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1 Introduction

In this paper, we will be interested in the multiple zeta value (MZV) related to modular
forms (or their period polynomials) on the full modular group I'y = PSLy(Z) and its
subgroup I'g(2). This paper begins by studying an integer E(s1emsr) defined by

Elyeer ki

where Clil,km = (—1)k (le) + (—1)kirrms (ksi;_ll) and O(s,,.s,),(k1,iky) 15 1if 55 = K;

for all 7, and 0 otherwise. In the case of r = 2, it is known that the integer 6(2}22@)
is characterized by three different objects: even period polynomials, the Thara action,
and double Eisenstein series. The first main results of this paper (stated in Section 2)
describe their generalizations: we show that there is an injective linear map from a
certain vector space closely related to even period polynomials to the kernel of the
matrix &, whose entries are the above integers, and relate the integer 5(2::::2: ) with
polynomial representations of the Thara action developed by Brown [3], and with the
Fourier coefficients of the multiple Eisenstein series.

This work is mostly motivated by Brown’s conjecture [3, Conjecture 5]. It is as

follows. Throughout this paper, the MZV is defined by

) =)= S

oo mkr
0<ny < <Ny ny ny

for k = (k1,..., k) € ZL, with k, > 2. We call ky + -+ + k, (=: wt(k)) the weight
and r (=: dep(k)) the depth. Let Z,ET) be the Q-vector space spanned by all MZV
of weight k& and depth less than or equal to r, and ({(2)) the ideal generated by ((2)
in the MZV algebra Z = @,., 2k, where Z; = Q and Z; = Z,gk_l). We denote by
Zy..» the quotient vector space _Z,S“) / (Z,S“‘” +Z,§T) N(¢(2))) and (p(k) the equivalence
class of the MZV ((k) of weight k& and depth r in Z;,. When all k; are odd (> 3),
we call (o(ki,..., k) the totally odd MZV. The Q-vector subspace of Zj , spanned
by all totally odd MZVs of weight k£ and depth r is denoted by

Z20 = (Colky, .. k) € 2y | ki >3 odd>Q.

Conjecture 1.1. ([3, Conjecture 5]) The generating function of the dimension of the



space Z24 is given by

1
1+ Y dimg 208y £ :
k;() b 1 —O(x)y + S(z)y?
where O(x) = 125 = 2®+a%+ 27+, and S(z) = % =P+t 4. ..

We note that the coefficient of 2% in S(z) coincides with the dimension of the space of
cusp forms of weight & on I';, and the coefficient of z* in Q(z)" gives a trivial upper
bound of the dimension of the space 29, i.e. [Sk,|. The power series expansion of
the above (1 — O(z)y + S(z)y?)~! at y = 0 is given by

1

0@y SmE L To@y (O(2)? - S(2))y* + (O(2)* — 20(2)S(z))y®

+ (O(2)* = 30(2)*S(z) + S(z)*)y* + - .
(1.1)
Hence, Conjecture 1.1 suggests that there are QQ-linear relations among totally odd

MZVs related to cusp forms. For this conjecture, we have inequalities

Z dimg Z7%'2" < O(z)* — S(z) and Z dimg Zp4'2" < O(z)? — 20(2)S(x),

k>0 k>0

which follow from results obtained by Goncharov 7, Theorems 2.4 and 2.5]. (Further-
more, we can find explicit relations when r = 2, which is a result of Gangl-Kaneko-
Zagier [6].) Here the notation ), _, apzt < Y ks0 bez® means a; < by for all k > 0.

The second main result of this paper is that the dimension of the space Z,Sid does
not exceed the coefficient of z¥y* in the power series expansion of the right-hand side
of (1.1).

Theorem 1.2. We have

Z dim 242" < O(z)* — 30(z)*S(z) + S(z).

k>0

The third main results of this paper (described in Section 4) are concerned with
the double Eisenstein series for I'g(2). These studies are originated in the previous
work of Gangl, Kaneko and Zagier [6]. We will start with showing the double shuffle
relation, which is satisfied by the double zeta values of level 2 (Euler sums), for the

double Eisenstein series on I'g(2) (Theorem 4.2 and 4.13), and investigating the formal



double shuffle space of level 2 (Theorem 4.3). These results have applications in not
only double zeta values of level 2 but also modular forms on I'y(2): for example, for

even k > 4, we will prove that

. 1 |
d1m< > —mEeR|1<r<k/2- 1>@ < k/2 —1— dim Sp(2)

moad
(Corollary 4.7), and any modular form of weight & on I'g(2) can be written as a
linear combination of the Eisenstein series on I'g(2) and its product (Theorem 4.8).
Furthermore, we will show that the 8s power of the standard theta function 6(q) =
h— q”2 can be expressed uniquely as the sum of two products of the Eisenstein

series on I'g(2) for the cusp oo (Theorem 4.10), as conjectured by Chan and Chua [5].

The contents of this paper are as follows. In Section 2, we introduce the results

concerning the integer E(s1emsr)s which are used in Section 3 to prove Theorem 1.2.
Kiyeoskor

Section 4 is devoted to the study of the double Eisenstein series for I'g(2). In the final

section, we develop a connection between the integer E(s1emer) and period polynomials
oy

for T'y(2), and give some observations on the “almost totally odd” MZVs.

2 Main results

Throughout the paper, the integer E(s1mery defined by the formula

k1,eees ky
r—1
— § R S1
8(;}::2:‘) - 5(51,-“:57“)7(]‘317“'1]57‘) _'_ 6(§1,.‘.,§i+1,...,sr),(k1,...,ki,ki+1,.‘.,kr)Ck‘i,ki_»'_l (21)

i=1

plays an important role. Here, we define the Kronecker delta ds, . s.),1,...k,) DY

1 ifs;=k;forallie{l,...,r}
Oty )s(kipeonsbir) = ' ,
0 otherwise

and the integer C} ;. for s, k, k" > 1 by

- () ()



(Note (S1,.+y8,+y8r) = (S1y-++,Si—1,Sit1,---,5).) The integer € (s1mmer) APpeEALS
Lok

in connection with period polynomials, linear relations among totally odd MZVs, and

the Fourier coefficients of multiple Eisenstein series. Our goal of this section is to

describe these connections.

2.1 Connection with restricted even period polynomials

Let S, be the set of totally odd indices of weight k& and depth 7:
Sk’r:{(lfl,...,kr) €Z>0 | k1++kT:k7 ]{?Z ZSOdd}

Consider the |Sk,| X |Sk,| matrix

S = (%}:i:::iﬁ)) (s1,0.5r) €S

(K1 e k) €Sk,
whose rows and columns are indexed by (sq,...,s,) and (ki,...,k.) in the set Sy,
respectively. Baumard and Schneps [4] showed that there is a one to one correspon-
dence between the space of restricted even period polynomials and the left kernel of
the matrix & . For r > 3, we see below that there is an injective map from a certain

vector space closely related to restricted even period polynomials to the left kernel of
Ehr-

We begin with reviewing and reproving the result obtained by Baumard and
Schneps. Let Vi, = (2512571 | (s1,82) € Si2)o and

W;;’O = {P(l’l,lé) € Vi | p(x1,22) = p(ws — 21, 22) — p(w2 — Ilal’l)}.

This space is called the space of restricted even period polynomials. We only use the
fact, known as the Eichler-Shimura-Manin correspondence, that W, 0 ®qC = Sp(T'),
and hence

dim W, " = dim Sy(T';) (2.2)

(see [6, 10, 11] for the detail). Here, the space Si(I'1) is the C-vector space of cusp

forms of weight k£ on I';. Baumard and Schneps showed the following:

Proposition 2.1. ([4, Proposition 3.2]) Let (as,s,)(s1,s0)es,, b€ @ TOWw vector with

rational coefficients. Then the following assertions are equivalent.



(i) The vector (s, s, ) (s1,50)eS,, 5 a left annihilator of the matriz &y .
(11) The polynomial 2(81’82)651672 (s, 5y 03 ™1 s an element of the space W, .

s1—1 _.so—1

Proof. For a polynomial p(z1, x2) = Z( as, s, 27 x5 satistying p(z,z) = 0,

51,52)ESk,2
one can Compute

p(x1, x2) — p(xe — 21, 22) + (T2 — 1, 21)

— k1—1, . ko—1
= 2 (X cameg)l
1

2
k1+ko=k (sl,sz)ESkg
k1,k2>2

_ ki—1_ka—1
= Z ( Z Gshszg(z}ig»%l Ty (2.3)

(k1,k2)€Sk 2 (51,52)ESk,2
1

+ 5(]?(@ —x1,71) — p(T2 — T1,T2) — p(x2 + 21, 71) + p(@2 + fElJz))- (2.4)

Assuming (ii), from p(z1, x2) = p(x2 + 21, 2) — p(22 + 21, 21), we have (2.4)= 0, and
then (2.3)= 0. This gives the assertion (i). To prove (i)=(ii), we use the action of the
group PGLy(Z) on V;, defined by (f|v)(z1, z2) = f(azy + bas, cxy + dap) for y = (24)

and f € Vi. Set
5:<_1 0>’€:<o 1>’T:<1 1)_
0 1 10 01

For the left annihilator (as, s, )(s),s2)eS, » Of Ek,2, Putting p(w1, v2) = 2(81752)6&“2 Usy 5,07
one easily finds that p|(e + 1) = 0 and p|(§ — 1) = 0, where we have extended the ac-
tion of PGLy(Z) to its group ring by linearity. Using 76 = 6T~ ! and Ted = eTeT 1,
we have p|(1 — T + Te)d = p|(1 = T~! + eTeT™') = —p|(1 = T + Te)T~. Let

G =p|(1 =T+ Te). Then we find that G(0,22) = 0 and

=2x(2.3) =2 x (p(x1,x2) — p(xe — 1, 22) + (T — 21, 21)) — 2 X (2.4)
=Gl(1+0)=G|1-T7"),

which implies G = 0. The assertion follows from

0 =G(x1,x2) = p(x1,22) — p(T2 + 1, T2) + p(x2 + 21, 21)

=p(x1,22) — p(xy — 21, 22) + p(x2 — 21, 11).

s1—1 _.so—1

Lo

I



Corollary 2.2. Let us denote by ker & o the Q-vector space spanned by all left anni-

hilators of the matriz ;2. Then, for each integer k, we have
dimker & » = dim Sy (I'y), (2.5)

or equivalently, rank & o = |Sk2| — dim Sk (I'y).

Proof. This follows immediately from (2.2) and Proposition 2.1. O

We now turn to the result in the case of depth greater than 2. Let Vj, be the | Sy |-

dimensional vector space over (Q spanned by the set of row vectors (asl,.‘.,sr)(sl,...,sw)esk o

Vkﬂ‘ = {( vy Qs spy ')(817~~,Sr)65k,r | Qsy,...,sr € Q}

Hereafter, we identify the matrix A € Mg, |(Z) with its induced linear map A :
Vir = Ver,v — A(v) :== v - A, and denote by ker A the Q-vector subspace of V.,

spanned by all left annihilators of the matrix A. For i € {1,...,r — 1}, let us denote
((31 ,,,,,, ") the ¢-th part of 5(

kyyees kr

by ;¢ .. the i-th part of €s,..., o) in (2.1) and Q?l(j)r the |Sk,r| % |Sk| matrix whose

S1
k1,eees k

. 51 (4)
5(Sl vvvvv ST) - 5(517---7§i+17---737')7(kf17---7ki7k'i+1a---7k'7')0kz‘7ki+l’ ékﬂ“ - <6

Denote by Wy, the Q-vector subspace of V;, spanned by all left annihilators of the
: 1.
matrix [ + € -
Wi = ker (I + &),

T)) n M|Sk,r|(Z)' For (kl, .. ,kr) € Skﬂ“?
the (ki,...,k,)-th entry of the vector (as,, . s )(s

where [ is the identity matrix ((5(51,m,sr),(klwlg

-----

syesey - (I + Qf,(:z) is given by

Z ash_..,sr (6(81,...,ST),(kl,...,kr) + 6(837-~~75r)7(k3’~~-7k7“)Czll,k?)

(517"'75T)€Sk,7‘

= E : a517~~~a5r€<21123>5(337--~a57‘)7(k3r~~:kr): z : a31’327k37~~7k5r€(1‘2122)7

(81500»8r)ESk,r (51,52)ESK_p,2

where p = k3 + - - - + k,. Hence, we find that the space W, splits as the direct sum



in the form

Wk,r = @ <(asl,326(k3,...,kr),(53,...,s,~))(Sl’m’sr)eskm ) (a51’52)(51752)65k—p,2 € )/Vkp,2>Q

0<p<k
(k3,...,kr)€Sp’7-72

(2.6)
We also find Wy o = ker &, which gives dim W, = dim Si(I'y) (Corollary 2.2).

Thus, by (2.6), one can obtain the dimension of the space W, as follows:

Z dim W, 2" = O(x)"2S(x). (2.7)

Here recall that O(z)" = Y, |Sk|2* and S(z) = 3", dim S(T'1)z*. We now prove
that there is an injective linear map from W, to ker & ,.

Theorem 2.3. Let r be a positive integer greater than 2 and Fy, the matriz @1(:7), +
R @,(:;1)(: Er — I). Then, for any v € Wy,, we have (v - Fi,) - Epr = 0.
Furthermore, the map Fy., is an injective map from Wy, to ker &, which from (2.7)
entails
Z dim ker &, 2" > O(z)"2S(x). (2.8)
k>0
Proof. Consider the action EY on Vir = (@7 a5 | (s1,...,8,) € Sk, de-
fined by

f(xbakr)’Er,(‘l) :f(xi-l—l_xiaxla---aﬁji-l—la"')xr)_f(mi-i-l_xiawla"'ai'iv"'axr)

for f(x1,...,2,) € Vi, Foreachv = (as,,...s,)(s1,...on)eS, € Wiy, Writing p(z1, ..., 2,) =

2(51,...,sr)esk ) sy 5,03 2571 we have
p(z1, ... xp) — plxe — 21, 20,3, .. ., xp) + p(Tg — X1, 21,23, ..., Ty)
ki —1 kp—1
— a81,...,5r Z (6(1‘:1122)5(537---737')7(k37"'7k7“))xll Y J;T (29)
(815e-58r)ESk,r ki+-+kr=k
:0’
because of Proposition 2.1. We now prove
p(ars. ) [(BEPED + EDEF V) =0 (r—12i>j>2). (2.10)



Forr—1 >4 > 75 > 2 we can check

p(x1,. .. ,xr)’(Eﬁj)Eﬁi) + EOEU-)

=DP\Tj — XTj-1,Tijt+1 —ZL‘¢,1‘1,...,fj,...,i‘i+1,...,$r)
— DT — L1, Tit1 —Jh‘,lj,...,fj_l,...,i‘i_,_h...,xr)
—Pp\Tj — Xj—1,Ti4+1 —xi,xl,...,:%j,...,i'i,...,xT)

A~

—|—p ZL‘j—.CL'j_l,l'H_l—$i,ZL'1,...,l'j_1,...,ZL’Z',...,{L'T)

+p(IZ‘+1 X, Xj — Lj—1, L1y ooy Tjy e vy Ligly - o - ,.%'T)
—p<£ll'i+1 — i, Ty —iEj,l,l'l,...,.I'j,...,l’i,...,ill'r)
— p(win — i, Lj — IEj—1,iU17---7%—17---7$i+1,---,9€r)

+p(Tip1 — 24, T — Tj1, 1, Ty, Ty, 1)

by using p(z1, a9, X3, ..., z,) + p(xe, x1,23,...,2,) =0, and for r — 1 > i =75 > 2 we

have

P [(BVED + BOE)

=P\Tj — Tj—1,Tj41 — Lj, L1 - - - »ij"%jﬂ’ T ’x’”)

— (%) — 1, Tj1r — T, @15 By, Ty By, - D)
—pl&Z — Tj—1,Tj41 — Tj,T1, - .- ,Z)E'j,[%j+1,~ . 7~T7‘>

+p Tj —Tj-1,Tj41 — Tj, T1yee -y, Tj—1,Lj, .. ,ilj'r)

(
(
(
+p(mj+1 —Xj-1,Tj —1']'_1,1131,...,i‘j,i’j+1,...,l‘r)
—p(ZL‘j+1 —Tj-1,Tj —.Z’j_l,l’l,...,Zi’j_l,Z)AL’j,...7JL,«)
_p(ijrl —Tj, LTj — Tj—1,T1,--- 7£j717xj7ij+1; . 7377‘)
+p($]’+1 — X5,y —xj_l,xl,...,ij_l,ij,...,xr)

=0,

where for the last equality we have used (2.9). A direct computation shows that, for
any (ki,...,k.) € Sy, the (ki,..., k.)-th entry of the vector (as,,..s,)(s1,...s0)€Sn, -



k1—1 kr—1
.« .. '-,ETT

(’31(572 ‘ 6551 € Vi, is given by the coefficient of zj in

s 1 Sr—1 ) 7
E Qg .. ,srxll X, |E7(‘J)’E7€)

(81,...,87‘)651677—

= Z Z asl,...,sr Z 8((?9)1““737«)6((1'21 7777 tr) ijlfl e {L‘ﬁr*l’

t1,ens .
kittke=k \ (s1,..,8)ESk.r ti+otte=k 1

ERRTET: Sy
AAAAA kyr

Sk.r. Combining this with (2. 10) we obtain

because, by the definition of5< ) the product z—:((j;)l ,,,,, ST)5((it)1 ,,,,, ) is0if (¢4,...,t,) &

t ety

v-(elle) reflel )y =0 (r-1>i>j>2)
Then the first statement follows from
(0 Fip) - Ep =0 (€ 4+ ey (el 4+ el )
(

:v-<@£2+--- e;i’”f)-(@é%l ---+@?§JJ“)
=v- Y (ellel) +el el )

r—1>i>5>2

=0.
For the injectivity of the map Fy,, it suffices to check that
kar N ker ./T"]mn =0

Assume that v = (as,,.s,)(s1,..s,)€s,, 15 an element of W, N ker 7y ,. For each
(k1,...,k.) € Sk, the relation Fy,.(v) = 0 gives

51 _
Z <Z (81ss8ig 15eeesS1), (K1 oo B i1 oo o )CkiykiJrl)aSl““’sT = 0.

(517~~~75T)€Sk,r

With this and the relation (I + QS,(:,),)(U) = 0, we have

-1

N s1 _
Z ( 5(51"' w51 )s(K1peesy Z (81seeesBit1seesSr)s (K1 oo Kig 10k )Ckiaki+1)a/sl7"'7sT = 0.

(81,-,57)ESk r 1=2

(2.11)



Furthermore, by (2.6), for any fixed index (s3,...,s,) € Spr—2 (p =83+ -+ 5,), we
see that the relation (2.11) can be computed as follows:

r—1
_ E _ E o s1
0= (6(517""5?)7(]“17"'7]%) (5('§1:'--7§i+1:~--75r)7(k1a~~-,ki7ki+17~--7kr)Ck'i7ki+1)asl?""sT
(51,52)ESk_p,2 i=2

=0(sg,...,80), (g ir) Wt iz g

r—1
_ § § L. S1
6(§17“'7§i+1 yeesS7 )5 (K1 yeeskoi ki1 ,~-~,kr)0k¢,k¢+1aslv---vsf' :

(51,52)€ESk—_p,2 1=2

Denote by «(ki,...,k.;s3,...,5.) the right-hand side of the above equation and
bij{2,...,r} the set of all bijections on the set {2,...,r}. Consider

f(837"‘787‘) = Z a<k17k0(2)7k0(3)7"'7k0(7");837"'7s7’>

r—1
_ E § § . s1
Asy,....5 <5(§1 ----- Bit1sss ST)v(klvko(Z)7--'7ka(i)vka(i+1)7---7ka(7'))de(i)7k0'(i+1)) )

(51,52)€ESK_p 2 =2 ocbij{2,...,r}

Note that for each o € bij{2,...,r} there exists a unique 7 € bij{2,...,7} such that
o(j)=7()ifje{2,...;i—1,i+2,...;r}and o(i) =7(i + 1), o(i+1) = 7(3). For
the above ¢ and 7, we have

A A 51

asl"“’sr (6(‘§17"'7§i+17'--757‘)7(kl7ko—(2)7-'-7ka(i)7ka(i+1)7"'7k0(7')) ka(i) 7kd(i+1)
A A 51 —

+ 5(317~"7§i+17~"78'r)7(k1ak7—(2)7~~~ak7—(i)7k7—(i+1)7~~~7k7—('r))Ckr(i)akr(i+1)) )

and hence for each i € {2,...,7 — 1}, we have

~ ~ S1 —
Z aSly-“vsT‘ (5(§17--~7~§i+17--~75T)7(k17k70(2),--~7ko—(i)7ko—(i+1)7~~v7ka—(r))Cko—(i)vko-(i+1)) 0
oebij{2,...,r}

We therefore have

f(53, st 757‘) = E 5(53,...,ST),(]€0(3),.‘.,kU(T))ak‘l,kg(z),...,k‘g(,,‘)'
oebij{2,...,r}

10



Letting s; = k; for all i € {3,...,r}, we obtain

0= f(k?n . 7kT‘>
= : : 5(k3 7777 k”') (ko(?:) 7777 ko’(r))aklﬂko'@) 7777 ka('r)
o€bij{2,...,r}
- ( § : 5(’% ----- kr)y(ko (35 ka(r)))akl ~~~~~ )
o€ebij{2,...,r}

which gives a,  x, = 0 for all (ky,...,k,) € Sk,. This completes the proof of Theo-
rem 2.3. (]

Remark. Conjecturally, the dimension of ker &, coincides with the coefficient of x*
in O(z)"~2S(x). Therefore, from (2.7) we may expect that Fy . gives a bijection from

Wi to ker &, .. We have a computational evidence up to k = 35 for this expectation.

2.2 Connection with linear relations among totally odd MZVs

S15e-ST

The connection between the integer g(
Kook

MZVs can be stated as follows:

) and linear relations among totally odd

Proposition 2.4. For any right annihilator (a,

we have

(kl ..... kr)ESk,r

In the case of » = 2, Proposition 2.4 was first proved by Gangl, Kaneko and
Zagier [6] by using double shuffle relations. Before we prove this, we illustrate a few

examples of the relations. For r = 2, the matrix

0 0 0 1
-6 0 1 6
—15 —14 15 15
—27 —42 42 28

0 =

is annihilated by the vector (14, 75,84,0). This gives the relation

14¢5(3,9) + 75¢o(5,7) + 84¢o(7,5) = 0.

11



In the case of r = 3, the first example of relations is obtained from the matrix

0 0 0 1 0O 0 0 0 0 O
0 0 0 0 0 0 1 0 0 O
0 0 0 0 0O 0 0 0 1 0
0 0 0 0 0O 0 0 0 0 1
-6 -6 1 6 6 0 0 0O 0 O
E15,3 =
0 0O -6 0 -6 1 6 6 0 O
0 0 o -6 0 0 0O -5 6 6
-15 =14 0 15 0O 0 0 15 0 0
0 0 0 —-15 =14 0 O 0 15 15
—27 —42 42 0 0 0 —42 0 42 28

This has the right annihilator (—14,15,6,0, 0, 36,0, 0,0, 0), which gives
—14(5(3,3,9) + 15¢o(3,5,7) + 6¢o(3,7,5) + 36(o(5,5,5) = 0.

We also give an example for » = 4: computing the right annihilator of the matrix

&13.4, We obtain
70C®(37 37 37 9) - 75C’D (37 3a 57 7) - SOCQ (37 37 7a 5) + 36C@ (37 57 57 5) =0.

For the proof of Proposition 2.4, we use a result obtained by Brown [3, Section 10].
Set the |Sk| X |Sk,r| matrix

518,2 N (5(81’.“7&_(1)7(]61 ..... Fra) ° €(Zr—q+1 """ ST)) (81,587 )ESk 1 (2 S 1 é " 1) (212)

and define
(Note that Cro = &)

Proposition 2.5. (Brown [3, Section 10]) For any right annihilator (ag, ..., ) (k1,....k) €Sk,

of the matriz Cy,., we have
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Proposition 2.4 follows immediately from this and (2.13). We note that, in Brown’s
original assertion (see [3, Section 10]), he uses an integer Oz obtained by the
“Thara action” for the definition of the matrix Cj,. Hence we have to check that the in-
teger C(ir) corresponds to the ((s1,...,s;), (k1,...,k,))-th entry of our matrix Cy,,
for all (s1,...,s.), (k1,..., k) € Sk, Denote by o : Qlzy,..., 2, R Qlzy,...,xs] —
Q[z1, ..., x4 s) the Thara action computed explicitly by Brown [3, Section 6]. We use

the explicit formula

flx)og(xy, ...,z 1) = f(x1)g(T0, ..., 2})
r—1

3 (Flwies = 2@, o By ) = (—1) flay = wiga)gla, s ,)
=1

to define the integer Cs1mmer 85 the coefficient of 2~ ... k=1 in

EYyeenokr
T TS ERE D S
K yeenskor
ki+-+kr=s1+-+sr
Lyeoki >

(2.14)

Then our task is to prove
(c(errsr)) snyes, = Cior (2.15)

(k17~~~7k'r)esk,r

Note that, for integers s;, k; > 1, it is easily seen that the integer € (s in (2.1) is
K1 kor

ki1—1 kr—1 : s1—1
1 ceeqphr 9(

sa—1 sr—1Y\.
lin o] > )E

equal to the coefficient of x x] ST

ki1

ZL‘I - 9 (x'i271 e xil_ll) e Z 8(51 ,,,,, S'r)xl

Kook

gkl (2.16)

The equality (2.15) is verified by induction on r. From the definition of Clonmsr) in
Eiyeoskor
(2.14), the equality (2.15) comes from (2.16) when r = 2. Let

flar, o ap) = o (- (a5 T oayyh) )
ko— ky—
= Z C(Z; ,,,,, Z:)SE]_Q ! M a:ri]_l.

kotethp=sgtots,

ka,....kr>1

13



With (2.16), one computes
e o flay, ) = Z C(s2e sr‘)xil_l ozt ath

- Z 55177516(52 ----- sT)ZEtll_l o ($t12—1 . xir_*ll)
t2

t1+"'+t7‘:k
ki1—1 -
= E 551,1510(&@2,.4.,‘%) E €<t1 ..... tr>:L'11 :L‘Zfr 1
bty Klveokr
t14-+tr=k ki4-4kr=k

ky— _
= Z ( Z 531,1;16(2 ,,,,, :;)6(12 ,,,,, Z:))xll 1'~'C(,‘]:T 1,

kit tke=k ti+ttp=k 7

where k = 51+ - -+s,. Then, since 25 o f(21,...,2,_1) = > Cla sr)xlfrl gl
Kp.o ok
and, for (81, ce ,Sr), (/{1, cey kr) < S]“«, (5517,510(52 ,,,,, sr>€(t1 ..... tr) =0if (tl, e ,tT) ¢ Skﬂn,
to. ot Kok

we obtain

C(Zi ..... 2:): Z 551,1;10(;2 ..... il)&(};si ..... Z;)

,,,,,,,,,,,,,,,,
(tlv-'-vtT‘)ESk,r

Combining this and the induction hypothesis

C/ls9,...,¢ = 5 E/sm 1.8
(1)) s ( (s21n80-2), (b2rbr—2) (z:1,;6:))(52,...,&)65,3,”

(k... ) €Sk, 1 (k2,eskr) €Sk r—1
X 5 - P 6 Sp_2,8p_1:51 AR (6 EL I Sp )
< (52,08r8) (R 0) (krik'yik:")) (5250557 )ESk,r—1 (kg ,,,,, m) (525-00s87)€Sk,r—1 7
(k2o ker)ESk 1 (k2. kr)ESy,r—1

we obtain the equality (2.15).

Before going to next, we introduce a conjecture on the rank of Cy,. This was given
by Brown [3]: the rank of Cy, is equal to the coefficient of z*y" in the power series
expansion of (1.1), i.e.

? 1

1 k Cp by = . 2.17
' k;o rank Gy 1 —O(z)y + S(z)y? (217)

This is called the ‘uneven’ part of motivic Broadhurst-Kreimer conjecture, and sug-
gests that all linear relations among totally odd MZVs of weight £ and depth r arise
from the right kernel of the matrix Cj,. In Section 3, we will show that the rank

of Cr4 does not exceed the coefficient of z*y* in the power series expansion of the

14



right-hand side of (2.17). Theorem 1.2 then follows from

dim 203" < rank Cy,. (2.18)

2.3 Connection with multiple Eisenstein series

The multiple Eisenstein series was first considered by Gangl, Kaneko and Zagier [6,
Section 7]. There is an interesting correspondence, observed by Masanobu Kaneko,
Stephanie Belcher and others, between the Fourier coefficient of the multiple Eisen-
stein series and the coefficient obtained from the expansion of the Ihara coaction
acting on the motivic MZVs. In this subsection, we present a direct relation.

Throughout this paper, we assume that 7 is an element on the upper half-plane.

Definition 2.6. For k = (ki,...,k,) € Z%, with k. > 3, we define the multiple

Fisenstein series Gy (T) by

1
Ok(r) = Cnote) = Gy 20 SR
1 T

N E€ELTHTL

Here the positivity mT+n > 0 of a lattice point means either m > 0 orm = 0,n > 0,

and mt +n > m't +n' means (m —m')T + (n —n') > 0.

Since the multiple Eisenstein series Gy (7) satisfies Gy (7 + 1) = G(7), it has the
Fourier expansion. A formula of this was given by Henrik Bachman in his master
thesis [2].

Proposition 2.7. (Bachmann [2]) For k = (ky,..., k) € Z5, with k., > 3 and

k = wt(k), the Fourier expansion of Gy () can be written in the form

Grook, (1) =Clhr, k) + Y €0 g+ ) &0g0,.4,(7)

s1+s2=k s1+s2+s3=k
+ Z €§:73)982,83,S4 (T> +-t Z gg)gsmwsrq (T)
s1++s1=k S1+tsr_1=k
_|_ Z 5§1)952,~--,8r (T) + gk17~~~7k7‘ (7_)

51+"'+3r:k

15



with some €57 € (C(k) = ((k)/(2nv=1)"" | ¢(k) € 2, where

’Ufl_l e rUkr—l ) .
gkl,...,kr<7_) = Z (k — 1)' — (;; — 1)‘qu1vl+“'+urvr (q — e T/ — 7-)‘
O<ur<--<up > 1 : T :
V] ey Ur €EZ>0

We now show a direct relation between the integer E(s1mer) and the Fourier ex-
Elyeen ki

pansion of the multiple Eisenstein series. Calculating the coefficient of ((s1)gs,,.. s, (7)
in the above Fourier expansion of the multiple Eisenstein series, we can obtain the

integer E(s1mmer) again.
Kl yeeeskor

Proof. The sum of the defining series G, ., (7) can be divided into

2. =2

O<miT4+ni<...<m,74+n, O=mi=--=m,
0<ni<---<np

+ Y+ Y 4t >

0<mi=--=m, 0=mi1<mao=:-=myp O=mi=--my_1<m,
ny<--<np n1>0,n2< - <nyp 0<ny<-<np_1,n-€Z
+ e
+ ) ot ) +
0<m1<-<mp_1=my 0<mi<-<Mp_o=Mpr_1<Myp 0=m<--<my
N1y Np—2€ZL,Np—1 <Ny N1y Np—3,0r €L Mp_o2<ny—1  N1>0n2...nr€Z

oD

O<mi<---<my
N1y, Nr €L

Set 1 1
7, = :
ki, kr (7') (2%\/—_1)k1+"'+kT . Z (7- + n1>k1 R (7- + nr)k'r

<oe<ny
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Then, the forth line in the above decomposition can be computed as

> Gy, (ma7) -+ - Wi,y (M2 )W,y e, (M T) + -
0<mi<-<mp_1=my

+ > Wy oy (M1 7V, (m37) -+ Wy, () + C(R) Y Wiy (mar) -+ W, (m,7)

O=mi1=mao<---<mp O<mo < --<my

— Z 5(51 ..... ZT)E(&)QSQ,...,&(T)'

s1+-+sr=k
5123, 52,080 >1

Here we used the standard facts that

SC R DR (G0 (ot RYCE I Pt ) F OV E

s1+sir1=ki+kit1
5122,8;412>1

and
gsl,-n,sr (T) = Z Wsl (mlT) e Wsr (mTT)’

O<mi<---<my

3 Proof of Theorem 1.2

As mentioned in the end of Section 2.2, we compute the rank of Cj 4, or equivalently
dimker Cy, 4, to prove Theorem 1.2. Recall

(4 _ (4) _
5k;,3 = (531:k1€(52‘53’54))(51,...784)65k,4 ) 5k,2 - (5(51,52),(k1,k2)5(23’54)) (51,-,54) €Sk

kg k. k kg
B (K1, k4)ESk 4 (k1,...,ka)ESk 4

The matrix Cy 4 is defined by Cj 4 = 5,&%2) : 5,5%3) ~Epa

3.1 Shuflle algebra

Let U be a bigraded vector space over Q spanned by all words in noncommutative
symbols {2941 | 1 > 1}:

% = @<Zg, 25y %7y - - > = Q @ @ mkﬂ-,

k>r>0
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where Uy, is the Q-vector space spanned by the set {zy, --- 2z, | (k1,..., k) € Sk},
and the empty word is regarded as 1. Then the vector space U becomes a bigraded

commutative algebra over Q with respect to the shuffie product mr:

Zkl . e Zkr junf Zkr+1 e Zkr+s — Z Zk071<1> “oe Zk071(7+5>' (31)
066T+5
a(1)<-<o(r)
o(r+1)<---<o(r+s)

The important fact is that the algebra U is isomorphic to the polynomial algebra in
the Lyndon words (see [12]). Therefore, for example, we see that the set of monomials
in the Lyndon words {zx, 2k,, zs, W zs, | (K1, k2), (81, 52) € Sk, k1 < ko, 51 < s} is a
basis of Uy, 5.

Proposition 3.1. For any odd integer p > 3, the set {z, U 2, 2k, 2k | (K1, k2, k3) €

Sk} is linearly independent over Q.

Proof. For convenience, we put d = dim Uy 3 = |Sks| and {2k, 2k, 2k, | (K1, k2, k3) €
Skat = {vi}d,. Let {v/}¢, be the basis of Uy 3 consisting of monomials in the
Lyndon words (with respect to the shuffle product m). Then, we find that the set

{z, m v/ |1 <i<d} is linearly independent. We write v; = 5%

=1 @i,jv; and set the

d x d matrix A = (a; ;). Assuming Zle pi(zp I Ui) =0 for p; € Q, we have

d d

Z Zpiam- (2zp m v}) =0,

j=1 i=1

which implies (p1,...,pq) - A = 0. Since the matrix A is invertible, we have p; = 0 for

all 7, which completes the proof. O

Proposition 3.2. (i) For odd integers ki, ke > 3 (k1 # k2), we denote by {vy,...,v4}
(resp. {wy,...,wp}) a basis of Vi, 2 (resp. Vi, 2). Then the set {v; m w; | 1 <i <
g, 1 < j < h} is linearly independent over Q.

(i1) For an odd integer k > 3, denote by {v1,...,v,} a basis of Vyo. Then the set
{v; mov; |1 <i<j<g} is linearly independent over Q.

Proof. For (i), let {v/}?_, (vesp. {w]}" ) be the basis of Uy, » (resp. Wy, ») consisting
of monomials in the Lyndon words. We write v; = ) a;;v; (vesp. w; = Y b;jwj),
and set the g x g (resp. h x h) matrix A = (a;;) (resp. B = (b;;)). Assuming
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> iy in (i W wy,) = 0 for py, 4, € Q, we compute

0= Diris(vy, m wy,)

1<ii<yg
1<io<h
- E pllﬂz( E alh]lvjl) H_I( E b22732wj2)
1<ii<yg 1<1<yg 1<ja<h
1<ia<h

_ . B . . . . / /
= E < E p11712a117J1b127]2>Uj1 I W, -

1<ii<g 1<iisyg
1<ja<h 1<ia<h

Since the set {U91 o w, | 1 <71 <g,1 <js <h} is linearly independent, for each
J1,J2 (1 < ji < g, 1< js < h) we obtain

Z ngl)bi%jz =0,

1<is<h

where qgl) = D 1<iy<g Piria®ir,jr- This shows that for any ji (1 < ji < g), we have

(qﬁjl),...,q}(bjl)) - B = 0, and hence (qijl),...,qi(ljl)) = 0, because the matrix B is
invertible. Therefore for each iy, 71 (1 <iy < h, 1 < j; < g) we have

E Diyin Qiy jn = 0,

1<i1<g
which implies (p1y, ..., Pgi,) - A = 0. This gives p;, ;, = 0 for all iy, 5.

(ii) Similarly, we assume

0= Z Piy iz (Vi 1 V;)

1<iy,i2<g

. / /
= E ( E pi17i2ai17j1ai27j2>vjl I Uj2

1<j1,J2<g 1<i1,i2<g

for pi, i, € Q with py, 4, = 0if 4, > ip. Since the set {v; m v} [ 1 <4y < iy < g} is
linearly independent, for any ji, j2 (1 < ji,j2 < g), we find

0= E Din jio @iy j1 By, jo + E Piy 2 iy ja Qig 51

1<i1,ia<g 1<i1,ia<g
= E (pil,iz + piQ,h)ail:jlaiQJé'
1<iy,i2<g
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Putting P, i, = Piy.i» + Dis.iy, We can prove P, ;, = 0 for all iy,is (1 < 4,0y < g) in
much the same way as in the proof of (i). Since

iy ig 11 <13
Rlui2 = 2pi1,i1 7’1 - Z2 ?

Dis iy 1 > iy
we have p;, ;, = 0 for all 7y, %s. O

Corollary 3.3. Let Vi and Vs, be subspaces of Vi, 2 and Vi, o respectively. We define
the subspace S(Vi, V) of Vi sksa by

S(V1,Va) = (wy m wy | wy € Vi, ws € V2>Q.
Then, if Vi NV =0, we have
dim S(V, V,) = dim V; x dim V5,
and if Vi D Vs, we obtain
dim S(Vi, Vo) =dim V) x dim Vo — #{(7,7) | 1 <7 < j < dim V4}.
Proof. This is a direct consequence of Proposition 3.2. O

3.2 Key identities

We start with a discussion of kerté',ifq). By definition (2.12), for ¢ € {2,...,r — 1} the

matrix 5,82 can be expressed as the direct sum

r)

1<p<k
(P1,Pr—q)€Sp,r—q
= dmg(??)q,qa e a53q,qv§3q+27q7 EE g3q+27g> o Em3(r—q)a)-
‘Sk73q,r7q| ‘Sk73q72,7‘7q|
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We therefore have

ker tg,g;; — @ (tpyopna (V) |V € ket &, N0, (3.2)

1<p<k
(P1s-Pr—q)€Sp,r—q

is defined by

where the injective linear map ¢, . p,_,

Lplv“)p’l‘*q : Vk—qu Vk,’f'?

(aklwwkl]>(k1r"7k(I)€Sk*P,q (5(p1,w:prfIZ)’(klwwkrfq) ) akr—q+17~--akr) (k17~--,kr)€5k,r :

The key identities in the proof of Theorem 1.2 are concerning the following two

linear maps: for an odd integer p > 3, set

Ch,:)%_pg — L%Aa C&3)

(aklvk%kﬁ})(k17k27k3)esk7p,3 ’ ( E : (5107760(1) .a/ko'(2)vko'(3)7ka(4))(k17k27k37k4)65k747

0€By
o(2)<o(3)<o(4)

and, for an even integer p > 6 and (py, p2) € Sy, set

Opips * Vie—p2 = Vi, (3.4)
(k1 ks )k )81 ( Z O(p1,p2), (ko 1) Firzy) ak‘o<3>,ka(4>)(kl,kz,kg,k4)esk,4'
c€By
o(1)<o(2)
o(3)<o(4)

We note that using an isomorphism 7 : Vi, — Uy, given by (s, .5, )(s1,....5 )8 F

2(31,...,sr)esk,,~ sy, 50251 * ** 25, one has T(O,(v)) = z, m 2(51782753%3&3 sy 59,55 751 P52 Zss
forv = (asl,82783)(81752,83)651@,3 € Vk73> and 7T-(@phpz (1})) = Zp1Rp, W 2(51,32)6516,2 (sy,52%51 %52
for v = (s, s,)(s1,52)eS02 € Vij2, because of (3.1). Therefore, by Propositions 3.1 and

3.2, we find that the maps ©, and 6, ,, are injective.

Lemma 3.4. (i) For each odd integer p > 3 and v € ker'&;_, 5, we have
1,4 (6p(v)) = 1p(v) € ker ‘€LY (3.5)
(ii) For each even integer p > 6, (p1,p2) € Spo and v € ker*E_, 2, we have

€A (Ea(Op () = D E(uayinn(v) € ker'E. (3.6)

P1,P2
(t1,t2)€Sp,2
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Proof. These are shown by direct calculations. For (i), let v = (aky ko ks ) (k1 ko ks) €55_p.s-
For (ki,...,ks) € Spa we denote by bkl’._’k4 the (kq,...,ks)-th entry of the vector
QP(U>7 so that bl(czz),.,.,m = (517,’61 Ay ks kg T (5P,’€2ak1,k3,k4 + 6pak3ak1,k2,k4 + 6pak4ak1,k2,k3 . Then
the (s1,...,s4)-th entry of the vector ‘& 4(6,(v)) can be computed as follows:

B ot Y Y (s k) Cot iy + Osansa) (k1) Ctopy + Osansa). (i o) Cot )
(k17...,k4)eSk74

= 5p»31a327537s4 —"_ 5p732a31753734 —"_ 5p733a31a32334 —"_ 5p734a51a32333

+ Z Ay k3 kg (5(53,54 k3,k4)Cp ko + 5(52,84),(27,164)012,1@3 + 5(82783)»(17,’62)012,164)
(k27k3,k4)esk_p,3

+ Z Ak ks, ka ((5(53,34) (k37k4)0k1 P + 5(52»34 k1’k4)cp k3 + 5(32’33)’(’“171’)02;#4)
(k1,k3,ka)ESk_p,3

_'_ Z akf1,k2,k4 (6(83,84),(}7,]64)0:;7]92 _'_ 5(52,54)7(k17k4)02;,p + 5(5%33)’(]@17]‘:2)0;,1]{34)
(k1,k2,k4)ESk—p,3

+ Z Qe ko, ks (5(53754),(k3,p) C]ji,k;g + 6(82,84)7(k1 p) Cz;,kg + 5(52783),(1617’92)012,13)
(kl,kg,k3)€sk,p73

= 517781&82753,84 +9 s20s1,53,84 T 517,83@51782,84 + 517,84@81782,83

+ Z @k k2 ks (5(83784 (K2, k3)C g T 6(82784 (p, ka)Ckl ke T 5(52,33) (p, kl)C’i;,kg)
(kl,kz,k3)€sk_p73

+ Z Ay k2 k3 (5(55,54) (k2,k3) Ckl P + 6(82,84 (k1 ks)Cp ko + 5(52,53),(k1 :p) Cli;,kg)
(k1,k2,k3)€Sk—p 3

+ Z Qkey kg k3 (5(83,54),(10,163)0;1&2 + 5(52,34),(k1,k3)0}2,p + 5(82783)»(k17k2)cz,1k3)
(k1,k2,k3)ESK_p 3

+ Z Ak ko, ks ((5(53,84),(16347) Czi,kg + 5(52,34),(k1,p) Oli;,ks + 5(32,83)»(’?17162)0;;,17)
(k1,k2,k3)ESk—p,3

517)51@32’33734 + 5 ,32a31a53:s4 + 51)733&31,32734 + 51)7340“51,32733

S1 S1
+4 ,52 E Ay ko ks (5547’63 Ckl,kz + (5537’61 Ckg,kg)

(k1,k2,k3)ESk—p,3

S1 S1
+ 51’783 E Ay ko ks (6827’61 Ckg,kg + 6847’“3 Ck1,k‘2)

(k1,k2,k3)ESk_p,3

S1 S1
+ 617,84 E , Ay ko, ks (68371?3 k1,ks + 5827k1 k27k3)
(k1,k2,k3)ESk_p,3

= 517751 a527537547

where for the third equality we used C,‘z:,kj + C,‘;lk = 0 and for the last we used the
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relation '€x_p3(v) = 0. This gives (3.5). For (ii), we denote v = (ar, ky) (k1 kn)eSi_p
and O, p, (V) = (B 7%) ks, ks, s defined in (3.4);

..........

(p1.p2) _
bkl,...,k4 = 5(p1,p2),(k1,/€2)ak3,k4 + 5(p17p2),(k1,k3)ak27k4 + 6(p17p2)7(k17k4)ak2,k3

+ 5(p1,p2)’(k2,k3)ak1,k4 + 6(?17P2):(k2,k4)ak1,k3 + 5(?1 p2), (k3 ka) Ay oz -

A similar computation shows that the (si, . . ., s4)-th entry of the vector &g 4 (O, p, (v))

can be reduced to

) ( ) ) S S S
bglf..}.o?s)zx + Z bklil,..l.),zkzl (5(53,84),(k3,k4)0ki,k2 + 5(82754)’(k1,k4)ck;,k3 + 5(82783)7(k17k2)ck91,,k4)
(kl,...,k4)€Sk74

_ (s1
- Opl,pg (a83,84 + sy 5 T a82,83) + 5(171,?2)7(81782)@83,54 + 5(171,102)7(51,53)@82754 + 5(?17172),(52,83)0’82753'

(Note ay, 5, = 0 whenever s; + s9 # k —p.) We denote by bnglp 23)4 the right-hand side
of the above. With the relation '&;_,2(v) = 0, we find that the (sq,...,s4)-th entry

of the vector té’,gfg ((bl(c[it.7??134)(k17~.~7k4)€sk,4) can be computed as follows:

P ( . S S
b N BE) (614, ) k) Oy F 1)) Ci )
(K1,e.ka)ESk 4

(p17p2)
81,--+,54

) S bk O8 ks (0o ) (ks ko) Wk s+ O ). (s ) T s
(k17...,k4)65k74

k1
+ 81 p2). (k) Wia ey + Ot (g ey + Qg oy + Ay i)

) S bk O8 ks (0o (ks ko) Wk s+ O ). (s ) T s
(]{:17...77454)65’;@74

k1
+ 5(?17P2),(k1,k4)ak2,k3 + Cpl,pg (ak3,k4 T Qg kg + akz,k3)>
_ (s1
- Opl,pg (a83,84 + Usy 54 + a82,53) + 5(171,102)7(81,82)&83,54 + 5(171,102),(51,83)&82784 + 5(;01,172),(82,83)&82783

+ Z (5(191 7p2)7(k17k4)6(51754)7(klvk4)cliz,k3 N 5(191 ,pz)7(k17k2)6(81783)7(/f17k2)01i§,k4ak3,k4)

S1 S S2
+ Op1,p2 E : (5(81784)7(7%,k4)0k2,k3ak27k3 + 5(81753)7(k17k2)0k3,k4ak37k4)

(k)17...,k‘4)€5’k,4

_ s1 _
- 5(171,]72)7(81,82)@83,84 + Cpl,p2a53,84 = 8(;1723)6153,84'
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Therefore we have

tglgfl?z (tgk:‘l (Qpl,pz (1}))) = Z t1 2 Ltl to (U)

m ;DQ
(t1,t2)ESp,2

which is annihilate by té’,gg because ‘E_p2(v) = 0. This gives the assertion (3.6). [

Corollary 3.5. (i) For v, € ker'&_p3 and a, € Q, let v =37, , a,0p(vy). Then
tE€k4(v) = 0 if and only if v = 0.

(ii) For v, € ker'&;_, o and al?, € Q, letv = D <pek 2a(pr.pa)ESy s agi),pg@phm(vp).
Then tE,gfg (*Ea(v)) = 0 if and only if (az(ﬁzpz)(phm)esw € ker'E, o for all p.

Proof. For (i), applying '€j.4 to v, we obtain the assertion from (3.2) and (3.5). For
(i), from (3.6) we have

t5(4) tEha(v Z Z ( Z aépi%p25(tl,t2))Ltlth(Up) € ker 5,&2)

p1:P2
1<p<k (tl tz)ESp 2 (pl,p2)€5p72
By (3.2) the above sum is zero if and only if each coefficients of ¢, +,(v,) is zero, i.e.

(agi)m)(;,,hpz)egzm2 € kert&, 5 for all p. O

3.3 Proof of Theorem 1.2

Note that from (3.2) and Corollary 3.5, for all p (1 < p < k) the subspaces (O,(v) |

v € ker'E_,3)g of Vg4 only intersect at the zero vector. We set

,gl) = @ (O,(v) | v € ker'&E_p 3)0-

1<p<k

Since the map 6, is injective, we obtain dim g,g” =Y tepek [Spa|-dimker ‘&, 3. Let

2
gzg;,,z = { Z Wp1,p2Op1 ps (v) ‘ (apl,pz)(pl,m)éspz € Vpa, v € ker tgkﬁ*lh?}'

(p1,p2)ESp,2

Since we find W(Q,f;) =(vmuw|ve Yy, we m(ker'&_,2))q, from Corollary 3.3

we obtain
dim Q,Ef; = ‘Spg‘ - dim ker t(c:k,pg — 5p,k/2Rp7
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where R, = #{(i,7) | 1 <i < j < dimker’&,_,2}. Note that by Corollary 3.5 (ii) the
spaces Q,(f; (1 < p < k) only intersect at the zero vector. We put

2 2
¢? = P .

1<p<k

Corollary 3.5 (i) implies that ker®&g 4 N g,g” = 0. Then by Lemma 3.4, we have
ker‘Cpq D (ker'Sa @ GV) + G2,

To compute dimker’Cy 4, we discuss the intersection of the right-hand side of the
above spaces. Since we have dim Q,(Cl) = dim kerté’,gg, from Corollary 3.5 (i) we find
that the map ‘&4 : g,(j) — kerté',gg is an isomorphism. This shows that for any
v E kert(&gg - Eka) we have ‘& 4(v) € kerté',gg = t5k74(g,£1)). Then there exists
v e Q,E;l) such that v — v’ € ker?&; 4, which implies v € ker & 4 @ g,‘j). We therefore
have kert(é’,gg Era) =ker'Ep, @ g,f}). From Corollary 3.5 (ii), the intersection of the
spaces kert(&ig - &) and g,(f) coincides with the space

@ ( Z CL;I;),PQQPI:IW (%) | vp € kertéfkfp’% (a}(711))7p2>(p17p2)65p,2 € ker t5p72><@7

1<p<k (p1,p2)E€Sp,2

and, by Corollary 3.3, its dimension is given by 21<p<k (dim ker’E,o-dimker &, 0 —
Opk/2Ry). Then we have

dimker ‘Cy. 4 > dimker ‘&, 4 + Z |S,1] - dimker &y 3

1<p<k

+ Z (’Sp72| - dim ker tgk_pg — 5p7k/2Rp> — dlm(kert(é'g‘) : (9&4) N g]£2))

1<p<k

= dimker ‘& 4 + Z 1S, - dimker"&;,_, 5 + Z (|Sp2| — dimker‘E, ) - dimker &y, 5.

1<p<k 1<p<k

This gives

Z rank Cy 42" = O(x)* — Z dim ker 'Cp, 42" < O(2)* — 30(x)*S(x) + S(z)?

k>0 k>0

because of the identity (2.5) and the inequality (2.8). Theorem 1.2 follows from this
and (2.18). We complete the proof of Theorem 1.2. ]
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Remark. In general, we conjecture that the dimension of the kernel of the matrix Cy,

is given by

dim ker ’Cy, , ~ dim ker '&y.,. + Z ( Z rank C,, - dim kertc‘fk,m,q)

1<q<r—2 1<p<k

Then, by induction on r, the uneven part of motivic Broadhurst-Kreimer conjecture
(2.17) follows from the (conjectural) equality »_,.,dimker & ,z* = O(z)""?S(z) (or
equivalently, the surjectivity of the map Fj, in Theorem 2.3).

4 Double Eisenstein series for [';(2) and modular

forms

4.1 Double shuffle relation of double Eisenstein series for
cusp oo
We start with a brief introduction of the double shuffle relation of double Eisenstein

series for I'g(2) = {(2%) € I'; | ¢ = 0 (mod 2)}. For integers r > 3 and s > 2 and
a,b € {0,1} we define the double Eisenstein series Gl (1) by

Gs,?;b) (1) := (27r\/—_1) - Z L

(2mT 4+ n) (2m/T +n')s (4.1)

2mr+n>2m/7+n' >0
n=a mod 2
n’=b mod 2

For an integer £ > 3 and a € {0, 1}, we define the function Géa) (1) by

_ 1
G\9(r) = (2nv/—1 g —_.

p(T) = (2m ) Z (2m7 + n)k (4.2)

2mt+n>0

n=a mod 2
Note that these give non-zero holomorphic functions on the upper half-plane even
when k is odd. In particular, when k > 4 is even, the function G,(CO) (1) is the Eisen-
stein series for I'; and the function G](Cl)(T) is the Eisenstein series for the congruence
subgroup I'g(2) associated to the cusp co. The product of these functions is express-

ible as a Q-linear combination of double Eisenstein series. Indeed, for r,s > 3, we
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obtain

GO(1)GO(7) = GLO(r) + GOY(7),
GG () = GEY(r) + QLY () + G (7).

This follows from the obvious decomposition of positive lattice points in (Z7 + Z) X
(Z71 +Z) into three disjoint subsets {(m,n) | m > n}, {(m,n) | m < n} and {(m,n) |
m = n}. On the other hand, the standard partial fraction decomposition

Loy [ ) ()
il LGl ) R G DR

5,521

] (r,s € Zso)

deduces the different expressions

cmedm = ¥ ((121)esm+ ((2))elm).
crmetn = ¥ ((121)+(12)) e

TR
by letting * = m7 + n,y = m/T + n’ and summing all positive lattice points on
Z7 + 7. These equalities give a collection of relations among double Eisenstein series,
which we call the double shuffie relation. To complete these relations, we now give
a regularization of the series Gﬂ;b)(T) in (4.1) for any (non-converging) r,s > 1, by
using g-series.

The constant term we use the double zeta values of level 2 defined by

(D)= Y —

ntng’
ny>ng >0 1772
ni=a mod 2
ne=b mod 2

We also need (W (k) =Y. n>1  n~*. By virtue of the regularization of the multiple

n=a_mo:

L-values (see [1]), we put ((V(1) = L(T' — (—1)*log2), and for s > 2

(-1)°

Co9(1,5) = 2¢O()T = S (1g2)V(s) = (s, 1) = BaaC s + 1)
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where T is a formal variable. We will write (**(r,s) = ¢**(r, s)/(2my/—=1)"**. The
following functions arise from the Fourier expansion of fobs’b)(T); for positive integers
r,s and a,b € {0,1}, set

r+s
(a,b) _ <_1) autbv, r—1, s—1 _um+om’
Irs (Q) ~ orts (_1) u voq )
’ 2rt (r—l)!(s—l)!m§>0
u,v>0
@(g) = T Nyt gum
9" (q) QT(T_U!UEWO( ) u" g™,

and, for £ > 0, let

—(a <_1)k au um
7 (q) = sV > (=1 mutgm

u,m>0

For integers r, s > 1, we define

29 (q) =6,29%(q) — 0,191(q) + 051771 (@) + 99(@)) + 6,105,100 (g),

which is 0 when r > 3 and s > 2. Here we put

od®(q) =5 (@), 0"V (g) = —a®Y, atV(g) = 25" (0) + 5 (0).  (43)

Remark. In the original paper [9], we took a®D(q) = g5 (¢q) — %ﬁéo)(q) = —a0(g)

and oMV (q) = 4¢3 (q) + %géo)(q) instead of (4.3). This is incorrect, and was pointed
out by Professor Jianqiang Zhao. The author would like to thank him.

Definition 4.1. For integers r,s > 1 and a,b € {0, 1} without (r,s) = (1,1), (a,b) =
(0,0), we define the reqularized double Eisenstein series G5 (q) by

- 1 N
G (q) =V (ry5) + 9147 (a) + 727 (a) + 91 ()¢ (s)

EPIRERR (<1?5 (p Do+ o (P2 @).

(Note that when r > 3 and s > 2, each of regularized double Eisenstein series coincides

with the defining series given in (4.1).) For & > 1, we also define the g-series G,io)(q)
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n>1 djn

kl 'Z(Z 1)ddh- 1>q,

G0 = )+ s 3 Sy
(
<

which coincide with the functions G](CO)<T) and G,(:)(T) when £ > 3, respectively. Then

the regularized double shuffle relation can be stated as follows:

Theorem 4.2. ([9]) For any integers r,s > 1 and a,b € {0,1} with (r,s) # (1,1) and
(a,b) # (0,0), we have

G(q) G (q) + = (3,25 (q) + 6529 (q))

= G (q) + G (q) + 6.,G).(q)

B =1\ (a+bd) =1\ (a+ba)
N i+j;+s (<T - 1) G+ (5 — 1) Gy @)

4,521

B~ =

Proof. As in [6], the proof of Theorem 4.2 is done by dividing into three parts: the

constant term, the imaginary part and the combinatorial part. We only prove the
() _ _(-277)Bp

and [y, and set

2p+1pl

combinatorial part. Let 5,(,0) T Hp,

B =g ar X 5 (o (L2)el 0+ o (1))

i+j=r+s
For integers r, s > 1, we define the combinatorial double Eisenstein series Qﬁ,as’b)(q) by
(ah) 1 _(ap)
gr,37 ( >_grs ( )+B ( ) 487",57 (Q)

Then, our task is to prove for all integers r,s > 1

(a,0)
«
P a) = 0157 a) + 6% + dus (d0) — 6,004 )

. 1—1 (a+b,b) 1—1 (a+b,a) (44)
- ((r - 1) G5 (q) + (3 3 1) g (q)) ,

ij>1
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where P27 (q) = 0 (0)9” (@) + 579" (@) + B 9” (0) + § (529 (9) + 6,29 ().
Consider their generating functions as follows:

1,1
GO(X) = 3 g (g)x* al 2)(61) X,
k>0
g(ab) X, Y Zgab) Xr lyrs— 1
r,5>0
P Z P(ab XT lys 1
r,5>0

Then the relation (4.4) is equivalent to

G(X) — gO(Y)

PED(X,Y) = GD(X,Y) + G0, X) + danan——— 5 — (4.5)
=G (X 1 Y,Y) + Gttt (X 4V, X). (4.6)
To prove this, we compute
(a) yk—1 1 1 1
= X =+ 00—,
;ﬂk I(—D)eexz—1 1 009x
a 1 —_ua “
X = Tl X =y T
k>0 u>0 -4
1 uX w
(@) — —=(a) yrk—1 _ au ,— %> q —(a)
g(X) = X o (—1)"™e 2 ——= —2g5"(q) |,
Z o (% TP
Z gab X lys 1
r,s>0
1 _uX4vY qu unrv
_ (_1)au+bve === ” —,
4 ubZ>0 1= q 1= q i
BUN(X,Y) =Y B () XY = (gO(Y) — g (X))BUTI(X = Y) + g (X)BO(Y),
r,s>0
Z g(a b) Xr lyrs—1
r,s>0

=X g0) =Y g0(X) + X g9 (X) + g (X) = 9 () + 5 0) + oV (o)
We note that the left-hand side of (4.5) can be written in the form

PED(X,Y) = g (X)g0 (¥ g ()0 (1 gD (V) FO(X)+5 (X 50(X) +Y (X)),
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The right-hand side of (4.5) can be computed as follows:

I
N S T S S

(R.HS. of (4.5)) = g""V(X,Y) + g® (Y, X) + D (X, V) + P9 (Y, X)
1 GW(X) - gW(y)

2(@b) (X, Y) + ZE(b,a)(}/’ X) + (5(a,b),(1,1) X _V

_I_

(X)) = 1(6(%) + (V)

4
(92(X) — g (V) - coth (X ~-Y + 27;\/—_1(a - b))

(X)BO(Y) + ¢®(Y)B@(X) — 5(a7b)7(171)g(1)<)§(> : gfu)(y)

X —Y +2my/—1(a—b)
)

+
QA
&

+

(¢ (X) = gO(1)) - coth (

_l_
I I R O

(X -g"(X) +Y - g9(X) + g“U(X) + g (V) + a“D(g) + " (g))

gW(X) —gW(y) oty
R X-Yy 2

[o9)

]

+

=

(
= P"Y(X,Y).

)

For the right-hand side of (4.6), we can check

(RHS. of (4.6))
_ g(a+b,b) (X + KY) _'_g(aer,a) (X + Y, X) + ﬁ(aer,b)(X + }/7 Y) + 5(a+b,a) (X + Y, X)

1 1
+ 18‘““”“ (X+VY,Y)+ Zg@“’va) (X +Y,X)

. X+Y_, 1 1,
=g (X)g" (V) = T g X +Y) = 55 () - e X+ Y)
+ W) X) + ¢ (X))
1
1 (X-gPY)+ Y- g (X) +2(X + V)X + V) + 20 (X +Y)
+ 255 (0) = 3 (@) = 5 (0) + @D (g) + ol g))
= P (X Y),
which complete the proof. ]
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4.2 Formal double shuffle space for level 2

In [9], we proved that the space spanned by double Eisenstein series Gg,?_m(q) (2 <
i < k/2 —1) contains the space of cusp forms on ['y(2). We now give a proof of this
result. The proof it is important to study the formal double shuffle space, which was
first considered by Gangl, Kancko and Zagier [6] in the case of I';.

Let k > 2 and DZ}, be the Q-vector space spanned by formal symbols Z2%, Z2¢,
Z00, P°¢ P°° (r,s > 1, r+s=k), and Zp with the set of relations

rs) T rsy tors

oe oe eo 1 —1 oe 1 —1 oo
PP =20+ 22 =) ((T - 1) Z2S + (S B 1> Zm-) , (4.7)

i+j=k
3,j>1
00 oo oo o 1 —1 1 —1 eo
Pr,s :Zr,s +Z5,T+Z/€ = Z r—1 * s—1 Zivj <48)
i+j=k
4,j>1

forr,s > 1, r+ s =k, so that

Dz {Q-linear combinations of Z59, Z2¢, Z22, PYS, P2, ZR}
ke (Q-linear span of relations (4.7), (4.8))

Since the elements P2¢ and PP¢ are written in Z’s, we can also regard the space as
given by
{Q-linear combinations of Z82, Z°¢ Z°° Z°}

7,87 7,87 7,87

DZy =
g (Q-linear span of relations (4.9), (4.10))

where the defining relations (4.9) and (4.10) are

oe eo 1 —1 oe 1 —1 0o
Zr,s + Zs,r = Z ((7,, . 1) Zi,j + (S . 1> Zi,j) ) (49)

it+j=k
i,j>1

1—1 1—1
zevzzez- Y ((02)+(10)) 2 1o

i+j=k
4,521

Note that the relations (4.7) and (4.8) (as well as (4.9) and (4.10)) correspond to
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those in Theorem 4.2, under the correspondences

72— GOV(g), 7°° +— GI0(q), 2°° +— G5V (q), 2P «+— G\ (g),

1
P22« GV ()G (q) +

: 1029 (0) + 0231 (9)) (4.11)

P22+ GV ()G (q) + = (6,29 (q) + 05297 (q)).

Theorem 4.3. ([9, Theorem 1]) Suppose k is even and k > 4. In DZy, we have
()

k—2

1
Sz, = s (4.12)
r=2

r.even
. oe . : ‘ o 00 [+ -
(i) Each PYp_, with v even can be written as a Q-linear combination of P29 (i, j

even,i+ j = k) and Zp

Proof. Consider the generating functions

RXY)= > ZRXTIY 30(X)Y) = Y ZoeX Y
r+s=~k r4+s=~k
PXY)= > ZRXTy
r+s=~k
Here and in the following, the sum ) . always means ) te=k.rs>1- Lhe double

shuffle relations (4.9) and (4.10) are equivalent to the relations

IFEXY) + 30V, X) = 38 (X + YY) + 3°(X + Y, X), (4.13)
-1 _ Yk—l

3R(XY) + 300V, X) + Z; X_v

=3°(X+Y)Y)+3°(X +Y, X).
(4.14)

Substituting X = 1,Y = 0 in (4.13) and X = 1,Y = —1 in (4.14), we respectively

obtain

Zlgfl,l + Zle,?c—l = k: 1,1 ZZSE r (4-15)
k—1

23 (1) 4 2R =225 . (4.16)
r=1
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We divide (4.16) by 2 and add (4.15) to obtain

1
§Zz=222;’zr

T €U€7’L

and hence (i) of Theorem.

To prove (ii), we need the following lemma.

Lemma 4.4. Let k > 4 be an even integer and a; j,b; ;, c; j be rational numbers. Then
the following two statements are equivalent.
1) The relation

Z aij 255 + Z bij 25 + Z cijZi? =0 (mod QZp)

i+j=k i+j=k i+j=k

holds in D2y, (as before Y, ., means 3, .y ;o).
2) There exist some homogeneous polynomials F,G € Q[X,Y] of degree k — 2
such that

F(Y1, X1) + F(Xa,Ys) — F(Xp, Xp + Y2) — FI(X3 + Y3, X3)

+ G(X3,Y3) + G(Y3, X3) — G(X1, Xy + Y1) — G(X1 + Y1, Xy)

= Z <I; : 12> ai ; XY 4 Z <I; : 12> b X5V 4 Z (]; : 12) i XY
it+j=k it+j=k i+j=k

Proof. This is an analogue of Proposition 5.1 in [6]. Take F(X,Y) = (*-7) X1y

(and G = 0) and compute the coefficients of F(Y1, X1) + F(Xs,Y2) — F(X5, Xo +

Ys) — F(X3 + Y3, X3) using binomial theorem. Then the relation in 1) is exactly

(not only mod QZp but as an exact equality) the relation (4.9). Similarly, by taking

G(X,Y)= (*"2)X"'y*"! (and F = 0) and computing the coefficients of G(X3, Y3)+

G(Ys, X3) — G(X1, X5 +Y1) — G(X1 + Y1, Xy), we see that the relation in 1) is the

relation (4.10) modulo QZ§. Since any relation of the form in 1) in DZ, should come

from a linear combination of (4.9) and (4.10) modulo QZP, and any homogeneous

polynomial is a linear combination of monomials, we obtain the lemma. O

Using the lemma, we are going to produce enough relations of the form

Y o P= ) B.P (mod QZP) (4.17)
rJr_s k Tst k
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such that we can solve these in P’¢. In view of the relations

Po° = 7°° 4 7%, P2° = Z°° + 7°° (mod QZp) (4.18)

ER T8

and the lemma, we obtain the relation of the form (4.17) if we can take F' and G in

2) of Lemma 4.4 so that the coefficients satisfy
(i) aij = bji,
(i) cij = ¢

(111) Qi = bi,j =G5 = 0 for all odd Z,j

We now work for convenience with inhomogeneous polynomials. Recall the usual
correspondences f(z) = F(z,1) and F(X,Y) = Y5 2f(X/Y), and the action of the
group I' = PGLy(Z) on the space of polynomials of degree at most k — 2 by (we are

assuming k is even)

f(x)’k_2 (a Z) = (cz + d)F2f (a“b>. (4.19)

c cx +d

We extend this action to the group ring Z[I'| by linearity. Set

()6

Then the left-hand side of the equation in 2) of Lemma 4.4 can be written in inho-

mogeneous form as
(fle = g|(T'ST + T86)) (z1)+(f|(1 = TST)) (w2)—(f|T'S6 — g|(1 +¢)) (z3). (4.20)

(We write | instead of |, .)

Lemma 4.5. Suppose the polynomial f(x) (of degree at most k—2) satisfies f}TSTé =
f and put g = %f‘T&. Then the expression (4.20) gives the coefficients satisfying the
above three conditions (i), (ii), (iii).

Proof. Inserting g = %f‘T& into (4.20) and using the assumption f|TST5 = f, which
is equivalent to f|TS = f|T5 since (T0)? = 1, and also using the identities T'STST =
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S, TOT = 6,05 =€,66 = 0e = S in I, we can write (4.20) as

(fle(t =0)) (@1) + (f|(1 = 0)) (w2) = (f|T(1 = 6)) (x3). (4.21)

Now the condition (iii) (the polynomial is even) is clear from this (being killed by 1+4),

and the conditions (i) and (ii) are respectively the consequences of the equations

fle(t = 6)e = f](1=9),
fIT(1L=0)e = f|Te—f

TS = f|T6S — f|Té = f|T(1—6).

Noting T'ST6 = (1 {) and hence

(—z+1) (_;il) = 2, and (—z+1) (_;il —2) —

we see that the polynomials " (z — 2)*27" for r = 0,2,...,k — 2 (even) satisfy the
condition f‘TSTé = f in Lemma 4.5. With this choice of f (for r =0,2,...,k —4)
and ¢ in Lemma 4.5, we compute the coefficients in Lemma 4.4 by noting (4.18),
(4.21) and by using

" (x—2)" (1= 6) =a"(x = 2)F T — 2" (x + 2)F T
k—2—r—1

_ Z (k —2- T) Qk—1—r—i .r+i
: 1
=1
icodd
k—2
k—2—r -
- _ 21@—1 i—1 i —1
Z <i—1—r) x (r+i—1i-1)
i=r+2

E—2\ 12 =2\ [i—1\,
— 2k—z i—1
() 2000 )

to obtain a relation of the form

k=2 .
1—1 -
k—i poe _—_ 71: . . 00 o
E ( . >2 PP%_; = linear combination of P2, ., (mod QZp).
i=r+2
iceven
When we put r =k —4,...,2,0, we can solve these congruences successively in each
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Pog fori=Fk—2k—4,...,2 (because the system is triangular). This completes
the proof of Theorem 4.3.
O

Combining the first equality of (4.8) with (4.12), we have

[k/4]
(L+4-[k/A)Z2 =2 (2= 0rkya) P5Ss o
r=1

Then, for even k > 4, as a consequence of Theorem 4.3, we find
(PS5 s PSS Z0 | 1 S 1 < k/2 = U)g = (PS5 5 20 |2 < < [k/4))q.  (4.22)

Theorem 4.6. [9, Theorem 5] Let k > 4 be a positive even integer and set Dé',(fo) =
(Gainlaila) |1 <i < hj2—1)
(i) Then the space Dé’,&oo) contains Q - G,(cl)(q) @ S2(2), where S2(2) is the Q-vector
space of cusp forms having rational Fourier coefficients.
(i)
pe _ k
dimDE = - — 1,
2
so that the series Grk T( ) (r even) are linearly independent over Q.

Proof. We first prove (i). For k > 1, define

B(0) =246 )~ 7)) = .Z( > e

n>1 dln
n/d:odd

Note that when k > 4 is even, the g-series E,(gl)(q) is the Eisenstein series on I'y(2)
associated to the cusp 0 (this notation might cause confusion, but it works for the
double Eisenstein series for the cusp 0). By the theorem of Imamoglu and Kohnen [§],
it is known that the products Eéll)(q)Glg1 (@) (1=2,3,...,k/2 —2) generate S2(2).
Note that each generators Eéll)(q)G,(:_)Ql( ) (1=2,3,..., k/2 —2) can be written in the
form

B ()G (q) = 27 = 1)GQ(9) G yi(a) — G5 ()G 5 (a).

With (4.22) and (4.11), we have

ER ()G 5(q) € (G (), G5 (0)GYy | 2 < 1< [k/4)),
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and from (4.12) we find
G (q) € DEX.

This implies that the space DS,(COO) contains the space Q - G;l)(q) ® S2(2).
For (ii), first we note by definition the inequality

dimDEY) < = — 1.

Do |

Since elements in Q - G,(Cl)(q) @ S2(2) have no imaginary parts, they sit in the kernel
of the projection 7 from DE™ to /—1R[[q]], thus

dimker 7 > 1 + dim Si(2)

I
| — |
A~ 7
—_

Recalling (2.1), we have

1,1 =
r(CLn@) = Y e (Os)el (@)
s1tse=ki+tk2
s1>3:0dd

Then, as for the dimension of the image of 7, we see that it is equal to the rank of

the matrix

Ao = (5 o1 )
k2 (k{ki) (51,52)€S5k 2

k1+ko=k, k1,ko>2:even

because the series gél)(q), gél)(q), ce g,(gl_)S(q) are linearly independent over C. This

can be seen as follows. For an odd prime p, the coefficient of ¢” in gr(,l)(q) is1+p—t

times a constant independent of p. Hence by picking distinct odd prime numbers

D3, s, - - -, Pe—s and looking at the coefficients of ¢, g3, ¢P5, ..., ¢P*=5 in gél)(q), gél)(q), o ,gé?B(q),
we see the desired linear independence because the coefficient matrix is essentially the
(non-vanishing) Vandermonde determinant. We thus have

k+2
dimim 7 = rank Ay, = {%] -1,

where we postpone a computation of rank A5 to Section 5.1 (see (5.1)). This shows

2
dimDEL) > E} + V%] —1= g ~ 1
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Therefore we conclude I
dim DEL™) = 5!

and also
kerr = Q- G (q) & SE(2).

Corollary 4.7. For an even integer k > 2, we have

dim(¢®°(2r,k —2r) |1 <r <k/2—1)g <

NN

— 1 — dim Sg(2).
Proof. By taking the constant term of the g-series, we obtain the surjective map
o DEYD — (¢°°(2r,k —2r) |1 <1 < k/2—1)q.

By the theorem, the kernel of p contains the space 58(2) and hence we obtain the

corollary. ]

We end this subsection with the following theorem. Let M,;@ (2) be the Q-vector
space spanned by modular forms whose Fourier coefficients are rational number of
weight k on T'p(2). We obtain bases of the space M2(2).

Theorem 4.8. Recall that when k > 3 is even, the q-series G,(:)(q) and E,gl)(q) are the
Fisenstein series of weight k on I'y(2) associated to the cusps oo and 0 respectively.

(i) For each positive even integer k > 4, the set
{60, B(0), G (G ala) | 2 < 1< [k/4))

forms a basis of the space MS(Q)

(i1) For each positive even integer k > 4, the set

(G (@), B (@), By (B u(0) |2 < 1< [k/4])
forms a basis of the space M,;@(Q)

Proof. We first prove (i). In the proof of Theorem 4.6, we showed that the space S2(2)
is contained in the space spanned by the set {GS)(q), Elgl)(q), GS)(Q)G](:EQZ((ﬁ |2 <
| < [k/4]}. Then the assertion follows immediately from dim M2(2) = [k/4] + 1 and
MR(2) = Q'G,gl)(q)@Q~E,gl) (q)®S2(2). We note that the Fricke involution W, induces
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an endomorphism of MZ(2). Then the basis (i) follows from the transformation

formula

E,gl)(q)|W2(:: (2T)kE,(€1)(;—:)) = G,(:)(q) (k>4 : even). (4.23)

]

4.3 Application to Chan and Chua Conjecture

Theorem 4.8 has an application to solving one of the conjectures proposed by Chan

and Chua [5]. We begin with stating this conjecture. Let
0g) = d"
nez

be the standard theta function. We define three modular forms Gay 4(q), Fax(q) and
Hop11(q) by

GQk,4(Q) = GSC)(—Q); sz(T) = sz,4(Q) - 2G2k,4(q2>7

m 2k n _1n2n_12k 2n—1
H2k+1(Q):Ck—4(_1)kZ(( )a ‘f'( M ) a )7

2n _ 2n—1
n>0 1 + q 1 q

ka:

where the rational number ¢, is defined as secx =), ¢k R

These satisfy
Gora(q) € Mar(4) (k > 2), For(q) € Mog(4) (k> 1), Hopr1(q) € Mags1(4, x4) (k> 1),

where Y4 is the non-trivial character of conductor 4.

Conjecture 4.9. (Chan-Chua [5]) For each positive integer s > 2, we have

0(q)™ = Z 1 G21,4(q)Gas—21,4(9), H(Q)SSH = ZﬁlF2l(Q)G4572l,4(q)a
1=2

_ =1

0(q)** =" W Hoi1(q) Fis—a1(q), ()% = 8 Hori1(q)Gas—21424(q),

=1 =1

for some ay, B, 71,0 € Q.

8s

In [14], the author has succeeded in proving the formulas on 6(¢)*® in Conjec-

ture 4.9.
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Theorem 4.10. For any positive integer s > 2, there exist unique rational numbers
ps(l) (1=2,3,...,s) such that

—2832us —¢)Gi o (—0). (4.24)

Proof. Let

T q) — ql/San(n+1)/2

n>0

We note that for each positive integer s, the g-series T(q)% is a modular form of
weight k£ on I'y(2), and hence is an element of the space Q - Eﬁ)(q) ® S2(2) because
ord,—oT(q)* > 0, where ord,—of(q) is the vanishing order of f(g) at ¢ = 0. Then,
from Theorem 4.8 (ii), there exist unique rational numbers a, us(l) (I = 2,3,...,s)
such that

s 1 1) 1
T(q)* = aEiS) )+ Z s (1 Eél is) 21(0)-

Since ordo T(q)% = s > 2, 0rds E\Y (¢) = 1 and ordoo ES () B L () =2 (2 < 1 < s),

8s

we find that @ = 0. Thus, we have unique expression of T'(¢)** as follows.

Zus DEY (9)EL 51(q). (4.25)

Thereby, using the transformation formulas
T(q)*|W2 =0(=q)* (s =1)

and (4.23), the formulas (4.24) is easily deduced from (4.25). We indeed have

s

1 1 1
8s(__ o8s —4s 8s) __ o8s —4s (1) (1)
D)™ (= 2@ T g)) =20 S i OF (o) B a5
=23 n(DGy (9GS (9).
1=2
and, hence, we obtain (4.24) by letting ¢ — —q. O
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4.4 Double shuffle relation of double Eisenstein series for

cusp 0

In this section, we construct the double Eisenstein series for I'g(2) associated to the

cusp 0: its series expression is given by

(a b) T L

mr+n>m'T4+n’'>0

m=a mod 2
m/=b mod 2

We now describe a regularization of the double Eisenstein series E,(,f;b) (1) by using

g-series. We begin with computing its Fourier expansion. For £ > 1, we set

ex(q)

u>0
Proposition 4.11. For any integers r > 3 and s > 2, we have

ESV(T) = D eld™esld™),

m>m'>0
m=0,m'=1

+ Z < (S_DJr(—l)W(ﬁ:i))z(p) > enld™).

pt+h=r+s m>0:0dd
p,h=>1

Proof. We first recall the Lipschitz formula

dm 3 Tin — T+ (<20V=D) Y ¢* = =i + 20V Ti1(g),
2y (iﬂi/;)zrlu—(%\/_)%() (r>2).

We can divide the summation in the defining series (4.26) into four terms, correspond-
ingtom=m'"=0, m>m'=0, m=m'>0, and m >m’ > 0. Note that the first
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term is zero for Eﬁfﬁ;b)(r). We only prove the identity involving Eﬁ}g,’l)(T). In this case,

we obtain

w00~ G 2 2 Vet

m=m >0 m>m >0
n>n m,m'=1€Z
m,m/=1

The second term is easily seen to be

> erldesla™).

m>m'>0
m,m'=1

For the calculation of the first term, we need the partial fraction decomposition

1 s” sti—1 1 1
(T+n)(r+n)s P (T+n)r—t (n—mn/)st
s—1 .
(r+j—1 1 1
—1)/ . s 4.27
+;( )( e R e

Let h = n —n'/. Then h is a positive integer. Using (4.27), the first term can be

calculated as

1 Z 1
2my—1)rts o= (m7 4+ n)"(m/T +n')s
mnn>7,’n:1

1
<27T” D m>20;dd gf (m7 +n)r(mr +n')?
n,n'€Z

e =i DD D (10 9] (S Fres e

m>0:0dd n€Z i=
h€Z>0

T+j—1 1 1
* Z ( )(mT—l—n—h)S—j hw}
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:(_1)s§<8+2—1) 3 (QWx/hs_ﬂ 353 2;;/_HL rrtz

=0 h€Z~o m>0:odd n€Z
s—1 .
(r+g—1 (2my/=1)7" (2my/—1)75H
+Z(_1)j( J ) Z hr+i Z Z (mT+mn— h)s—J
Jj=0 h€Zxo m>0:0dd n€Z
r—2 .
s s+1—1\~ . "
oL (TN X et
=0 m>0:0dd
s—2 .
fr+7—1\~ , m
+Z(—1)J( ] )C(TH) > pail™)
j=0 J m>0:0dd
-1 -1 ~
- S {er (D) e (P2 T oaan
p+hh:>1”1+8 m>0:0dd
p,h=

The cancellation of the terms for ¢ = r — 1 and j = s — 1 in the third equality can
be justified by computing Cauchy principal values. The final equality is obtained by
setting s +¢ = p,r — i = h in the first term and r + j = p,s — j = h in the second.
This completes the proof for ES}S’I)(T), the verification of the other cases being left to
the reader. [

For an integer k > 0, we define

B(g) = 26 (%) = <;Ef_1 >1>! Z%(nw,

n>0
B (g) = 24(G(g) — GO(¢?)) _1 DS (% @)
"o n/illIde

These g-series are modular forms on I'g(2) when k& > 4 is even. For integers r» > 0 and

s > 0, we put

=3 wild™), T @) = =3 mpaa(e™)

m>0 m>0
m=a m=a

Then one can write for k > 1

EM(g) = 17(¢), E”(q) = (k) + £2(0), EV(0) = KT} (@), EQ(a) = KTy (),
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where " means ¢ - d/dq, and set

9OV (q) = 6,27 (q) = 6ra Fory () + Sar F1(q) + Grabanc,
19£,1§0)(C]) = r,Q?iO)(Q) - 5r,1?i0_)1(q) -+ 55,17£1_)1(q) + 57«,155,1@2,
IED(q) = 6,0F () = 01 Fo1(0) + 0un (P2 (@) + 2D () + 6141005,

—(1 —(1 —(0
where a; = —ag = fé )(Q) and az = 2fé )(Q) + fé )(Q)-

Definition 4.12. For positive integers r and s, we define the reqularized double Fisen-

stein series EX5(q) by

L1
ESY () = D> erldmesd™) + 9% (g),

4 8
m>m’>0
m=0,m'=1

ESO) = Y er(d™)es(d™) + <) f D (g) +

m>m’>0
m=1,m'=0

ESV () = > enld™ea™)

m>m'>0
m,m’=1

+ 2 ((—US(Z: 1) + (=1 (f: 1)) () fi () + }Lﬁﬁ}gl)(q)-

p+h=r+s
p,h>1

We now present the regularized double shuffle relation of the double Eisenstein

series for the cusp 0. For positive integers r and s, we put
(@b) [\ _ p(a) ®) 15 0 5. F@
Pr,s (Q) - Er (Q)Es (Q) + Z( T,Qfs (Q) + 872fr (q)>

It can be shown that PL%" (q) are modular forms on I'g(2) when both r and s are even

greater than 1.

Theorem 4.13. For positive even integer k and integers r,s > 1 with (r,s) # (1,1),

we have
PL(q) = B2 (q) + S (q) + 0ap B (q) (4.28)
1—1 a+b,b 1 —1 a+b,a
=Y (D) X (L0))E @ a
=k Ey
5,j>1 i,7>1
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Proof. The proof will be divided into two steps. We first prove the equalities of the
imaginary parts in Theorem 4.13. The only imaginary parts that appear come from
the constant terms ((s) of Eéo)(q) (s :odd), {(s) in Eﬁ};o)(q) (s : odd) or C(p) (p : odd)

in E,g,ls’l)(q). We consider the generating functions as follows:

EMV(X,Y) =Y Im E&Y(g)x Ty

r+s=~k
r,s>1
= —1 —1)Ptr p—= 1 - (1) Xr—lys—l
D (R R e )
r+s=k p+h=~k
rs>1 ph>1
p:odd
_ Z (Yhfl —Xhil)(Y—X)pflg(p) }(Ll)<q)’
p+h=k
p,h>1
p:odd
E(l 0) X Y Z Im E(lO XT lys=1 _ Z C Xr lys—1
r4+s=k r+s=k
r,s>1 r,s>1

s:odd

When (a,b) = (1,0), we note that the imaginary part of the R.H.S. of (4.29) is the
coefficient of X™ 1Y+ of EMY(X +V,Y) + EV(X 4V, X). Since we have

EM (X +Y, Y) +EM(X +Y,X)
=Y s X AY) Y T Y (X = (X Y)Y () £ ()

r4+s=k r+s=k
r,s>1 r,s>1
s:odd s:odd

= 3 (XYY (X = (X 4+ Y)Y YY) E(s) £ )
r+s=k
r,s>1
s:odd

:ZC X’rlysl

r4+s=k
r,s>1
s:odd

the assertion follows. Secondly, we prove the equalities of the real parts in Theo-
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rem 4.13. Again we use generating functions. Define

%) = > elgMes(d™

m>m'>0
m=0,m'=1

= X (o (P2)) e (P2) A

),

pt+h=r+s
p,h>1
where 8, = —B,/2p!(= E(p),p : even). Consider
EE:<E71 )(r l<_ ?Z' }( Z? j{:iRB l;zzm )(r 1}/8 1
r>1 r,s>1
7()( }f 2{: 7%5 )(r lyrs—1 7) 2{: PﬂB?DOLb )(T lys—1
r,s>1 r,s>1
(4.30)
Then, it is sufficient to prove that
EW(X)—-EYOY
POD(X,Y) = EOD(X,Y) + BV, X) + apy X) v )
= B (X 1 V)Y) + B (X +Y, X). (4.32)

Now we check the equalities in (4.31) and (4.32). Write a(X) and a(X,Y) for the
generating functions Y, -, ;X k=1 and D st GrsX r=1ys—1 associated with sequences

{ar} and {a,s} indexed by one and two integers, respectively. Then we have

1/1 1
— )(k—l e
2 f 2(X eX—1>’

k>1
(1) k-1 _ux 4"
D IYLITEC S
k>1 u>0
FO () X1 x
=S X = e
k>1 u>0
(1) k=1 _ —uX q" (1) -0
N S R )]
k>1 u>0
2u
—(0) —(0) —u —(0)
000 = 37O (g x4 = (ze T <q>),
k>1 u>0
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— —_ i
E e uX—vY E : qum—I—vm

f(O,l)(X’ Y) = Z f(01 (q )Xr—lys—l _

r,s>1

_ Z e—uX vY

u,v>0 q2 1
f(l’o)(X, Y) _ Z f(lO( X lys 1 _

r,s>1

Z frs Xr 1ys 1_

r,s>1
PONX,Y) = XFU ) - YT () -
90X, y) = X7V () - YT () -

I

By the definitions (4.30), we find

f(l)

(X

u,v>0 m>m’>0
m=0,m'=1
qu—l—v
_ q2(u+v) ’
2(u+v)

§ e—uX vY q (

2 2 )
u,v>0 —4q ul_q ()

u+v

2 e —uX— vY q 4q

2u 1 — g2(utv)’
u,v>0 q

7 (@) + XT° (>+7Pmy+m,
(R>+Xf <>+%W@+a%

4 (X? Y)?

1
FADXY) +4(XY) + DX, Y),

60) + 1 (X700 + YTV (x),

EW(X) = fO(X) - % - X,
EOV(X,Y) = fON(X,Y) + iﬂ(ﬂ’”(X Y),
EMO(XY) = fA(X,Y) + FD(X)B(Y)
EMY(XY) =
PUX,Y) = FOX)fO(Y) +
PEVX,Y) = fOX) FI(Y)

+ %L(XT(I)(Y) +v7FY(x)).
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For the right-hand side of (4.31) with (a,b) = (1,1), we compute

FEXY) + FOD(Y, X)

_ Z e—uX—'uY q2u N q2v unrv
1 — q2u 1— q2v 1— q2(u+v)

u,v>0
= Z B*UX*UY ( qu qv _ qu—H) )
— q2u 1 _ 420 —_ 2(utv
u,v>0 1 q 1 q 1 q ( :
= OO = 3T e )

1_q2w

qw —w B 1 — e(Y_X)(w_l)
= X)) - Z—e v (ey X ] — oYX

2w
w>0 1 q

w>u>0

eY BX

= fOX) )+ mf(l)(y) T X

(&

2

= FOCOFIY) = SO + ) = Geoth (X5 ) (1000) - 1)),

(X Y) +(Y, X)
= (BY = X) = B(X = Y)(FV(X) - fOY))

(1) _ f@ —
— _f ()2 _{/ () +%coth (%) (f(l)(X) — f(l)(Y))7

IED(XY) 4+ 9ED(Y, X)
= XFO) + YTV (X)) + 2fD(X) + 2fD(Y) + 2.

Combining these with (EW(X) — EW(Y))/(X —Y), we have

ESY(X)Y) + ESY(Y, X) +

= FOE ) = 00 + 5O ) - Feoth

(1) _ (D _
_ / ()2 _{/ (Y) +%coth (X 5 Y) (f(l)(X) _ f(l)(Y))

1

+ 5 (7Y YTV 0 + 200 (X) + 27D(V) 4204 ) + /

= FOOFOW) + V) + YT (X))
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For the right-hand side of (4.32) with (a,b) = (1,1), we proceed as follows:

FONX +V, X))+ fOVNX +V)Y)

—(utv)X—u —uX—(utv q q
= Y (e g X(+)Y)1_q2u1_q2(u+v)

U u+v

u,v>0

w

- ( Z + Z )G_UX_wyl_qq2u1_qq2w

w>u>0 u>w>0

w

- <Z - Z >6_UX_wY1_qq2u1_qq2w

w,u>0 w=u>0

2u

_ £ Wy — —uxvy) 4
fHX) () UZ>O € (1— g2)2
= X))~ @) - 5 VTV X Y,

JONX +V, X) + 9O (X +V,Y)
vV + X7V W) 22X + ) FOX V) + 2000 - T @)+ Ty ().

Summing these up, we have

EOYX +Y,Y)+ EOY(X +Y,X)

= OO FOW) — )~ S (X V)T )

3 (PO + X700 + 20X 4 FOX V) 420 - T )+ 7 (@)
= FOX)FOW) + 1 XTV ) Y FO0)
For the right-hand side of (4.31) with (a,b) = (1,0), we compute

FEOXY) + O (Y X)

= Z e—uX—UY qv + q2u+v qu+v
1 — q2v 1— q2u 1— q2(u+v)

u,v>0

U 2v
— —uX—oy _ 4 T _ ) x) Oy
3 e s = 10

H(L0) (X,Y) + 19(0,1)(3/’ X) = XT(O)(Y) + Y?(l)(X) + a1 + ag,
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to obtain

1 _
B, Y) + EOD(Y.X) = fOX)FON) + FOC08Y) + 1(XF (1) + YTV (X)),
Finally, for the right-hand side of (4.32) with (a,b) = (1,0), we similarly compute

fOUX + YY)+ fO(X +Y, X)

_ —uX—vY qu q2w
- € 1— q2u 1 — q2w
w>u>0 u>w>0

Cux—wy 44 @
€ 1— 2u 1 — 2w
wu>0 u= w>0 q q

3u

:f uzx)eu(XJrY 1_q )
_ 0)(y) — § pulx+Y) ¢ ¢
FO0F00) = e (s - )
= FO)FOW) = 5 (VT ) = X 1) + T @) - SO +Y)
= fOOFOY) = O+ Y) = (VT Y - D7),
FOX +Y)BY) +7(X +Y,X) = FO0B(Y),

JEO(X +V,Y) + 90 (X Y, X)

= XFO) + YTV +2X + V)TV (X +Y) + 2/ 0 +Y) = 7 (0) + 75 (@) + a5 + aa,
which give

ECX +Y,Y)+ EM(X +Y,X)

= SOOFOY) = O+ ) = STV Y) = @) + FO 0800+
i(X?Wymdﬁmav+%X+Yﬂ*%¥+YHJﬂWX+wv—%W@+7?@me+w)
= FOX) O + X)) + (KT + YTV (),

and we are done.

As an analogue of Theorem 4.6, we have the following:

Theorem 4.14. Let k > 4 be a positive even integer and set DS,&O) = <E25,i)722(q) |
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1<i<k/2-1),
(i) Then the space Dé',(go) contains Q - E,gl)(q) ® S2(2).
(ii)

: 0 _ K
dlmDE,(g) =5~ 1,

so that the series Eﬁ},;i)r(q) (r even) are linearly independent over Q.

5 More on 5@1,...,?)
-
5.1 Period polynomial for I';(2)
We fix and recall the notations as follows.
e [o(2) ={(2f) €Ty c=0 (mod 2)}
e Sk(2) : the C-vector space spanned by cusp forms of weight & for I'g(2)

s1—1

o Vio= (a2 | (s1,52) € Sk2)o

Wiy = {p(z1,22) € Vip | plar, x2) = p(x2 — @1, 22) — p(w2 — 21,22 — 221) +
p(x1, 9 — 2951)} : the Q-vector space generated by restricted even period poly-

nomials for I'y(2)

Tk’Q = {(1{31, ]{32) - Zzzz | k?l + k?g = k), k)l : even}

Ao : the |Sko| X |Tk 2| matrix whose entries are the integer E(s12Y 8O that
k1,k2

°1:k2
(k1,k2) €T} 2

In [9], we obtain a characterization of the left kernel of Ay, 2, which is an analogous

result to Proposition 2.1.

Theorem 5.1. Let (as,,s,)(s1,55)e5,, b€ @ vector with rational coefficients. Then the
following assertions are equivalent.
(i) The vector (G, s,)(s;,50)eS,2 5 @ left annihilator of the matriz Ay .

. : —1,s5-1 ; —0
(it) The polynomial 37, . \cg, , Qsz,s1 1" Y252 s an element of the space W, .
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Proof. Assume that (as, s, )(s),s)es, . 18 @ left annihilator of Ago. Set the polynomial

_ s1—1 _.so—1
P(T1,%2) = 30 o)es,, ol @3 . Then we can compute

0= (D c(pen)ey ey

(k1,k2)E€Ty 2 (51,52)€ESk,2

_ S9 k1—1 _ko—1
= E Asy,51 E Ckl,kgxl Lg

(51732)€Sk72 (k’l,kg)ETkQ

1

25 (p(%, Ty — x1) — p(T2, To — xl) —p(xy, 1 + 2) + p(ae, 1 + $2)>

Letting x5 — x5 — x1, we have

0 = p(x1,22) — p(ae — 1, 29) — p(x1, T2 — 221) + p(x2 — 1,21 — 227),

which means p(zq,z2) € W,;éo. For the polynomial f(x,x9) satisfying f(x1,0) = 0,
it can be shown that f(z1,z2 — x1) is 0 if and only if f(x1,x2) = 0. This implies the
assertion (ii)=-(i). O

Theorem 5.1 has an application to determine the dimension of the space W, 2’0.
We now discuss the rank of the matrix Ay, to prove dim W, 3 = dim Sk(2). By
definition, for each (s1, s2) € Sk and (ky, k) € T.0, E(s12) is zero if s; < min{ky, ko }

k1,k

or ki1 = ko. Since €/s;,55\ = —E€/s1.50\, the matrix Ay o can be reduced to the forms
(kl,kg) (kQ,kl) ’
E(3,k—3 0 0 0 0 0
(3%25)
g B ) ’ v !
D S @) o0l
€<k/2g}€,§/22+1) 5(k/2;2f£‘2+1) 8(/@/2;25/624,1) ce. 5(:%:;2531;) 0O --- 0
) ) W ek O
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if k=0 (mod 4), and

8(31}::3) 0 0 0 0 0
8(5,2—5) 8(5,1}:—5) 0 0 0 0
2,k—2 4,k—4
(D) (0D “(Exch) 0 0 0
€<k/253€,§/22+2) E(k/zﬁifw) g(k/2g’iyﬁ/62+2) ce 5(k/2kﬁ:,;g+l) 0o --- 0
T e A 7 I O A

if k=2 (mod 4). Since all diagonal components are non-zeros, we have

b 2} .Y (5.1)

rank Ay = {T

This implies dim ker Ay o = [k/4] — 1 = dim Sk(2). Therefore, from Theorem 5.1 we
have dim W, 3 = dim Sy(2). As a corollary, we can obtain the Eichler-Shimura-Manin

correspondence for I'g(2).

Theorem 5.2. [9, Theorem 4] For even k, there is an isomorphism
r0 1 Sp(2) — W3 ®q C.

Example. We give a few examples.

20 0 0 -2

2 0 —2 2.0 0 =2 4 4 0 —4 —4

Agg = Y ) A= 4 4 —4 —4 |, Aps= T

52 <4 0 —4) 10,2 122 6 20 0 —20 —6
6 14 —14 —6

8 48 0 —48 -8

Each of left kernels is spanned by the set {(—2,1)}, {(8,—7,2)} and {(20,—-12,0,1), (7,—5,1,0)},

respectively. We can easily find the correspondence with the following bases:

Ws_,z’o =Q- (ziz; — 2371552)
Wl_ojg =Q- (2x — 7x + 8x1x2)
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Remark. We give an interesting observation for the level 2 version of the matrix & ,:
define

,,,,,

where Ty, = {(k1..., k) € Z5y | ki +---+ k. =k, kj:odd (1 <i<r—2), k1, k;
even}. Then, numerical computations show that for » > 3 the dimension of the left

kernel of the matrix Ay, is given by

Z dim ker Ay, 2" < O(z) Sy (),

k>0

where Sy(z) = >, ., dim Si(2)z*. (I have checked this for r <5 and k < 30.)

5.2 Almost totally odd MZVs

Denote by Z}., the quotient vector space Z,gr) / Z,EPI), and (y(k) the equivalence class
of ¢(k) of weight k and depth r in Z;,. When k; > 3 (1 <i < r —1) (odd) and
k. > 2 (even), we call (K, ..., k) the almost totally odd MZVs. Let Uy, be the set
of almost totally odd indices of weight k and depth 7:

Upr ={(b1,.. . k) €25, | ki + -+ k. =k, k. reven, k;:odd (1 <i<r—1)}

We note that if £ # r (mod 2), then Uy, is the empty set. Let us denote by U,
the Q-vector subspace of Zj, spanned by almost totally odd MZVs of weight k and
depth r:

Upr = (Go(k) | k € U)o

The space U, o relates with both even and odd period polynomials on I';, which

was discovered by Zagier [15]. We define the space of odd period polynomials W, by

(k1,k2)€Ty 2

Note that, from the Eichler-Shimura-Manin correspondence, we have dimW,” =
dim S (I'y). Consider the |Uy,| x |Uy,,| matrix

,,,,,

95



where the integer Clsnmsr) is defined in (2.14).

Eqyeee ki

Proposition 5.3. [15, Section 6] For each odd integer k > 0, there is an injective
map
Wi, @ W, — ker By

Since the right annihilator of By gives a linear relation among almost totally odd

double zeta values, we obtain the following:
Theorem 5.4. [15, Theorem 3] For each odd integer k > 5, we have

diHlZ/{k,g S |Uk’2| — dim Sk,l(l“l) — dim Sk+1 (Fl)

In general, as in the case of the matrix Cj,, we may expect that any right annihi-

lator (ag,,.. kT)(kl ..... k,)eUy,, of the matrix By, gives a linear relation

and all linear relations among almost totally odd MZVs arise from the right kernel of
the matrix By, . For this expectation, we present some numerical evidence as follows.

& Numerical dimension of U, .

n\k 234567891011 |12 (13|14 |15|16 |17 18|19 |20
1 1 1 1 1 1 1 1 1 1
2 1 2 3 3 4 ) 5 6
3 1 3 5 8 11 15 19
4 1 4 9 16 -

) 1 d - -

& Numerical rank of By,

n\k [2[3/4[5|6|7[8[9|10|11 |12 (13|14 |15|16 |17 |18 |19 |20
1 1 1 1 1 1 1 1
2 1 2 3 3 4 ) 5 6
3 1 3 5 8 11 15 19
4 1 4 9 16 26
) 1 > 14 29
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We note that >, |Uk,|z* = E(z)O(z) ", where E(z) = % For r € {2, 3,4},
numerical computations suggest that the generating series of rank By, is given by

Zrank By 22" < E(x)O(z) — (= + é)S(m),

Zrank By, 32" < E(2)O(x)* — %E(JZ‘)S(SL') —(z+ i)S(m)@(m),

Zrank By, 4" < E(z)0(x)* — %E(m)@(x)S(x) —(z + %)S(x)@(x)2 + (x + i)S(x)2
k>0
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