and the integer Cs
k,k′ for s, k, k

′ ≥ 1 by

Cs
k,k′ = (−1)k

(
s− 1

k − 1

)
+ (−1)k′−s

(
s− 1

k′ − 1

)
.
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(Note (s1, . . . , ŝi, . . . , sr) = (s1, . . . , si−1, si+1, . . . , sr).) The integer ε(s1,...,srk1,...,kr
) appears

in connection with period polynomials, linear relations among totally odd MZVs, and

the Fourier coefficients of multiple Eisenstein series. Our goal of this section is to

describe these connections.

2.1 Connection with restricted even period polynomials

Let Sk,r be the set of totally odd indices of weight k and depth r:

Sk,r = {(k1, . . . , kr) ∈ Z>0 | k1 + · · ·+ kr = k, ki ≥ 3 : odd}.

Consider the |Sk,r| × |Sk,r| matrix

Ek,r =
(
ε(s1,...,srk1,...,kr

)

)
(s1,...,sr)∈Sk,r

(k1,...,kr)∈Sk,r

whose rows and columns are indexed by (s1, . . . , sr) and (k1, . . . , kr) in the set Sk,r

respectively. Baumard and Schneps [4] showed that there is a one to one correspon-

dence between the space of restricted even period polynomials and the left kernel of

the matrix Ek,2. For r ≥ 3, we see below that there is an injective map from a certain

vector space closely related to restricted even period polynomials to the left kernel of

Ek,r.

We begin with reviewing and reproving the result obtained by Baumard and

Schneps. Let Vk = ⟨xs1−1
1 xs2−1

2 | (s1, s2) ∈ Sk,2⟩Q and

W−,0
k =

{
p(x1, x2) ∈ Vk | p(x1, x2) = p(x2 − x1, x2)− p(x2 − x1, x1)

}
.

This space is called the space of restricted even period polynomials. We only use the

fact, known as the Eichler-Shimura-Manin correspondence, that W−,0
k ⊗QC ∼= Sk(Γ1),

and hence

dimW−,0
k = dimSk(Γ1) (2.2)

(see [6, 10, 11] for the detail). Here, the space Sk(Γ1) is the C-vector space of cusp

forms of weight k on Γ1. Baumard and Schneps showed the following:

Proposition 2.1. ([4, Proposition 3.2]) Let (as1,s2)(s1,s2)∈Sk,2
be a row vector with

rational coefficients. Then the following assertions are equivalent.
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(i) The vector (as1,s2)(s1,s2)∈Sk,2
is a left annihilator of the matrix Ek,2.

(ii) The polynomial
∑

(s1,s2)∈Sk,2
as1,s2x

s1−1
1 xs2−1

2 is an element of the space W−,0
k .

Proof. For a polynomial p(x1, x2) =
∑

(s1,s2)∈Sk,2
as1,s2x

s1−1
1 xs2−1

2 satisfying p(x, x) = 0,

one can compute

p(x1, x2)− p(x2 − x1, x2) + p(x2 − x1, x1)

=
∑

k1+k2=k
k1,k2≥2

( ∑
(s1,s2)∈Sk,2

as1,s2ε(s1,s2k1,k2
)

)
xk1−1
1 xk2−1

2

=
∑

(k1,k2)∈Sk,2

( ∑
(s1,s2)∈Sk,2

as1,s2ε(s1,s2k1,k2
)

)
xk1−1
1 xk2−1

2 (2.3)

+
1

2

(
p(x2 − x1, x1)− p(x2 − x1, x2)− p(x2 + x1, x1) + p(x2 + x1, x2)

)
. (2.4)

Assuming (ii), from p(x1, x2) = p(x2 + x1, x2)− p(x2 + x1, x1), we have (2.4)= 0, and

then (2.3)= 0. This gives the assertion (i). To prove (i)⇒(ii), we use the action of the

group PGL2(Z) on Vk defined by (f
∣∣γ)(x1, x2) = f(ax1+ bx2, cx1+ dx2) for γ = ( a b

c d )

and f ∈ Vk. Set

δ =

(
−1 0

0 1

)
, ε =

(
0 1

1 0

)
, T =

(
1 1

0 1

)
.

For the left annihilator (as1,s2)(s1,s2)∈Sk,2
of Ek,2, putting p(x1, x2) =

∑
(s1,s2)∈Sk,2

as1,s2x
s1−1
1 xs2−1

2 ,

one easily finds that p
∣∣(ε+ 1) = 0 and p

∣∣(δ− 1) = 0, where we have extended the ac-

tion of PGL2(Z) to its group ring by linearity. Using Tδ = δT−1 and Tεδ = εTεT−1,

we have p
∣∣(1 − T + Tε)δ = p

∣∣(1 − T−1 + εTεT−1) = −p
∣∣(1 − T + Tε)T−1. Let

G = p
∣∣(1− T + Tε). Then we find that G(0, x2) = 0 and

0 = 2× (2.3) = 2× (p(x1, x2)− p(x2 − x1, x2) + p(x2 − x1, x1))− 2× (2.4)

= G
∣∣(1 + δ) = G

∣∣(1− T−1),

which implies G = 0. The assertion follows from

0 =G(x1, x2) = p(x1, x2)− p(x2 + x1, x2) + p(x2 + x1, x1)

=p(x1, x2)− p(x2 − x1, x2) + p(x2 − x1, x1).
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Corollary 2.2. Let us denote by ker Ek,2 the Q-vector space spanned by all left anni-

hilators of the matrix Ek,2. Then, for each integer k, we have

dimker Ek,2 = dimSk(Γ1), (2.5)

or equivalently, rank Ek,2 = |Sk,2| − dimSk(Γ1).

Proof. This follows immediately from (2.2) and Proposition 2.1.

We now turn to the result in the case of depth greater than 2. Let Vk,r be the |Sk,r|-
dimensional vector space overQ spanned by the set of row vectors (as1,...,sr)(s1,...,sr)∈Sk,r

:

Vk,r = {(. . . , as1,...,sr , . . .)(s1,...,sr)∈Sk,r
| as1,...,sr ∈ Q}.

Hereafter, we identify the matrix A ∈ M|Sk,r|(Z) with its induced linear map A :

Vk,r → Vk,r, v 7→ A(v) := v · A, and denote by kerA the Q-vector subspace of Vk,r
spanned by all left annihilators of the matrix A. For i ∈ {1, . . . , r − 1}, let us denote
by ε

(i)

(s1,...,srk1,...,kr
)
the i-th part of ε(s1,...,srk1,...,kr

) in (2.1) and E
(i)
k,r the |Sk,r| × |Sk,r| matrix whose

entries are the integers ε
(i)

(s1,...,srk1,...,kr
)
, so that

ε
(i)

(s1,...,srk1,...,kr
)
= δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)

Cs1
ki,ki+1

, E
(i)
k,r =

(
ε
(i)

(s1,...,srk1,...,kr
)

)
(s1,...,sr)∈Sk,r

(k1,...,kr)∈Sk,r

.

Denote by Wk,r the Q-vector subspace of Vk,r spanned by all left annihilators of the

matrix I + E
(1)
k,r:

Wk,r = ker
(
I + E

(1)
k,r

)
,

where I is the identity matrix
(
δ(s1,...,sr),(k1,...,kr)

)
in M|Sk,r|(Z). For (k1, . . . , kr) ∈ Sk,r,

the (k1, . . . , kr)-th entry of the vector (as1,...,sr)(s1,...,sr)∈Sk,r
·
(
I + E

(1)
k,r

)
is given by∑

(s1,...,sr)∈Sk,r

as1,...,sr
(
δ(s1,...,sr),(k1,...,kr) + δ(s3,...,sr),(k3,...,kr)C

s1
k1,k2

)
=

∑
(s1,...,sr)∈Sk,r

as1,...,srε(s1,s2k1,k2
)δ(s3,...,sr),(k3,...,kr) =

∑
(s1,s2)∈Sk−p,2

as1,s2,k3,...,krε(s1,s2k1,k2
),

where p = k3 + · · · + kr. Hence, we find that the space Wk,r splits as the direct sum
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in the form

Wk,r =
⊕

0<p<k
(k3,...,kr)∈Sp,r−2

⟨(
as1,s2δ(k3,...,kr),(s3,...,sr)

)
(s1,...,sr)∈Sk,r

∣∣∣ (as1,s2)(s1,s2)∈Sk−p,2
∈ Wk−p,2

⟩
Q
.

(2.6)

We also find Wk,2 = ker Ek,2, which gives dimWk,2 = dimSk(Γ1) (Corollary 2.2).

Thus, by (2.6), one can obtain the dimension of the space Wk,r as follows:∑
k>0

dimWk,rx
k = O(x)r−2S(x). (2.7)

Here recall that O(x)r =
∑

k>0 |Sk,r|xk and S(x) =
∑

k>0 dimSk(Γ1)x
k. We now prove

that there is an injective linear map from Wk,r to ker Ek,r.

Theorem 2.3. Let r be a positive integer greater than 2 and Fk,r the matrix E
(1)
k,r +

· · · + E
(r−1)
k,r (= Ek,r − I). Then, for any v ∈ Wk,r, we have (v · Fk,r) · Ek,r = 0.

Furthermore, the map Fk,r is an injective map from Wk,r to ker Ek,r, which from (2.7)

entails ∑
k>0

dimker Ek,rxk ≥ O(x)r−2S(x). (2.8)

Proof. Consider the action E
(i)
r on Vk,r := ⟨xs1−1

1 · · · xsr−1
r | (s1, . . . , sr) ∈ Sk,r⟩Q de-

fined by

f(x1, . . . , kr)
∣∣E(i)

r = f(xi+1 − xi, x1, . . . , x̂i+1, . . . , xr)− f(xi+1 − xi, x1, . . . , x̂i, . . . , xr)

for f(x1, . . . , xr) ∈ Vk,r. For each v = (as1,...,sr)(s1,...,sr)∈Sk,r
∈ Wk,r, writing p(x1, . . . , xr) =∑

(s1,...,sr)∈Sk,r
as1,...,srx

s1−1
1 · · · xsr−1

r , we have

p(x1, . . . , xr)− p(x2 − x1, x2, x3, . . . , xr) + p(x2 − x1, x1, x3, . . . , xr)

=
∑

(s1,...,sr)∈Sk,r

as1,...,sr
∑

k1+···+kr=k

(
ε(s1,s2k1,k2

)δ(s3,...,sr),(k3,...,kr)
)
xk1−1
1 · · · xkr−1

r

=0,

(2.9)

because of Proposition 2.1. We now prove

p(x1, . . . , xr)
∣∣(E(j)

r E(i)
r + E(i)

r E(j−1)
r ) = 0 (r − 1 ≥ i ≥ j ≥ 2). (2.10)
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For r − 1 ≥ i > j ≥ 2 we can check

p(x1, . . . , xr)
∣∣(E(j)

r E(i)
r + E(i)

r E(j−1)
r )

= p(xj − xj−1, xi+1 − xi, x1, . . . , x̂j, . . . , x̂i+1, . . . , xr)

− p(xj − xj−1, xi+1 − xi, x1, . . . , x̂j−1, . . . , x̂i+1, . . . , xr)

− p(xj − xj−1, xi+1 − xi, x1, . . . , x̂j, . . . , x̂i, . . . , xr)

+ p(xj − xj−1, xi+1 − xi, x1, . . . , x̂j−1, . . . , x̂i, . . . , xr)

+ p(xi+1 − xi, xj − xj−1, x1, . . . , x̂j, . . . , x̂i+1, . . . , xr)

− p(xi+1 − xi, xj − xj−1, x1, . . . , x̂j, . . . , x̂i, . . . , xr)

− p(xi+1 − xi, xj − xj−1, x1, . . . , x̂j−1, . . . , x̂i+1, . . . , xr)

+ p(xi+1 − xi, xj − xj−1, x1, . . . , x̂j−1, . . . , x̂i, . . . , xr)

= 0

by using p(x1, x2, x3, . . . , xr) + p(x2, x1, x3, . . . , xr) = 0, and for r − 1 ≥ i = j ≥ 2 we

have

p(x1, . . . , xr)
∣∣(E(j)

r E(j)
r + E(j)

r E(j−1)
r )

= p(xj − xj−1, xj+1 − xj, x1, . . . , x̂j, x̂j+1, . . . , xr)

− p(xj − xj−1, xj+1 − xj, x1, . . . , x̂j−1, xj, x̂j+1, . . . , xr)

− p(xj − xj−1, xj+1 − xj, x1, . . . , x̂j, x̂j+1, . . . , xr)

+ p(xj − xj−1, xj+1 − xj, x1, . . . , x̂j−1, x̂j, . . . , xr)

+ p(xj+1 − xj−1, xj − xj−1, x1, . . . , x̂j, x̂j+1, . . . , xr)

− p(xj+1 − xj−1, xj − xj−1, x1, . . . , x̂j−1, x̂j, . . . , xr)

− p(xj+1 − xj, xj − xj−1, x1, . . . , x̂j−1, xj, x̂j+1, . . . , xr)

+ p(xj+1 − xj, xj − xj−1, x1, . . . , x̂j−1, x̂j, . . . , xr)

= 0,

where for the last equality we have used (2.9). A direct computation shows that, for

any (k1, . . . , kr) ∈ Sk,r, the (k1, . . . , kr)-th entry of the vector (as1,...,sr)(s1,...,sr)∈Sk,r
·
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E
(j)
k,r · E

(i)
k,r ∈ Vk,r is given by the coefficient of xk1−1

1 · · · xkr−1
r in∑

(s1,...,sr)∈Sk,r

as1,...,srx
s1−1
1 · · · xsr−1

r

∣∣E(j)
r

∣∣E(i)
r

=
∑

k1+···+kr=k

 ∑
(s1,...,sr)∈Sk,r

as1,...,sr
∑

t1+···+tr=k

ε
(j)

(s1,...,srt1,...,tr
)
ε
(i)

( t1,...,tr
k1,...,kr

)

xk1−1 · · · xkr−1
r ,

because, by the definition of ε
(i)

(s1,...,srk1,...,kr
)
, the product ε

(j)

(s1,...,srt1,...,tr
)
ε
(i)

( t1,...,tr
k1,...,kr

)
is 0 if (t1, . . . , tr) ̸∈

Sk,r. Combining this with (2.10), we obtain

v · (E(j)
k,rE

(i)
k,r + E

(i)
k,rE

(j−1)
k,r ) = 0 (r − 1 ≥ i ≥ j ≥ 2).

Then the first statement follows from

(v · Fk,r) · Ek,r =v · (E(1)
k,r + · · ·+ E

(r−1)
k,r ) · (I + E

(1)
k,r + · · ·+ E

(r−1)
k,r )

=v · (E(2)
k,r + · · ·+ E

(r−1)
k,r ) · (E(1)

k,r + · · ·+ E
(r−1)
k,r )

=v ·
∑

r−1≥i≥j≥2

(E
(j)
k,rE

(i)
k,r + E

(i)
k,rE

(j−1)
k,r )

=0.

For the injectivity of the map Fk,r, it suffices to check that

Wk,r ∩ kerFk,r = 0.

Assume that v = (as1,...,sr)(s1,...,sr)∈Sk,r
is an element of Wk,r ∩ kerFk,r. For each

(k1, . . . , kr) ∈ Sk,r, the relation Fk,r(v) = 0 gives

∑
(s1,...,sr)∈Sk,r

( r−1∑
i=1

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1

)
as1,...,sr = 0.

With this and the relation (I + E
(1)
k,r)(v) = 0, we have

∑
(s1,...,sr)∈Sk,r

(
− δ(s1,...,sr),(k1,...,kr) +

r−1∑
i=2

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1

)
as1,...,sr = 0.

(2.11)
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Furthermore, by (2.6), for any fixed index (s3, . . . , sr) ∈ Sp,r−2 (p = s3 + · · ·+ sr), we

see that the relation (2.11) can be computed as follows:

0 =
∑

(s1,s2)∈Sk−p,2

(
δ(s1,...,sr),(k1,...,kr) −

r−1∑
i=2

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1

)
as1,...,sr

=δ(s3,...,sr),(k3,...,kr)ak1,k2,k3,...,kr

−
∑

(s1,s2)∈Sk−p,2

r−1∑
i=2

δ(ŝ1,...,ŝi+1,...,sr),(k1,...,k̂i,k̂i+1,...,kr)
Cs1

ki,ki+1
as1,...,sr .

Denote by α(k1, . . . , kr; s3, . . . , sr) the right-hand side of the above equation and

bij{2, . . . , r} the set of all bijections on the set {2, . . . , r}. Consider

f(s3, . . . , sr) :=
∑

σ∈bij{2,...,r}

α(k1, kσ(2), kσ(3), . . . , kσ(r); s3, . . . , sr)

=
∑

σ∈bij{2,...,r}

δ(s3,...,sr),(kσ(3),...,kσ(r))ak1,kσ(2),...,kσ(r)

−
∑

(s1,s2)∈Sk−p,2

r−1∑
i=2

∑
σ∈bij{2,...,r}

as1,...,sr

(
δ(ŝ1,...,ŝi+1,...,sr),(k1,kσ(2),...,k̂σ(i),k̂σ(i+1),...,kσ(r))

Cs1
kσ(i),kσ(i+1)

)
.

Note that for each σ ∈ bij{2, . . . , r} there exists a unique τ ∈ bij{2, . . . , r} such that

σ(j) = τ(j) if j ∈ {2, . . . , i− 1, i+ 2, . . . , r} and σ(i) = τ(i+ 1), σ(i+ 1) = τ(i). For

the above σ and τ , we have

as1,...,sr

(
δ(ŝ1,...,ŝi+1,...,sr),(k1,kσ(2),...,k̂σ(i),k̂σ(i+1),...,kσ(r))

Cs1
kσ(i),kσ(i+1)

+ δ(ŝ1,...,ŝi+1,...,sr),(k1,kτ(2),...,k̂τ(i),k̂τ(i+1),...,kτ(r))
Cs1

kτ(i),kτ(i+1)

)
= 0,

and hence for each i ∈ {2, . . . , r − 1}, we have∑
σ∈bij{2,...,r}

as1,...,sr

(
δ(ŝ1,...,ŝi+1,...,sr),(k1,kσ(2),...,k̂σ(i),k̂σ(i+1),...,kσ(r))

Cs1
kσ(i),kσ(i+1)

)
= 0.

We therefore have

f(s3, . . . , sr) =
∑

σ∈bij{2,...,r}

δ(s3,...,sr),(kσ(3),...,kσ(r))ak1,kσ(2),...,kσ(r)
.
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Letting si = ki for all i ∈ {3, . . . , r}, we obtain

0 = f(k3, . . . , kr)

=
∑

σ∈bij{2,...,r}

δ(k3,...,kr),(kσ(3),...,kσ(r))ak1,kσ(2),...,kσ(r)

=
( ∑
σ∈bij{2,...,r}

δ(k3,...,kr),(kσ(3),...,kσ(r))

)
ak1,...,kr ,

which gives ak1,...,kr = 0 for all (k1, . . . , kr) ∈ Sk,r. This completes the proof of Theo-

rem 2.3.

Remark. Conjecturally, the dimension of ker Ek,r coincides with the coefficient of xk

in O(x)r−2S(x). Therefore, from (2.7) we may expect that Fk,r gives a bijection from

Wk,r to ker Ek,r. We have a computational evidence up to k = 35 for this expectation.

2.2 Connection with linear relations among totally odd MZVs

The connection between the integer ε(s1,...,srk1,...,kr
) and linear relations among totally odd

MZVs can be stated as follows:

Proposition 2.4. For any right annihilator (ak1,...,kr)(k1,...,kr)∈Sk,r
of the matrix Ek,r,

we have ∑
(k1,...,kr)∈Sk,r

ak1,...,krζD(k1, . . . , kr) = 0.

In the case of r = 2, Proposition 2.4 was first proved by Gangl, Kaneko and

Zagier [6] by using double shuffle relations. Before we prove this, we illustrate a few

examples of the relations. For r = 2, the matrix

E12,2 =


0 0 0 1

−6 0 1 6

−15 −14 15 15

−27 −42 42 28


is annihilated by the vector t(14, 75, 84, 0). This gives the relation

14ζD(3, 9) + 75ζD(5, 7) + 84ζD(7, 5) = 0.
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In the case of r = 3, the first example of relations is obtained from the matrix

E15,3 =



0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−6 −6 1 6 6 0 0 0 0 0

0 0 −6 0 −6 1 6 6 0 0

0 0 0 −6 0 0 0 −5 6 6

−15 −14 0 15 0 0 0 15 0 0

0 0 0 −15 −14 0 0 0 15 15

−27 −42 42 0 0 0 −42 0 42 28



.

This has the right annihilator t(−14, 15, 6, 0, 0, 36, 0, 0, 0, 0), which gives

−14ζD(3, 3, 9) + 15ζD(3, 5, 7) + 6ζD(3, 7, 5) + 36ζD(5, 5, 5) = 0.

We also give an example for r = 4: computing the right annihilator of the matrix

E18,4, we obtain

70ζD(3, 3, 3, 9)− 75ζD(3, 3, 5, 7)− 30ζD(3, 3, 7, 5) + 36ζD(3, 5, 5, 5) = 0.

For the proof of Proposition 2.4, we use a result obtained by Brown [3, Section 10].

Set the |Sk,r| × |Sk,r| matrix

E (r)k,q =

(
δ(s1,...,sr−q),(k1,...,kr−q) · ε(sr−q+1,...,sr

kr−q+1,...,kr
)

)
(s1,...,sr)∈Sk,r

(k1,...,kr)∈Sk,r

(2 ≤ q ≤ r − 1) (2.12)

and define

Ck,r = E (r)k,2 · E
(r)
k,3 · · · E

(r)
k,r−1 · Ek,r. (2.13)

(Note that Ck,2 = Ek,2.)

Proposition 2.5. (Brown [3, Section 10]) For any right annihilator (ak1,...,kr)(k1,...,kr)∈Sk,r

of the matrix Ck,r, we have ∑
(k1,...,kr)∈Sk,r

ak1,...,krζD(k1, . . . , kr) = 0.
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Proposition 2.4 follows immediately from this and (2.13). We note that, in Brown’s

original assertion (see [3, Section 10]), he uses an integer c(s1,...,srk1,...,kr
) obtained by the

“Ihara action” for the definition of the matrix Ck,r. Hence we have to check that the in-

teger c(s1,...,srk1,...,kr
) corresponds to the ((s1, . . . , sr), (k1, . . . , kr))-th entry of our matrix Ck,r

for all (s1, . . . , sr), (k1, . . . , kr) ∈ Sk,r. Denote by ◦ : Q[x1, . . . , xr]⊗Q Q[x1, . . . , xs]→
Q[x1, . . . , xr+s] the Ihara action computed explicitly by Brown [3, Section 6]. We use

the explicit formula

f(x1) ◦ g(x1, . . . , xr−1) = f(x1)g(x2, . . . , xr)

+
r−1∑
i=1

(
f(xi+1 − xi)g(x1, . . . , x̂i+1, . . . , xr)− (−1)degff(xi − xi+1)g(x1, . . . , x̂i, . . . , xr)

)
to define the integer c(s1,...,srk1,...,kr

) as the coefficient of xk1−1
1 · · · xkr−1

r in

xs1−1
1 ◦ (· · · xsr−2−1

1 ◦ (xsr−1−1
1 ◦xsr−1

1 ) · · · ) =
∑

k1+···+kr=s1+···+sr
k1,...,kr≥1

c(s1,...,srk1,...,kr
)x

k1−1
1 · · · xkr−1

r .

(2.14)

Then our task is to prove (
c(s1,...,srk1,...,kr

)

)
(s1,...,sr)∈Sk,r

(k1,...,kr)∈Sk,r

= Ck,r. (2.15)

Note that, for integers si, ki ≥ 1, it is easily seen that the integer ε(s1,...,srk1,...,kr
) in (2.1) is

equal to the coefficient of xk1−1
1 · · · xkr−1

r in xs1−1
1 ◦ (xs2−1

1 · · · xsr−1
r−1 ):

xs1−1
1 ◦ (xs2−1

1 · · · xsr−1
r−1 ) =

∑
k1+···+kr=s1+···+sr

k1,...,kr≥1

ε(s1,...,srk1,...,kr
)x

k1−1
1 · · · xkr−1

r . (2.16)

The equality (2.15) is verified by induction on r. From the definition of c(s1,...,srk1,...,kr
) in

(2.14), the equality (2.15) comes from (2.16) when r = 2. Let

f(x1, . . . , xr−1) = xs2−1
1 ◦ (· · · (xsr−1−1

r−2 ◦xsr−1
r−1 ) · · · )

=
∑

k2+···+kr=s2+···+sr
k2,...,kr≥1

c(s2,...,srk2,...,kr
)x

k2−1
1 · · · xkr−1

r−1 .
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With (2.16), one computes

xs1−1
1 ◦ f(x1, . . . , xr−1) =

∑
t2+···+tr=s2+···+sr

c(s2,...,srt2,...,tr
)x

s1−1
1 ◦ (xt2−1

1 · · · xtr−1
r−1 )

=
∑

t1+···+tr=k

δs1,t1c(s2,...,srt2,...,tr
)x

t1−1
1 ◦ (xt2−1

1 · · · xtr−1
r−1 )

=
∑

t1+···+tr=k

δs1,t1c(s2,...,srt2,...,tr
)

∑
k1+···+kr=k

ε( t1,...,tr
k1,...,kr

)x
k1−1
1 · · · xkr−1

r

=
∑

k1+···+kr=k

( ∑
t1+···+tr=k

δs1,t1c(s2,...,srt2,...,tr
)ε( t1,...,tr

k1,...,kr
)
)
xk1−1
1 · · · xkr−1

r ,

where k = s1+· · ·+sr. Then, since x
s1−1
1 ◦ f(x1, . . . , xr−1) =

∑
c(s1,...,srk1,...,kr

)x
k1−1
1 · · · xkr−1

r

and, for (s1, . . . , sr), (k1, . . . , kr) ∈ Sk,r, δs1,t1c(s2,...,srt2,...,tr
)ε( t1,...,tr

k1,...,kr
) = 0 if (t1, . . . , tr) ̸∈ Sk,r,

we obtain

c(s1,...,srk1,...,kr
) =

∑
(t1,...,tr)∈Sk,r

δs1,t1c(s2,...,srt2,...,tr
)ε( t1,...,tr

k1,...,kr
).

Combining this and the induction hypothesis(
c(s2,...,srk2,...,kr

)

)
(s2,...,sr)∈Sk,r−1

(k2,...,kr)∈Sk,r−1

=

(
δ(s2,...,sr−2),(k2,...,kr−2)ε(sr−1,sr

kr−1,kr
)

)
(s2,...,sr)∈Sk,r−1

(k2,...,kr)∈Sk,r−1

×
(
δ(s2,...,sr−3),(k2,...,kr−3)ε(sr−2,sr−1,sr

kr−2,kr−1,kr
)

)
(s2,...,sr)∈Sk,r−1

(k2,...,kr)∈Sk,r−1

· · ·
(
ε(s2,...,srk2,...,kr

)

)
(s2,...,sr)∈Sk,r−1

(k2,...,kr)∈Sk,r−1

,

we obtain the equality (2.15).

Before going to next, we introduce a conjecture on the rank of Ck,r. This was given
by Brown [3]: the rank of Ck,r is equal to the coefficient of xkyr in the power series

expansion of (1.1), i.e.

1 +
∑

k>r>0

rank Ck,rxkyr
?
=

1

1−O(x)y + S(x)y2
. (2.17)

This is called the ‘uneven’ part of motivic Broadhurst-Kreimer conjecture, and sug-

gests that all linear relations among totally odd MZVs of weight k and depth r arise

from the right kernel of the matrix Ck,r. In Section 3, we will show that the rank

of Ck,4 does not exceed the coefficient of xky4 in the power series expansion of the
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right-hand side of (2.17). Theorem 1.2 then follows from

dimZodd
k,r ≤ rank Ck,r. (2.18)

2.3 Connection with multiple Eisenstein series

The multiple Eisenstein series was first considered by Gangl, Kaneko and Zagier [6,

Section 7]. There is an interesting correspondence, observed by Masanobu Kaneko,

Stephanie Belcher and others, between the Fourier coefficient of the multiple Eisen-

stein series and the coefficient obtained from the expansion of the Ihara coaction

acting on the motivic MZVs. In this subsection, we present a direct relation.

Throughout this paper, we assume that τ is an element on the upper half-plane.

Definition 2.6. For k = (k1, . . . , kr) ∈ Zr
≥2 with kr ≥ 3, we define the multiple

Eisenstein series Gk(τ) by

Gk(τ) = Gk1,...,kr(τ) =
1

(2π
√
−1)wt(k)

∑
0<λ1<···<λr
λi∈Zτ+Z

1

λk1
1 · · ·λkr

r

.

Here the positivity mτ +n > 0 of a lattice point means either m > 0 or m = 0, n > 0,

and mτ + n > m′τ + n′ means (m−m′)τ + (n− n′) > 0.

Since the multiple Eisenstein series Gk(τ) satisfies Gk(τ + 1) = Gk(τ), it has the

Fourier expansion. A formula of this was given by Henrik Bachman in his master

thesis [2].

Proposition 2.7. (Bachmann [2]) For k = (k1, . . . , kr) ∈ Zr
≥2 with kr ≥ 3 and

k = wt(k), the Fourier expansion of Gk(τ) can be written in the form

Gk1,...,kr(τ) = ζ̃(k1, . . . , kr) +
∑

s1+s2=k

ξ(r−1)
s1

gs2(τ) +
∑

s1+s2+s3=k

ξ(r−2)
s1

gs2,s3(τ)

+
∑

s1+···+s4=k

ξ(r−3)
s1

gs2,s3,s4(τ) + · · ·+
∑

s1+···+sr−1=k

ξ(2)s1
gs2,...,sr−1(τ)

+
∑

s1+···+sr=k

ξ(1)s1
gs2,...,sr(τ) + gk1,...,kr(τ)
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with some ξ
(d)
s1 ∈

⟨
ζ̃(k) = ζ(k)/

(
2π
√
−1
)wt(k) ∣∣ ζ(k) ∈ Z(d)

s1

⟩
Q, where

gk1,...,kr(τ) =
∑

0<u1<···<ur
v1,...,vr∈Z>0

vk1−1
1 · · · vkr−1

r

(k1 − 1)! · · · (kr − 1)!
qu1v1+···+urvr

(
q = e2π

√
−1τ
)
.

We now show a direct relation between the integer ε(s1,...,srk1,...,kr
) and the Fourier ex-

pansion of the multiple Eisenstein series. Calculating the coefficient of ζ̃(s1)gs2,...,sr(τ)

in the above Fourier expansion of the multiple Eisenstein series, we can obtain the

integer ε(s1,...,srk1,...,kr
) again.

Theorem 2.8. For integers kr ≥ 3 and ki ≥ 2 (1 ≤ i ≤ r − 1), we have

ξ(1)s1
= ε(s1,...,srk1,...,kr

)ζ̃(s1).

Proof. The sum of the defining series Gk1,...,kr(τ) can be divided into∑
0<m1τ+n1<...<mrτ+nr

=
∑

0=m1=···=mr
0<n1<···<nr

+
∑

0<m1=···=mr
n1<···<nr

+
∑

0=m1<m2=···=mr
n1>0,n2<···<nr

+ · · ·+
∑

0=m1=···mr−1<mr

0<n1<···<nr−1,nr∈Z

+ · · ·

+
∑

0<m1<···<mr−1=mr

n1,...,nr−2∈Z,nr−1<nr

+ · · ·+
∑

0<m1<···<mr−2=mr−1<mr

n1,...,nr−3,nr∈Z,nr−2<nr−1

+
∑

0=m1<···<mr
n1>0,n2...,nr∈Z

+
∑

0<m1<···<mr
n1,...,nr∈Z

.

Set

Ψk1,...,kr(τ) =
1

(2π
√
−1)k1+···+kr

∑
n1<···<nr

1

(τ + n1)k1 · · · (τ + nr)kr
.
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Then, the forth line in the above decomposition can be computed as∑
0<m1<···<mr−1=mr

Ψk1(m1τ) · · ·Ψkr−2(mr−2τ)Ψkr−1,kr(mrτ) + · · ·

+
∑

0=m1=m2<···<mr

Ψk1,k2(m1τ)Ψk3(m3τ) · · ·Ψkr(mrτ) + ζ̃(k1)
∑

0<m2<···<mr

Ψk2(m2τ) · · ·Ψkr(mrτ)

=
∑

s1+···+sr=k
s1≥3, s2,...,sr≥1

ε(s1,...,srk1,...,kr
)ζ̃(s1)gs2,...,sr(τ).

Here we used the standard facts that

Ψki,ki+1
(τ) =

∑
s1+si+1=ki+ki+1

s1≥2, si+1≥1

(
(−1)ki

(
s1 − 1

ki − 1

)
+ (−1)s1−ki+1

(
s1 − 1

ki+1 − 1

))
ζ̃(s1)Ψsi+1

(τ)

and

gs1,...,sr(τ) =
∑

0<m1<···<mr

Ψs1(m1τ) · · ·Ψsr(mrτ).

3 Proof of Theorem 1.2

As mentioned in the end of Section 2.2, we compute the rank of Ck,4, or equivalently
dimker Ck,4, to prove Theorem 1.2. Recall

E (4)k,3 =
(
δs1,k1ε(s2,s3,s4

k2,k3,k4
)

)
(s1,...,s4)∈Sk,4

(k1,...,k4)∈Sk,4

, E (4)k,2 =
(
δ(s1,s2),(k1,k2)ε(s3,s4k3,k4

)

)
(s1,...,s4)∈Sk,4

(k1,...,k4)∈Sk,4

.

The matrix Ck,4 is defined by Ck,4 = E (4)k,2 · E
(4)
k,3 · Ek,4.

3.1 Shuffle algebra

Let V be a bigraded vector space over Q spanned by all words in noncommutative

symbols {z2i+1 | i ≥ 1}:

V = Q⟨z3, z5, z7, . . .⟩ = Q⊕
⊕

k>r>0

Vk,r,
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where Vk,r is the Q-vector space spanned by the set {zk1 · · · zkr | (k1, . . . , kr) ∈ Sk,r},
and the empty word is regarded as 1. Then the vector space V becomes a bigraded

commutative algebra over Q with respect to the shuffle product x:

zk1 · · · zkr x zkr+1 · · · zkr+s =
∑

σ∈Sr+s

σ(1)<···<σ(r)
σ(r+1)<···<σ(r+s)

zkσ−1(1)
· · · zkσ−1(r+s)

. (3.1)

The important fact is that the algebra V is isomorphic to the polynomial algebra in

the Lyndon words (see [12]). Therefore, for example, we see that the set of monomials

in the Lyndon words {zk1zk2 , zs1 x zs2 | (k1, k2), (s1, s2) ∈ Sk,2, k1 < k2, s1 ≤ s2} is a
basis of Vk,2.

Proposition 3.1. For any odd integer p ≥ 3, the set {zp x zk1zk2zk3 | (k1, k2, k3) ∈
Sk,3} is linearly independent over Q.

Proof. For convenience, we put d = dimVk,3 = |Sk,3| and {zk1zk2zk3 | (k1, k2, k3) ∈
Sk,3} = {vi}di=1. Let {v′i}di=1 be the basis of Vk,3 consisting of monomials in the

Lyndon words (with respect to the shuffle product x). Then, we find that the set

{zp x v′i | 1 ≤ i ≤ d} is linearly independent. We write vi =
∑d

j=1 ai,jv
′
j and set the

d× d matrix A = (ai,j). Assuming
∑d

i=1 pi
(
zp x vi

)
= 0 for pi ∈ Q, we have

d∑
j=1

d∑
i=1

piai,j
(
zp x v′j) = 0,

which implies (p1, . . . , pd) ·A = 0. Since the matrix A is invertible, we have pi = 0 for

all i, which completes the proof.

Proposition 3.2. (i) For odd integers k1, k2 ≥ 3 (k1 ̸= k2), we denote by {v1, . . . , vg}
(resp. {w1, . . . , wh}) a basis of Vk1,2 (resp. Vk2,2). Then the set {vi x wj | 1 ≤ i ≤
g, 1 ≤ j ≤ h} is linearly independent over Q.

(ii) For an odd integer k ≥ 3, denote by {v1, . . . , vg} a basis of Vk,2. Then the set

{vi x vj | 1 ≤ i ≤ j ≤ g} is linearly independent over Q.

Proof. For (i), let {v′i}
g
i=1 (resp. {w′

i}hi=1) be the basis of Vk1,2 (resp. Vk2,2) consisting

of monomials in the Lyndon words. We write vi =
∑

ai,jv
′
j (resp. wi =

∑
bi,jw

′
j),

and set the g × g (resp. h × h) matrix A = (ai,j) (resp. B = (bi,j)). Assuming
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∑
pi1,i2(vi1 x wi2) = 0 for pi1,i2 ∈ Q, we compute

0 =
∑

1≤i1≤g
1≤i2≤h

pi1,i2(vi1 x wi2)

=
∑

1≤i1≤g
1≤i2≤h

pi1,i2

( ∑
1≤j1≤g

ai1,j1v
′
j1

)
x
( ∑
1≤j2≤h

bi2,j2w
′
j2

)
=
∑

1≤j1≤g
1≤j2≤h

( ∑
1≤i1≤g
1≤i2≤h

pi1,i2ai1,j1bi2,j2

)
v′j1 x w′

j2
.

Since the set {v′j1 x w′
j2
| 1 ≤ j1 ≤ g, 1 ≤ j2 ≤ h} is linearly independent, for each

j1, j2 (1 ≤ j1 ≤ g, 1 ≤ j2 ≤ h) we obtain∑
1≤i2≤h

q
(j1)
i2

bi2,j2 = 0,

where q
(j1)
i2

=
∑

1≤i1≤g pi1,i2ai1,j1 . This shows that for any j1 (1 ≤ j1 ≤ g), we have

(q
(j1)
1 , . . . , q

(j1)
h ) · B = 0, and hence (q

(j1)
1 , . . . , q

(j1)
h ) = 0, because the matrix B is

invertible. Therefore for each i2, j1 (1 ≤ i2 ≤ h, 1 ≤ j1 ≤ g) we have∑
1≤i1≤g

pi1,i2ai1,j1 = 0,

which implies (p1,i2 , . . . , pg,i2) · A = 0. This gives pi1,i2 = 0 for all i1, i2.

(ii) Similarly, we assume

0 =
∑

1≤i1,i2≤g

pi1,i2(vi x vj)

=
∑

1≤j1,j2≤g

( ∑
1≤i1,i2≤g

pi1,i2ai1,j1ai2,j2

)
v′j1 x v′j2

for pi1,i2 ∈ Q with pi1,i2 = 0 if i1 > i2. Since the set {v′i x v′j | 1 ≤ i1 ≤ i2 ≤ g} is
linearly independent, for any j1, j2 (1 ≤ j1, j2 ≤ g), we find

0 =
∑

1≤i1,i2≤g

pi1,i2ai1,j1ai2,j2 +
∑

1≤i1,i2≤g

pi1,i2ai1,j2ai2,j1

=
∑

1≤i1,i2≤g

(pi1,i2 + pi2,i1)ai1,j1ai2,j2 .
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Putting Pi1,i2 = pi1,i2 + pi2,i1 , we can prove Pi1,i2 = 0 for all i1, i2 (1 ≤ i1, i2 ≤ g) in

much the same way as in the proof of (i). Since

Pi1,i2 =


pi1,i2 i1 < i2

2pi1,i1 i1 = i2

pi2,i1 i1 > i2

,

we have pi1,i2 = 0 for all i1, i2.

Corollary 3.3. Let V1 and V2 be subspaces of Vk1,2 and Vk2,2 respectively. We define

the subspace S(V1, V2) of Vk1+k2,4 by

S(V1, V2) =
⟨
w1 x w2 | w1 ∈ V1, w2 ∈ V2

⟩
Q.

Then, if V1 ∩ V2 = 0, we have

dimS(V1, V2) = dimV1 × dimV2,

and if V1 ⊃ V2, we obtain

dimS(V1, V2) = dimV1 × dimV2 − ♯{(i, j) | 1 ≤ i < j ≤ dimV2}.

Proof. This is a direct consequence of Proposition 3.2.

3.2 Key identities

We start with a discussion of ker tE (r)k,q . By definition (2.12), for q ∈ {2, . . . , r− 1} the
matrix E (r)k,q can be expressed as the direct sum

E (r)k,q =
⊕

1<p<k
(p1,...,pr−q)∈Sp,r−q

Ek−p,q

= diag(E3q,q, . . . , E3q,q︸ ︷︷ ︸
|Sk−3q,r−q |

, E3q+2,q, . . . E3q+2,q︸ ︷︷ ︸
|Sk−3q−2,r−q |

, . . . , Ek−3(r−q),q).
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We therefore have

ker tE (r)k,q =
⊕

1<p<k
(p1,...,pr−q)∈Sp,r−q

⟨ιp1,...,pr−q(v) | v ∈ ker tEk−p,q⟩Q, (3.2)

where the injective linear map ιp1,...,pr−q is defined by

ιp1,...,pr−q : Vk−p,q −→ Vk,r,
(ak1,...,kq)(k1,...,kq)∈Sk−p,q

7−→
(
δ(p1,...,pr−q),(k1,...,kr−q) · akr−q+1,...,kr

)
(k1,...,kr)∈Sk,r

.

The key identities in the proof of Theorem 1.2 are concerning the following two

linear maps: for an odd integer p ≥ 3, set

Θp : Vk−p,3 −→ Vk,4, (3.3)

(ak1,k2,k3)(k1,k2,k3)∈Sk−p,3
7−→

( ∑
σ∈S4

σ(2)<σ(3)<σ(4)

δp,kσ(1)
· akσ(2),kσ(3),kσ(4)

)
(k1,k2,k3,k4)∈Sk,4

,

and, for an even integer p ≥ 6 and (p1, p2) ∈ Sp,2, set

Θp1,p2 : Vk−p,2 −→ Vk,4, (3.4)

(ak1,k2)(k1,k2)∈Sk−p,2
7−→

( ∑
σ∈S4

σ(1)<σ(2)
σ(3)<σ(4)

δ(p1,p2),(kσ(1),kσ(2)) · akσ(3),kσ(4)

)
(k1,k2,k3,k4)∈Sk,4

.

We note that using an isomorphism π : Vk,r → Vk,r given by (as1,...,sr)(s1,...,sr)∈Sk,r
7→∑

(s1,...,sr)∈Sk,r
as1,...,srzs1 · · · zsr , one has π

(
Θp(v)

)
= zp x

∑
(s1,s2,s3)∈Sk,3

as1,s2,s3zs1zs2zs3
for v = (as1,s2,s3)(s1,s2,s3)∈Sk,3

∈ Vk,3, and π
(
Θp1,p2(v)

)
= zp1zp2 x

∑
(s1,s2)∈Sk,2

as1,s2zs1zs2
for v = (as1,s2)(s1,s2)∈Sk,2

∈ Vk,2, because of (3.1). Therefore, by Propositions 3.1 and

3.2, we find that the maps Θp and Θp1,p2 are injective.

Lemma 3.4. (i) For each odd integer p ≥ 3 and v ∈ ker tEk−p,3, we have

tEk,4
(
Θp(v)

)
= ιp(v) ∈ ker tE (4)k,3 . (3.5)

(ii) For each even integer p ≥ 6, (p1, p2) ∈ Sp,2 and v ∈ ker tEk−p,2, we have

tE (4)k,3

(
tEk,4

(
Θp1,p2(v)

))
=

∑
(t1,t2)∈Sp,2

ε( t1,t2
p1,p2

)ιt1,t2(v) ∈ ker tE (4)k,2 . (3.6)
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Proof. These are shown by direct calculations. For (i), let v = (ak1,k2,k3)(k1,k2,k3)∈Sk−p,3
.

For (k1, . . . , k4) ∈ Sk,4 we denote by b
(p)
k1,...,k4

the (k1, . . . , k4)-th entry of the vector

Θp(v), so that b
(p)
k1,...,k4

= δp,k1ak2,k3,k4 + δp,k2ak1,k3,k4 + δp,k3ak1,k2,k4 + δp,k4ak1,k2,k3 . Then

the (s1, . . . , s4)-th entry of the vector tEk,4(Θp(v)) can be computed as follows:

b(p)s1,...,s4
+

∑
(k1,...,k4)∈Sk,4

b
(p)
k1,...,k4

(
δ(s3,s4),(k3,k4)C

s1
k1,k2

+ δ(s2,s4),(k1,k4)C
s1
k2,k3

+ δ(s2,s3),(k1,k2)C
s1
k3,k4

)
= δp,s1as2,s3,s4 + δp,s2as1,s3,s4 + δp,s3as1,s2,s4 + δp,s4as1,s2,s3

+
∑

(k2,k3,k4)∈Sk−p,3

ak2,k3,k4
(
δ(s3,s4),(k3,k4)C

s1
p,k2

+ δ(s2,s4),(p,k4)C
s1
k2,k3

+ δ(s2,s3),(p,k2)C
s1
k3,k4

)
+

∑
(k1,k3,k4)∈Sk−p,3

ak1,k3,k4
(
δ(s3,s4),(k3,k4)C

s1
k1,p

+ δ(s2,s4),(k1,k4)C
s1
p,k3

+ δ(s2,s3),(k1,p)C
s1
k3,k4

)
+

∑
(k1,k2,k4)∈Sk−p,3

ak1,k2,k4
(
δ(s3,s4),(p,k4)C

s1
k1,k2

+ δ(s2,s4),(k1,k4)C
s1
k2,p

+ δ(s2,s3),(k1,k2)C
s1
p,k4

)
+

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δ(s3,s4),(k3,p)C

s1
k1,k2

+ δ(s2,s4),(k1,p)C
s1
k2,k3

+ δ(s2,s3),(k1,k2)C
s1
k3,p

)
= δp,s1as2,s3,s4 + δp,s2as1,s3,s4 + δp,s3as1,s2,s4 + δp,s4as1,s2,s3

+
∑

(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δ(s3,s4),(k2,k3)C

s1
p,k1

+ δ(s2,s4),(p,k3)C
s1
k1,k2

+ δ(s2,s3),(p,k1)C
s1
k2,k3

)
+

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δ(s3,s4),(k2,k3)C

s1
k1,p

+ δ(s2,s4),(k1,k3)C
s1
p,k2

+ δ(s2,s3),(k1,p)C
s1
k2,k3

)
+

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δ(s3,s4),(p,k3)C

s1
k1,k2

+ δ(s2,s4),(k1,k3)C
s1
k2,p

+ δ(s2,s3),(k1,k2)C
s1
p,k3

)
+

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δ(s3,s4),(k3,p)C

s1
k1,k2

+ δ(s2,s4),(k1,p)C
s1
k2,k3

+ δ(s2,s3),(k1,k2)C
s1
k3,p

)
= δp,s1as2,s3,s4 + δp,s2as1,s3,s4 + δp,s3as1,s2,s4 + δp,s4as1,s2,s3

+ δp,s2
∑

(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δs4,k3C

s1
k1,k2

+ δs3,k1C
s1
k2,k3

)
+ δp,s3

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δs2,k1C

s1
k2,k3

+ δs4,k3C
s1
k1,k2

)
+ δp,s4

∑
(k1,k2,k3)∈Sk−p,3

ak1,k2,k3
(
δs3,k3C

s1
k1,k2

+ δs2,k1C
s1
k2,k3

)
= δp,s1as2,s3,s4 ,

where for the third equality we used Cs1
ki,kj

+ Cs1
kj ,ki

= 0 and for the last we used the
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relation tEk−p,3(v) = 0. This gives (3.5). For (ii), we denote v = (ak1,k2)(k1,k2)∈Sk−p,2

and Θp1,p2(v) = (b
(p1,p2)
k1,...,k4

)(k1,...,k4)∈Sk,4
defined in (3.4):

b
(p1,p2)
k1,...,k4

= δ(p1,p2),(k1,k2)ak3,k4 + δ(p1,p2),(k1,k3)ak2,k4 + δ(p1,p2),(k1,k4)ak2,k3

+ δ(p1,p2),(k2,k3)ak1,k4 + δ(p1,p2),(k2,k4)ak1,k3 + δ(p1,p2),(k3,k4)ak1,k2 .

A similar computation shows that the (s1, . . . , s4)-th entry of the vector tEk,4
(
Θp1,p2(v)

)
can be reduced to

b(p1,p2)s1,...,s4
+

∑
(k1,...,k4)∈Sk,4

b
(p1,p2)
k1,...,k4

(
δ(s3,s4),(k3,k4)C

s1
k1,k2

+ δ(s2,s4),(k1,k4)C
s1
k2,k3

+ δ(s2,s3),(k1,k2)C
s1
k3,k4

)
= Cs1

p1,p2
(as3,s4 + as2,s4 + as2,s3) + δ(p1,p2),(s1,s2)as3,s4 + δ(p1,p2),(s1,s3)as2,s4 + δ(p1,p2),(s2,s3)as2,s3 .

(Note as1,s2 = 0 whenever s1 + s2 ̸= k− p.) We denote by b
(p1,p2)
s1,...,s4 the right-hand side

of the above. With the relation tEk−p,2(v) = 0, we find that the (s1, . . . , s4)-th entry

of the vector tE (4)k,3

(
(b

(p1,p2)
k1,...,k4

)(k1,...,k4)∈Sk,4

)
can be computed as follows:

b(p1,p2)
s1,...,s4

+
∑

(k1,...,k4)∈Sk,4

b
(p1,p2)
k1,...,k4

(
δ(s1,s4),(k1,k4)C

s2
k2,k3

+ δ(s1,s3),(k1,k2)C
s2
k3,k4

)
= b(p1,p2)

s1,...,s4

+
∑

(k1,...,k4)∈Sk,4

δ(s1,s4),(k1,k4)C
s2
k2,k3

(
δ(p1,p2),(k1,k2)ak3,k4 + δ(p1,p2),(k1,k3)ak2,k4

+ δ(p1,p2),(k1,k4)ak2,k3 + Ck1
p1,p2

(ak3,k4 + ak2,k4 + ak2,k3)
)

+
∑

(k1,...,k4)∈Sk,4

δ(s1,s3),(k1,k2)C
s2
k3,k4

(
δ(p1,p2),(k1,k2)ak3,k4 + δ(p1,p2),(k1,k3)ak2,k4

+ δ(p1,p2),(k1,k4)ak2,k3 + Ck1
p1,p2

(ak3,k4 + ak2,k4 + ak2,k3)
)

= Cs1
p1,p2

(as3,s4 + as2,s4 + as2,s3) + δ(p1,p2),(s1,s2)as3,s4 + δ(p1,p2),(s1,s3)as2,s4 + δ(p1,p2),(s2,s3)as2,s3

+
∑

(k1,...,k4)∈Sk,4

(
δ(p1,p2),(k1,k4)δ(s1,s4),(k1,k4)C

s2
k2,k3

ak2,k3 + δ(p1,p2),(k1,k2)δ(s1,s3),(k1,k2)C
s2
k3,k4

ak3,k4
)

+ Cs1
p1,p2

∑
(k1,...,k4)∈Sk,4

(
δ(s1,s4),(k1,k4)C

s2
k2,k3

ak2,k3 + δ(s1,s3),(k1,k2)C
s2
k3,k4

ak3,k4
)

= δ(p1,p2),(s1,s2)as3,s4 + Cs1
p1,p2

as3,s4 = ε(s1,s2p1,p2
)as3,s4 .
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Therefore we have

tE (4)k,3

(
tEk,4

(
Θp1,p2(v)

))
=

∑
(t1,t2)∈Sp,2

ε( t1,t2
p1,p2

)ιt1,t2(v),

which is annihilate by tE (4)k,2 because tEk−p,2(v) = 0. This gives the assertion (3.6).

Corollary 3.5. (i) For vp ∈ ker tEk−p,3 and ap ∈ Q, let v =
∑

1<p<k apΘp(vp). Then
tEk,4(v) = 0 if and only if v = 0.

(ii) For vp ∈ ker tEk−p,2 and a
(p)
p1,p2 ∈ Q, let v =

∑
1<p<k

∑
(p1,p2)∈Sp,2

a
(p)
p1,p2Θp1,p2(vp).

Then tE (4)k,3

(
tEk,4(v)

)
= 0 if and only if (a

(p)
p1,p2)(p1,p2)∈Sp,2 ∈ ker tEp,2 for all p.

Proof. For (i), applying tEk,4 to v, we obtain the assertion from (3.2) and (3.5). For

(ii), from (3.6) we have

tE (4)k,3

(
tEk,4(v)

)
=
∑

1<p<k

∑
(t1,t2)∈Sp,2

( ∑
(p1,p2)∈Sp,2

a(p)p1,p2
ε( t1,t2

p1,p2
)

)
ιt1,t2(vp) ∈ ker tE (4)k,2 .

By (3.2) the above sum is zero if and only if each coefficients of ιt1,t2(vp) is zero, i.e.

(a
(p)
p1,p2)(p1,p2)∈Sp,2 ∈ ker tEp,2 for all p.

3.3 Proof of Theorem 1.2

Note that from (3.2) and Corollary 3.5, for all p (1 < p < k) the subspaces ⟨Θp(v) |
v ∈ ker tEk−p,3⟩Q of Vk,4 only intersect at the zero vector. We set

G(1)k =
⊕

1<p<k

⟨Θp(v) | v ∈ ker tEk−p,3⟩Q.

Since the map Θp is injective, we obtain dimG(1)k =
∑

1<p<k |Sp,1| ·dimker tEk−p,3. Let

G(2)k,p =
{ ∑

(p1,p2)∈Sp,2

ap1,p2Θp1,p2(v)
∣∣∣ (ap1,p2)(p1,p2)∈Sp,2 ∈ Vp,2, v ∈ ker tEk−p,2

}
.

Since we find π
(
G(2)k,p

)
= ⟨v x w | v ∈ Vp,2, w ∈ π

(
ker tEk−p,2

)
⟩Q, from Corollary 3.3

we obtain

dimG(2)k,p = |Sp,2| · dimker tEk−p,2 − δp,k/2Rp,
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where Rp = ♯{(i, j) | 1 ≤ i < j ≤ dimker tEk−p,2}. Note that by Corollary 3.5 (ii) the

spaces G(2)k,p (1 < p < k) only intersect at the zero vector. We put

G(2)k =
⊕

1<p<k

G(2)k,p.

Corollary 3.5 (i) implies that ker tEk,4 ∩ G(1)k = 0. Then by Lemma 3.4, we have

ker tCk,4 ⊃
(
ker tEk,4 ⊕ G(1)k

)
+ G(2)k .

To compute dimker tCk,4, we discuss the intersection of the right-hand side of the

above spaces. Since we have dimG(1)k = dimker tE (4)k,3 , from Corollary 3.5 (i) we find

that the map tEk,4 : G(1)k → ker tE (4)k,3 is an isomorphism. This shows that for any

v ∈ ker t(E (4)k,3 · Ek,4) we have tEk,4(v) ∈ ker tE (4)k,3 = tEk,4
(
G(1)k

)
. Then there exists

v′ ∈ G(1)k such that v − v′ ∈ ker tEk,4, which implies v ∈ ker tEk,4 ⊕ G(1)k . We therefore

have ker t(E (4)k,3 · Ek,4) = ker tEk,4 ⊕G(1)k . From Corollary 3.5 (ii), the intersection of the

spaces ker t(E (4)k,3 · Ek,4) and G
(2)
k coincides with the space⊕

1<p<k

⟨
∑

(p1,p2)∈Sp,2

a(p)p1,p2
Θp1,p2(vp) | vp ∈ ker tEk−p,2, (a(p)p1,p2

)(p1,p2)∈Sp,2 ∈ ker tEp,2⟩Q,

and, by Corollary 3.3, its dimension is given by
∑

1<p<k

(
dimker tEp,2 ·dimker tEk−p,2−

δp,k/2Rp

)
. Then we have

dimker tCk,4 ≥ dimker tEk,4 +
∑

1<p<k

|Sp,1| · dimker tEk−p,3

+
∑

1<p<k

(
|Sp,2| · dimker tEk−p,2 − δp,k/2Rp

)
− dim(ker t(E (4)k,3 · Ek,4) ∩ G

(2)
k )

= dimker tEk,4 +
∑

1<p<k

|Sp,1| · dimker tEk−p,3 +
∑

1<p<k

(|Sp,2| − dimker tEp,2) · dimker tEk−p,2.

This gives∑
k>0

rank Ck,4xk = O(x)4 −
∑
k>0

dimker tCk,4xk ≤ O(x)4 − 3O(x)2S(x) + S(x)2

because of the identity (2.5) and the inequality (2.8). Theorem 1.2 follows from this

and (2.18). We complete the proof of Theorem 1.2.
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Remark. In general, we conjecture that the dimension of the kernel of the matrix Ck,r
is given by

dimker tCk,r
?
= dimker tEk,r +

∑
1≤q≤r−2

( ∑
1<p<k

rank Cp,q · dimker tEk−p,r−q

)
.

Then, by induction on r, the uneven part of motivic Broadhurst-Kreimer conjecture

(2.17) follows from the (conjectural) equality
∑

k>0 dimker Ek,rxk = O(x)r−2S(x) (or
equivalently, the surjectivity of the map Fk,r in Theorem 2.3).

4 Double Eisenstein series for Γ0(2) and modular

forms

4.1 Double shuffle relation of double Eisenstein series for

cusp ∞

We start with a brief introduction of the double shuffle relation of double Eisenstein

series for Γ0(2) = {( a b
c d ) ∈ Γ1 | c ≡ 0 (mod 2)}. For integers r ≥ 3 and s ≥ 2 and

a, b ∈ {0, 1} we define the double Eisenstein series G
(a,b)
r,s (τ) by

G(a,b)
r,s (τ) :=

(
2π
√
−1
)−r−s

∑
2mτ+n>2m′τ+n′>0

n≡a mod 2
n′≡b mod 2

1

(2mτ + n)r(2m′τ + n′)s
.

(4.1)

For an integer k ≥ 3 and a ∈ {0, 1}, we define the function G
(a)
k (τ) by

G
(a)
k (τ) =

(
2π
√
−1
)−k

∑
2mτ+n>0

n≡a mod 2

1

(2mτ + n)k
.

(4.2)

Note that these give non-zero holomorphic functions on the upper half-plane even

when k is odd. In particular, when k ≥ 4 is even, the function G
(0)
k (τ) is the Eisen-

stein series for Γ1 and the function G
(1)
k (τ) is the Eisenstein series for the congruence

subgroup Γ0(2) associated to the cusp ∞. The product of these functions is express-

ible as a Q-linear combination of double Eisenstein series. Indeed, for r, s ≥ 3, we
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obtain

G(1)
r (τ)G(0)

s (τ) = G(1,0)
r,s (τ) +G(0,1)

s,r (τ),

G(1)
r (τ)G(1)

s (τ) = G(1,1)
r,s (τ) +G(1,1)

s,r (τ) +G
(1)
r+s(τ).

This follows from the obvious decomposition of positive lattice points in (Zτ + Z)×
(Zτ +Z) into three disjoint subsets {(m,n) | m > n}, {(m,n) | m < n} and {(m,n) |
m = n}. On the other hand, the standard partial fraction decomposition

1

xrys
=

∑
i+j=r+s
i,j≥1

[ (
i−1
r−1

)
(x+ y)ixj

+

(
i−1
s−1

)
(x+ y)iyj

]
(r, s ∈ Z>0)

deduces the different expressions

G(1)
r (τ)G(0)

s (τ) =
∑

i+j=r+s
i,j≥1

((
i− 1

r − 1

)
G

(0,1)
i,j (τ) +

(
i− 1

s− 1

)
G

(1,1)
i,j (τ)

)
,

G(1)
r (τ)G(1)

s (τ) =
∑

i+j=r+s
i,j≥1

((
i− 1

r − 1

)
+

(
i− 1

s− 1

))
G

(0,1)
i,j (τ)

by letting x = mτ + n, y = m′τ + n′ and summing all positive lattice points on

Zτ +Z. These equalities give a collection of relations among double Eisenstein series,

which we call the double shuffle relation. To complete these relations, we now give

a regularization of the series G
(a,b)
r,s (τ) in (4.1) for any (non-converging) r, s ≥ 1, by

using q-series.

The constant term we use the double zeta values of level 2 defined by

ζ(a,b)(r, s) =
∑

n1>n2>0
n1≡a mod 2
n2≡b mod 2

1

nr
1n

s
2

.

We also need ζ(a)(k) =
∑

n>1
n≡a mod 2

n−k. By virtue of the regularization of the multiple

L-values (see [1]), we put ζ(a)(1) = 1
2
(T − (−1)a log 2), and for s ≥ 2

ζ(a,b)(1, s) =
1

2
ζ(b)(s)T − (−1)a

2
(log 2)ζ(b)(s)− ζ(a,b)(s, 1)− δa,bζ

(a)(s+ 1)
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where T is a formal variable. We will write ζ̃∗∗(r, s) = ζ∗∗(r, s)/(2π
√
−1)r+s. The

following functions arise from the Fourier expansion of G
(a,b)
r,s (τ); for positive integers

r, s and a, b ∈ {0, 1}, set

g(a,b)r,s (q) =
(−1)r+s

2r+s(r − 1)!(s− 1)!

∑
m>m′>0
u,v>0

(−1)au+bvur−1vs−1qum+vm′
,

g(a)r (q) =
(−1)r

2r(r − 1)!

∑
u,m>0

(−1)auur−1qum,

and, for k ≥ 0, let

g
(a)
k (q) =

(−1)k

2k+1k!

∑
u,m>0

(−1)aumukqum.

For integers r, s ≥ 1, we define

ε(a,b)r,s (q) =δr,2g
(b)
s (q)− δr,1g

(b)
s−1(q) + δs,1(g

(a)
r−1(q) + g(a)r (q)) + δr,1δs,1α

(a,b)(q),

which is 0 when r ≥ 3 and s ≥ 2. Here we put

α(0,1)(q) = g
(1)
0 (q), α(1,0)(q) = −α(0,1), α(1,1)(q) = 2g

(1)
0 (q) + g

(0)
0 (q). (4.3)

Remark. In the original paper [9], we took α(0,1)(q) = g
(1)
0 (q) − 1

2
g
(0)
0 (q) = −α(1,0)(q)

and α(1,1)(q) = 4g
(1)
2 (q) + 1

2
g
(0)
0 (q) instead of (4.3). This is incorrect, and was pointed

out by Professor Jianqiang Zhao. The author would like to thank him.

Definition 4.1. For integers r, s ≥ 1 and a, b ∈ {0, 1} without (r, s) = (1, 1), (a, b) =

(0, 0), we define the regularized double Eisenstein series G
(a,b)
r,s (q) by

G(a,b)
r,s (q) =ζ̃(a,b)(r, s) + g(a,b)r,s (q) +

1

4
ε(a,b)r,s (q) + g(a)r (q)ζ̃(b)(s)

+
∑

p+h=k
p,h≥1

ζ̃(a−b)(p)

(
(−1)s

(
p− 1

s− 1

)
g
(a)
h (q) + (−1)p+r

(
p− 1

r − 1

)
g
(b)
h (q)

)
.

(Note that when r ≥ 3 and s ≥ 2, each of regularized double Eisenstein series coincides

with the defining series given in (4.1).) For k ≥ 1, we also define the q-series G
(0)
k (q)
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and G
(1)
k (q) by

G
(0)
k (q) = ζ̃(0)(k) +

(−1)k

2k(k − 1)!

∑
n≥1

∑
d|n

dk−1qn,

G
(1)
k (q) = ζ̃(1)(k) +

(−1)k

2k(k − 1)!

∑
n≥1

(∑
d|n

(−1)ddk−1
)
qn,

which coincide with the functions G
(0)
k (τ) and G

(1)
k (τ) when k ≥ 3, respectively. Then

the regularized double shuffle relation can be stated as follows:

Theorem 4.2. ([9]) For any integers r, s ≥ 1 and a, b ∈ {0, 1} with (r, s) ̸= (1, 1) and

(a, b) ̸= (0, 0), we have

G(a)
r (q)G(b)

s (q) +
1

4
(δr,2g

(b)
s (q) + δs,2g

(a)
r (q))

= G(a,b)
r,s (q) +G(b,a)

s,r (q) + δa,bG
(a)
r+s(q)

=
∑

i+j=r+s
i,j≥1

((
i− 1

r − 1

)
G

(a+b,b)
i,j (q) +

(
i− 1

s− 1

)
G

(a+b,a)
i,j (q)

)
.

Proof. As in [6], the proof of Theorem 4.2 is done by dividing into three parts: the

constant term, the imaginary part, and the combinatorial part. We only prove the

combinatorial part. Let β
(0)
p = − Bp

2p+1p!
and β

(1)
p = − (1−2−p)Bp

2p+1p!
, and set

β(a,b)
r,s (q) = g(a)r (q)β(b)

s +
∑

i+j=r+s

β
(a−b)
i

(
(−1)s

(
i− 1

s− 1

)
g
(a)
j (q) + (−1)i−r

(
i− 1

r − 1

)
g
(b)
j (q)

)
.

For integers r, s ≥ 1, we define the combinatorial double Eisenstein series G(a,b)r,s (q) by

G(a,b)r,s (q) = g(a,b)r,s (q) + β(a,b)
r,s (q) +

1

4
ε(a,b)r,s (q).

Then, our task is to prove for all integers r, s ≥ 1

P (a,b)
r,s (q) = G(a,b)r,s (q) + G(b,a)s,r (q) + δa,b

(
g
(a)
r+s(q)− δs,1δr,1

α(a,a)

2

)
=

∑
i+j=r+s
i,j≥1

((
i− 1

r − 1

)
G(a+b,b)
i,j (q) +

(
i− 1

s− 1

)
G(a+b,a)
i,j (q)

)
,

(4.4)
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where P
(a,b)
r,s (q) = g

(a)
r (q)g

(b)
s (q) + β

(a)
r g

(b)
s (q) + β

(b)
s g

(a)
r (q) + 1

4

(
δr,2g

(b)
s (q) + δs,2g

(a)
r (q)

)
.

Consider their generating functions as follows:

G(1)(X) :=
∑
k>0

g
(1)
k (q)Xk−1 − α(1,1)(q)

2
·X,

G(a,b)(X, Y ) :=
∑
r,s>0

G(a,b)r,s (q)Xr−1Y s−1,

P (a,b)(X,Y ) :=
∑
r,s>0

P (a,b)
r,s (q)Xr−1Y s−1.

Then the relation (4.4) is equivalent to

P (a,b)(X,Y ) = G(a,b)(X,Y ) + G(b,a)(Y,X) + δ(a,b),(1,1)
G(1)(X)− G(1)(Y )

X − Y
(4.5)

= G(a+b,b)(X + Y, Y ) + G(a+b,a)(X + Y,X). (4.6)

To prove this, we compute

β(a)(X) :=
∑
k>0

β
(a)
k Xk−1 = −1

4

1

(−1)aeX/2 − 1
+ δa,0

1

2X
,

g(a)(X) :=
∑
k>0

g
(a)
k Xk−1 = −1

2

∑
u>0

(−1)aue−
uX
2 · qu

1− qu
,

g(a)(X) :=
∑
k>0

g
(a)
k Xk−1 =

1

2X

(∑
u>0

(−1)aue−
uX
2 · qu

(1− qu)2
− 2g

(a)
0 (q)

)
,

g(a,b)(X, Y ) :=
∑
r,s>0

g(a,b)r,s Xr−1Y s−1

=
1

4

∑
u,b>0

(−1)au+bve−
uX+vY

2 · qu

1− qu
qu+v

1− qu+v
,

β(a,b)(X, Y ) :=
∑
r,s>0

β(a,b)
r,s (q)Xr−1Y s−1 = (g(b)(Y )− g(a)(X))β(a−b)(X − Y ) + g(a)(X)β(b)(Y ),

ε(a,b)(X, Y ) :=
∑
r,s>0

ε(a,b)r,s (q)Xr−1Y s−1

= X · g(b)(Y )− Y · g(b)(X) +X · g(a)(X) + g(a)(X)− g
(b)
0 (q) + g

(a)
0 (q) + α(a,b)(q).

We note that the left-hand side of (4.5) can be written in the form

P (a,b)(X, Y ) = g(a)(X)g(b)(Y )+g(a)(X)β(b)(Y )+g(b)(Y )β(a)(X)+
1

4

(
X · g(b)(X) + Y · g(a)(X)

)
.
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The right-hand side of (4.5) can be computed as follows:

(R.H.S. of (4.5)) = g(a,b)(X, Y ) + g(b,a)(Y,X) + β(a,b)(X, Y ) + β(b,a)(Y,X)

+
1

4
ε(a,b)(X, Y ) +

1

4
ε(b,a)(Y,X) + δ(a,b),(1,1)

G(1)(X)− G(1)(Y )

X − Y

= g(a)(X)g(b)(Y )− 1

4

(
g(a)(X) + g(b)(Y )

)
− 1

4

(
g(a)(X)− g(b)(Y )

)
· coth

(
X − Y + 2π

√
−1(a− b)

2

)
+ g(a)(X)β(b)(Y ) + g(b)(Y )β(a)(X)− δ(a,b),(1,1)

g(1)(X)− g(1)(Y )

X − Y

+
1

4

(
g(a)(X)− g(b)(Y )

)
· coth

(
X − Y + 2π

√
−1(a− b)

2

)
+

1

4

(
X · g(b)(X) + Y · g(a)(X) + g(a)(X) + g(b)(Y ) + α(a,b)(q) + α(b,a)(q)

)
+ δ(a,b),(1,1)

(
g(1)(X)− g(1)(Y )

X − Y
− α(1,1)

2

)
= P (a,b)(X,Y ).

For the right-hand side of (4.6), we can check

(R.H.S. of (4.6))

= g(a+b,b)(X + Y, Y ) + g(a+b,a)(X + Y,X) + β(a+b,b)(X + Y, Y ) + β(a+b,a)(X + Y,X)

+
1

4
ε(a+b,b)(X + Y, Y ) +

1

4
ε(a+b,a)(X + Y,X)

= g(a)(X)g(b)(Y )− X + Y

2
g(a+b)(X + Y )− 1

2
g
(a+b)
0 (q)− 1

2
g(a+b)(X + Y )

+ g(a)(Y )β(a)(X) + g(a)(X)β(b)(Y )

1

4

(
X · g(b)(Y ) + Y · g(a)(X) + 2(X + Y )g(a+b)(X + Y ) + 2g(a+b)(X + Y )

+ 2g
(a+b)
0 (q)− g

(b)
0 (q)− g

(a)
0 (q) + α(a+b,b)(q) + α(a+b,a)(q)

)
= P (a,b)(X,Y ),

which complete the proof.
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4.2 Formal double shuffle space for level 2

In [9], we proved that the space spanned by double Eisenstein series G
(1,1)
2i,k−2i(q) (2 ≤

i ≤ k/2− 1) contains the space of cusp forms on Γ0(2). We now give a proof of this

result. The proof it is important to study the formal double shuffle space, which was

first considered by Gangl, Kaneko and Zagier [6] in the case of Γ1.

Let k > 2 and DZk be the Q-vector space spanned by formal symbols Zeo
r,s, Z

oe
r,s ,

Zoo
r,s , P

oe
r,s , P

oo
r,s (r, s ≥ 1, r + s = k), and Zo

k with the set of relations

P oe
r,s = Zoe

r,s + Zeo
s,r =

∑
i+j=k
i,j≥1

((
i− 1

r − 1

)
Zoe

i,j +

(
i− 1

s− 1

)
Zoo

i,j

)
, (4.7)

P oo
r,s = Zoo

r,s + Zoo
s,r + Zo

k =
∑
i+j=k
i,j≥1

((
i− 1

r − 1

)
+

(
i− 1

s− 1

))
Zeo

i,j (4.8)

for r, s ≥ 1, r + s = k, so that

DZk =
{Q-linear combinations of Zeo

r,s, Z
oe
r,s , Z

oo
r,s , P

oe
r,s , P

oo
r,s , Z

o
k }

⟨Q-linear span of relations (4.7), (4.8)⟩
.

Since the elements P oe
r,s and P oo

r,s are written in Z’s, we can also regard the space as

given by

DZk =
{Q-linear combinations of Zeo

r,s, Z
oe
r,s , Z

oo
r,s , Z

o
k }

⟨Q-linear span of relations (4.9), (4.10)⟩

where the defining relations (4.9) and (4.10) are

Zoe
r,s + Zeo

s,r =
∑
i+j=k
i,j≥1

((
i− 1

r − 1

)
Zoe

i,j +

(
i− 1

s− 1

)
Zoo

i,j

)
, (4.9)

Zoo
r,s + Zoo

s,r + Zo
k =

∑
i+j=k
i,j≥1

((
i− 1

r − 1

)
+

(
i− 1

s− 1

))
Zeo

i,j . (4.10)

Note that the relations (4.7) and (4.8) (as well as (4.9) and (4.10)) correspond to
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those in Theorem 4.2, under the correspondences

Zeo
r,s ←→ G(0,1)

r,s (q), Zoe
r,s ←→ G(1,0)

r,s (q), Zoo
r,s ←→ G(1,1)

r,s (q), Zo
k ←→ G

(1)
k (q),

P oe
r,s ←→ G(1)

r (q)G(0)
s (q) +

1

4
(δr,2g

(0)
s (q) + δs,2g

(1)
r (q))

P oo
r,s ←→ G(1)

r (q)G(1)
s (q) +

1

4
(δr,2g

(1)
s (q) + δs,2g

(1)
r (q)).

(4.11)

Theorem 4.3. ([9, Theorem 1]) Suppose k is even and k ≥ 4. In DZk, we have

(i)
k−2∑
r=2

r:even

Zoo
r,k−r =

1

4
Zo

k . (4.12)

(ii) Each P oe
r,k−r with r even can be written as a Q-linear combination of P oo

i,j (i, j :

even, i+ j = k) and Zo
k

Proof. Consider the generating functions

Zeo
k (X, Y ) =

∑
r+s=k

Zeo
r,sX

r−1Y s−1, Zoe
k (X, Y ) =

∑
r+s=k

Zoe
r,sX

r−1Y s−1,

Zoo
k (X, Y ) =

∑
r+s=k

Zoo
r,sX

r−1Y s−1.

Here and in the following, the sum
∑

r+s=k always means
∑

r+s=k, r,s≥1. The double

shuffle relations (4.9) and (4.10) are equivalent to the relations

Zoe
k (X,Y ) + Zeo

k (Y,X) = Zoe
k (X + Y, Y ) + Zoo

k (X + Y,X), (4.13)

Zoo
k (X,Y ) + Zoo

k (Y,X) + Zo
k ·

Xk−1 − Y k−1

X − Y
= Zeo

k (X + Y, Y ) + Zeo
k (X + Y,X).

(4.14)

Substituting X = 1, Y = 0 in (4.13) and X = 1, Y = −1 in (4.14), we respectively

obtain

Zoe
k−1,1 + Zeo

1,k−1 = Zoe
k−1,1 +

k−1∑
r=1

Zoo
r,k−r, (4.15)

2
k−1∑
r=1

(−1)r−1Zoo
r,k−r + Zo

k = 2Zeo
1,k−1. (4.16)
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We divide (4.16) by 2 and add (4.15) to obtain

1

2
Zo

k = 2
k−2∑
r=2

r: even

Zoo
r,k−r

and hence (i) of Theorem.

To prove (ii), we need the following lemma.

Lemma 4.4. Let k ≥ 4 be an even integer and ai,j, bi,j, ci,j be rational numbers. Then

the following two statements are equivalent.

1) The relation∑
i+j=k

ai,jZ
eo
i,j +

∑
i+j=k

bi,jZ
oe
i,j +

∑
i+j=k

ci,jZ
oo
i,j ≡ 0 (mod QZo

k )

holds in DZk (as before
∑

i+j=k means
∑

i+j=k, i,j≥1).

2) There exist some homogeneous polynomials F,G ∈ Q[X,Y ] of degree k − 2

such that

F (Y1, X1) + F (X2, Y2)− F (X2, X2 + Y2)− F (X3 + Y3, X3)

+G(X3, Y3) +G(Y3, X3)−G(X1, X1 + Y1)−G(X1 + Y1, X1)

=
∑
i+j=k

(
k − 2

i− 1

)
ai,jX

i−1
1 Y j−1

1 +
∑
i+j=k

(
k − 2

i− 1

)
bi,jX

i−1
2 Y j−1

2 +
∑
i+j=k

(
k − 2

i− 1

)
ci,jX

i−1
3 Y j−1

3 .

Proof. This is an analogue of Proposition 5.1 in [6]. Take F (X, Y ) =
(
k−2
r−1

)
Xr−1Y s−1

(and G = 0) and compute the coefficients of F (Y1, X1) + F (X2, Y2) − F (X2, X2 +

Y2) − F (X3 + Y3, X3) using binomial theorem. Then the relation in 1) is exactly

(not only mod QZo
k but as an exact equality) the relation (4.9). Similarly, by taking

G(X,Y ) =
(
k−2
r−1

)
Xr−1Y s−1 (and F = 0) and computing the coefficients of G(X3, Y3)+

G(Y3, X3) − G(X1, X1 + Y1) − G(X1 + Y1, X1), we see that the relation in 1) is the

relation (4.10) modulo QZo
k . Since any relation of the form in 1) in DZk should come

from a linear combination of (4.9) and (4.10) modulo QZo
k , and any homogeneous

polynomial is a linear combination of monomials, we obtain the lemma.

Using the lemma, we are going to produce enough relations of the form∑
r+s=k
r,s: even

αr,sP
oe
r,s ≡

∑
r+s=k
r,s: even

βr,sP
oo
r,s (mod QZo

k ) (4.17)
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such that we can solve these in P oe
r,s . In view of the relations

P oe
r,s = Zoe

r,s + Zeo
s,r, P oo

r,s ≡ Zoo
r,s + Zoo

s,r (mod QZo
k ) (4.18)

and the lemma, we obtain the relation of the form (4.17) if we can take F and G in

2) of Lemma 4.4 so that the coefficients satisfy

(i) ai,j = bj,i,

(ii) ci,j = cj,i,

(iii) ai,j = bi,j = ci,j = 0 for all odd i, j.

We now work for convenience with inhomogeneous polynomials. Recall the usual

correspondences f(x) = F (x, 1) and F (X, Y ) = Y k−2f(X/Y ), and the action of the

group Γ = PGL2(Z) on the space of polynomials of degree at most k − 2 by (we are

assuming k is even)

f(x)
∣∣∣
k−2

(
a b

c d

)
= (cx+ d)k−2f

(
ax+ b

cx+ d

)
. (4.19)

We extend this action to the group ring Z[Γ] by linearity. Set

T =

(
1 1

0 1

)
, S =

(
0 −1
1 0

)
, δ =

(
−1 0

0 1

)
, ε =

(
0 1

1 0

)
.

Then the left-hand side of the equation in 2) of Lemma 4.4 can be written in inho-

mogeneous form as(
f
∣∣ε− g

∣∣(TST + TSδ)
)
(x1)+

(
f
∣∣(1− TST )

)
(x2)−

(
f
∣∣TSδ − g

∣∣(1 + ε)
)
(x3). (4.20)

(We write
∣∣ instead of

∣∣
k−2

.)

Lemma 4.5. Suppose the polynomial f(x) (of degree at most k−2) satisfies f
∣∣TSTδ =

f and put g = 1
2
f
∣∣Tδ. Then the expression (4.20) gives the coefficients satisfying the

above three conditions (i), (ii), (iii).

Proof. Inserting g = 1
2
f
∣∣Tδ into (4.20) and using the assumption f

∣∣TSTδ = f , which

is equivalent to f
∣∣TS = f

∣∣Tδ since (Tδ)2 = 1, and also using the identities TSTST =
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S, TδT = δ, δS = ε, εδ = δε = S in Γ, we can write (4.20) as(
f
∣∣ε(1− δ)

)
(x1) +

(
f
∣∣(1− δ)

)
(x2)−

(
f
∣∣T (1− δ)

)
(x3). (4.21)

Now the condition (iii) (the polynomial is even) is clear from this (being killed by 1+δ),

and the conditions (i) and (ii) are respectively the consequences of the equations

f
∣∣ε(1− δ)ε = f

∣∣(1− δ),

f
∣∣T (1− δ)ε = f

∣∣Tε− f
∣∣TS = f

∣∣TδS − f
∣∣Tδ = f

∣∣T (1− δ).

Noting TSTδ =
( −1 0
−1 1

)
and hence

(−x+ 1)

(
−x
−x+ 1

)
= −x, and (−x+ 1)

(
−x
−x+ 1

− 2

)
= x− 2,

we see that the polynomials xr(x − 2)k−2−r for r = 0, 2, . . . , k − 2 (even) satisfy the

condition f
∣∣TSTδ = f in Lemma 4.5. With this choice of f (for r = 0, 2, . . . , k − 4)

and g in Lemma 4.5, we compute the coefficients in Lemma 4.4 by noting (4.18),

(4.21) and by using

xr(x− 2)k−2−r|(1− δ) = xr(x− 2)k−2−r − xr(x+ 2)k−2−r

= −
k−2−r−1∑

i=1
i:odd

(
k − 2− r

i

)
2k−1−r−ixr+i

= −
k−2∑

i=r+2
i:even

(
k − 2− r

i− 1− r

)
2k−ixi−1 (r + i→ i− 1)

= −
(
k − 2

r

)−1 k−2∑
i=r+2
i:even

(
k − 2

i− 1

)(
i− 1

r

)
2k−ixi−1,

to obtain a relation of the form

k−2∑
i=r+2
i:even

(
i− 1

r

)
2k−iP oe

i,k−i ≡ linear combination of P oo
even,even (mod QZo

k ).

When we put r = k − 4, . . . , 2, 0, we can solve these congruences successively in each

36



P oe
i,k−i for i = k − 2, k − 4, . . . , 2 (because the system is triangular). This completes

the proof of Theorem 4.3.

Combining the first equality of (4.8) with (4.12), we have

(1 + 4 · [k/4])Zo
k = 2

[k/4]∑
r=1

(2− δr,k/4)P
oo
2r,k−2r.

Then, for even k ≥ 4, as a consequence of Theorem 4.3, we find

⟨P oe
2r,k−2r, P

oo
2r,k−2r, Z

o
k | 1 ≤ r ≤ k/2− 1⟩Q = ⟨P oo

2r,k−2r, Z
o
k | 2 ≤ r ≤ [k/4]⟩Q. (4.22)

Theorem 4.6. [9, Theorem 5] Let k ≥ 4 be a positive even integer and set DE (∞)
k =⟨

G
(1,1)
2i,k−2i(q) | 1 ≤ i ≤ k/2− 1

⟩
Q.

(i) Then the space DE (∞)
k contains Q · G(1)

k (q) ⊕ SQ
k (2), where SQ

k (2) is the Q-vector

space of cusp forms having rational Fourier coefficients.

(ii)

dimDE (∞)
k =

k

2
− 1,

so that the series G
(1,1)
r,k−r(q) (r even) are linearly independent over Q.

Proof. We first prove (i). For k ≥ 1, define

E
(1)
k (q) = 2k

(
G

(0)
k (q)−G

(0)
k (q2)

)
=

(−1)k

(k − 1)!

∑
n≥1

( ∑
d|n

n/d:odd

dk−1
)
qn.

Note that when k ≥ 4 is even, the q-series E
(1)
k (q) is the Eisenstein series on Γ0(2)

associated to the cusp 0 (this notation might cause confusion, but it works for the

double Eisenstein series for the cusp 0). By the theorem of Imamoḡlu and Kohnen [8],

it is known that the products E
(1)
2l (q)G

(1)
k−2l(q) (l = 2, 3, . . . , k/2 − 2) generate SQ

k (2).

Note that each generators E
(1)
2l (q)G

(1)
k−2l(q) (l = 2, 3, . . . , k/2−2) can be written in the

form

E
(1)
2l (q)G

(1)
k−2l(q) = (22l − 1)G

(0)
2l (q)G

(1)
k−2l(q)−G

(1)
2l (q)G

(1)
k−2l(q).

With (4.22) and (4.11), we have

E
(1)
2l (q)G

(1)
k−2l(q) ∈ ⟨G

(1)
k (q), G

(1)
2l (q)G

(1)
k−2l | 2 ≤ l ≤ [k/4]⟩Q,
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and from (4.12) we find

G
(1)
k (q) ∈ DE (∞)

k .

This implies that the space DE (∞)
k contains the space Q ·G(1)

k (q)⊕ SQ
k (2).

For (ii), first we note by definition the inequality

dimDE (∞)
k ≤ k

2
− 1.

Since elements in Q ·G(1)
k (q)⊕ SQ

k (2) have no imaginary parts, they sit in the kernel

of the projection π from DE (∞)
k to

√
−1R[[q]], thus

dimkerπ ≥ 1 + dimSk(2) =

[
k

4

]
.

Recalling (2.1), we have

π
(
G

(1,1)
k1,k2

(q)
)
=

∑
s1+s2=k1+k2

s1≥3:odd

ε(s1,s2k1,k2
)ζ̃

(0)(s1)g
(1)
s2
(q).

Then, as for the dimension of the image of π, we see that it is equal to the rank of

the matrix

Ak,2 =
(
ε(s1,s2k1,k2

)

)
(s1,s2)∈Sk,2

k1+k2=k, k1,k2≥2:even

because the series g
(1)
3 (q), g

(1)
5 (q), . . . , g

(1)
k−3(q) are linearly independent over C. This

can be seen as follows. For an odd prime p, the coefficient of qp in g
(1)
r (q) is 1 + pr−1

times a constant independent of p. Hence by picking distinct odd prime numbers

p3, p5, . . . , pk−5 and looking at the coefficients of q, qp3 , qp5 , . . . , qpk−5 in g
(1)
3 (q), g

(1)
5 (q), . . . , g

(1)
k−3(q),

we see the desired linear independence because the coefficient matrix is essentially the

(non-vanishing) Vandermonde determinant. We thus have

dim im π = rank Ak,2 =

[
k + 2

4

]
− 1,

where we postpone a computation of rank Ak,2 to Section 5.1 (see (5.1)). This shows

dimDE (∞)
k ≥

[
k

4

]
+

[
k + 2

4

]
− 1 =

k

2
− 1.
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Therefore we conclude

dimDE (∞)
k =

k

2
− 1

and also

kerπ = Q ·G(1)
k (q)⊕ SQ

k (2).

Corollary 4.7. For an even integer k > 2, we have

dim⟨ζoo(2r, k − 2r) | 1 ≤ r ≤ k/2− 1⟩Q ≤
k

2
− 1− dimSk(2).

Proof. By taking the constant term of the q-series, we obtain the surjective map

µ : DE (∞)
k −→ ⟨ζoo(2r, k − 2r) | 1 ≤ r ≤ k/2− 1⟩Q.

By the theorem, the kernel of µ contains the space SQ
k (2) and hence we obtain the

corollary.

We end this subsection with the following theorem. Let MQ
k (2) be the Q-vector

space spanned by modular forms whose Fourier coefficients are rational number of

weight k on Γ0(2). We obtain bases of the space MQ
k (2).

Theorem 4.8. Recall that when k > 3 is even, the q-series G
(1)
k (q) and E

(1)
k (q) are the

Eisenstein series of weight k on Γ0(2) associated to the cusps ∞ and 0 respectively.

(i) For each positive even integer k ≥ 4, the set

{G(1)
k (q), E

(1)
k (q), G

(1)
2l (q)G

(1)
k−2l(q) | 2 ≤ l ≤ [k/4]}

forms a basis of the space MQ
k (2).

(ii) For each positive even integer k ≥ 4, the set

{G(1)
k (q), E

(1)
k (q), E

(1)
2l (q)E

(1)
k−2l(q) | 2 ≤ l ≤ [k/4]}

forms a basis of the space MQ
k (2).

Proof. We first prove (i). In the proof of Theorem 4.6, we showed that the space SQ
k (2)

is contained in the space spanned by the set {G(1)
k (q), E

(1)
k (q), G

(1)
2l (q)G

(1)
k−2l(q) | 2 ≤

l ≤ [k/4]}. Then the assertion follows immediately from dimMQ
k (2) = [k/4] + 1 and

MQ
k (2) = Q·G(1)

k (q)⊕Q·E(1)
k (q)⊕SQ

k (2). We note that the Fricke involutionW2 induces
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an endomorphism of MQ
k (2). Then the basis (ii) follows from the transformation

formula

E
(1)
k (q)

∣∣W2

(
:= (2τ)−kE

(1)
k (
−1
2τ

)
)
= G

(1)
k (q) (k ≥ 4 : even). (4.23)

4.3 Application to Chan and Chua Conjecture

Theorem 4.8 has an application to solving one of the conjectures proposed by Chan

and Chua [5]. We begin with stating this conjecture. Let

θ(q) =
∑
n∈Z

qn
2

be the standard theta function. We define three modular forms G2k,4(q), F2k(q) and

H2k+1(q) by

G2k,4(q) = G
(1)
2k (−q), F2k(τ) = G2k,4(q)− 2G2k,4(q

2),

H2k+1(q) = ck − 4(−1)k
∑
n>0

(
(2n)2kqn

1 + q2n
+

(−1)n(2n− 1)2kq2n−1

1− q2n−1

)
,

where the rational number ck is defined as secx =
∑

k≥0 ck
x2k

(2k)!
. These satisfy

G2k,4(q) ∈M2k(4) (k ≥ 2), F2k(q) ∈M2k(4) (k ≥ 1), H2k+1(q) ∈M2k+1(4, χ4) (k ≥ 1),

where χ4 is the non-trivial character of conductor 4.

Conjecture 4.9. (Chan-Chua [5]) For each positive integer s ≥ 2, we have

θ(q)8s
?
=

s∑
l=2

αlG2l,4(q)G4s−2l,4(q), θ(q)8s+4 ?
=

s∑
l=1

βlF2l(q)G4s−2l,4(q),

θ(q)8s+2 ?
=

s∑
l=1

γlH2l+1(q)F4s−2l(q), θ(q)8s+6 ?
=

s∑
l=1

δlH2l+1(q)G4s−2l+2,4(q),

for some αl, βl, γl, δl ∈ Q.

In [14], the author has succeeded in proving the formulas on θ(q)8s in Conjec-

ture 4.9.
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Theorem 4.10. For any positive integer s ≥ 2, there exist unique rational numbers

µs(l) (l = 2, 3, . . . , s) such that

θ(q)8s = 28s
s∑

l=2

µs(l)G
(1)
2l (−q)G

(1)
4s−2l(−q). (4.24)

Proof. Let

T (q) = q1/8
∑
n≥0

qn(n+1)/2.

We note that for each positive integer s, the q-series T (q)8s is a modular form of

weight k on Γ0(2), and hence is an element of the space Q · E(1)
4s (q)⊕ SQ

4s(2) because

ordq=0T (q)
8s > 0, where ordq=0f(q) is the vanishing order of f(q) at q = 0. Then,

from Theorem 4.8 (ii), there exist unique rational numbers α, µs(l) (l = 2, 3, . . . , s)

such that

T (q)8s = αE
(1)
4s (q) +

s∑
l=2

µs(l)E
(1)
2l (q)E

(1)
4s−2l(q).

Since ord∞T (q)8s = s ≥ 2, ord∞E
(1)
4s (q) = 1 and ord∞E

(1)
2l (q)E

(1)
4s−2l(q) = 2 (2 ≤ l ≤ s),

we find that α = 0. Thus, we have unique expression of T (q)8s as follows.

T (q)8s =
s∑

l=2

µs(l)E
(1)
2l (q)E

(1)
4s−2l(q). (4.25)

Thereby, using the transformation formulas

T (q)8s
∣∣W2 = θ(−q)8s (s ≥ 1)

and (4.23), the formulas (4.24) is easily deduced from (4.25). We indeed have

θ(−q)8s
(
= 28s(2τ)−4sT (− 1

2τ
)8s
)
= 28s(2τ)−4s

s∑
l=2

µs(l)E
(1)
2l (−

1

2τ
)E

(1)
4s−2l(−

1

2τ
)

= 28s
s∑

l=2

µs(l)G
(1)
2l (q)G

(1)
4s−2l(q),

and, hence, we obtain (4.24) by letting q → −q.
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4.4 Double shuffle relation of double Eisenstein series for

cusp 0

In this section, we construct the double Eisenstein series for Γ0(2) associated to the

cusp 0: its series expression is given by

E(a,b)
r,s (τ) =

(
2π
√
−1
)−r−s

∑
mτ+n>m′τ+n′>0

m≡a mod 2
m′≡b mod 2

1

(mτ + n)r(m′τ + n′)s
.

(4.26)

We now describe a regularization of the double Eisenstein series E
(a,b)
r,s (τ) by using

q-series. We begin with computing its Fourier expansion. For k ≥ 1, we set

φk(q) =
(−1)k

(k − 1)!

∑
u>0

uk−1qu.

Proposition 4.11. For any integers r ≥ 3 and s ≥ 2, we have

E(0,1)
r,s (τ) =

∑
m>m′>0
m≡0,m′≡1

φr(q
m)φs(q

m′
),

E(1,0)
r,s (τ) =

∑
m>m′>0
m≡1,m′≡0

φr(q
m)φs(q

m′
) + ζ̃(s)

∑
m>0:odd

φr(q
m),

E(0,0)
r,s (τ) =

∑
m>m′>0
m≡1,m′≡1

φr(q
m)φs(q

m′
)

+
∑

p+h=r+s
p,h≥1

(
(−1)s

(
p− 1

s− 1

)
+ (−1)p+r

(
p− 1

r − 1

))
ζ̃(p)

∑
m>0:odd

φh(q
m).

Proof. We first recall the Lipschitz formula

lim
N→∞

N∑
n=−N

1

τ + n
= −π

√
−1 + (−2π

√
−1)

∑
u>0

qu = −πi+ 2π
√
−1φ1(q),

∑
n∈Z

1

(τ + n)r
=

(−2π
√
−1)r

(r − 1)!

∑
u>0

ur−1qu = (2π
√
−1)rφr(q) (r ≥ 2).

We can divide the summation in the defining series (4.26) into four terms, correspond-

ing to m = m′ = 0, m > m′ = 0, m = m′ > 0, and m > m′ > 0. Note that the first
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term is zero for E
(a,b)
r,s (τ). We only prove the identity involving E

(1,1)
r,s (τ). In this case,

we obtain

E(1,1)
r,s (τ) =

1

(2π
√
−1)r+s

( ∑
m=m′>0
n>n′

m,m′≡1

+
∑

m>m′>0
m,m′≡1∈Z

) 1

(mτ + n)r(m′τ + n′)s
.

The second term is easily seen to be∑
m>m′>0
m,m′≡1

φr(q
m)φs(q

m′
).

For the calculation of the first term, we need the partial fraction decomposition

1

(τ + n)r(τ + n′)s
=(−1)s

r−1∑
i=0

(
s+ i− 1

i

)
1

(τ + n)r−i
· 1

(n− n′)s+i

+
s−1∑
j=0

(−1)j
(
r + j − 1

j

)
1

(τ + n′)s−j
· 1

(n− n′)r+j
. (4.27)

Let h = n − n′. Then h is a positive integer. Using (4.27), the first term can be

calculated as

1

(2π
√
−1)r+s

∑
m=m′>0
n>n′

m,m′≡1

1

(mτ + n)r(m′τ + n′)s

=
1

(2π
√
−1)r+s

∑
m>0:odd

∑
n>n′

n,n′∈Z

1

(mτ + n)r(mτ + n′)s

=
1

(2π
√
−1)r+s

∑
m>0:odd

∑
n∈Z

h∈Z>0

{
(−1)s

r−1∑
i=0

(
s+ i− 1

i

)
1

(mτ + n)r−i

1

hs+i

+
s−1∑
j=0

(−1)j
(
r + j − 1

j

)
1

(mτ + n− h)s−j

1

hr+j

}
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=(−1)s
r−1∑
i=0

(
s+ i− 1

i

) ∑
h∈Z>0

(2π
√
−1)−s−i

hs+i

∑
m>0:odd

∑
n∈Z

(2π
√
−1)−r+i

(mτ + n)r−i

+
s−1∑
j=0

(−1)j
(
r + j − 1

j

) ∑
h∈Z>0

(2π
√
−1)−r−j

hr+j

∑
m>0:odd

∑
n∈Z

(2π
√
−1)−s+j

(mτ + n− h)s−j

=(−1)s
r−2∑
i=0

(
s+ i− 1

i

)
ζ̃(s+ i)

∑
m>0:odd

φr−i(q
m)

+
s−2∑
j=0

(−1)j
(
r + j − 1

j

)
ζ̃(r + j)

∑
m>0:odd

φs−j(q
m)

=
∑

p+h=r+s
p,h≥1

{
(−1)s

(
p− 1

s− 1

)
+ (−1)p+r

(
p− 1

r − 1

)}
ζ̃(p)

∑
m>0:odd

φh(q
m).

The cancellation of the terms for i = r − 1 and j = s − 1 in the third equality can

be justified by computing Cauchy principal values. The final equality is obtained by

setting s + i = p, r − i = h in the first term and r + j = p, s − j = h in the second.

This completes the proof for E
(1,1)
r,s (τ), the verification of the other cases being left to

the reader.

For an integer k > 0, we define

E
(0)
k (q) = 2kG

(0)
k (q2) =

(−1)k

(k − 1)!

∑
n>0

σk−1(n)q
2n,

E
(1)
k (q) = 2k

(
G

(0)
k (q)−G

(0)
k (q2)

)
=

(−1)k

(k − 1)!

∑
n>0

( ∑
d|n

n/d:odd

dk−1
)
qn.

These q-series are modular forms on Γ0(2) when k ≥ 4 is even. For integers r > 0 and

s ≥ 0, we put

f (a)
r (q) =

∑
m>0
m≡a

φr(q
m), f

(a)

s (q) = −
∑
m>0
m≡a

mφs+1(q
m).

Then one can write for k ≥ 1

E
(1)
k (q) = f

(1)
k (q), E

(0)
k (q) = ζ̃(k) + f

(0)
k (q), E

(1)
k (q)′ = kf

(1)

k (q), E
(0)
k (q)′ = kf

(0)

k (q),
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where ′ means q · d/dq, and set

ϑ(0,1)
r,s (q) = δr,2f

(1)

s (q)− δr,1f
(1)

s−1(q) + δs,1f
(0)

r−1(q) + δr,1δs,1α1,

ϑ(1,0)
r,s (q) = δr,2f

(0)

s (q)− δr,1f
(0)

s−1(q) + δs,1f
(1)

r−1(q) + δr,1δs,1α2,

ϑ(1,1)
r,s (q) = δr,2f

(1)

s (q)− δr,1f
(1)

s−1(q) + δs,1(f
(1)

r−1(q) + 2f (1)
r (q)) + δr,1δs,1α3,

where α1 = −α2 = f
(1)

0 (q) and α3 = 2f
(1)

0 (q) + f
(0)

0 (q).

Definition 4.12. For positive integers r and s, we define the regularized double Eisen-

stein series E
(a,b)
r,s (q) by

E(0,1)
r,s (q) =

∑
m>m′>0
m≡0,m′≡1

φr(q
m)φs(q

m′
) +

1

4
ϑ(0,1)
r,s (q),

E(1,0)
r,s (q) =

∑
m>m′>0
m≡1,m′≡0

φr(q
m)φs(q

m′
) + ζ̃(s)f (1)

r (q) +
1

4
ϑ(1,0)
r,s (q),

E(1,1)
r,s (q) =

∑
m>m′>0
m,m′≡1

φr(q
m)φs(q

m′
)

+
∑

p+h=r+s
p,h≥1

(
(−1)s

(
p− 1

s− 1

)
+ (−1)p+r

(
p− 1

r − 1

))
ζ̃(p)f

(1)
h (q) +

1

4
ϑ(1,1)
r,s (q).

We now present the regularized double shuffle relation of the double Eisenstein

series for the cusp 0. For positive integers r and s, we put

P(a,b)
r,s (q) = E(a)

r (q)E(b)
s (q) +

1

4
(δr,2f

(b)

s (q) + δs,2f
(a)

r (q)).

It can be shown that P(a,b)
r,s (q) are modular forms on Γ0(2) when both r and s are even

greater than 1.

Theorem 4.13. For positive even integer k and integers r, s ≥ 1 with (r, s) ̸= (1, 1),

we have

P(a,b)
r,s (q) = E(a,b)

r,s (q) + E(b,a)
s,r (q) + δa,bE

(a)
r+s(q) (4.28)

=
∑
i+j=k
i,j≥1

(
i− 1

r − 1

)
E

(a+b,b)
i,j (q) +

∑
i+j=k
i,j≥1

(
i− 1

s− 1

)
E

(a+b,a)
i,j (q). (4.29)

45



Proof. The proof will be divided into two steps. We first prove the equalities of the

imaginary parts in Theorem 4.13. The only imaginary parts that appear come from

the constant terms ζ̃(s) of E
(0)
s (q) (s : odd), ζ̃(s) in E

(1,0)
r,s (q) (s : odd) or ζ̃(p) (p : odd)

in E
(1,1)
r,s (q). We consider the generating functions as follows:

E
(1,1)
k (X,Y ) :=

∑
r+s=k
r,s≥1

Im E(1,1)
r,s (q)Xr−1Y s−1

=
∑

r+s=k
r,s≥1

∑
p+h=k
p,h≥1
p:odd

(
(−1)s

(
p− 1

s− 1

)
+ (−1)p+r

(
p− 1

r − 1

))
ζ̃(p)f

(1)
h (q)Xr−1Y s−1

=
∑

p+h=k
p,h≥1
p:odd

(Y h−1 −Xh−1)(Y −X)p−1ζ̃(p)f
(1)
h (q),

E
(1,0)
k (X,Y ) :=

∑
r+s=k
r,s≥1

Im E(1,0)
r,s (q)Xr−1Y s−1 =

∑
r+s=k
r,s≥1
s:odd

ζ̃(s)f (1)
r (q)Xr−1Y s−1.

When (a, b) = (1, 0), we note that the imaginary part of the R.H.S. of (4.29) is the

coefficient of Xr−1Y s−1 of E
(1,0)
k (X + Y, Y ) + E

(1,1)
k (X + Y,X). Since we have

E
(1,0)
k (X + Y, Y ) + E

(1,1)
k (X + Y,X)

=
∑

r+s=k
r,s≥1
s:odd

ζ̃(s)f (1)
r (q)(X + Y )r−1Y s−1 +

∑
r+s=k
r,s≥1
s:odd

(Xr−1 − (X + Y )r−1)(−Y )s−1ζ̃(s)f (1)
r (q)

=
∑

r+s=k
r,s≥1
s:odd

(
(X + Y )r−1Y s−1 + (Xr−1 − (X + Y )r−1)Y s−1

)
ζ̃(s)f (1)

r (q)

=
∑

r+s=k
r,s≥1
s:odd

ζ̃(s)f (1)
r (q)Xr−1Y s−1,

the assertion follows. Secondly, we prove the equalities of the real parts in Theo-
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rem 4.13. Again we use generating functions. Define

f (a,b)
r,s (q) =

∑
m>m′>0
m≡0,m′≡1

φr(q
m)φs(q

m′
),

γr,s(q) =
∑

p+h=r+s
p,h≥1

(
(−1)s

(
p− 1

s− 1

)
+ (−1)p+r

(
p− 1

r − 1

))
βpf

(1)
h (q),

where βp = −Bp/2p!(= ζ̃(p), p : even). Consider

E(1)(X) :=
∑
r≥1

E(1)
r (q)Xr−1 − α3

2
·X, E(a,b)(X, Y ) :=

∑
r,s≥1

Re E(a,b)
r,s (q)Xr−1Y s−1,

γ(X, Y ) :=
∑
r,s≥1

γr,s(q)X
r−1Y s−1, P(a,b)(X, Y ) :=

∑
r,s≥1

Re P(a,b)
r,s (q)Xr−1Y s−1.

(4.30)

Then, it is sufficient to prove that

P(a,b)(X, Y ) = E(a,b)(X, Y ) + E(b,a)(Y,X) + δ(a,b),(1,1)
E(1)(X)− E(1)(Y )

X − Y
(4.31)

= E(a+b,b)(X + Y, Y ) + E(a+b,a)(X + Y,X). (4.32)

Now we check the equalities in (4.31) and (4.32). Write a(X) and a(X, Y ) for the

generating functions
∑

k≥1 akX
k−1 and

∑
r,s≥1 ar,sX

r−1Y s−1 associated with sequences

{ak} and {ar,s} indexed by one and two integers, respectively. Then we have

β(X) =
∑
k≥1

βkX
k−1 =

1

2

(
1

X
− 1

eX − 1

)
,

f (1)(X) =
∑
k≥1

f
(1)
k (q)Xk−1 = −

∑
u>0

e−uX qu

1− q2u
,

f (0)(X) =
∑
k≥1

f
(0)
k (q)Xk−1 = −

∑
u>0

e−uX q2u

1− q2u
,

f
(1)
(X) =

∑
k≥1

f
(1)

k (q)Xk−1 =
1

X

(∑
u>0

e−uX 2qu

(1− q2u)2
+ f (1)(X)− f

o

0(q)

)
,

f
(0)
(X) =

∑
k≥1

f
(0)

k (q)Xk−1 =
1

X

(∑
u>0

e−uX 2q2u

(1− q2u)2
− f

(0)

0 (q)

)
,
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f (0,1)(X, Y ) =
∑
r,s≥1

f (0,1)
r,s (q)Xr−1Y s−1 =

∑
u,v>0

e−uX−vY
∑

m>m′>0
m≡0,m′≡1

qum+vm′

=
∑
u,v>0

e−uX−vY qu

1− q2u
qu+v

1− q2(u+v)
,

f (1,0)(X, Y ) =
∑
r,s≥1

f (1,0)
r,s (q)Xr−1Y s−1 =

∑
u,v>0

e−uX−vY qu

1− q2u
q2(u+v)

1− q2(u+v)
,

f (1,1)(X, Y ) =
∑
r,s≥1

f (1,1)
r,s (q)Xr−1Y s−1 =

∑
u,v>0

e−uX−vY q2u

1− q2u
qu+v

1− q2(u+v)
,

ϑ(0,1)(X, Y ) = Xf
(1)
(Y )− Y f

(1)
(Y )− f

(1)

0 (q) +Xf
(0)
(X) + f

(0)

0 (q) + α1,

ϑ(1,0)(X, Y ) = Xf
(0)
(Y )− Y f

(0)
(Y )− f

(0)

0 (q) +Xf
(1)
(X) + f

(1)

0 (q) + α2,

ϑ(1,1)(X, Y ) = Xf
(1)
(Y )− Y f

(1)
(Y ) +Xf

(1)
(X) + 2f (1)(X) + α3.

By the definitions (4.30), we find

E(1)(X) = f (1)(X)− α3

2
·X,

E(0,1)(X, Y ) = f (0,1)(X, Y ) +
1

4
ϑ(0,1)(X,Y ),

E(1,0)(X, Y ) = f (1,0)(X, Y ) + f (1)(X)β(Y ) +
1

4
ϑ(1,0)(X, Y ),

E(1,1)(X, Y ) = f (1,1)(X, Y ) + γ(X, Y ) +
1

4
ϑ(1,1)(X, Y ),

P(1,0)(X, Y ) = f (1)(X)f (0)(Y ) + f (1)(X)β(Y ) +
1

4

(
Xf

(0)
(Y ) + Y f

(1)
(X)

)
,

P(1,1)(X, Y ) = f (1)(X)f (1)(Y ) +
1

4

(
Xf

(1)
(Y ) + Y f

(1)
(X)

)
.
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For the right-hand side of (4.31) with (a, b) = (1, 1), we compute

f (1,1)(X, Y ) + f (1,1)(Y,X)

=
∑
u,v>0

e−uX−vY

(
q2u

1− q2u
+

q2v

1− q2v

)
qu+v

1− q2(u+v)

=
∑
u,v>0

e−uX−vY

(
qu

1− q2u
qv

1− q2v
− qu+v

1− q2(u+v)

)
= f (1)(X)f (1)(Y )−

∑
w>u>0

e−(w−u)Y−uX qw

1− q2w
(w = u+ v)

= f (1)(X)f (1)(Y )−
∑
w>0

qw

1− q2w
e−wY

(
eY−X 1− e(Y−X)(w−1)

1− eY−X

)
= f (1)(X)f (1)(Y ) +

eY

eX − eY
f (1)(Y )− eX

eX − eY
f (1)(X)

= f (1)(X)f (1)(Y )− 1

2
(f (1)(X) + f (1)(Y ))− 1

2
coth

(
X − Y

2

)
(f (1)(X)− f (1)(Y )),

γ(X, Y ) + γ(Y,X)

= (β(Y −X)− β(X − Y ))(f (1)(X)− f (1)(Y ))

= −f (1)(X)− f (1)(Y )

X − Y
+

1

2
coth

(
X − Y

2

)
(f (1)(X)− f (1)(Y )),

ϑ(1,1)(X, Y ) + ϑ(1,1)(Y,X)

= Xf
(1)
(Y ) + Y f

(1)
(X) + 2f (1)(X) + 2f (1)(Y ) + 2α3.

Combining these with (E(1)(X)− E(1)(Y ))/(X − Y ), we have

E(1,1)(X,Y ) + E(1,1)(Y,X) +
E(1)(X)− E(1)(Y )

X − Y

= f (1)(X)f (1)(Y )− 1

2
(f (1)(X) + f (1)(Y ))− 1

2
coth

(
X − Y

2

)
(f (1)(X)− f (1)(Y ))

− f (1)(X)− f (1)(Y )

X − Y
+

1

2
coth

(
X − Y

2

)
(f (1)(X)− f (1)(Y ))

+
1

4

(
Xf

(1)
(Y ) + Y f

(1)
(X) + 2f (1)(X) + 2f (1)(Y ) + 2α3

)
+

f (1)(X)− f (1)(Y )

X − Y
− α3

2

= f (1)(X)f (1)(Y ) +
1

4
(Xf

(1)
(Y ) + Y f

(1)
(X)).
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For the right-hand side of (4.32) with (a, b) = (1, 1), we proceed as follows:

f (0,1)(X + Y,X) + f (0,1)(X + Y, Y )

=
∑
u,v>0

(
e−(u+v)X−uY + e−uX−(u+v)Y

) qu

1− q2u
qu+v

1− q2(u+v)

=

( ∑
w>u>0

+
∑

u>w>0

)
e−uX−wY qu

1− q2u
qw

1− q2w

=

(∑
w,u>0

−
∑

w=u>0

)
e−uX−wY qu

1− q2u
qw

1− q2w

= f (1)(X)f (1)(Y )−
∑
u>0

e−u(X+Y ) q2u

(1− q2u)2

= f (1)(X)f (1)(Y )− 1

2
f
(0)

0 (q)− 1

2
(X + Y )f

(0)
(X + Y ),

ϑ(0,1)(X + Y,X) + ϑ(0,1)(X + Y, Y )

= Y f
(1)
(X) +Xf

(1)
(Y ) + 2(X + Y )f

(0)
(X + Y ) + 2(α1 − f

(1)

0 (q) + f
(0)

0 (q)).

Summing these up, we have

E(0,1)(X + Y, Y ) + E(0,1)(X + Y,X)

= f (1)(X)f (1)(Y )− 1

2
f
(0)

0 (q)− 1

2
(X + Y )f

(0)
(X + Y )

+
1

4

(
Y f

(1)
(X) +Xf

(1)
(Y ) + 2(X + Y )f

(0)
(X + Y ) + 2(α1 − f

(1)

0 (q) + f
(0)

0 (q))
)

= f (1)(X)f (1)(Y ) +
1

4
(Xf

(1)
(Y ) + Y f

(1)
(X)).

For the right-hand side of (4.31) with (a, b) = (1, 0), we compute

f (1,0)(X, Y ) + f (0,1)(Y,X)

=
∑
u,v>0

e−uX−vY

(
qv

1− q2v
+

q2u+v

1− q2u

)
qu+v

1− q2(u+v)

=
∑
u,v>0

e−uX−vY qu

1− q2u
q2v

1− q2v
= f (1)(X)f (0)(Y ),

ϑ(1,0)(X,Y ) + ϑ(0,1)(Y,X) = Xf
(0)
(Y ) + Y f

(1)
(X) + α1 + α2,
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to obtain

E(1,0)(X,Y ) + E(0,1)(Y,X) = f (1)(X)f (0)(Y ) + f (1)(X)β(Y ) +
1

4
(Xf

(0)
(Y ) + Y f

(1)
(X)).

Finally, for the right-hand side of (4.32) with (a, b) = (1, 0), we similarly compute

f (1,0)(X + Y, Y ) + f (1,1)(X + Y,X)

=

( ∑
w>u>0

+
∑

u>w>0

)
e−uX−vY qu

1− q2u
q2w

1− q2w

=

(∑
w,u>0

−
∑

u=w>0

)
e−uX−vY qu

1− q2u
q2w

1− q2w

= f (1)(X)f (0)(Y )−
∑
u>0

e−u(X+Y ) q3u

(1− q2u)2

= f (1)(X)f (0)(Y )−
∑
u>0

e−u(X+Y )

(
qu

(1− q2u)2
− qu

1− q2u

)
= f (1)(X)f (0)(Y )− 1

2

(
(X + Y )f

(1)
(X + Y )− f (1)(X + Y ) + f

(1)

0 (q)
)
− f (1)(X + Y )

= f (1)(X)f (0)(Y )− 1

2
f (1)(X + Y )− 1

2
(X + Y )f

(1)
(X + Y )− 1

2
f
(1)

0 (q),

f (1)(X + Y )β(Y ) + γ(X + Y,X) = f (1)(X)β(Y ),

ϑ(1,0)(X + Y, Y ) + ϑ(1,1)(X + Y,X)

= Xf
(0)
(Y ) + Y f

(1)
(X) + 2(X + Y )f

(1)
(X + Y ) + 2f (1)(X + Y )− f

(0)

0 (q) + f
(1)

0 (q) + α3 + α2,

which give

E(1,0)(X + Y, Y ) + E(1,1)(X + Y,X)

= f (1)(X)f (0)(Y )− 1

2
f (1)(X + Y )− 1

2
(X + Y )f

(1)
(X + Y )− 1

2
f
(1)

0 (q) + f (1)(X)β(Y )+

1

4

(
Xf

(0)
(Y ) + Y f

(1)
(X) + 2(X + Y )f

(1)
(X + Y ) + 2f (1)(X + Y )− f

(0)

0 (q) + f
(1)

0 (q) + α3 + α2

)
= f (1)(X)f (0)(Y ) + f (1)(X)β(Y ) +

1

4
(Xf

(0)
(Y ) + Y f

(1)
(X)),

and we are done.

As an analogue of Theorem 4.6, we have the following:

Theorem 4.14. Let k ≥ 4 be a positive even integer and set DE (0)k =
⟨
E

(1,1)
2i,k−2i(q) |
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1 ≤ i ≤ k/2− 1
⟩
Q.

(i) Then the space DE (0)k contains Q · E(1)
k (q)⊕ SQ

k (2).

(ii)

dimDE (0)k =
k

2
− 1,

so that the series E
(1,1)
r,k−r(q) (r even) are linearly independent over Q.

5 More on ε(s1,...,srk1,...,kr
)

5.1 Period polynomial for Γ0(2)

We fix and recall the notations as follows.

• Γ0(2) = {( a b
c d ) ∈ Γ1 | c ≡ 0 (mod 2)}

• Sk(2) : the C-vector space spanned by cusp forms of weight k for Γ0(2)

• Vk,2 = ⟨xs1−1
1 xs2−1

2 | (s1, s2) ∈ Sk,2⟩Q

• W−,0
k,2 =

{
p(x1, x2) ∈ Vk,2 | p(x1, x2) = p(x2 − x1, x2) − p(x2 − x1, x2 − 2x1) +

p(x1, x2 − 2x1)
}
: the Q-vector space generated by restricted even period poly-

nomials for Γ0(2)

• Tk,2 = {(k1, k2) ∈ Z2
≥2 | k1 + k2 = k, ki : even}

• Ak,2 : the |Sk,2| × |Tk,2| matrix whose entries are the integer ε(s1,s2k1,k2
), so that

Ak,2 =
(
ε(s1,s2k1,k2

)

)
(s1,s2)∈Sk,2

(k1,k2)∈Tk,2

.

In [9], we obtain a characterization of the left kernel of Ak,2, which is an analogous

result to Proposition 2.1.

Theorem 5.1. Let (as1,s2)(s1,s2)∈Sk,2
be a vector with rational coefficients. Then the

following assertions are equivalent.

(i) The vector (as1,s2)(s1,s2)∈Sk,2
is a left annihilator of the matrix Ak,2.

(ii) The polynomial
∑

(s1,s2)∈Sk,2
as2,s1x

s1−1
1 xs2−1

2 is an element of the space W−,0
k,2 .
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Proof. Assume that (as1,s2)(s1,s2)∈Sk,2
is a left annihilator of Ak,2. Set the polynomial

p(x1, x2) =
∑

(s1,s2)∈Sk,2
as2,s1x

s1−1
1 xs2−1

2 . Then we can compute

0 =
∑

(k1,k2)∈Tk,2

( ∑
(s1,s2)∈Sk,2

ε(s2,s1k1,k2
)as2,s1

)
xk1−1
1 xk2−1

2

=
∑

(s1,s2)∈Sk,2

as2,s1
∑

(k1,k2)∈Tk,2

Cs2
k1,k2

xk1−1
1 xk2−1

2

=
1

2

(
p(x1, x2 − x1)− p(x2, x2 − x1)− p(x1, x1 + x2) + p(x2, x1 + x2)

)
.

Letting x2 7→ x2 − x1, we have

0 = p(x1, x2)− p(x2 − x1, x2)− p(x1, x2 − 2x1) + p(x2 − x1, x1 − 2x1),

which means p(x1, x2) ∈ W−,0
k,2 . For the polynomial f(x1, x2) satisfying f(x1, 0) = 0,

it can be shown that f(x1, x2 − x1) is 0 if and only if f(x1, x2) = 0. This implies the

assertion (ii)⇒(i).

Theorem 5.1 has an application to determine the dimension of the space W−,0
k,2 .

We now discuss the rank of the matrix Ak,2 to prove dimW−,0
k,2 = dimSk(2). By

definition, for each (s1, s2) ∈ Sk,2 and (k1, k2) ∈ Tk,2, ε(s1,s2k1,k2
) is zero if s1 < min{k1, k2}

or k1 = k2. Since ε(s1,s2k1,k2
) = −ε(s1,s2k2,k1

), the matrix Ak,2 can be reduced to the forms



ε(3,k−3
2,k−2)

0 0 · · · 0 0 · · · 0

ε(5,k−5
2,k−2)

ε(5,k−5
4,k−4)

0 · · · 0 0 · · · 0

ε(7,k−7
2,k−2)

ε(7,k−7
4,k−4)

ε(7,k−7
6,k−6)

· · · 0 0 · · · 0

...
...

...
...

...
...

...
...

ε(k/2−1,k/2+1
2,k−2 ) ε(k/2−1,k/2+1

4,k−4 ) ε(k/2−1,k/2+1
6,k−6 ) · · · ε(k/2−1,k/2+1

k/2−2,k/2+2)
0 · · · 0

...
...

...
...

...
...

...
...

ε(k−3,3
2,k−2)

ε(k−3,3
4,k−4)

ε(k−3,3
6,k−6)

· · · ε( k−3,3
k/2−2,k/2+2)

0 · · · 0
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if k ≡ 0 (mod 4), and

ε(3,k−3
2,k−2)

0 0 · · · 0 0 · · · 0

ε(5,k−5
2,k−2)

ε(5,k−5
4,k−4)

0 · · · 0 0 · · · 0

ε(7,k−7
2,k−2)

ε(7,k−7
4,k−4)

ε(7,k−7
6,k−6)

· · · 0 0 · · · 0

...
...

...
...

...
...

...
...

ε(k/2−2,k/2+2
2,k−2 ) ε(k/2−2,k/2+2

4,k−4 ) ε(k/2−2,k/2+2
6,k−6 ) · · · ε( k/2,k/2

k/2−1,k/2+1)
0 · · · 0

...
...

...
...

...
...

...
...

ε(k−3,3
2,k−2)

ε(k−3,3
4,k−4)

ε(k−3,3
6,k−6)

· · · ε( k−3,3
k/2−1,k/2+1)

0 · · · 0


if k ≡ 2 (mod 4). Since all diagonal components are non-zeros, we have

rank Ak,2 =

[
k + 2

4

]
− 1. (5.1)

This implies dim kerAk,2 = [k/4] − 1 = dimSk(2). Therefore, from Theorem 5.1 we

have dimW−,0
k,2 = dimSk(2). As a corollary, we can obtain the Eichler-Shimura-Manin

correspondence for Γ0(2).

Theorem 5.2. [9, Theorem 4] For even k, there is an isomorphism

r−,0 : Sk(2) −→W−,0
k,2 ⊗Q C.

Example. We give a few examples.

A8,2 =

(
2 0 −2
4 0 −4

)
, A10,2 =

 2 0 0 −2
4 4 −4 −4
6 14 −14 −6

 , A12,2 =


2 0 0 0 −2
4 4 0 −4 −4
6 20 0 −20 −6
8 48 0 −48 −8

 .

Each of left kernels is spanned by the set {(−2, 1)}, {(8,−7, 2)} and {(20,−12, 0, 1), (7,−5, 1, 0)},
respectively. We can easily find the correspondence with the following bases:

W−,0
8,2 = Q · (x2

1x
4
2 − 2x4

1x
2
2),

W−,0
10,2 = Q · (2x2

1x
6
2 − 7x4

1x
4
2 + 8x4

1x
6
2),

W−,0
12,2 = Q · (x2

1x
8
2 − 3x4

1x
6
2 + 3x6

1x
4
2 − x8

1x
2
2) +Q · (x4

1x
6
2 − 5x6

1x
4
2 + 7x8

1x
2
2).
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Remark. We give an interesting observation for the level 2 version of the matrix Ek,r:
define

Ak,r =
(
ε(s1,...,srk1,...,kr

)

)
(s1,...,sr)∈Sk,r

(k1,...,kr)∈Tk,r

,

where Tk,r = {(k1 . . . , kr) ∈ Zr
≥2 | k1+ · · ·+ kr = k, ki : odd (1 ≤ i ≤ r− 2), kr−1, kr :

even}. Then, numerical computations show that for r ≥ 3 the dimension of the left

kernel of the matrix Ak,r is given by∑
k>0

dimkerAk,rx
k ?
= O(x)r−2S2(x),

where S2(x) =
∑

k>0 dimSk(2)x
k. (I have checked this for r ≤ 5 and k ≤ 30.)

5.2 Almost totally odd MZVs

Denote by Zk,r the quotient vector space Z(r)
k

/
Z(r−1)

k , and ζd(k) the equivalence class

of ζ(k) of weight k and depth r in Zk,r. When ki ≥ 3 (1 ≤ i ≤ r − 1) (odd) and

kr ≥ 2 (even), we call ζd(k1, . . . , kr) the almost totally odd MZVs. Let Uk,r be the set

of almost totally odd indices of weight k and depth r:

Uk,r = {(k1, . . . , kr) ∈ Zr
≥2 | k1 + · · ·+ kr = k, kr : even, ki : odd (1 ≤ i ≤ r − 1)}.

We note that if k ̸≡ r (mod 2), then Uk,r is the empty set. Let us denote by Uk,r
the Q-vector subspace of Zk,r spanned by almost totally odd MZVs of weight k and

depth r:

Uk,r = ⟨ζd(k) | k ∈ Uk,r⟩Q.

The space Uk,2 relates with both even and odd period polynomials on Γ1, which

was discovered by Zagier [15]. We define the space of odd period polynomials W+
k by

W+
k =

{
p(x1, x2) ∈

⊕
(k1,k2)∈Tk,2

Qxk1−1
1 xk2−1

2

∣∣∣ p(x1, x2) = p(x2−x1, x2)+p(x2−x1, x1)
}
.

Note that, from the Eichler-Shimura-Manin correspondence, we have dimW+
k =

dimSk(Γ1). Consider the |Uk,r| × |Uk,r| matrix

Bk,r =
(
c(s1,...,srk1,...,kr

)

)
(s1,...,sr)∈Uk,r

(k1,...,kr)∈Uk,r

,
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where the integer c(s1,...,srk1,...,kr
) is defined in (2.14).

Proposition 5.3. [15, Section 6] For each odd integer k > 0, there is an injective

map

W+
k−1 ⊕W−,0

k+1 −→ kerBk,2.

Since the right annihilator of Bk,2 gives a linear relation among almost totally odd

double zeta values, we obtain the following:

Theorem 5.4. [15, Theorem 3] For each odd integer k ≥ 5, we have

dimUk,2 ≤ |Uk,2| − dimSk−1(Γ1)− dimSk+1(Γ1).

In general, as in the case of the matrix Ck,r, we may expect that any right annihi-

lator (ak1,...,kr)(k1,...,kr)∈Uk,r
of the matrix Bk,r gives a linear relation∑

(k1,...,kr)∈Uk,r

ak1,...,krζd(k1, . . . , kr)
?
= 0,

and all linear relations among almost totally odd MZVs arise from the right kernel of

the matrix Bk,r. For this expectation, we present some numerical evidence as follows.

♣ Numerical dimension of Uk,r.

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1

2 1 2 3 3 4 5 5 6

3 1 3 5 8 11 15 19

4 1 4 9 16 -

5 1 5 - -

♣ Numerical rank of Bk,r.

n\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1

2 1 2 3 3 4 5 5 6

3 1 3 5 8 11 15 19

4 1 4 9 16 26

5 1 5 14 29
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We note that
∑

k>0 |Uk,r|xk = E(x)O(x)r−1, where E(x) = x2

1−x2 . For r ∈ {2, 3, 4},
numerical computations suggest that the generating series of rank Bk,r is given by

∑
k>0

rank Bk,2xk ?
= E(x)O(x)− (x+

1

x
)S(x),

∑
k>0

rank Bk,3xk ?
= E(x)O(x)2 − 1

x2
E(x)S(x)− (x+

1

x
)S(x)O(x),

∑
k>0

rank Bk,4xk ?
= E(x)O(x)3 − 1

x2
E(x)O(x)S(x)− (x+

2

x
)S(x)O(x)2 + (x+

1

x
)S(x)2.
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