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ABSTRACT

In this thesis, we report the results of faster computation of Identity-Based

Encryption (IBE), which was proposed by D. Boneh and M. Franklin in 2001

(called BF-IBE). This scheme is acknowledged as the first practical IBE and it

is standardized by the Internet Engineering Task Force (IETF), which devel-

ops and promotes Internet standards. For practical use, improved computa-

tion speed is required particularly for embedded device systems such as smart

phones and mobile phones, because of limited computing resources (CPU and

memory etc.) in embedded devices. We set a restriction in which we min-

imize the impact on popular applications. That is, we choose a parameter

optimization approach, which does not require any changes to be made to the

algorithms used in many applications.

In BF-IBE, there is a hash-to-map function called HashToPoint, which

maps an identity to a point on an elliptic curve. However, HashToPoint typ-

ically requires a modular exponentiation, which is relatively expensive com-

pared with other cryptographic functions in BF-IBE. Therefore, we focus on a

speed improvement of HashToPoint, as outlined below.

We observed that there is a parameter, called the cofactor, which can save

computation costs in HashToPoint. We propose some cofactors that efficiently

compute HashToPoint without losing the speed of other cryptographic func-

tions in IBE. Most of the processing time of HashToPoint depends on a scalar
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multiplication on a point of an elliptic curve by the cofactor which is a large

integer. To speed up scalar multiplication, we chose a cofactor with low Ham-

ming Weight. From the distribution of primes in the arithmetic progression,

we estimate the number of such cofactors for a fixed low Hamming Weight.

However, from an efficiency perspective, it is important to list such cofactors.

First, we identify them, and then we find those cofactors that have Hamming

Weight of 2. Next, we measure the timing of HashToPoint on a desktop PC

using one of the cofactors with Hamming Weight of 2 and the pairing library

PBC. To fairly compare the improved efficiency, we also choose a random co-

factor using the PBC library and measure the timing of HashToPoint using

both cofactors. Finally, we find that the timing for our implementation of

HashToPoint using the cofactor with Hamming Weight of 2 is reduced by ap-

proximately 30% on a desktop PC.
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CHAPTER 1

INTRODUCTION

1.1 IDENTITY-BASED ENCRYPTION

Public key cryptography (PKC), also known as asymmetric cryptography, plays

an important role in information and system security [94]. The most success-

ful application of public key technology has been SSL, which requires minimal

interaction. However, there is a trust issue in PKC with public keys. When

Alice wants to send a message to Bob, she uses Bob’s public key to encrypt

the message. Suppose Eve masquerades as Bob, there is an attacking tech-

nique known as man-in-the-middle-attack. To prevent this type of attack,

Alice needs to ensure that the public key that is claimed to be Bob’s does

indeed belong to Bob. This is achieved by using an authority that both Alice

and Bob trust. This authority issues certificates for public keys and is called a

certifying authority (CA). However, it seems that this is too difficult for many

users [112, 96]. Poor usability causes high-support costs for technology users,

and this has probably been one of the major factors hindering the widespread

adoption of PKC.

The problem associated with the practical deployment of PKC motivated

Shamir to introduce the concept of identity-based cryptography (IBC) [95].
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Shamir posed a challenge to the crypto-community to create a practical IBC.

A satisfactory solution eluded researchers until the turn of the millennium,

and then came from three different quarters: Sakai-Ohgishi-Kasahara[89],

Boneh-Franklin [16] and Cocks[23]. The identity-based encryption scheme

(IBE), except for Cocks’ scheme, is one of the most well-known pairing-based

cryptosystems, and is a kind of public key encryption scheme where the public

key of a user can be any arbitrary string, typically the e-mail address. In IBE,

when Alice securely sends a message to Bob, she can encrypt the message

with her identity, such as the e-mail address, as Bob’s public key. Bob can

easily check whether the public key is correct without a certificate authority,

since the identity is a known string.

In IBE, the computation of each procedure is the most costly operation in

each algorithm. To make IBE feasible in a practical sense, it is important to

implement the computations as efficiently as possible. In particular, speed

is desirable for embedded devices such as smart phones and mobile phones,

because computing resources (CPU and memory etc.) in embedded devices

are often limited.

1.2 KNOWN RESULTS

There are three approaches for speeding up as follows:

A) Protocol and Algorithm Optimization

B) Parameter Optimization

C) Hardware Optimization

In approach A), suitable elliptic curves and their base fields are used to

speed up Miller’s algorithm, which can efficiently calculate pairings [72, 74].

Other algorithms which calculate the pairing value faster, such as [4, 5, 36]
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were examined. Duursma and Lee proposed an efficient algorithm for com-

puting the Tate pairing on hyperelliptic curves [27]. Barreto et al. indicated a

ηT pairing [2], which is a different version of the Duursma-Lee algorithm, and

is approximately twice as fast. In addition, various algorithms to compute

pairing, such as Ate pairing [49], Atei pairing [113], R-ate pairing [62], and

Optimal pairing [103] have also been proposed to date.

In approach B), we achieve the speeding up of computation over finite

fields or points operations on an elliptic curve, by selecting the appropriate

system parameters, such as the elliptic curve itself or a characteristic of a

finite field. In this approach, there is a contribution to improve the cost of

computing the pairing related to Miller’s algorithm and Montgomery multi-

plication. In fact, Nakajima et al. proposed efficient primes p which have

low Hamming Weight to speed up the computation of a Montgomery multipli-

cation inside the Miller’s algorithm, and achieved a speeding up of approxi-

mately 22% in computation of the latter [78].

In approach C), hardware is described for implementing the speeding up

of the computation of field arithmetic or pairing computations by integrated

circuit tools, such as Gate, VLSI, FPGA, and ASIC [47, §5.2]. There are many

hardware implementations of pairing accelerators which have been proposed

[1, 7, 98].

Because our main purpose is to achieve the speeding up of IBE on the

condition that we minimize the impact for applications, we select approach

B).
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1.3 CONTRIBUTION OF THIS THESIS

The practical IBE which was due to Boneh and Franklin [16] is standard-

ized in RFC5091 [19], which is denoted by BF-IBE. BF-IBE depends on cer-

tain properties of pairings on special elliptic curves, which are supersingu-

lar elliptic curves. Either the Weil or Tate Pairing can be used, although it

is recognized that the latter will always be faster. When encrypting to an

identity, there is a requirement to compute QID = H1(ID) ∈ G×
1 and then

gID = T̂mod
r (rQID, Ppub), where QID and Ppub are points on an elliptic curve of

order r. However H1(·), which is called HashToPoint, in practice is actually a

hash-and-map function that must first hash the input identity to a point on

the curve, and then map it to a point of order r for the suggested supersin-

gular curve over the prime field Fp (p ≥ 5). From the viewpoint of security,

NIST recommends keys of size at least 80 (the size of the key space here is

280, which is a lot of brute force work for an attacker)— this condition means

p is 512 bit and r is 160 bit. For the detail of relation between key size and

security level, see §3.4. Under this condition, the mapping requires a point

multiplication by a 352(= 512 − 160) bit cofactor. This cost is likely to dwarf

the cost of calculating the pairing. The main feature of faster computation

is that we choose such a cofactor with low Hamming Weight to speed up the

scalar multiplication, which saves extra additional operation of points on an

elliptic curve.

In this thesis, we propose some system parameters that efficiently compute

the HashToPoint without losing the speed of other cryptographic functions in

the IBE. From the distribution of primes in the arithmetic progression, we es-

timate the number of such cofactors for a fixed size. However, it is important

from an industrial viewpoint to list such cofactors. First, we explore their ex-
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istence, then we find several cofactors with Hamming Weight of 2. Next, we

measure the timing of HashToPoint on a desktop PC, using one of the cofac-

tors with Hamming Weight of 2, using the pairing library PBC [66]. To fairly

compare improved efficiency, we also choose a random cofactor with Hamming

eight of 182 using the PBC library, and measure the timing of HashToPoint

using both cofactors. Finally, we find that the timing of our implementation

of HashToPoint using the cofactor with Hamming Weight 2 is reduced by ap-

proximately 30% on a desktop PC.

1.4 THESIS STRUCTURE

The thesis is organized as follows. Chapter 2 deals with the mathematical

theory of the pairing cryptography, while focusing on cryptographic applica-

tions. Chapter 3 discusses BF-IBE, which is the first practical and secure IBE

scheme. Chapters 4 and 5 comprise the main results of this thesis. In Chapter

4, we propose a search method to find cofactors that realize fast computation

for the curves, and list the cofactors. Chapter 5 shows the timing results of

the computation used by our proposed cofactors in C. Finally, the thesis is

concluded in Chapter 6.





CHAPTER 2

MATHEMATICAL BACKGROUND

This chapter contains a review of all of the necessary definitions needed in

the following chapters. For the more detailed description such as theorems

and proofs, refer to the books [11, 22, 24, 47, 50, 65, 85].

2.1 FINITE FIELDS

In this section we will recall basic properties of groups, rings and fields.

Group:

Definition 2.1.1. Given a set S, a composition law × of S into itself is a

mapping from the Cartesian product S × S to S. Common notations for the

image of (x, y) under this mapping are x× y, x ∗ y or simply xy. When the law

is commutative, it is customary to denote it by +.

Definition 2.1.2. A group G is a set with a composition law × such that

• × is associative, that is for all x, y ∈ G we have (xy)z = x(yz).

• × has a unit element e, that is for all x ∈ G we have xe = ex = x.

• For every x ∈ G there exists y ∈ G, an inverse of x, such that xy = yx = e.

7
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Remark. The unit of a group G is necessarily unique as well as the inverse of

an element x that is denoted by x−1. If G is commutative the inverse of x is

usually denoted by −x.

Definition 2.1.3. Let x ∈ G. The set {xn | n ∈ Z} is the subgroup of G

generated by x. It is denoted by ⟨x⟩.

Ring:

Definition 2.1.4. A ring R is a set together with two composition laws + and

× such that

• R is a commutative group with respect to +.

• × is associative and has a unit element 1, which is different from 0, the

unit of +.

• × is distributive over +, that is for all x, y, z ∈ R, x(y + z) = xy + xz and

(y + z)x = yx+ zx.

Remark. The ring R is said to be commutative, if the law × is commutative.

We define an important arithmetic invariant called characteristic. Let R

be a ring and let ψ be the natural ring homomorphism from Z to R where Z is

the set of integer.

ψ(n) =

1 + 1 + · · ·+ 1 n times if n ≥ 0

−(1 + 1 + · · ·+ 1) −n times otherwise.
(2.1)

The kernel of ψ is an ideal of Z and if the multiples of 1 are all different

then kerψ = {0}. Otherwise, for example ifR is finite, some multiples of 1 must

be zero. In other words, the kernel of ψ is generated by a positive integer m.



9

Definition 2.1.5. Let R be a ring and ψ defined as above. The kernel of

ψ is of the form mZ, for some non-negative integer m, which is called the

characteristic of R and is denoted by char(R).

Field:

Definition 2.1.6. A field K is a commutative ring such that every nonzero

element is invertible.

Proposition 2.1.1. The characteristic of a field is either 0 or a prime number

p.

Finite Field:

Definition 2.1.7. A finite field is a field whose order is finite. Finite fields are

also referred to as Galois fields.

The order of a finite field is the number of elements in the field. There

exists a finite field F of order q if and only if q is a prime power. That is q = pm

where p is a prime number called the characteristic of F and m is a positive

integer. If m = 1, then F is called a prime field. For any prime power q, there

is essentially only one finite field of order q. This means that any two finite

fields of order q are structurally the same, we say that any two finite fields of

order q are isomorphic and denote by Fq. The finite field Fpm can be viewed as

a vector space over its subfield (base field) Fp.

The nonzero elements of a finite field Fq, denoted F×
q , form a cyclic group

under multiplication. Hence there exist elements b ∈ F×
q called generators

such that

F×
q = {bi | 0 ≤ i ≤ q − 2}.

The order of a ∈ F×
q is the smallest positive integer t such that at = 1. Since

F×
q is a cyclic group, it follows that t is a divisor of q − 1.
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The fields that are useful in cryptography are large fields with p ≥ 2512.

Some commonly used fields are of the following types:

• char(F) = 2: This field is called binary field, and implementation is done

using the so-called polynomial basis. There are suitable algorithms for

performing arithmetic in the prime field F2m. For the detail, see [47,

§2.3].

• char(F) = 3: This field has been suggested mainly for pairing based cryp-

tography.

• char(F) = p( ̸= 2, 3) where p is large: This is the field we are going to use

in this thesis. There are suitable algorithms for performing arithmetic

in the prime field Fp. For the detail, see [47, §2.2].

2.2 ELLIPTIC CURVES

In this thesis, we set the following notation:

K a perfect field (i.e. every algebraic extension of K is separable.)

K a fixed algebraic closure of K

GK/K the Galois group of K/K

We begin our study of algebraic geometry with affine/projective n-space.

We begin our review of algebraic geometry with affine and projective space.

Let K be a field and K be its algebraic closure. An affine n-space over K ,

which we denote by An (or An
/K), is the set of n-tuples

An = An(K) = {P = (x1, x2, . . . , xn) | xi ∈ K}.
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The set of K-rational points in An is the set

An(K) = {P ∈ An | P σ = P for all σ ∈ GK/K}.

This is the same as follows:

An(K) = {P = (x1, x2, . . . , xn) ∈ An | xi ∈ K}.

Next we define a projective space. A projective n-space Pn is the set of lines

through the origin in An+1. In symbols,

Pn = Pn(K) =
{(x1, x2, . . . , xn) ∈ An+1 | some xi ̸= 0}

∼
=

An+1 \ {0}
∼

,

where the equivalence relation ∼ is defined by

(x1, x2, . . . , xn+1) ∼ (y1, y2, . . . , yn+1)

⇔ (x1, x2, . . . , xn+1) = λ(y1, y2, . . . , yn+1) for some λ ∈ K×

An equivalence class of the form

{(λx1, λx2, . . . , λxn+1) | λ ∈ K}

is represented by [x1 : x2 : . . . : xn+1]. The set of K-rational points in Pn is teh

set
Pn(K) = {P ∈ Pn | P σ = P for all σ ∈ GK/K}

= {P = [x1 : x2 : . . . : xn] ∈ Pn | xi ∈ K}.
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2.2.1 WEIERSTRASS EQUATIONS

Definition 2.2.1. An elliptic curve is a pair (E,O), where E is a smooth pro-

jective algebraic curve of genus 1 with O ∈ E. We often just write E for the

elliptic curve, the point O being understood. The elliptic curve E is over a

field K, written E/K , if E is over a field K as a curve and O ∈ E(K).

Every such curves can be written as the locus in P2 of a cubic equation with

only one point on the line at∞.

Theorem 2.2.1. Let E/K = (E/K ,O) be a elliptic curve over a field K. Then

there exist constants a1, a2, a3, a4, a6 ∈ K such that E/K is isomorphic over K

to the smooth plane cubic given by the equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (2.2)

Under this isomorphism, the point O is mapped to the inflection point [X : Y :

Z] = [0 : 1 : 0] ∈ E.

The above equation is called a homogeneous Weierstrass equation. Fre-

quently, these equations are written in affine coordinates (i.e. by setting Z =

1), where it is understood that there is one additional point O = [0 : 1 : 0].

Namely, a plane nonsingular affine part Ea of E is given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.3)

where a1, a2, a3, a4, a6 ∈ K and E \ Ea consists of one point with homogeneous

coordinates [0 : 1 : 0]. We call this equation affine Weierstrass equation. In

the remainder of this thesis, E will be a standard notation for an elliptic curve

given by a homogeneous Weierstrass equation, and we will often abuse nota-
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tion and denote by E the affine part Ea.

Definition 2.2.2. Let E be a curve over a fieldK by (2.3) and let a1, a2, a3, a4, a6

be as above. The discriminant of the curve E denoted by ∆E satisfies

∆E = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where
b2 = a21 + 4a2, b4 = a1a3 + 2 + a4

b6 = a23 + 4a6, b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a24.

The curve E is nonsingular, and thus is an elliptic curve, if and only if ∆E is

nonzero. In this case, we introduce the j-invariant of E as follows:

Definition 2.2.3. If ∆E ̸= 0, we define j-invariant of E by

jE =
(b22 − 24b4)

3

∆E

.

Theorem 2.2.2. Let K be a field. The isomorphism classes of elliptic curves

E over K are, up to twist, uniquely determined by the absolute invariants jE,

and for every j ∈ K there exists an elliptic curve E with absolute invariant

jE = j.

If K is algebraically closed then the isomorphism classes of elliptic curves

over K correspond one-to-one to the elements in K via the map E 7→ jE.

Short Weierstrass Equation:

Let us first describe the transformations that keep the curve in Weierstrass

form. Let E/K be an elliptic curve over a field K given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.
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The map

(x, y) 7→ (u2x′ + r, u3y′ + u2sx′ + t)

with (u, r, s, t) ∈ K× ×K3 is invertible and transforms the curve E into

E ′ : y′2 + a′1x
′y′ + a′3y

′ = x′3 + a′2x
′2 + a′4x

′ + a′6,

where the ai’s belong toK and can be expressed in terms of the ai’s and u, r, s, t.

This transformation is called an admissible change of variables. Via the in-

verse map, we associate to each point of E a point of E ′ showing that both

curves are isomorphic over K. There changes of variables are the only ones

leaving the shape of the defining equation invariant and, hence, they are the

only admissible change of variables. In case (u, r, s, t) belongs to K
× × K

3

whereas the curves E and E ′, as above, are still defined over K, then E and

E ′ are isomorphic over K or twists of each other.

The Weierstrass equation can be simplified considerably by applying ad-

missible changes of variables. We consider separately the cases where the

underlying field K has characteristic different from 2 and 3, or has character-

istic equal to 2 or 3.

Case charK ̸= 2, 3:

(x, y) 7→
(
x− 3q21 − 12a2

36
,
y − 3a1x

216
,
a31 + 4a1a2 − 12a3

24

)
transforms E to the curve

y2 = x3 + ax+ b,

where a, b ∈ K. The discriminant and j-invariant are

∆E = −16(4a34 + 27a26), jE = 1728a34/∆E.
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Case charK = 2:

(x, y) 7→
(
a21x+

a3
a1
, a31y +

a21a4 + a23
a31

)
.

The Weierstrass equation is transformed to the following curve by the above

admissible change of variables:

y2 + xy = x3 + ax2 + b,

where a, b ∈ K. The discriminant and j-invariant are

∆E = b, jE = 1/b.

If a1 = 0, then the curve transforms by the admissible change of variables

y2 + cy = x3 + ax+ b,

where a, b, c ∈ K. The discriminant and j-invariant are

∆E = c4, jE = 0.

Case charK = 3:

If the characteristic of K is equal to 3, if a21 ̸= −a2, then the admissible change

of variables

(x, y) 7→
(
x+

d4
d− 2

, y + a1x+ a1
d4
d2

+ a3

)
where d2 = a21+a2, d4 = a4−a1a3, and the Weierstrass equation is transformed

into the curve

y2 = x3 + ax2 + b,
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Table 2.1: Short Weierstrass Equations

Char K Equation Discriminant ∆ j-invariant

̸= 2, 3 y2 = x3 + a4x+ a6 −16(4a34 + 27a26) 1728a34/∆

3 y2 = x3 + a4x+ a6 −a34 0

y2 = x3 + a2x
2 + a6 −a32a6 −a32a6/a6

2 y2 + a3y = x3 + a4x+ a6 a43 0

y2 + xy = x3 + a2x
2 + a6 a6 1/a6

where a, b ∈ K. The discriminant and j-invariant are

∆E = −a3b, jE = −a
3

b
.

If a21 = −a2, then the admissible change is

(x, y) 7→ (x, y + a1x+ a3) .

For a, b ∈ K, the Weierstrass equation then transforms to the curve

y2 = x3 + ax+ b,

where a, b ∈ K. The discriminant and j-invariant are

∆E = −a3, jE = 0.

We summarize short Weierstrass equation in Table 2.1.
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2.2.2 THE GROUP LAW

Let E be an elliptic curve given by a Weierstrass equation. Remember that

E ⊂ P2 consists of the points P = (x, y) satisfying the equation together with

the point O = [0 : 1 : 0]. Let L ⊂ P2 be a line. Then since the equation has

degree three, L intersects E at exactly three points, say P,Q,R ∈ E. Define a

composition law “ + ” on E by the following rule:

Definition 2.2.4 (Composition Law). Let P,Q ∈ E, L the line connecting P

and Q (L is tangent line to E if P = Q), and R the third point of intersection

of L with E. Let L′ be the line connecting R and O. Then P + Q is the point

such that L′ intersects E at R,O, and P +Q.

We now justify the above Composition Law.

Proposition 2.2.3. The composition law Definition 2.2.4 has the following

properties:

(i) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P +Q) +R = O.

(ii) P +O = P for all P ∈ E.

(iii) P +Q = Q+ P for all P,Q ∈ E.

(iv) Let P ∈ E. There is a point of E, denoted −P , so that P + (−P ) = O.

(v) Let P,Q,R ∈ E. Then (P +Q) +R = P + (Q+R).

Proposition 2.2.4. SupposeE is overK. ThenK-rational points ofE, written

E(K), is a subgroup of E.

Case y2 = x3 + a4x + a6 (charK ̸= 2, 3):

For the elliptic curve y2 = x3 + ax + b, the formulas of the negative point, the

point addition and point doubling are as follows:
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Identity P +O = O + P = P for all P ∈ E(K).

Negatives P = (x, y) ∈ E(K), then −P = (x,−y).

Addition

Let P = (x1, y1), Q = (x2, y2) be points in E(K) such that P ̸= ±Q. Then

R = (x3, y3) = P +Q is computed by

(x3, y3) = (λ2 − (x1 + x2), λ(x1 − x3)− y1),

where λ = (y2 − y1)/(x2 − x1).

Doubling

Let P = (x1, y1) be a point inE(K) where P ̸= −P . ThenR = (x3, y3) = 2P

is computed by

(x3, y3) = (λ2 − 2x1, λ(x1 − x3)− y1),

where λ = (3x21 + a)/2y1.

CASE y2 = x3 + a4x + a6 (charK = 3):

In this case, the computation is same as the above one (y2 = x3 + a4x + a6

(charK ̸= 2, 3)).

CASE y2 = x3 + a2x
2 + a6 (charK = 3):

Negatives P = (x, y) ∈ E(K), then −P = (x,−y).

Addition

Let P = (x1, y1), Q = (x2, y2) be points in E(K) such that P ̸= ±Q. Then
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R = (x3, y3) = P +Q is computed by

(x3, y3) = (λ2 − (x1 + x2 + a), λ(x1 − x3)− y1),

where λ = (y2 − y1)/(x2 − x1).

Doubling

Let P = (x1, y1) be a point in E(K) where P ̸= −P . ThenR = (x3, y3) = 2P

is computed by

(x3, y3) = (λ2 − 2x1, λ(x1 − x3)− y1),

where λ = ax1/y1.

CASE y2 + a3y = x3 + a4x + a6 (charK = 2):

Identity P +O = O + P = P for all P ∈ E(K).

Negatives P = (x, y) ∈ E(K), then −P = (x, y + c).

Addition

Let P = (x1, y1), Q = (x2, y2) be points in E(K) such that P ̸= ±Q. Then

R = (x3, y3) = P +Q is computed by

(x3, y3) = (λ2 + x1x2, λ(x1 + x3) + y1 + c),

where λ = (y1 + y2)/(x1 + x2).

Doubling

Let P = (x1, y1) be a point in E(K) where P ̸= −P . ThenR = (x3, y3) = 2P
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is computed by

(x3, y3) = (λ2, λ(x1 + x3) + y1 + c),

where λ = (x21 + a)/c.

CASE y2 + xy = x3 + a2x
2 + a6 (charK = 2):

Identity P +O = O + P = P for all P ∈ E(K).

Negatives P = (x, y) ∈ E(K), then −P = (x, x+ y).

Addition

Let P = (x1, y1), Q = (x2, y2) be points in E(K) such that P ̸= ±Q. Then

R = (x3, y3) = P +Q is computed by

(x3, y3) = (λ2 + λ+ x1 + x2, λ(x1 + x3) + x3 + y1),

where λ = (y1 + y2)/(x1 + x2).

Doubling

Let P = (x1, y1) be a point inE(K) where P ̸= −P . ThenR = (x3, y3) = 2P

is computed by

(x3, y3) = (λ2 + λ+ a, x21 + λx3 + x3),

where λ = (x1 + y1)/x1.

Scalar Multiplication:

Take a positive integer n ∈ N and let us denote the scalar multiplication by n

on E by [n]. Namely,

[n] : E → E; P 7→ [n]P := P + P + · · ·+ P. (n times)
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This definition extends trivially to all n ∈ Z, setting [0]P := O and [n]P :=

[−n]([−1]P ) for n < 0. We write [n]P or more simply nP .

2.2.3 TORSION AND CARDINALITY

Definition 2.2.5. Let E/K be an elliptic curve and n ∈ Z. The kernel of [n],

denoted by E[n], satisfies

E[n] = {P ∈ E(K) | [n]P = O}.

An element P ∈ E[n] is called a n-torsion point.

Theorem 2.2.5. [107, Theorem 3.2] Let E be an elliptic curve over a field K

and let n be a positive integer. If char(K) does not divide n, or is 0, then

E[n] ≃ Z/nZ⊕ Z/nZ.

If char(K) = p > 0 and p|n, write n = prn′ with p - n′. Then

E[n] ≃ Z/n′Z⊕ Z/n′Z or Z/nZ⊕ Z/n′Z.

Let Fq be a finite field and Fq its algebraic closure. We define the Frobenius

map for Fq by

ϕq : Fq → Fq,

x 7→ xq.

Let E be an elliptic curve over Fq. The Frobenius map ϕq acts on a point

(x, y) ∈ E(Fq) by

ϕq(x, y) 7→ (xq, yq), ϕq(O) 7→ O.

The cardinality of an elliptic curve E over Fq, that is the number of Fq-rational
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points, is an important aspect for the security of cryptosystems built on E(Fq).

The theorem of Weil relates the number of points to the field size.

Theorem 2.2.6. Let E be an elliptic curve over Fq. Then

|E(Fq)| = q + 1− t and |t| ≤ 2
√
q.

Remark. There are remarks as below:

1. The integer t is called the trace of the Frobenius endomorphism.

2. For any integer t ∈ [−2√q, 2√q] there is at least one elliptic curve E over

Fp whose cardinality is p+ 1− t.

Proposition 2.2.7. Let E be a curve over a field Fq of characteristic p. The

curve E is supersingular if and only if the trace t of the Frobenius satisfies

t ≡ 0 (mod p).

Note. A curve defined over a prime field Fp (p ≥ 5) is supersingular if and

only if |E(Fp)| = p + 1. If ch(K) =2 or 3, E is supersingular if and only if its

j-invariant is zero.

2.2.4 ALGORITHM OF SCALAR MULTIPLICATION

Scalar point multiplication is the main cryptographic operation in ECC which

computes Q = nP , a point P is multiplied by an integer n resulting in another

point Q on the elliptic curve. Binary method is the traditional scalar multi-

plication method based on the binary expansion of the scalar n =
∑m−1

i=0 ni2
i

where nm−1 = 1, ni ∈ {0, 1} for i = 0, 2, . . . ,m− 2.
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Algorithm 1 Left-to-right binary method for point multiplication
Require: Binary representation n =

∑m−1
i=0 ni2

i, nm−1 = 1, ni ∈ {0, 1} for i =

0, 2, . . . ,m− 2, and P ∈ E(Fp).

Ensure: nP ∈ E(Fp)

1: Q← P

2: for i = m− 1 to 0 do

3: Q← 2Q

4: if ni = 1 then

5: Q← Q+ P

6: end if

7: end for

8: return Q

Binary Method:

Algorithm 1 is the additive version of the basic left-to-right “square-and-multiply”

method for exponentiation, which is called left-to-right “double-and-add” method.

This Algorithm 1 requires m − 1 point doublings and w − 1 point additions

where w is Hamming Weight of its binary representation, i.e., the number of

nonzero terms in the representation. The expected number of ones in the bi-

nary representation of n is approximately m/2 point additions (A) and m point

doublings (D), denoted m/2A+mD.

Example 2.2.1. Let us compute 345P . One has (101011001)2 and m = 9. The

next example provides a computation of Algorithm 1.

i 8 7 6 5 4 3 2 1 0

ni 1 0 1 0 1 1 0 0 1

P 2P 5P 10P 21P 43P 86P 72P 345P
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Signed Binary Method:

For a positive integer n, we can calculate its unique signed binary represen-

tation called NAF ([47, §3.3 Algorithm 3.30]).

Definition 2.2.6. A non-adjacent form (NAF) of a positive integer n is an

expression n =
∑m−1

i=0 ni2
i where nm−1 = 1, ni ∈ {−1, 0, 1} for i = 0, 2, . . . ,m− 2,

and no two consecutive digits ni are nonzero. The length of the NAF is m.

Theorem 2.2.8. Let n be a positive integer.

• n has a unique NAF denoted NAF(n).

• NAF(n) has the fewest nonzero digits of any signed digit representation

of n.

• The length of NAF(n) is at most one more than the length of the binary

representation of n.

• If the length of NAF(n) is m, then 2m/3 < n < 2m+1/3.

• The average density of nonzero digits among all NAFs of length m is

approximately 1/3.

Let n =
∑m−1

i=0 ni2
i be the NAF of n where m is the length of its signed

binary representation. Algorithm 2 modifies the left-to-right binary method

for point multiplication (Algorithm 1) by using NAF instead of the binary

representation. We see that Algorithm 2 requires m − 1 point doublings and

w − 1 point additions where w is Hamming Weight of its signed binary rep-

resentation. This means that the expected running time of Algorithm 2 is

approximately m/3A+mD.
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Algorithm 2 Left-to-right signed binary method for point multiplication
Require: Signed binary representation n =

∑m−1
i=0 ni2

i, nm−1 = 1, ni ∈

{−1, 0, 1} for i = 0, 2, . . . ,m− 2, and P ∈ E(Fp)

Ensure: nP ∈ E(Fp)

1: Q← P

2: for i = m− 1 to 0 do

3: Q← 2Q

4: if ni = 1 then

5: Q← Q+ P

6: end if

7: if ni = −1 then

8: Q← Q− P

9: end if

10: end for

11: return Q

2.3 PAIRINGS

A bilinear pairing suitable for use in cryptography is a non-degenerate, effi-

cient to compute, bilinear map

e : G1 ×G2 → GT

where G1,G2 and GT are cyclic groups of the same prime order p. The most

commonly used pairings arise from the theory of elliptic curves where G1

and G2 are subgroups of points on an elliptic curve over a finite field, and

G2 is a subgroup of the multiplicative group of a finite field. Before getting

into details, we briefly discuss what is meant by efficient, bilinear and non-
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degenerate properties of the map e.

Efficiency is taken to mean that there is a polynomial time algorithm

which can compute the map e.

Bilinearity means that the map e is linear in both components which refers

to the following two properties.

• e(P1 + P2, Q) = e(P1, Q)e(P2, Q) for all P1, P2 ∈ G1 and Q ∈ G2

• e(P,Q1 +Q2) = e(P,Q1)e(P,Q2) for all P ∈ G1 and Q1, Q2 ∈ G2

A consequence of these two properties, we obtain

• e(aP, bQ) = e(bP, aQ) = e(P,Q)ab for any integers a, b ∈ Z.

• e(P, 0) = e(0, Q) = 1

• e(−P,Q) = e(P,−Q) = e(P,Q)−1

Non-degeneracy means that if e(P,Q) is identity element ofGT , then either

P is the identity of G1 or Q is the identity of G2.

2.3.1 DIVISORS

Divisors are a crucial part of the pairing on elliptic curves. In this section, we

give some results of divisor theory.

Definition 2.3.1. Let E be an elliptic curve over a field K. The divisor class

group of E, denoted by Div(E), is the free abelian group generated by the

points of E(K). Thus any divisor D ∈ Div(E) is of the form

D =
∑

p∈E(K)

nP (P )

where nP ∈ Z and nP = 0 except for finitely many P ’s.
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The degree of a divisor D ∈ Div(E) is defined by

deg : Div(E)→ Z;D 7→ deg(D) :=
∑

p∈E(K)

nP .

The divisors of degree zero form a subgroup of Div(E), which we denote by

Div0(E) = {D ∈ Div(E) | deg(D) = 0}.

Let GK/K be a galois group of K. Then GK/K act on Div(E) (and Div0(E))

in the obvious way,

Dσ =
∑

p∈E(K)

nP (P
σ).

Then D is defined over K if Dσ = D for all σ ∈ GK/K . We denote the group

of divisors over K by DivK(E), and similarly for Div0K(E). Let f be a non-zero

rational function on E. Rational function on E can be roughly understood to

be the ratio of two polynomials over the E. The divisor of a rational function

f on an elliptic curve E, written (f), is represented by

(f) =
∑

P∈E(K)

ordP (f)(P )

where ordP (f) is the order of the zero/pole that f has at P . A divisor D is said

to be principal if D = (f) for a rational function f .

Definition 2.3.2. A divisor D ∈ Div(E) is principal if it has the form D = (f)

for some f ∈ K(E)×. Two divisors D1, D2 are linearly equivalent, denoted

D1 ∼ D2 if D1−D2 is principal. The divisor class group (or Picard group) of E,

denoted Pic(E), is the quotient of Div(E) by the subgroup of principal divisors.

We let PicK(E) be the subgroup of Pic(E) fixed by GK/K .
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The degree zero part of the divisor class group of E, which we denote by

Pic0(E), is the quotient of Div0(E) by the subgroup of principal divisors. Fur-

ther, Pic0K(E) is the subgroup of Pic0(E) fixed by GK/K .

Proposition 2.3.1. Let E be an elliptic curve and O ∈ E(K).

1. For every divisor D ∈ Div0(E), there exists a unique point P ∈ E so that

D ∼ (P )− (O).

Let σ : Div0(E)→ E be the map given by this association.

2. The map σ is surjective.

3. Let D1, D2 ∈ Div0(E). Then

σ(D1) = σ(D2) if and only if D1 ∼ D2.

Thus σ induces a bijection of sets (which we also denote by σ)

σ : Pic0(E)
∼−→ E.

4. The inverse to σ is the map

τ : E
∼−→ Pic0(E);P 7→ class of (P )− (O).

5. If E is given by a Weierstrass equation, then the “geometric group law”

on E arising from §2.2.2 and the group law induced from Pic0(E) by using

σ are the same.
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2.3.2 TATE PAIRING

The Tate pairing was introduced by Tate for abelian varieties over local fields

[99]. Lichtenbaum gave an interpretation in the case of Jacobians of curves

over local fields which permits explicit computation [64]. Frey and Rück

considered the Tate pairing over finite fields and introduced it to the cryp-

tographic community [33] [32] [34].

Let E be an elliptic curve over K0 of characteristic p, and r be a positive

integer which is coprime to the characteristic of the field K0. The set of r-th

roots of unity is defined by µr = {u ∈ K
×
0 | ur = 1}. Let K = K0(µr) be the

extension field of K0 generated by the rth roots of unity. Let

E(K)[r] = {P ∈ E(K) | rP = O}

and

rE(K) = {rP | P ∈ E(K)}.

Let P ∈ E(K)[r], Q ∈ E(K)/rE(K). We denote a divisor AP by equivalent to

the divisor (P )− (O).

The Tate Pairing over Finite Field:

Let E be an elliptic curve over Fq and r be coprime to q and r | #E(Fq). The

embedding degree of E with respect to r is defined to be the smallest positive

integer k such that r | (qk − 1). Then k is also the least positive integer such

that the field Fqk contains all the rth roots of unity. Let P ∈ E(Fq)[r], Q ∈

E(Fqk)/rE(Fqk). The divisor AQ is a divisor equivalent to the divisor (Q)− (O).

The Tate pairing is defined as follows:

Tr : E(Fq)[r]× E(Fqk)/rE(Fqk)→ Fqk/(Fqk)r
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is given by

Tr(P,Q) := fr,P (AQ).

Here, fs,P where s is a positive integer is a rational function defined by the

following divisor:

(fs,P ) = s(P )− (sP )− (s− 1)(O).

Note that P is from E(Fq) while Q is from E(Fqk) where Fq is a finite field and

Fqk is a degree k extension of Fq. Since P is an r-torsion point, it follows that

rP = O and so
(fr,P ) = r(P )− (rP )− (r − 1)(O)

= r(P )− r(O).

In this definition, a value of the Tate pairing is an equivalence class in

Fqk/(Fqk)r. For the practical purposes, we would like a unique representative

of this class. The natural way to proceed is to raise this value to the power

(qk − 1)/r. This exponential, called final exponential, kills off all rth powers

leaving an exact rth root of unity in Fqk . Hence for the remainder of this chap-

ter, we consider the reduced (normalized) Tate pairing is defined as follows:

T̂r : E(Fq)[r]× E(Fqk)/rE(Fqk)→ µr(Fqk) ⊂ Fqk/(Fqk)r

is given by

T̂r(P,Q) := fr,P (AQ)(q
k−1)/r

Weil Pairing:

In this part, we describe the Weil Pairing as given by [85]. Let E be an elliptic

curve over K0 and let r be an integer coprime to the characteristic of K0. De-

fine K = K0(E[r]) to be the field extension of K0 generated by the coordinates

of all the points in E(K) of order divisible by r. Let P,Q ∈ E[r] be points,



31

AP a divisor equivalent to the divisor (P )− (O). Note that rAP is a principal

divisor, so there exists a function fP such that (fP ) = rAP . The Weil pairing

is defined as follows:

Wr : E[r]× E[r]→ µr ⊆ K×

is given by

Wr(P,Q) := fr,P (AQ)/fr,Q(AP ).

Similarity between the definition of the Weil pairing and the Tate pairing. In

the Weil pairing, the term fr,P (AQ) is equivalent modulo rth powers to Tr(P,Q)

while the term fr,Q(AP ) is equivalent modulo rth powers to Tr(Q,P ). Hence

we can write

Wr(P,Q) = Tr(P,Q)/Tr(Q,P ) up to rth powers.

This relation indicates that computation of the Weil pairing takes roughly

twice as long as the computation of the Tate pairing. This can be verified

by looking at the algorithms for computing the pairings. Considering the

algorithm for computing the Weil pairing Wr(P,Q), we see that we need to

construct two functions fr,P and fr,Q such that (fr,P ) ∼ r(P )−r(O) and (fr,Q) ∼

r(Q)− r(O). These functions need to be evaluated in divisors AQ ∼ (Q)− (O)

and AP ∼ (P ) − (O), respectively. The Tate pairing Tr(P,Q), on the other

hand, only requires a single function fr,P . This implies that the computation

of the Weil pairing takes at least twice the computation time for the Tate

pairing. The possible additional cost for the final exponentiation in the Tate

pairing does not offset the difference in computation times. Hence, from a

computational point of view, the Tate pairing is superior to the Weil pairing.
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2.3.3 MILLER’S ALGORITHM

The Computation of fr,P :

The computation of fr,P is using a double-and-add algorithm similar to that

of scalar multiplication. Assume that E is given in Weierstrass form. Let P

and R be points on E. We define the following rational functions and their

divisors.

1. lP,R(R ̸= P ) is the line passing through P , R and −(R + P ).

(lP,R) = (P ) + (R) + (−(P +R))− 3(O).

2. lR,R is the line passing throughR,−2R. We choose the line as the tangent

on the curve through the point R.

(lR,R) = 2(R) + (−2R)− 3(O).

3. lR,−R is the line passing through R, −R (i.e. a vertical line).

(lR,−R) = (R) + (−R)− 2(O).

Using the above notations l∗,∗, we also prepare notations, which are conve-

nient for the remain discussion, as follows:

1. hP,R(R ̸= P ) is defined to be hP,R = lP,R/lT,−T where T = R + P .

(hP,R) = (lP,R)− (lT,−T ).
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2. hR,R is defined to be hR,R = lR,R/lT,−T where T = 2R.

(hR,R) = (lR,R)− (lT,−T ).

Note that (f1,P ) = (P ) − (P ) = 0 and so f1,P = 1. A recurrence for fs,P can be

obtained as follows.

(f2m,P ) = 2m(P )− (2mP )− (2m− 1)(O)

= 2(m(P )− (mP )− (m− 1)(O)) + 2(mP )− (2mP )− (O)

= 2(fm,P ) + 2(mP ) + (−2mP )− 3(O)

−((2mP ) + (−2mP )− 2(O))

= 2(fm,P ) + (lmP,mP )− (l2mP,−2mP )

= 2(fm,P ) + (hmP,mP ).

(f2m+1,P ) = (2m+ 1)(P )− ((2m+ 1)P )− 2m(O)

= 2m(P )− (2mP )− (2m− 1)(O)

+(P ) + (2mP )− ((2m+ 1)P )− (O)

= (f2m,P ) + (P ) + (2mP ) + (−(2m+ 1)P )− 3(O)

−(((2m+ 1)P ) + (−(2m+ 1)P )− 2(O))

= (f2m,P ) + (l2mP,P )− (l(2m+1)P,−(2m+1)P )

= (f2m,P ) + (hP,2mP ).

Then we have (f2m,P ) = 2(fm,P ) + (hmP,mP ) from which we get

f2m,P = f 2
m,P × hmP,mP .
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Algorithm 3 Miller’s Algotirhm (I)
Require: P ∈ E(Fq)[r], Q, U ∈ E(Fqk), r = (1r1r2 . . . , rn−1)

Ensure: Reduced Tate pairing T̂r(P,Q)

1: f ← 1

2: T ← P

3: for i = 1 to n− 1 do

4: f ← f 2 · hT,T (Q+ U)/hT,T (Q)

5: T ← 2T

6: if ri = 1 then

7: f ← f2 · hT,P (Q+ U)/hT,P (Q)

8: T ← T + P

9: end if

10: end for

11: return f (qk−1)/r

Similarly (f2m+1,P ) = 2(fm,P ) + (hP,2mP ) whows

f2m+1,P = f2m,P × hP,2mP .

Computing Tate pairing reduces to the following task.

We show an algorithm to calculate Reduced Tate Pairing at Algorithm 3

[73, 74]. Let k be the embedding degree. In the algorithm, line 4 is calculated

by the tangent line at T and the vertical line through between T and −T .

Moreover, line 7 is calculated by the line through T and P , and the vertical at

T + P .

This computation is the called Miller’s Algorithm. The final T obtained

after the full iteration of the loop is raised to the power (qk − 1)/r to get a

unique element in µr. This is the final exponentiation part in the Tate pair-
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ing. There are numerous enhancements to Miller’s algorithm. Unfortunately,

most of them apply only to small subsets of elliptic curves, for example to su-

persingular elliptic curves. Supersingular elliptic curves have rich properties,

and easy to use. In fact, BF-IBE is restricted to use the pairing constructed

by a family of supersinbular elliptic curves (over a prime field). We explain

the definition of supersingular elliptic curves in the next section.
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2.4 PAIRINGS OVER SUPSERSINGULAR ELLIPTIC

CURVES

2.4.1 SUPERSINGULAR ELLIPTIC CURVES (Ess)

There is much research on the generation of suitable elliptic curves for pair-

ings, namely pairing-friendly curves, which contain the large prime subgroup

and the small embedding degree. Refer to the in-depth overview [31] for de-

tails. Here, we describe supersingular elliptic curves and their use for pairing-

based cryptosystems.

Definition 2.4.1. Let char(K) = p and let E be an elliptic curve over K. If

E[pr] = {O} for one and in fact for all positive integers r, then the curve is

called supersingular. Otherwise the curve is called ordinary.

Note. [107, §3.1] An elliptic curve E whose definition field has characteristic p

is called ordinary if E[p] ≃ Z/pZ. It is called supersingular if E[p] = {O}. Note

that the terms “supersingular” and “singular” are unrelated. In the complex

multiplication, the “supersingular” j-invariants are those corresponding to el-

liptic curves with the largest possible endomorphism rings, namely, orders in

quaternion algebras. The “singular” means that j-invariants are those corre-

sponding to elliptic curves with endomorphism rings larger than Z.

The most important property is that the trace t = Tr(ϕq) of the Frobenius

endomorphism satisfies t ≡ 0 (mod p). By the Theorem of Hasse-Weil we have

|t| ≤ 2
√
q. Hence, over prime fields Fp with p ≥ 5, the condition implies t = 0

and the cardinality of E(Fp) satisfies #E(Fp) = p+1. As r divides #E(Fp) = p+

1, which in turn divides (p2−1), we see that for supersingular curves over large

prime fields the embedding degree is bounded by 2. Menezes, Okamoto, and
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Figure 2.1: Pairing-friendly elliptic curves by Freeman et al.

Vanstone prove that the embedding degree for supersingular elliptic curves is

always less than or equal to 6 [70]. In fact, we can even say more. It is proved

that the upper bound on the embedding degree depends on the characteristic

of the base field:

Proposition 2.4.1. [24, Proposition 6.20] Let E be a supersingular elliptic

curve over Fq with q = pd. Assume that E has a Fq-rational point of order r.

Let k be the smallest natural number such that r | (qk − 1). Then

• characteristic 2 we have k ≤ 4,

• characteristic 3 we have k ≤ 6,

• over prime fields Fp with p ≥ 5 we have k ≤ 2,

and these bounds are attained.

This means that for supersingular elliptic curves over large prime fields
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we must work in a larger field than usual for curve based cryptography. For

current security parameters we should choose a ground field with around 2512

elements to obtain a satisfying level of security, since the finite field Fqk needs

to have at least 21024 elements to adhere to the proposals. But this is to the

detriment of efficiency, since we have to compute on some larger field for the

same level of security (note that the current proposals assume elliptic curves

with 2160 elements to offer sufficient security). Therefore, it is preferable to

work in characteristic 2 or, even better, in characteristic 3 and on curves with

the maximal possible k.

2.4.2 DISTORTION MAP

The typical case in cryptographic applications if P ∈ E(Fq) and k > 1. In this

condition, a valuable technique introduced by Verheul[104], which applies to

both Tate and Weil pairings, is to use a non-rational endomorphism.

For a supersingular elliptic curve, there is at least one nice endomorphism,

which maps a point from E(Fq) to E(Fqk) called distortion map. Indeed, the

following theorem proves that distortion maps always exist.

Theorem 2.4.2. [105, Theorem 5] Let E be a supersingular elliptic curve over

a finite field Fq with q = pd and k an embedding degree. Let K ′ = Fqk and P be

a point on E over K of prime order r relatively prime to p, then EndK′(E[r]) is

isomorphic to the ring M2(Z/rZ) of all 2× 2 matrices over Z/rZ. In particular

there is an abundance of distortions maps (defined over K ′) with respect to P .
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Table 2.2: Supersingular Elliptic Curve and Distortion Map

Type Elliptic Curve Data

Type-1 EFp : y
2 = x3 + a where p ≡ 2 (mod 3)

#E(Fp) = p+ 1

Distortion map (x, y) 7→ (ζ3x, y) where ζ33 = 1.

Type-2 EFp : y
2 = x3 + x where p ≡ 3 (mod 4)

#E(Fp) = p+ 1

Distortion map (x, y) 7→ (−x, iy) where i2 = −1.

Embedding degree k = 2:

Supersingular elliptic curves are suitable for pairing-based cryptosystems

since it is possible to have k = 2, 3, 4, and 6. Table 2.2 shows the most pop-

ular supersingular elliptic curves and its concrete distortion maps where the

embedding degree k = 2.

2.4.3 TATE PARING FOR Ess

The main drawback of the Weil pairing is that Wr(P, P ) is always equal to 1.

Hence, the pairing is degenerate if applied to the cyclic subgroup of order r in

both arguments. This is not the case with the Tate pairing. Frey, Müller, and

Rück state in [32] that if r2 does not divide the cardinality of the elliptic curve

over Fqk , the Tate pairing applied to a point with itself yields a primitive r-th

root of unity. Otherwise, r2 | #E(Fpk), a modification is required to make the
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pairing nontrivial on the cyclic subgroup generated by P ∈ E(Fq).

A mapping that is nondegenerate and bilinear and is also efficiently com-

putable is called a pairing, and such mappings are the fundamental prim-

itives from which many cryptographic algorithms are constructed. On the

other hand, the Tate pairing also has the following property that limits its

usefulness because it returns the value 1 in many cases.

Proposition 2.4.3. [35, Galbraith] Let P ∈ E(Fq)[r]\O and r relatively prime

to q. Then to have Tr(P, P ) ̸= 1, we must have k = 1.

So for an embedding degree k > 1 we have Tr(P, P ) = 1, which also means

that Tr(aP, bP ) = Tr(P, P )
ab = 1 for integers a and b, so that the Tate pairing

may not seem very useful at first. The following result provides insight into

how to overcome this limitation.

Proposition 2.4.4. [104, Verheul] Let r be a prime, P ∈ E(Fq)[r] \ O, Q ∈

E(Fqk) be linearly independent from P , and k > 1. Then we have that Tr(P, P )

is nondegenerate.

So if we have P ∈ E(Fq)[r] and a nontrivial embedding degree, that is,

we have k > 1, then one way to make sure that the Tate pairing Tr(P,Q) is

nondegenerate is to make sure that Q is linearly independent of P . One way

to do this is to use a distortion map. We compute

T̂mod
r : E(Fq)[r]× E(Fq)[r]→ µr(Fqk) ⊂ Fqk/(Fqk)r.

is given by

T̂mod
r (P,Q) := T̂r(P, ϕ(Q))

where ϕ : E(Fq) → E(Fqk) is an appropriate distortion map. We call such an

T̂mod
r the modified Tate pairing.
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Algorithm 4 Miller’s Algotirhm (II)
Require: P,Q ∈ E(Fq)[r] where k > 1, r = (1r1r2 . . . , rn−1).

Ensure: Modified Tate pairing T̂mod
r (P, ϕ(Q))

1: f ← 1

2: T ← P

3: Q← ϕ(Q)

4: for i = 1 to n− 1 do

5: f ← f 2 · lT,T (Q)

6: T ← 2T

7: if ri = 1 then

8: f ← f 2 · lT,P (Q)

9: T ← T + P

10: end if

11: end for

12: return f (qk−1)/r

2.4.4 MILLER’S ALGORITHM FOR Ess

Using the Modified Tate Paring, we can get a variant algorithm of the previous

Miller’s Algorithm as Algorithm 4.

Note. Notice the ϕ(Q) ∈ E(Fqk) \E(Fq), the denominator lT,−T of hT,T , hT,P (line

4,7 in Algorithm 3) are eliminated by the final exponential (qk − 1)/r.





CHAPTER 3

BONEH-FRANKLIN IDENTITY BASED EN-

CRYPTION (BF-IBE)

3.1 BACKGROUND OF CRYPTOGRAPHY

The modern field of cryptography can be divided into two areas, the symmetric

key encryption (SKE) and public key encryption (PKE).

3.1.1 SYMMETRIC KEY ENCRYPTION

SKE refers to encryption methods in which both the sender and receiver share

the same key (secret key K, Figure. 3.1). SKE was the only kind of encryption

publicly known until 1976. In SKE, the ciphertext moving across the pub-

lic channel is a function of the message and the secret key K. An adversary

has access to the ciphertext, but without knowledge of K should be unable

to obtain the intended message M. The receiver knows K and should be able

to recover M from the ciphertext. SEC use the same key for encryption and

decryption of a message, though a message may have a different key than

others. Thus, arose the problem of ensuring secure communication between

43
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Figure 3.1: Symmetric Key Encription

any two of a number of parties. Suppose there are n parties. Using the SKC,

secure communication between any two parties requires a secret key per pair

of parties. So the total number of secret keys in the system is
(
n
2

)
= n(n− 1)/2

and each party has to maintain n− 1 secret keys.

3.1.2 PUBLIC KEY ENCRYPTION

PKE is designed to overcome the problem. The basic idea was simple. Instead

of using the same key for encryption and decryption, one may consider two

separate keys for each party. The encryption key may be made public, so that

any other party (Alice) may send an encrypted message. On the other hand,

the decryption key should be kept secret, so that only the intended receiver

(Bob) can decrypt the ciphertext. It was first published by Diffie and Hellman

in their seminal paper [26] titled “New Directions in Cryptography”. Though
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Figure 3.2: Public Key Encription

the concept of PKE was introduced by Diffie and Hellman, they were unable

to provide a concrete instantiation of such a scheme.

RSA Public Key Encryption:

It was left as an open problem until it was solved by three other researchers,

Rivest, Shamir and Adleman [88]. This was called RSA public key encryption.

Diffie Hellman Key Agreement:

Diffie and Hellman had introduced and solved another related and equally

important problem. They considered the possibility of two parties performing

some private computations and exchanging some message over a public chan-

nel to finally arrive at a shared secret key. This is called Diffie-Hellman key

agreement (DH-KA).
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Figure 3.3: Diffie Hellman Key Agreement

ElGamal Public Key Encryption:

Later a public key encryption scheme was developed by ElGamal [28] which

is based on the Diffie-Hellman key agreement (DH-KA).

3.1.3 DIGITAL SIGNATURES

Digital signature is a mechanism by which a message is authenticated. In this

primitive, each user has a secret signing key and a public verification key. For

Example, suppose that Alice wants to digitally sign a message to Bob. To

do so, she uses her private key to encrypt the message, she then sends the

message along with her public key. Since Alice’s public key is the only key

that can decrypt that message, a successful decryption constitutes a Digital

Signature Verification, meaning that there is no doubt that it is Alice’s private

key that encrypted the message. Concrete proposals of signature schemes
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Figure 3.4: ElGamal Public Key Encryption

were made using the RSA and the ElGamal schemes.

3.1.4 PUBLIC-KEY INFRASTRUCTURE (PKI)

The main concern in a PKC is the authenticity of the public key. If a malev-

olent can convince other participants that Bob’s public key is some key of his

choice instead of the Bob’s public-key, he can decrypt messages intended for

Bob only and forge signatures under Bob’s name. This type of threat is known

as man-in-the-middle-attack. Therefore, it is importance that participants in
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Figure 3.5: Certifying Authority System

a PKC system can verify the authenticity of other user’s public keys. The

conventional solution to the authentication problem is the use of a public-key

infrastructure (PKI). A PKI often works with a party trusted by all users,

called Certification Authority (CA), which can guarantee the correctness of

the public keys. For the detail of PKI, refer to the book [101].

3.1.5 HISTORY OF IDENTITY-BASED ENCRYPTION (IBE)

In 1984, Shamir [74] invented the concept of Identity-Based Cryptography,

which addresses the authenticity problem of public keys in a different way
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(see also [56]). His idea was to avoid the need for authentication altogether,

by making sure that the actual value of a user’s public key is inherently linked

to his identity. More precisely, the public key of a user is derived directly from

publicly available information that uniquely and undeniably identifies that

user. This information is denoted by a user’s (digital) identity. Depending on

the application, the identity can range from (combinations of) the user’s name,

social security number, phone number, email address, and possibly other per-

sonal information. In this setting, a user’s public key is readily available to

anyone who knows his identity, so there is no need to look up the key in some

database. Moreover, the fact that there is no doubt about the authenticity of

the public key takes away the need for certificates as in a PKI setting. We

should note, however, that the realization of the link between users and their

digital identities is far from trivial.

3.2 BF-IBE PROTOCOL

The practical encryption scheme of the identity based cryptosystems was pro-

posed by Sakai, Ogishi, Kasahara by using bilinear pairing over elliptic curves

[89]. Boneh and Franklin also suggested the identity based cryptosystem

and its concrete implementation [16]. Here, we present the Boneh-Franklin

Identity-Based Encryption scheme, denoted BF-IBE. They give two versions

of IBE, BasicIdent and FullIdent. BasicIndentis developed and shown to be

secure in the sense of IND-ID-CPA (indistinguishability under adaptive iden-

tity and adaptive Chosen Plaintext Attack) and FullIdent is shown to provide

IND-ID-CCA (indistinguishability under adaptive identity and adaptive Cho-

sen Ciphertext Attack). For the detail of IND-ID-CPA and IND-IP-CCA, see

[22, §2.3 Security Model for (H)IBE].
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Figure 3.6: IBE System

We describe BasicIdent, which has four algorithms, Setup, Extract, En-

crypt, and Decrypt as followings:

Setup:

This algorithm is run by the PKG one time for creating the whole IBE en-

vironment. The master key is kept secret and used to derive users’ private

keys, while the system parameters are made public. Given a security param-

eter k ∈ Z. The setup phase for BF-IBE executes the following steps.
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Setup (1) Run a randomized algorithm on input k to generate a prime

r, tow groups G1 and G2 of order r generated by random

generators P ∈ G1, and g ∈ G2, and an admissible bilinear

map e : G1 ×G1 → G2.

Setup (2) Pick a random s ∈ (Z/rZ)× and set Ppub ← sP .

Setup (3) Choose cryptographic hash functions H1 : {0, 1}∗ → G×
1 and

H2 : G×
2 → {0, 1}n for some positive integer n.

Setup (4) Set message space M = {0, 1}∗ and ciphertext space

C = G×
1 × {0, 1}n. Then publish parameter =

{r,G1,G2, e, n, P, Ppub, H1, H2} as system parameters, and

conceal s ∈ (Z/rZ)× as a master key which has a public

key generator.

Extract:

This algorithm is run by the PKG when a user requests his private key. Note

that the verification of the authenticity of the requestor and the secure trans-

port of dID are problems with which IBE protocols do not try to deal.

Extract (1) For a given user identity ID ∈ {0, 1}∗, compute QID ←

H1(ID) ∈ G×
2 .

Extract (2) Set the private key dID ← sQID where s is the master key.

Encrypt:

Let M ∈M be the message. There are five steps as follows:
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Encrypt (1) Generate a random r ∈ Z/rZ and compute rP .

Encrypt (2) Calculate QID = H1(ID) from the recipient’s identity ID ∈

{0, 1}∗.

Encrypt (3) Calculate rQID.

Encrypt (4) Calculate pairing gID := T̂mod
r (rQID, Ppub).

Encrypt (5) Let C be M ⊕ H2(gID) and return (rP, C) where the symbol

⊕ means bitwise XOR.

Decrypt:

Let (rP, C) be the received message, the recipient can decrypt it by the follow-

ing three steps.

Decrypt (1) Extract private key dID := sQID by Extract (1) if necessary.

Decrypt (2) Calculate pairing g′ID := T̂mod
r (rP, dID)

Decrypt (3) Extract message by M = C2 ⊕H2(g
′
ID)
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Table 3.1: System parameters of the IBE

Notation Comments

n Positive integer, length of plaintext (in bits)

s Integer in Z/rZ, master secret

G1 E(Fp)[r] = ⟨P ⟩, a cyclic subgroup with order r

with its generator P

G2 ⟨T̂mod
r (P, P )⟩ where P is a generator of G1,

and the extension field over Fp with degree 2

T̂mod
r G1 ×G1 → G2, Modified Tate Pairing

Ppub Ppub := sP ∈ E(Fp), master public-key

H1 H1 : {0, 1}n → G1, HashToPoint (see §3.3).

H2 H2 : G2 → {0, 1}n, cryptographic hash function

3.3 ALGORITHM FOR BF-IBE

To implement BF-IBE, we first need a security parameter that defines the

level of bit strength that the encryption will provide. Then we need to define

groups G1 and G2 and a pairing G1 × G1 → G2. To do this, we pick an elliptic

curve E over Fq with embedding degree k, and a prime r with r | #E(Fq).

We also require that r2 - #E(Fq) to ensure that the subgroup of order r that

we will hash identities into is unique. The parameter r is the order of the

both groups G1 and G2, and G2 is a subgroup of F×
qk

. To attain a particular

level of security, these parameters need to be chosen as described in §3.4. We

then randomly pick a point P ∈ E(Fq)[r] and let G1 := ⟨P ⟩ and G2 := ⟨T̂r(P, P )⟩,
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Algorithm 5 Find a point to a given x

Require: An interger x and a elliptic curve E(Fp).

Ensure: A point P ∈ E(Fp).

1: y ← −1.

2: while y = −1 do

3: y2 ← x3 + x (mod p).

4: if y2 is a square in Fp then

5: y ← y2

6: else

7: x← x+ 1 (mod p)

8: end if

9: end while

10: return P = (x, y)

which are cyclic groups of prime order r. In this thesis, we use a supersingular

elliptic curve E of the form y2 = x3 + x over prime field Fp where p ≥ 5 and

p ≡ 3 (mod 4). So we use Modified Tate pairing T̂mod
r .

We explain how to compute HashToPoint explicitly. First, we use Algo-

rithm 6 for finding r-torsion points from x ∈ Fp. Let E be a supersingular ellip-

tic curve in Weierstrass form, y2 = x3 + x. First we define h1 : {0, 1}n → E(Fp)

as follows. For any ID ∈ {0, 1}n, which is a bit string of n bits, we can embed

ID into the x-coordinate of a point Q = (x, y) ∈ E(Fp) as an integer modulo r.

Then we calculate a y-coordinate of Q by y = (x3 + x)1/2. From Euler’s theo-

rem, we have that ap−1 ≡ 1 (mod p) so that ap−1a2 = ap+1 ≡ a2 (mod p). Then

a(p+1)/4 ≡ a1/2 (mod p) whenever we have that 4 | (p+ 1). Note that if x3 + x is

not quadratic residue in Fp, we increment x by x+ 1 (Algorithm 5).

Next, we define h2 : E(Fp) → E(Fp)[r] as follows. We know that #E(Fp) =

p+1 = rc, so we getQID:=(p+1)/rQ = cQ ∈ E(Fp)[r]. HashToPoint is defined by
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Algorithm 6 HashToPoint
Require: A string ID =: x ∈ {0, 1}∗, Fp-rational points E(Fp)

with #E(Fp) = n = rc.

Ensure: A point QID ∈ E(Fp)[r] corresponding to the string ID.

1: c← n/r (mod p).

2: x← h1(ID).

3: Let PID ∈ E(Fp) be the result from algorithm 5.

4: P ′ ← cP

5: while P ′ = O do

6: x← x coordinate of P

7: x← x+ 1 (mod p)

8: Let PID ∈ E(Fp) be the result from algorithm 5 with arguments x and

E(Fp).

9: P ′ ← cP

10: end while

11: if rP ′ ̸= O then

12: return “Wrong group order, no r-torsion point found”

13: else

14: return P ′

15: end if

the composition h2 ◦ h1. Focus on h2, we can use Algorithm 1, 2 for computing

the scalar multiplication cQ.

If we choose the cofactor c with low Hamming Weight, then the computa-

tional time of cQ becomes faster. We discuss the existence of such cofactor c

with low Hamming Weight in the following section.
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Table 3.2: A comparison of public-key cryptosystems [102, Table 3]

Public key
systems

Example Mathematical
Problem

Best known method for solv-
ing math problem (running
time)

Integer
factoriza-
tion

RSA, Rabin-
Williams

Given a number
n, find its prime
factors

Number field sieve:
exp[1.923(log n)1/3(log log n)2/3]
(Sub-exponential)

Discrete
logarithm

Diffie-
Hellman(DH),
DSA, ElGamal

Given a prime n,
and numbers g
and h, find x such
that h = gx

(mod n)

Number field sieve:
exp[1.923(log n)1/3(log log n)2/3]
(Sub-exponential)

Elliptic
curve
discrete
logarithm

ECDH,
ECDSA

Given an ellip-
tic curve E and
points P and Q
on E, find x such
that Q = xP

Pollard-rho algorithm:
√
n

(Fully exponential)

3.4 SECURE PARAMETER SIZE

At the foundation of every public-key cryptosystem is a hard mathematical

problem that is computationally intractable. The relative difficulty of solving

that problem determines the security strength of the corresponding system.

Table 3.2 summarizes three types of well known public-key cryptosystems.

As shown in the last column, RSA, Diffie-Hellman and DSA can all be at-

tacked using sub-exponential algorithms, but the best known attack on ECC

requires exponential time. For this reason, ECC can offer equivalent security
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Table 3.3: Prospects of key sizes

Algorithm security SKE RSA/DH ECC(ECDH)

lifetimes

Through 2010 80 1024 160

Through 2030 112 2048 224

Beyond 2030 128 3072 256

— 192 7680 384

— 256 15360 512

with substantially smaller key sizes [63]. Public-key schemes are typically

used to transport or exchange keys for symmetric-key ciphers. Since the se-

curity of a system is only as good as that of its weakest component, the work

factor needed to break a symmetric key must match that needed to break the

public-key system used for key exchange. Table 3.3 shows NIST guidelines

[80] on choosing computationally equivalent symmetric and public key sizes.

As shown in Table 3.3, ECC-160 provides the same security as RSA-1024 and

ECC-224 matches RSA-2048. NIST provides detailed information required to

implement the cryptographic algorithms, including various types of encryp-

tion keys, their use, and required key lengths (Table 3.3). As shown in Table

3.3, NIST describes their recommendation of cryptographic algorithms and

key lengths by separating cases into those for which they may be used up to

the end of 2010, up to the end of 2030, and after 2030.





CHAPTER 4

SPEEDING UP HASHTOPOINT

In this chapter, we focus on BF-IBE which is defined by RFC5091 [19]. RFC5091

is restricted to use the pairing constructed by a family of supersingular elliptic

curves over finite fields of large prime characteristic. For a prime p ≥ 5, there

are two type of supersingular elliptic curves represented by the following in

Table 2.2 or [31, §3]:

(Type-1) y2 = x3 + 1 where p ≡ 2 (mod 3)

(Type-2) y2 = x3 + x where p ≡ 3 (mod 4).

In RFC5091 is adapted (Type-1). However we substitute the curve (Type-2)

with curve (Type-1) because the library (PBC) which we use to check the IBE

performance only supports the curve (Type-2). The differences between (Type-

1) and (Type-2) do not affect the efficiency of the IBE discussed in this paper.

We review some notations and summarize basic properties of supersingular

elliptic curve here. Let T̂mod
r (P,Q) = T̂r(P, ϕ(Q)) be the modified Tate pair-

ing, where P,Q ∈ E(Fp)[r] are points of order r on the supersingular elliptic

curve where r | #E(Fp) = p + 1. Note that this particular curve has the nice

property that for any y a unique point (x, y) can be found on the curve, which

makes mapping arbitrary values to curve points particularly easy. The func-
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tion ϕ(·) is a distortion map, an automorphism which maps a point on E(Fp)

to a linearly independent point on E(Fp2). For (Type-2) supersingular elliptic

curve an appropriate distortion map is ϕ(x, y) = (−x, iy), where i ∈ E(Fp2)

is a square root of unity mod p (Table 2.2). We choose three security types

—160 bit, 224 bit, and 256 bit— for r which refers to #E(Fp)[r]. Recall that

these three types are recommended by NIST as enough secure key size for

ECC (Table 3.3). In this chapter, we propose efficient parameters for faster

computation of HashToPoit—as the result faster computation of BF-IBE—

in Table 4.3. First, we explain the arithmetic functions over a elliptic curve

which are required by BF-IBE (§4.1) and the profiling result of BF-IBE. In this

section, we can find that speeding up HashToPoint is efficient for the faster

computation of BF-IBE. For the speeding up HashToPoint, we need suitable

parameters called cofactor. Next, we explain how to find such parameters—

the cofactor with low Hamming Weight—using Algorithm 7. If we use the

cofactor low Hamming Weight, then the computation speed of HashToPoint

becomes faster (§3.3). We use PARI/GP to execute the algorithm and we find

explicit script in §A.2.1. Next, we list our searched result and propose suitable

parameters in each security level. Finally, we estimate a existence probability

of such parameters using prime number theory (§4.3).

4.1 HASHTOPOINT AND COFACTORS

The BF-IBE consists of four steps: setup, extract, encryption, and decryp-

tion. These four steps are essentially constructed by arithmetic functions

over elliptic curve E(Fp)and finite field Fp. For example, scalar multiplica-

tion, pairing, and HashToPoint are defined over a elliptic curve E. Figure

4.1 describes the layer structure of functions used in the IBE and Table 4.1
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Figure 4.1: Layer Structure of BF-IBE

shows the relation between BF-IBE protocol framework and arithmetic func-

tions over elliptic curve. In addition, Table 4.1 shows that BF-IBE requires

three arithmetic functions over a elliptic curve E, scalar multiplication, pair-

ing, and HashToPoint. For example, Encrypt (1) in Encryption phase require

a scalar multiplication. In the similar way, the other procedures, Encrypt (2)–

(4) in Encryption phase and Extract (1)–(2), Decrypt (2) in Decryption phase,

require each arithmetic functions over a elliptic curve E.

To start our investigation, we measured the execution time of each pro-

cedures in Table 4.1. Table 4.2 shows the profiling result of BF-IBE. By the

profiling result, we can find that HashToPoint, which correspond to Encrypt

(1) or Extract (1), is the dominant part of the other procedures. Then the

speeding up HashToPoint turn out to be efficient. Next, we explain the idea

of speeding up HashToPoint.
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Table 4.1: Relation between BF-IBE protocol and the arithmetic functions

Procedures in BF-IBE Arithmetic functions

Encryption: Encrypt (1) rP ↔ Scalar Multiplication

Encrypt (2) QID := H1(ID) ↔ HashToPoint

Encrypt (3) rQID ↔ Scalar Multiplication

Encrypt (4) gID := T̂mod
r (rQID, Ppub) ↔ Modified Tate Pairing

Decryption: Extract (1) QID := H1(ID) ↔ HashToPoint

Extract (2) sQID ↔ Scalar Multiplication

Decrypt (2) g′ID := T̂mod
r (rP, dID) ↔ Modified Tate Pairing

The idea of faster computation:

Let us recall the procedures in BF-IBE ( §3.2). When encrypting to an iden-

tity, there is a requirement to compute QID = H1(ID) ∈ G×
1 and then gID =

T̂mod
r (rQID, Ppub), where QID and Ppub are points on an elliptic curve of order r,

and H1 is HashToPoint. HashToPoint is a hash-and-map function that must

first hash the input identity to a point on the curve, and then map it to a point

of order r for our supersingular curve over the prime field Fp (p ≥ 5). From

the viewpoint of security, NIST recommends keys of size at least 80 (the size

of the key space here is 280, which is a lot of brute force work for an attacker)—

this condition means p is 512 bit and r is 160 bit. For the detail of relation

between key size and security level, see §3.4. Under this condition, the map-

ping requires a point multiplication by a 352 (=512-160) bit cofactor. This cost



63

Table 4.2: Performance Profile

Procedures in BF-IBE Execution Time Occupation

Enctyption: Encrypt (1) rP 1.89 11.6

Encrypt (2) QID 4.27 26.2

Encrypt (3) rQID 1.87 11.5

Encrypt (4) gID 1.06 6.5

Decryption: Extract (1) QID 4.28 26.3

Extract (2) sQID 1.87 11.5

Decrypt (2) g′ID 1.06 6.5

is likely to dwarf the cost of calculating the pairing. The main idea of faster

computation is that we choose such a cofactor with low Hamming Weight to

speed up the scalar multiplication, which saves extra additional operation of

points on an elliptic curve.
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4.2 PROPOSED COFACTORS

4.2.1 SEARCHING ALGORITHM OF COFACTORS

Algorithm 7 show the searching method of cofactor with Hamming Weight of

less than tree. First, we explain how to find cofactors with Hamming Weight

of less than three in the case of p is 512 bit, and r is 160 bit. Recall that

RFC 5091 chooses prime r as Solinas primes of the form 2159 ± 2t ± 1 for t =

1, 2, ..., 158. There are ten Solinas prime which are listed in the second column

of Table 4.3. To find cofactors with Hamming Weight of less than three, we

use two type cofactor in the form c = 2352 ± k2i for i = 1, 2, . . . , 351 and k ∈

{−1, 0, 1}. We have the properties p = rc − 1, then we try to find prime p

where p (mod 4) ≡ 3 We can apply the above scheme to the remain cases;

(ℓ(p), ℓ(r)) = (1024, 224), (1536, 256), similarly.

4.2.2 LIST OF COFACTORS

Table 4.3 lists the complete list of cofactor with Hamming Weight of less than

three. The firs column denotes by its counter. The (1-∗) show Solinas primes

under the level of RSA-1024 (ECC-160). The (2-∗) and (3-∗) show Solinas

primes under the level of RSA-2048 (ECC-224) and RSA-3072 (ECC-256) re-

spectively. The second column is the list of explicit formula of Solinas primes

r with length 160 bit, 224 bit, and 256 bit. The third column is the cofactors

with Hamming Weight of less than three. These cofactors are results of our

exhaustive search using Algorithm 7.

In the remains, we pick up some parameters in each three security level

using Table 4.3.
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Table 4.3: Cofactor with Hamming Weight less than three

# Solinas prime r proposed cofactor c

(2a ± 2t ± 1) (2u ± 2v)

p : 512 bit r : 160 bit a = 159

(1-1) 2159 + 217 + 1 NA

(1-2) 2159 + 219 + 1 2352 − 2150, 2352 − 2198, 2352 − 2208

(1-3) 2159 + 259 + 1 2352 + 2127, 2352 − 2134

(1-4) 2159 + 263 + 1 2352 − 218, 2352 − 224, 2352 − 288, 2352 − 2108

(1-5) 2159 + 288 − 1 2352 − 224, 2352 − 2176

(1-6) 2159 + 2107 + 1 2352 − 212, 2352 − 2156

(1-7) 2159 + 2110 − 1 2352 + 233, 2352 − 2162

(1-8) 2159 + 2116 − 1 2352 + 219, 2352 − 2246, 2352 + 2335

(1-9) 2159 + 2135 + 1 2352 + 231

(1-10) 2159 + 2138 − 1 2352 + 213, 2352 + 289, 2352 + 2269, 2352 + 2321

p : 1024 bit, r : 224 bit, a = 223

(2-1) 2223 + 28 − 1 2800 + 2261, 2800 + 2741

(2-2) 2223 + 210 − 1 2800 − 280, 2800 + 2193, 2800 − 2212, 2800 + 2475, 2800 − 2578

(2-3) 2223 + 213 + 1 2800 − 24, 2800 − 234, 2800 − 2206, 2800 − 2230

(2-4) 2223 + 230 − 1 2800 + 25, 2800 − 292

(2-5) 2223 + 255 + 1 NA

(2-6) 2223 + 280 − 1 2800 + 2317

(2-7) 2223 + 2139 + 1 2800 − 2358, 2800 − 2490, 2800 − 2622

(2-8) 2223 + 2153 + 1 2800 + 2395, 2800 + 2771

p : 1536 bit, r : 256 bit, a = 255

(3-1) 2255 + 241 + 1 21280 + 2173, 21280 + 2633, 21280 + 2753, 21280 − 21026

(3-2) 2255 + 296 − 1 21280 + 21225

(3-3) 2255 + 2166 + 1 21280 + 2110, 21280 + 2413, 21280 − 2863, 21280 + 2938, 21280 − 21073

(3-4) 2255 + 2176 − 1 21280 + 243, 21280 + 2893, 21280 + 21039

(3-5) 2255 + 2227 + 1 21280 + 2311, 21280 − 2506, 21280 − 2780, 21280 − 2970

(3-6) 2255 + 2232 − 1 21280 + 2109, 21280 + 2693, 21280 + 2853

(3-7) 2255 + 2243 + 1 21280 + 2215, 21280 − 2458, 21280 − 21090
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Algorithm 7 Searching for cofactor with Hamming Weight of less than three
Require: Let a = ℓ(p) be a positive integer that is the length of p,

r be a Solinas prime

Ensure: The set of cofactors C = {c1, c2, . . . , cN} where Hamming Weight of

each ci is less than three

1: Let C be the empty set. i.e. C := {}

2: u← a− ℓ(r) where ℓ(r) is the length of r

3: for i = 1 to u− 1 do

4: for k ∈ {−1, 0, 1} do

5: c← 2u + k2i

6: p′ ← cr − 1

7: if ℓ(p′) is equal to a, p′ ≡ 3 (mod 4), and p′ is a prime then

8: c puts C

9: end if

10: end for

11: end for

12: Return (C)

4.2.3 EXAMPLES OF PROPOSED COFACTORS

Example 1 (p: 512bit, r: 160bit):

- E/Fp : y
2 = x3 + x

- r = 2159 + 2135 + 1

- c = 2352 + 231

- p = 2511 + 2487 + 2352 + 2190 + 2166 + 231 + 1

- Hamming Weight of (c, p) is (2, 132).
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Hexadecimal Notation:

r = 0x 80000000 00000000 00000000 08000000 00000001

c = 0x 00000001 00000000 00000000 00000000 00000000

00000000 00000000 00000000 80000000 00000000

00000000 00000000

p = 0x 80000000 00000000 00000000 08000000 00000001

00000000 00000000 40000000 00000000 00000000

04000000 00000000 7fffffff ffffffff ffffffff

ffffffff

Example 2 (p: 1024bit, r: 224bit):

- E/Fp : y
2 = x3 + x

- r = 2223 + 2153 + 1

- c = 2800 + 2395

- p = 21023 + 2953 + 2800 + 2618 + 2548 + 2395 + 1

- Hamming Weight of (c, p) is (2, 400).

Hexadecimal Notation:

r = 0x 80000000 00000000 02000000 00000000 00000000

00000000 00000001

c = 0x 00000001 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000800 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000

p = 0x 80000000 00000000 02000000 00000000 00000000

00000000 00000001 00000000 00000000 00000000

00000000 00000000 00000400 00000000 00000010

00000000 00000000 00000000 00000000 000007ff

ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff
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Example 3 (p: 1536bit, r: 256bit):

- E/Fp : y
2 = x3 + x

- r = 2255 + 241 + 1

- c = 21280 + 2173

- p = 21535 + 21321 + 21280 + 2428 + 2214 + 2173 + 1

- Hamming Weight of (c, p) is (2, 178).

Hexadecimal Notation:

r = 0x 80000000 00000000 00000000 00000000 00000000

00000000 00000200 00000001

c = 0x 00000010 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 0000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00002000 00000000 00000000 00000000 00000000

00000000

p = 0x 80000000 00000000 00000000 00000000 00000000

00000000 00000200 00000001 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00001000

00000000 00000000 00000000 00000000 00000000

00000000 00400000 00001fff ffffffff ffffffff

ffffffff ffffffff
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4.3 DISTRIBUTION OF COFACTORS

Here we estimate the number of cofactor with Hamming Weight of less than

three using the prime number theorem. Let πa,n(x) be the number of primes

in the arithmetic progression {a, a + n, a + 2n, . . . } less than x, where a and

n are some positive integers. The prime number theorem for arithmetic pro-

gressions states that ϕ(a)−1 Li(x) is an approximation to πa,n(x) , where ϕ(x)

is the Euler’s totient function and Li(x) is logarithmic integral defined by∫ x
2
(1/ log x)dx [108].

In the case of (ℓ(p), ℓ(r)) =(512 bits, 160 bits), the number of primes pwhere

p = 2511±2a1±2a2 · · · and p ≡ 3 (mod 4) is nearly equal ϕ(4)−1 (Li(2512)− Li(2511)).

For each r = 2159 + 2a ± 1 where a ∈ {17, 19, 59, 63, 88, 107, 110, 116, 135, 138}, we

try to find the cofactor c that has the form c = 2352±2x(1 ≤ x ≤ 351). Therefore

the total number of cofactor is estimated by

ϕ(4)−1
(
Li(2512)− Li(2511)

)
2(512−1)

× 10× (351× 2) = 9.89.

In the same way, we get

ϕ(4)−1
(
Li(21024)− Li(21023)

)
2(1024−1)

× 8× (799× 2) = 9.01.

ϕ(4)−1
(
Li(21536)− Li(21535)

)
2(1536−1)

× 7× (1279× 2) = 8.41.

The total number of cofactor found in our experiment in Table 4.3 is 23, 19,

and 23 which are the same in the order of 9.89, 9.01, and 8.41 respectively.





CHAPTER 5

IMPLEMENTATION OF BF-IBE USING PRO-

POSED COFACTORS

In this chapter, we give a timing results to evaluate the efficiency of our pro-

posed cofactors. We compare the timing of BF-IBE using proposed cofactors

in each three security level; one is our proposed cofactor and the other is a

random cofactor. In §3.2, we showed the scheme of BF-IBE and compare the

timing with each procedures in the scheme here—the procedures are Encrypt

(1)–(4) and Decrypt (1)–(2). The results of the comparison are summarized in

Table 5.1–5.3.

5.1 MACHINE ENVIRONMENT AND LIBRARIES

All tests were running on a desktop PC (Mac mini) with an Intel Core i7

2.6 MHz processor (including four core) and 16 GBytes RAM using Mac OS

X 10.9.1 (Mavericks). In C, we measure the running time using GCC 4.4.4

compiler with the -O3 and -fomit-frame-pointer options. The program is im-

plemented without assembly and SSE implementation. For more information,

see the followings:

71
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• CPU: Intel Core i7, 2.6 GHz, 1 processor, 4 cores.

– L1 cache: 64 KByte (32 KByte Instruction/Data) per core

– L2 cache: 256 KByte per core

– L3 cache: 6 MByte

• RAM: 16 GByte

• Operating System: Mac OS X 10.9.1 (Mavericks) (13B42)

– kernel version: Darwin 13.0.0

To implement the IBE algorithm, we write programs in ANCI-C using

GNU GCC compiler without specific optimizations. C is a general-purpose

programming language, and it is generally used for implementation of pro-

gram and system. By using C compiler, a very high-speed program is gener-

ated from a source code, since we can optimize the implementation such as

memory management, and the C compiler outputs the optimized native code

for a target platform. Thus it is one of the fastest programming languages.

In the efficient implementation of BF-IBE, C and C++, that is the extension

of C, are mainly used now. We deploy the Pairing Based Crypto (PBC) library

developed at Stanford University by Benn Lynn [66]. In Appendix (§A.1), we

provide complete source code.

PBC Library:

The PBC library is a free portable C library allowing the rapid prototyping

of pairing-based cryptosystems. It provides an abstract interface to a cyclic

group with a bilinear pairing, insulating the programmer from mathematical

details. The PBC library is built on top of the GMP library, and the PBC

API is strongly influenced by the GMP API. Accordingly, this manual tries to

imitate the look and feel of the GMP manual. For more details of the PBC

and GMP libraries, see the followings:



73

PBC library: ttp://crypto.stanford.edu/pbc/

GMP library: http://www.swox.com/gmp/

PBC Library (Type-A curve):

Type A pairings are constructed on the curve y2 = x3 + x over the prime field

Fp for some prime p = 3 (mod 4). The G1 is the group of points E(Fp). It turns

out #E(Fp) = p+ 1 and #E(Fp2) = (p+ 1)2. Thus the embedding degree k is 2,

and hence G2 is a subgroup of Fp2 . The order r is some prime factor of p + 1.

Write p + 1 = r ∗ c. For efficiency, r is picked to be a Solinas prime, that is, r

has the form 2a ± 2b ± 1 for some integers 0 < b < a. Also, we choose p = −1

(mod 12) so Fp2 can be implemented as Fp[i] (where i =
√
−1).

Note. In PBC Library used a slightly different notation. q defined the order of

the prime field Fq and h is the cofactor.

PBC Library (Parameter Struct Fields):

exp2, exp1, sign1, sign0, r:

r = 2ˆexp2 + sign1 * 2ˆexp1 + sign0 * 1 (Solinas prime)

q, h:

r*h=q+1

q is a prime, h is a multiple of 12 (thus q = -1 mod 12)

For the explicit examples, see Appendix A.1.
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5.2 OUR PARAMETERS

We compare the timing of BF-IBE using proposed cofactors and random co-

factors. For the proposed cofactors, we use the three examples in §4.2.3.

Let the Solinas prime r be 2159 + 2135 + 1. Using PBC library, we can get a

random cofactor c′ where p′(= rc′−1) is a 512 bit prime. For the explicit value,

see the Example 1–3. The prime c′ has Hamming Weight 173. In general, the

average value of Hamming Weight is equal to half of the bit length; in this

case, the half of the bit length is 176 (= 352/2). So our random cofactor c′ and

p′ are thoroughly general for a fair comparison. We compute encryption and

decryption which consist of procedures Encrypt (1)-(4) and Decrypt (1)-(2) in

Table 5.1– 5.3. Here, Decrypt (1) is decomposed into Extract (1)–(2). Next we

choose the following proposed cofactor c = 2352 + 231 from Table 4.3 at (1-9).

We see that c is represented by

c = 0x 00000001 00000000 00000000 00000000 00000000

00000000 00000000 00000000 80000000 00000000

00000000 00000000,

then the corresponding prime p with Hamming Weight 132 is as follows:

p = 0x 80000000 00000000 00000000 08000000 00000001

00000000 00000000 40000000 00000000 00000000

04000000 00000000 7fffffff ffffffff ffffffff

ffffffff.

In the remain case of (ℓ(p), ℓ(r)) =(1024 bit, 224 bit), (1536bit, 256 bit), we

can test it in the same way. Finally, we note that the timings in Table 5.1–

5.3 are the average values of 1,000 random functions. Next, we list the ran-

dom parameters correspond to each security level; security level means that

(ℓ(p), ℓ(r)) is equal to (512 bit, 160 bit), (1024 bit, 224 bit), and (1536bit, 256

bit).
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Example 1 (p: 512bit, r: 160bit):

Hamming Weight: (c′, p′) = (173, 270)

c′ = 0x e10a80c1 c717acae 119024df af9e5d42 065d56ce

b5a3d350 645c0be5 2bc533eb 0146f8f9 84bf6a41

b7d46c7c

p′ = 0x 70854060 e38bd657 08c8126f ded782a7 116768cd

ac68eb90 f6c2a58a b7a5a98b a5eef859 4bdfec4e

baec332d bc6643ac f7eb2f3d 0f059c5d 64bf6a41

b7d46c7b

Example 2 (p: 1024bit, r: 224bit):

Hamming Weight: (c′, p′) = (397, 524)

c′ = 0x 3e999d38 0fdf8d6a 7f7bd745 05b5fc81 b4a5dfb7

a809fbb0 d5e8d9f0 f2812252 e2ff7418 1f365c45

1361f9ec 9d8fd065 4a507244 31425883 e0d7a602

0e180932 4a475bf4 c7d72470 91a6bf62 53cfccd1

8e148173 995ec079 f91034b7 675c626a c0c773a4

p′ = 0x 1f4cce9c 07efc6b5 403b1edc f2fabd5b af51e78a

5e1069d1 6e5db8b8 272a4258 e30b192a 70fc07ac

352cf860 33ac34a2 d758f8c6 c7c525d3 ad819638

726dfd62 4c1bb98b 7b69bc37 4af7bece 5dc806f5

d96fe6bc 722ea5d8 adbc4c90 e5284aab 1c2cfeac

00757827 29515bb8 d6148173 995ec079 f91034b7

675c626a c0c773a3
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Example 3 (p: 1536bit, r: 256bit):

Hamming Weight: (c′, p′) = (644, 779)

c′ = 0x 77e17fcf 3e549611 2689973f bb9838bc 982c0ff2

ad0a7c98 8f870912 a6700d8d e67bc33a 209b3062

3191f23e 5cf318ef d07e71e6 2c355789 8e6bbeaa

640447fb 73a00958 0c1248e4 9af06156 e7c06d6c

1b5b3189 a7e0ca45 1f33d527 1deda61e afd559c9

73c9cf39 5f127e9c a2b77d84 0cd846f3 10599ff5

d2400143 4f78ca37 514cddd4 6a47d81e e0749b46

97ea737c b8e446aa 783dad06 8f59a93d 5eb45d14

p = 0x 3bf0bfe7 9f2a4b08 9344cb9f ddcc1c5e 4c1607f9

56853e4c 47c38579 1637a544 144b83b9 61d0adb9

6fc4098f 4231aa8e 95647a04 d1374daa 36d80434

cff8a5cc d6ac8c49 4a88d18e 653c028a cdb71bfe

48db1dc7 d7a31174 2695a025 330dcb22 f01c7f72

a6b9de50 cb5478db ef7f3f7d e35bdf41 97b7e87b

e3a01328 705d9e21 ec1a3b71 cdeaf48e 3e47d459

9f3a9d63 1c8a55ec cc7afd18 0b814484 988ea195

e0fd1b95 537e654e b55b94b8 6077c86d 343e53c9

2b9027c3 f813d13d 5eb45d13
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5.3 TIMING RESULTS

The results of the comparison are summarized in Table 5.1–5.3. Each Table

consists of execution time and occupation. Execution time shows the running

time for each procedures in BF-IBE for proposed cofactor c and random one

c′. The unit is milliseconds. We can evaluate the improvement seeing the

ratio c/c′. In the tables, we emphasize Encrypt (2) and Extract (1) because

these procedures are HashToPoint on which we focus. Occupation shows the

ratio of each occupation in the corresponding procedures in BF-IBE. We can

see how much HashToPoint occupation decrease by our proposed cofactors.

Each tables has the visualization of the data. Accordingly, figures help us to

recognize the improvement of HashToPoint easily. Moreover, we can see that

our cofactors do not affect the other procedures.
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Table 5.1: Timing result (p :512bit, r :160bit)

Procedure in BF-IBE (§3.2) Execution Time Occupation

c c′ c/c′ c c′

Enctyption: Encrypt (1) rP 1.88 1.89 99.5 13.7 11.6

Encrypt (2) QID 3.01 4.27 70.5 21.9 26.2
Encrypt (3) rQID 1.87 1.87 100 13.6 11.5

Encrypt (4) gID 1.06 1.06 100 7.7 6.5

Decryption: Extract (1) QID 3.02 4.28 70.6 21.9 26.3
Extract (2) sQID 1.87 1.87 100 13.6 11.5

Decrypt (2) g′ID 1.06 1.06 100 7.7 6.5

Table 5.1 presents a Execution Time and a Occupation under the security

level of RSA-1024 (the same security as ECC-160).
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Table 5.2: Timing result (p :1024bit, r :224bit)

Procedure in BF-IBE (§3.2) Execution Time Occupation

c c′ c/c′ c c′

Enctyption: Encrypt (1) rP 5.32 5.33 99.8 10.3 8.4

Encrypt (2) QID 13.7 19.5 70.0 26.4 30.7
Encrypt (3) rQID 5.26 5.26 100 10.2 8.3

Encrypt (4) gID 4.29 4.29 100 8.3 6.8

Decryption: Extract (1) QID 13.7 19.6 69.8 26.4 30.8
Extract (2) sQID 5.26 5.26 100 10.2 8.3

Decrypt (2) g′ID 4.27 4.27 100 8.3 6.7

Table 5.2 presents a Execution Time and a Occupation under the security

level of RSA-2048 (the same security as ECC-224).
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Table 5.3: Timing result (p :1536bit, r :256bit)

Procedure in BF-IBE (§3.2) Execution Time Occupation

c c′ c/c′ c c′

Enctyption: Encrypt (1) rP 9.97 9.86 101c 8.1 6.5

Encrypt (2) QID 35.7 51.1 69.8 29.2 33.5
Encrypt (3) rQID 9.80 9.76 100 8.0 6.4

Encrypt (4) gID 10.6 10.5 101 8.7 6.9

Decryption: Extract (1) QID 35.8 51.1 70.0 29.3 33.5
Extract (2) sQID 9.80 9.75 101 8.0 6.4

Decrypt (2) g′ID 10.5 10.5 100 8.6 6.9

Table 5.3 presents a Execution Time and a Occupation under the security

level of RSA-3072 (the same security as ECC-256).
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Table 5.4: Comparison of computation costs

(wt(c), wt(c′), ℓ(c)(= ℓ(c′))) wt(c)(3M+I)+ℓ(c)(4M+I) where
I = 20M

c c′ c/c′

(2, 182, 352) 8494M 12634M 0.67

(2, 397, 800) 19246M 28331M 0.68

(2, 644, 1280) 30766M 45532M 0.68

Evaluation:

In Table 5.1–5.3, the timing of HashToPoint (Encrypt (2) and Extract (2)) im-

proves approximately 30% using proposed cofactor c instead of c. Next we

evaluate the reason of this improvement. Let M and I be the cost of field

multiplication and inversion on Fp, respectively. In [10, Ch. IV.1], the cost

of point addition and doubling of an elliptic curve E is 3M + I and 4M + I,

respectively. We can calculate the running time of HashToPoint with c as

follows. The dominant part of running time of HashToPoint is the scalar mul-

tiplication cQ (see §3.3). To calculate cQ using Algorithm 1 (or Algorithm 2 for

signed binary representation) shows that the running time of cQ is wt(c) point

additions and ℓ(c) point doublings where wt(c) denotes by Hamming Weight

of c and ℓ(c) is the length of c. Therefore the running time of HashToPoint

with c is wt(c)(3M + I) + ℓ(c)(4M + I). In general, we know that I = 20M ,

we can estimate the ratio c/c′ by each three security level. Table 5.4 show the

result of the estimate. This is the reason why we improve the running cost of

HashToPoint approximately 30%.





CHAPTER 6

CONCLUSION

In this thesis, we proposed efficient system parameters, which are called co-

factor, for BF-IBE standardized as RFC5091 by IETF.

First, we searched efficient cofactors whose Hamming weight is 2 using

PARI/GP calculator and presented a list of such cofactors. These proposed

cofactors can achieve efficient implementation of HashToPoint in BF-IBE. In

addition to that, we mentioned the density of such cofactors using prime num-

ber theorem.

Next we implemented the cryptographic functions—Setup, Extract, En-

crypt, and Decrypt used in BF-IBE— using our proposed cofactors by C lan-

guage and PBC library. All tests were running on a desktop PC (Mac mini)

with an Intel Core i7 2.6 MHz processor (including four core) and 16 GBytes

RAM using OS X 10.9.1 (Mavericks). To implement the BF-IBE algorithm,

we write programs in ANCI-C using GNU GCC compiler without specific op-

timizations. We deploy the Pairing Based Crypto (PBC) library. The timing

of our implementation of HashToPoint using the proposed system parameters

is reduced by approximately 30% on a desktop PC without losing the speed of

other cryptographic functions in the IBE.

83
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FUTURE WORKS:

We recommend the following topics for further works.

• In this thesis, we deal with the supersingular elliptic curve with embed-

ding degree two. There remains a work to enhance the algorithm for

computing HashToPoint efficiently on ordinary elliptic curves.

• O. Schirokauer has recently proposed a new attack to discrete logarithm

problem with prime numbers of low Hamming Weight [91]. T. Naka-

jima, T. Izu, and T. Takagi proposed parameters p which are efficient

computation, as well as security against the attack [78]. In this thesis,

we proposed efficient parameter c, which is equal to (p + 1)/r. To select

a suitable c, avoiding the new attack is an open problem for the future.

• To evaluate BF-IBE with our proposed parameters not only on the desk-

top PC, but also on the other platforms such as smart phone, which is

an embedded device and has limited computational resources like CPU

and memory. Moreover, we can choose various programming languages

other than C.
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PROGRAMS (SOURCE CODE)

A.1 C PROGRAM (BENCHMARK)
#include <pbc.h>
#include <pbc_test.h>

#define getTime pbc_get_time()

int main(int argc, char **argv) {
int n = atoi(argv[2]);
double time_rP, time_Q_ID_1, time_rQ_ID,

time_pair_enc,
time_Q_ID_2,
time_sQ_ID, 　
time_pair_dec,
time_total,
t0,
t1,
t_start;
time_rP = 0.0;
time_Q_ID_1 = 0.0;
time_rQ_ID = 0.0;
time_pair_enc = 0.0;
time_Q_ID_2 = 0.0;
time_sQ_ID = 0.0;
time_pair_dec = 0.0;
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time_total = 0.0;
t0 = 0.0;
t1 = 0.0;
t_start = 0.0;

int i;
for (i = 0; i < n; i++) {
pairing_t pairing;
element_t s,

P,
sP,
r,
rP,
Q_ID_1,
rQ_ID,
pairing_enc,
Q_ID_2,
sQ_ID,
pairing_dec;

pbc_demo_pairing_init(pairing, argc, argv);

element_init_Zr(s, pairing);
element_init_G1(P, pairing);
element_init_G1(sP, pairing);

element_init_Zr(r, pairing);
element_init_G1(rP, pairing);
element_init_G1(Q_ID_1, pairing);
element_init_G1(rQ_ID, pairing);
element_init_GT(pairing_enc, pairing);

element_init_G1(Q_ID_2, pairing);
element_init_G1(sQ_ID, pairing);
element_init_GT(pairing_dec, pairing);

//generate s
element_random(s);

//generate P
element_random(P);
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//calc sP
element_pow_zn(sP, P, s);

//generate r
element_random(r);

//calc rP
t_start = getTime;
t0 = getTime;
element_pow_zn(rP, P, r);
t1 = getTime;
time_rP += t1 - t0;

//calc Q_ID_1 (MapToPoint)
t0 = getTime;
element_from_hash(Q_ID_1,

"t-tomita@math.kyushu-u.ac.jp",28);
t1 = getTime;
time_Q_ID_1 += t1 - t0;

//calc rQ_ID
t0 = getTime;
element_pow_zn(rQ_ID, Q_ID_1, r);
t1 = getTime;
time_rQ_ID += t1 - t0;

//calc pairing_enc
t0 = getTime;
element_pairing(pairing_enc, rQ_ID, sP);
t1 = getTime;
time_pair_enc += t1 - t0;

//calc Q_ID_2 (MapToPoint)
t0 = getTime;
element_from_hash(Q_ID_2, "t-tomita@math.kyushu-u.ac.jp",28);
t1 = getTime;
time_Q_ID_2 += t1 - t0;
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//calc sQ_ID
t0 = getTime;
element_pow_zn(sQ_ID, Q_ID_2, s);
t1 = getTime;
time_sQ_ID += t1 - t0;

t0 = getTime;
element_pairing(pairing_dec, sQ_ID, rP);
t1 = getTime;
time_pair_dec += t1 - t0;

t1 = getTime;
time_total += t1 - t_start;
if (element_cmp(pairing_enc, pairing_dec)){

printf("BUG!\n");
exit(1);

}
element_clear(s);
element_clear(P);
element_clear(sP);
element_clear(r);
element_clear(rP);
element_clear(Q_ID_1);
element_clear(rQ_ID);
element_clear(pairing_enc);
element_clear(Q_ID_2);
element_clear(sQ_ID);
element_clear(pairing_dec);
pairing_clear(pairing);

}

printf("test count,%d\n", n);
printf("time_rP,%f\n", time_rP*1000 / n);
printf("time_Q_ID_1,%f\n", time_Q_ID_1*1000 / n);
printf("time_rQ_ID,%f\n", time_rQ_ID*1000 / n);
printf("time_pair_enc,%f\n", time_pair_enc*1000 / n);
printf("time_Q_ID_2,%f\n", time_Q_ID_2*1000 / n);
printf("time_sQ_ID,%f\n", time_sQ_ID*1000 / n);
printf("time_pair_dec,%f\n", time_pair_dec*1000 / n);
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printf("time_total,%f\n", time_total*1000 / n);
return 0;

}

Shell Script:
#!/bin/sh

rm ../pbc_perf_test/src/pbc-0.5.14/.libs/libpbc.dylib
gcc -o main5 -I ../pbc_perf_test/src/pbc-0.5.14/include/ \

-L ../pbc_perf_test/src/pbc-0.5.14/.libs \
main5.c -lpbc -lgmp

testCount=1000

param_general=l_159_59_general.param
param_proposal=l_159_59_proposal.param
echo start $param_proposal
./main5 params/$param_proposal $testCount
echo end $param_proposal
echo start $param_general
./main5 params/$param_general $testCount
echo end $param_general

param_general=l_223_153_general.param
param_proposal=l_223_153_proposal.param
echo start $param_proposal
./main5 params/$param_proposal $testCount
echo end $param_proposal
echo start $param_general
./main5 params/$param_general $testCount
echo end $param_general

param_general=l_255_41_general.param
param_proposal=l_255_41_proposal.param
echo start $param_proposal
./main5 params/$param_proposal $testCount
echo end $param_proposal
echo start $param_general
./main5 params/$param_general $testCount
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echo end $param_general

Parameters:

l 159 59 proposal.param:

type a

q 6703903964971298549787012499108211511490004899096986005\

7900031762260768668907985325789394449643568879595965046\

71978672619501917000276862042718183094222847

r 730750818665451459101842416358717970580269694977

h 9173994463960286046443283581208347763186259956673124494\

950355357547861645537399701511805899744218630324224

exp1 59

exp2 159

sign0 1

sign1 1

l 159 59 general.param:

type a

q 5893177477968906112919501678245025892600331318835082674\

5595581435240301830809185141361004177124172175218026843\

05843456385594717852652667557420739138448507

r 730750818665451459101842416358717970580269694977

h 8064551318233815061154160418012696028581568502629365412\

007285065465055856885866131208062141611775532231804

exp1 59

exp2 159

sign0 1

sign1 1
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l 223 153 proposal.param:

type a

q 89884656743115795386541394805165299173714109747020603\

54539376110119796691348701693982529467464110197228271\

43159602157921410766074863189677225418201803949717573\

84597832319450621381789257104181225356701029070884741\

04899860992818248152779406272441890071900309757658792\

1686694038827268080762604029884221246930943

r 13479973333575319897344925525051463015867038499025882\

201642867097601

h 66680144328798542740798517907212577971447583223159081\

60396257811764037237817632071521432200871554290742929\

91059343324044596949696280958097379010352645592416716\

79608855399277932390363908037092629169913034680630192\

71695055269848435415312236544

exp1 153

exp2 223

sign0 1

sign1 1

l 223 153 general.param:

type a

q 21979626858121527887917292243791813827886346339060667\

03211871193632694737290608096171132609391264781426458\

72387846319579678965213585588698453579430307787558581\

91152945376357645450030397859792381319393079736225636\

86417482485083405298270698060641855383914770643725533\

8926282624634434583313679640526473562387363
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r 13479973333575319897344925525051463015867038499025882\

201642867097601

h 16305393426391762848373328452308943151479937913785248\

10246785930759251238124583452352358745836200281872926\

90987828978228938207270878847739797877449355156097849\

19516243359191421195186814024071976719224954800247241\

76504619370145835580400300964

exp1 153

exp2 223

sign0 1

sign1 1

l 255 41 proposal.param:

type a

q 12051562134605162942900583030141570564560466239728444\

75679837519578403265672473174345349844740957214536237\

38610547857054764213551307090294028549100658941342932\

43402275815704400213022298684528460654858040296918490\

56026496402360421502082053571782973967493285820627869\

77454921925952870189337387263144573473632674387007232\

45507233282350196307819876436200653515345784272538688\

25668727669995808992782670050324253023476336428423934\

391245665491296516462113208868880252927

r 57896044618658097711785492504343953926634992332820282\

019728792006155588075521

h 20815864389328798163850480654728171077230524494533409\

61063822470080721611934672059602447888346464836968484\

32279085620155827671324966469298162798132113546415258\
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48259018778440691546366699323167100945918841095379622\

42338735429509695773392500276887652058346469777062232\

16570768331700565112093324496637818376036941364444062\

81042053396870989438537470770858445396959951041231918\

132805729517568

exp1 41

exp2 255

sign0 1

sign1 1

l 255 41 general.param:

type a

q 56435609003298785079026118174635382480031319103208973\

31925524293852882520346706680664200034949002732301101\

83738127462840026551319762583165546239841187916996353\

54653932003356616218699105915287313366438072321117750\

02710747692695362240706551943904117147952568430372501\

30895021141721883299693208881590044850636668948366414\

79899146517230154185099184601855179169048068654451289\

81281661134067990094743643484448657215215988710902054\

06185044123765384710548793133918084371

r 57896044618658097711785492504343953926634992332820282\

019728792006155588075521

h 97477486372378779783991146397988758572036742188280906\

4204199871582925874451814359225943273059441732226348643\

4968489958194476238192772335182761314017057847426667232\

4667349708281740073809622222358359114373871101043693391\

5097277825185040830075063123323262103380535270588925386\
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6150490559922275474100722056515051070722801642393895417\

1091985583977144570413506415096340975295727126840714437\

32

exp1 41

exp2 255

sign0 1

sign1 1

Output Samples:

start l_159_59_proposal.param

test count,1000

time_rP,1.881750

time_Q_ID_1,3.006005

time_rQ_ID,1.869219

time_pair_enc,1.061821

time_Q_ID_2,3.015178

time_sQ_ID,1.867805

time_pair_dec,1.061464

time_total,13.763664

end l_159_59_proposal.param

start l_159_59_general.param

test count,1000

time_rP,1.888596

time_Q_ID_1,4.274279

time_rQ_ID,1.869418

time_pair_enc,1.060167

time_Q_ID_2,4.277790

time_sQ_ID,1.870109
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time_pair_dec,1.060170

time_total,16.300943

end l_159_59_general.param

start l_223_153_proposal.param

test count,1000

time_rP,5.324740

time_Q_ID_1,13.652358

time_rQ_ID,5.256011

time_pair_enc,4.287045

time_Q_ID_2,13.650458

time_sQ_ID,5.255549

time_pair_dec,4.274219

time_total,51.700798

end l_223_153_proposal.param

start l_223_153_general.param

test count,1000

time_rP,5.333480

time_Q_ID_1,19.514330

time_rQ_ID,5.257851

time_pair_enc,4.294408

time_Q_ID_2,19.549102

time_sQ_ID,5.260588

time_pair_dec,4.268909

time_total,63.479118

end l_223_153_general.param

start l_255_41_proposal.param

test count,1000
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time_rP,9.867092

time_Q_ID_1,35.679617

time_rQ_ID,9.804549

time_pair_enc,10.575425

time_Q_ID_2,35.792747

time_sQ_ID,9.804978

time_pair_dec,10.523498

time_total,122.048429

end l_255_41_proposal.param

start l_255_41_general.param

test count,1000

time_rP,9.864049

time_Q_ID_1,51.134755

time_rQ_ID,9.761029

time_pair_enc,10.519335

time_Q_ID_2,51.143395

time_sQ_ID,9.750550

time_pair_dec,10.527038

time_total,152.700653

end l_255_41_general.param

A.2 PARI/GP SCRIPT

A.2.1 FIND COFACTORS

The following script shows how to find cofactors with using algorithm 7 by

PARI/GP, which is free software with the main aim of facilitating number
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theory computations.

/**

* Find a cofactor c which is equal to (p-1)/r

* where c’s Hamming Weight of less than three and

* p is a prime and p (mod 4) = 3.

* @param pBitLen: Bit length of prime p.

* @param rBitLen: Bit length of prime r.

* @param r: Solinas prime.

*/

find_cofactor(pBitLen, rBitLen, r)=

{

a=pBitLen - rBitLen;

b=2ˆa;

sign_str=["+","-"];

// Find a cofactor with Hamming Weight of 1.

c = b;

p = r*c - 1;

if(length(binary(p)) == pBitLen && p%4 == 3 && isprime(p),

printf("2ˆ%d\n",a);

);

// Find a cofactor with Hamming Weight of 2.

for(i=1, a-1,

c = [b + 2ˆi, b - 2ˆi];

for(j=1, 2,

p = r*c[j] - 1;
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if(length(binary(p)) == pBitLen && p%4 == 3 && isprime(p),

printf("2ˆ%d %s 2ˆ%d\n",a,sign_str[j],i);

);

);

);

}

/**

* Entry point of this searching procedure. (main function)

*/

Main =

{

\\ Prepare the list of solinas primes for

\\ (p:512bit r:160bit),

\\ (p:1024bit r:224bit),

\\ (p:1536bit r:256bit).

rList=

[

[

[512,160],

2ˆ159 + 2ˆ17 + 1, 2ˆ159 + 2ˆ19 + 1, 2ˆ159 + 2ˆ59 + 1,

2ˆ159 + 2ˆ63 + 1, 2ˆ159 + 2ˆ88 - 1, 2ˆ159 + 2ˆ107 + 1,

2ˆ159 + 2ˆ110 - 1, 2ˆ159 + 2ˆ116 - 1, 2ˆ159 + 2ˆ135 + 1,

2ˆ159 + 2ˆ138 - 1

],

[

[1024,224],
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2ˆ223 + 2ˆ8 - 1, 2ˆ223 + 2ˆ10 - 1, 2ˆ223 + 2ˆ13 + 1,

2ˆ223 + 2ˆ30 - 1, 2ˆ223 + 2ˆ55 + 1, 2ˆ223 + 2ˆ80 - 1,

2ˆ223 + 2ˆ139 + 1, 2ˆ223 + 2ˆ153 + 1

],

[

[1536,256],

2ˆ255 + 2ˆ41 + 1, 2ˆ255 + 2ˆ96 - 1, 2ˆ255 + 2ˆ166 + 1,

2ˆ255 + 2ˆ176 - 1, 2ˆ255 + 2ˆ227 + 1, 2ˆ255 + 2ˆ232 - 1,

2ˆ255 + 2ˆ243 + 1

],

];

for(i=1,length(rList),

printf("=== p:%d bit, r:%d bit ===\n",

rList[i][1][1],rList[i][1][2]);

for(j=2,length(rList[i]),

find_cofactor(rList[i][1][1],

rList[i][1][2], rList[i][j]);

print();

);

);

return(0);

}

A.2.2 FIND SOLINAS PRIME

find_solinas_primes(bitLength)=
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{

a = 2ˆ(bitLength-1);

signs = [[1,1],[1,-1],[-1,1],[-1,-1]];

signs_str = [["+","+"],["+","-"],["-","+"],["-","-"]];

for(i=1, level-2,

for(j=1,length(signs),

p = a + 2ˆi*signs[j][1] + 1*signs[j][2];

if(length(binary(p))==level && isprime(p),

printf("2ˆ%d %s2ˆ%d %s1\n",

bitLength-1,

signs_str[j][1],

i,

signs_str[j][2]

)

);

)

)

}

my_main=

{

\\ (+/-) 2ˆ159 (+/-) 2ˆa (+/-) 2ˆb

security_level=[160,224,256,384,512];

for(i=1,length(security_level),

level=security_level[i];

printf("=== find solinas l(%d bit) ===\n", level);
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find_solinas_primes(level);

printf("\n");

);

return(0);

}

Output Sample:

=== find solinas l(160 bit) ===

2ˆ159 +2ˆ17 +1

2ˆ159 +2ˆ19 +1

2ˆ159 +2ˆ59 +1

2ˆ159 +2ˆ63 +1

2ˆ159 +2ˆ88 -1

2ˆ159 +2ˆ107 +1

2ˆ159 +2ˆ110 -1

2ˆ159 +2ˆ116 -1

2ˆ159 +2ˆ135 +1

2ˆ159 +2ˆ138 -1

=== find solinas l(224 bit) ===

2ˆ223 +2ˆ8 -1

2ˆ223 +2ˆ10 -1

2ˆ223 +2ˆ13 +1

2ˆ223 +2ˆ30 -1

2ˆ223 +2ˆ55 +1

2ˆ223 +2ˆ80 -1

2ˆ223 +2ˆ139 +1

2ˆ223 +2ˆ153 +1
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=== find solinas l(256 bit) ===

2ˆ255 +2ˆ41 +1

2ˆ255 +2ˆ96 -1

2ˆ255 +2ˆ166 +1

2ˆ255 +2ˆ176 -1

2ˆ255 +2ˆ227 +1

2ˆ255 +2ˆ232 -1

2ˆ255 +2ˆ243 +1

=== find solinas l(384 bit) ===

2ˆ383 +2ˆ155 +1

2ˆ383 +2ˆ233 +1

2ˆ383 +2ˆ270 +1

=== find solinas l(512 bit) ===

2ˆ511 +2ˆ19 +1

2ˆ511 +2ˆ34 +1

2ˆ511 +2ˆ87 +1

2ˆ511 +2ˆ102 -1

2ˆ511 +2ˆ156 -1

2ˆ511 +2ˆ322 +1

2ˆ511 +2ˆ334 +1

2ˆ511 +2ˆ344 -1

2ˆ511 +2ˆ462 -1

2ˆ511 +2ˆ466 -1
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A.2.3 CALCULATE HAMMING WEIGHT

check_hamming_weight(vec)=

{

counter=0;

for(i=1,length(vec),

if(vec[i] != 0,counter++)

);

return(counter);

}





APPENDIX B

RATIONAL POINTS IN ABELIAN VARIETY

B.1 JACOBIAN OF CURVES

LetX be a projective non-singular algebraic curve defined over Q whose genus

is g. If given such a curve, we can construct a pair (Jac(X), j) such that

1. Jac(X) is an abelian variety whose dimension is g

2. an injection j : X ↪→ Jac(X).

Jac(X) is called the Jacobian (or Jacobian variety) of X, and j is called the

Jacobian embedding of X. It is known that such a curve X determines the

pair (Jac(X), j) up to a natural isomorphism. The fundamental tool for the al-

gebraic construction of the Jacobian is the Riemann-Roch theorem for curves,

see [110], [111].

Remark. The Jacobian Jac(X) of a curve X is naturally isomorphic to Pic0(X).

Suppose that X is defined over a field K. Then its Jacobian Jac(X) is also

defined over K. However it may not be possible to define the injection j : X ↪→

Jac(X) over K. More precisely, the map j is defined by choosing a divisor D of

105
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degree 1 and then setting

j : X ↪→ Pic0(X) ≃ Jac(X) (P ) 7→ [(P )−D].

In particular, if there is a K-rational point Q ∈ X(K), then we can take D =

(Q) to get a map j that is defined over K.

Abelian varieties of GL2-type:

In this subsection, we introduce the concept of abelian varieties of “GL2-type”

introduced by K. Ribet in [84]. Roughly speaking, this is an abelian variety

defined over Q whose algebra of Q-endomorphisms is a number field of degree

equal to the dimension of the abelian variety. This is a subcategory of the

category of abelian varieties defined over Q as follows:

Definition B.1.1. An abelian variety A defined over Q is said to be GL2-type

if the algebra of Q-endomorphisms of A defined over Q (EndQ(A) ⊗ Q) is a

number field of degree equal to the dimension of A. That is the number field

EndQ(A)⊗Q satisfies

[EndQ(A)⊗Q : Q] = dimQ(A).

The reason why this concept is called GL2-type is that if A is an abelian

variety such that F := EndQ(A) ⊗Q is a number field with [F : Q] = dim(A),

then it is known that for any prime l, the Tate module Vl(A) is free F ⊗Q Ql-

module of rank two (for the definition of the Tate module, see §3.4). Thus

the action of the absolute Galois group GQ on Vl(A) defines a representation

GQ → GL2(F ⊗Q Ql). In general, it is known the following result:

Proposition B.1.1. IfA is an abelian variety over Q and a fieldK ⊂ EndQ(A)⊗

Q, then [K : Q] divides dim(A)
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(Sketch of proof). As discussed in [84, §2], F = EndQQ acts on the tangent

space Lie(A) over Q to A at 0 which is a Q-vector space of dimension dim(A)

by functoriality [77, §11]. Thus Lie(A) is a vector space over K, hence has

Q-dimension a multiple of [K : Q].

From this Proposition, an abelian variety A of GL2-type has a number field

contained in EndQ(A)⊗Q whose degree is the maximal dimension dim(A).

Example B.1.1. Every elliptic curve E defined over Q is of GL2-type (since

Q ⊂ EndQ(E) ⊗ Q). Moreover we see that if E has a complex multiplication

(Z ̸= EndQ̄(E)), then extra endomorphisms are never defined over Q by the

above Prop. B.1.1.

Example B.1.2. All modular abelian varieties are of GL2-type. Let Af be a

modular abelian variety (the construction ofAf , see §2.3). The Q-endomorphisms

defined over Q (EndQ(Af )⊗Q) contains a number field Ff which is constructed

of Hecke algebras (Hecke correspondences) of X0(N), and we see that Ff sat-

isfies [Ff : Q] = dim(Af ) by its construction.

Algebraic and analytic categories:

If X is an algebraic variety defined over C, then we can regard X as a complex

manifold Xan. That is there exists a functor h from the category of schemes of

finite type over C (an object of this category is often called algebraic scheme)

to the category of complex analytic spaces

(Var)/C h // (An)

(X,OX)
� // (Xan,Oan

X )

(B.1)

(for the explicit construction, see [48, Appendix B, pp. 438]). In this sense, we

can obtain an analytic space from arbitrary algebraic varieties defined over
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C. If X is a projective scheme, there is a famous theorem as follows:

Theorem B.1.2. [82, “GAGA principle”, Prop. 15, Thm. 1–3]LetX be a projec-

tive scheme over C. Then the functor h induces an equivalence of categories

from the category of coherent sheaves on X to the category of coherent an-

alytic sheaves on Xan. Furthermore, for every coherent sheaf F on X, the

natural maps

αi : H
i(X,F )→ H i(Xan,F an)

are isomorphisms, for all i.

Lattice index:

Let V be a finite-dimensional vector space defined over R. A lattice L ⊂ V is a

free abelian group of rank equal to the dimension of V such that L⊗Z R = V .

If L,M ⊂ V are lattices, the lattice index [L : M ] ∈ R is the absolute value

of the determinant of an automorphism of V taking L isomorphically onto M .

Our settings:

LetX be a projective non-singular algebraic curve defined over Q whose genus

is g and has at least one rational point Q ∈ X(Q), and J be its Jacobian (with

Jacobian embedding iQ : X ↪→ J).

Remark. Since X is defined over Q and has at least one rational point the pair

(J, j) are both defined over Q (see Remark B.1).

Moreover we assume

(A0) We can find an isogeny decomposition

J ∼ A1 × · · · × Ar

each Ai is simple and not isogenous to Aj for i ̸= j.
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(A1) Each Ai is an abelian variety of GL2-type.

Let F be the EndQ(J)⊗Q and Fi be the EndQ(Ai)⊗Q. Then we have a canonical

decomposition as rings

F ≃
r∏
i=1

Fi. (B.2)

Let ΩAi
be the sheaf of regular differentials on Ai, and Γ(Ai,ΩAi

) be the space

of its global sections. Then the space Γ(Ai,ΩAi
) is a Q-vector space of dimen-

sion di := dim(Ai). By functoriality, we see that each Fi acts on Γ(Ai,ΩAi
).

Since [Fi : Q] = dimQ(Γ(Ai,ΩAi
)) = di, the space Γ(Ai,ΩAi

) can be regarded as

a Fi-vector space of dimension one. These induce the action of F on the space

Γ(J,ΩJ), and we see that the space Γ(J,ΩJ) is a free F -module of rank 1.

B.2 PERFECT PARINGS

Next we consider X as an analytic space Xan (X h−→ Xan by (B.1)) by the em-

bedding Q ↪→ C. Since X is projective and non-singular, Xan is a compact

one-dimensional complex manifold (i.e. compact Riemann surface). So we can

consider a system of coordinate charts (Uα, ϕα) where each ϕα : Uα → C is

a homeomorphism of Uα onto an open subset of C, such that the change of

coordinate maps are analytic isomorphisms. A 1-form ω on Xan (i.e. a global

section on Xan of the sheaf of holomorphic differentials Ωan
Xan in the sense of

complex analysis, we denote Γ(Xan,Ωan
Xan) this space) is a choice of two holo-

morphic functions f and g to each local coordinate z = x+ iy on Uα ⊂ Xan such

that fdx+ gdy is invariant under the change of coordinates. If γ : [0, 1]→ Xan



110 Appendix B

is a path and ω = fdx+ gdy is such a 1-form, then we define the integral

⟨ , ⟩Xan :=

∫
γ

ω :=

∫ 1

0

(
f(x(t), y(t))

dx

dt
+ g(x(t), y(t))

dy

dt

)
dt ∈ C.

We introduce the following perfect paring.

Proposition B.2.1. There exists a R-linear perfect paring as follows:

H1(X
an,R)× ResC/R (Γ(Xan,Ωan

Xan))
⟨ , ⟩Xan−−−−→ C. (B.3)

Here H1(X
an,R) is regarded as H1(X

an,Z) ⊗Z R, and H1(X
an,Z) denotes the

singular homology group with coefficient in Z.

This perfect paring plays a important key part in our construction of the

winding element.

(sketch of proof). Let a1, . . . , a2g be the fundamental cycles relative to a polyg-

onal decomposition of the Riemann surface. We may view H1(X
an,R) as the

space of formal linear combinations γ =
∑
xiai with real coefficients xi ∈ R.

Then we construct the paring between H1(X
an,R) and Γ(Xan,Ωan

Xan)

⟨γ, ω⟩Xan :=
∑

xi

∫
ai

ω.

Next we can construct the dual basis in Γ(Xan,Ωan
Xan) to the basis a1, . . . , a2g

with respect to the real part of the above paring (an explicit construction, see

[59, Lem. 4, III]). We can show that the natural map

H1(X
an,R) → HomR(ResC/R (Γ(Xan,Ωan

Xan)) ,R)

(
γ 7→ ω 7→ ⟨γ, ω⟩Xan

)
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is an injection. Since the two spaces have the same real dimension, this injec-

tion must be an isomorphism.

To interpret this paring as a duality over C, we can give H1(X
an,R) the

structure of a vector space over C (of dimension g) as follows. Given γ ∈

H1(X
an,R) and α ∈ C, we can define αγ to be that element of H1(X

an,R)

which satisfies ⟨αγ, ω⟩Xan = ⟨γ, αω⟩Xan for all ω ∈ Γ(Xan,Ωan
Xan). In other words,

αγ is the element corresponding to the functional ω 7→ α⟨γ, ω⟩Xan. Now the

map (γ, ω) 7→ ⟨γ, ω⟩Xan is C-bilinear, and we have a C-linear perfect paring

H1(X
an,R)× Γ(Xan,Ωan

Xan)
⟨ , ⟩Xan−−−−→ C. (B.4)

Next we show that this paring induces a perfect paring on the H1(J
an,R)

and Γ(Jan,Ωan
Jan) as follows:

Proposition B.2.2. The above perfect paring (B.3) induces a C-linear perfect

paring:

H1(J
an,R)× Γ(Jan,Ωan

Jan)
⟨ , ⟩Jan−−−−→ C. (B.5)

Proof. First we prepare a lemma:

Lemma B.2.3. There exists an isomorphism Γ(Jan,Ωan
Jan)

∼−→ Γ(Xan,Ωan
Xan) as

C-vector space.

Proof. It is known that the pull back i∗Q : Γ(J,ΩJ)→ Γ(X,ΩX) which is induced

from the Jacobian embedding iQ : X ↪→ J induces an isomorphism as Q-vector

spaces by the method of algebraic geometry [75, Prop. 2.2]. Since Xan and

Jan are analytic objects arising from non-singular algebraic varieties over C

(theses spaces are written X(C), J(C) by the embedding Q ↪→ C), the GAGA

principle is applied.
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Next we show that

H1(J
an,Z) is essentially identified with H1(X

an,Z). (B.6)

If this is shown, we can construct a perfect paring (B.5) by combining (B.3),

Lem. B.2.3, and (B.6). First we recall the analytic construction of Jacobian

variety Jan. Γ(Xan,Ωan
Xan) is a complex vector space of dimension g. From the

theory of abelian integrals, we see that the map γ 7→ (ω 7→
∫
γ
ω) embeds

H1(X
an,Z) as a lattice into the dual space Γ(Xan,Ωan

Xan)∨, and we define the Ja-

cobian Jan by the quotient Jan := Γ(Xan,Ωan
Xan) vee/H1(X

an,Z) (This is a complex

torus, and the paring H1(X
an,Z)×H1(X

an,Z)→ Z defined by Poincaré duality

gives a non-degenerate Riemann form on Jan, therefore Jan is an abelian vari-

ety over C). From the above construction, we have following exact sequence:

0→ H1(X
an,Z)→ Γ(Xan,Ωan

Xan)∨ → Jan → 0.

We denoteH1(X
an,Z) byG. This groupG acts on the space Γ(Xan,Ωan

Xan)∨ freely

and discontinuously, so that Γ(Xan,Ωan
Xan)∨ is the principal G-space. Moreover

Γ(Xan,Ωan
Xan)∨ ≃ Cg is contractible (i.e. simply connected), then the natural

projection map π : Γ(Xan,Ωan
Xan)→ Jan is a universal covering of Jan. Therefore

π1(J
an) ≃ G. Since G is an abelian group, π1(Jan) ≃ H1(J

an,Z) so we see that

H1(J
an,Z) ≃ G.

Now we consider the relation between algebraic and analytic spaces. For

each Fi, we identify Fi ⊗Q C with
∏

σ∈Hom(Fi,C)C for the set Hom(Fi,C) of em-

beddings of Fi into C. The number of elements in Hom(Fi,C) is di := dim(Ai).

It is known that the space Γ(Aan
i ,Ω

an
Aan

i
) is a C-vector space of dimension di, and

each Γ(Aan
i ,Ω

an
Aan

i
) is a free Fi⊗QC-module of rank one, then Γ(Jan,Ωan

Jan) is also

a free F ⊗Q C-module of rank 1. By using the perfect paring (B.5), we can
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define an action of F ⊗Q C on the homology group H1(J
an,R) (and it is also a

free F ⊗Q C-module of rank 1).

Proposition B.2.4. There exists a canonical decomposition:

Γ(Jan,Ωan
Jan) ≃

r⊕
i=1

Γ(Aan
i ,Ω

an
Aan

i
) (B.7)

H1(J
an,R) ≃

r⊕
i=1

H1(A
an
i ,R) (B.8)

where each H1(A
an
i ,R) and Γ(Aan

i ,Ω
an
Aan

i
) are both free Fi ⊗Q C-modules of rank

one.

Proof. To decompose the left hand side, we use a basic fact in linear algebra:

Lemma B.2.5. Let M be an F-module and r be an integer ≥ 1. For each

i = 1, . . . , r let ei :M →M be an F -homomorphism such that

r∑
i=1

ei = idM and ei ◦ ej = 0 if i ̸= j. (B.9)

Then e2i = ei for all i. Let Mi := ei(M). Then the map

M →
r∏
i=1

Mi φ(x) 7→ (e1(x), . . . , er(x)).

is an F -isomorphism of M onto the direct product
∏
Mi.

Proof. See [61, III, Prop. 3.1, pp. 128].

For each i, let

ei ∈ F ⊗Q C↔ (0, . . . , 0, 1, 0, . . . , 0) ∈
r∏
i=1

Fi ⊗Q C



114 Appendix B

be projections onto the factor Fi ⊗Q C on the product. It is easy to see that

these ei satisfy the assumptions (B.9), we have the decomposition (B.7) and

(B.8) by applying Lemma B.2.5 to these ei.

From (B.7), (B.8), we have a C-linear perfect paring

H1(A
an
i ,R)× Γ(Aan

i ,Ω
an
Aan

i
)

⟨ , ⟩Aan
i−−−−→ C, (B.10)

and summarize the above discussions, we have the following diagram:

H1(X
an,R) × Γ(Xan,Ωan

Xan) // C · · · (B.3)

H1(J
an,R)

(B.6)

ei
����

× Γ(Jan,Ωan
Jan)

Lem. B.2.3 ≃

OO

ei
����

// C · · · (B.5)

H1(A
an
i ,R) × Γ(Aan

i ,Ω
an
Aan

i
) // C · · · (B.10)

From the above diagram, we have the following diagram:

H1(X
an,R) ≃ // Γ(Xan,Ωan

Xan)∨

H1(J
an,R) ≃ //

ei
����

Γ(Jan,Ωan
Jan)∨

≃

OO

ei
����

free F ⊗Q C- module of rank one.oo

H1(A
an
i ,R) ≃ // Γ(Aan

i ,Ω
an
Aan

i
)∨ free Fi ⊗Q C- module of rank one.oo

(B.11)

where Γ(Xan,Ωan
Xan)∨ denotes the dual space HomC(Γ(X

an,Ωan
Xan),C). The key

point of the above diagram (B.11) is that the middle row is free F ⊗Q C ≃∏
i Fi⊗QC-module of rank one, and the lower row is free Fi⊗QC ≃

∏
σ∈Hom(Fi,C)C ≃

Cdi-module of rank one.
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B.3 SUMMARY OF THE WORK OF A. AGASHE AND

W. STEIN

Let X0(N) be the modular curve defined over Q associated with the problem of

classifying elliptic curves E together with cyclic subgroups of E having order

N (as a Riemann surface, Xan
0 (N) is the quotient Γ0(N)\h∗ of the extended

complex upper halfplane h∗) and J0(N) denotes its Jacobian. Let S2(Γ0(N))C is

a space of cuspforms of weight 2 on Γ0(N) with an action of the Hecke algebra

T (cf. [25]). A new form f =
∑

n≥1 anq
n ∈ S2(Γ0(N))newC is an eigenvector for T

that is normalized a1 = 1. Consider the ring homomorphism

λf : T→ C (T 7→ λf (T ) s.t. Tf = λf (T )f for T ∈ T)

and If denotes its kernel (i.e. annihilator ideal AnnT(f) of f ). Following

Shimura [97], attach to If the quotient

Af := J0(N)/IfJ0(N)

Tf := T/If

and it is known that Af is an abelian variety over Q of dimension df :=

[Q(· · · , an, · · · ) : Q] which is equipped with a faithful action of Tf . Since the

field Ff := Tf ⊗Z Q is contained in EndQ(Af ) ⊗Q and [Ff : Q] = df [25, Prop.

21, §3.7], Af is an abelian variety of GL2-type. If we deal with the modular
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abelian varieties, there exists two important canonical isomorphisms
ϕ2 : Γ(X0(N)an,Ωan

X0(N)an) ≃ S2(Γ0(N))C

ϕ3 : S2(Γ0(N))∨R ≃ T⊗R R

(B.12)

For the first isomorphism is compatible the action of T (see [76, Prop. 25.3,

§25] and [25, Prop. 19–20, §3.6]) and the second isomorphism holds for any

ring R. We also have the similar isomorphisms
ψ2 : Γ(A

an
f ,Ω

an
Aan

f
) ≃ S2(Γ0(N))C[If ]

ψ3 : S2(Γ0(N))R[If ]
∨ ≃ Tf ⊗R R

(B.13)

by the restriction of scalars. Then by using (B.11), (B.12), (B.13), we have a

diagram as follows:

H1(X0(N)an,R) ≃
ϕ1

// Γ(X0(N)an,Ωan
X0(N)an)

∨ ≃
ϕ2

// S2(Γ0(N))∨C

res.

��

≃
ϕ3

// T⊗Z C ≃ Cg

H1(J0(N)an,R) ≃ //

ei
����

Γ(J0(N)an,Ωan
J0(N)an)

∨

≃

OO

ei
����

H1(A
an
f ,R) ≃

ψ1

// Γ(Aan
f ,Ω

an
Aan

f
)∨ ≃

ψ2

// S2(Γ0(N))C[If ]
∨ ≃

ψ3

// Tf ⊗Z C ≃ Cd

In the above diagram, g denotes the dimension of X0(N)an (in the same way

denotes the dimension of J0(N)an) and d denotes the dimension of Aan
f . Let e be

the element of H1(X0(N)an,R) such that it corresponds to the map ω 7→ −
∫∞
0
ω
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under the isomorphism ϕ1, then we see that

ϕ2 ◦ ϕ1(e)(f) = L(f, 1) for all f ∈ S2(Γ0(N))C (B.14)

follows from the definition of L(f, s) as a Mellin transform. It is easy to see

that if ef ∈ H1(A
an
f ,R) is the image of e, we see

ψ2 ◦ ψ1(ef )(f) = L(f, 1) for all f ∈ S2(Γ0(N))C[If ]. (B.15)

This element e is called the “winding element” introduced by B. Mazur in [68,

§II.18, pp. 136], and this winding element is crucial to many algorithms for

computing with modular abelian varieties. The theory of modular symbols

were introduced by B. J. Birch [9] and studied by many others (J. I. Manin, B.

Mazur, L. Merel, J. E. Cremona etc. see the References ) and recent years, A.

Agashe and W. Stein established a beautiful formula:

Theorem B.3.1 (A. Agashe and W. Stein). Assume that L(Af , 1) ̸= 0. Let Φ be

the composition of ψ3 ◦ ψ2 ◦ ψ1. Then the images Φ(H1(A
an
f ,Z)

+) and Φ(Tfef )

are lattices in Rd ⊂ Cd, and the following formula holds:

L(Af , 1)

ΩAf

= (constant)× [Φ(H1(A
an
f ,Z)

+) : Φ(efTf )]

where ef denotes the image of e in H1(A
an
f ,R).

This formula is the motivation for the author’s research. We try to explain

the rough proof here according to their papers because the author’s purpose

is the generalization on this formula. In the later explanation, the following
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diagram may be helpful in understanding it.

H1(A
an
f ,R) ≃

ψ1

// Γ(Aan
f ,Ω

an
Aan

f
)∨ ≃

ψ2

// S2(Γ0(N))C[If ]
∨ ≃

ψ3

// Tf ⊗Z C ≃ Cd

H1(A
an
f ,R)+ ≃

ψ1

//
?�

OO

Γ(Aan
f (R),Ωan

Aan
f (R))

∨ ≃
ψ2

//
?�

OO

S2(Γ0(N))R[If ]
∨ ≃

ψ3

//
?�

OO

Tf ⊗Z R ≃ Rd
?�

OO

H1(A
an
f (R),R)

First we define the real period ΩAf
of Aan

f (R) (this is a real Lie group). Let

Af be the Néron model of Af defined over Z. It is known that the space

Γ(Aan
f (R),Ωan

Aan
f (R)) is regarded as the cotanjent space ofAf (R), and Γ(Af ,ΩAf/Z)

and S2(Γ0(N))Z[If ] are both lattices in Γ(Aan
f (R),Ωan

Aan
f (R)). The space Γ(Af ,ΩAf/Z)

is called “the space of Néron differentials” and strictly speaking, the space

S2(Γ0(N))Z[If ] is the inverse image ψ−1
2 (S2(Γ0(N))Z[If ]). Then this two lattices

define lattices Λ, Λ̃ in Lie(Aan
f (R)) respectively. In general, if given a lattice L

in Lie(Aan
f (R)), we have a Haar measure µL such that µL(Lie(Aan

f (R))/L) = 1.

Note that H1(A
an
f (R),Z) is a lattice and it is known that Aan

f (R)0 is expressed

as a quotient Lie(Aan
f (R))/H1(A

an
f (R),Z) where Aan

f (R)0 denotes the connected

components of Aan
f (R) containing the identity. Then we have the following

diagram:

H1(A
an
f (R),Z) � �

lattice
// Lie(Aan

f (R)) // Aan
f (R)0 // 0

L
?�

lattice

OOhhhhRRRRRRRRRRRRRRR

From this, we see that µL induces the Haar measure on Aan
f (R)0 such that

µL(A
an
f (R)0) = µL(Lie(A

an
f (R))/L)× [L : H1(A

an
f (R),Z)].
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Then we see

µL(A
an
f (R)) = c∞(Aan

f (R))× [L : H1(A
an
f (R),Z)]

where c∞(Aan
f (R)) denotes the number of elements of Aan

f (R)/Aan
f (R)0. Now we

define the real period ΩAan
f

as ΩAan
f

:= µΛ(A
an
f (R)). Let cAf

be the number of the

elements of Λ̃/Λ (they call this Manin constant). Then we have the formula:

ΩAan
f

:= µΛ(A
an
f (R)) = c∞(Aan

f (R))× [Λ : H1(A
an
f (R),Z)]

= c∞(Aan
f (R))× cAf

× [Λ̃ : H1(A
an
f (R),Z)]

= c∞(Aan
f (R))× cAf

× [Tf : H1(A
an
f (R),Z)]

where we get the third equality by the duality Λ̃ := S2(Γ0(N))Z[If ]
∨ ≃ Tf

(apply (B.13) for R = Z). On the other hand, we see that

L(Af , 1) = [Tf : Φ(ef )Tf ]

We view Φ(ef ) as the operator of the left multiplication. Then we have

L(Af , 1)

ΩAf

=
[Tf : Φ(ef )Tf ]

c∞(Aan
f (R))× cAf

× [Tf : H1(Aan
f (R),Z)]

= (constant)× [Φ(H1(A
an
f (R),Z)) : Φ(efTf )]

It remains to show H1(A
an
f (R),Z) ≃ H1(A

an
f ,Z)

+. This seems to be natural, but
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the complete proof is not easy.



APPENDIX C

BSD CONJECTURE

In 1965 B. J. Birch and H. P. F. Swinnerton-Dyer suggested a conjecture about

the arithmetic of elliptic curves defied over Q [8]. During the next few years

various people gradually extended this conjecture to general settings, J. Tate

extended this conjecture to abelian varieties of any dimension defined over

any global fields [100], and P. Deligne, A. Beilinson, S. Bloch and K. Kato et

al. extended to Grothedieck motives (it is called the “Tamagawa number con-

jecture” in [12]). As Cassels remarks [21], a fundamental problem of number

theory is to find all of rational solutions of a set of polynomial equations with

rational coefficients, and moreover, investigate their structure. The conjec-

ture of Birch and Swinnerton-Dyer (the BSD conjecture for short) describes

their structure without actually finding the solutions. Thus the BSD conjec-

ture addresses some basic questions in number theory. The BSD conjecture

also implies the existence of mysterious relations between the L-functions

and various arithmetic groups (Mordell-Weil group, Tate-Shafarevich group)

associated to the motives H1(A) where A is an abelian variety defined over a

121



122 Appendix C

global field.

L-function←→

Mordell-Weil group,

Tate-Shafarevich group.
(C.1)

Notation:

Let A be an abelian variety of dimension d defined over a number field K (i.e.

a finite extension of the rational number field Q). Let MK be the set of all

places of K

MK : = {non-archimedean places (finite places)} ∪ {archimedean places}

=M0
K ∪M∞

K

= (U ∪ S) ∪M∞
K

where U denote the non-archimedean places such that A has good reduction

in U and S is its complement (S is a finite set). K̄ denotes an algebraic closure

of K (since a number field K has char(K) = 0, this field is perfect, then all

algebraic extension of K is separable, so K̄ is a separable closure). If v ∈MK ,

Kv denotes the completion at v of K. If v ∈ M0
K , Ov denote the valuation ring

of Kv, mv denotes the maximal ideal of Ov, κ(v) denotes the residue field of

Ov and N(v) denotes the cardinal of κ(v). For any field K, GK denotes the

absolute Galois group Gal(K̄/K) of K.

Let A be the Néron model of A over OK , and Aκ(v) be the closed fiber

A × κ(v) of A at v. Let A 0 be the open subgroup of A whose closed fibers

A 0
κ(v) at each non-archimedean places v which coincides with the connected

component of A containing the origin [13] (cf. Figure C.1).
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(0) v v v v
Spec(OK)

AOK

U S M v

0-section

· · · · · · · · · · · · · · · · · · · · ·

A/K Aκ(v) Aκ(v) Aκ(v′) A(Kv)

· · ·

· · · · · · · · · · · · · · · · · · · · ·

cv = 3 cv′ = 2 cv = 5

(0) v v v
Spec(OK)

U S

0-section

· · · · · · · · · · · · · · ·

A/K

· · ·

· · · · · · · · · · · · · · ·

A 0
OK

Aκ(v)A/K Aκ(v)Aκ(v)

A 0
κ(v)

A 0
κ(v) A 0

κ(v)

Figure C.1: Néron model.

The local Tamagawa numbers:

At each non-archimedean place v ∈ M0
K , we define the component group ΦA,v

as follows:

Definition C.0.1. The component group of A at v is

ΦA,v := Aκ(v)/A
0
κ(v).

Remark. Since Aκ(v) is a smooth commutative group scheme over κ(v), it is

a disjoint union of one or more connected components, and it is easy to see

that A 0
κ(v) is a subgroup of Aκ(v) (by definition, the connected component A 0

κ(v)

contains the identity element).
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Remark. The ΦA,v is a finite flat group scheme over κ(v) (a finite abelian group

equipped with an action of the absolute Galois group Gκ(v) of κ(v)), and there

is an exact sequence as group schemes

0→ A 0
κ(v) → Aκ(v) → ΦA,v → 0.

Definition C.0.2 (local Tamagawa numbers). The local Tamagawa number of

A at v is

cv := #ΦA,v(κ(v)).

ARITHMETIC INVARIANTS

Mordell-Weil group:

By the Mordell-Weil Theorem, the group A(K) of K-rational points of A is

finitely generated. This theorem can be generalized to fields which are finitely

generated over their prime field [60, Ch. 6,Thm. 1]. Using elementary group

theory, we rephrase this theorem by saying that there are points e1, . . . , er

such that

A(K) ≃ A(K)tors ⊕ Ze1 ⊕ · · · ⊕ Zer.

The integer r is called the rank of the abelian variety A, and A(K) is called

the Mordell-Weil group of A. The torsion subgroup A(K)tors is a finite abelian

group, it can be written as

A(K)tors ≃
s⊕
i=1

(Z/miZ),

where m1, . . . ,mr are integer satisfying mi|mi+1 and s ≤ 2dim(A).
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Regulator:

Let A∨ be the dual abelian variety of A. It is known that A∨(K) has the same

rank as A(K) (r := rankA(K) = rankA∨(K)) and there is a canonical Z-bilinear

form

h( , ) : A(K)× A∨(K)→ R

called the (Néron-Tate) height paring. Let e1, . . . , er be a Z-basis ofA(K)/A(K)tors,

and let e∗1, . . . , e∗r be a Z-bases of A∨(K)/A∨(K)tors. Then

R(A,K) :=
∣∣ det (h(ei, e∗j)) ∣∣ ∈ R

is independent of the choices of the basis and we call it the regulator of A.

Tate-Shafarevich group:

The Tate-Shafarevich group X(A,K) is defined by

X(A,K) := ker

(
H1(K,A(K))→

∏
v

H1(Kv, Av(Kv))

)

where H1(K,A(K)) denotes the Galois cohomology group H1(GK , A(K)).

Remark. We can regard the group X(A,K) as the set of everywhere locally

trivial principal homogeneous spaces for A.

L-FUNCTION OF ABELIAN VARIETIES

The l-adic representation on H1
et(Ā,Ql):

A. Grothendieck, M. Artin et al. constructed the l-adic étale cohomology group

H1
et(Ā,Ql) [45], [46]. H1

et(Ā,Ql) is Ql-vector space of dimension 2d where Ā

denotes the fiber product A ×K K̄. The absolute Galois group GK of K acts
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on it (for the detail of the action, see [?, §1]). Then H1
et(Ā,Ql) determines an

l-adic representation of GK

ρl : GK → Aut(H1
et(Ā,Ql)) ≃ GL2d(Ql). (C.2)

The theory of the étale cohomology may be unfamiliar with non-experts, we

can construct more explicitly the above representation by using a Zl-free mod-

ule Tl(A) called the “Tate module of A” substitutions of the étale cohomology

group when A is an abelian variety. It is known that

Al(K̄) := ker
(
l : A(K̄)→ A(K̄)

)
has order l2d for any l′ dividing l, so that Al(K̄) is a free Z/lZ-module of rank

2d. Moreover the absolute Galois group GK acts on Al(K̄) (since if lP = 0, then

lP σ = (lP )σ = 0 for any P ∈ Al(K̄) and σ ∈ Gal(K̄/K)). If we chose a basis for

Al(K̄), we obtain a representation

GK → Aut(Al(K̄)) ≃ GL2d(Z/lZ).

This representation has coefficients of ring of positive characteristic. We lift

this coefficients to a ring of characteristic 0.

Definition C.0.3 (Tate module). Fix a prime l ̸= char(K). We define the Tate

module Tl(A) of A by

Tl(A) := lim←−
n

Aln(K̄),

the inverse limit being taken with respect to the natural maps

Aln+1(K̄)
l−→ Aln(K̄).
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Tl(A) is a free Zl-module of rank 2d with an action of GK . If we chose a

Zl-basis for Tl(A), we obtain a representation

GK → Aut(Tl(A)) ≃ GL2d(Zl),

and two-dimensional representation of GK acting on Vl(A) := Ql ⊗Zl
Tl(A)

GK → Aut(Vl(A)) ≃ GL2d(Ql) (C.3)

by the extension of the scalar (take the natural inclusion Zl ↪→ Ql). What is

the relation between two representations (C.2) and (C.3)? It is known that

Zl-module H1
et(Ā,Zl) is isomorphic to the dual module of Tl(A), and more im-

portant, the isomorphism is compatible with the action of GK , that is there

is

H1
et(Ā,Zl) ≃ HomZl

(Tl(A),Zl) as Zl[GK ]-modules. (C.4)

By using (C.4), we see that the representation (C.2) is a contragredient repre-

sentation of (C.3) on the dual space Vl(A)∨ of Vl(A).

L-function of H1
et(Ā,Ql):

Given a non-archimedean place v ∈ M0
K , one defines a characteristic polyno-

mial

Pv(A, T ) := det
(
1− Tρl(σ−1

p ) | H1
et(Ā,Ql)

Ip
)
, (C.5)

where Ip and σp denote respectively the inertia group and a Frobenius element

(ρl(σ−1
p ) is usually called the geometric Frobenius) of some prime ideal p of K̄

lying over v, and

H1
et(Ā,Ql)

Ip :=
{
v ∈ H1

et(Ā,Ql) | ρl(g)v = v for all g ∈ Ip
}
.
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Remark. It is easy to see that the characteristic polynomial Pv(A, T ) is inde-

pendent of the choice of p and σp follows by a straightforward verification from

the conjugacy under GK of the prime ideals lying over v.

Remark. If v ∈ U , the action of the inertia Ip on H1
et(Ā,Ql) is trivial, and the

characteristic polynomial satisfies

Pv(A, T ) =det
(
1− Tρl(σ−1

p ) | H1
et(Ā,Ql)

)
=det

(
1− Tρl(σ−1

p ) | H1
et(Aκ(v),Ql)

)
,

where Aκ(v) = Aκ(v) × κ(v). It is known that Pv(A, T ) belongs to Z[T ] and is

independent of the choice of v - l by the Weil conjecture ([53]).

Now we define the (Hasse-Weil) L-function of H1
et(Ā,Ql) :

Definition C.0.4 (Hasse-Weil L-function).

L(H1
et(Ā,Ql), s) :=

∏
v∈M0

K

1

Pv(A,N(v)−s)
.

We denote L(H1
et(Ā,Ql), s) by L(A, s) for short.

MEASURES ON LOCALLY COMPACT GROUPS

For any v ∈ MK , since Lie(A)(Kv) is a locally compact group, there exists a

Haar measure µv on Lie(A)(Kv) up to K×. If v ∈ U , we normalize the measure

by µv(Lie(A)(Ov)) = 1. That is we determine the unique product measure

µ :=
∏

v∈MK
µv on Lie(A)(AK) where Lie(A)(AK) :=

∏⨿
v∈MK

Lie(A)(Kv) is the

adele group{
(av) ∈

∏
v∈MK

Lie(A)(Kv)

∣∣∣∣ av ∈ Lie(A )(Ov) for almost all v ∈MK rM∞
K

}
.
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The Haar measure µv on Lie(A)(Kv) induces a Haar measure on the compact

group A(Kv) (we denote this Haar measure on A(Kv) by µ′
v) which is charac-

terized as follows. Since char(Kv) = 0, we have an injective exponential map

exp : W → A(Kv) for a sufficiently small compact neighborhood W of 0 in

Lie(A)(Kv). We have the Haar measure µ′
v on A(Kv) which is characterized by

µv(W ) = µ′
v(exp(W )). (C.6)

In particular, if v ∈M0
K , the Haar measure µ′

v on A(Kv) is characterized by

µv(Lie(A )(mn
v )) = µ′

v(A (mn
v )) (C.7)

for n ≥ 1, whereLie(A )(mn
v ) := ker (Lie(A )(Ov)→ Lie(A )(Ov/m

n
v ))

A (mn
v ) := ker (A (Ov)→ A (Ov/m

n
v )) .

We denote the Haar measure µ′
v on A(Kv) by µv in the same symbol.

THE CONJECTURE

Definition C.0.5 (Variant of the L-function).

LBSD(A, s) :=
∏

v∈M∞
K

1

µv(A(Kv))
×
∏
v∈S

1

cv
× L(A, s)

Conjecture C.0.1 (The conjecture of Birch and Swinnerton-Dyer). Let

LBSD(A, s) = IA(s− 1)ρ(A) +O(|s− 1|ρ(A)+1)
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be the Laurent expansion of LBSD(A, s) at s = 1, then

1. ρ(A) = rank(A(K)),

2. |X(A,K)| <∞,

3. IA =
|X(A,K)|

|A(K)tors||A∨(K)tors}|
R(A,K).

C.1 BSD CONJECTURE FOR ELLIPTIC CURVES

In this Appendix, we explain Birch and Swinnerton-Dyerwhat conjecture us-

ing a short Weierstrass equation. Let E be an elliptic curve defined over Q

given by the minimal Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (ai ∈ Q). (C.8)

Let E be the global Néron model of E over Z. The natural reduction map

induces a morphism

φp : E(Qp)→ EFp(Fp),

where EFp denotes the closed fiber of E at p. Next we define two subgroups

(filtration) of E(Qp) as follows:

E0(Qp) :=
{
P ∈ E(Qp)

∣∣ φp(P ) ∈ E sm
Fp

(Fp)
}

where E sm
Fp

:= EFp r {any singular points} and

E1(Qp) := ker
(
φp|E0(Qp)

∣∣ E0(Qp)→ E sm
Fp

(Fp)
)
.
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Proposition C.1.1. There is an exact sequence of abelian groups as follows:

0→ E1(Qp)→ E0(Qp)→ E sm
Fp

(Fp)→ 0.

Proof. Rough Sketch. Since we defined E1(Qp) to be the kernel of φp|E0(Qp), it

remains to show that the restricted reduction map φp|E0(Qp) is surjective. This

will follow from Hensel’s lemma and the completeness of Qp. For the detail

see [85, VII, Prop. 2.1].

Definition C.1.1 (local Tamagawa number).

cp := (E(Q) : E0(Qp))

Remark. We have cp = 1 if p ∈ U .

Next we define the real period µ∞(E(R)). We choose a generator ωE (mod Z×)

of Γ(E ,ΩE /Z) which is a free Z-module of rank 1. This is called the “Néron dif-

ferential”. The ωE defines a holomorphic differential on the complex torus Ean

(Ean denotes an analytic space defined by E) and Ean(R) is regarded as the

1-homology cycle [Ean(R)] ∈ H1(E
an,Z). We define the “real period” of E by

the period integral:

Definition C.1.2.

µ∞(E(R)) :=

∫
[E(R)]

ωE. we call this “Real period”

Proposition C.1.2. At each non-archimedean place p ∈M0
Q

µp(E(Qp)) = cp ×
#E sm

Fp
(Fp)

p
.
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Proof. Decompose

µp(E(Qp)) = (E(Qp) : E
1(Qp))× µp(E1(Qp))

= (E(Qp) : E
0(Qp))× (E0(Qp) : E

1(Qp))× µp(E1(Qp)),

By Def. 3.2, the first quantity satisfies

(E(Qp) : E
0(Qp)) = cp,

and by Prop. C.1.1, the second quantity satisfies

(E0(Qp) : E
1(Qp)) = #E sm

Fp
(Fp).

So it remains to show that µp(E1(Qp)) = 1/p, we use a lemma from the formal

group theory:

Lemma C.1.3. There exists an isomorphism of additive groups:

pZp
∼−→ E1(Qp). (C.9)

Proof. If an elliptic curve E is given by a Weierstrass equation with coeffi-

cients in Zp, we can construct the formal group associated to E, denoted the

formal group by Ê, and there are power series 1/w(z) ∈ Z[[z]] such that the

map

Ê(pZp)→ E1(Qp)

(
z 7→

(
z

w(z)
,− 1

w(z)

))
is an isomorphism of pZp onto E1(Qp). (for the explicit construction of w(z), see

[85, §1, IV]). By formal logarithm map, we have an isomorphism Ê(pZp)
∼−→ pZp

[85, Thm. 6.4 (b), IV].

From above lemma, we see µp(E1(Qp)) = µp(pZp), and µp is a Haar measure
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on Zp for which Zp has measure 1 and therefore pZp has measure 1/(Zp : pZp) =

1/p.

Remark. Since Zp is complete, the power series F (x, y) and i(x) (these power

series called the formal group law of Ê [85, Def. A, IV]) converge in Zp for

x, y ∈ pZp and Ê makes pZp into a group.

Remark. If p ∈ U , then cp = 1 and E sm
Fp

= EFp so we have a simple formula

µp(E(Qp)) =
#EFp(Fp)

p
. (C.10)

Proposition C.1.4. For each p ∈M0
K , let Pp(E, T ) ∈ Z[T ] be the characteristic

polynomial. Then

Pp(E, p
−1) =

#E sm
Fp

(Fp)

p
.

Proof. Let φ : ¯E sm
Fp
→ ¯E sm

Fp
be the p-th Frobenius map where ¯E sm

Fp
denotes E sm

Fp
×

F̄p. This map induces

φ∗ : H i
et(

¯E sm
Fp
,Ql)→ H i

et(
¯E sm
Fp
,Ql) (0 ≤ i ≤ 2)

where H i
et(

¯E sm
Fp
,Ql) is Ql-vector space of dimension two. By using the étale

cohomology theory (Lefshetz fixed point theorem), we see that

#E sm
Fp

= Tr(φ∗|H0
et(

¯E sm
Fp
,Ql))−Tr(φ∗|H1

et(
¯E sm
Fp
,Ql)) +Tr(φ∗|H2

et(
¯E sm
Fp
,Ql)). (C.11)

It is easy to see thatdet
(
1− Tφ∗|H0

et(
¯E sm
Fp
,Ql)

)
= 1− T

det
(
1− Tφ∗|H2

et(
¯E sm
Fp
,Ql)

)
= 1− pT,
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Therefore we see thatTr
(
φ∗|H0

et(
¯E sm
Fp
,Ql)

)
= 1

Tr
(
φ∗|H2

et(
¯E sm
Fp
,Ql)

)
= det

(
φ∗|H2

et(
¯E sm
Fp
,Ql)

)
= p.

(C.12)

From (C.11) and (C.12), we obtain

Tr
(
φ∗|H1

et(
¯E sm
Fp
,Ql)

)
= 1−#E sm

Fp
(Fp) + p. (C.13)

Next, we calculate

Pp(E, T ) =det
(
1− Tφ∗|H1

et(
¯E sm
Fp
,Ql)

)
=1− Tr

(
φ∗|H1

et(
¯E sm
Fp
,Ql)

)
T + det

(
φ∗|H2

et(
¯E sm
Fp
,Ql)

)
T 2

=1− (1−#E sm
Fp

(Fp) + p)T + pT 2.

Therefore we see that

Pp(E, p
−1) = 1− (

1−#E sm
Fp

(Fp) + p

p
) +

1

p

=
#E sm

Fp(Fp)

p
.

Remark. If p ∈ S, we can determine

Pp(E, T ) :=


1− T E has split multiplicative reduction

1 + T E has non-split multiplicative reduction

1 E has additive reduction.
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Then we see that

Pp(E, p
−1) =

#E sm
Fp

(Fp)

p
.

Indeed, it is known that #E sm
Fp(Fp)/p = p− 1, p+ 1, p respectively.

By the Wiles and Breuil, Conrad, Diamond, Taylor’s theorem, the Hasse-

Weil L-function L(E, s) has an analytic continuation to an entire function of

order one satisfying a functional equation, so we can consider the Laurent

expansion of L(E, s) (resp. LBSD(E, s)) at s = 1. In the these situations, the

conjecture of Birch and Swinnerton-Dyer is as follows:

Conjecture C.1.1. Let

LBSD(E, s) = IE(s− 1)ρ(E) +O(|s− 1|ρ(E)+1)

be the Laurent expansion of LBSD(E, s) at s = 1, then

1. ρ(E) = rank(E(Q))

2. X(E) <∞

3. IE =
|X(E)|
|E(Q)tors|2

R(E).

Remark. The quantity IE is regarded as follows:

IE =
∏
p∈MQ

1

µp(E(Qp))

=
1

µ∞(E(R))
×
∏
p∈S

1

µp(E(Qq))
×
∏
p∈U

1

µp(E(Qp))
.
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C.2 COMPUTATION USING PARI/GP

In the original article [8], B. J. Birch and H. P. F. Swinnerton-Dyer investi-

gated a behavior of an infinite product of a “p-adic density”

f(x) :=
∏
p≤x

#EFp(Fp)

p

(the definition of E in §3) of special kinds of elliptic curves (y2 = x3 −Dx (D ∈

Q)) with their computer (EDSAC II), and they conjectured:

Conjecture C.2.1. [8, pp. 79] If r := rank(E(Q)), then there are non-zero

constant C,C ′ such that

f(x) ∼ C(log(x))r (as x→∞), (C.14)

and

L(E, s) ∼ C ′(s− 1)r (as s→ 1). (C.15)

Remark. It seems that the precise mathematical relation between the above

two statements ((C.14) and (C.15)) is not known.

In this section, we check this statement numerically (C.14) to some special

kind of elliptic curves using the computer program Pari which is specifically

designed for computation in algebraic number theory. We consider the elliptic

curves

Ea : y
2 = x3 + ax where a = −3,+3,+14,−82

over Q. It is known that the Mordell-Weil rank of these elliptic curves Ea

(denote by ra := rank(Ea(Q))) is zero, one, two and three respectively [54, pp.

17]. We will compute f(x) using the Pari (GP calculator ) and make a table.

(cf. Figure C.2.)
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EXAMPLE

Step 1:

In this example, we deal with the elliptic curve E3 : y2 = x3 + 3x. First we

prepare a script (i.e. a program written in a language of GP) in order to make

a table, and save as a name “ell.gp” in the working directory.

{

e = ellinit([0,0,0,3,0]);

x = 1.0;

forprime(i = 5,500000,

N_p = i+1-ellap(e,i);

x = x*(N_p/i);

write("ell.dat",i," "N_p," "x);

)

}

The first line

e = ellinit([0,0,0,3,0])

defines the elliptic curve y2 = x3 + 3x. If one write

e = ellinit([2,3,4,5,6])

then this defines the elliptic curve y2 + 2xy + 4y = x3 + 3x2 + 5x+ 6. The third

line’s command

forprime(i = a, b, seq)

means that the formal variable i ranging over the prime numbers between

a to b (including a and b if they are prime), and the seq is evaluated. For

example, one write
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forprime(i = 2, 12,

print(i);

if (p == 3, p = 6);

)

}

then the GP calculator output

2

3

7

11.
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Step2:

To start Pari on your computer, type

> gp

Next to read the above file “ell.gp”, type

> read("ell.gp")

(This “read” command reads in the file whose name is “ell.gp”) and GP calcu-

lator does the script “ell.gp” and make a file “ell.dat” in the working directory.

(cf. Figure C.2.)

Remark. One can check the correctness of the table in [54, pp. 17].

x N(x)
∏′

p≤x
N(p)
p

x N(x)
∏′

p≤x
N(p)
p

5 10 2.0000000000 · · · 499879 499880 22.0861713223 · · ·

7 8 2.2857142857 · · · 499883 499884 22.0862155050 · · ·

11 12 2.4935064935 · · · 499897 500256 22.1020766751 · · ·

13 20 3.8361638361 · · · 499903 499904 22.1021208878 · · ·

17 26 5.8670741023 · · · 499927 499928 22.1021650985 · · ·

19 20 6.1758674761 · · · 499943 499944 22.1022093079 · · ·

23 24 6.4443834534 · · · 499957 500036 22.1057017573 · · ·

29 26 5.7777230961 · · · 499969 501044 22.1532319630 · · ·

31 32 5.9641012605 · · · 499973 498578 22.0914211080 · · ·

37 40 6.4476770384 · · · 499979 499980 22.0914652927 · · ·

· · · · · · · · · · · · · · · · · ·

Figure C.2: This table is “ell.dat” file, the symbol
∏′ means the product of

exceptional primes. (2 and those dividing the discriminant)
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Figure C.3: Rank 0 (upper) and Rank 1 (lower)
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Figure C.4: Rank 3 (upper) and Rank 4 (lower)
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