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Chapter 1

Introduction

Investigations into special orthogonal polynomial systems by using unitary transformations
have a long history. We actually historically know that the composition of Laplace and
Cayley transforms provides correspondence between Laguerre and power polynomials. In
addition, Shen [She] established a connection between Laguerre polynomials and circular
Jacobi polynomials using a Fourier transform, and Koornwinder [Ko] found a link between
Laguerre and Meixner-Pollaczek polynomials by using a Mellin transform.

Let us describe the picture in the one variable case more precisely. We put α > 1,
(α)m := Γ(α+m)

Γ(α)
= α(α + 1) · · · (α + m − 1),

(
m
k

)
= (−1)k (−m)k

k!
, D := {w ∈ C | |w| < 1},

T := {z ∈ C | Re z > 0}, H := {z ∈ C | Im z > 0}, ∂H = R, Σ := {σ ∈ C | σ−1 = σ}, m is
the Lebesgue measure on C. Further, we introduce the following function spaces and their
complete orthogonal bases.
(1) f

(α)
m ; power polynomials

H2
α(D) := {f : D −→ C | f is analytic in D and ∥f∥2α,D <∞},

∥f∥2α,D :=
α− 1

π

∫
D
|f(w)|2(1− |w|2)α−2m(dw),

f (α)
m (w) :=

(α)m
m!

wm.

(2) F
(α)
m ; Cayley transform of the power polynomials

H2
α(T ) := {F : T −→ C | F is analytic in T and ∥F∥2α,T <∞},

∥F∥2α,T :=
α− 1

4π

∫
T

|F (z)|2xα−2m(dz),

F (α)
m (z) :=

(α)m
m!

(
1 + z

2

)−α(
z − 1

z + 1

)m

.
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(3) ψ
(α)
m ; exponential multiplied by Laguerre polynomials

L2
α(R>0) := {ψ : R>0 −→ C | ∥ψ∥2α,R>0

<∞},

∥ψ∥2α,R>0
:=

2α

Γ(α)

∫ ∞

0

|ψ(u)|2uα−1 du,

ψ(α)
m (u) := e−uL(α−1)

m (2u) =
(α)m
m!

e−u

m∑
k=0

(−1)k
(
m

k

)
1

(α)k
(2u)k.

(4) q
(α)
m (s) ;Meixner-Pollaczek polynomials

L2
α(R) := {q : R −→ C | ∥q∥2α,R <∞},

∥q∥2α,R :=
1

2π

2α

Γ(α)

∫ ∞

−∞
|q(s)|2

∣∣∣Γ(is+ α

2

)∣∣∣2 ds,
q(α)m (s) := i−mP

(α
2
)

m

(
s;
π

2

)
=

(α)m
m!

m∑
k=0

(−1)k
(
m

k

)(α
2
+ is

)
k

(α)k
2k.

(5) Ψ
(α)
m (t) ;Modified Fourier transform of the Laguerre polynomials

H2
α(∂H) :=

{
Ψ : R −→ C | ∥Ψ∥2α,∂H <∞ and Ψ is continued analytically to H

as a holomorphic function which satisfies with

sup
0<y<∞

1

2π

∫ ∞

0

|Ψ(x+ iy)|2 dx <∞
}
,

∥Ψ∥2α,∂H :=
Γ
(
α+1
2

)2
2π

2α

Γ(α)

∫ ∞

−∞
|Ψ(t)|2 dt,

Ψ(α)
m (t) := (1− it)−

α+1
2
(α)m
m!

m∑
k=0

(−1)k
(
m

k

)(α+1
2

)
k

(α)k

(
2

1− it

)k

.

(6) ϕ
(α)
m (σ) ; circular Jacobi polynomials

H2
α(Σ) := {ϕ : Σ −→ C | ϕ is continued analytically to D as a holomorphic function

and ∥ϕ∥2α,Σ <∞},

∥ϕ∥2α,Σ :=
Γ
(
α+1
2

)2
2πi

1

Γ(α)

∫
Σ

|ϕ(σ)|2(1− σ)
α−1
2 (1− σ)

α−1
2
m(dσ)

σ
,

ϕ(α)
m (σ) :=

(α)m
m!

m∑
k=0

(−1)k
(
m

k

)(α+1
2

)
k

(α)k
(1− σ)k.

We remark that

∥f (α)
m ∥2α,D = ∥F (α)

m ∥2α,T = ∥ψ(α)
m ∥2α,R>0

= ∥q(α)m ∥2α,R = ∥Ψ(α)
m ∥2α,∂H = ∥ϕ(α)

m ∥2α,Σ =
(α)m
m!

.
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Furthermore, the following unitary isomorphisms are known.
Modified Cayley transform 1

C−1
α : H2

α(T )
≃−→ H2

α(D), (C−1
α F )(w) := (1− w)−αF

(
1 + w

1− w

)
.

Modified Cayley transform 2

C−1
α : H2

α(∂H)
≃−→ H2

α(Σ), (C−1
α Ψ)(σ) :=

(
1− σ
2

)−α+1
2

Ψ

(
i
1 + σ

1− σ

)
.

Modified Laplace transform

Lα : L2
α(R>0)

≃−→ H2
α(T ), (Lαψ)(z) :=

2α

Γ(α)

∫ ∞

0

e−zuuα−1ψ(u) du.

Modified Mellin transform

Mα : L2
α(R>0)

≃−→ L2
α(R), (Mαψ)(s) :=

1

Γ
(
is+ α

2

) ∫ ∞

0

uis+
α
2
−1ψ(u) du.

Modified (inverse) Fourier transform

F−1
α : L2

α(R>0)
≃−→ H2

α(∂H), (F−1
α ψ)(t) :=

1

Γ
(
α+1
2

) ∫ ∞

0

eituu
α−1
2 ψ(u) du.

To summarize, we obtain the following picture given by the unitary transformations.

(6) (5)

ϕ
(α)
m ←− [ Ψ

(α)
m

∋ ∋

H2
α(Σ)

≃←−−
C−1
α

H2
α(∂H)

≃ −−
→

F
−
1

α

H2
α(D)

≃←−−
C−1

α

H2
α(T )

≃←−
Lα

L2
α(R>0)

≃−−→
Mα

L2
α(R).

∈ ∈ ∈ ∈

f
(α)
m ←− [ F

(α)
m ←− [ ψ

(α)
m 7−→ q

(α)
m

(1) (2) (3) (4)

Moreover, some parts of the picture have been generalized to the multivariate case. That is

H2
α(D)K

≃←−−
C−1

α

H2
α(TΩ)

K ≃←−
Lα

L2
α(Ω)

K ≃−−→
Mα

L2
α(Rr)Sr . (1.0.1)

Here, as we will introduce the notations in Chapter 2, Ω is the symmetric cone and TΩ is
the associated tube domain with Ω. From this picture, similar to the one variable case, we
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obtain the well-known correspondence between Laguerre and spherical polynomials. A link
between Laguerre and Meixner-Pollaczek polynomials from a spherical Fourier transform has
recently been established that was also established by Davidson, Olafsson and Zhang [DOZ],
and Faraut and Wakayama [FW1]. This setting is not only beneficial for introducing the
above orthogonal systems, but also studying their fundamental properties (orthogonality,
generating functions, difference or differential equations and recurrence formulas).

This thesis has two purposes. The first is to study a multivariate analogue of the results
obtained by Shen [She]. Namely, we consider a modified Fourier transform of L2

α(Ω)
K and

multivariate Laguerre polynomials. Using this unitary isomorphism and the modified Cayley
transform, we introduce some new multivariate special orthogonal polynomials, which are
a multivariate analogue of circular Jacobi polynomials. These polynomials, which we call
multivariate circular Jacobi (MCJ) polynomials, are generalizations of the spherical (zonal)
polynomials that are different from the Jack or Macdonald polynomials, which are well
known as an extension of spherical polynomials. We also remark that the weight function
of their orthogonality relation coincides with the circular Jacobi ensemble defined by Bour-
gade et al. [BNR]. Furthermore, we provide a generating function for the MCJ polynomials
and a differential equation that is satisfied by the modified Cayley transform of the MCJ
polynomials.

The second purpose is to introduce some multivariate discrete orthogonal polynomi-
als within the setting (1.0.1) that are multivariate analogues of Meixner, Charlier and
Krawtchouk polynomials, and to establish their main properties, that is, duality, degener-
ate limits, generating functions, orthogonality relations, difference equations and recurrence
formulas. A particularly important and interesting result is that “the generating function of
the generating function” for the Meixner polynomials coincides with the generating function
of the Laguerre polynomials. We derive the above properties for the multivariate Meixner,
Charlier and Krawtchouk polynomials from some properties of the multivariate Laguerre
polynomials and the unitary picture (1.0.1) by using this key lemma. This scheme has pre-
viously not been known even for the one variable case. It is also interesting to note that there
is correspondence between Laguerre and Meixner polynomials. The former has orthogonality
defined by the integral on the symmetric cone and the latter is defined by the summation
on partitions.

Let us now describe the content of the following chapters. The basic definitions and
fundamental properties of Jordan algebras and symmetric cones, and lemmas for analysis on
symmetric cones and tube domains have been presented in the first section of Chapter 2, so
that they can be referred to later. The next section presents a compilation of basic facts for
the multivariate Laguerre polynomials and their unitary picture. In particular, we construct
the unitary isomorphism between L2

α(Ω)
K and L2

α,θ(Rr)Sr . Since we do not need to use the
Gutzmer formula, our construction is much simpler than [FW1] and is regarded as a multiple
analogue of Koornwinder’s construction [Ko]. Based on these preparations, in Chapter 3, we
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complete the picture (1.0.1) as follows

H2
α,ν(Σ)

K ≃←−−
C−1
α,ν

H2
α,ν(V )K

≃ −−
→

F
−
1

α
,ν

H2
α(D)K

≃←−−
C−1

α

H2
α(TΩ)

K ≃←−
Lα

L2
α(Ω)

K ≃−−−→
Mα,θ

L2
α,θ(Rr)Sr .

In addition, using the above picture, we obtain the MCJ polynomials and their fundamental
properties which are one of the main results in this thesis. The other main results on some
multivariate discrete orthogonal polynomials are discussed in Chapter 4.

Finally, in the appendix, we extend the results for the operator ordering problem that is
to related the Meixner-Pollaczek polynomials in [Ko], [HZ].
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Chapter 2

Preliminaries

Throughout the paper, we denote the ring of rational integers by Z, the field of real numbers
by R, the field of complex numbers by C, the partition set of length r by P

P := {m = (m1, . . . ,mr) ∈ Zr
≥0 | m1 ≥ · · · ≥ mr}. (2.0.1)

For any vector s = (s1, . . . , sr) ∈ Cr, we put

Re s := (Re s1, . . . ,Re sr), (2.0.2)

|s| := s1 + · · ·+ sr, (2.0.3)

∥s∥ := (|s1|, . . . , |sr|). (2.0.4)

Moreover, for m ∈P
m! := m1! · · ·mr!

and we set δ := (r − 1, r − 2, . . . , 1, 0). Refer to Faraut and Koranyi [FK] for the details in
this chapter.

2.1 Analysis on symmetric cones

Let Ω be an irreducible symmetric cone in V which is a finite dimensional simple Euclidean
Jordan algebra of dimension n as a real vector space and rank r. The classification of irre-
ducible symmetric cones is well-known. Namely, there are four families of classical irreducible
symmetric cones Πr(R),Πr(C),Πr(H), the cones of all r × r positive definite matrices over
R, C and H, the Lorentz cones Λr and an exceptional cone Π3(O) (see [FK] p. 97). Also, let
V C be its complexification. For w, z ∈ V C, we define

L(w)z := wz,

w□z := L(wz) + [L(w), L(z)],

P (w, z) := L(w)L(z) + L(z)L(w)− L(wz),
P (w) := P (w,w) = 2L(w)2 − L(w2).
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We denote the Jordan trace and determinant of the complex Jordan algebra V C by tr x and
by ∆(x) respectively.

Fix a Jordan frame {c1, . . . , cr} that is a complete system of orthogonal primitive idem-
potents in V and define the following subspaces:

Vj := {x ∈ V | L(cj)x = x},

Vjk :=

{
x ∈ V

∣∣∣∣L(cj)x =
1

2
x and L(ck)x =

1

2
x

}
.

Then, Vj = Rej for j = 1, . . . , r are 1-dimensional subalgebras of V , while the subspaces Vjk
for j, k = 1, . . . , r with j < k all have a common dimension d = dimR Vjk. Then, V has the
Peirce decomposition

V =

(
r⊕

j=1

Vj

)
⊕

(⊕
j<k

Vjk

)
,

which is the orthogonal direct sum. It follows that n = r + d
2
r(r − 1). Let G(Ω) denote

the automorphism group of Ω and let G be the identity component in G(Ω). Then, G acts
transitively on Ω and Ω ∼= G/K where K ∈ G is the isotropy subgroup of the unit element,
e ∈ V . K is also the identity component in Aut (V ).

For any x ∈ V , there exists k ∈ K and λ1, . . . , λr ∈ R such that

x = k
r∑

j=1

λjcj, (λ1 ≥ · · · ≥ λr).

From this polar decomposition, we obtain the following integral formula (see [FK]TheoremVI. 2.3).

Lemma 2.1.1. Let f be an integrable function on V. We have∫
V

f(x) dx = c̃0

∫
K×Rr

f(kλ)
∏

1≤p<q≤r

|λp − λq|d dkdλ1 · · · dλr. (2.1.1)

Here, dx is the Euclidean measure associated with the Euclidean structure on V given by
(u|v) = tr(uv), dk is the normalized Haar measure on the compact group K, λ =

∑r
j=1 λjcj

and c̃0 is defined by

c̃0 := (2π)
n−r
2

r∏
j=1

Γ
(
d
2
+ 1
)

Γ
(
d
2
j + 1

) =
(2π)

n−r
2

r!

r∏
j=1

Γ
(
d
2

)
Γ
(
d
2
j
) . (2.1.2)

In particular, for f ∈ L1(V )K∫
V

f(x) dx = c̃0

∫
Rr

f(λ1, . . . , λr)
∏

1≤p<q≤r

|λp − λq|d dλ1 · · · dλr. (2.1.3)
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As in the case of V , we also have the following spectral decomposition for V C. Every z
in V C can be written

z = u
r∑

j=1

λjcj,

with u in U which is the identity component of Str(V C) ∩ U(V C), λ1 ≥ · · · ≥ λr ≥ 0.
Moreover, we define the spectral norm of z ∈ V C by |z| = λ1 and introduce open unit ball
D ∈ V C as follows.

D = {z ∈ V C | |z| < 1}.

We define Σ as the set of invertible elements in V C such that z−1 = z, which coin-
cides with the Shilov boundary of D. For Σ, the following result is well known (see [FK]
PropositionX.2.3).

Lemma 2.1.2. For z ∈ V C, the following properties are equivalent:
(i) z ∈ Σ,
(ii) z = eiθ =

∑r
j=1 e

iθjcj with θ =
∑r

j=1 θjcj ∈ V ,

(iii) z ∈ c−1(V ),
where c−1(t) := (t− ie)(t+ ie)−1 = e− 2i(t+ ie)−1 is called the inverse Cayley transform.

We will later need the following integral formula on Σ to describe the MCJ polynomials.

Lemma 2.1.3. Let µ denote the measure associated with the Riemannian structure on Σ
induced by the Euclidean structure of V C.
(1) If ϕ is an integrable function on Σ, then∫

Σ

ϕ(σ) dµ(σ) = 2n
∫
V

ϕ(c−1(t))|∆(e− it)−
n
r |2 dt. (2.1.4)

(2) If Ψ is an integrable function on V , then∫
V

Ψ(t) dt = 2n
∫
Σ

Ψ(c(σ))|∆(e− σ)−
n
r |2 dµ(σ). (2.1.5)

Here, c is a Cayley transform defined by c(σ) := i(e+ σ)(e− σ)−1 = −ie+ 2i(e− σ)−1.
(3) If Ψ is an integrable function on V and a K-invariant, then∫

Σ

ϕ(σ) dµ(σ) = c̃0

∫
Sr

ϕ(eiθ)
∏

1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr. (2.1.6)

Here, Sr is the direct product of r copies of S1.

Proof. (1) is PropositionX.2.4 of [FK] itself and (2) also immediately follows from some
proposition. Hence, we only prove (3).

Let ϕ ∈ L1(Σ)K . Since for any k ∈ K

c−1(kt) = (k(t− ie))(k(t+ ie))−1 = k((t+ ie)(t− ie)−1) = kc−1(t),
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from Lemma2.1.1, we have∫
Σ

ϕ(σ) dµ(σ) = 2n
∫
V

ϕ(c−1(t))∆(e+ t2)−
n
r dt

= 2nc̃0

∫
K×Rr

ϕ(c−1(kλ))∆(e+ (kt)2)−
n
r

∏
1≤p<q≤r

|λp − λq|d dkdλ1 · · · dλr

= 2nc̃0

∫
Rr

ϕ(c−1(λ))∆(e+ λ2)−
n
r

∏
1≤p<q≤r

|λp − λq|d dλ1 · · · dλr.

If we put λj = − cot
(

θj
2

)
, then

λ = −
r∑

j=1

cot

(
θj
2

)
cj = i

r∑
j=1

1 + eiθj

1− eiθj
cj = i

(
r∑

j=1

(1 + eiθj)cj

)(
r∑

l=1

(1− eiθl)cl

)−1

= c(eiθ).

Therefore,

∫
Σ

ϕ(σ) dµ(σ) = 2n−rc̃0

∫
Sr

ϕ(eiθ)
r∏

j=1

sin

(
θj
2

)2(n
r
−1)∏
1≤p<q≤r

∣∣∣∣∣∣ sin
(
1
2
(θp − θq)

)
sin
(

θp
2

)
sin
(

θq
2

)
∣∣∣∣∣∣
d

dθ1 · · · dθr

= c̃0

∫
Sr

ϕ(eiθ)
∏

1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr.

For j = 1, . . . , r, let ej := c1 + · · ·+ cj, and set

V (j) := {x ∈ V | L(ej)x = x}.

Denote the orthogonal projection of V onto the subalgebra V (j) by Pj, and define

∆j(x) := δj(Pjx)

for x ∈ V , where δj denotes the Koecher norm function for V (j). In particular, δr = ∆.
Then, ∆j is a polynomial on V that is homogeneous of degree j. Let s := (s1, . . . , sr) ∈ Cr

and define the function ∆s on V by

∆s(x) := ∆(x)sr
r−1∏
j=1

∆j(x)
sj−sj+1 . (2.1.7)

That is the generalized power function on V . Furthermore, for m ∈ P, ∆m becomes a
polynomial function on V , which is homogeneous of degree |m|.
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The gamma function ΓΩ for the symmetric cone Ω is defined, for s ∈ Cr, with Re sj >
d
2
(j − 1) (j = 1, . . . , r) by

ΓΩ(s) :=

∫
Ω

e−tr(x)∆s(x)∆(x)−
n
r dx. (2.1.8)

Its evaluation gives

ΓΩ(s) = (2π)
n−r
2

r∏
j=1

Γ

(
sj −

d

2
(j − 1)

)
. (2.1.9)

Hence, ΓΩ extends analytically as a meromorphic function on Cr.

Lemma 2.1.4. For any y ∈ Ω, β ∈ C,Re β > 0 and Re sj >
d
2
(j − 1) :∫

Ω

e−(βy|x)∆s(x)∆(x)−
n
r dx = ΓΩ(s)∆s((βy)

−1). (2.1.10)

For s ∈ Cr and m ∈P, we define the generalized shifted factorial by

(s)m :=
ΓΩ(s+m)

ΓΩ(s)
. (2.1.11)

It follows from (2.1.9) that

(s)m =
r∏

j=1

(
sj −

d

2
(j − 1)

)
mj

. (2.1.12)

Lemma 2.1.5. If s ∈ Cr,m,k ∈P and m ⊃ k, then∣∣∣∣(s)m(s)k

∣∣∣∣ ≤ (∥s∥+ d(r − 1))m
(∥s∥+ d(r − 1))k

. (2.1.13)

Proof. We remark that for any s ∈ C, N ∈ Z≥0 and j = 1, . . . , r, the following is satisfied.∣∣∣∣s+N − d

2
(j − 1)

∣∣∣∣ ≤ |s|+N + d(r − 1)− d

2
(j − 1) = |s|+N +

d

2
(2r − j − 1).

Hence, ∣∣∣∣(s)m(s)k

∣∣∣∣ = r∏
j=1

∣∣∣∣∣
(
sj + kj −

d

2
(j − 1)

)
mj−kj

∣∣∣∣∣
≤

r∏
j=1

(
|sj|+ kj + d(r − 1)− d

2
(j − 1)

)
mj−kj

=
(∥s∥+ d(r − 1))m
(∥s∥+ d(r − 1))k

.
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Corollary 2.1.6. If s ∈ Cr,m ∈P, then

|(s)m| ≤ (∥s∥+ d(r − 1))m ≤
r∏

j=1

(|sj|+ d(r − 1))mj
. (2.1.14)

The space, P(V ), of the polynomial ring on V has the following decomposition.

P(V ) =
⊕
m∈P

Pm,

where each Pm are mutually inequivalent, and finite dimensional irreducible G-modules.
Further, their dimensions are denoted by dm. For dm, the following formula is known (see,
[Up] Lemma 2.6 or [FK] p. 315).

Lemma 2.1.7. For any m ∈P,

dm =
c(−ρ)

c(ρ−m)c(m− ρ)
(2.1.15)

=
∏

1≤p<q≤r

mp −mq +
d
2
(q − p)

d
2
(q − p)

B
(
mp −mq,

d
2
(q − p− 1) + 1

)
B
(
mp −mq,

d
2
(q − p+ 1)

) (2.1.16)

=
Γ
(
d
2

)r
Γ
(
d
2
r
) r−1∏

j=1

1

Γ
(
d
2
j
)2 ∏

1≤p<q≤r

(mp −mq +
d

2
(q − p))

Γ
(
mp −mq +

d
2
(q − p+ 1)

)
Γ
(
mp −mq +

d
2
(q − p− 1) + 1

) .
(2.1.17)

Here, ρ = (ρ1, . . . , ρr), ρj :=
d
4
(2j − r − 1), and c is the Harish-Chandra function:

c(s) =
∏

1≤p<q≤r

B
(
sq − sp, d2

)
B
(
d
2
(q − p), d

2

) .
In particular, for d = 2

dm =
∏

1≤p<q≤r

(
mp −mq + q − p

q − p

)2

= sm(1, . . . , 1)2. (2.1.18)

Here, sm is the Schur polynomial corresponding to m ∈P defined by

sm(λ1, . . . , λr) :=
det (λmk+r−k

j )

det (λr−k
j )

.

The following lemma is necessary to evaluate the Fourier transform of the multivariate
Laguerre polynomial.
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Lemma 2.1.8 ([FK]TheoremXI. 2.3). For p ∈ Pm, Reα > (r − 1)d
2
, and y ∈ Ω + iV ,∫

Ω

e−(y|x)p(x)∆(x)α−
n
r dx = ΓΩ(m+ α)∆(y)−αp(y−1). (2.1.19)

Here, α is regarded as (α, . . . , α) ∈ Cr.

For each m ∈P, the spherical polynomial of weight |m| on Ω is defined by

Φ(d)
m (x) :=

∫
K

∆m(kx) dk. (2.1.20)

We often omit multiplicity d of Φ
(d)
m (x). The algebra of all K-invariant polynomials on V ,

denoted by P(V )K , decomposes as

P(V )K =
⊕
m∈P

CΦm.

By analytic continuation to the complexification V C of V , we can extend tr ,∆ and Φm to
polynomial functions on V C.

Remark 2.1.9. (1) Since Φm ∈ PK
m , for x = k

∑r
j=1 λjcj, Φm(x) can be expressed by

Φm(λ1, . . . , λr) := Φm

(
r∑

j=1

λjcj

)
(= Φm(x)).

Φm(x) also has the following expression (see [F]).

Φ
(d)
k (λ1, . . . , λr) =

P
( 2
d
)

k (λ1, . . . , λr)

P
( 2
d
)

k (1, . . . , 1)
. (2.1.21)

Here, P
( 2
d
)

k (λ1, . . . , λr) is an r-variable Jack polynomial (see [M], Chapter. VI.10). In partic-

ular, since P
(1)
k (λ1, . . . , λr) = sm(λ1, . . . , λr), Φ

(2)
m becomes the Schur polynomial.

Φ(2)
m (λ1, . . . , λr) =

sm(λ1, . . . , λr)

sm(1, . . . , 1)
=

δ!∏
p<q(mp −mq + q − p)

sm(λ1, . . . , λr). (2.1.22)

(2)When r = 2, Φ
(d)
m has the following hypergeometric expression (see [Sa]).

Φ(d)
m1,m2

(λ1, λ2) = λm1
1 λm2

2 2F1

(
−(m1 −m2),

d
2

d
;
λ1 − λ2
λ1

)
= λm1

1 λm2
2

(
d
2

)
m1−m2

(d)m1−m2

2F1

(
−(m1 −m2),

d
2

−(m1 −m2)− d
2
+ 1

;
λ2
λ1

)
.
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We remark that the function Φm(e + x) is a K-invariant polynomial of degree |m| and
define the generalized binomial coefficients

(
m
k

)
d
2

by using the following expansion.

Φ(d)
m (e+ x) =

∑
|k|≤|m|

(
m

k

)
d
2

Φ
(d)
k (x). (2.1.23)

For
(
m
k

)
d
2

, we also often omit d
2
. The fact that if k ̸⊂m, then

(
m
k

)
= 0, is well known. Hence,

we have

Φm(e+ x) =
∑
k⊂m

(
m

k

)
Φk(x). (2.1.24)

Lemma 2.1.10. For z = u
∑r

j=1 λjcj with u ∈ U , λ1 ≥ · · · ≥ λr ≥ 0 and m ∈P, we have

|Φm(z)| ≤ λm1
1 · · ·λmr

r ≤ λ
|m|
1 = Φm(λ1). (2.1.25)

Lemma 2.1.11. For any α ∈ C, z ∈ D, w ∈ D, we have∑
m∈P

dm
(α)m(
n
r

)
m

Φm(z)Φm(w) = ∆(w)−α

∫
K

∆(kw−1 − z)−α dk. (2.1.26)

The spherical function, φs, on Ω for s ∈ Cr is defined by

φs(x) :=

∫
K

∆s+ρ(kx) dk. (2.1.27)

We remark that for x ∈ Ω
φs(x

−1) = φ−s(x) (2.1.28)

and for x ∈ Ω,m ∈P
Φm(x) = φm−ρ(x). (2.1.29)

Let D(Ω) be the algebra of G-invariant differential operators on Ω, P(V )K be the space
of K-invariant polynomials on V , and P(V × V )G be the space of polynomials on V × V ,
which are invariant in the sense that

p(gx, ξ) = p(x, g∗ξ), (g ∈ G).

Here, we write g∗ for the adjoint of an element g (i.e., (gx|y) = (x|g∗y) for all x, y ∈ V ). The
spherical function φs is an eigenfunction of every D ∈ D(Ω). Thus, we denote its eigenvalues
by γ(D)(s), that is, Dφs = γ(D)(s)φs.

The symbol σD of a partial differential operator D which acts on the variable x ∈ V is
defined by

De(x|ξ) = σD(x, ξ)e
(x|ξ) (x, ξ ∈ V ).

Differential operator D on Ω is invariant under G if and only if its symbol σD belongs to
P(V ×V )G. In addition, the map D 7→ σD establishes a linear isomorphism from D(Ω) onto

15



P(V × V )G. Moreover, the map D 7→ σD(e, u) is a vector space isomorphism from D(Ω)
onto P(V )K . In particular, for k ∈P, s ∈ Cr, we put

γk(s) := γ(Φk(∂x))(s) = Φk(∂x)φs(x)|x=e. (2.1.30)

Here, Φk(∂x) is a unique G-invariant differential operator, which is satisfied with

σΦk(∂x)(e, ξ) = Φk(ξ) ∈ P(V )K , i.e., Φk(∂x)e
(x|ξ)|x=e = Φk(ξ)e

tr ξ.

We remark that Φk(∂x) = ∂kx and γk(s) = s(s− 1) · · · (s− k + 1) in the r = 1 case, and for
any α ∈ C, k ∈P, we have

γk(α− ρ) = (−1)|k|(−α)k. (2.1.31)

The function γD is an r variable symmetric polynomial and map D 7→ γD is an algebra
isomorphism from D(Ω) onto algebra P(Rr)Sr , which is a special case of the Harish-Chandra
isomorphism.

Lemma 2.1.12. If β ∈ C,Re β > 0,Re sj >
d
4
(r − 1), then for all k ∈P, we have∫

Ω

e−β tr uΦk(u)φs(u)∆(u)−
n
r du = (−1)|k|β−|s+k|ΓΩ(s+ ρ)γk(−s). (2.1.32)

Here, we choose the branch of β−|s|, which takes the value 1 at β = 1.

Proof. We remark that the left hand side of (2.1.32) is converges absolutely under the as-
sumptions. Hence,∫

Ω

e−β tr uΦk(u)φs(u)∆(u)−
n
r du = (−β)−|k|

∫
Ω

Φk(∂x)e
−(βx|u)|x=eφs(u)∆(u)−

n
r du

= (−β)−|k|Φk(∂x)

∫
Ω

∫
K

e−(βx|u)∆s+ρ(ku)∆(u)−
n
r dkdu

∣∣∣∣
x=e

= (−β)−|k|Φk(∂x)

∫
K

∫
Ω

e−(βkx|u)∆s+ρ(u)∆(u)−
n
r dudk

∣∣∣∣
x=e

.

By Lemma2.1.4,∫
Ω

e−(βkx|u)∆s+ρ(u)∆(u)−
n
r du = ΓΩ(s+ ρ)∆s+ρ((βkx)

−1) = β−|s|ΓΩ(s+ ρ)∆s+ρ((kx)
−1).

Therefore,∫
Ω

e−β tr uΦk(u)φs(u)∆(u)−
n
r du = (−1)|k|β−|s+k|ΓΩ(s+ ρ)Φk(∂x)

∫
K

∆s+ρ(kx
−1) dk

∣∣∣∣
x=e

= (−1)|k|β−|s+k|ΓΩ(s+ ρ)Φk(∂x)φ−s(x)|x=e.
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If a K-invariant function ψ is analytic in the neighborhood of e, it admits a spherical
Taylor expansion near e:

ψ(e+ x) =
∑
k∈P

dk
1(
n
r

)
k

{Φk(∂x)ψ(x)|x=e}Φk(x).

By the definition of γk, we have

φs(e+ x) =
∑
k∈P

dk
1(
n
r

)
k

γk(s)Φk(x).

Since Φm = φm−ρ, (
m

k

)
= dk

1(
n
r

)
k

γk(m− ρ).

For a complex number α, we define the following differential operator on Ω:

Dα = ∆(x)1+α∆(∂x)∆(x)−α.

For this operator, we have

γ(Dα)(s) =
r∏

j=1

(
sj − α+

d

4
(r − 1)

)
. (2.1.33)

The operators Dj d
2
, j = 0, . . . , r − 1 generate algebra D(Ω).

Lemma 2.1.13. For all k ∈ P, there exist some constant C > 0 and integer N such that
for any s ∈ Cr

|γk(s)| ≤ C

r∏
l=1

(
|sl|+

d

4
(r − 1)

)N

. (2.1.34)

|γk(s− ρ)| ≤ C

r∏
l=1

(
|sl|+

d

2
(r − 1)

)N

. (2.1.35)

Proof. Since algebra D(Ω) is generated by Dj d
2
, j = 0, . . . , r − 1, for Φk(∂x) ∈ D(Ω),

Φk(∂x) =
∑

l0,...,lr−1;finite

al0,...,lr−1D
l0
0 d
2

· · ·Dlr−1

(r−1) d
2

.

Here, we remark that for j = 0, . . . , r − 1

|γ(D d
2
(j−1))(s)| =

∣∣∣∣∣
r∏

l=1

(
sl +

d

4
(r − 1)− d

2
(j − 1)

)∣∣∣∣∣ ≤
r∏

l=1

(
|sl|+

d

4
(r − 1)

)
.

Therefore,

|γk(s)| ≤
∑

l0,...,lr−1;finite

|al0,...,lr−1 |γ(D0 d
2
)(s)l0 · · · γ(D(r−1) d

2
)(s)lr−1 ≤ C

r∏
l=1

(
|sl|+

d

4
(r − 1)

)N

.

We immediately derive (2.1.35) from (2.1.34).
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Lemma 2.1.14. For all s ∈ Cr, there exist some l ∈ Z≥0 and some constant C > 0 such
that for all l ⊂ k ∈P

|γk(−s)| ≤ C
ΓΩ(Re (s) + ρ+ k)

|ΓΩ(s)|
≤ C

∣∣∣∣ΓΩ(Re (s) + ρ)

ΓΩ(s)

∣∣∣∣ (∥Re (s)∥+ d(r − 1))k. (2.1.36)

Proof. For fixed s ∈ Cr, we assume the integral∫
Ω

|e− tr uΦl(u)∆s+ρ(u)∆(u)−
n
r | du

converges absolutely. Hence, for all l ⊂ k ∈P,∫
Ω

|e− tr uΦk(u)∆s+ρ(u)∆(u)−
n
r | du <∞.

By Lemma2.1.12,

γk(−s) =
(−1)|k|

ΓΩ(s)

∫
Ω

e− tr uΦk(u)∆s+ρ(u)∆(u)−
n
r du.

Hence,

|γk(−s)| ≤
1

|ΓΩ(s)|

∫
Ω

e− tr uΦk(u)|∆s+ρ(u)|∆(u)−
n
r du

≤ 1

|ΓΩ(s)|

∫
K

∫
Ω

e− tr u∆k(u)∆Re (s)+ρ(ku)∆(u)−
n
r dudk.

Since K is a compact group and
∫
K
dk = 1, there exists some k̃ ∈ K such that∫

K

∫
Ω

e− tr u∆k(u)∆Re (s)+ρ(ku)∆(u)−
n
r dudk ≤

∫
Ω

e− tr u∆k(u)∆Re (s)+ρ(k̃u)∆(u)−
n
r du.

Moreover, since ∆k is a homogeneous degree |k| polynomial and k̃ ∈ K is a linear transfor-
mation on V , there exists some constant C > 0 such that∫

Ω

e− tr u∆k(k̃u)∆Re (s)+ρ(u)∆(u)−
n
r du ≤ C

∫
Ω

e− tr u∆Re (s)+ρ+k(u)∆(u)−
n
r du.

Therefore, by using the definition of ΓΩ, we have

|γk(−s)| ≤
C

|ΓΩ(s)|

∫
Ω

e− tr u∆Re (s)+ρ+k(u)∆(u)−
n
r du

= C
ΓΩ(Re (s) + ρ+ k)

|ΓΩ(s)|

≤ C

∣∣∣∣ΓΩ(Re (s) + ρ)

ΓΩ(s)

∣∣∣∣ |(Re (s) + ρ)k|

≤ C

∣∣∣∣ΓΩ(Re (s) + ρ)

ΓΩ(s)

∣∣∣∣ (∥Re (s)∥+ d(r − 1))k.
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The final inequality follows from

|(Re (s) + ρ)k| =
r∏

j=1

∣∣∣∣∣
(
Re (s) + ρj −

d

2
(j − 1)

)
kj

∣∣∣∣∣
≤

r∏
j=1

(
|Re (s)|+ d

2
(r − 1)

)
kj

≤ (∥Re (s)∥+ d(r − 1))k.

Lemma 2.1.15. For all m,k ∈P, we have

γk(m− ρ) ≥ 0. (2.1.37)

Proof. Since γk(m − ρ) = 1
dk

(
n
r

)
k

(
m
k

)
and dk,

(
n
r

)
k
> 0, it suffices to show

(
m
k

)
≥ 0 for all

m,k ∈P. From [OO], generalized binomial coefficients are written as(
m

k

)
d
2

=
P ∗
k

(
m; d

2

)
H( d

2)
(k)

,

where P ∗
k

(
m; d

2

)
is the shifted Jack polynomial and H( d

2
)(k) > 0 is a deformation of the hook

length. Moreover, by using (5.2) in [OO]

P ∗
k

(
m;

d

2

)
=

d
2
- dimm/k
d
2
- dimm

|m|(|m| − 1) · · · (|m| − |k|+ 1).

Further, the positivity of the generalized dimensions of the skew Young diagram, d
2
- dimm/k,

follows from (5.1) of [OO] and Chapter VI. 6 of [M]. Therefore, we obtain the positivity of
the shifted Jack polynomial and the conclusion.

Theorem 2.1.16. (1) For w ∈ D,k ∈P, α ∈ C, we have

(α)k∆(e− w)−αΦk(w(e− w)−1) =
∑
x∈P

dx
(α)x(
n
r

)
x

γk(x− ρ)Φx(w). (2.1.38)

Here, we choose the branch of ∆(e− w)−α which takes the value 1 at w = 0.
(2)For w ∈ V C,k ∈P, a K-invariant analytic function etr wΦk(w) has the following expan-
sion.

etr wΦk(w) =
∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(w). (2.1.39)

Proof. (1)We take w = u
∑r

j=1 λjcj ∈ D with u ∈ U and 1 > λ1 ≥ . . . ≥ λr ≥ 0. By
Lemmas 2.1.10 and 2.1.13, there exist some C > 0 and N ∈ Z≥0 such that∑

x∈P

∣∣∣∣∣dx (α)x(
n
r

)
x

γk(x− ρ)Φx(w)

∣∣∣∣∣ ≤∑
x∈P

dx
|(α)x|(

n
r

)
x

|γk(x− ρ)||Φx(w)|

≤ C

r∏
l=1

∑
xl≥0

(|α|+ d(r − 1))xl

xl!

(
xl +

d

2
(r − 1)

)N

λxl
l <∞.
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Therefore, the right hand side of (2.1.38) converges absolutely. By analytic continuation, it
is sufficient to show the assertion when Reα > d

2
(r − 1) and w ∈ Ω ∩ (e− Ω) ⊂ D.

Φk(∂z)
∑
x∈P

dx
(α)x(
n
r

)
x

Φx(z)Φx(w)

∣∣∣∣
z=e

=
∑
x∈P

dx
(α)x(
n
r

)
x

Φk(∂z)Φx(z)|z=eΦx(w)

=
∑
x∈P

dx
(α)x(
n
r

)
x

γk(x− ρ)Φx(w).

On the other hand,

Φk(∂z)
∑
x∈P

dx
(α)x(
n
r

)
x

Φx(z)Φx(w)

∣∣∣∣
z=e

= Φk(∂z)∆(w)−α

∫
K

∆(kw−1 − z)−α dk

∣∣∣∣
z=e

= ∆(w)−α

∫
K

Φk(∂z)∆(kw−1 − z)−α
∣∣
z=e

dk.

Here, from kw−1 − z ∈ TΩ for all k ∈ K and Lemma2.1.8,

Φk(∂z)∆(kw−1 − z)−α
∣∣
z=e

= Φk(∂z)
1

ΓΩ(α)

∫
Ω

e−(x|kw−1−z)∆(x)α∆(x)−
n
r dx

∣∣∣∣
z=e

=
1

ΓΩ(α)

∫
Ω

Φk(∂z)e
(x|z)|z=ee

−(x|kw−1)∆(x)α∆(x)−
n
r dx

=
1

ΓΩ(α)

∫
Ω

Φk(x)e
−(kx|(w−1−e))∆(x)α∆(x)−

n
r dx

= (α)k∆(w−1 − e)−αΦk((w
−1 − e)−1).

Therefore,

Φk(∂z)
∑
x∈P

dx
(α)x(
n
r

)
x

Φx(z)Φx(w)

∣∣∣∣
z=e

= ∆(w)−α

∫
K

(α)k∆(w−1 − e)−αΦk((w
−1 − e)−1) dk

= (α)k∆(e− w)−αΦk(w(e− w)−1).

(2) Since the right hand side of (2.1.39) converges absolutely due to a similar argument of
(1), we have

etr wΦk(w) = lim
α→∞

(α)k∆
(
e− w

α

)−α

Φk

(
w

α

(
e− w

α

)−1
)

=
∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ) lim
α→∞

(α)xΦx

(w
α

)
=
∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(w).
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Next, we preview the gradient for a C-valued and V -valued function f on simple Euclidean
Jordan algebra V . In this parts, we refer to [Di]. For differentiable function f : V → R and
x, u ∈ V , we define the gradient, ∇f(x) ∈ V , of f by

(∇f(x)|u) = Duf(x) =
d

dt
f(x+ tu)

∣∣∣∣
t=0

.

For a C-valued function f = f1 + if2, we define ∇f = ∇f1 + i∇f2. For z = x + iy ∈ V C,
we define Dz = Dx + iDy. Moreover, if {e1, . . . , en} is an orthonormal basis of V and
x =

∑n
j=1 xjej ∈ V C, then

∇f(x) =
n∑

j=1

∂f(x)

∂xj
ej.

We remark that this expression is independent of the choice of an orthonormal basis of V .
For a V -valued function f : V → V expressed by f(x) =

∑r
j=1 fj(x)ej, we define ∇f by

∇f(x) =
n∑

j,l=1

∂fj(x)

∂xl
ejel.

That is also well defined. Let us present some derivation formulas.

Lemma 2.1.17. (1)The product rule of differentiation: For V -valued function f, h, we have

tr (∇(f(x)h(x))) = tr (∇f(x))h(x) + f(x) tr (∇h(x)). (2.1.40)

For C-valued functions f, h,

∇(f(x)h(x)) = (∇f(x))h(x) + f(x)(∇h(x)). (2.1.41)

(2)

∇x =
n

r
e. (2.1.42)

(3)For any invertible element x ∈ V C,

tr (x∇)x−1 := tr (x(∇x−1)) = −n
r
tr x−1. (2.1.43)

(4)For β ∈ C and an invertible element x ∈ V C,

∇(∆(x)β) = β∆(x)βx−1. (2.1.44)

(1), (2), and (4) are well known (see [FK], [Di], and [FW1]). (3) follows from (1), (2), and
∇(xx−1) = ∇(e) = 0.

The following recurrence formulas for the spherical functions, some of which involve the
gradient, are also well known (see [Di] and [FW1]).
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Lemma 2.1.18. Let s ∈ Cr and x ∈ V C. Put

aj(s) :=
c(s)

c(s+ ϵj)
=
∏
k ̸=j

sj − sk + d
2

sj − sk
. (2.1.45)

Then,

(tr x)φs(x) =
r∑

j=1

aj(s)φs+ϵj(x), (2.1.46)

(tr ∇)φs(x) =
r∑

j=1

(
sj +

d

4
(r − 1)

)
aj(−s)φs−ϵj(x), (2.1.47)

(tr (x2∇))φs(x) =
r∑

j=1

(
sj −

d

4
(r − 1)

)
aj(s)φs+ϵj(x). (2.1.48)

Finally, we provide a Plancherel theorem, which is needed to investigate the MCJ poly-
nomials.

Lemma 2.1.19. Put

L2(Ω) := {ψ : Ω −→ C | ∥ψ∥2Ω <∞},
H2(V ) := {Ψ : V −→ C | Ψ is continued analytically to HΩ as a holomorphic function

and ∥Ψ∥2V <∞
}
.

Here,

∥ψ∥2Ω :=

∫
Ω

|ψ(u)|2 du, ∥Ψ∥2V :=
1

(2π)n

∫
V

|Ψ(t)|2 dt.

The (inverse) Fourier transform of an integrable function, ψ, on Ω is defined as

(F−1ψ)(t) :=

∫
Ω

ei(t|u)ψ(u) du. (2.1.49)

We have

F−1 : L2(Ω)
≃−→ H2(V ) (unitary). (2.1.50)

In particular,

F−1 : L2(Ω)K
≃−→ H2(V )K (unitary). (2.1.51)

Proof. From Theorem IX.4.1 in [FK], we have

F̃−1 : L2(Ω)
≃−→ H2(HΩ) (unitary),
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where

H2(HΩ) := {Ψ̃ : HΩ := V + iΩ −→ C | Ψ̃ is analytic in HΩ and ∥Ψ̃∥2HΩ
<∞},

∥Ψ̃∥2HΩ
:= sup

y∈Ω

1

(2π)n

∫
V

|Ψ̃(x+ iy)|2 dx,

F̃−1(ψ)(z) :=

∫
Ω

ei(z|u)ψ(u) du.

Moreover, from Corollary IX.4.2 in [FK], for function Ψ̃ ∈ H2(HΩ), y ∈ Ω, we write Ψ̃y(x) :=

Ψ̃(x+ iy); then,

lim
y→0,y∈Ω

Ψ̃y = Ψ̃0, Ψ̃0(t) :=

∫
Ω

ei(t|u)ψ(u) du = F−1(ψ)(t),

exists in L2(V ) and the map Ψ̃ 7→ Ψ̃0 is an isometric embedding of H2(HΩ) into L2(V ).

Hence, the map F−1 : ψ 7→ Ψ̃0 is unitary. The surjectivity of this map follows from the
above facts and the definition of H2(V ).

Furthermore, since the inverse Fourier transform F−1 and the action of K are commuta-
tive, the above unitary isomorphism also holds for the K-invariant spaces.

2.2 Multivariate Laguerre polynomials and their uni-

tary picture

In this section, we promote a unitary picture associated with the multivariate Laguerre
polynomials and provide some fundamental lemmas based on [FK], [FW1].

First, we recall some function spaces and their complete orthogonal basis as in the case
of one variable. Let α > 2n

r
− 1, m ∈P, TΩ := Ω + iV , and Sr be the symmetric group of

order r.
(1) f

(α)
m ; spherical polynomials

H2
α(D)K := {f : D −→ C | f is K-invariant and analytic in D, and ∥f∥2α,D <∞},

∥f∥2α,D :=
1

πn

ΓΩ(α)

ΓΩ

(
α− n

r

) ∫
D
|f(w)|2h(w)α−

2n
r m(dw),

h(w) := Det(IV C − 2w□w + P (w)P (w))
r
2n ,

f (α)
m (w) := dm

(α)m(
n
r

)
m

Φm(u).

Here, Det stands for the usual determinant of a complex linear operator on V C.
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(2) F
(α)
m ; Cayley transform of the spherical polynomials

H2
α(TΩ)

K := {F : TΩ −→ C | F is K-invariant and analytic in TΩ, and ∥F∥2α,TΩ
<∞},

∥F∥2α,TΩ
:=

1

(4π)n
ΓΩ(α)

ΓΩ

(
α− n

r

) ∫
TΩ

|F (z)|2∆(x)α−
2n
r m(dz),

F (α)
m (z) := dm

(α)m(
n
r

)
m

∆

(
e+ z

2

)−α

Φm((z − e)(z + e)−1).

(3) ψ
(α)
m ;Multivariate Laguerre polynomials (to multiply exponential)

L2
α(Ω)

K := {ψ : Ω −→ C | ψ is K-invariant and ∥ψ∥2α,Ω <∞},

∥ψ∥2α,Ω :=
2rα

ΓΩ(α)

∫
Ω

|ψ(u)|2∆(u)α−
n
r du,

ψ(α)
m (u) := e− tr uL

(α−n
r
)

m (2u).

Here, L
(α−n

r )
m (u) is the multivariate Laguerre polynomial defined by

L
(α−n

r )
m (u) := dm

(α)m(
n
r

)
m

∑
k⊂m

(
m

k

)
(−1)k

(α)k
Φk(u)

= dm
(α)m(
n
r

)
m

∑
k⊂m

(−1)kdk
γk(m− ρ)(

n
r

)
k
(α)k

Φk(u).

(4) q
(α)
m (s) ;Multivariate Meixner-Pollaczek polynomials

L2
α(Rr)Sr := {q : Rr −→ C | q is Sr-invariant and ∥q∥2α,R <∞},

∥q∥2α,Rr :=
1

(2π)r
2rα

ΓΩ(α)

∫
Rr

|q(s)|2
∣∣∣ΓΩ

(
is+

α

2
+ ρ
)∣∣∣2 m(ds)

|c(is)|2
,

q(α)m (s) := i−|m|P
(α
2
)

m

(
s;
π

2

)
.

Here, P
(α)
m (s; θ) is the multivariate Meixner-Pollaczek polynomial defined by

P (α)
m (s; θ) := ei|m|θdm

(2α)m(
n
r

)
m

∑
k⊂m

(
m

k

)
γk(−is− α)

(2α)k
(1− e−2iθ)|k|

= ei|m|θdm
(2α)m(

n
r

)
m

∑
k⊂m

dk
γk(m− ρ)γk(−is− α)(

n
r

)
k
(2α)k

(1− e−2iθ)|k|.

We remark that

∥f (α)
m ∥2α,D = ∥F (α)

m ∥2α,TΩ
= ∥ψ(α)

m ∥2α,Ω = ∥q(α)m ∥2α,Rr = dm
(α)m(
n
r

)
m
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and the orthogonality relations of ψ
(α)
m and q

(α)
m also hold for α > n

r
− 1.

Next, similar to the one variable case, we will consider some unitary isomorphisms.

Modified Cayley transform 1

C−1
α : H2

α(TΩ)
K ≃−→ H2

α(D)K , (C−1
α F )(w) := ∆(e− w)−αF

(
(e+ w)(e− w)−1

)
.

Modified Laplace transform

Lα : L2
α(Ω)

K ≃−→ H2
α(TΩ)

K , (Lαψ)(z) :=
2rα

ΓΩ(α)

∫
Ω

e−(z|u)∆(u)α−
n
r ψ(u) du.

Modified Mellin transform

Mα : L2
α(Ω)

K ≃−→ L2
α(Rr)Sr , (Mαψ)(s) :=

1

ΓΩ

(
is+ ρ+ α

2

) ∫
Ω

φis(u)∆(u)
α
2
−n

r ψ(u) du.

To summarize the above, we obtain the following picture.

H2
α(D)K

≃←−−
C−1

α

H2
α(TΩ)

K ≃←−
Lα

L2
α(Ω)

K ≃−−→
Mα

L2
α(Rr)Sr .

∈ ∈ ∈ ∈
f
(α)
m ←−[ F

(α)
m ←−[ ψ

(α)
m 7−→ q

(α)
m

(1) (2) (3) (4)

Furthermore, the link between ψ
(α)
m and q

(α)
m obtained by the modified Mellin transform is

extended to the correspondence between ψ
(α)
m and q

(α,θ)
m (s) := e−i|m|θP

(α
2
)

m (s; θ).

Theorem 2.2.1. We put α > n
r
− 1, 0 < θ < 2π and

L2
α,θ(Rr)Sr := {q : Rr −→ C | q is Sr-invariant and ∥q∥2α,θ,Rr <∞},

∥q∥2α,θ,Rr :=
1

(2π)r
(2 sin θ)rα

ΓΩ(α)

∫
Rr

|q(s)|2e(2θ−π)|s|
∣∣∣ΓΩ

(
is+

α

2
+ ρ
)∣∣∣2 m(ds)

|c(is)|2
,

Mα,θ(ψ)(s) := (1− i cot θ)i|s|+
α
2
rMα(e

i cot θ tr uψ)(s)

=
(1− i cot θ)i|s|+α

2
r

ΓΩ

(
is+ α

2
+ ρ
) ∫

Ω

ei cot θ tr uφis(u)∆(u)
α
2
−n

r ψ(u) du.

Here, we choose the branch of (1 − i cot θ)i|s|+α
2
r, which takes the value 1 at θ = π

2
. Then,

we have

Mα,θ : L2
α(Ω)

K ≃−→ L2
α,θ(Rr)Sr (unitary).

∈ ∈

ψ
(α)
m 7−→ q

(α,θ)
m
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Proof. Let us evaluate (Mα ◦ ei cot θ tr u)(ψ
(α)
m )(s). By using this assumption, we can apply

Lemma2.1.12 to this one. Thus, we have

Mα(e
i cot θ tr ue− tr uΦk)(s) =

1

ΓΩ

(
is+ α

2
+ ρ
) ∫

Ω

e−(1−i cot θ) tr uΦk(u)φis+α
2
(u)∆(u)−

n
r du

= (−1)|k|(1− i cot θ)−i|s|−α
2
r−|k|γk

(
−is− α

2

)
.

Hence, we have

(Mα ◦ ei cot θ tr u)(ψ(α)
m )(s) = dm

(α)m(
n
r

)
m

∑
k⊂m

(
m

k

)
(−2)k

(α)k
Mα(e

i cot θ tr ue− tr uΦk)(s)

= (1− i cot θ)−i|s|−α
2
rq(α,θ)m (s).

Since ψ 7→ ei cot θ tr uψ is the unitary transform on L2
α(Ω),Mα ◦ ei cot θ tr u is also the unitary

isomorphism from L2
α(Ω) onto L

2
α(Rr)Sr . Therefore,

∥ψ(α)
m ∥2α,Ω = ∥(Mα ◦ ei cot θ tr u)ψ(α)

m ∥2α,Rr = ∥(1− i cot θ)−i|s|−α
2
rq(α,θ)m (s)∥2α,Rr . (2.2.1)

Finally, if we adjust the weight function and norm, we obtain the conclusion.

We obtain the generating function for q
(α,θ)
m as an application of this theorem.

Lemma 2.2.2. (1)For any α ∈ C, u ∈ Ω and z ∈ D, we have

∑
m∈P

L
(α−n

r )
m (u)Φm(z) = ∆(e− z)−α

∫
K

e−(ku|z(e−z)−1) dk. (2.2.2)

Here, we define the branch by ∆(e)−α = 1.

(2)Let z = u′
∑r

j=1 ajcj ∈ D with u′ ∈ U , 1 > a1 ≥ . . . ≥ ar ≥ 0, α ∈ C, 0 < θ < 2π and

s ∈ Rr. If a1 <
1
3
, then

∑
m∈P

q(α,θ)m (s)Φm(z) = ∆(e− z)−αφ−is−α
2
((e− e−2iθz)(e− z)−1). (2.2.3)

Proof. (1)By referring to [FK], (2.2.2) holds for α > n
r
− 1 = d(r − 1). Moreover, the right

hand side of (2.2.2) is well defined for any α ∈ C. Hence, by analytic continuation, it is
sufficient to show the absolute convergence of the left hand side under the assumption. By
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Lemmas 2.1.5, 2.1.10 and 2.1.11,

∑
m∈P

|L(α−
n
r )

m (u)Φm(z)| ≤
∑
m∈P

∑
k⊂m

∣∣∣∣∣dm (α)m(
n
r

)
m

(
m

k

)
(−1)k

(α)k
Φk(u)

∣∣∣∣∣Φm(a1)

≤
∑
k∈P

dk
1(
n
r

)
k

1

(|α|+ d(r − 1))k
Φk(u)

∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1)

= (1− a1)−r|α|−dr(r−1)
∑
k∈P

dk
1(
n
r

)
k

Φk

(
a1

1− a1
u

)
= (1− a1)−r|α|−dr(r−1)e

a1
1−a1

tr u
<∞. (2.2.4)

(2) From the proof of (1), for α > n
r
− 1, we have

Mα,θ

(∑
m∈P

|ψ(α)
m (u)Φm(z)|

)
(s) =Mα,θ

(∑
m∈P

|e− tr uL
(α−n

r )
m (2u)Φm(z)|

)
(s)

≤ (1− a1)−r|α|−dr(r−1)Mα,θ(e
− 1−3a1

1−a1
tr u

)(s).

By 1− 3a1 > 0, we can apply Lemma2.1.12 toMα,θ(e
− 1−3a1

1−a1
tr u

)(s). Thus,

Mα,θ

(∑
m∈P

|ψ(α)
m (u)Φm(z)|

)
(s) ≤ (1− a1)−r|α|−dr(r−1)

(
1− a1

1− a1
(1− e−2iθ)

)−i|s|−α
2
r

.

Hence, the exchange of integration and summation is justified and we obtain

Mα,θ

(∑
m∈P

ψ(α)
m (u)Φm(z)

)
(s) =

∑
m∈P

Mα,θ(ψ
(α)
m )(s)Φm(z) =

∑
m∈P

q(α,θ)m (s)Φm(z).

On the other hand,

Mα,θ

(∑
m∈P

ψ(α)
m (u)Φm(z)

)
(s) = ∆(e− z)−αMα,θ

(∫
K

e−(ku|(e+z)(e−z)−1) dk

)
(s).

We remark that if z ∈ D, then (e+ z)(e− z)−1 ∈ TΩ,Mα,θ

(∫
K
|e−(ku|(e+z)(e−z)−1) dk|

)
(s) is

convergent under these conditions. Therefore, by Lemma2.1.4,

Mα,θ

(∫
K

e−(ku|(e+z)(e−z)−1) dk

)
(s) = φ−is−α

2
((e− e−2iθz)(e− z)−1).

Hence, for α > n
r
− 1, it can be seen that this assertion holds.
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Finally, from a similar argument to that in (1), it is sufficient to prove the absolute

convergence of the generating function of q
(α,θ)
m (s) for all α ∈ C.∑

m∈P

|q(α,θ)m (s)Φm(z)| ≤
∑
m∈P

∑
k⊂m

∣∣∣∣∣dm (α)m(
n
r

)
m

(
m

k

)
γk
(
−is− α

2

)
(α)k

(1− e−2iθ)k

∣∣∣∣∣Φm(a1)

≤
∑
k∈P

dk
1(
n
r

)
k

∣∣γk (−is− α
2

)∣∣
(|α|+ d(r − 1))k

(2 sin θ)k

∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1)

≤
∑
k∈P

dk

∣∣γk (−is− α
2

)∣∣(
n
r

)
k

Φk

(
2a1

1− a1
sin θ

)
.

Moreover, by Lemma2.1.14, there exists some constants, C1, C2 > 0 and l ∈ Z≥0, such that∑
m∈P

|q(α,θ)m (s)Φm(z)| ≤ C1 + C2

ΓΩ

(
α
2
+ ρ
)

|ΓΩ(is)|
∑

l⊂k∈P

dk

(
α
2
+ ρ
)
k(

n
r

)
k

Φk

(
2a1

1− a1
sin θ

)
<∞.

Let us consider the operators D
(j)
α for j = 1, 2, 3. The operator D

(1)
α is a first order

differential operator on the domain D:

D(1)
α := 2 tr (w∇w). (2.2.5)

Since this is the Euler operator,

D(1)
α f (α)

m (w) = 2|m|f (α)
m (w).

The operators D
(2)
α and D

(3)
α are respectively defined by C−1

α D
(2)
α = D

(1)
α C−1

α and LαD
(3)
α =

D
(2)
α Lα. Hence, D

(2)
α F

(α)
m (w) = 2|m|F (α)

m (w) and

D(3)
α ψ(α)

m (u) = 2|m|ψ(α)
m (u). (2.2.6)

Moreover, they have the following expressions.

D(2)
α = tr ((z2 − e)∇z + α(z − αe)), (2.2.7)

D(3)
α = tr (−u∇2

u − α∇u + u− αe). (2.2.8)

Lemma 2.2.3. (1)

D(3)
α φs(u) =

r∑
j=1

aj(s)φs+ϵj(u)− rαφs(u)

−
r∑

j=1

(
sj +

d

4
(r − 1)

)(
sj + α− d

4
(r − 1)− 1

)
aj(−s)φs−ϵj(u). (2.2.9)
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(2)

D(3)
α Φx(u) =

r∑
j=1

ãj(x)Φx+ϵj(u)− rαΦx(u)

−
r∑

j=1

(
xj +

d

2
(r − j)

)(
xj + α− 1− d

2
(j − 1)

)
ãj(−x)Φx−ϵj(u). (2.2.10)

Here,

ãj(x) := aj(x− ρ) =
∏
k ̸=j

xj − xk − d
2
(j − k − 1)

xj − xk − d
2
(j − k)

. (2.2.11)

(3)For any C ∈ C,

eC tr uD(3)
α e−C tr uΦx(u) = (1− C2)

r∑
j=1

ãj(x)Φx+ϵj(u)

+
r∑

j=1

(C(2xj + α)− α)Φx(u)

−
r∑

j=1

(
xj +

d

2
(r − j)

)(
xj + α− 1− d

2
(j − 1)

)
ãj(−x)Φx−ϵj(u).

(2.2.12)

(2.2.9) is a corollary of Lemma3.18 in [FW1]. However, since Faraut and Wakayama’s
lemma is incorrect in terms of the sign, we re-prove it.

Proof. (1) The modified Laplace transform of φs is given by

(Lαφs)(z) =
2rα

ΓΩ(α)

∫
Ω

e−(z|u)φs(u)∆(u)α−
n
r du = 2rα

ΓΩ(s+ α + ρ)

ΓΩ(α)
φ−s−α(z).

Thus, from the definition of D
(3)
α and Lemma2.1.18,

Lα(D
(3)
α φs)(z) = D(2)

α (Lαφs)(z)

= 2rα
ΓΩ(s+ α+ ρ)

ΓΩ(α)
D(2)

α φ−s−α(z)

=
r∑

j=1

(
sj + α− d

4
(r − 1)

)
aj(s+ α)2rα

ΓΩ(s+ α + ρ)

ΓΩ(α)
φ−s−α−ϵj(z)

− rα2rαΓΩ(s+ α + ρ)

ΓΩ(α)
φ−s−α(z)

−
r∑

j=1

(
sj +

d

4
(r − 1)

)
aj(−s− α)2rα

ΓΩ(s+ α + ρ)

ΓΩ(α)
φ−s−α+ϵj(z).
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Since

φ−s−α±ϵj(z) =
ΓΩ(s+ α + ρ)

ΓΩ(s+ α + ρ± ϵj)
Lα(φs±ϵj)(z),

we have

D(2)
α (Lαφs)(z) =

r∑
j=1

(
sj + α− d

4
(r − 1)

)
aj(s)

ΓΩ(s+ α + ρ)

ΓΩ(s+ α + ρ+ ϵj)
Lα(φs+ϵj)(z)

− rα(Lαφs)(z)

−
r∑

j=1

(
sj +

d

4
(r − 1)

)
aj(−s)

ΓΩ(s+ α + ρ)

ΓΩ(s+ α+ ρ− ϵj)
Lα(φs−ϵj)(z)

= Lα

(
r∑

j=1

aj(s)φs+ϵj(u)− rαφs(u)

−
r∑

j=1

(
sj +

d

4
(r − 1)

)(
sj + α− d

4
(r − 1)− 1

)
aj(−s)φs−ϵj(u)

)
(z).

(2) Put s = m− ρ in (2.2.9).
(3) By

eC tr u∇ue
−C tr u = −Ce. eC tr u tr (u∇2

u)e
−C tr u = C2 tr u

and the product rule of differentiation, we remark that

eC tr u tr (u∇2
u)e

−C tr uΦx(u) = tr (u∇2
u)Φx(u)

+ 2 tr (ueC tr u∇u(e
−C tr u)∇u(Φx(u)))

+ eC tr uΦx(u) tr u∇2
ue

−C tr u

=
{
tr (u∇2

u + C2 tr u)− 2C|x|
}
Φx(u)

and

eC tr u tr (∇u)e
−C tr uΦx(u) = Φx(u) tr (e

C tr u∇ue
−C tr u) + tr (∇u)Φx(u)

= −CrΦx(u) + tr (∇u)Φx(u).

Hence,

eC tr uD(3)
α e−C tr uΦx(u) = D(3)

α Φx(u)− C2 tr uΦx(u) + C(2|x|+ rα)Φx(u).

Therefore, from (2.2.10) and (2.1.46), we have the conclusion.
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Chapter 3

Multivariate circular Jacobi
polynomials

In the first section of this chapter, we complete the picture (2.2.1) below

(6) (5)

ϕ
(α,ν)
m ←−[ Ψ

(α,ν)
m

∋ ∋

H2
α,ν(Σ)

K ≃←−−
C−1
α,ν

H2
α,ν(V )K

≃
−−
→

F
−
1

α
,ν

H2
α(D)K

≃←−−
C−1

α

H2
α(TΩ)

K ≃←−
Lα

L2
α(Ω)

K ≃−−−→
Mα,θ

L2
α,θ(Rr)Sr

∈ ∈ ∈ ∈

f
(α)
m ←−[ F

(α)
m ←−[ ψ

(α)
m 7−→ q

(α,θ)
m

(1) (2) (3) (4)

(3.0.1)

and introduce a new multivariate orthogonal polynomial, ϕ
(d)
m (σ;α, ν) = ϕ

(α,ν)
m (σ), which is a

2-parameter deformation of the spherical polynomial. This is also regarded as a multivariate
analogue of the circular Jacobi polynomial. Hence, we call this polynomial the multivariate
circular Jacobi (MCJ) polynomial that degenerates to a 1-parameter deformation of the usual

circular Jacobi polynomial, ϕ
(α)
m (eiθ), in the one variable case. Further, the weight function

of its orthogonality relation coincides with the circular Jacobi ensemble defined by Bourgade
et al. [BNR].

We derive the generating function of ϕ
(α,ν)
m in section 3.2 and the pseudo-differential equa-

tion for Ψ
(α,ν)
m in the section 3.3. Moreover, we study the one variable case in more detail in

section 3.4. Finally, we describe future work for ϕ
(α,ν)
m .

Unless otherwise specified, we have assumed α > n
r
− 1 = d

2
(r − 1) and ν ∈ R in this

chapter.
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3.1 Definitions and orthogonality

Following Chapter 2, we introduce some function space, functions that become complete
orthogonal bases and unitary transformations required to provide the MCJ polynomials.

(5) Ψ
(α,ν)
m ;Modified Fourier transform of ψ

(α)
m

H2
α,ν(V )K := {Ψ : V −→ C | Ψ ∈ H2(V ) is K-invariant and ∥Ψ∥2α,ν,V <∞},

∥Ψ∥2α,ν,V :=
2rα

ΓΩ(α)

∣∣∣∣ΓΩ

(
1

2

(
α +

n

r

)
+ iν

)∣∣∣∣2 ∥Ψ∥2V
=

c̃0
(2π)n

2rα

ΓΩ(α)

∣∣∣∣ΓΩ

(
1

2

(
α+

n

r

)
+ iν

)∣∣∣∣2 ∫
Rr

|Ψ(λ)|2
∏

1≤p<q≤r

|λp − λq|d dλ1 · · · dλr,

Ψ(α,ν)
m (t) := ∆(e− it)−

1
2(α+

n
r )−iνΨ̃

(α,ν)
m (t),

Ψ̃
(α,ν)
m (t) := dm

(α)m(
n
r

)
m

∑
k⊂m

(−1)|k|
(
m

k

)(1
2

(
α + n

r

)
+ iν

)
k

(α)k
Φk(2(e− it)−1).

Here, λ =
∑r

j=1 λjcj and we choose the branch of ∆(e− it)−
1
2(α+

n
r )−iν which takes the value

1 at t = 0.

(6) ϕ
(α,ν)
m ;MCJ polynomials

H2
α,ν(Σ)

K := {ϕ : Σ −→ C | ϕ is K-invariant and continued analytically to D
as a holomorphic function which satisfies with ∥ϕ∥2α,ν,Σ <∞},

∥ϕ∥2α,ν,Σ :=
1

(2π)n
1

ΓΩ(α)

∣∣∣∣ΓΩ

(
1

2

(
α +

n

r

)
+ iν

)∣∣∣∣2 ∫
Σ

|ϕ(σ)|2|∆(e− σ)
1
2
(α−n

r
)+iν |2 dµ(σ)

=
c̃0

(2π)n
1

ΓΩ(α)

∣∣∣∣ΓΩ

(
1

2

(
α +

n

r

)
+ iν

)∣∣∣∣2
·
∫
Sr

|ϕ(eiθ)|2
r∏

j=1

|(1− eiθj)
1
2(α−

n
r )+iν |2

∏
1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr.

Here, we define the multivariate circular Jacobi polynomial by

ϕ(d)
m (σ;α, ν) = ϕ(α,ν)

m (σ) := dm
(α)m(
n
r

)
m

∑
k⊂m

(−1)|k|
(
m

k

)(1
2

(
α + n

r

)
+ iν

)
k

(α)k
Φk(e− σ). (3.1.1)

The main purpose of this section is to show that these polynomials form the complete
orthogonal basis of H2

α,ν(Σ)
K and to explicitly write their orthogonal relations. To achieve

that purpose, we introduce a modified Fourier transform F−1
α for a function ψ on Ω and the
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second inverse modified Cayley transform C−1
α,ν as follows.

(F−1
α ψ)(t) :=

1

ΓΩ

(
1
2

(
α + n

r

))(F−1(∆(u)
1
2
(α−n

r
)ψ))(t) (3.1.2)

=
1

ΓΩ

(
1
2

(
α + n

r

)) ∫
Ω

ei(t|u)ψ(u)∆(u)
1
2(α−

n
r ) du, (3.1.3)

(C−1
α,νΨ)(σ) := ∆(e− ic(σ))

1
2(α+

n
r )+iνΨ(c(σ)) = ∆

(
e− σ
2

)− 1
2(α+

n
r )−iν

Ψ(c(σ)). (3.1.4)

These give the following unitary isomorphisms.

Theorem 3.1.1. (1)

F−1
α,ν := F−1

α+2iν : L2
α(Ω)

K ≃−→ H2
α,ν(V )K (unitary).

∈ ∈

ψ
(α)
m 7−→ Ψ

(α,ν)
m

In particular, {Ψ(α,ν)
m }m∈P form the complete orthogonal basis of H2

α,ν(V )K and for all m,n ∈
P,

1

(2π)n

∫
V

Ψ(α,ν)
m (t)Ψ

(α,ν)
n (t) dt = dm

ΓΩ(α +m)(
n
r

)
m

1∣∣ΓΩ

(
1
2

(
α+ n

r

)
+ iν

)∣∣2 δmn. (3.1.5)

(2)

C−1
α,ν : H2

α,ν(V )K
≃−→ H2

α,ν(Σ)
K (unitary).

∈ ∈

Ψ
(α,ν)
m 7−→ ϕ

(α,ν)
m

Furthermore, the MCJ polynomials form the complete orthogonal basis of H2
α,ν(Σ)

K and for
all m,n ∈P,

1

(2π)n

∫
Σ

ϕ(α,ν)
m (σ)ϕ

(α,ν)
n (σ)|∆(e− σ)

1
2
(α−n

r
)+iν |2 dµ(σ)

=
c̃0

(2π)n

∫
Sr

ϕ(α,ν)
m (eiθ)ϕ

(α,ν)
n (eiθ)

r∏
j=1

|(1− eiθj)
1
2(α−

n
r )+iν |2

∏
1≤k<l≤r

|eiθk − eiθl|d dθ1 · · · dθr

= dm
ΓΩ(α+m)(

n
r

)
m

1∣∣ΓΩ

(
1
2

(
α + n

r

)
+ iν

)∣∣2 δmn. (3.1.6)

Proof. (1)Observing that

L2
α(Ω)

K ≃−→ L2(Ω)K (unitary),

∈ ∈

ψ 7−→
(

2rα

ΓΩ(α)

) 1
2
∆(u)

1
2(α−

n
r )+iνψ
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H2
α,ν(V )K

≃−→ H2(V )K (unitary).

∈ ∈

Ψ 7−→ 2
rα
2

ΓΩ(α)
1
2
ΓΩ

(
1
2

(
α+ n

r

)
+ iν

)
Ψ

In addition to using Lemma2.1.19, we immediately obtain the following unitary isomorphism
F−1

α,ν .

L2
α(Ω)

K ≃−→ L2(Ω)K
≃−→ H2(V )K

≃−→ H2
α,ν(V )K .

∈ ∈ ∈ ∈

ψ 7−→
(

2rα

ΓΩ(α)

) 1
2
∆(u)

1
2(α−

n
r )+iνψ 7−→ F−1

(
2
rα
2

ΓΩ(α)
1
2
∆(u)

1
2(α−

n
r )+iνψ

)
7−→ F−1

α,ν(ψ)

Next, we evaluate the modified Fourier transform of ψ
(α)
m which forms the complete

orthogonal basis for L2
α(Ω)

K . From Lemma2.1.8, we obtain

F−1
α,ν(e

− tr uΦk)(t) =

(
1

2

(
α +

n

r

)
+ iν

)
k

∆(e− it)−
1
2(α+

n
r )−iνΦk((e− it)−1).

Hence,

F−1
α,ν(ψ

(α)
m )(t) =

1

Γ
(
1
2

(
α + n

r

)
+ iν

)F−1(∆(u)
1
2(α−

n
r )+iνψ(α)

m )(t)

= dm
(α)m(
n
r

)
m

∑
k⊂m

(−2)|k|
(
m

k

)
1

(α)k

· 1

Γ
(
1
2

(
α + n

r

)
+ iν

) ∫
Ω

ei(t|u)∆(u)
1
2(α−

n
r )+iνe− tr uΦk(u) du

= Ψ(α,ν)
m (t).

Finally, we have

dm
(α)m(
n
r

)
m

δmn = (ψ(α)
m , ψ(α)

n )α,Ω

= (F−1
α,ν(ψ

(α)
m ),F−1

α,ν(ψ
(α)
n ))α,ν,V

=
2rα

ΓΩ(α)

∣∣ΓΩ

(
1
2

(
α+ n

r

))
+ iν

∣∣2
(2π)n

∫
V

Ψ(α,ν)
m (t)Ψ

(α,ν)
n (t) dt.

(2)We remark that the inverse Cayley transform c−1 is a holomorphic bijection of HΩ onto
D and the inverse map of C−1

α,ν is given by

(Cα,νϕ)(t) := ∆

(
e− c−1(t)

2

) 1
2(α+

n
r )+iν

ϕ(c−1(t)) = ∆(e− it)−
1
2(α+

n
r )−iνϕ(c−1(t)). (3.1.7)
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Hence, since {Ψ(α,ν)
m }m∈P form the complete orthogonal basis of H2

α,ν(V )K , it is sufficient to

show the statement for {Ψ(α,ν)
m }m∈P and {ϕ(α,ν)

m }m∈P .
By the definition, we have

(C−1
α,νΨ

(α,ν)
m )(σ) = ∆

(
e− σ
2

)− 1
2(α+

n
r )−iν

∆(e− ic(σ))−
1
2(α+

n
r )−iνΨ̃

(α,ν)
m (c(σ)) = ϕ(α,ν)

m (σ),

and from (2.1.5) of Lemma2.1.3, we have∫
V

|Ψ(α,ν)
m (t)|2 dt = 2n

∫
Σ

|∆(e− σ)−
n
r |2|Ψ(α,ν)

m (c(σ))|2 dµ(σ)

= 2n
∫
Σ

|∆(e− σ)−
n
r |2
∣∣∣∣∣∆
(
e− σ
2

) 1
2(α+

n
r )+iν

∣∣∣∣∣
2

|(C−1
α,νΨ

(α,ν)
m )(σ)|2 dµ(σ)

= 2−rα

∫
Σ

|ϕ(α,ν)
m (σ)|2|∆(e− σ)

1
2(α−

n
r )+iν |2 dµ(σ).

Therefore, we obtain

(ϕ(α,ν)
m , ϕ(α,ν)

n )α,ν,Σ = (C−1
α,ν(Ψ

(α,ν)
m ), C−1

α,ν(Ψ
(α,ν)
n ))α,ν,Σ = (Ψ(α,ν)

m ,Ψ(α,ν)
n )α,ν,V = dm

(α)m(
n
r

)
m

δmn.

(3.1.6) follows from (2.1.6) of Lemma2.1.3 immediately.

Remark 3.1.2. (1)The weight function of the left hand side for (3.1.6)

r∏
j=1

(1− eiθj)
1
2(α−

n
r )+iν(1− e−iθj)

1
2(α−

n
r )−iν

∏
1≤p<q≤r

|eiθp − eiθq |d

coincides with the circular Jacobi ensemble defined by [BNR].
(2)When α = n

r
, ν = 0, (3.1.1) and (3.1.6) degenerate to

ϕ
(n
r
,0)

m (eiθ) = dm
∑
k⊂m

(−1)|k|
(
m

k

)
Φk(e− eiθ) = dmΦm(eiθ), (3.1.8)

1

(2π)n

∫
Σ

ϕ
(n
r
,0)

m (σ)ϕ
(n
r
,0)

n (σ) dµ(σ)

=
c̃0

(2π)n

∫
Sr

ϕ
(n
r
,0)

m (eiθ)ϕ
(n
r
,0)

n (eiθ)
∏

1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr = dm
1

ΓΩ

(
n
r

)δmn. (3.1.9)

Therefore, ϕ
(α,ν)
m (eiθ) is regarded as a 2-parameter deformation of the spherical polynomial.

As a generalization of spherical polynomial Φ
(d)
m , the Jack polynomial P

( 2
d
)

m which is
a generalization for multiplicity d is well known (see [M], ChapterVI). This multivariate
special orthogonal polynomial system is derived as the simultaneous eigenfunctions of some
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commuting differential operators. On the other hand, using the unitary picture, we obtain
another extension ϕ

(α,ν)
m , which is different from the Jack polynomial, that is, instead of the

multiplicity d, we consider deformations for real 2-parameters α and ν.

(3) From (2.1.31), for any θ ∈ R and m ∈P, we have

ϕ(α,ν)
m (eiθe) = q

(α,− θ
2)

m

(
ν − i

( n
2r

+ ρ
))

. (3.1.10)

3.2 Generating function

By using these unitary isomorphisms, we present the generating functions of MCJ polyno-
mials from (2.2.2).

Theorem 3.2.1. We assume z = u
∑r

j=1 ajcj ∈ D with u ∈ U , 1 > a1 ≥ . . . ≥ ar ≥ 0 and

a1 <
1
3
.

(1)For all t ∈ V ,

∑
m∈P

Ψ(α,ν)
m (t)Φm(z) = ∆(e− z)−α

∫
K

∆((e+ z)(e− z)−1 − ikt)−
1
2(α+

n
r )−iν dk. (3.2.1)

(2)For any σ ∈ Σ,

∑
m∈P

ϕ(α,ν)
m (σ)Φm(z) = ∆(e− z)−α

∫
K

∆((e− z)−1 − (z(e− z)−1)kσ)−
1
2(α+

n
r )−iν dk. (3.2.2)

Proof. (1) From a similar argument to that in (2) of Lemma2.2.2,

F−1
α,ν

(∑
m∈P

|ψ(α)
m (u)Φm(z)|

)
(t) ≤ (1− a1)−r|α|−dr(r−1)F−1

α,ν(e
− 1−3a1

1−a1
tr u

)(t)

= (1− a1)−r|α|−dr(r−1)∆

(
1− 3a1
1− a1

e− it
)− 1

2(α+
n
r )−iν

<∞.

Hence, the exchange of integration and summation is justified and we obtain∑
m∈P

Ψ(α,ν)
m (t)Φm(z) =

∑
m∈P

F−1
α,ν(ψ

(α)
m )(t)Φm(z)

= F−1
α,ν

(∑
m∈P

ψ(α)
m (u)Φm(z)

)
(t)

= ∆(e− z)−αF−1
α,ν

(∫
K

e−(ku|(e+z)(e−z)−1) dk

)
(t).
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Moreover, by Lemma2.1.8,

F−1
α,ν

(∫
K

e−(ku|(e+z)(e−z)−1) dk

)
(t) =

1

ΓΩ

(
1
2

(
α+ n

r

)
+ iν

)
·
∫
Ω

ei(t|u)∆(u)
1
2(α−

n
r )+iν

∫
K

e−(ku|(e+z)(e−z)−1) dkdu

=
1

ΓΩ

(
1
2

(
α+ n

r

)
+ iν

)
·
∫
K

∫
Ω

e−(u|k(e+z)(e−z)−1−it)∆(u)
1
2(α−

n
r )+iν dudk

=

∫
K

∆(k(e+ z)(e− z)−1 − it)−
1
2(α+

n
r )−iν dk

=

∫
K

∆((e+ z)(e− z)−1 − ikt)−
1
2(α+

n
r )−iν dk.

(2)Applying the modified Cayley transform C−1
α,ν to (3.2.1), we obtain

∑
m∈P

ϕ(α,ν)
m (σ)Φm(z) = ∆(e− z)−αC−1

α,ν

(∫
K

∆((e+ z)(e− z)−1 − ikt)−
1
2(α+

n
r )−iν dk

)
(σ)

= ∆(e− z)−α∆

(
e− σ
2

)− 1
2(α+

n
r )−iν

·
∫
K

∆((e+ z)(e− z)−1 − ikc(σ))−
1
2(α+

n
r )−iν dk.

(3.2.3)

Since

(e+ z)(e− z)−1 − ikc(σ) = 2z(e− z)−1 + 2k(e− σ)−1,

we have

∆(e− σ)−
1
2(α+

n
r )−iν

∫
K

∆(z(e− z)−1 + k(e− σ)−1)−
1
2(α+

n
r )−iν dk

=

∫
K

∆(e+ (k(z(e− z)−1))(e− σ))−
1
2(α+

n
r )−iν dk

=

∫
K

∆(e+ (z(e− z)−1)(e− kσ))−
1
2(α+

n
r )−iν dk

=

∫
K

∆((e− z)−1 − (z(e− z)−1)kσ)−
1
2(α+

n
r )−iν dk.
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3.3 Differential equation for Ψ
(α,ν)
m

Considering some pseudo-differential operator that is defined by

tr (∇−1
t )e(t|u) = tr (u−1)e(t|u) (any t ∈ V, u ∈ Ω), (3.3.1)

we obtain the explicit (pseudo-) differential equations for Ψ
(α,ν)
m as follows.

Theorem 3.3.1. The operator D
(5)
α,ν on V is defined by the relation D

(5)
α,νF−1

α,ν = F−1
α,νD

(3)
α .

Then, we obtain

D(5)
α,ν = tr

(
−i(e+ t2)∇t +

(
2ν − in

r

)
t− αe+ i

(
1

4

(
α− n

r

)2
+ ν2

)
∇−1

t

)
, (3.3.2)

and
D(5)

α,νΨ
(α,ν)
m (t) = 2|m|Ψ(α,ν)

m (t). (3.3.3)

Proof. From Theorem3.1.1, to prove (3.3.2), it suffices to show the relation for complete

orthogonal basis ψ
(α)
m for L2

α(Ω)
K

(F−1
α,νD

(3)
α ψ(α)

m )(t) = D̃
(5)
α,ν((F−1

α,νψ
(α)
m )(t)),

where D
(5)
α,ν is the operator on the right hand side of (3.3.2).

By the very definition of the modified Fourier transform F−1
α,ν and the inner product of

L2
α(Ω), we can write

(F−1
α,νψ)(t) = (ei(t|u)∆(u)−

1
2(α−

n
r )+iν |ψ)L2

α(Ω), (3.3.4)

and from Lemma3.13 in [FW1], D
(3)
α = D

(3)
α is a self-adjoint operator with respect to the

measure ∆(u)α−
n
r du. Hence,

(F−1
α,νD

(3)
α ψ(α)

m )(t) = (ei(t|u)∆(u)−
1
2(α−

n
r )+iν |D(3)

α ψ
(α)
m )L2

α(Ω)

= (D(3)
α (ei(t|u)∆(u)−

1
2(α−

n
r )+iν)|ψ(α)

m )L2
α(Ω).

Furthermore, based on Lemma2.1.17, let us perform

tr (u∇2
u)(e

i(t|u)∆(u)−
1
2(α−

n
r )+iν) = tr (u(∇2

ue
i(t|u)))∆(u)−

1
2(α−

n
r )+iν

+ 2 tr (u(∇ue
i(t|u))(∇u∆(u)−

1
2(α−

n
r )+iν))

+ ei(t|u) tr (u∇2
u∆(u)−

1
2(α−

n
r )+iν)

= ei(t|u)∆(u)−
1
2(α−

n
r )+iν

{
tr (−ut2)− i

((
α− n

r

)
− 2iν

)
tr (t)

+

(
1

2

(
α− n

r

)
− iν

)(
1

2

(
α +

n

r

)
− iν

)
tr (u−1)

}
,
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and

tr (α∇u)(e
i(t|u)∆(u)−

1
2(α−

n
r )+iν) = α tr (∇ue

i(t|u))∆(u)−
1
2(α−

n
r )+iν

+ αei(t|u) tr (∇u∆(u)−
1
2(α−

n
r )+iν)

= tr

(
iαt− α

(
1

2

(
α− n

r

)
− iν

)
u−1

)
ei(t|u)∆(u)−

1
2(α−

n
r )+iν .

Here, we remark that for any p ∈ Z≥0 tr ((∇p
ue

i(t|u))) = tr ((it)p)ei(t|u) and

tr (u∇2
u∆(u)−

1
2(α−

n
r )+iν) =

(
−1

2

(
α− n

r

)
+ iν

)
{
tr (u(∇uu

−1))∆(u)−
1
2(α−

n
r )+iν + tr (∇u∆(u)−

1
2(α−

n
r )+iν)

}
=

(
1

2

(
α− n

r

)
− iν

)(
1

2

(
α +

n

r

)
− iν

)
tr (u−1)∆(u)−

1
2(α−

n
r )+iν

and

tr ((∇ue
i(t|u))(u∇u∆(u)−

1
2(α−

n
r )+iν)) =

(
−1

2

(
α− n

r

)
+ iν

)
tr (it)ei(t|u)∆(u)−

1
2(α−

n
r )+iν .

Hence,

D(3)
α (ei(t|u)∆(u)−

1
2(α−

n
r )+iν) = tr (−u∇2

u − α∇u + u− αe)(ei(t|u)∆(u)−
1
2(α−

n
r )+iν)

= tr

(
(e+ t2)u+

(
2ν − in

r

)
t− αe+

(
1

4

(
α− n

r

)2
+ ν2

)
u−1

)
· ei(t|u)∆(u)−

1
2(α−

n
r )+iν

= D̃
(5)
α,νe

i(t|u)∆(u)−
1
2(α−

n
r )+iν .

Therefore,

(F−1
α,νD

(3)
α ψ(α)

m )(t) = (D̃
(5)
α,νe

i(t|u)∆(u)−
1
2(α−

n
r )+iν |ψ(α)

m )L2
α(Ω)

= D̃
(5)
α,ν(e

i(t|u)∆(u)−
1
2(α−

n
r )+iν |ψ(α)

m )L2
α(Ω)

= D̃
(5)
α,ν((F−1

α,νψ)(t)).

The second equality is justified by ei(t|u)∆(u)
1
2(α−

n
r )+iνψ

(α)
m ∈ L1(Ω). Finally, since F−1

α,ν is

an isomorphism from the space L2
α(Ω)

K onto H2
α,ν(V )K , we obtain D

(5)
α,ν = D̃

(5)
α,ν .

On the other hand, for (3.3.3), from the definition of D
(5)
α,ν and (2.2.6), we have

D(5)
α,νΨ

(α,ν)
m (t) = D(5)

α,νF−1
α,ν(ψ

(α)
m )(t) = F−1

α,ν(D
(3)
α ψ(α)

m )(t) = 2|m|F−1
α,ν(ψ

(α)
m )(t) = 2|m|Ψ(α,ν)

m (t).
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We can also define D
(6)
α,ν by the relation D

(6)
α,νC−1

α,ν = C−1
α,νD

(5)
α,ν . However, since there are

difficulties in deriving the modified Cayley transform of ∇−1
t , we have not been able to obtain

the explicit expression for D
(6)
α,ν like that in the above theorem. On the other hand, when

α = n
r
, ν = 0, Ψ

(n
r
,0)

m (t) becomes

Ψ
(n
r
,0)

m (t) = ∆(e− it)−
n
r dm

∑
k⊂m

(−1)|k|
(
m

k

)
Φk(2(e− it)−1)

= ∆(e− it)−
n
r dmΦm(c−1(t)). (3.3.5)

(3.3.6)

Further, the term of the pseudo-differential operator vanishes for D
(5)
n
r
,0. Hence,

D
(5)
n
r
,0 = −i tr ((e+ t2)∂t)−

n

r
tr (e+ it). (3.3.7)

Therefore, we obtain the following explicit expression for D
(6)
n
r
,0 from the modified Cayley

transform of D
(5)
n
r
,0.

D
(6)
n
r
,0 = 2 tr (σ∇σ). (3.3.8)

3.4 One variable case

In this section, we have assumed that r = 1.
First, we remark that (3.1.1) becomes

ϕ(α,ν)
m (σ) :=

(α)m
m!

m∑
k=0

(−1)k
(
m

k

)(1
2
(α+ 1) + iν

)
k

(α)k
(1− σ)k (3.4.1)

=
(α)m
m!

2F1

(
−m, 1

2
(α + 1) + iν
α

; 1− σ
)

(3.4.2)

=

(
α−1
2
− iν

)
m!

2F1

(
−m, 1

2
(α + 1) + iν

−m− α−3
2

+ iν
; σ

)
. (3.4.3)

and for α > 0, ν ∈ R, (3.1.6) degenerates to

1

2πi

∫
Σ

ϕ(α,ν)
m (σ)ϕ

(α,ν)
n (σ)|(1− σ)

α−1
2

+iν |2 m(dσ)

σ
=

Γ(α +m)

m!

1∣∣Γ(α+1
2

+ iν)
∣∣2 δmn. (3.4.4)

That is a 1-parameter deformation of the usual circular Jacobi polynomial that coincides
with ϕ

(α,0)
m (σ)(See [As], [Is]). In particular, ϕ

(1,0)
m (σ) = σm and

1

2πi

∫
Σ

ϕ(1,0)
m (σ)ϕ

(1,0)
n (σ)

m(dσ)

σ
=

1

2π

∫ 2π

0

eimθe−inθ dθ = δmn.
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We also remark that the rank 1 case of (3.1.10) is

ϕ(α,ν)
m (eiθ) = q

(α,− θ
2)

m

(
ν +

1

2i

)
= em

iθ
2 P

(α
2 )

m

(
ν +

1

2i
;−θ

2

)
, (3.4.5)

That means if θ is regarded as a parameter and ν is regarded as a variable for the circular
Jacobi polynomial, then we can consider the circular Jacobi polynomial to be the Meixner-
Pollaczek polynomial. Moreover, the generating function of ϕ

(α,ν)
m (σ) is given by∑

m≥0

ϕ(α,ν)
m (σ)zm = (1− z)−

1
2
(α−1)+iν(1− σz)−

1
2
(α+1)−iν . (3.4.6)

Although, we have not been given an explicit expression for the differential relation of
ϕ
(α,ν)
m (σ) in the multivariate case, we obtain the following explicit result in the one variable

case from the differential equation of 2F1.

Proposition 3.4.1. If

Dα,ν := σ(1− σ)∂2σ +
{(
−m+

3

2
+ iν

)
(1− σ)− α

2
(1 + σ)

}
∂σ +m

(
1

2
(α + 1) + iν

)
,

(3.4.7)

then
Dα,νϕ

(α,ν)
m (σ) = 0. (3.4.8)

3.5 Concluding remarks

We have investigated the fundamental properties of MCJ polynomials, that is, orthogonality
and the generating function etc. However, as we have not succeeded in obtaining a differential
equation for ϕ

(α,ν)
m similar to Proposition 3.4.1, we can not derive a modified Cayley transform

of tr ∇−1
u .

It is also important to consider the generalization of MCJ polynomials for multiplicity d.
Actually, this generalization has been obtained by Baker and Forrester [BF] for multivariate
Laguerre polynomials which are a modified Fourier transform of the Cayley transform of
MCJ polynomials. In addition, we can consider MCJ polynomials and their orthogonality
without using the analysis on the symmetric cones as follows.

Let n := r + d
2
r(r − 1),

dm :=
Γ
(
d
2

)r
Γ
(
d
2
r
) r−1∏

j=1

1

Γ
(
d
2
j
)2 ∏

1≤p<q≤r

(
mp −mq +

d

2
(q − p)

)
Γ
(
mp −mq +

d
2
(q − p+ 1)

)
Γ
(
mp −mq +

d
2
(q − p− 1) + 1

) ,
(3.5.1)

ΓΩ(s) := (2π)
n−r
2

r∏
j=1

Γ

(
sj −

d

2
(j − 1)

)
,

(s)k :=
r∏

j=1

(
sj −

d

2
(j − 1)

)
kj

.
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Further, P
( 2
d
)

k (λ1, . . . , λr) is an r-variable Jack polynomial and

Φ
(d)
k (λ1, . . . , λr) :=

P
( 2
d
)

k (λ1, . . . , λr)

P
( 2
d
)

k (1, . . . , 1)
. (3.5.2)

Furthermore, we introduce the generalized (Jack) binomial coefficients based on [OO] by

Φ(d)
m (1 + λ1, . . . , 1 + λr) =

∑
k⊂m

(
m

k

)
d
2

Φ
(d)
k (λ1, . . . , λr).

Definition 3.5.1. We define the generalized MCJ polynomial as follows.

ϕ(d)
m (eiθ;α, ν) = ϕ(d)

m (eiθ1 , . . . , eiθr ;α, ν) := dm
(α)m(
n
r

)
m

∑
k⊂m

(−1)|k|
(
m

k

)
d
2

(
1
2

(
α + n

r

)
+ iν

)
k

(α)k

· Φ(d)
k (1− eiθ1 , . . . , 1− eiθr). (3.5.3)

Therefore, we present the following conjecture.

Conjecture 3.5.2. If α > n
r
− 1, ν ∈ R, d > 0, then

c̃0
(2π)n

∫
Sr

ϕ(d)
m (eiθ;α, ν)ϕ

(d)
n (eiθ;α, ν)

r∏
j=1

|(1− eiθj)
1
2(α−

n
r )+iν |2

∏
1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr

= dm
ΓΩ(α +m)(

n
r

)
m

1∣∣ΓΩ

(
1
2

(
α + n

r

)
+ iν

)∣∣2 δmn. (3.5.4)

For some special case, we prove the conjecture.

Proposition 3.5.3. (1) If d = 1, 2, 4 or r = 2, d ∈ Z>0 or r = 3, d = 8, then this conjecture
is true.

(2)The case of α = n
r
and ν = 0 is also true.

Proof. (1) It follows immediately from Theorem3.1.1 and the classification of irreducible
symmetric cones.

(2)We remark that when α = n
r
, ν = 0,

ϕ(d)
m

(
eiθ;

n

r
, 0
)
= dm

∑
k⊂m

(−1)|k|
(
m

k

)
d
2

P
( 2
d
)

k (1− eiθ1 , . . . , 1− eiθr)

P
( 2
d
)

k (1, . . . , 1)

= dm
P

( 2
d
)

m (eiθ1 , . . . , eiθr)

P
( 2
d
)

m (1, . . . , 1)
. (3.5.5)

42



For the Jack polynomial, the following formulas are known (see (6.4) in [OO] and (10.38) in
[M] respectively).

P
( 2
d)

m (1, . . . , 1) =
r∏

j=1

Γ
(
d
2

)
Γ
(
d
2
j
) ∏

1≤p<q≤r

Γ
(
mp −mq +

d
2
(q − p+ 1)

)
Γ
(
mp −mq +

d
2
(q − p)

) , (3.5.6)

∥P (
2
d)

m ∥2
r, 2

d
:=

1

(2π)r
1

r!

∫
Sr

|P (
2
d)

m (eiθ1 , . . . , eiθr)|2
∏

1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr

=
∏

1≤p<q≤r

Γ
(
mp −mq +

d
2
(q − p+ 1)

)
Γ
(
mp −mq +

d
2
(q − p− 1) + 1

)
Γ
(
mp −mq +

d
2
(q − p)

)
Γ
(
mp −mq +

d
2
(q − p) + 1)

) .

(3.5.7)

Hence, from (3.5.1), (3.5.6) and (3.5.7), we have

dm∥P
( 2
d)

m ∥2
r, 2

d
=

Γ
(
d
2
r
)

Γ
(
d
2

)r P ( 2
d)

m (1, . . . , 1)2. (3.5.8)

Therefore, by (3.5.5) and the orthogonality of the Jack polynomial, we obtain

c̃0
(2π)n

∫
Sr

ϕ(d)
m

(
eiθ;

n

r
, 0
)
ϕ
(d)
n

(
eiθ;

n

r
, 0
) ∏

1≤p<q≤r

|eiθp − eiθq |d dθ1 · · · dθr

=
1

(2π)n
(2π)

n−r
2

r!

{
r∏

j=1

Γ
(
d
2

)
Γ
(
d
2
j
)} d2m

P
( 2
d)

m (1, . . . , 1)2
(2π)rr!∥P (

2
d)

m ∥2
r, 2

d
δmn

=
dm

(2π)
n−r
2

r−1∏
j=1

1

Γ
(
d
2
j
)δmn = dm

1

ΓΩ

(
n
r

)δmn.

Although a proof of a general case would be desirable, our method in this thesis cannot
be applied to a general case. It may be necessary to consider a method of quantum integrable
systems, that is, to construct some commuting families of differential or pseudo-differential
operators whose simultaneous eigenfunctions become MCJ polynomials. We are not aware
of any studies of constructions of commuting families of pseudo-differential operators thus
far. Hence, we think our conjecture is likely to be an important target of investigations into
quantum integrable systems. Since multivariate Laguerre polynomials have been studied by
using degenerate double affine Hecke algebra [Ka], we are also interested in similar algebraic
treatment of MCJ polynomials which are the composition of modified Cayley and Fourier
transforms of multivariate Laguerre polynomials.

Finally, we would like to raise the issue of applications for MCJ polynomials. In partic-
ular, since the weight function of the orthogonality relation for MCJ polynomials coincides
with a circular Jacobi ensemble, we expect an application to the random matrix model whose
density function is a circular Jacobi ensemble. However, further details on this are goals of
future work.
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Chapter 4

Multivariate Meixner, Charlier and
Krawtchouk polynomials

The standard Meixner, Charlier and Krawtchouk polynomials of single discrete variable are
defined by

Mm(x;α, c) := 2F1

(
−m,−x

α
; 1− 1

c

)
=

m∑
k=0

k!

(α)k

(
m

k

)(
x

k

)(
1− 1

c

)k

,

Cm(x; a) := 2F0

(
−m,−x
− ;−1

a

)
=

m∑
k=0

(
m

k

)(
x

k

)(
−1

a

)k

,

Km(x; p,N) := 2F1

(
−m,−x
−N ;

1

p

)
=

m∑
k=0

k!

(−N)k

(
m

k

)(
x

k

)(
1

p

)k

,

respectively. These polynomials have been generalized to the multivariate case [DG], [Gr1],
[Gr2], and [Il]. Although these multivariate discrete orthogonal polynomials are types written
in Aomoto-Gelfand hypergeometric series, we introduce other types of multivariate Meixner,
Charlier and Krawtchouk polynomials in this chapter, which are defined by generalized
binomial coefficients. Moreover, we provide their fundamental properties, that is, duality,
degenerate limits, generating functions, orthogonality relations, difference equations and
recurrence formulas. The most basic result in these properties is Theorem4.2.2, which
states that the generating function of the generating functions for the multivariate Meixner
polynomials ∑

x∈P

dx
1(
n
r

)
x

{∑
m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

}
Φx(w)

coincides with the generating function for the multivariate Laguerre polynomials

∑
m∈P

etr wL
(α−n

r )
m

((
1

c
− 1

)
w

)
Φm(z).
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Even though this result has not been known even for one variable, many properties for our
multivariate discrete special orthogonal polynomials follow from this and the unitary picture
(3.0.1).

In this chapter, we assume that m,n,x,y ∈ P, α ∈ C, 0 < c, p < 1, a > 0, N ∈ Z≥0

unless otherwise specified.

4.1 Definitions

Definition 4.1.1. We define the multivariate Meixner, Charlier and Krawtchouk polyno-
mials as follows.

Mm(x;α, c) :=
∑
k⊂m

1

dk

(
n
r

)
k

(α)k

(
m

k

)(
x

k

)(
1− 1

c

)|k|

(4.1.1)

=
∑
k⊂m

(
m

k

)
γk(x− ρ)

(α)k

(
1− 1

c

)|k|

(4.1.2)

=
∑
k⊂m

dk
γk(m− ρ)γk(x− ρ)(

n
r

)
k
(α)k

(
1− 1

c

)|k|

, (4.1.3)

Cm(x; a) :=
∑
k⊂m

1

dk

(n
r

)
k

(
m

k

)(
x

k

)(
−1

a

)|k|

(4.1.4)

=
∑
k⊂m

(
m

k

)
γk(x− ρ)

(
−1

a

)|k|

(4.1.5)

=
∑
k⊂m

dk
γk(m− ρ)γk(x− ρ)(

n
r

)
k

(
−1

a

)|k|

, (4.1.6)

Km(x; p,N) :=
∑
k⊂m

1

dk

(
n
r

)
k

(−N)k

(
m

k

)(
x

k

)(
1

p

)|k|

(m ⊂ N = (N, . . . , N)) (4.1.7)

=
∑
k⊂m

(
m

k

)
γk(x− ρ)
(−N)k

(
1

p

)|k|

(4.1.8)

=
∑
k⊂m

dk
γk(m− ρ)γk(x− ρ)(

n
r

)
k
(−N)k

(
1

p

)|k|

. (4.1.9)

When r = 1, these polynomials become the usual Meixner, Charlier and Krawtchouk
polynomials. By the definition, we immediately obtain a duality property for these polyno-
mials.

Proposition 4.1.2. (1)For all m,x ∈P, we have

Mm(x;α, c) =Mx(m;α, c). (4.1.10)

45



(2)For all m,x ∈P, we have
Cm(x; a) = Cx(m; a). (4.1.11)

(3)For all N ⊃m,x ∈P, we have

Km(x; p,N) = Kx(m; p,N). (4.1.12)

We also obtain the following relations by the definitions.

Proposition 4.1.3. (1)

Mm

(
x;−N, p

p− 1

)
= Km(x; p,N). (4.1.13)

(2)

lim
α→∞

Mm

(
x;α,

a

a+ α

)
= Cm(x; a). (4.1.14)

(3)

lim
N→∞

Km

(
x;

a

N
,N
)
= Cm(x; a). (4.1.15)

Actually, (1) follows from the definitions. For (2) and (3), we remark that

lim
α→∞

α|k|

(α)k
= lim

α→∞

r∏
j=1

αkj(
α− d

2
(j − 1)

)
kj

= 1,

lim
N→∞

N |k|

(−N)k
= lim

N→∞

r∏
j=1

Nkj(
−N − d

2
(j − 1)

)
kj

= (−1)|k|.

4.2 Generating functions

In this chapter, we put

z = u1

r∑
j=1

ajcj, w = u2

r∑
j=1

bjcj ∈ V C,

with u1, u2 ∈ U , a1 ≥ · · · ≥ ar ≥ 0, b1 ≥ · · · ≥ br ≥ 0 unless otherwise specified.
To consider some generating functions of generating functions for the above polynomials,

we need to prove their convergences.

Lemma 4.2.1. (1) If 1 > a1 ≥ · · · ≥ ar ≥ 0, b1 ≥ · · · ≥ br ≥ 0, then∑
x,m∈P

∣∣∣∣∣dm (α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

Φx(w)

∣∣∣∣∣ ≤ e
rb1

(
1+

a1
1−a1

( 1
c
−1)

)
(1− a1)−r(|α|+2n).

(4.2.1)
(2)For any z, w ∈ V C, we have∑

x,m∈P

∣∣∣∣∣dm 1(
n
r

)
m

Cm(x, a)Φm(z)dx
1(
n
r

)
x

Φx(w)

∣∣∣∣∣ ≤ er(a1+b1+
a1b1
a ). (4.2.2)
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Proof. (1) By Lemma2.1.5, Lemma2.1.10 and Lemma2.1.15,

∑
x,m∈P

∣∣∣∣∣dm (α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

Φx(w)

∣∣∣∣∣
≤
∑
k∈P

dk
1(

n
r

)
k
(|α|+ d(r − 1))k

(
1

c
− 1

)|k|

·
∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1)
∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(b1).

Moreover, from (2.1.38) and (2.1.39) of Theorem2.1.16,

∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1) = (|α|+ d(r − 1))k(1− a1)−r|α|−dr(r−1)

(
a1

1− a1

)|k|

,

∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(b1) = erb1b1
|k|.

Therefore, we have

∑
x,m∈P

∣∣∣∣∣dm (α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

Φx(w)

∣∣∣∣∣
≤ erb1(1− a1)−r(|α|+d(r−1))

∑
k∈P

dk
1(
n
r

)
k

Φk

((
1

c
− 1

)
a1b1
1− a1

)
= e

rb1
(
1+

a1
1−a1

( 1
c
−1)

)
(1− a1)−r(|α|+d(r−1)) <∞.

(2)By a similar argument,

∑
x,m∈P

∣∣∣∣∣dm 1(
n
r

)
m

Cm(x, a)Φm(z)dx
1(
n
r

)
x

Φx(w)

∣∣∣∣∣
≤
∑
k∈P

dk
1(
n
r

)
k

a−|k|
∑
m∈P

dm
1(
n
r

)
m

γk(m− ρ)Φm(a1)
∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(b1)

= er(a1+b1)
∑
k∈P

dk
1(
n
r

)
k

Φk

(
a1b1
a

)
= er(a1+b1+

a1b1
a ) <∞.

The following theorem is the key result in our theory.
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Theorem 4.2.2. (1) For z ∈ D, w ∈ V C, α ∈ C, 0 < c < 1, we obtain∑
m∈P

etr wL
(α−n

r )
m

((
1

c
− 1

)
w

)
Φm(z) =

∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx
1(
n
r

)
x

Φx(w) (4.2.3)

= ∆(e− z)−α

∫
K

e(kw|(e− 1
c
z)(e−z)−1) dk. (4.2.4)

(2)For w, z ∈ V C, a > 0, we obtain∑
m∈P

dm
1(
n
r

)
m

etr wΦm

(
e− 1

a
w

)
Φm(z) =

∑
x,m∈P

dm
1(
n
r

)
m

Cm(x; a)Φm(z)

· dx
1(
n
r

)
x

Φx(w) (4.2.5)

= etr (w+z)

∫
K

e−
1
a
(kw|z) dk. (4.2.6)

Proof. (1) By the above lemma, the series converges absolutely under the conditions. There-
fore, we derive∑

x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

Φx(w)

=
∑
m∈P

dm
(α)m(
n
r

)
m

Φm(z)
∑
k⊂m

(
m

k

)
1

(α)k

(
1− 1

c

)|k| ∑
x∈P

dx
1(
n
r

)
x

γk(x− ρ)Φx(w)

=
∑
m∈P

etr wdm
(α)m(
n
r

)
m

∑
k⊂m

(
m

k

)
(−1)k

(α)k
Φk

((
1

c
− 1

)
w

)
Φm(z)

=
∑
m∈P

etr wL
(α−n

r )
m

((
1

c
− 1

)
w

)
Φm(z).

(4.2.4) follows from (2.2.2).
(2) Put c = a

a+α
, w → w

α
, a, α ∈ R>0 in (1) of Theorem4.2.2 and take the limit of α→∞.

The generating functions of our polynomials are a corollary of the above theorem.

Theorem 4.2.3. (1) For z ∈ D,x ∈P, α ∈ C, 0 < c < 1, we have

∆(e− z)−αΦx

((
e− 1

c
z

)
(e− z)−1

)
=
∑
n∈P

dn
(α)n(
n
r

)
n

Mn(x;α, c)Φn(z). (4.2.7)

(2) For z ∈ D,x ∈P, a > 0, we have

etr zΦx

(
e− 1

a
z

)
=
∑
n∈P

dn
1(
n
r

)
n

Cn(x; a)Φn(z). (4.2.8)
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(3) For z ∈ D,x ∈P, 0 < p < 1, we have

∆(e+ z)NΦx

((
e− 1− p

p
z

)
(e+ z)−1

)
=
∑
n⊂N

(
N

n

)
Kn(x; p,N)Φn(z). (4.2.9)

Proof. (1)We evaluate the spherical Taylor expansion of (4.2.4) with respect to w:

Φx(∂w)∆(e− z)−α

∫
K

e(kw|(e− 1
c
z)(e−z)−1) dk

∣∣∣∣
w=0

= ∆(e− z)−α

∫
K

Φx(∂w)e
(w|k(e− 1

c
z)(e−z)−1)|w=0 dk

= ∆(e− z)−α

∫
K

Φx

(
k

((
e− 1

c
z

)
(e− z)−1

))
dk

= ∆(e− z)−αΦx

((
e− 1

c
z

)
(e− z)−1

)
.

On the other hand, by (4.2.3),

Φx(∂w)∆(e− z)−α

∫
K

e(kw|(e− 1
c
z)(e−z)−1) dk

∣∣∣∣
w=0

=
∑
n∈P

dn
(α)n(
n
r

)
n

Mn(x;α, c)Φn(z).

Therefore, we obtain the conclusion.
(2) The result is proved by a similar argument as in (1). That is, by (2) of Theorem4.2.2,
we have ∑

n∈P

dn
1(
n
r

)
n

Cn(x; a)Φn(z) = Φx(∂w)e
tr (w+z)

∫
K

e−
1
a
(kw|z) dk

∣∣∣∣
w=0

= etr z

∫
K

Φx(∂w)e
(w|k(e− 1

a
z))|w=0 dk

= etr z

∫
K

Φx

(
k

(
e− 1

a
z

))
dk

= etr zΦx

(
e− 1

a
z

)
.

(3)By putting α = −N in (4.2.3), we have

∆(e− z)NΦx

((
e− 1

c
z

)
(e− z)−1

)
=
∑
n⊂N

dn
(−N)n(

n
r

)
n

Mn(x;−N, c)Φn(z)

=
∑
n⊂N

(
N

n

)
Mn(x;−N, c)Φn(−z).

Since this series is a finite sum, we can take c = p
p−1

in the above. Therefore, we obtain

∆(e− z)NΦx

((
e+

1− p
p

z

)
(e− z)−1

)
=
∑
n⊂N

(
N

n

)
Mn

(
x;−N, p

p− 1

)
Φn(−z)

=
∑
n⊂N

(
N

n

)
Kn (x; p,N) Φn(−z).
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Next, we apply the unitary transformations in (3.0.1) to Theorem4.2.2. Here, we also
check convergence.

Lemma 4.2.4. (1)Fix 0 < c < 1 and let 0 < ε < 1 and w, z ∈ D satisfy that(
c+ (1− c) ε

1− ε

)(
1 + (1− c) ε

1− cε

)
< 1,

|Φm(w)|, |Φm(z)| < Φm(ε) = ε|m|. (4.2.10)

Then,

∑
x,m,n∈P

∣∣∣∣∣dx (α)x(
n
r

)
x

c|x|dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dn
(α)n(
n
r

)
n

Mn(x;α, c)Φn(cw)

∣∣∣∣∣
< ((1− c)(1− 2(1 + c)ε+ (4c− 1)ε2))−r|α|−dr(r−1). (4.2.11)

(2)Let z ∈ D satisfy that

√
c+

1− c√
c

a1
1− a1

< 1, |Φm(z)| ≤ a1
|m|. (4.2.12)

Under this condition, the series

∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

γx

(
−is− α

2

)(c(1− e2iθ)
e2iθ − c

)|x|

(4.2.13)

and

∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx

(
1
2

(
α + n

r

)
+ iν

)
x(

n
r

)
x

c|x|Φx((e− σ)(e− cσ)−1) (4.2.14)

converge absolutely for any s ∈ Rr and σ ∈ Σ respectively.

Proof. (1) By Lemma2.1.5 and Lemma2.1.15, we have

(LHS) ≤
∑
x∈P

dx
(|α|+ d(r − 1))x(

n
r

)
x

c|x|

·
∑
k⊂x

(
x

k

)
1

(|α|+ d(r − 1))k

(
1

c
− 1

)|k|∑
l⊂x

(
x

l

)
1

(|α|+ d(r − 1))l

(
1

c
− 1

)|l|

·
∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(ε)
∑
n∈P

dn
(|α|+ d(r − 1))n(

n
r

)
n

γl(n− ρ)Φn(cε).
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Furthermore, from Lemma2.1.16 and the definition of the generalized binomial coefficients
(2.1.24), we derive

(LHS) ≤ ((1− ε)(1− cε))−r|α|−dr(r−1)
∑
x∈P

dx
(|α|+ d(r − 1))x(

n
r

)
x

c|x|

·
∑
k⊂x

(
x

k

)(
1

c
− 1

)|k|

Φk

(
ε

1− ε

)∑
l⊂x

(
x

l

)(
1

c
− 1

)|l|

Φl

(
cε

1− cε

)
= ((1− ε)(1− cε))−r|α|−dr(r−1)

·
∑
x∈P

dx
(|α|+ d(r − 1))x(

n
r

)
x

Φx

((
c+ (1− c) ε

1− ε

)(
1 + (1− c) ε

1− cε

))
.

Finally, by using the assumption and Lemma2.1.16, we obtain

(LHS) ≤
(
(1− ε)(1− cε)

(
1−

(
c+ (1− c) ε

1− ε

)(
1 + (1− c) ε

1− cε

)))−r|α|−dr(r−1)

= ((1− c)(1− 2(1 + c)ε+ (4c− 1)ε2))−r|α|−dr(r−1).

(2) For (4.2.13), by a similar argument as that above, we obtain∑
x,m∈P

∣∣∣∣∣dm (α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

γx

(
−is− α

2

)(c(1− e2iθ)
e2iθ − c

)|x|
∣∣∣∣∣

≤
∑
x∈P

dx
1(
n
r

)
x

∣∣∣γx (−is− α

2

)∣∣∣ ( 2c

1 + c

)|x|∑
k⊂x

(
x

k

)
1

(|α|+ d(r − 1))k

(
1

c
− 1

)|k|

·
∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1)

≤ (1− a1)−r|α|−dr(r−1)
∑
x∈P

dx
1(
n
r

)
x

∣∣∣γx (−is− α

2

)∣∣∣ c |x|
2

∑
k⊂x

(
x

k

)
Φk

((
1

c
− 1

)
a1

1− a1

)
≤ (1− a1)−r|α|−dr(r−1)

∑
x∈P

dx
1(
n
r

)
x

∣∣∣γx (−is− α

2

)∣∣∣Φx

(√
c+

1− c√
c

a1
1− a1

)
.

Finally, by Lemma2.1.14,

≤ C1 + C2(1− a1)−r|α|−dr(r−1)
∑
x∈P

dx
(|α|+ d(r − 1))x(

n
r

)
x

Φx

(√
c+

1− c√
c

a1
1− a1

)

≤ C1 + C2

(
(1−

√
c)

(
1− a1 −

(
1 +

1√
c

)
a1

))−r|α|−dr(r−1)

.

For (4.2.14), by using σ =
∑r

j=1 e
iθjcj and

|(e− σ)(e− cσ)−1)| ≤
r∑

j=1

∣∣∣∣ 1− eiθj1− ceiθj

∣∣∣∣ cj ≤ r∑
j=1

2

1 + c
cj =

2

1 + c
≤ 1√

c
,
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we have∑
x,m∈P

∣∣∣∣∣dm (α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx

(
1
2

(
α + n

r

)
+ iν

)
x(

n
r

)
x

c|x|Φx((e− σ)(e− cσ)−1)

∣∣∣∣∣
≤
∑
x∈P

dx

(
1
2

(
|α|+ n

r

)
+ |ν|+ d(r − 1)

)
x(

n
r

)
x

Φx(
√
c)

·
∑
k⊂x

(
x

k

)
1

(|α|+ d(r − 1))k

(
1

c
− 1

)|k| ∑
m∈P

dm
(|α|+ d(r − 1))m(

n
r

)
m

γk(m− ρ)Φm(a1)

= (1− a1)−r|α|−dr(r−1)
∑
x∈P

dx

(
1
2

(
|α|+ n

r

)
+ |ν|+ d(r − 1)

)
x(

n
r

)
x

Φx(
√
c)

·
∑
k⊂x

(
x

k

)
Φk

((
1

c
− 1

)
a1

1− a1

)

= (1− a1)−r|α|−dr(r−1)
∑
x∈P

dx

(
1
2

(
|α|+ n

r

)
+ |ν|+ d(r − 1)

)
x(

n
r

)
x

Φx

(√
c+

1− c√
c

a1
1− a1

)
= (1− a1)−r|α|−dr(r−1)

(
(1−

√
c)

(
1−

(
1 +

1√
c

)
a1

1− a1

))
<∞.

From this lemma, we can consider the following generating functions.

Theorem 4.2.5. (1)For z ∈ D, u ∈ V C, we obtain∑
m∈P

ψ(α)
m (u)Φm(z) =

∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx
1(
n
r

)
x

(
2c

1− c

)|x|

e−
1+c
1−c

tr uΦx(u) (4.2.15)

= ∆(e− z)−α

∫
K

e−(ku|(e+z)(e−z)−1) dk.

(2)Fixed 0 < c < 1 and assume that w, z ∈ D satisfy the condition in (1) of Lemma4.2.4.
We obtain∑

m∈P

dm
(α)m(
n
r

)
m

Φm(w)Φm(z) = (1− c)rα
∑

x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx
(α)x(
n
r

)
x

c|x|∆(e− cw)−αΦx((e− w)(e− cw)−1) (4.2.16)

= ∆(z)−α

∫
K

∆(kz−1 − w)−α dk.
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(3)Fixed 0 < c < 1 and assume that z ∈ D satisfy the condition in (2) of Lemma4.2.4. For
s ∈ Rr, 0 < θ < 2π, we obtain

∑
m∈P

q(α)m (s; θ)Φm(z) =

(
1− c

1− ce−2iθ

)−i|s|−α
2
r ∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx
1(
n
r

)
x

γx

(
−is− α

2

)(c(1− e2iθ)
e2iθ − c

)|x|

(4.2.17)

= ∆(e− z)−αφis+α
2
((e− e−2iθz)−1(e− z)).

(4)Fixed 0 < c < 1 and assume that z ∈ D satisfy the condition in (2) of Lemma4.2.4. For
σ ∈ Σ, we obtain∑
m∈P

ϕ(α,ν)
m (σ)Φm(z) = (1− c)

r
2(α+

n
r )+irν

∑
x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx

(
1
2

(
α+ n

r

)
+ iν

)
x(

n
r

)
x

c|x|∆(e− cσ)−
1
2(α+

n
r )−iνΦx((e− σ)(e− cσ)−1)

(4.2.18)

= ∆(e− z)−α

∫
K

∆((e− z)−1 − (z(e− z)−1)kσ)−
1
2(α+

n
r )−iν dk.

(5)For w, z ∈ V C, a > 0, we obtain

∑
m∈P

dm
1(
n
r

)
m

Φm(w)Φm(z) = e−ra
∑

x,m∈P

dm
a|m|(
n
r

)
m

Cm(x; a)Φm(z)

· dx
a|x|(
n
r

)
x

etr wΦx

(
e− 1

a
w

)
(4.2.19)

= etr w

∫
K

e−a(kw|e−z) dk.

Proof. As (1) and (5) follow immediately from Theorem4.2.2, we only prove (2), (3) and
(4).

First, we remark that the right hand sides of (4.2.16), (4.2.17) and (4.2.18) converge
absolutely under the conditions in Lemma4.2.4. Thus, by analytic continuation, it suffices
to show these equations when a1 <

1
3
. Moreover, we also remark that since (2.2.4)∑

m∈P

|ψ(α)
m (u)Φm(z)| ≤ (1− a1)−r|α|−dr(r−1)e

− 1−3a1
1−a1 ,

the exchange of unitary transformations Lα,Mα,θ and F−1
α,ν , and the summation are justified

under these restrictions. Therefore, to obtain the results, we apply the unitary transforms
to both sides of (4.2.15). We try to perform these calculations.
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For (2), we apply transform C−1
α ◦ Lα to both sides of (4.2.15). From Lemma2.1.8, we

have

Lα(e
− 1+c

1−c
tr uΦx)(z) =

2rα

ΓΩ(α)

∫
Ω

e
−
(

1+c
1−c

e+z

∣∣u)
Φx(u)∆(u)α−

n
r du

= 2rα(α)x∆

(
1 + c

1− c
e+ z

)−α

Φx

((
1 + c

1− c
e+ z

)−1
)
.

Furthermore,

C−1
α ◦ Lα(e

− 1+c
1−c

tr uΦx)(w) = 2rα(α)xC
−1
α

(
∆

(
1 + c

1− c
e+ z

)−α

Φx

((
1 + c

1− c
e+ z

)−1
))

(w)

= (α)x∆(e− w)−α∆

(
1

2

(
(e+ w)(e− w)−1 +

1 + c

1− c
e

))−α

· Φx

((
(e+ w)(e− w)−1 +

1 + c

1− c
e

)−1
)

= (α)x(1− c)rα∆(e− cw)−αΦx

(
1− c
2

(e− w)(e− cw)−1

)
.

Hence, the right-hand side of (4.2.15) becomes the right-hand side of (4.2.16). Therefore,

since C−1
α ◦ Lα(ψm(α))(w) = dm

(α)m

(n
r )m

Φm(w), we obtain the conclusion.

By similar arguments, for (3) and (4), we only need to evaluate the following calculations.(
2c

1− c

)|x|

Mα,θ(e
− 1+c

1−c
tr uΦx)(s) =

(
1− c

1− ce−2iθ

)−i|s|−α
2
r

γx

(
−is− α

2

)(c(1− e2iθ)
e2iθ − c

)|x|

,(
2c

1− c

)|x|

C−1
α,ν ◦ F−1

α,ν(e
− 1+c

1−c
tr uΦx)(σ) = (1− c)

r
2(α+

n
r )+irν

(
1

2

(
α+

n

r

)
+ iν

)
x

· c|x|∆(e− cσ)−
1
2(α+

n
r )−iνΦx((e− σ)(e− cσ)−1)

These follow from Lemma2.1.12 and Lemma2.1.8.

4.3 Orthogonality relations

We provide the orthogonality relations for our discrete orthogonal polynomials as a corollary
of Theorem4.2.5.

Theorem 4.3.1. (1) For α > n
r
− 1, 0 < c < 1, we obtain

∑
x∈P

dx
(α)x(
n
r

)
x

c|x|Mm(x;α, c)Mn(x;α, c) =
c−|m|

(1− c)rα
1

dm

(
n
r

)
m

(α)m
δm,n ≥ 0. (4.3.1)
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(2) For a > 0, we obtain

∑
x∈P

dx
a|x|(
n
r

)
x

Cm(x; a)Cn(x; a) = a−|m|era
(
n
r

)
m

dm
δm,n ≥ 0. (4.3.2)

(3) For 0 < p < 1, we obtain

∑
x⊂N

(
N

x

)
p|x|(1− p)rN−|x|Km(x; p,N)Kn(x; p,N) =

(
1− p
p

)|m|(
N

m

)−1

δm,n ≥ 0. (4.3.3)

Proof. (1) From (4.2.16) and (4.2.7), we have

∑
m∈P

dm
(α)m(
n
r

)
m

Φm(w)Φm(z) = (1− c)rα
∑

x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)

· dx
(α)x(
n
r

)
x

c|x|∆(e− cw)−αΦx((e− w)(e− cw)−1)

=
∑

m,n∈P

(1− c)rαdm
(α)m(
n
r

)
m

dn
(α)n(
n
r

)
n

c|n|

·

{∑
x∈P

dx
(α)x(
n
r

)
x

c|x|Mm(x;α, c)Mn(x;α, c)

}
Φm(z)Φn(w).

Therefore, by comparing the coefficients of Φm(z)Φn(w) on both sides of this equation, we
obtain (4.3.1).

(2) From (4.2.19) and (4.2.8), we derive

∑
m∈P

dm
1(
n
r

)
m

Φm(w)Φm(z) = e−ra
∑

x,m∈P

dm
a|m|(
n
r

)
m

Cm(x; a)Φm(z)

· dx
a|x|(
n
r

)
x

etr wΦx

(
e− 1

a
w

)
=

∑
m,n∈P

e−radm
a|m|(
n
r

)
m

dn
1(
n
r

)
n

·

{∑
x∈P

dx
a|x|(
n
r

)
x

Cm(x; a)Cn(x; a)

}
Φm(z)Φn(w).

Then, by comparing the coefficients of Φm(z)Φn(w), we have the conclusion.
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(3) In (4.2.16), taking α = −N , one has

∑
m⊂N

dm
(−N)m(

n
r

)
m

Φm(w)Φm(−z) =
∑
m⊂N

(
N

m

)
Φm(w)Φm(z)

= (1− c)−rN
∑

x,m⊂N

dm
(−N)m(

n
r

)
m

Mm(x;−N, c)Φm(−z)

· dx
(−N)x(

n
r

)
x

c|x|∆(e− cw)NΦx((e− w)(e− cw)−1).

The first equality follows from (2.1.31). Since the above sum is finite, we can put c =
p

p−1
, (0 < p < 1). Hence,

∑
m⊂N

(
N

m

)
Φm(w)Φm(z) = (1− p)rN

∑
x,m⊂N

(
N

m

)
Km(x; p,N)Φm(z)

(
N

x

)(
p

1− p

)|x|

·∆
(
e+

p

1− p
w

)N

Φx

(
(e− w)

(
e+

p

1− p
w

)−1
)
.

From (4.2.9), we have

∆

(
e+

p

1− p
w

)N

Φx

(
(e− w)

(
e+

p

1− p
w

)−1
)

=
∑
n⊂N

(
N

n

)
Kn(x; p,N)

(
p

1− p

)|n|

Φn(w).

Therefore,

∑
m⊂N

(
N

m

)
Φm(w)Φm(z) =

∑
m,n⊂N

(
N

m

)(
p

1− p

)|n|(
N

n

)

·

{∑
x⊂N

(
N

x

)
p|x|(1− p)rN−|x|Km(x; p,N)Kn(x; p,N)

}
Φm(z)Φn(w).

4.4 Difference equations and recurrence relations

In this section, we derive the difference equations and recurrence formulas for our polynomials
from (2.2.6), Lemma2.2.3 and (1) of Theorem4.2.5.
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Theorem 4.4.1. (1) For x,m ∈P, α ∈ C, c ∈ C∗, we have

dx(c− 1)|m|Mm(x;α, c) =
r∑

j=1

dx+ϵj ãj(−x− ϵj)
(
xj + α− d

2
(j − 1)

)
cMm(x+ ϵj;α, c)

−
r∑

j=1

dx(xj + (xj + α)c)Mm(x;α, c)

+
r∑

j=1

dx−ϵj ãj(x− ϵj)
(
xj +

d

2
(r − j)

)
Mm(x− ϵj;α, c). (4.4.1)

(2) For x,m ∈P, a ∈ C∗, we have

−dx|m|Cm(x; a) =
r∑

j=1

dx+ϵj ãj(−x− ϵj)aCm(x+ ϵj; a)

−
r∑

j=1

dx(xj + a)Cm(x; a)

+
r∑

j=1

dx−ϵj ãj(x− ϵj)
(
xj +

d

2
(r − j)

)
Cm(x− ϵj; a). (4.4.2)

(3) For x,m ∈P, p ∈ C∗, we have

−dx|m|Km(x; p,N) =
r∑

j=1

dx+ϵj ãj(−x− ϵj)
(
N − xj +

d

2
(j − 1)

)
pKm(x+ ϵj; p,N)

−
r∑

j=1

dx(p(N − xj) + xj(1− p))Km(x; p,N)

+
r∑

j=1

dx−ϵj ãj(x− ϵj)
(
xj +

d

2
(r − j)

)
(1− p)Km(x− ϵj; p,N).

(4.4.3)

Proof. (1) Let us apply operator c−1
2
e

1+c
1−c

tr uD
(3)
α to both sides of (4.2.15). SinceD

(3)
α ψ

(α)
m (u) =

2|m|ψ(α)
m (u), we have

c− 1

2
e

1+c
1−c

tr uD(3)
α

(∑
m∈P

ψ(α)
m (u)Φm(z)

)
=
∑
m∈P

(c− 1)e
1+c
1−c

tr u|m|ψ(α)
m (u)Φm(z)

=
∑

x,m∈P

dm
(α)m(
n
r

)
m

(
2c

1− c

)|x|

Φx(u)Φm(z)

· dx
1(
n
r

)
x

(c− 1)|m|Mm(x;α, c).
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On the other hand, by (2.2.12), we have

c− 1

2
e

1+c
1−c

tr uD(3)
α

(∑
m∈P

ψ(α)
m (u)Φm(z)

)

=
∑

x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

(
2c

1− c

)|x|
c− 1

2
e

1+c
1−c

tr uD(3)
α (e−

1+c
1−c

tr uΦx(u))

=
∑

x,m∈P

dm
(α)m(
n
r

)
m

Mm(x;α, c)Φm(z)dx
1(
n
r

)
x

(
2c

1− c

)|x|

·

{
2c

1− c

r∑
j=1

ãj(x)Φx+ϵj(u)−
r∑

j=1

(xj + (xj + α)c)Φx(u)

+
1− c
2

r∑
j=1

(
xj +

d

2
(r − j)

)(
xj + α− 1− d

2
(j − 1)

)
ãj(−x)Φx−ϵj(u)

}

=
∑

x,m∈P

dm
(α)m(
n
r

)
m

(
2c

1− c

)|x|

Φx(u)Φm(z)

·

{
r∑

j=1

dx+ϵj ãj(−x− ϵj)
xj + 1 + d

2
(r − j)(

n
r

)
x+ϵj

(
xj + α− d

2
(j − 1)

)
Mm(x+ ϵj;α, c)

−
r∑

j=1

dx
1(
n
r

)
x

(xj + (xj + α)c)Mm(x;α, c)

+
r∑

j=1

dx−ϵj ãj(x− ϵj)
1(

n
r

)
x−ϵj

Mm(x− ϵj;α, c)

}
.

Finally, the conclusion is obtained by

(n
r

)
x+ϵj

=

(
xj + 1 +

d

2
(r − j)

)(n
r

)
x

and comparing the coefficients in the above.

(2) Put c = a
a+α

in (4.4.1) and take the limit as α → ∞. Then, by (4.1.14), we have the
conclusion.

(3) Put c = p
p−1

, α = −N and multiply 1 − p in (4.4.1). Then, by (4.1.13), we have the
conclusion.

The recurrence formulas follow immediately from Theorem4.4.1 and Proposition 4.1.2.
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Theorem 4.4.2. (1) For x,m ∈P, α ∈ C, c ∈ C∗, we have

dm(c− 1)|x|Mm(x;α, c) =
r∑

j=1

dm+ϵj ãj(−m− ϵj)
(
mj + α− d

2
(j − 1)

)
cMm+ϵj(x;α, c)

−
r∑

j=1

dm(mj + (mj + α)c)Mm(x;α, c)

+
r∑

j=1

dm−ϵj ãj(m− ϵj)
(
mj +

d

2
(r − j)

)
Mm−ϵj(x;α, c). (4.4.4)

(2) For x,m ∈P, a ∈ C∗, we have

−dm|x|Cm(x; a) =
r∑

j=1

dm+ϵj ãj(−m− ϵj)aCm+ϵj(x; a)

−
r∑

j=1

dm(mj + a)Cm(x; a)

+
r∑

j=1

dm−ϵj ãj(m− ϵj)
(
mj +

d

2
(r − j)

)
Cm−ϵj(x; a). (4.4.5)

(3) For x,m ∈P, p ∈ C∗, we have

−dm|x|Km(x; p,N) =
r∑

j=1

dm+ϵj ãj(−m− ϵj)
(
N −mj +

d

2
(j − 1)

)
pKm+ϵj(x; p,N)

−
r∑

j=1

dm(p(N −mj) +mj(1− p))Km(x; p,N)

+
r∑

j=1

dm−ϵj ãj(m− ϵj)
(
mj +

d

2
(r − j)

)
(1− p)Km−ϵj(x; p,N).

(4.4.6)

4.5 Concluding remarks

Interesting problems remain that are related to multivariate Meixner, Charlier and Krawtchouk
polynomials. First, we may consider a generalization of our discrete orthogonal polynomials
for an arbitrary real value of multiplicity d, which is similar to Conjecture 3.5.2.

Definition 4.5.1. Using the notations of Conjecture 3.5.2, we define the generalized multi-
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variate Meixner, Charlier and Krawtchouk polynomials by

M (d)
m (x;α, c) :=

∑
k⊂m

1

dk

(
n
r

)
k

(α)k

(
m

k

)
d
2

(
x

k

)
d
2

(
1− 1

c

)|k|

, (4.5.1)

C(d)
m (x; a) :=

∑
k⊂m

1

dk

(n
r

)
k

(
m

k

)
d
2

(
x

k

)
d
2

(
−1

a

)|k|

, (4.5.2)

K(d)
m (x; p,N) :=

∑
k⊂m

1

dk

(
n
r

)
k

(−N)k

(
m

k

)
d
2

(
x

k

)
d
2

(
1

p

)|k|

(m ⊂ N = (N, . . . , N)). (4.5.3)

By the definitions, Proposition 4.1.2 and 4.1.3 also hold for the generalized multivariate
Meixner, Charlier and Krawtchouk polynomials. Therefore, we think the following conjecture
is natural.

Conjecture 4.5.2. Generating functions, orthogonality, difference equations and recur-
rence formulas also hold for the generalized multivariate Meixner, Charlier and Krawtchouk
polynomials, as in Theorems 4.2.3, 4.3.1, 4.4.1 and 4.4.2 respectively. Here, we consider
∆(e− z) = (1− z1) · · · (1− zr).

We remark that when d = 1, 2, 4 or r = 2, d ∈ Z>0 or r = 3, d = 8, this conjecture is
proved in the same way as Conjecture 3.5.2. However, it may be necessary to consider some
algebraic treatment to prove the general case. In particular, since the difference equation
for the multivariate Meixner polynomials is equivalent to the differential equation for the
multivariate Laguerre polynomials which is explained by the degenerate double affine Hecke
algebra [Ka], we expect the existence of a particular algebraic structure related to this algebra
for our polynomials. Once we obtain such an interpretation, we may not only succeed in
proving the above conjecture but also in providing further generalizations of our polynomials
associated with root systems.

It is also valuable to give a group theoretic picture of our multivariate discrete orthogonal
polynomials. In the one variable case, there are many geometric interpretations for these
polynomials [VK1], [VK2]. Moreover, for the multivariate case for the Aomoto-Gelfand
hypergeometric series, such group theoretic interpretations have recently been studied [GVZ],
[GMVZ]. On the other hand, since our multivariate discrete orthogonal polynomials have
many rich properties which are generalizations of the one variable case, they are considered
to be a good multivariate analogue of the Meixner, Charlier and Krawtchouk polynomials.
Hence, for our multivariate discrete orthogonal polynomials, it seems that there is some
group theoretic interpretation as some matrix elements or some spherical functions etc. We
are also interested in a connection between our multivariate discrete orthogonal polynomials
and the Aomoto-Gelfand type.

We are interested in whether we can apply our method to other discrete orthogonal
polynomials, for example, the Hahn polynomial which is a special orthogonal polynomial in
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the Askey scheme [KLS],

Qm(x;α, β,N) = 3F2

(
−m,m+ α+ β + 1,−x

α+ 1,−N ; 1

)
=

m∑
k=0

k!

(−N)k

(m+ α + β + 1)k
(α + 1)k

(
m

k

)(
x

k

)
(m = 0, 1, · · · , N).

Namely, by considering “some generating functions of the generating functions” for these
discrete orthogonal polynomials, we expect to obtain correspondence between the Hahn
polynomials and other orthogonal polynomials, for example, the Jacobi polynomials.

Finally, we would like to raise the issue of applications of our multivariate Meixner,
Charlier and Krawtchouk polynomials. The standard Meixner, Charlier and Krawtchouk
polynomials of single discrete variable have found numerous applications in combinatorics,
stochastic processes, probability theory and mathematical physics (for their reference, see the
introduction in [GMVZ]). Hence, we hope that our multivariate polynomials can be applied
to various situations and we intend to investigate these in research tasks in the future.
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Appendix A

Operator orderings and
Meixner-Pollaczek polynomials

The aim of this chapter is to give some identities which are generalizations of the formulas
given by Koornwinder [Ko] and Hamdi-Zeng [HZ]. Our proofs are much simpler than and
different from the previous investigations. This chapter is based on [Shi].

A.1 Introduction

Let W be the Weyl algebra generated by p and q with the relation [p, q] := pq − qp = 1. In
this paper, we prove the following theorems.

Theorem A.1.1. We put T := pq + qp. We obtain

2n
m∑
k=0

(
m

k

)
pkqnpm−k = 2m

n∑
k=0

(
n

k

)
qkpmqn−k (A.1.1)

=

2mn!i−nP
( 1+m−n

2
)

n

(
i(T+m−n)

2
; π
2

)
pm−n (m ≥ n)

2nm!i−mqn−mP
( 1+n−m

2
)

m

(
i(T+n−m)

2
; π
2

)
(n ≥ m)

.

In particular, we have([HZ])

n∑
k=0

(
n

k

)
pkqnpn−k =

n∑
k=0

(
n

k

)
qkpnqn−k = n!i−nP

( 1
2
)

n

(
iT

2
;
π

2

)
. (A.1.2)

Here P
(α)
n (x;ϕ) is the Meixner-Pollaczek polynomial given by the hypergeometric series

P (α)
n (x;ϕ) :=

(2α)n
n!

einϕ2F1

(
−n, α + ix

2α
; 1− e−2iϕ

)
. (A.1.3)
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Theorem A.1.2. Let Tm,n be the sum of all possible terms containing m factors of p and n
factors of q. We have

Tm,n =


n!
2n

(
m+n
n

)
i−nP

( 1+m−n
2

)
n

(
i(T+m−n)

2
; π
2

)
pm−n (m ≥ n)

m!
2m

(
m+n
m

)
i−mqn−mP

( 1+n−m
2

)
m

(
i(T+n−m)

2
; π
2

)
(n ≥ m)

. (A.1.4)

In particular, we have([Ko],[HZ],[FW2])

Tn := Tn,n =
n!

2n

(
2n

n

)
i−nP

( 1
2
)

n

(
iT

2
;
π

2

)
. (A.1.5)

The formula (A.1.5) for Tn was first observed by Bender, Mead and Pinsky([BMP]), and
proved by Koorwinder([Ko]). The idea of the proof in [Ko] is to consider the irreducible
unitary representations of the Heisenberg group and some analysis for special functions.
Moreover, a combinatorial proof was given by Hamdi and Zeng([HZ]). They used the rook
placement interpretation of the normal ordering of the Weyl algebra and gave also a proof
of (A.1.2), which was first observed by [BD]. Our results extend these to general m and n.

The proofs given in this paper are much simpler than the investigations([Ko], [BD]).
Actually, we only use some basic properties of the Weyl algebra and a certain transformation
formula of the hypergeometric function. Our proofs clarify the reason why (A.1.2) and
(A.1.5) are equal up to constant, which is not explained in [HZ].

A.2 Proof of Theorem A.1.1

The operations LA, RA ∈ End C(W ) are respectively left and right multiplications, that is,

LA.X := AX, RA.X := XA, (A,X ∈ W ). (A.2.1)

We introduce some useful operators([W]).

ǎd(A) := LA +RA. (A.2.2)

We remark that L,R : W → End C(W ) are linear, hence ǎd is also linear. In addition, since
ǎd(A)N .1 = 2NAN , we obtain the following lemma immediately.

Lemma A.2.1. Let t1, · · · , tn be indeterminates. For any N ∈ Z≥0, we obtain{
n∑

k=1

tkǎd(Ak)

}N

.1 = 2N

{
n∑

k=1

tkAk

}N

. (A.2.3)

In particular, we have

(t1ǎd(p) + t2ǎd(q))
N .1 = 2N(t1p+ t2q)

N . (A.2.4)
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Remark A.2.2. When N = n in LemmaA.2.1, comparing the coefficients of t1 · · · tn on
both sides of the (A.2.3), we obtain the following formula immediately.

F (ǎd(An)).1 = 2nF (An). (A.2.5)

Here An := (A1, . . . , An), ǎd(An) := (ǎd(A1), . . . , ǎd(An)) and

F (An) :=
∑
σ∈Sn

Aσ(1) · · ·Aσ(n), F (ǎd(An)) :=
∑
σ∈Sn

ǎd(Aσ(1)) · · · ǎd(Aσ(n)). (A.2.6)

Lemma A.2.3. The operators ǎd(p) and ǎd(q) are commutative.

Proof. Obviously LA and RB are commutative. Since L is a homomorphism and R is an
anti-homomorphism, we have

[ǎd(p), ǎd(q)] = [Lp +Rp, Lq +Rq] = [Lp, Lq] + [Rp, Rq] = Lpq−qp −Rpq−qp = 0.

Proposition A.2.4.

ǎd(p)mǎd(q)n.1 = 2n
m∑
k=0

(
m

k

)
pkqnpm−k = 2m

n∑
k=0

(
n

k

)
qkpmqn−k. (A.2.7)

Proof. Since LA andRB are commutative, L is a homomorphism andR is an anti-homomorphism,
we obtain

ǎd(p)mǎd(q)n.1 = (Lp +Rp)
m.2nqn = 2n

m∑
k=0

(
m

k

)
LpkRpm−k .qn = 2n

m∑
k=0

(
m

k

)
pkqnqm−k.

On the other hand, since ǎd(p) and ǎd(q) are commutative, we have

ǎd(p)mǎd(q)n = ǎd(q)nǎd(p)m.

Hence, the second equality of (A.2.7) can be proved in the same way.

Remark A.2.5. Wakayama([W]) has constructed the oscillator representation of the simple
Lie algebra sl2 by ǎd and ad in End C(W ) and then, proves that ǎd(p)nǎd(q)n.1 satisfies the
difference equation of the Meixner-Pollaczek polynomials.

Since T = pq + qp and pq − qp = 1, we have

pq =
T + 1

2
, qp =

T − 1

2
. (A.2.8)

The proof of the following lemma is straightforward.
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Lemma A.2.6. (1) Let f(T ) ∈ C[T ], l ∈ Z≥0. We have

plf(T ) = f(T + 2l)pl, qlf(T ) = f(T − 2l)ql. (A.2.9)

(2) For any l ∈ Z≥0, we have

plql =

(
1 + T

2

)
l

, qlpl = (−1)l
(
1− T
2

)
l

. (A.2.10)

Here, (x)l := x(x+ 1) · · · (x+ l − 1), (x)0 := 1.

Proposition A.2.7.

n!i−nP (α)
n

(
ix

2
;
π

2

)
=

n∑
k=0

(
n

k

)
(−1)k

(
α− x

2

)
k

(
α +

x

2

)
n−k

. (A.2.11)

Proof. It follows from the formula (2.3.14) in [AAR] that

(LHS) = (2α)n2F1

(
−n, α− x

2

2α
; 2

)
=
(
α +

x

2

)
n
2F1

(
−n, α− x

2

−n− α− x
2
+ 1

;−1
)

= (RHS).

Remark A.2.8. One may also prove this proposition using the generating function for
Meixner-Pollaczek polynomials.

We now prove Theorem A.1.1 as follows. If m ≥ n,

2m
n∑

k=0

(
n

k

)
qkpmqn−k = 2m

n∑
k=0

(
n

k

)
qkpkpm−npn−kqn−k

= 2m
n∑

k=0

(
n

k

)
(−1)k

(
1− T
2

)
k

pm−n

(
1 + T

2

)
n−k

= 2m
n∑

k=0

(
n

k

)
(−1)k

(
1− T
2

)
k

(
1 + T

2
+m− n

)
n−k

pm−n

= 2mn!i−nP
( 1+m−n

2 )
n

(
i(T +m− n)

2
;
π

2

)
pm−n.

The second equality follows from (A.2.10), the third from (A.2.9) and the fourth from
(A.2.11). By PropositionA.2.4, the case of n ≥ m can be proved in the same way.

A.3 Proof of Theorem A.1.2

Comparing the coefficients of tm1 t
n
2 on both sides in (A.2.4) for N = m + n, one obtain the

key proposition.
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Proposition A.3.1. For any m,n ∈ N, we have

Tm,n =
1

2m+n

(m+ n)!

m!n!
ǎd(p)mǎd(q)n.1. (A.3.1)

TheoremA.1.2 follows immediately from (A.3.1), (A.2.7) and (A.1.1).

Remark A.3.2. (1) If m ≥ n, then we have the following result immediately by Theo-
remA.1.2 and (A.2.10).

Tm,nq
m−n =

n!

2n

(
m+ n

n

)
i−n

(
1 + T

2

)
m−n

P
( 1+m−n

2
)

n

(
i(T +m− n)

2
;
π

2

)
. (A.3.2)

The case of n ≥ m is similar.
(2) If m ≥ n, then a explicit expression of the Poincare-Birkhoff-Witt theorem for Tm,n

follows from (A.1.4), (A.1.3) and (A.2.10).

Tm,n =
1

2n
m!

(m− n)!

(
m+ n

n

)∑
k≥0

(
n

k

)
2k

(1 +m− n)k
qkpk+m−n. (A.3.3)

The case of n ≥ m is similar.

Recently, a generalization of TheoremA.1.2 using the multivariate Meixner-Pollaczek
polynomials in the framework of the Gelfand pair has been established in [FW2]. Another
proof of [FW2] in our current approach would be desirable.
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