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Preface

The hypergeometric series

F (a, b; c;x) :=
∞∑
n=0

(a, n)(b, n)

(c, n)(1, n)
xn,

where (a, n) := Γ(a + n)/Γ(a), has an important property: for a given triple of
integers (k, l,m) ∈ Z3, there exists a unique pair of rational functions (Q(x), R(x)) ∈
(Q(a, b, c, x))2 satisfying

F (a+ k, b+ l; c+m; x) = Q(x)F (a+ 1, b+ 1; c+ 1; x) +R(x)F (a, b; c;x),

whereQ(a, b, c, x) is the field generated overQ by a, b, c and x. This relation is called
the three term relation of the hypergeometric series. The aim of this article is to
get explicit expressions of the coefficients Q(x) and R(x) of the three term relation
and to apply this relation to obtaining special values of the hypergeometric series.

In Chapter 1, we show that the coefficients Q(x) and R(x) of the three term
relation are given as the sums of the products of the hypergeometric series.

In a series of letters to D.Stanton, R.W.Gosper presented many strange evalu-
ations of hypergeometric series. Recently, we rediscovered one of the strange hy-
pergeometric identities appearing in the series of letters. In Chapter 2, we prove
this identity by using some results given in Chapter 1, and find new identities as its
generalization.

It is well known that the value at x = 1 of the hypergeometric series F (a, b; c; x)
can be expressed in terms of gamma functions. The general expression for F (a, b; c; 1)
is called the Gauss summation formula. In Chapter 3, using three term relations of
the hypergeometric series, we show that values of F (a, b; c;x) at some points other
than x = 1 can also be expressed in terms of gamma functions, together with certain
elementary functions. We tabulate the values of F (a, b; c; x) that can be obtained by
this method. We find that this catalog includes almost all previously known values
(of course, almost all of Gosper’s strange evaluations for the hypergeometric series)
and many previously unknown values.

The author would like to thank Professors Katsunori Iwasaki, Masanobu Kaneko,
Mitsuo Kato, Hiroyuki Ochiai and Raimundas Vidunas, and Dr. Genki Shibukawa
and Mr. Hisashi Ando for careful reading and many valuable comments for various
chapters. The author also thanks Professor Masaaki Yoshida for his discouragement,
which encouraged the author to get some basic ideas.

Akihito Ebisu
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Chapter 1

Three term relations of the
hypergeometric series

1.1 Introduction

The hypergeometric differential equation E(a, b, c) is defined by L(a, b, c)y = 0,
where

L(a, b, c) := ∂2 +
c− (a+ b+ 1)x

x(1− x)
∂ − ab

x(1− x)

and ∂ = d/dx. Throughout this chapter we assume, unless otherwise stated,

• A1: a, b, c− a, c− b /∈ Z,

• A2: c, c− a− b, a− b /∈ Z.

A1 is a necessary and sufficient condition for the equation E(a, b, c) to be irreducible
(cf. Theorem 4.3.2 of [IKSY] 1), and A2 is a sufficient condition that every solution
is free from logarithmic terms at each singular point.

The equation E(a, b, c) admits the hypergeometric series

F (a, b; c;x) :=
∞∑
n=0

(a, n)(b, n)

(c, n)(1, n)
xn

as a solution, where (α, n) := Γ(α + n)/Γ(α). The following is known (cf. Chapter
VI §24 of [Poole]): for a given triple of integers (k, l,m) ∈ Z3, there exists a unique
pair of rational functions (Q(x), R(x)) ∈ (Q(a, b, c, x))2 satisfying

F (a+ k, b+ l; c+m;x) = Q(x)F (a+ 1, b+ 1; c+ 1; x) +R(x)F (a, b; c; x), (1.1.1)

where Q(a, b, c, x) is the field generated over Q by a, b, c and x. This relation is
called the three term relation of the hypergeometric series. In this chapter, we
derive explicit expressions of the coefficients Q(x) and R(x) in (1.1.1).

We use the following series instead of the hypergeometric series:

f(a, b; c; x) :=
∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(1 + n)
xn =

Γ(a) Γ(b)

Γ(c)
F (a, b; c;x).

1The references at each chapter are listed at the end of each chapter.
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Then, formula (1.1.1) is expressed as

f(a+ k, b+ l; c+m;x) = q(x)f(a+ 1, b+ 1; c+ 1; x) + r(x)f(a, b; c;x), (1.1.2)

where

q(x) =
c(a, k)(b, l)

ab(c,m)
Q(x), r(x) =

(a, k)(b, l)

(c,m)
R(x). (1.1.3)

Thus, we study q(x) and r(x) instead of Q(x) and R(x) in this chapter.
In Section 1.2, we introduce symbols used in this chapter. In Section 1.3, we

show that each of q(x) and r(x) is the product of a power of x, a power of 1−x and
a polynomial which can be expressible as the sum of products of two hypergeometric
series. We also show that these polynomials admit some symmetry.

1.2 Derivation of three term relations

1.2.1 Local solutions of E(a, b, c)

Set

f1(a, b; c;x) := f(a, b; c; x),

f2(a, b; c;x) := f(a, b; a+ b+ 1− c; 1− x),

f3(a, b; c;x) := x−af(a, a+ 1− c; a+ 1− b; 1/x),

f4(a, b; c;x) := x−bf(b, b+ 1− c; b+ 1− a; 1/x),

f5(a, b; c;x) := x1−cf(a+ 1− c, b+ 1− c; 2− c;x),

f6(a, b; c;x) := (1− x)c−a−bf(c− a, c− b; c+ 1− a− b; 1− x).

f1 and f5 are solutions around x = 0 of E(a, b, c). f2 and f6 are solutions around
x = 1. f3 and f4 are solutions around x = ∞. Any two of these functions form a basis
of S(a, b, c), which denotes the solution space of E(a, b, c), on a simply connected
domain in C \ {0, 1}, say, the upper half-plane.

1.2.2 Contiguity operators

Set

0 := (0, 0, 0), 1 := (1, 1, 1), k := (k, l,m), k + 1 := (k + 1, l + 1,m+ 1),

e1 := (1, 0, 0), e2 := (0, 1, 0), e3 := (0, 0, 1), etc,

where k, l, m, k′, l′, m′ ∈ Z. For 1 ≤ i ≤ 6, we set

(0)i := fi(a, b; c; x), (1)i := fi(a+ 1, b+ 1; c+ 1; x),

(k)i := fi(a+ k, b+ l; c+m;x), (k + 1)i := fi(a+ k + 1, b+ l + 1; c+m+ 1; x),

(e1)i := fi(a+ 1, b; c; x), (e2)i := fi(a, b+ 1; c; x), (e3)i := fi(a, b; c+ 1; x).
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Lemma 1.2.1. (Contiguity operators (cf. Theorem 2.1.1 of [IKSY])) Set

H1(a, b, c) := ϑ+ a, H2(a, b, c) := ϑ+ b, B3(a, b, c) := ϑ+ c− 1,

where ϑ := x ∂. Then we have

a(c− a− 1) ̸= 0 ⇐⇒ H1(a, b, c) : S(a, b, c)
≃−→ S(a+ 1, b, c),

b(c− b− 1) ̸= 0 ⇐⇒ H2(a, b, c) : S(a, b, c)
≃−→ S(a, b+ 1, c),

(c− a− 1)(c− b− 1) ̸= 0 ⇐⇒ B3(a, b, c) : S(a, b, c)
≃−→ S(a, b, c− 1),

where “ ≃” stands for a linear isomorphism.

Because these mappings are linearly isomorphic by condition A1, they have
the inverse mappings. We define B1(a + 1, b, c), B2(a, b + 1, c) and H3(a, b, c −
1) as the inverse mappings of H1(a, b, c), H2(a, b, c) and B3(a, b, c), respectively.
They are also first order linear operators with coefficients in Q(a, b, c, x). We call
H1, H2, H3, B1, B2 and B3 contiguity operators.

By considering the characteristic exponent of each local solution, we find thatH1,
H2 and H3 send (0)i to (e1)i, (e2)i and (e3)i up to multiplicative factors independent
of x, respectively. We evaluate these factors explicitly. To begin with, we remark
that

∂f(a, b; c; x) = f(a+ 1, b+ 1; c+ 1, x). (1.2.1)

For example, if we operate H1 to (0)1, from (1.2.1), we have

H1(a, b, c)(0)1 = (x∂ + a)f(a, b; c; x)

= xf(a+ 1, b+ 1; c+ 1; x) + af(a, b; c;x) (1.2.2)

= (const .)f(a+ 1, b; c; x) (1.2.3)

= (const .)(e1)1.

Substituting zero for x into (1.2.2) and (1.2.3), we get (const .) = 1. Similarly, we
have

Lemma 1.2.2.

H1 : (0)1 → (e1)1, H2 : (0)1 → (e2)1,

(0)2 → (a+ 1− c)(e1)2, (0)2 → (b+ 1− c)(e2)2,

(0)3 → −(e1)3, (0)3 → −(e2)3,

(0)4 → −(e1)4, (0)4 → −(e2)4,

(0)5 → (e1)5, (0)5 → (e2)5,

(0)6 → (a+ 1− c)(e1)6, (0)6 → (b+ 1− c)(e2)6,

H3 : (0)1 → (e3)1, ∂ : (0)1 → (1)1,

(0)2 →
−1

(a− c)(b− c)
(e3)2, (0)2 → −(1)2,

(0)3 → −(e3)3, (0)3 → −(1)3,

(0)4 → −(e3)4, (0)4 → −(1)4,
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(0)5 → (e3)5, (0)5 → (1)5,

(0)6 →
−1

(a− c)(b− c)
(e3)6, (0)6 → −(1)6,

where Hi = Hi(a, b, c).

By composing H1, H2, H3, B1, B2 and B3, we have a linear isomorphism
H(k, l,m) : S(a, b, c) → S(a+ k, b+ l, c+m). By using q(x) and r(x) in (1.1.2) and
Lemma 1.2.2, we are able to express H(k, l,m) as

H(k, l,m) = p(∂)L(a, b, c) + q(x)∂ + r(x), (1.2.4)

where p(∂) ∈ Q(a, b, c, x)[∂] which is the ring of polynomials in ∂ over Q(a, b, c, x).
In the next section, we study q(x) and r(x).

1.3 The coefficients of three term relations

Lemma 1.2.2 implies that

H(k, l,m)((0)1, (0)5) = ((k)1, (k)5), (1.3.1)

H(k, l,m)((0)2, (0)6) = A((k)2, (k)6), (1.3.2)

H(k, l,m)((0)3, (0)4) = (−1)k+l−m((k)3, (k)4), (1.3.3)

where

A = (−1)m(a+ 1− c, k −m)(b+ 1− c, l −m). (1.3.4)

If we operate (1.2.4) to (0)1 and (0)5, we get, from (1.3.1),(
(1)1 (0)1
(1)5 (0)5

)(
q(x)
r(x)

)
=

(
(k)1
(k)5

)
,

and so, (
q(x)
r(x)

)
=

1

(1)1(0)5 − (0)1(1)5

(
(0)5 −(0)1
−(1)5 (1)1

)(
(k)1
(k)5

)
. (1.3.5)

Since the denominator of the right hand side of (1.3.5) is the Wronskian of two
solutions f1 and f5, it does not vanish outside of {0, 1,∞}. So, if q(x) has poles,
the poles must be in {0, 1,∞}. Therefore, q(x) and r(x) can be expressed as

q(x) = xv0(1− x)v1q0(x), q0(x) : a polynomial of degree g and q0(0)q0(1) ̸= 0,

r(x) = xw0(1− x)w1r0(x), r0(x) : a polynomial of degree h and r0(0)r0(1) ̸= 0.

1.3.1 Expressions of q(x)

Firstly, we obtain v0, v1 and g by counting the order of q(x) at x = 0, 1 and ∞,
respectively.
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Lemma 1.3.1. We assume (k, l,m) ̸= (0, 0, 0). Except the case

E1 : m = 0, e1 := (a, k)(b, l)− (a+ 1− c, k)(b+ 1− c, l) = 0,

we have

(the order of q(x) at x = 0) =

{
1−m (m ≥ 0)

1 (m ≤ 0)
.

Indeed, by expanding q(x) locally into a series around x = 0, we have

q(x) =
(k)1(0)5 − (0)1(k)5
(1)1(0)5 − (0)1(1)5

=
{∗} x1−c{∗} − {∗} x1−c−m{∗}
{∗}x1−c{∗} − {∗} x−c{∗}

=
x{∗}+ x1−m{∗}

{∗}
,

(1.3.6)

where each { ∗ } denotes a power series in x of which constant term is not 0.
When m = 0 in Lemma 1.3.1, the coefficient of x1 of (1.3.6) is e1/(c− 1). In the

case E1, the order of q(x) at x = 0 is not 1 but greater than 2.
Next, we evaluate the orders of q(x) at x = 1 and ∞.

Lemma 1.3.2.

(k)1(0)5 − (0)1(k)5 = const. {(k)2(0)6 − (0)2(k)6} ,
(k)1(0)5 − (0)1(k)5 = const. {(k)3(0)4 − (0)3(k)4} .

We give a proof of Lemma 1.3.2 after. From this lemma, we obtain the following
in the same way as we got Lemma 1.3.1:

Lemma 1.3.3. We assume (k, l,m) ̸= (0, 0, 0). Except the cases

E2 : m− k − l = 0, (a, k)(b, l)− (c− a, l)(c− b, k) = 0,

E3 : k = l, (b+ 1− c, l −m)(b, l)− (a+ 1− c, k −m)(a, k) = 0,

we have

(the order of q(x) at x = 1) =

{
m+ 1− k − l (m− k − l ≤ 0)

1 (m− k − l ≥ 0)
,

−(the order of q(x) at x = ∞) =

{
1− k (k ≤ l)
1− l (k ≥ l)

.

Without loss of generality, we asuume, in this section, k ≤ l. We divide the set

{(k, l,m); k, l,m ∈ Z, k ≤ l}

into four subsets

(i) : {(k, l,m);m ≥ 0, m− k − l ≤ 0} , (ii) : {(k, l,m);m ≥ 0, m− k − l ≥ 0} ,
(iii) : {(k, l,m);m ≤ 0, m− k − l ≤ 0} , (iv) : {(k, l,m);m ≤ 0, m− k − l ≥ 0} .

Then, Lemmas 1.3.1 and 1.3.3 imply
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Proposition 1.3.4. Except the cases E1, E2 and E3, we have

(v0, v1, g) =


(1−m,m+ 1− k − l, l − 1) if (k, l,m) ∈ (i),

(1−m, 1,m− k − 1) if (k, l,m) ∈ (ii),
(1,m+ 1− k − l, l −m− 1) if (k, l,m) ∈ (iii),

(1, 1,−k − 1) if (k, l,m) ∈ (iv).

Remark 1.3.5. If we regard a polynomial of degree −1 as 0, (k, l,m) in Proposition
1.3.4 can be extended to Z3.

Secondly, we show that q0(x) can be expressible as the sum of products of two
hypergeometric series. To begin with, since (1)1(0)5 − (0)1(1)5 in (1.3.5) is the
Wronskian of two solutions f1 and f5, we obtain the following:

Lemma 1.3.6.

(1)1(0)5 − (0)1(1)5 = −Γ(a)Γ(b)Γ(a+ 1− c)Γ(b+ 1− c)

Γ(c)Γ(1− c)
x−c(1− x)c−a−b−1.

We consider, for example, the case (i). By Proposition 1.3.4 and Lemma 1.3.6,
(k)1(0)5 − (0)1(k)5 can be expressed as

−Γ(a)Γ(b)Γ(a+ 1− c)Γ(b+ 1− c)

Γ(c)Γ(1− c)
x1−c−m(1− x)c−a−b+m−k−lq0(x). (1.3.7)

On the other hand, it can also be expressed as

x1−c−m(1− x)c−a−b+m−k−l

×
{
Γ(a+ k)Γ(b+ l)Γ(a+ 1− c)Γ(b+ 1− c)

Γ(c+m)Γ(2− c)
xm

× F (c− a+m− k, c− b+m− l; c+m; x)F (a+ 1− c, b+ 1− c; 2− c; x)

− Γ(a)Γ(b)Γ(a+ 1− c+ k −m)Γ(b+ 1− c+ l −m)

Γ(c)Γ(2− c−m)

× F (a, b; c;x)F (1− a− k, 1− b− l; 2− c−m;x)

}
(1.3.8)

by Kummer’s solutions around x = 0 (cf. 2.9(1), (2), (17) and (18) of [Erd]).
Equating (1.3.7) with (1.3.8), we get an expression of q0(x). We also get expressions
of q0(x) in other cases similarly:

Theorem 1.3.7. Except the cases E1, E2 and E3, we have

q0(x) =


q1(a, b, c, k, l,m;x) if (k, l,m) ∈ (i),
q2(a, b, c, k, l,m;x) if (k, l,m) ∈ (ii),
q3(a, b, c, k, l,m;x) if (k, l,m) ∈ (iii),
q4(a, b, c, k, l,m;x) if (k, l,m) ∈ (iv).

where

q1(a, b, c, k, l,m;x) := C1xmF (c− a+m− k, c− b+m− l; c+m;x)
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× F (a+ 1− c, b+ 1− c; 2− c;x)

+ C2F (a, b; c; x)F (1− a− k, 1− b− l; 2− c−m; x),

q2(a, b, c, k, l,m;x) := C1xmF (a+ k, b+ l; c+m;x)F (1− a, 1− b; 2− c; x)

+ C2F (c− a, c− b; c; x)

× F (a+ 1− c+ k −m, b+ 1− c+ l −m; 2− c−m;x),

q3(a, b, c, k, l,m;x) := C1F (c− a+m− k, c− b+m− l; c+m;x)

× F (a+ 1− c, b+ 1− c; 2− c;x)

+ C2x−mF (a, b; c;x)F (1− a− k, 1− b− l; 2− c−m; x),

q4(a, b, c, k, l,m;x) := C1F (a+ k, b+ l; c+m;x)F (1− a, 1− b; 2− c; x)

+ C2x−mF (c− a, c− b; c;x)

× F (a+ 1− c+ k −m, b+ 1− c+ l −m; 2− c−m;x).

and

C1 := − (a, k)(b, l)

(1− c)(c,m)
, C2 :=

(a+ 1− c, k −m)(b+ 1− c, l −m)

(1− c)(2− c,−m)
.

Thirdly, we show that each qi(a, b, c, k, l,m;x) has expressions in six ways by
linear transformations of the parameters and linear fractional transformations of
the independent variable. For example, in the case (i), we have

q0(x) = (1− x)l−1

×
{
C1

(
x

1− x

)m

F (a+ k, c− b+m− l; c+m; x/(x− 1))

× F (1− a, b+ 1− c; 2− c;x/(x− 1))

+ C2F (b, c− a; c;x/(x− 1))

× F (1− b− l, a+ 1− c+ k −m; 2− c−m;x/(x− 1))

}
by applying other Kummer’s solutions (cf. 2.9(3), (4), (19) and (20) of [Erd]) around
x = 0 to (k)1(0)5 − (0)1(k)5. This is equal to

(a+ 1− c, k −m)

(1− a,−k)
(1− x)l−1q1(c− a, b, c,m− k, l,m, x/(x− 1)).

So far, we have studied q(x) and q0(x) by using solutions around x = 0. We can
also use solutions around x = 1, ∞. For example, if we operate (1.2.4) to (0)2 and
(0)6, we obtain(

q(x)
r(x)

)
=

−A

(1)2(0)6 − (0)2(1)6

(
(0)6 −(0)2
(1)6 −(1)2

)(
(k)2
(k)6

)
.

Since (1)2(0)6 − (0)2(1)6 is the Wronskian of two solutions f2 and f6, this is equal
to (1)1(0)5 − (0)1(1)5 up to multiple factor (This gives a proof of Lemma 1.3.2).
Hence, we get other expressions of qi(a, b, c, k, l,m, x) by using Kummer’s solutions
around x = 1 (cf. 2.9(5), (6), (21) and (22) of [Erd]):
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Theorem 1.3.8. A is defined by (1.3.4). When (k, l,m) ∈ (i), we have

q1(a, b, c, k, l,m;x)

= −Aq1(a, b, a+ b+ 1− c, k, l, k + l −m; 1− x)

= xl−1q1(b+ 1− c, b, b+ 1− a, l −m, l, l − k; 1/x)

=
(a+ 1− c, k −m)

(1− a,−k)
(1− x)l−1q1(c− a, b, c,m− k, l,m;x/(x− 1))

=
−(c− b,m− l)A

(1− a,−k)
xl−1

× q1(b+ 1− c, b, a+ b+ 1− c, l −m, l, k + l −m; (x− 1)/x)

=
(−1)l−1(a+ 1− c, k −m)

(c− b,m− l)
(1− x)l−1

× q1(c− a, b, b+ 1− a,m− k, l, l − k; 1/(1− x)).

When (k, l,m) ∈ (ii), we have

q2(a, b, c, k, l,m; x)

=
−(a, k)(b, l)A

(a+ 1− c, k −m)(b+ 1− c, l −m)

× q2(1− b, 1− a, c+ 1− a− b,−l,−k,m− k − l; 1− x)

= (−1)k+l−mxm−k−1q2(b+ 1− c, b, b+ 1− a, l −m, l, l − k; 1/x)

=
(b+ 1− c, l −m)

(1− b,−l)
(1− x)m−k−1q2(a, c− b, c, k,m− l,m, x/(x− 1))

=
−(b, l)A

(a+ 1− c, k −m)
xm−k−1

× q2(1− b, c− b, c+ 1− a− b,−l,m− l,m− k − l; (x− 1)/x)

= −(a, k)(b, l)(1− x)m−k−1

× q2(b+ 1− c, 1− a, b+ 1− a, l −m,−k, l − k; 1/(1− x)).

When (k, l,m) ∈ (iii), we have

q3(a, b, c, k, l,m;x)

=
−(a, k)(b, l)A

(a+ 1− c, k −m)(b+ 1− c, l −m)

× q3(1− b, 1− a, c+ 1− a− b,−l,−k,m− k − l; 1− x)

= xl−m−1q3(a, a+ 1− c, a+ 1− b, k, k −m, k − l; 1/x)

=
(a, k)

(c− a,m− k)
(1− x)l−m−1q3(c− a, b, c,m− k, l,m;x/(x− 1))

=
−(c− b,m− l)A

(1− a,−k)
xl−m−1

× q3(c− a, 1− a, c+ 1− a− b,m− k,−k,m− k − l; (x− 1)/x)

=
(−1)l−m−1(a, k)

(1− b,−l)
(1− x)l−m−1

× q3(1− b, a+ 1− c, a+ 1− b,−l, k −m, k − l; 1/(1− x)).
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When (k, l,m) ∈ (iv), we have

q4(a, b, c, k, l,m;x)

= −Aq4(a, b, a+ b+ 1− c, k, l, k + l −m; 1− x)

= (−1)k+l−mx−k−1q4(a, a+ 1− c, a+ 1− b, k, k −m, k − l; 1/x)

=
(b, l)

(c− b,m− l)
(1− x)−k−1q4(a, c− b, c, k,m− l,m; x/(x− 1))

=
−(b, l)A

(a+ 1− c, k −m)
x−k−1

× q4(a, a+ 1− c, a+ b+ 1− c, k, k −m, k + l −m; (x− 1)/x)

= −(a+ 1− c, k −m)(b+ 1− c, l −m)(1− x)−k−1

× q4(a, c− b, a+ 1− b, k,m− l, k − l, 1/(1− x)).

1.3.2 Expressions of r(x)

We express r(x) as we did for q(x). From (1.3.5), we get

r(x) = −(k)1(1)5 − (1)1(k)5
(1)1(0)5 − (0)1(1)5

.

Since the numerator (k)1(1)5− (1)1(k)5 is obtained from (k)1(0)5− (0)1(k)5 by the
change

(a, b, c) → (a+ 1, b+ 1, c+ 1), (k, l,m) → (k − 1, l − 1,m− 1),

we can use the discussion in the previous subsection. By the transformation, cases
(i), (ii), (iii), (iv), E1, E2 and E3 also change. We call them, respectively, (i′), (ii′),
(iii′), (iv′), E1′, E2′ and E3′:

(i′) : {(k, l,m);m ≥ 1, m− k − l ≤ −1} ,
(ii′) : {(k, l,m);m ≥ 1, m− k − l ≥ −1} ,
(iii′) : {(k, l,m);m ≤ 1, m− k − l ≤ −1} ,
(iv′) : {(k, l,m);m ≤ 1, m− k − l ≥ −1} ,
E1′ : m = 1, (a+ 1, k − 1)(b+ 1, l − 1)− (a+ 1− c, k − 1)(b+ 1− c, l − 1) = 0,

E2′ : m− k − l = −1, (a+ 1, k − 1)(b+ 1, l − 1)− (c− a, l − 1)(c− b, k − 1) = 0,

E3′ : k = l, (b+ 1− c, l −m)(b+ 1, l − 1)− (a+ 1− c, k −m)(a+ 1, k − 1) = 0.

Recall the expression

r(x) = xw0(1− x)w1r0(x), r0(x) : a polynomial of degree h and r0(0)r0(1) ̸= 0.

Then, we get the following proposition like Proposition 1.3.4:

Proposition 1.3.9. Except the cases E1′, E2′ and E3′, we have

(w0, w1, h) =


(1−m,m+ 1− k − l, l − 2) if (k, l,m) ∈ (i′),

(1−m, 0,m− k − 1) if (k, l,m) ∈ (ii′),
(0,m+ 1− k − l, l −m− 1) if (k, l,m) ∈ (iii′),

(0, 0,−k) if (k, l,m) ∈ (iv′),
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Set

r1(a, b, c, k, l,m;x)

:= C3xm−1F (c− a+m− k, c− b+m− l; c+m;x)

× F (a+ 1− c, b+ 1− c; 1− c;x)

+ C4F (a+ 1, b+ 1; c+ 1; x)F (1− a− k, 1− b− l; 2− c−m;x),

r2(a, b, c, k, l,m;x)

:= C3xm−1F (a+ k, b+ l; c+m;x)F (−a,−b; 1− c;x)

+ C4F (c− a, c− b; c+ 1; x)

× F (a+ 1− c+ k −m, b+ 1− c+ l −m; 2− c−m; x),

r3(a, b, c, k, l,m;x)

:= C3F (c− a+m− k, c− b+m− l; c+m;x)

× F (a+ 1− c, b+ 1− c; 1− c;x)

+ C4x1−mF (a+ 1, b+ 1; c+ 1; x)F (1− a− k, 1− b− l; 2− c−m;x),

r4(a, b, c, k, l,m;x)

:= C3F (a+ k, b+ l; c+m; x)F (−a,−b; 1− c;x)

+ C4x1−mF (c− a, c− b; c+ 1; x)

× F (a+ 1− c+ k −m, b+ 1− c+ l −m; 2− c−m; x),

where

C3 :=
(a, k)(b, l)

(c,m)
, C4 := −ab(a+ 1− c, k −m)(b+ 1− c, l −m)

c(1− c)(2− c,−m)
.

Then, we have the following:

Theorem 1.3.10. We except the cases E1′, E2′ and E3′, and A is defined by (1.3.4).
When (k, l,m) ∈ (i′), we have

r0(x) = r1(a, b, c, k, l,m;x)

= Ar1(a, b, a+ b+ 1− c, k, l, k + l −m; 1− x)

=
a

b− c
xl−2r1(b− c, b, b− a, l + 1−m, l, l + 1− k; 1/x)

=
(a+ 1− c, k −m)

(a+ 1− c)(1− a,−k)
(1− x)l−2

× r1(c− a− 1, b, c,m+ 1− k, l,m; x/(x− 1))

=
−(c− b,m− l)A

(b− c)(1− a,−k)
xl−2

× r1(b− c, b, a+ b+ 1− c, l + 1−m, l, k + l −m; (x− 1)/x)

=
(−1)l−2a(a+ 1− c, k −m)

(c− a− 1)(c− b,m− l)
(1− x)l−2

× r1(c− a− 1, b, b− a,m+ 1− k, l, l + 1− k; 1/(1− x)).

When (k, l,m) ∈ (ii′), we have

r0(x) = r2(a, b, c, k, l,m;x)
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=
(a, k)(b, l)A

(a+ 1)(b+ 1)(a+ 1− c, k −m)(b+ 1− c; l −m)

× r2(−b− 1,−a− 1, c− a− b− 1,

2− l, 2− k,m+ 2− k − l; 1− x)

=
(−1)k+l−m−1 a

b− c
xm−k−1r2(b− c, b, b− a, l + 1−m, l, l + 1− k; 1/x)

=
(b+ 1− c, l −m)

(b+ 1− c)(1− b)−l
(1− x)m−k−1

× r2(a, c− b− 1, c, k,m+ 1− l,m, x/(x− 1))

=
a(b, l)A

(b+ 1)(b+ 1− c)(a+ 1− c, k −m)
xm−k−1

× r2(−1− b, c− b− 1, c− 1− a− b,

2− l,m+ 1− l,m+ 2− k − l; (x− 1)/x)

=
(a, k)(b, l)

(a+ 1)(b− c)
(1− x)m−k−1

× r2(b− c,−a− 1, b− a, l + 1−m, 2− k, l + 1− k; 1/(1− x)).

When (k, l,m) ∈ (iii′), we have

r0(x) = r3(a, b, c, k, l,m;x)

=
(a, k)(b, l)A

(a+ 1)(b+ 1)(a+ 1− c, k −m)(b+ 1− c, l −m)

× r3(−b− 1,−a− 1, c− a− b− 1,

2− l, 2− k,m+ 2− k − l; 1− x)

=
b

a− c
xl−m−1r3(a, a− c, a− b, k, k + 1−m, k + 1− l; 1/x)

=
−(a, k)

(a+ 1− c)(c− a,m− k)
(1− x)l−m−1

× r3(c− a− 1, b, c,m+ 1− k, l,m;x/(x− 1))

=
−b(c− b,m− l)A

(a+ 1)(a+ 1− c)(1− a,−k)
xl−m−1

× r3(c− a− 1,−a− 1, c− a− b− 1,

m+ 1− k, 2− k,m+ 2− k − l; (x− 1)/x)

=
(−1)l−m−1(a, k)

(a− c)(b+ 1)(1− b,−l)
(1− x)l−m−1

× r3(−b− 1, a− c, a− b, 2− l, k + 1−m, k + 1− l; 1/(1− x)).

When (k, l,m) ∈ (iv′), we have

r0(x) = r4(a, b, c, k, l,m;x)

= Ar4(a, b, a+ b+ 1− c, k, l, k + l −m; 1− x)

=
(−1)k+l−m−1 b

a− c
x−kr4(a, a− c, a− b, k, k + 1−m, k + 1− l; 1/x)

=
−(b, l)

(b+ 1− c)(c− b,m− l)
(1− x)−k
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× r4(a, c− b− 1, c, k,m+ 1− l,m;x/(x− 1))

=
(b, l)A

(a− c)(a+ 1− c, k −m)
x−k

× r4(a, a− c, a+ b+ 1− c, k, k + 1−m, k + l −m; (x− 1)/x)

=
b(a+ 1− c, k −m)(b+ 1− c, l −m)

b+ 1− c
(1− x)−k

× r4(a, c− b− 1, a− b, k,m+ 1− l, k + 1− l, 1/(1− x)).

Remark 1.3.11. Even if conditions E1, E2, E3, E1′, E2′, E3′ are satisfied, q(x)
and r(x) which are derived from Propositions 1.3.4, 1.3.9 and Theorems 1.3.7, 1.3.8,
1.3.10 remain valid. However, q0(x) and r0(x) may vanish at x = 0 or 1 or may
have smaller degree than stated.

Remark 1.3.12. Assume H(k, l,m) is an isomorphism, and there exists an expres-
sion of qi (respectively ri), among the six, which makes sense. Then, even if A1
and A2 are not satisfied, this expression remains valid thanks to Proposition 1.3.4
(respectively Proposition 1.3.9).

Remark 1.3.13. If we regard k, l, m not as constants but as variables, from the
explicit expressions of q(x) and r(x), we find that q(x), r(x) ∈ K, where K is the
field generated over Q by aα, bα, cα, kα, lα,mα and xα (α = 1, k, l,m).
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Chapter 2

On a strange evaluation
of the hypergeometric series by
Gosper

2.1 Introduction and main theorem in this chap-

ter

In a series of letters to D.Stanton, R.W.Gosper carried out many strange evaluations
of hypergeometric series. Some are presented in [GS]. However, the following identity
appears in [Go], but not in [GS]:

F

(
1− a, b; b+ 2;

b

a+ b

)
= (b+ 1)

(
a

a+ b

)a

. (2.1.1)

Recently, we discovered (2.1.1) independently. Here, we present our proof of this
identity and derive a generalization using contiguity operators.

The main theorem in this chapter is the following:

Theorem 2.1.1. We assume that ℓ ∈ Z>0, a ∈ C and c ∈ C \Z. For any root λ of
F (1 − a,−ℓ; 2 − c;x), which is a polynomial in the variable x of degree at most ℓ,
we have

F (a, 1 + ℓ; c;λ) = − (1− c)q0(λ)

(1, ℓ)(1− λ)ℓ
, (2.1.2)

F (c− a, c− 1− ℓ; c;λ) = −(1− c)

(1, ℓ)
(1− λ)a+1−cq0(λ), (2.1.3)

where q0(x) is the polynomial in x of degree at most ℓ− 1 given by

q0(x) = − (1, ℓ)

1− c
(1− x)c−a−1F (c− a, c− 1− ℓ; c;x)

+
(2− c, ℓ)

1− c
F (a, 1; c; x)F (1− a,−ℓ; 2− c;x). (2.1.4)

For example, when ℓ = 1, we have

F

(
a, 2; c;

c− 2

a− 1

)
=

(a− 1)(c− 1)

a+ 1− c
, (2.1.5)
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F

(
c− a, c− 2; c;

c− 2

a− 1

)
= (c− 1)

(
a+ 1− c

a− 1

)a+1−c

. (2.1.6)

Remark 2.1.2. If we assume further the condition a /∈ Z, then the degree of F (1−
a,−ℓ; 2− c;x) is exactly ℓ. In this case, q0(x) can also be expressed as

q0(x) = (2− a, ℓ− 1)(−x)ℓ−1 × (the ℓ-th partial sum of the power series in 1/x

F (2− c, 1; 2− a; 1/x)F (c− 1− ℓ,−ℓ; a− ℓ; 1/x)) , (2.1.7)

and thus, the degree of q0(x) is exactly ℓ− 1.

Note that (2.1.6) is equivalent to (2.1.1).
Many methods for discovering and proving hypergeometric identities are known.

In the 19th century, such identities were discovered using algebraic transformations
of hypergeometric series (cf. [V] for a treatment of algebraic transformations of
hypergeometric series). Moreover, during the last several decades, many new meth-
ods that exploit progress in computer technology have been constructed: Gosper’s
algorithm, the W-Z method, Zeilberger’s algorithm, etc. (cf. [Ko] and [PWZ]).
These well-known algorithms have been used for discovering and proving hyper-
geometric identities expressed in closed forms (cf. [WoGo], [WoHy], [WoWZ] and
[WoZe]). Indeed, in [Ek] and [AZ], M.Apagodu, S.B.Ekhad and D.Zeilberger report
the discovery of such identities using these algorithms. In addition, such identities
are proved with the aid of these algorithms in [Ko] and [PWZ]. However, note that
although q0(x) appearing in (2.1.2) and (2.1.3) is expressed explicitly, it is not in
a closed form (see (2.1.4)). This is why the identities (2.1.2) and (2.1.3) were not
found till now.

Remark 2.1.3. If we input

> simplify(hypergeom([c− a, c− 2], [c], (c− 2)/(a− 1)))

in Maple 16, we obtain (2.1.6) as an output. From this, we can easily obtain (2.1.5)
using Euler transformation

F (a, b; c;x) = (1− x)c−a−bF (c− a, c− b; c;x) (2.1.8)

(cf. (2.2.7) in [AAR]). However, when we input

> simplify(hypergeom([a, 2], [c], (c− 2)/(a− 1))),

Maple 16 does not return (2.1.5). This is mysterious.

2.2 Preliminaries

In this section, modifying some results given in Chapter 1, we obtain Lemmas 2.2.2
and 2.2.3. These are used for proving the main theorem in this chapter.

Recall the hypergeometric (differential) operator in x

L(a, b, c) = ∂2 +
c− (a+ b+ 1)x

x(1− x)
∂ − ab

x(1− x)
, (2.2.1)
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where ∂ = d/dx and a, b and c are complex variables. Further, recall that the
contiguity operator (ϑ+ b), where ϑ = x∂, produces

(ϑ+ b)F (a, b; c;x) = bF (a, b+ 1; c; x) (2.2.2)

for c /∈ Z≤0 (cf. Subsection 1.2.2 in this article or Proposition 2.1.2 in [IKSY]).
Now, we consider the composition of contiguity operators

(ϑ+ b+ ℓ− 1) · · · (ϑ+ b+ 1)(ϑ+ b) =: H(ℓ). (2.2.3)

Then, H(ℓ) can be expressed as

H(ℓ) = p(∂)L(a, b, c) + q(x)∂ + r(x), (2.2.4)

where p(∂) ∈ Q(a, b, c, x)[∂] and q(x), r(x) ∈ Q(a, b, c, x).
We assume the following:

A1: a, b, c− a, c− b /∈ Z (cf. Section 1.1),

A2: c, c− a− b, a− b /∈ Z (cf. Section 1.1),

E1: (b, ℓ)− (b+ 1− c, ℓ) ̸= 0 (cf. Lemma 1.3.1),

E2’: ℓ ̸= 1 or
(b+ 1, ℓ− 1)

a
− (c− a, ℓ− 1)

c− b− 1
̸= 0 (cf. Subsection 1.3.2).

Assuming the above, we can directly apply propositions and theorems given in
Chapter 1. Specifically, we need only substitute k = 0, l = ℓ and m = 0 into
the formulas appearing in the propositions and theorems of Chapter 1. Doing so,
q(x) and r(x) can be expressed as

q(x) = xv0(1− x)v1q0(x),

q0(x) : a polynomial in x of degree g and q0(0)q0(1) ̸= 0,
(2.2.5)

r(x) = xw0(1− x)w1r0(x),

r0(x) : a polynomial in x of degree h and r0(0)r0(1) ̸= 0
(2.2.6)

(cf. Section 1.3). Moreover, by Propositions 1.3.4 and 1.3.9, we have

(v0, v1, g) = (1, 1− ℓ, ℓ− 1), (w0, w1, h) = (0, 1− ℓ, ℓ− 1), (2.2.7)

and by Theorems 1.3.7 and 1.3.10, we have

q0(x) = − (b, ℓ)

1− c
F (c− a, c− b− ℓ; c;x)F (a+ 1− c, b+ 1− c; 2− c;x)

+
(b+ 1− c, ℓ)

1− c
F (a, b; c; x)F (1− a, 1− b− ℓ; 2− c; x) (2.2.8)

r0(x) = (b, ℓ)F (c− a, c− b− ℓ; c; x)F (a+ 1− c, b+ 1− c; 1− c; x)

− ab(b+ 1− c, ℓ)

c(1− c)
xF (a+ 1, b+ 1; c+ 1; x)F (1− a, 1− b− ℓ; 2− c;x).

(2.2.9)
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Remark 2.2.1. Let us consider the case in which conditions A1, A2, E1 and E2’
are not satisfied. Even in this case, because q(x) and r(x) are rational functions in
a, b, c and x, we have

q(x) = x(1− x)1−ℓq0(x), r(x) = (1− x)1−ℓr0(x), (2.2.10)

where q0(x) and r0(x) are polynomials in x of degree at most ℓ− 1. Moreover, if the
right-hand sides of (2.2.8) and (2.2.9) are meaningful (that is, c /∈ Z), then (2.2.8)
and (2.2.9) still hold. Note that q0(x) and r0(x) may vanish at x = 0 or 1 or may
be of smaller degree than that stated in (2.2.7).

Now, we consider the case in which a ∈ C, b = 1 and c ∈ C\Z. Then, we obtain
the following lemma from Remark 2.2.1:

Lemma 2.2.2. Let ℓ be a positive integer. We represent (ϑ + ℓ) · · · (ϑ + 2)(ϑ + 1)
by H1(ℓ). Then, expressing H1(ℓ) in terms of the hypergeometric operator L(a, 1, c),
we have

H1(ℓ) = p(∂)L(a, 1, c) + q(x)∂ + r(x). (2.2.11)

Here, q(x) and r(x) are given by

q(x) = x(1− x)1−ℓq0(x), r(x) = (1− x)1−ℓr0(x), (2.2.12)

where, q0(x) and r0(x) are polynomials of degree at most ℓ− 1 given by

q0(x) = − (1, ℓ)

1− c
(1− x)c−a−1F (c− a, c− 1− ℓ; c;x)

+
(2− c, ℓ)

1− c
F (a, 1; c; x)F (1− a,−ℓ; 2− c;x), (2.2.13)

r0(x) = (1, ℓ)F (c− a, c− 1− ℓ; c;x)F (a+ 1− c, 2− c; 1− c; x)

− a(2− c, ℓ)

c(1− c)
xF (a+ 1, 2; c+ 1; x)F (1− a,−ℓ; 2− c; x). (2.2.14)

We close this section by presenting the following lemma:

Lemma 2.2.3. Writing

y1(x) := F (a, 1; c; x), y2(x) := x1−c(1− x)c−a−1, (2.2.15)

we have

y1(x) = −(1− c)y2(x)

∫ x

0

1

t(1− t)y2(t)
dt (ℜc > 1) , (2.2.16)

H1(ℓ)y1(x) = (1, ℓ)F (a, 1 + ℓ; c; x), (2.2.17)

H1(ℓ)y2(x) = (2− c, ℓ)y2(x)(1− x)−ℓF (1− a,−ℓ; 2− c; x). (2.2.18)

First, regarding (2.2.16), see (2.1) in [Du]. Note that (2.2.16) implies that
F (a, 1; c; x) can be expressed in terms of the incomplete beta function. Next, it
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is easily shown that (2.2.17) can be obtained from (2.2.2). Finally, we now demon-
strate (2.2.18). It is known that

(ϑ+ b)x1−cF (a+ 1− c, b+ 1− c; 2− c; x)

= (b+ 1− c)x1−cF (a+ 1− c, b+ 2− c; 2− c;x) (2.2.19)

(cf. Lemma 1.2.2). Then, applying the Euler transformation to both sides of
(2.2.19), we obtain

(ϑ+ b)x1−c(1− x)c−a−bF (1− a, 1− b; 2− c; x)

= (b+ 1− c)x1−c(1− x)c−a−b−1F (1− a,−b; 2− c;x), (2.2.20)

and thus,

H(ℓ)x1−c(1− x)c−a−bF (1− a, 1− b; 2− c; x)

= (b+ 1− c, ℓ)x1−c(1− x)c−a−b−ℓF (1− a, 1− b− ℓ; 2− c;x). (2.2.21)

Substituting b = 1 into (2.2.21), we obtain (2.2.18).

2.3 A proof of the theorem

In this section, we prove Theorem 2.1.1 using Lemmas 2.2.2 and 2.2.3.
Operating with H1(ℓ) on F (a, 1; c;x), from Lemma 2.2.3, we obtain

F (a, 1 + ℓ; c;x) =
H1(ℓ)

(1, ℓ)
F (a, 1; c;x)

=
1

(1, ℓ)
(q(x)∂ + r(x))

(
y2(x)

∫ x

0

−(1− c)

t(1− t)y2(t)
dt

)
=

1

(1, ℓ)

[
(q(x)∂ + r(x)) y2(x)×

∫ x

0

−(1− c)

t(1− t)y2(t)
dt− (1− c)q(x)

x(1− x)

]
=

1

(1, ℓ)

[
H1(ℓ)y2(x)×

∫ x

0

−(1− c)

t(1− t)y2(t)
dt− (1− c)q(x)

x(1− x)

]
=

(2− c, ℓ)

(1, ℓ)
y2(x)(1− x)−ℓF (1− a,−ℓ; 2− c;x)

∫ x

0

−(1− c)

t(1− t)y2(t)
dt− (1− c)q(x)

(1, ℓ)x(1− x)
(2.3.1)

for ℜc > 1. In particular, for any root λ of the polynomial F (1− a,−ℓ; 2− c;x), we
have

F (a, 1 + ℓ; c;λ) = − (1− c)q(λ)

(1, ℓ)λ(1− λ)
, (2.3.2)

and thus, from (2.2.12), this implies

F (a, 1 + ℓ; c;λ) = − (1− c)q0(λ)

(1, ℓ)(1− λ)ℓ
. (2.3.3)
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In addition, substituting λ for x in (2.2.13), we obtain

F (c− a, c− 1− ℓ; c;λ) = −(1− c)

(1, ℓ)
(1− λ)a+1−cq0(λ). (2.3.4)

Here, we have assumed that ℜc > 1. However, because both sides of (2.3.3) are
analytic functions of c, (2.3.3) is valid even if this condition is not satisfied, by
virtue of analytic continuation. The same holds for (2.3.4). This completes the
proof of Theorem 2.1.1.

Finally, using a symmetry of q0(x), we confirm the statement given in Remark
2.1.2. We begin by assuming that a /∈ Z. Then, although we have expressed q0(x)
as in (2.2.13), it can also be expressed as

q0(x) = xℓ−1×[
− (2− c, ℓ)(1, ℓ)

(a− 1)(2− a, ℓ)

(
1

x

)ℓ (
1− 1

x

)c−a−1

F

(
c− a, 1− a; 2− a+ ℓ;

1

x

)
+
(−1)ℓ(1− a, ℓ)

a− 1
F

(
2− c, 1; 2− a;

1

x

)
F

(
c− 1− ℓ,−ℓ; a− ℓ;

1

x

)]
(2.3.5)

(cf. Theorems 1.3.7 and 1.3.8). Note that the right-hand side of (2.3.5) is meaningful
by the above assumption. Therefore, we obtain (2.1.7).
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Chapter 3

Special values of the
hypergeometric series

3.1 Introduction

There are many known identities for the hypergeometric series F (a, b; c;x). For
example,

F (a,−n; c; 1) =
(c− a, n)

(c, n)
, (3.1.1)

where n ∈ Z≥0, has been known since the 13th century. Today, this is called the
Chu-Vandermonde equality (cf. Corollary 2.2.3 in [AAR]). In 1812, Gauss proved
the identity

F (a, b; c; 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
(3.1.2)

for ℜ(c − a − b) > 0. This is called the Gauss summation formula (cf. [48] in
24 of [Ga]). The goal of this chapter is to obtain expressions for values of the
hypergeometric series at some points other than x = 1. These expressions are
obtained in terms of gamma functions, together with certain elementary functions,
as (3.1.1) and (3.1.2). Such expressions are often called closed form expressions.

There are many methods for obtaining closed form expressions for values of the
hypergeometric series. In the latter half of the 19th century, such expressions valid
for points other than x = 1 were derived using algebraic transformations of the
hypergeometric series (cf. [V] for a treatment of algebraic transformations of the
hypergeometric series). In the last several decades, many new methods that exploit
progress in computer technology have been formulated: Gosper’s algorithm, the W-
Z method, Zeilberger’s algorithm, etc. (cf. [Ko] and [PWZ]). These algorithms have
been used to obtain and prove hypergeometric identities expressed in closed forms.
In this chapter, we employ three term relations of the hypergeometric series as Gauss
did (cf. 17 of [Ga]), and thereby find several new identities. Because our method
systematically yields almost all known identities of this type, for completeness, we
tabulate the entire set.
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As stated in Section 1.1, for a given triple of integers (k, l,m) ∈ Z3, there exists
a unique pair of rational functions (Q(x), R(x)) ∈ (Q(a, b, c, x))2 satisfying

F (a+ k, b+ l; c+m;x) = Q(x)F (a+ 1, b+ 1; c+ 1; x) +R(x)F (a, b; c; x). (3.1.3)

From this, we obtain

F (a+ nk, b+ nl; c+ nm;x)

= Q(n)(x)F (a+ (n− 1)k + 1, b+ (n− 1)l + 1; c+ (n− 1)m+ 1; x)

+R(n)(x)F (a+ (n− 1)k, b+ (n− 1)l, c+ (n− 1)m; x),

where

Q(n)(x) := Q(x)|(a,b,c)→(a+(n−1)k,b+(n−1)l,c+(n−1)m),

R(n)(x) := R(x)|(a,b,c)→(a+(n−1)k,b+(n−1)l,c+(n−1)m).

Let (a, b, c) be a triple such that the number of solutions of the system

Q(n)(x) = 0 for n = 1, 2, 3, · · · (3.1.4)

is finite, and let x (̸= 0, 1) be one of its solutions; we call such a quadruple (a, b, c, x)
an admissible quadruple (cf. Remark 3.2.4). For an admissible quadruple, we
have

F (a, b; c;x) =
1

R(1)(x)R(2)(x) · · ·R(n)(x)
× F (a+ nk, b+ nl; c+ nm; x). (3.1.5)

Substituting a = −nk−k′, where k′ is an integer satisfying 0 ≤ k′ < |k|, into (3.1.5),
we find

F (−nk − k′, b; c;x)

=

(
1

R(1)(x)R(2)(x) · · ·R(n)(x)

)∣∣∣∣
a→−nk−k′

× F (−k′, b+ nl; c+ nm;x).
(3.1.6)

We also obtain

F (a,−nl − l′; c; x)

=

(
1

R(1)(x)R(2)(x) · · ·R(n)(x)

)∣∣∣∣
b→−nl−l′

× F (a+ nk,−l′; c+ nm; x)
(3.1.7)

by substituting b = −nl − l′, where l′ is an integer satisfying 0 ≤ l′ < |l|, into
(3.1.5). In addition, we see that (3.1.6) and (3.1.7) is valid for any integer n from
the constitution method of (a, b, c, x) satisfying (3.1.4) (cf. (3.3.1)). In this way, we
can find closed form expressions of F (a, b; c;x). In this chapter, we call closed forms
obtained from the relation (3.1.5) special values of the hypergeometric series.

The hypergeometric equation E(a, b, c) : L(a, b, c)y = 0 (cf. Section 1.1) admits
23 hypergeometric solutions in addition to F (a, b; c;x). For each of these solutions,
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there exist a relation similar to (3.1.5) (cf. Section 1.3). For example, for the solution
x−aF (a, a+ 1− c; a+ 1− b; 1/x), we have

x−a−kF (a+ k, a+ 1− c+ k −m; a+ 1− b+ k − l; 1/x)

=
(−1)m−k−l+1c(b, l)(a+ 1− b, k − l)

b(c,m)(a+ 1− c, k −m)
Q(x)x−a−1F (a+ 1, a+ 1− c; a+ 1− b; 1/x)

+
(−1)m−k−l(b, l)(a+ 1− b, k − l)

(c,m)(a+ 1− c, k −m)
R(x)x−aF (a, a+ 1− c; a+ 1− b; 1/x).

Thus, because

F (a, a+ 1− c; a+ 1− b; 1/x)

=
(−1)n(m−k−l)(c, nm)(a+ 1− c, n(k −m))

(b, nl)(a+ 1− b, n(k − l))

1

R(1)(x)R(2)(x) · · ·R(n)(x)

× x−nkF (a+ nk, a+ 1− c+ n(k −m); a+ 1− b+ n(k − l); 1/x)

(3.1.8)

for an admissible quadruple (a, b, c, x), we also get special values of F (a, a + 1 −
c; a + 1 − b; 1/x) with this quadruple. The same can be done for the other 22
solutions. Thus, for the lattice point (k, l,m), we are able to obtain special values
of 24 hypergeometric series with the above quadruple.

The identity (3.1.8) implies that the special values of the 24 hypergeometric
series mentioned above for the lattice points (k, k − m, k − l) coincide with those
for the lattice point (k, l,m) (cf. Subsection 3.2.2). In other words, (k, k−m, k− l)
is equivalent to (k, l,m) with respect to the obtained special values. In fact, this
holds generally, as all 24 lattice points represented by triples corresponding to the
24 hypergeomtric solutions are equivalent with respect to these special values. In
addition, from the relation F (a, b; c;x) = F (b, a; c; x), which implies that (k, l,m)
is equivalent to (l, k,m), it can also be shown that the 48 (= 24 · 2) lattice points
are equivalent with respect to these special values. These 48 lattice points form
the orbit of (k, l,m) under the action of the group G on Z3, where G is the group
generated by following mappings

σ1 : (k, l,m) → (m− k, l,m), σ2 : (k, l,m) → (k, l, k + l −m),

σ3 : (k, l,m) → (l, k,m), σ4 : (k, l,m) → (m− k,m− l,m),

σ5 : (k, l,m) → (−k,−l,−m).

We remark that G = ⟨σ1, σ2⟩ n (⟨σ3⟩ × ⟨σ4⟩ × ⟨σ5⟩) = S3 n (S2 × S2 × S2), where
Sn is the symmetric group of degree n. From this, regarding these 48 lattice points
as equivalent, we can take the following set as a complete system of representatives
of the quotient G\Z3 of this action (cf. Subsection 3.2.2):

{(k, l,m) ∈ Z3 | 0 ≤ k + l −m ≤ l − k ≤ m}. (3.1.9)

Thus, we only need to investigate the lattice points contained in (3.1.9) to obtain
the special values of the hypergeometric series. In this chapter, we tabulate the
special values for (k, l,m) satisfying 0 ≤ k + l −m ≤ l − k ≤ m ≤ 6.
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3.2 Preliminaries

As stated in the previous section, for a given (k, l,m), the 24 hypergeometric solu-
tions of E(a, b, c) with an admissible quadruple (a, b, c, x) have two term relations as
(3.1.5) and (3.1.8), say degenerate relations. In this section, we list these degenerate
relations explicitly. This list will be used subsequently, when we evaluate special
values of the corresponding hypergeometric series. After presenting this list, we give
a proof that (3.1.9) can be taken as a complete system of representatives of G\Z3.

3.2.1 Degenerate relations

In this subsection, we list degenerate relations.

Lemma 3.2.1. E(a, b, c) admits the following 24 hypergeometric solutions (cf. 2.9
in [Erd]):

y1(a, b, c, x) := F (a, b; c;x)

= (1− x)c−a−bF (c− a, c− b; c;x)

= (1− x)−aF (a, c− b, c; x/(x− 1))

= (1− x)−bF (c− a, b; c;x/(x− 1)),

y2(a, b, c, x) := F (a, b; a+ b+ 1− c; 1− x)

= x1−cF (a+ 1− c, b+ 1− c; a+ b+ 1− c; 1− x)

= x−aF (a, a+ 1− c; a+ b+ 1− c; 1− x−1)

= x−bF (b+ 1− c, b; a+ b+ 1− c; 1− x−1),

y3(a, b, c, x) := x−aF (a, a+ 1− c; a+ 1− b; 1/x)

= (−1)a(−x)b−c(1− x)c−a−bF (1− b, c− b; a+ 1− b; 1/x)

= (−1)a(1− x)−aF (a, c− b; a+ 1− b; (1− x)−1)

= (−1)a(−x)1−c(1− x)c−a−1F (a+ 1− c, 1− b; a+ 1− b; (1− x)−1),

y4(a, b, c, x) := x−bF (b+ 1− c, b; b+ 1− a; 1/x)

= (−1)b(−x)a−c(1− x)c−a−bF (1− a, c− a; b+ 1− a; 1/x)

= (−1)b(1− x)−bF (b, c− a; b+ 1− a; (1− x)−1)

= (−1)b(−x)1−c(1− x)c−b−1F (b+ 1− c, 1− a; b+ 1− a; (1− x)−1),

y5(a, b, c, x) := x1−cF (a+ 1− c, b+ 1− c; 2− c; x)

= x1−c(1− x)c−a−bF (1− a, 1− b; 2− c; x)

= x1−c(1− x)c−a−1F (a+ 1− c, 1− b; 2− c;x/(x− 1))

= x1−c(1− x)c−b−1F (b+ 1− c, 1− a, 2− c; x/(x− 1)),

y6(a, b, c, x) := (1− x)c−a−bF (c− a, c− b; c+ 1− a− b; 1− x)

= x1−c(1− x)c−a−bF (1− a, 1− b; c+ 1− a− b; 1− x)

= xa−c(1− x)c−a−bF (c− a, 1− a; c+ 1− a− b; 1− x−1)

= xb−c(1− x)c−a−bF (c− b, 1− b; c+ 1− a− b; 1− x−1),

In the above, we must take the appropriate branches of (−1)a and (−1)b.
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We now apply both sides of (1.2.4) to yi (i = 1, 2, · · · , 6). First, we have

y1(a+ k, b+ l, c+m,x) =
ab(c,m)

c(a, k)(b, l)
q(x)y1(a+ 1, b+ 1, c+ 1, x)

+
(c,m)

(a, k)(b, l)
r(x)y1(a, b, c, x)

from (1.1.2). Recall that

Q(x) =
ab(c,m)

c(a, k)(b, l)
q(x), R(x) =

(c,m)

(a, k)(b, l)
r(x) (3.2.1)

(cf. (1.1.3)). Next, we apply both sides of (1.2.4) to y2. This yields

(a, k)(b, l)(c− a− b,m− k − l)

(c− a,m− k)(c− b,m− l)
y2(a+ k, b+ l, c+m,x)

= − ab

a+ b+ 1− c
q(x)y2(a+ 1, b+ 1, c+ 1, x) + r(x)y2(a, b, c, x)

(cf. (1.3.2) and Lemma 1.2.2). Combining this and (3.2.1), we obtain

y2(a+ k, b+ l, c+m,x)

=
c(c− a,m− k)(c− b,m− l)

(c− a− b− 1)(c− a− b,m− k − l)(c,m)
Q(x)y2(a+ 1, b+ 1, c+ 1, x)

+
(c− a,m− k)(c− b,m− l)

(c− a− b,m− k − l)(c,m)
R(x)y2(a, b, c, x)

Finally, applying both sides of (1.2.4) to yi (i = 3, 4, 5, 6), we have the following:

Lemma 3.2.2. We define Q(x) and R(x) as (3.1.3). Then, we have

y1(a+ k, b+ l, c+m,x) = Q(x)y1(a+ 1, b+ 1, c+ 1, x) +R(x)y1(a, b, c, x),

y2(a+ k, b+ l, c+m,x)

=
c(c− a,m− k)(c− b,m− l)

(c− a− b− 1)(c,m)(c− a− b,m− k − l)
Q(x)y2(a+ 1, b+ 1, c+ 1, x)

+
(c− a,m− k)(c− b,m− l)

(c,m)(c− a− b,m− k − l)
R(x)y2(a, b, c, x),

y3(a+ k, b+ l, c+m,x)

=
(−1)m+1−k−lc(b, l)(a+ 1− b, k − l)

b(c,m)(a+ 1− c, k −m)
Q(x)y3(a+ 1, b+ 1, c+ 1, x)

+
(−1)m−k−l(b, l)(a+ 1− b, k − l)

(c,m)(a+ 1− c, k −m)
R(x)y3(a, b, c, x),

y4(a+ k, b+ l, c+m,x)

=
(−1)m+1−k−lc(a, k)(b+ 1− a, l − k)

a(c,m)(b+ 1− c, l −m)
Q(x)y4(a+ 1, b+ 1, c+ 1, x)

+
(−1)m−k−l(a, k)(b+ 1− a, l − k)

(c,m)(b+ 1− c, l −m)
R(x)y4(a, b, c, x),
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y5(a+ k, b+ l, c+m,x)

=
c(1− c)(a, k)(b, l)(2− c,−m)

ab(c,m)(a+ 1− c, k −m)(b+ 1− c, l −m)
Q(x)y5(a+ 1, b+ 1, c+ 1, x)

+
(a, k)(b, l)(2− c,−m)

(c,m)(a+ 1− c, k −m)(b+ 1− c, l −m)
R(x)y5(a, b, c, x),

y6(a+ k, b+ l, c+m,x)

=
c(a+ b− c)(a, k)(b, l)

ab(c,m)(a+ b− c, k + l −m)
Q(x)y6(a+ 1, b+ 1, c+ 1, x)

+
(a, k)(b, l)

(c,m)(a+ b− c, k + l −m)
R(x)y6(a, b, c, x).

Using Lemmas 3.2.1 and 3.2.2, we are able to obtain 24 degenerate relations.
For example, substituting y1(a, b, c, x) = (1−x)c−a−bF (c− a, c− b; c;x) into the top
formula in Lemma 3.2.2, we obtain

(1− x)m−k−lF (c− a+m− k, c− b+m− l; c+m; x)

= Q(x)(1− x)−1F (c− a, c− b; c+ 1; x) +R(x)F (c− a, c− b; c;x). (3.2.2)

Therefore, defining

S(n) :=
1

R(1)(x)R(2)(x) · · ·R(n)(x)
,

where R(n)(x) := R(x)|(a,b,c)7→(a+(n−1)k,b+(n−1)l,c+(n−1)m), we find that

F (c− a, c− b; c;x)

= S(n)(1− x)n(m−k−l)F (c− a+ n(m− k), c− b+ n(m− l); c+ nm;x)

for an admissible quadruple (a, b, c, x). The following is obtained similarly from
Lemmas 3.2.1 and 3.2.2.

Proposition 3.2.3. Fix (k, l,m) ∈ Z3. For an admissible quadruple (a, b, c, x), we
obtain the following 24 degenerate relations:

(i)F (a, b; c;x) = S(n)F (a+ nk, b+ nl; c+ nm; x),

(ii)F (c− a, c− b; c;x)

= S(n)(1− x)n(m−k−l)F (c− a+ n(m− k), c− b+ n(m− l); c+ nm; x),

(iii)F (a, c− b; c; x/(x− 1))

= S(n)(1− x)−nkF (a+ nk, c− b+ n(m− l); c+ nm; x/(x− 1)),

(iv)F (c− a, b; c;x/(x− 1))

= S(n)(1− x)−nlF (c− a+ n(m− k), b+ nl; c+ nm; x/(x− 1)),

(v)F (a, b; a+ b+ 1− c; 1− x)

=
(c, nm)(c− a− b, n(m− k − l))

(c− a, n(m− k))(c− b, n(m− l))
S(n)

× F (a+ nk, b+ nl; a+ b+ 1− c+ n(k + l −m); 1− x),
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(vi)F (a+ 1− c, b+ 1− c; a+ b+ 1− c; 1− x)

=
(c, nm)(c− a− b, n(m− k − l))

(c− a, n(m− k))(c− b, n(m− l))
S(n)x−nm

× F (a+ 1− c+ n(k −m), b+ 1− c+ n(l −m)

; a+ b+ 1− c+ n(k + l −m); 1− x),

(vii)F (a, a+ 1− c; a+ b+ 1− c; 1− x−1)

=
(c, nm)(c− a− b, n(m− k − l))

(c− a, n(m− k))(c− b, n(m− l))
S(n)x−nk

× F (a+ nk, a+ 1− c+ n(k −m); a+ b+ 1− c+ n(k + l −m); 1− x−1),

(viii)F (b+ 1− c, b; a+ b+ 1− c; 1− x−1)

=
(c, nm)(c− a− b, n(m− k − l))

(c− a, n(m− k))(c− b, n(m− l))
S(n)x−nl

× F (b+ 1− c+ n(l −m), b+ nl; a+ b+ 1− c+ n(k + l −m); 1− x−1),

(ix)F (a, a+ 1− c; a+ 1− b; 1/x)

=
(−1)n(m−k−l)(c, nm)(a+ 1− c, n(k −m))

(b, nl)(a+ 1− b, n(k − l))
S(n)x−nk

× F (a+ nk, a+ 1− c+ n(k −m); a+ 1− b+ n(k − l); 1/x),

(x)F (1− b, c− b; a+ 1− b; 1/x)

=
(−1)n(m−l)(c, nm)(a+ 1− c, n(k −m))

(b, nl)(a+ 1− b, n(k − l))
S(n)(−x)n(l−m)(1− x)n(m−k−l)

× F (1− b− nl, c− b+ n(m− l); a+ 1− b+ n(k − l); 1/x),

(xi)F (a, c− b; a+ 1− b; (1− x)−1)

=
(−1)n(m−l)(c, nm)(a+ 1− c, n(k −m))

(b, nl)(a+ 1− b, n(k − l))
S(n)(1− x)−nk

× F (a+ nk, c− b+ n(m− l); a+ 1− b+ n(k − l); (1− x)−1),

(xii)F (a+ 1− c, 1− b; a+ 1− b; (1− x)−1)

=
(−1)n(m−l)(c, nm)(a+ 1− c, n(k −m))

(b, nl)(a+ 1− b, n(k − l))
S(n)(−x)−nm(1− x)n(m−k)

× F (a+ 1− c+ n(k −m), 1− b− nl; a+ 1− b+ n(k − l); (1− x)−1),

(xiii)F (b+ 1− c, b; b+ 1− a; 1/x)

=
(−1)n(m−k−l)(c, nm)(b+ 1− c, n(l −m))

(a, nk)(b+ 1− a, n(l − k))
S(n)x−nl

× F (b+ 1− c+ n(l −m), b+ nl; b+ 1− a+ n(l − k); 1/x),

(xiv)F (1− a, c− a; b+ 1− a; 1/x)

=
(−1)n(m−k)(c, nm)(b+ 1− c, n(l −m))

(a, nk)(b+ 1− a, n(l − k))
S(n)(−x)n(k−m)(1− x)n(m−k−l)

× F (1− a− nk, c− a+ n(m− k); b+ 1− a+ n(l − k); 1/x),

(xv)F (b, c− a; b+ 1− a; (1− x)−1)
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=
(−1)n(m−k)(c, nm)(b+ 1− c, n(l −m))

(a, nk)(b+ 1− a, n(l − k))
S(n)(1− x)−nl

× F (b+ nl, c− a+ n(m− k); b+ 1− a+ n(l − k); (1− x)−1),

(xvi)F (b+ 1− c, 1− a; b+ 1− a; (1− x)−1)

=
(−1)n(m−k)(c, nm)(b+ 1− c, n(l −m))

(a, nk)(b+ 1− a, n(l − k))
S(n)(−x)−nm(1− x)n(m−l)

× F (b+ 1− c+ n(l −m), 1− a− nk; b+ 1− a+ n(l − k); (1− x)−1),

(xvii)F (a+ 1− c, b+ 1− c; 2− c; x)

=
(c, nm)(a+ 1− c, n(k −m))(b+ 1− c, n(l −m))

(a, nk)(b, nl)(2− c,−nm)
S(n)x−nm

× F (a+ 1− c+ n(k −m), b+ 1− c+ n(l −m); 2− c− nm;x),

(xviii)F (1− a, 1− b; 2− c; x)

=
(c, nm)(a+ 1− c, n(k −m))(b+ 1− c, n(l −m))

(a, nk)(b, nl)(2− c,−nm)
S(n)x−nm(1− x)n(m−k−l)

× F (1− a− nk, 1− b− nl; 2− c− nm; x),

(xix)F (a+ 1− c, 1− b; 2− c;x/(x− 1))

=
(c, nm)(a+ 1− c, n(k −m))(b+ 1− c, n(l −m))

(a, nk)(b, nl)(2− c,−nm)
S(n)x−nm(1− x)n(m−k)

× F (a+ 1− c+ n(k −m), 1− b− nl; 2− c− nm; x/(x− 1)),

(xx)F (b+ 1− c, 1− a; 2− c; x/(x− 1))

=
(c, nm)(a+ 1− c, n(k −m))(b+ 1− c, n(l −m))

(a, nk)(b, nl)(2− c,−nm)
S(n)x−nm(1− x)n(m−l)

× F (b+ 1− c+ n(l −m), 1− a− nk; 2− c− nm; x/(x− 1)),

(xxi)F (c− a, c− b; c+ 1− a− b; 1− x)

=
(c, nm)(a+ b− c, n(k + l −m))

(a, nk)(b, nl)
S(n)(1− x)n(m−k−l)

× F (c− a+ n(m− k), c− b+ n(m− l); c+ 1− a− b+ n(m− k − l); 1− x),

(xxii)F (1− a, 1− b; c+ 1− a− b; 1− x)

=
(c, nm)(a+ b− c, n(k + l −m))

(a, nk)(b, nl)
S(n)x−nm(1− x)n(m−k−l)

× F (1− a− nk, 1− b− nl; c+ 1− a− b+ n(m− k − l); 1− x),

(xxiii)F (c− a, 1− a; c+ 1− a− b; 1− x−1)

=
(c, nm)(a+ b− c, n(k + l −m))

(a, nk)(b, nl)
S(n)xn(k−m)(1− x)n(m−k−l)

× F (c− a+ n(m− k), 1− a− nk; c+ 1− a− b+ n(m− k − l); 1− x−1),

(xxiv)F (c− b, 1− b; c+ 1− a− b; 1− x−1)

=
(c, nm)(a+ b− c, n(k + l −m))

(a, nk)(b, nl)
S(n)xn(l−m)(1− x)n(m−k−l)

× F (c− b+ n(m− l), 1− b− nl; c+ 1− a− b+ n(m− k − l); 1− x−1).

Remark 3.2.4. From the treatment presented in Section 3.1, it is understood that
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x in an admissible quadruple is not a free parameter. The reason for this is the
following. If x were a free parameter, then some of the 24 degenerate relations may
be incorrect, while the special values obtained from the remaining correct relations
would be trivial. (Here ‘trivial’ means obvious from the definition of F (a, b; c; x).)
For example, in the case (k, l,m) = (0, 1, 1), we have

F (a, b+ 1; c+ 1; x) =
a (1− x)F (a+ 1, b+ 1; c+ 1; x)

a− c
− cF (a, b; c;x)

a− c
. (3.2.3)

This implies that

Q(n)(x) =
a(1− x)

a− c− n+ 1
,

and, therefore, the (a, b, c, x) satisfying (3.1.4) are (a, b, c, x) = (0, b, c, x) and (a, b, c,
1). In the former case, we find that the 12 degenerate relations (xiii)-(xxiv) are
incorrect because the denominator of the coefficient of yi(a + 1, b + 1, c + 1, x) (i =
4, 5, 6) in Lemma 3.2.2 contains a as a factor. In addition, the special values obtained
from the 12 correct degenerate relations are trivial. For this reason, we exclude cases
in which x is a free parameter from consideration.

3.2.2 A complete system of representatives of G\Z3

In this subsection, we prove that we only need to investigate the lattice points
contained in (3.1.9) to obtain the special values of the hypergeometric series.

First, we show that the 48 lattice points that form the orbit of (k, l,m) under the
action of G on Z3 (cf. Section 3.1) are equivalent with respect to the obtained special
values. We do this by considering two particular examples, (m − k,m − l,m) and
(k,m − l,m), and demonstrating that they are equivalent to (k, l,m) with respect
to the special values. The general result follows by analogy.

To begin with, we consider the case of (m− k,m− l,m). We start by replacing
(a, b, c, x) with (c−a, c− b, c, x). Then, the three term relation for (m−k,m− l,m)
is expressed as

F (c− a+m− k, c− b+m− l; c+m; x)

= Q′(x)F (c− a+ 1; c− b+ 1; c+ 1; x) +R′(x)F (c− a, c− b; c;x),

and that for (0, 0, 1) is

F (c− a, c− b; c+ 1; x) =
(c− a)(c− b)(1− x)

ab
F (c− a+ 1; c− b+ 1; c+ 1; x)

+
c(a+ b− c)

ab
F (c− a, c− b; c; x).

These two three term relations lead to

(c− a)(c− b)(1− x)

ab
F (c− a+m− k, c− b+m− l; c+m;x)

= Q′(x)F (c− a, c− b, c+ 1; x)
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+

{
(c− a)(c− b)(1− x)

ab
R′(x)− (c− a)(a+ b− c)

ab
Q′(x)

}
F (c− a, c− b; c;x).

(3.2.4)

Equating (3.2.2) with (3.2.4), we have

Q(x) =
ab

(c− a)(c− b)
(1− x)m−k−lQ′(x). (3.2.5)

Hence, the admissible quadruples for (k, l,m) coincide with those for (m − k,m −
l,m). This implies that the special values for (k, l,m) coincide with those for (m−
k,m− l,m); that is, (m− k,m− l,m) is equivalent to (k, l,m) with respect to the
obtained special values.

We next show that (k,m − l,m) is equivalent to (k, l,m) with respect to the
obtained special values. From the top formula in Lemma 3.2.2, we have

(1− x)−kF (a+ k, c− b+m− l; c+m; x/(x− 1))

= Q(x)(1− x)−1F (a+ 1, c− b; c+ 1; x/(x− 1)) +R(x)F (a, c− b; c;x/(x− 1)).
(3.2.6)

Also, making the replacement (a, b, c, x) → (a, c − b, c, x/(x − 1)), we find that the
three term relation for (k,m− l,m) is expressible as

F (a+ k, c− b+m− l; c+m;x/(x− 1))

= Q′′(x)F (a+ 1, c− b+ 1; c+ 1; x/(x− 1)) +R′′(x)F (a, c− b; c;x/(x− 1)).
(3.2.7)

Then, using

F (a+ 1, c− b, c+ 1; x/(x− 1)) =
(b− c)F (a+ 1, c− b+ 1; c+ 1; x/(x− 1))

b(1− x)

+
cF (a, c− b; c;x/(x− 1))

b

and (3.2.7), we get

b− c

b(1− x)
F (a+ k, c− b+m− l; c+m;x/(x− 1))

= Q′′(x)F (a+ 1, c− b; c+ 1; x/(x− 1))

+

{
(b− c)

b(1− x)
R′′(x)− c

b
Q′′(x)

}
F (a, c− b; c;x/(x− 1)). (3.2.8)

Finally, equating (3.2.6) and (3.2.8), we obtain

Q(x) =
b(1− x)2−k

b− c
Q′′(x). (3.2.9)

Therefore, the admissible quadruples for (k, l,m) coincide with those for (k,m−l,m).
This means that (k,m− l,m) is equivalent to (k, l,m) with respect to the obtained
special values.

We can show that the other 46 lattice points are equivalent to (k, l,m) with
respect to the obtained special values analogously.
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Remark 3.2.5. The reason that we assumed x ̸= 0, 1 in the definition of an admis-
sible quadruple (a, b, c, x) is that if we do not make this assumption, there are cases
in which the admissible quadruples for (k, l,m) do not coincide with those for the
other 47 points (cf. (3.2.5), (3.2.9) and Subsection 3.3.1).

Next, we determine a complete system of representatives of the quotient of
the action of G on Z3. Recall that G = ⟨σ1, σ2⟩ n (⟨σ3⟩ × ⟨σ4⟩ × ⟨σ5⟩) = S3 n
(S2 × S2 × S2). To begin with, we find a complete system of representatives of
the quotient of the action of (⟨σ3⟩ × ⟨σ4⟩ × ⟨σ5⟩) on Z3. From σ5, we see that
(−k,−l,−m) is identical to (k, l,m). Hence, we can assume 0 ≤ m. Further, be-
cause (m− k,m− l,m) is identical to (k, l,m) by σ4, we can assume 0 ≤ k+ l−m.
In addition, because (l, k,m) is identical to (k, l,m) by σ3, we can assume 0 ≤ l−k.
Thus, we can take {(k, l,m) ∈ Z3 | 0 ≤ k+l−m, l−k,m}, which we callD, as a com-
plete system of representatives of the quotient of the action of (⟨σ3⟩ × ⟨σ4⟩ × ⟨σ5⟩)
on Z3. We now proceed to obtain a complete system of representatives of the quo-
tient of the action of G on Z3. If (k, l,m) ∈ D, then D also contains (m− k, l,m),
(k, l, k+ l−m), (l−m, l, k+ l−m), (l−m, l, l−k) and (m−k, l, l−k). Then, with

α = k + l −m, β = l − k, γ = m

e1 = (1/2, 1/2, 0), e2 = (−1/2, 1/2, 0), e3 = (1/2, 1/2, 1),

we have the following:

(k, l,m) = αe1 + βe2 + γe3, (m− k, l,m) = αe2 + βe1 + γe3,

(k, l, k + l −m) = αe3 + βe2 + γe1, (l −m, l, k + l −m) = αe3 + βe1 + γe2,

(l −m, l, l − k) = αe1 + βe3 + γe2, (m− k, l, l − k) = αe2 + βe3 + γe1.

Together, these imply that we are able to adopt (3.1.9) as a complete system of the
quotient of the action of G on Z3. Thus, we only have to investigate the lattice
points contained in (3.1.9) to obtain the special values of the hypergeometric series.

3.3 Derivation of special values

In this section, we derive the special values for some lattice points as examples.
For a given lattice point, the numerator of Q(n)(x) is a polynomial in n over

Z[a, b, c, x]. Therefore, in order to obtain the admissible quadruples, we seek the
(a, b, c, x) that eliminate all of the coefficients of this polynomial.

Although we implicitly assumed that the parameter c of F (a, b; c;x) is an ele-
ment of C \ {0,−1,−2, · · · }, for the rest of chapter, we expand the definition of
F (a, b; c;x). From this point, even if the parameter c is a non-positive integer, we
define F (a, b; c;x) as follows if the parameter a is a non-positive integer satisfying
c < a:

F (a, b; c;x) :=

|a|∑
n=0

(a, n)(b, n)

(c, n)(1, n)
xn.
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3.3.1 Example 1: (k, l,m) = (0, 1, 1)

We first consider the case m = 1. Then, the only (k, l,m) satisfying (3.1.9) is
(0, 1, 1). For this point, the corresponding three term relation is (3.2.3), and this
leads to

Q(n)(x) =
a(1− x)

a− c− n+ 1
.

Hence, (a, b, c, x) = (a, b, c, 1) satisfies (3.1.4) (and so does (0, b, c, x), but for the
reason explained in Remark 3.2.4, we do not consider this case).

In the case (a, b, c, x) = (a, b, c, 1), because

S(n) =
(c− a, n)

(c, n)
,

we have

F (a, b; c; 1) =
(c− a, n)

(c, n)
F (a, b+ n; c+ n; 1).

From this, substituting b = −n, where n ∈ Z≥0, we get the Chu-Vandermonde
equality, (3.1.1). Note that this equality holds even if c is a non-positive integer
with c < b = −n.

Because (a, b, c, 1) is not an admissible quadruple, we should investigate the
other 47 points. For example, considering the case (k, l,m) = (0, 0, 1), we get the
Gauss summation formula, (3.1.2). Similarly, the Chu-Vandermonde equality and
the Gauss summation formula are provided by the other 46 points.

3.3.2 Example 2: (k, l,m) = (1, 2, 2)

In the case (k, l,m) = (1, 2, 2), because

F (a+ 1, b+ 2, c+ 2, x)

=
(c+ 1) (−c+ xa)F (a+ 1, b+ 1, c+ 1, x)

x (a− c) (b+ 1)
+

c (c+ 1)F (a, b, c, x)

x (a− c) (b+ 1)
,

the numerator of Q(n)(x) is

(−4 + 2 x)n2 + ((c+ 2 a− 3)x− 4 c+ 6)n+ (1− c+ ca− a)x− c2 + 3 c− 2.
(3.3.1)

Therefore, the admissible quadruple (a, b, c, x) is (a, b, 2a, 2), and

S(n) =
(−1)n (1/2 b+ 1/2, n)

(a+ 1/2, n)
,

where we denote 1
2
b by 1/2 b, and we also denote thus for the rest of this chapter.

Hence, (i) in Proposition 3.2.3 leads to

F (a, b; 2 a; 2) =
(−1)n (1/2 b+ 1/2, n)

(a+ 1/2, n)
F (a+ n, b+ 2n; 2 a+ 2n; 2) (3.3.2)
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Although (3.3.2) is valid by virtue of analytic continuation, this equality regarded
as an infinite series expression does not make sense. For this reason, we carry out
the degeneration of this into a finite series expression that does make sense. This
is done separately in the following cases: a = −n − 1, b = −2n and b = −2n − 1,
where n ∈ Z≥0. If a = −n− 1, then the right hand side of (3.3.2) becomes

(−1)n (1/2 b+ 1/2, n)F (−1, b+ 2n;−2; 2)

(−1/2− n, n)
=

(2n+ b+ 1) (1/2 b+ 1/2, n)

(3/2, n)
.

If b = −2n, then the right hand side of (3.3.2) is

(1/2, n)

(a+ 1/2, n)
.

If b = −2n− 1, then the right hand side of (3.3.2) is equal to

(1, n)F (a+ n,−1; 2 a+ 2n; 2)

(a+ 1/2, n)
= 0.

The special values obtained from (ii), (iii) and (iv) are identical to the above.
Next, using (v) in Proposition 3.2.3, we have

F (a, b; b+ 1− a; −1) =
22n (1/2 b+ 1/2, n)

(b+ 1− a, n)
F (a+ n, b+ 2n; b+ 1− a+ n; −1).

(3.3.3)

Substituting a = −n into (3.3.3), this becomes

F (−n, b; b+ 1 + n; −1) =
22nΓ (1/2 b+ 1/2 + n) Γ (n+ b+ 1)

Γ (1/2 b+ 1/2) Γ (2n+ b+ 1)
. (3.3.4)

Note that the validity of (3.3.4) for any integer n follows from the constitution
method of (a, b, c, x) satisfying (3.1.4) (cf. (3.3.1)). The following lemma is known
(cf. 5.3 in [Ba]):

Lemma 3.3.1. (Carlson’s theorem) We assume that f(z) and g(z) are regular and
of the form O(ek|z|), where k < π, for ℜz ≥ 0, and f(z) = g(z) for z = 0, 1, 2 · · · .
Then, f(z) = g(z) on {z | ℜz ≥ 0}.

It is easily confirmed that both sides of (3.3.4) satisfy the assumption of the
above lemma. Hence, (3.3.4) holds for any complex number n for which the left
hand side is meaningful. Resultingly, substituting n = −a into (3.3.4), we find

F (a, b; b+ 1− a; −1) =
2−2aΓ (1/2 b+ 1/2− a) Γ (b+ 1− a)

Γ (1/2 b+ 1/2) Γ (b+ 1− 2 a)
.

Now, we consider the case a, b + 1 − a ∈ Z≤0 with b + 1 − a < a. Specifically,
we consider the case a = −n, b = −2n − n1 − 2, where n, n1 ∈ Z≥0. Then, (3.3.3)
leads to

F (a, b; b+ 1− a;−1) =
22n (1/2n1 + 3/2, n)

(n1 + 2, n)
.
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Next, we consider the case b, b + 1 − a ∈ Z≤0 with b + 1 − a < b. Then, if
a = n1 + 2, b = −2n, where n1, n ∈ Z≥0, (3.3.3) implies

F (a, b; b+ 1− a; −1) =
(1/2, n)(n1 + 2, n)

(1/2n1 + 1, n)(1/2n1 + 3/2, n)
.

If a = n1 + 2, b = −2n− 1, where n1, n ∈ Z≥0, we find

F (a, b; b+ 1− a; −1) = 0

from (3.3.3).
We are able to obtain special values from the other 19 degenerate relations

similarly. Those values are tabulated in the following section.

3.3.3 Example 3: (k, l,m) = (1, 2, 3)

For an admissible quadruple (a, 2a− 1/3, 3a, 9), we have

S(n) =
(−4)n (a+ 1/2, n)

(a+ 2/3, n)
.

Now, we consider the special values obtained from (vii) in Proposition 3.2.3. Because
(vii) in this case is

F (a, 1− 2 a; 2/3; 8/9) = (−3)n F (a+ n,−2 a+ 1− 2n; 2/3; 8/9),

we find

F (a, 1− 2 a; 2/3; 8/9) =


(−3)n if a = −n,

(−3)−n if a = n+ 1/2,

(−3)−n−1 if a = n+ 1.

However, we can not directly apply Lemma 3.3.1 to the above identity, because its
left hand side does not satisfy the assumption of that lemma. For this reason, we
get the special value of F (a, 1− 2 a; 2/3; 8/9) using the following algebraic trans-
formation of the hypergeometric series:

F (a, 1− 2 a; 2/3; x) = (1− x)1/2 a−1/4 F (1/2 a− 1/12, 1/4− 1/2 a; 2/3; u(x)),
(3.3.5)

with

u(x) =
1

64

x (−8 + 9 x)3

x− 1
.

We remark that this holds near x = 0. Now, we carry out an analytic continuation
of each side of (3.3.5) along a curve starting at x = 0 and ending at x = 8/9, as
depicted in Figure 1. Noting that u(x) encircles u = 1 once counterclockwise, as
shown in Figure 2, we obtain

F (a, 1− 2 a; 2/3; 8/9) = 2 · 3−a sin ((5/6− a)π)

using the following lemma (cf. Theorem 4.7.2 in [IKSY]):
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Figure 3.1: x-plane Figure 3.2: u-plane

Lemma 3.3.2. Let γ1 be a loop starting and ending at x = a, where 0 < a < 1, and
encircling x = 1 once in the counterclockwise direction. Then, analytic continuation
of (y1(a, b, c, x), y5(a, b, c, x)) along γ1 is given by

(y1(a, b, c, x), y5(a, b, c, x))P
−1AP,

where

P =

 Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)

Γ(2−c)(c−a−b)
Γ(1−a)Γ(1−b)

Γ(c)Γ(a+b−c)
Γ(a)Γ(b)

Γ(a+b−c)Γ(2−c)
Γ(a+1−c)Γ(b+1−c)

 , A =

[
1 0

0 e2 iπ (c−a−b)

]
.

3.4 Tables of special values

In this section, using Proposition 3.2.3, we tabulate the special values for (k, l,m)
satisfying 0 ≤ k+l−m ≤ l−k ≤ m ≤ 6. However, we exclude the Chu-Vandermonde
equality, (3.1.1) and the Gauss summation formula, (3.1.2).

Let n, n1, n2 ∈ Z≥0. Then, recall that

F (a, b; c; x) :=

|a|∑
n=0

(a, n)(b, n)

(c, n)(1, n)
xn

when a and c are non-positive integers satisfying c < a. Further, recall that we
denote 1

2
a by 1/2 a, and so on.

For a given (k, l,m), we use the expression (**)≤(*) to indicate that the values
obtained from (**) in Proposition 3.2.3 coincide with or are contained in those
obtained from (*).
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3.4.1 m = 1

(k, l,m) = (0, 1, 1)

In this case, there is no admissible quadruple (cf. Subsection 3.1).

3.4.2 m = 2

(k, l,m) = (1, 2, 2)

In the case that (k, l,m) = (1, 2, 2), we obtain

(a, b, c, x) = (a, b, 2 a, 2), S(n) =
(−1)n(1/2 b+ 1/2, n)

(a+ 1/2, n)
. (1,2,2-1)

(1,2,2-1)

(i) F (a, b; 2 a; 2) =


(b+ 1 + 2n) (1/2 b+ 1/2, n)

(3/2, n)
if a = −n− 1,

(1/2, n)

(a+ 1/2, n)
if b = −2n,

0 if b = −2n− 1

(The first case is identical to (4.11) in [Ge]). We find that (ii), (iii), (iv) ≤ (i).

(v) F (a, b; b+ 1− a;−1)

=



2−2 aΓ (1/2 b+ 1/2− a) Γ (b+ 1− a)

Γ (1/2 b+ 1/2) Γ (b+ 1− 2 a)
,

(1/2, n2)(n1 + 2, n2)

(1/2n1 + 1, n2)(1/2n1 + 3/2, n2)
if a = n1 + 2, b = −2n2,

0 if a = n1 + 2, b = −2n2 − 1,
22n1 (1/2n2 + 3/2, n1)

(n2 + 2, n1)
if a = −n1, b = −2n1 − n2 − 2

(The first case is identical to 2.8(47) in [Erd]). We find that (vi)≤(v).

(vii) F (a, 1− a; b+ 1− a; 1/2)

=



2−aΓ (1/2 b+ 1/2− a) Γ (b+ 1− a)

Γ (1/2 b+ 1/2) Γ (b+ 1− 2 a)
,

2n1 (1/2n2 + 3/2, n1)

(n2 + 2, n1)
if a = −n1, b = −2n1 − n2 − 2 ,

(n1 + n2 + 2, n1)

2n1 (1/2n2 + 1, n1)
if a = n1 + 1, b = −n2 − 1

(The first case is identical to 2.8(51) in [Erd]).

(viii) F (b, b+ 1− 2 a; b+ 1− a; 1/2)

=


2b−2 aΓ (1/2 b+ 1/2− a) Γ (b+ 1− a)

Γ (1/2 b+ 1/2) Γ (b+ 1− 2 a)
,

(1/2, n2) (n1 + 2, n2)

22n2 (1/2n1 + 3/2, n2) (1/2n1 + 1, n2)
if a = n1 + 2, b = −2n2 ,

0 if a = n1 + 2, b = −2n2 − 1
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(The first case is identical to 2.8(50) in [Erd]). The special values obtained from
(ix)-(xxiv) are contained in the above.

(k, l,m) = (0, 2, 2)

When (k, l,m) = (0, 2, 2), we obtain(a, b, c, x) = (a, b, b+ 1− a,−1),

S(n) =
(1/2 b+ 1/2, n) (1/2 b+ 1− a, n)

(1/2 b+ 1/2− 1/2 a, n) (1/2 b+ 1− 1/2 a, n)
.

(0,2,2-1)

(0,2,2-1) The special values obtained from (0,2,2-1) are contained in those ob-
tained from (1,2,2-1) except the following:

(iv) F (b, b+ 1− 2 a; b+ 1− a; 1/2)

=


(3 + 2n1, n2) (1/2, n2)

22n2 (n1 + 2, n2) (n1 + 3/2, n2)
if a = −2n1 − 2, b = −4n1 − 2n2 − 5 ,

0 if a = −2n1 − 2, b = −4n1 − 2n2 − 6.

(k, l,m) = (1, 1, 2)

In this case, there is no admissible quadruple.

(k, l,m) = (1, 3, 2)

In this case, we have

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2 + 1/2 i
√
3), S(n) =

(
−3/4 i

√
3
)n

(a+ 1/3, n)

(a+ 1/2, n)
,

(1,3,2-1)

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2− 1/2 i
√
3), S(n) =

(
3/4 i

√
3
)n

(a+ 1/3, n)

(a+ 1/2, n)
.

(1,3,2-2)

(1,3,2-1)

(i)F (a, 3 a− 1; 2 a; 1/2 + 1/2 i
√
3)

=


22 a−2/3e1/2 i(a−1/3)πΓ (2/3) Γ (a+ 1/2)

33/2 a−1/2Γ (5/6) Γ (a+ 1/3)
,

(−i)n+1 33/2n+1/2 (5/3, n)

22n (3/2, n)
if a = −1− n

(The first case is identical to 2.8(55) in [Erd] and the second case is identical to
Theorem 11 in [Ek]).

(ii)F (a, 1− a; 2 a; 1/2 + 1/2 i
√
3)
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=


22 a−2/3e1/6 i(1−a)πΓ (2/3) Γ (a+ 1/2)

33/2 a−1/2Γ (5/6) Γ (a+ 1/3)
,

− (−i)n+1 33/2n+1/2
(
1 + i

√
3
)2n−1

(5/3, n)

24n−1 (3/2, n)
if a = −1− n.

(iii)F (a, 1− a; 2 a; 1/2− 1/2 i
√
3)

=


22 a−2/3e1/6 i(a−1)πΓ (2/3) Γ (a+ 1/2)

33/2 a−1/2Γ (5/6) Γ (a+ 1/3)
,

−in+133/2n+1/2
(
1− i

√
3
)2n−1

(5/3, n)

24n−1 (3/2, n)
if a = −1− n.

(iv)F (a, 3 a− 1; 2 a; 1/2− 1/2 i
√
3)

=


22 a−2/3e1/6 i(1−3 a)πΓ (2/3) Γ (a+ 1/2)

33/2 a−1/2Γ (5/6) Γ (a+ 1/3)
,

in+133/2n+1/2 (5/3, n)

22n (3/2, n)
if a = −1− n

(The first case is identical to 2.8(56) in [Erd] and the second case is identical to
Theorem 11 in [Ek]). The special values obtained from (v)-(xxiv) are contained in
the above.

(1,3,2-2) The special values obtained from (1,3,2-2) coincide with those obtained
from (1,3,2-1).

3.4.3 m = 3

(k, l,m) = (0, 3, 3)

In this case, we get

(a, b, c, x) = (1, b, b,−1/2 + 1/2 i
√
3), S(n) = 1, (0,3,3-1)

(a, b, c, x) = (1, b, b,−1/2− 1/2 i
√
3), S(n) = 1, (0,3,3-2)

(a, b, c, x) = (0, b, b+ 1,−1/2 + 1/2 i
√
3), S(n) = 1, (0,3,3-3)

(a, b, c, x) = (0, b, b+ 1,−1/2− 1/2 i
√
3), S(n) = 1. (0,3,3-4)

(0,3,3-1) The special values obtained from (0,3,3-1) except trivial values are spe-
cial cases of

F (1, b; 2; x) =
(1− x)1−b − 1

(b− 1)x
. (3.4.1)

(0,3,3-2), (0,3,3-3), (0,3,3-4) The special values obtained from (0,3,3-2), (0,3,3-
3) and (0,3,3-4) coincide with those obtained from (0,3,3-1).
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(k, l,m) = (1, 2, 3)

In this case, we have

(a, b, c, x) = (a, 2 a− 1/3, 3 a, 9), S(n) =
(−4)n (a+ 1/2, n)

(a+ 2/3, n)
, (1,2,3-1)

(a, b, c, x) = (a, 2 a− 2/3, 3 a− 1, 9), S(n) =
(−4)n (a+ 1/2, n)

(a+ 2/3, n)
. (1,2,3-2)

(1,2,3-1)

(i)F (a, 2 a− 1/3; 3 a; 9) =



(−6) (−4)n (3/2, n)

(4/3, n)
if a = −1− n,

(−4)n (1/3, n)

(1/6, n)
if a = 1/6− n,

10 (−4)n (11/6, n)

(5/3, n)
if a = −4/3− n

(The first case is identical to Theorem 17 in [Ek]).

(ii)F (2 a, a+ 1/3; 3 a; 9) =


(−6) (−4)n (3/2, n)

(4/3, n)
if a = −1− n,

0 if a = −1/2− n,
(−4)n (5/6, n)

(2/3, n)
if a = −1/3− n

(The third case is identical to Theorem 18 in [Ek]).

(iii)F (a, a+ 1/3; 3 a; 9/8) =


3 (3/2, n)

2n+2 (4/3, n)
if a = −1− n,

(5/6, n)

2n (2/3, n)
if a = −1/3− n.

(iv)F (2 a, 2 a− 1/3; 3 a; 9/8) =



3

2

(3/2, n)

(−16)n+1 (4/3, n)
if a = −1− n,

0 if a = −1/2− n,
(1/3, n)

(−16)n (1/6, n)
if a = 1/6− n,

−5 (11/6, n)

(−16)n+2 (5/3, n)
if a = −4/3− n.

(v)F (a, 2 a− 1/3; 2/3; −8) =


(−3)3n if a = −n,

(−3)3n if a = 1/6− n,

(−3)3n+1 if a = −1/3− n

(The second case is identical to (3.12) in [GS] and the first case is identical to (5.23)
in [GS]). We find that (vi)≤(v).

(vii)F (a, 1− 2 a; 2/3; 8/9) = 2 · 3−a sin ((5/6− a)π)

42



(The above is identical to (8/9.1) in [Go] and (3.2) in [Ka]). We find that (viii)≤(vii).

(ix)F (a, 1− 2 a; 4/3− a; 1/9) =
3−a

√
πΓ (4/3− a)

21/3−2 aΓ (2/3) Γ (7/6− a)

(The above is identical to (1/9.4) in [Go] and (1.2) in [Ka]).

(x)F (4/3− 2 a, a+ 1/3; 4/3− a; 1/9) =
32/3−a

√
πΓ (4/3− a)

24/3−2 aΓ (2/3) Γ (7/6− a)

(The above is identical to (1/9.5) in [Go] and (1.3) in [Ka]).

(xi)F (a, a+ 1/3; 4/3− a; −1/8) =
3−3 a

√
πΓ (4/3− a)

21/3−5 aΓ (2/3) Γ (7/6− a)
.

(xii)F (1− 2 a, 4/3− 2 a; 4/3− a; −1/8) =
33 a−2

√
πΓ (4/3− a)

24 a−8/3Γ (2/3) Γ (7/6− a)

(The above is a generalization of Theorem 32 in [Ek]). We find (xiii)≤(ix), (xiv)≤(x),
(xv)≤(xi), (xvi)≤(xii), (xvii)≤(i), (xviii)≤(ii), (xix)≤(iii), (xx)≤(iv).

(xxi)F (2 a, a+ 1/3; 4/3; −8) =



(−3)3n (1/2, n)

(7/6, n)
if a = −n,

0 if a = −1/2− n,

(−3)3n (5/6, n)

(3/2, n)
if a = −1/3− n

(The third case is identical to (3.7) in [GS]). We find (xxii)≤(xxi).

(xxiii)F (2 a, 1− a; 4/3; 8/9) =
3a−1

√
πΓ (1/6)

2Γ (7/6− a) Γ (a+ 1/2)

(The above is identical to (8/9.2) in [Go], (5.24) in [DS] and (3.3) in [Ka]).

(1,2,3-2) The special values obtained from (1,2,3-2) coincide with those obtained
from (1,2,3-1).

(k, l,m) = (1, 3, 3)

In this case, we get

(a, b, c, x) = (a, 3 a− 1/2, 3 a,−3), S(n) =
22n (a+ 1/2, n)2

(a+ 1/3, n) (a+ 2/3, n)
, (1,3,3-1)

(a, b, c, x) = (a, 3 a− 3/2, 3 a− 1,−3), S(n) =
22n (a− 1/6, n) (a+ 1/6, n)

(a− 1/3, n) (a+ 1/3, n)
,

(1,3,3-2)

(a, b, c, x) = (a, 3 a+ 1, 3 a, 3/2), S(n) =
(−3)3n (a+ 1, n) (2 a, 2n)

23n (3 a, 3n)
, (1,3,3-3)

(a, b, c, x) = (a, 3 a− 3, 3 a− 1, 3/2), S(n) =
(3 a− 2)

(−2)n (3 a− 2 + 3n)
. (1,3,3-4)
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(1,3,3-1)

(i)F (a, 3 a− 1/2; 3 a; −3) =



9 · 22n−1 (3/2, n)2

(5/3, n) (4/3, n)
if a = −1− n,

22n (1/3, n)2

(1/2, n) (1/6, n)
if a = 1/6− n,

22n+1 (2/3, n)2

(5/6, n) (1/2, n)
if a = −1/6− n,

0 if a = −1/2− n.

(ii)F (1/2, 2 a; 3 a; −3) =


9

8

(3/2, n)2

(5/3, n) (4/3, n)
if a = −1− n,

0 if a = −1/2− n.

(iii)F (1/2, a; 3 a; 3/4) =


2√
3

Γ (a+ 1/3) Γ (a+ 2/3)

(Γ (a+ 1/2))2
,

9

8

(3/2, n)2

(5/3, n) (4/3, n)
if a = −1− n

(The first case is identical to (3/4.1) in [Go]).

(iv)F (2 a, 3 a− 1/2; 3 a; 3/4) =


24 a√
3

Γ (a+ 1/3) Γ (a+ 2/3)

(Γ (a+ 1/2))2
,

9 (3/2, n)2

24n+7 (5/3, n) (4/3, n)
if a = −1− n.

(v)F (a, 3 a− 1/2; a+ 1/2; 4) =


(−3)3n if a = −n,

(−3)3n if a = 1/6− n,

− (−3)3n+1 if a = −1/6− n

(The first case is identical to Theorem 12 in [Ek]).

(vi)F (1/2, 1− 2 a; a+ 1/2; 4) =

{
1 if a = 1/2 + n,

−1/3 if a = 1 + n.

(vii)F (a, 1− 2 a; a+ 1/2; 4/3) =


32n if a = −n,

3−2n if a = 1/2 + n,

3−2n−2 if a = 1 + n.

(viii)F (1/2, 3 a− 1/2; a+ 1/2; 4/3) =

{
1 if a = 1/6− n,

−1 if a = −1/6− n.
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(ix)F (a, 1− 2 a; 3/2− 2 a; −1/3) =
23/2−2 aΓ (5/4− a) Γ (3/4− a)

31−aΓ (7/6− a) Γ (5/6− a)
.

(x)F (1/2, 3/2− 3 a; 3/2− 2 a; −1/3) =

√
2

3

Γ (5/4− a) Γ (3/4− a)

Γ (7/6− a) Γ (5/6− a)

(The above is a generalization of (28.1) in [Ge]).

(xi)F (1/2, a; 3/2− 2 a; 1/4) =
23/2 Γ (5/4− a) Γ (3/4− a)

3 Γ (7/6− a) Γ (5/6− a)

(The above is identical to (1/4.1) in [Go] and (5.22) in [GS]).

(xii)F (1− 2 a, 3/2− 3 a; 3/2− 2 a; 1/4) =
27/2−6 aΓ (5/4− a) Γ (3/4− a)

32−3 aΓ (7/6− a) Γ (5/6− a)

(The above is a generalization of Theorem 30 in [Ek]).

(xiii)F (1/2, 3 a− 1/2; 2 a+ 1/2; −1/3) =
21/3−2 a (Γ (2/3))2 Γ (2 a+ 1/2)

Γ (5/6) (Γ (a+ 1/2))2
.

(xiv)F (2 a, 1− a; 2 a+ 1/2; −1/3) =
2−2/3

3a−1/2

(Γ (2/3))2 Γ (2 a+ 1/2)

Γ (5/6) (Γ (a+ 1/2))2
.

(xv)F (2 a, 3 a− 1/2; 2 a+ 1/2; 1/4) =
24 a−2/3

33 a−1/2

(Γ (2/3))2 Γ (2 a+ 1/2)

Γ (5/6) (Γ (a+ 1/2))2
.

(xvi)F (1/2, 1− a; 2 a+ 1/2; 1/4) =
24/3−2 a

√
3

(Γ (2/3))2 Γ (2 a+ 1/2)

Γ (5/6) (Γ (a+ 1/2))2

(The above is identical to (1/4.2) in [Go]).

(xvii)F (1/2, 1− 2 a; 2− 3 a; −3) =


(1/3, n) (2/3, n)

(1/6, n) (5/6, n)
if a = 1/2 + n,

−35

64

(11/6, n) (13/6, n)

(5/3, n) (7/3, n)
if a = 2 + n.

(xviii)F (1− a, 3/2− 3 a; 2− 3 a; −3)

=



22n (5/6, n) (7/6, n)

(2/3, n) (4/3, n)
if a = 1 + n,

22n (1/3, n) (2/3, n)

(1/6, n) (5/6, n)
if a = 1/2 + n,

0 if a = 5/6 + n,

0 if a = 7/6 + n.
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(xix)F (1− 2 a, 3/2− 3 a; 2− 3 a; 3/4)

=


22−4 aΓ (4/3− a) Γ (2/3− a)√

3 Γ (7/6− a) Γ (5/6− a)
,

−35 (11/6, n) (13/6, n)

24n+12 (5/3, n) (7/3, n)
if a = 2 + n.

(xx)F (1/2, 1− a; 2− 3 a; 3/4)

=


2 Γ (4/3− a) Γ (2/3− a)√
3 Γ (7/6− a) Γ (5/6− a)

,

(5/6, n) (7/6, n)

(2/3, n) (4/3, n)
if a = 1 + n

(The first case is identical to (3/4.2) in [Go]).

(xxi)F (1/2, 2 a; 3/2− a; 4) =


(3/2, n) (1/2, n)

(5/6, n) (7/6, n)
if a = −n,

0 if a = −1/2− n

(The above are identical to (5.25) in [GS]).

(xxii)F (1− a, 3/2− 3 a; 3/2− a; 4)

=


(−3)3n (5/6, n) (7/6, n)

(3/2, n) (1/2, n)
if a = 1 + n,

0 if a = 5/6 + n,

0 if a = 7/6 + n

(The first case is identical to Theorem 13 in [Ek]).

(xxiii)F (2 a, 1− a; 3/2− a; 4/3) =


(3/2, n) (1/2, n)

32n (5/6, n) (7/6, n)
if a = −n,

0 if a = −1/2− n,
32n (5/6, n) (7/6, n)

(3/2, n) (1/2, n)
if a = 1 + n.

(xxiv)F (1/2, 3/2− 3 a; 3/2− a; 4/3) =

{
0 if a = 5/6 + n,

0 if a = 7/6 + n.

(1,3,3-2) The special values obtained from (1,3,3-2) coincide with those obtained
from (1,3,3-1).

(1,3,3-3)

(i)F (a, 3 a+ 1; 3 a; 3/2) =


0 if a = −1− n,

(−3)3n (1/3, n) (5/3, 2n)

23n (2, 3n)
if a = −1/3− n,

(−3)3n (2/3, n) (7/3, 2n)

23n+1 (3, 3n)
if a = −2/3− n.
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The special values obtained from (ii) and (iii) are trivial.

(iv)F (2 a, 3 a+ 1; 3 a; 3) =


0 if a = −1/2− 1/2n,
33n (1/3, n) (5/3, 2n)

(2, 3n)
if a = −1/3− n,

−33n (2/3, n) (7/3, 2n)

(3, 3n)
if a = −2/3− n.

(v)F (a, 3 a+ 1; a+ 2; −1/2) = 23 a3−3 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(vi)F (2, 1− 2 a; a+ 2; −1/2) = 2/3 a+ 2/3

(The above is a special case of (1.5) in [Eb2]).

(vii)F (a, 1− 2 a; a+ 2; 1/3) = 22 a3−2 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(viii)F (2, 3 a+ 1; a+ 2; 1/3) = 3/2 a+ 3/2

(The above is a special case of (1.5) in [Eb2]).

(ix)F (a, 1− 2 a; −2 a; 2/3) =


0,

22n (3/2, 3n)

32n (3/2, n) (1, 2n)
if a = 1/2 + n,

22n+2 (3, 3n)

32n+1 (2, n) (2, 2n)
if a = 1 + n.

The special values obtained from (x) and (xi) are trivial.

(xii)F (−3 a, 1− 2 a; −2 a; −2) =



0 if a = 1/3 + n,

0 if a = 2/3 + n,
22n (3/2, 3n)

(3/2, n) (1, 2n)
if a = 1/2 + n,

22n+2 (3, 3n)

(2, n) (2, 2n)
if a = 1 + n.

(xiii)F (2, 3 a+ 1; 2 a+ 2; 2/3) = 6 a+ 3

(The above is a special case of (1.5) in [Eb2]).

(xiv)F (2 a, 1− a; 2 a+ 2; 2/3) = 3−a (2 a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xv)F (2 a, 3 a+ 1; 2 a+ 2; −2) =

{
33n (1− 6n) if a = −1/3− n,

33n+1 (−1− 6n) if a = −2/3− n
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(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xvi)F (2, 1− a; 2 a+ 2; −2) = 2/3n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]).

(xvii)F (2, 1− 2 a; 2− 3 a; 3/2) =

{
6n+ 1 if a = 1/2 + n,

6n+ 10 if a = 2 + n

(The above are special cases of (1.5) in [Eb2]).

(xviii)F (−3 a, 1− a; 2− 3 a; 3/2) = (−2)−1−n (−3n− 2) if a = 1 + n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xix)F (−3 a, 1− 2 a; 2− 3 a; 3) =

{
22n (6n+ 1) if a = 1/2 + n,

−22n+3 (6n+ 10) if a = 2 + n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xx)F (2, 1− a; 2− 3 a; 3) = 3/2n+ 1 if a = 1 + n

The above is a special case of (1.5) in [Eb2]). The special values obtained from (xxi)
are trivial.

(xxii)F (−3 a, 1− a; −a; −1/2) =

0,
(3, 3n)

2n (2, n) (2, 2n)
if a = 1 + n.

(xxiii)F (2 a, 1− a; −a; 1/3) =

0,
(3, 3n)

3n (2, n) (2, 2n)
if a = 1 + n.

The special values obtained from (xxiv) are trivial.

(1,3,3-4) The special values obtained from (1,3,3-4) coincide with those obtained
from (1,3,3-3).

(k, l,m) = (1, 4, 3)

In this case, we have

(a, b, c, x) = (a, b, b+ 1− a,−1), (1,4,3-1)

(a, b, c, x) = (a, 4 a− 1/2, 3 a,−1), S(n) =
26n (a+ 3/8, n) (a+ 5/8, n)

33n (a+ 1/3, n) (a+ 2/3, n)
, (1,4,3-2)

(a, b, c, x) = (a, 4 a− 5/2, 3 a− 1,−1), S(n) =
26n (a− 1/8, n) (a+ 1/8, n)

33n (a− 1/3, n) (a+ 1/3, n)
.

(1,4,3-3)
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(1,4,3-1) The special values obtained from (1,4,3-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1),

(1,4,3-2)

(i)F (a, 4 a− 1/2; 3 a; −1)

=


23/4−6 a

√
πΓ (3/4) Γ (a+ 1/3) Γ (a+ 2/3)

33/8−3 aΓ (11/24) Γ (19/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

5 · 26n−1 (13/8, n) (11/8, n)

33n (5/3, n) (4/3, n)
if a = −1− n

(The first case is a generalization of Theorem 1 in [Ek]).

(ii)F (2 a, 1/2− a; 3 a; −1)

=


21/4−4 a

√
πΓ (3/4) Γ (a+ 1/3) Γ (a+ 2/3)

33/8−3 aΓ (11/24) Γ (19/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

5 · 24n−3 (13/8, n) (11/8, n)

33n (5/3, n) (4/3, n)
if a = −1− n.

(iii)F (a, 1/2− a; 3 a; 1/2)

=


23/4−5 a

√
πΓ (3/4) Γ (a+ 1/3) Γ (a+ 2/3)

33/8−3 aΓ (11/24) Γ (19/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

5 · 25n−2 (13/8, n) (11/8, n)

33n (5/3, n) (4/3, n)
if a = −1− n.

(iv)F (2 a, 4 a− 1/2; 3 a; 1/2)

=


21/4−2 a

√
πΓ (3/4) Γ (a+ 1/3) Γ (a+ 2/3)

33/8−3 aΓ (11/24) Γ (19/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

5 · 22n−5 (13/8, n) (11/8, n)

33n (5/3, n) (4/3, n)
if a = −1− n.

(v)F (a, 4 a− 1/2; 2 a+ 1/2; 2)

=



(−4)n (5/8, n) (3/8, n)

(3/4, n) (1/4, n)
if a = −n,

(−4)n (1/2, n) (1/4, n)

(5/8, n) (1/8, n)
if a = 1/8− n,

2 (−4)n (3/4, n) (1/2, n)

(7/8, n) (3/8, n)
if a = −1/8− n,

0 if a = −3/8− n,

0 if a = −5/8− n.

(vi)F (1− 2 a, a+ 1/2; 2 a+ 1/2; 2)
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=



(3/4, n) (5/4, n)

22n (7/8, n) (9/8, n)
if a = 1/2 + n,

− (5/4, n) (7/4, n)

5 · 22n (11/8, n) (13/8, n)
if a = 1 + n,

22n (9/8, n) (7/8, n)

(5/4, n) (3/4, n)
if a = −1/2− n.

(vii)F (a, 1− 2 a; 2 a+ 1/2; 2) =



22n (5/8, n) (3/8, n)

(3/4, n) (1/4, n)
if a = −n,

(3/4, n) (5/4, n)

22n (7/8, n) (9/8, n)
if a = 1/2 + n,

(5/4, n) (7/4, n)

5 · 22n (11/8, n) (13/8, n)
if a = 1 + n.

(viii)F (4 a− 1/2, a+ 1/2; 2 a+ 1/2; 2)

=



(−4)n (1/2, n) (1/4, n)

(5/8, n) (1/8, n)
if a = 1/8− n,

(−4)n+1 (3/4, n) (1/2, n)

2 (7/8, n) (3/8, n)
if a = −1/8− n,

0 if a = −3/8− n,

0 if a = −5/8− n,
(−4)n (9/8, n) (7/8, n)

(5/4, n) (3/4, n)
if a = −1/2− n.

We find that (ix)≤(ii), (x)≤(i), (xi)≤(iii), (xii)≤(iv).

(xiii)F (4 a− 1/2, a+ 1/2; 3 a+ 1/2; −1)

=


33 a−3/8

√
πΓ (3/4) Γ (a+ 1/6) Γ (a+ 5/6)

26 a−3/4Γ (7/24) Γ (23/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

26n (9/8, n) (7/8, n)

33n (2/3, n) (4/3, n)
if a = −1/2− n

(The second case is identical to Theorem 2 in [Ek]).

(xiv)F (2 a, 1− a; 3 a+ 1/2; −1)

=


33 a−3/8

√
πΓ (3/4) Γ (a+ 1/6) Γ (a+ 5/6)

24 a−1/4Γ (7/24) Γ (23/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

−7 · 24n−6 (17/8, n) (15/8, n)

33n−1 (5/3, n) (7/3, n)
if a = −3/2− n.

(xv)F (2 a, 4 a− 1/2; 3 a+ 1/2; 1/2)

=


33 a−3/8

√
πΓ (3/4) Γ (a+ 1/6) Γ (a+ 5/6)

22 a−1/4Γ (7/24) Γ (23/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

−7 · 22n−9 (17/8, n) (15/8, n)

33n−1 (5/3, n) (7/3, n)
if a = −3/2− n.
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(xvi)F (1− a, a+ 1/2; 3 a+ 1/2; 1/2)

=


33 a−3/8

√
πΓ (3/4) Γ (a+ 1/6) Γ (a+ 5/6)

25 a−5/4Γ (7/24) Γ (23/24) Γ (a+ 3/8) Γ (a+ 5/8)
,

25n (9/8, n) (7/8, n)

33n (2/3, n) (4/3, n)
if a = −1/2− n.

The special values obtained from (xvii)-(xxiv) are contained in the above.

(1,4,3-3) The special values obtained from (1,4,3-3) coincide with those obtained
from (1,4,3-2).

3.4.4 m = 4

(k, l,m) = (0, 4, 4)

In this case, we have

(a, b, c, x) = (a, b, b+ 1− a,−1), (0,4,4-1)

(a, b, c, x) = (1, b, b, λ), S(n) = 1, (0,4,4-2)

(a, b, c, x) = (0, b, b+ 1, λ, S(n) = 1 (0,4,4-3)

where, λ is a solution of x2 + 1 = 0.

(0,4,4-1) The special values obtained from (0,4,4-1) are evaluated in the case
(0,2,2-1).

(0,4,4-2) The special values obtained from (0,4,4-2) except trivial values are the
special cases of (3.4.1).

(0,4,4-3) The special values obtained from (0,4,4-3) coincide with those obtained
from (0,4,4-2)

(k, l,m) = (1, 3, 4)

In this case, we have

(a, b, c, x) = (a, 3 a− 1/2, 4 a, 4), S(n) =
(−3)3n (a+ 2/3, n) (a+ 1/6, n)

24n (a+ 1/4, n) (a+ 3/4, n)
, (1,3,4-1)

(a, b, c, x) = (a, 3 a− 3/2, 4 a− 2, 4)S(n) =
(−3)3n (a− 1/3, n) (a+ 1/6, n)

24n (a− 1/4, n) (a+ 1/4, n)
,

(1,3,4-2)

(a, b, c, x) = (a, 3 a− 1/2, 4 a,−8), S(n) =
33n (a+ 1/3, n) (a+ 2/3, n)

22n (a+ 1/4, n) (a+ 3/4, n)
, (1,3,4-3)

(a, b, c, x) = (a, 3 a− 1/4, 4 a,−8), S(n) =
33n (a+ 2/3, n) (a+ 7/12, n)

22n (a+ 1/2, n) (a+ 3/4, n)
, (1,3,4-4)
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(a, b, c, x) = (a, 3 a− 3/4, 4 a− 1,−8), S(n) =
33n (a+ 1/3, n) (a+ 5/12, n)

22n (a+ 1/2, n) (a+ 1/4, n)
,

(1,3,4-5)

(a, b, c, x) = (a, 3 a− 5/4, 4 a− 1,−8), S(n) =
33n (a+ 1/3, n) (a− 1/12, n)

22n (a+ 1/2, n) (a− 1/4, n)
,

(1,3,4-6)

(a, b, c, x) = (a, 3 a− 3/2, 4 a− 2,−8), S(n) =
33n (a− 1/6, n) (a+ 1/6, n)

22n (a− 1/4, n) (a+ 1/4, n)
,

(1,3,4-7)

(a, b, c, x) = (a, 3 a− 7/4, 4 a− 2,−8), S(n) =
33n (a+ 1/3, n) (a+ 5/12, n)

22n (a+ 1/2, n) (a+ 1/4, n)
.

(1,3,4-8)

(1,3,4-1)

(i)F (a, 3 a− 1/2; 4 a; 4) =



−5 · (−3)3n (4/3, n) (11/6, n)

24n+1 (7/4, n) (5/4, n)
if a = −1− n,

(−3)3n (1/6, n) (2/3, n)

24n (7/12, n) (1/12, n)
if a = 1/6− n,

0 if a = −1/6− n,

− (−3)3n+1 (11/6, n) (7/3, n)

24n−1 (9/4, n) (7/4, n)
if a = −3/2− n

(The first case is identical to Theorem 3 in [Ek]).

(ii)F (3 a, a+ 1/2; 4 a; 4) =



−5 (−3)3n (4/3, n) (11/6, n)

24n+1 (7/4, n) (5/4, n)
if a = −1− n,

− (−3)3n+1 (2/3, n) (7/6, n)

24n+1 (13/12, n) (7/12, n)
if a = −1/3− n,

0 if a = −2/3− n,

(−3)3n (5/6, n) (4/3, n)

24n (5/4, n) (3/4, n)
if a = −1/2− n

(The fourth case is identical to Theorem 9 in [Ek]).

(iii)F (a, a+ 1/2; 4 a; 4/3) =


5 · 32n−1 (4/3, n) (11/6, n)

24n+1 (7/4, n) (5/4, n)
if a = −1− n,

32n (5/6, n) (4/3, n)

24n (5/4, n) (3/4, n)
if a = −1/2− n.

(iv)F (3 a, 3 a− 1/2; 4 a; 4/3)
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=



5

27

(4/3, n) (11/6, n)

24n+1 (7/4, n) (5/4, n)
if a = −1− n,

− (2/3, n) (7/6, n)

24n+1 (13/12, n) (7/12, n)
if a = −1/3− n,

0 if a = −2/3− n,
(1/6, n) (2/3, n)

24n (7/12, n) (1/12, n)
if a = 1/6− n,

0 if a = −1/6− n,

− 1

81

(11/6, n) (7/3, n)

24n−1 (9/4, n) (7/4, n)
if a = −3/2− n,

(v)F (a, 3 a− 1/2; 1/2; −3) =



(−16)n (5/6, n)

(2/3, n)
if a = −n,

(−16)n (2/3, n)

(1/2, n)
if a = 1/6− n,

0 if a = −1/6− n,

(−16)n+1 (4/3, n)

2 (7/6, n)
if a = −1/2− n.

We find (vi)≤(v).

(vii)F (a, 1− 3 a; 1/2; 3/4) =
22/3−2 a

√
πΓ(1/3)

Γ(a+ 1/6)Γ(2/3− a)

(The above is identical to (3/4.4) in [Go]). We find (viii)≤(vii).

(ix)F (a, 1− 3 a; 3/2− 2 a; 1/4) =
22/3−2 aΓ(1/3)Γ (3/2− 2 a)

31−3 aΓ (7/6− a) Γ (2/3− a)
.

(x)F (a+ 1/2, 3/2− 3 a; 3/2− 2 a; 1/4) =
25/3−2 aΓ(1/3)Γ (3/2− 2 a)

33/2−3 aΓ (7/6− a) Γ (2/3− a)
.

(xi)F (a, a+ 1/2; 3/2− 2 a; −1/3) =
22/3−4 aΓ(1/3)Γ (3/2− 2 a)

31−4 aΓ (7/6− a) Γ (2/3− a)
.

(xii)F (1− 3 a, 3/2− 3 a; 3/2− 2 a; −1/3) =
24 a−4/3Γ(1/3)Γ (3/2− 2 a)

Γ (7/6− a) Γ (2/3− a)
.

The special values obtained from (xiii)-(xx) are contained in the above those.

(xxi)F (3 a, a+ 1/2; 3/2; −3) =



(−16)n (1/3, n)

(7/6, n)
if a = −n,

4 (−16)n (2/3, n)

3 (3/2, n)
if a = −1/3− n,

0 if a = −2/3− n,
(−16)n (5/6, n)

(5/3, n)
if a = −1/2− n.
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We find (xxii)≤(xxi).

(xxiii)F (3 a, 1− a; 3/2; 3/4) =
22 a−1/3

√
πΓ (4/3)

Γ (7/6− a) Γ (a+ 2/3)
.

(The above is identical to (3/4.3) in [Go]). We find (xxiv)≤(xxiii).

(1,3,4-2) The special values obtained from (1,3,4-2) coincide with those obtained
from (1,3,4-1).

(1,3,4-3)

(i)F (a, 3 a− 1/2; 4 a; −8) =



33n (4/3, n) (5/3, n)

22n−3 (7/4, n) (5/4, n)
if a = −1− n,

33n (1/6, n) (1/2, n)

22n (7/12, n) (1/12, n)
if a = 1/6− n,

33n+1 (1/2, n) (5/6, n)

22n (11/12, n) (5/12, n)
if a = −1/6− n,

−7 · 33n+1 (11/6, n) (13/6, n)

22n (9/4, n) (7/4, n)
if a = −3/2− n

(The first case is identical to Theorem 7 in [Ek]).

(ii)F (3 a, a+ 1/2; 4 a; −8) =



33n (4/3, n) (5/3, n)

22n−3 (7/4, n) (5/4, n)
if a = −1− n,

0 if a = −1/3− n,

0 if a = −2/3− n,
33n (5/6, n) (7/6, n)

22n (5/4, n) (3/4, n)
if a = −1/2− n

(The fourth case is identical to Theorem 5 in [Ek]).

(iii)F (a, a+ 1/2; 4 a; 8/9) =



22 a−1/2Γ (a+ 3/4) Γ (a+ 1/4)

3a−1/2Γ (a+ 2/3) Γ (a+ 1/3)
,

3n−2 (4/3, n) (5/3, n)

22n−3 (7/4, n) (5/4, n)
if a = −1− n,

3n (5/6, n) (7/6, n)

22n (5/4, n) (3/4, n)
if a = −1/2− n.

(iv)F (3 a, 3 a− 1/2; 4 a; 8/9) =



22 a−1/2Γ (a+ 3/4) Γ (a+ 1/4)

31/2−3 aΓ (a+ 2/3) Γ (a+ 1/3)
,

(4/3, n) (5/3, n)

22n−333n+6 (7/4, n) (5/4, n)
if a = −1− n,

−7 (11/6, n) (13/6, n)

22n33n+9 (9/4, n) (7/4, n)
if a = −3/2− n
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(The first case is identical to (3.1) in [Ka]).

(v)F (a, 3 a− 1/2; 1/2; 9) =


26n if a = −n,

26n if a = 1/6− n,

26n+2 if a = −1/6− n,

−26n+3 if a = −1/2− n.

We find (vi)≤(v).

(vii)F (a, 1− 3 a; 1/2; 9/8) =


(−2)3n if a = −n,

(−2)−3n if a = 1/3 + n,

(−2)−3n−1 if a = 2/3 + n,

(−2)−3n−3 if a = 1 + n.

We find (viii)≤(vii).

(ix)F (a, 1− 3 a; 3/2− 2 a; −1/8) =

(
2

3

)1−3 a √
πΓ (3/2− 2 a)

Γ (7/6− a) Γ (5/6− a)
.

(x)F (a+ 1/2, 3/2− 3 a; 3/2− 2 a; −1/8) =
25/2−3 a

√
πΓ (3/2− 2 a)

32−3 aΓ (7/6− a) Γ (5/6− a)
.

(xi)F (a, a+ 1/2; 3/2− 2 a; 1/9) =
21−6 a

√
πΓ (3/2− 2 a)

31−5 aΓ (7/6− a) Γ (5/6− a)

(The above is identical to (1/9.1) in [Go]).

(xii)F (1− 3 a, 3/2− 3 a; 3/2− 2 a; 1/9) =

(
4

3

)3 a−1 √
πΓ (3/2− 2 a)

Γ (7/6− a) Γ (5/6− a)

(The above is identical to (1.1) in [Ka]). The special values obtained from (xiii)-(xx)
are contained in the above those.

(xxi)F (3 a, a+ 1/2; 3/2; 9) =



26n (1/3, n) (2/3, n)

(5/6, n) (7/6, n)
if a = −n,

0 if a = −1/3− n,

0 if a = −2/3− n,
26n (5/6, n) (7/6, n)

(4/3, n) (5/3, n)
if a = −1/2− n,

We find (xxii)≤(xxi).

(xxiii)F (3 a, 1− a; 3/2; 9/8) =



(1/3, n) (2/3, n)

(−2)3n (5/6, n) (7/6, n)
if a = −n,

0 if a = −1/3− n,

0 if a = −2/3− n,

(−2)3n (5/6, n) (7/6, n)

(5/3, n) (4/3, n)
if a = 1 + n.

We find (xxiv)≤(xxiii).
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(1,3,4-4)

(i)F (a, 3 a− 1/4; 4 a; −8) =



5 · 33n+1 (4/3, n) (17/12, n)

22n+1 (3/2, n) (5/4, n)
if a = −1− n,

33n (1/4, n) (1/3, n)

22n (5/12, n) (1/6, n)
if a = 1/12− n,

7 · 33n+1 (19/12, n) (5/3, n)

22n (7/4, n) (3/2, n)
if a = −5/4− n,

0 if a = −7/12− n

(The first case is identical to Theorem 6 in [Ek]).

(ii)F (3 a, a+ 1/4; 4 a; −8) =



5 · 33n+1 (4/3, n) (17/12, n)

22n+1 (3/2, n) (5/4, n)
if a = −1− n,

33n+1 (2/3, n) (3/4, n)

22n+1 (5/6, n) (7/12, n)
if a = −1/3− n,

0 if a = −2/3− n,
33n (7/12, n) (2/3, n)

22n (3/4, n) (1/2, n)
if a = −1/4− n

(The fourth case is identical to Theorem 4 in [Ek]).

(iii)F (a, a+ 1/4; 4 a; 8/9) =



22 a−1/6Γ (2/3) Γ (3/4) Γ (a+ 3/4) Γ (a+ 1/2)

3a−1/4Γ (5/6) Γ (7/12) Γ (a+ 2/3) Γ (a+ 7/12)
,

5 · 3n−1 (4/3, n) (17/12, n)

22n+1 (3/2, n) (5/4, n)
if a = −1− n,

3n (7/12, n) (2/3, n)

22n (3/4, n) (1/2, n)
if a = −1/4− n.

(iv)F (3 a, 3 a− 1/4; 4 a; 8/9)

=



22 a−1/6Γ (2/3) Γ (3/4) Γ (a+ 3/4) Γ (a+ 1/2)

31/4−3 aΓ (5/6) Γ (7/12) Γ (a+ 2/3) Γ (a+ 7/12)
,

5 (4/3, n) (17/12, n)

22n+133n+5 (3/2, n) (5/4, n)
if a = −1− n,

7 (19/12, n) (5/3, n)

22n33n+7 (7/4, n) (3/2, n)
if a = −5/4− n

(The first case is identical to (3.4) in [Ka]).

(v)F (a, 3 a− 1/4; 3/4; 9) =



26n (5/12, n)

(2/3, n)
if a = −n,

26n (1/3, n)

(7/12, n)
if a = 1/12− n,

26n+2 (2/3, n)

(11/12, n)
if a = −1/4− n,

0 if a = −7/12− n.
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(vi)F (1− 3 a, 3/4− a; 3/4; 9) =



26n (2/3, n)

(11/12, n)
if a = 1/3 + n,

0 if a = 2/3 + n,
−26n+5 (4/3, n)

7 (19/12, n)
if a = 1 + n,

26n (13/12, n)

(4/3, n)
if a = 3/4 + n.

(vii)F (a, 1− 3 a; 3/4; 9/8) =



(−2)3n (5/12, n)

(2/3, n)
if a = −n,

(2/3, n)

(−2)3n (11/12, n)
if a = 1/3 + n,

0 if a = 2/3 + n,
(4/3, n)

7(−2)3n+1 (19/12, n)
if a = 1 + n.

(viii)F (3 a− 1/4, 3/4− a; 3/4; 9/8)

=



(1/3, n)

(−2)3n (7/12, n)
if a = 1/12− n,

(2/3, n)

(−2)3n+1 (11/12, n)
if a = −1/4− n,

0 if a = −7/12− n,
(−2)3n (13/12, n)

(4/3, n)
if a = 3/4 + n.

(ix)F (a, 1− 3 a; 5/4− 2 a; −1/8)

=
33 a+5/4Γ (4/3) Γ (11/12) Γ (5/8− a) Γ (9/8− a)

25 a+2Γ (7/8) Γ (11/8) Γ (13/12− a) Γ (2/3− a)
.

(x)F (5/4− 3 a, a+ 1/4; 5/4− 2 a; −1/8)

=
33 a+3/4Γ (4/3) Γ (11/12) Γ (5/8− a) Γ (9/8− a)

25 a+5/4Γ (7/8) Γ (11/8) Γ (13/12− a) Γ (2/3− a)
.

(xi)F (a, a+ 1/4; 5/4− 2 a; 1/9)

=
35 a+5/4Γ (4/3) Γ (11/12) Γ (5/8− a) Γ (9/8− a)

28 a+2Γ (7/8) Γ (11/8) Γ (13/12− a) Γ (2/3− a)

(The above is identical to (1/9.2) in [Go], (6.5) in [GS] and (1.4) in [Ka]).

(xii)F (1− 3 a, 5/4− 3 a; 5/4− 2 a; 1/9)

=
313/4−3 aΓ (4/3) Γ (11/12) Γ (5/8− a) Γ (9/8− a)

25−4 aΓ (7/8) Γ (11/8) Γ (13/12− a) Γ (2/3− a)
.
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(xiii)F (3/4− a, 3 a− 1/4; 2 a+ 3/4; −1/8)

=
31/2−3 aΓ (2/3) Γ (7/12) Γ (a+ 7/8) Γ (a+ 3/8)

23/4−5 aΓ (7/8) Γ (3/8) Γ (a+ 2/3) Γ (a+ 7/12)
.

(xiv)F (3 a, 1− a; 2 a+ 3/4; −1/8)

=
3−3 aΓ (2/3) Γ (7/12) Γ (a+ 7/8) Γ (a+ 3/8)

2−5 aΓ (7/8) Γ (3/8) Γ (a+ 2/3) Γ (a+ 7/12)
.

(xv)F (3 a, 3 a− 1/4; 2 a+ 3/4; 1/9)

=
33 aΓ (2/3) Γ (7/12) Γ (a+ 7/8) Γ (a+ 3/8)

24 aΓ (7/8) Γ (3/8) Γ (a+ 2/3) Γ (a+ 7/12)
.

(xvi)F (1− a, 3/4− a; 2 a+ 3/4; 1/9)

=
32−5 aΓ (2/3) Γ (7/12) Γ (a+ 7/8) Γ (a+ 3/8)

23−8 aΓ (7/8) Γ (3/8) Γ (a+ 2/3) Γ (a+ 7/12)

(The above is identical to (1/9.3) in [Go], (6.6) in [GS] and (1.5) in [Ka]).

(xvii)F (1− 3 a, 3/4− a; 2− 4 a; −8)

=



33n (1/4, n) (2/3, n)

22n (1/12, n) (5/6, n)
if a = 1/3 + n,

0 if a = 2/3 + n,
−11 · 33n (23/12, n) (7/3, n)

22n−1 (7/4, n) (5/2, n)
if a = 2 + n,

33n (2/3, n) (13/12, n)

22n (1/2, n) (5/4, n)
if a = 3/4 + n

(The fourth case is identical to Theorem 8 in [Ek]).

(xviii)F (1− a, 5/4− 3 a; 2− 4 a; −8)

=



33n (11/12, n) (4/3, n)

22n (3/2, n) (3/4, n)
if a = 1 + n,

33n (3/4, n) (1/3, n)

22n (11/12, n) (1/6, n)
if a = 5/12 + n,

−13

5

33n+1 (25/12, n) (5/3, n)

22n (9/4, n) (3/2, n)
if a = 7/4 + n,

0 if a = 13/12 + n

(The first case is identical to Theorem 10 in [Ek]).

(xix)F (1− 3 a, 5/4− 3 a; 2− 4 a; 8/9)

=



25/6−2 aΓ (1/4) Γ (2/3) Γ (1/2− a) Γ (5/4− a)

33 a−5/4Γ (1/12) Γ (5/6) Γ (2/3− a) Γ (13/12− a)
,

−11 (7/3, n) (23/12, n)

22n−133n+10 (5/2, n) (7/4, n)
if a = 2 + n,

−13

5

(5/3, n) (25/12, n)

22n33n+7 (9/4, n) (3/2, n)
if a = 7/4 + n
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(The first case is identical to (3.5) in [Ka]).

(xx)F (1− a, 3/4− a; 2− 4 a; 8/9)

=



25/6−2 aΓ (1/4) Γ (2/3) Γ (1/2− a) Γ (5/4− a)

3−a−3/4Γ (1/12) Γ (5/6) Γ (2/3− a) Γ (13/12− a)
,

3n (4/3, n) (11/12, n)

22n (3/2, n) (3/4, n)
if a = 1 + n,

3n (13/12, n) (2/3, n)

22n (5/4, n) (1/2, n)
if a = 3/4 + n.

(xxi)F (3 a, a+ 1/4; 5/4; 9) =



26n (1/3, n)

(13/12, n)
if a = −n,

26n+3 (2/3, n)

5 (17/12, n)
if a = −1/3− n,

0 if a = −2/3− n,
26n (7/12, n)

(4/3, n)
if a = −1/4− n.

(xxii)F (1− a, 5/4− 3 a; 5/4; 9) =



26n (11/12, n)

(5/3, n)
if a = 1 + n,

26n (1/3, n)

(13/12, n)
if a = 5/12 + n,

−26n+2 (2/3, n)

5 (17/12, n)
if a = 3/4 + n,

0 if a = 13/12 + n.

(xxiii)F (3 a, 1− a; 5/4; 9/8) =



(1/3, n)

(−2)3n (13/12, n)
if a = −n,

− (2/3, n)

5 (−2)3n (17/12, n)
if a = −1/3− n,

0 if a = −2/3− n,
(−2)3n (11/12, n)

(5/3, n)
if a = 1 + n.

(xxiv)F (5/4− 3 a, a+ 1/4; 5/4; 9/8)

=



(1/3, n)

(−2)3n (13/12, n)
if a = 5/12 + n,

− (2/3, n)

5 (−2)3n+1 (17/12, n)
if a = 3/4 + n,

0 if a = 13/12 + n,
(−2)3n (7/12, n)

(4/3, n)
if a = −1/4− n.

(1,3,4-5), (1,3,4-6), (1,3,4-8) The special values obtained from (1,3,4-5), (1,3,4-
6) and (1,3,4-8) coincide with those obtained from (1,3,4-4).
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(1,3,4-7) The special values obtained from (1,3,4-7) coincide with those obtained
from (1,3,4-3).

(k, l,m) = (1, 4, 4)

In this case, we have

(a, b, c, x) = (a, 4 a+ 1, 4 a, 4/3), S(n) =
(−1)n 28n (a+ 1, n) (3 a, 3n)

34n (4 a, 4n)
, (1,4,4-1)

(a, b, c, x) = (a, 4 a− 4, 4 a− 2, 4/3), S(n) =
4 a− 3

(−3)n (4 a− 3 + 4n)
. (1,4,4-2)

(1,4,4-1)

(i)F (a, 4 a+ 1; 4 a; 4/3)

=



0 if a = −1− n,
(−1)n 28n (1/4, n) (7/4, 3n)

34n (2, 4n)
if a = −1/4− n,

(−1)n 28n+1 (1/2, n) (5/2, 3n)

34n+1 (3, 4n)
if a = −1/2− n,

5 (−1)n 28n−1 (3/4, n) (13/4, 3n)

34n+2 (4, 4n)
if a = −3/4− n.

The special values obtained from (ii) and (iii) are trivial.

(iv)F (3 a, 4 a+ 1; 4 a; 4)

=



0 if a = −1/3− 1/3n,
(−1)n 28n (1/4, n) (7/4, 3n)

(2, 4n)
if a = −1/4− n,

(−1)n+1 28n+1 (1/2, n) (5/2, 3n)

(3, 4n)
if a = −1/2− n,

5 (−1)n 28n−1 (3/4, n) (13/4, 3n)

(4, 4n)
if a = −3/4− n.

(v)F (a, 4 a+ 1; a+ 2; −1/3) = 2−8 a34 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(vi)F (2, 1− 3 a; a+ 2; −1/3) = 3/4 a+ 3/4

(The above is a special case of (1.5) in [Eb2]).

(vii)F (a, 1− 3 a; a+ 2; 1/4) = 2−6 a33 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(viii)F (2, 4 a+ 1; a+ 2; 1/4) = 4/3 a+ 4/3

60



(The above is a special case of (1.5) in [Eb2]).

(ix)F (a, 1− 3 a; −3 a; 3/4) =



0,
33n (4/3, 4n)

26n (4/3, n) (1, 3n)
if a = 1/3 + n,

5 · 33n (8/3, 4n)
26n+2 (5/3, n) (2, 3n)

if a = 2/3 + n,

33n+3 (4, 4n)

26n+4 (2, n) (3, 3n)
if a = 1 + n.

The special values obtained from (x) and (xi) are trivial.

(xii)F (−4 a, 1− 3 a; −3 a; −3) =



0 if a = 1/4 + n,

0 if a = 1/2 + n,

0 if a = 3/4 + n,
33n (4/3, 4n)

(4/3, n) (1, 3n)
if a = 1/3 + n,

5 · 33n (8/3, 4n)
(5/3, n) (2, 3n)

if a = 2/3 + n,

33n+3 (4, 4n)

(2, n) (3, 3n)
if a = 1 + n.

(xiii)F (2, 4 a+ 1; 3 a+ 2; 3/4) = 12 a+ 4

(The above is a special case of (1.5) in [Eb2]).

(xiv)F (3 a, 1− a; 3 a+ 2; 3/4) = 2−2 a (3 a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xv)F (3 a, 4 a+ 1; 3 a+ 2; −3) =


28n (1− 12n) if a = −1/4− n,

28n+2 (−2− 12n) if a = −1/2− n,

28n+4 (−5− 12n) if a = −3/4− n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xvi)F (2, 1− a; 3 a+ 2; −3) = 3/4n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]).

(xvii)F (2, 1− 3 a; 2− 4 a; 4/3) = 4n+ 1 if a = 1/3 + 1/3n

(The above is a special case of (1.5) in [Eb2]).

(xviii)F (−4 a, 1− a; 2− 4 a; 4/3) = − (−3)−n−1 (4n+ 3) if a = 1 + n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xix)F (−4 a, 1− 3 a; 2− 4 a; 4) = (−3)n (4n+ 1) if a = 1/3 + 1/3n
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(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xx)F (2, 1− a; 2− 4 a; 4) = 4/3n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]). The special values obtained from
(xxi) are trivial.

(xxii)F (−4 a, 1− a; −a; −1/3) =

0,
(4, 4n)

3n (2, n) (3, 3n)
if a = 1 + n.

(xxiii)F (3 a, 1− a; −a; 1/4) =

0,
(4, 4n)

22n (2, n) (3, 3n)
if a = 1 + n

(The first case is identical to (29.3) in [Ge]). The special values obtained from (xxiv)
are trivial.

(1,4,4-2) The special values obtained from (1,4,4-2) coincide with those obtained
from (1,4,4-1).

(k, l,m) = (1, 5, 4)

In this case, there is no admissible quadruple.

(k, l,m) = (2, 2, 4)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2), (2,2,4-1)

(a, b, c, x) = (a, b, 2 b, 2). (2,2,4-2)

(2,2,4-1), (2,2,4-2) The special values obtained from (2,2,4-1) and (2,2,4-2) co-
incide with those obtained from (1,2,2-1).

(k, l,m) = (2, 3, 4)

In this case, we have
(a, b, c, x) = (a, 3/2 a− 1/4, 2 a, 8 + 4

√
3),

S(n) =
33/2n

(√
3 + 2

)3n
(1/2 a+ 7/12, n)

22n (1/2 a+ 3/4, n)
,

(2,3,4-1)


(a, b, c, x) = (a, 3/2 a− 1/4, 2 a, 8− 4

√
3),

S(n) =
33/2n

(√
3− 2

)3n
(1/2 a+ 7/12, n)

22n (1/2 a+ 3/4, n)
.

(2,3,4-2)
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(2,3,4-1)

(i)F (a, 3/2 a− 1/4; 2 a; 8 + 4
√
3)

=



5 · 33/2n+1/2
(
2 +

√
3
)3n+3

(17/12, n)

22n+2 (5/4, n)
if a = −2− 2n,

−33/2n+1/2
(
2 +

√
3
)3n+2

(11/12, n)

22n+1 (3/4, n)
if a = −1− 2n,

33/2n
(
2 +

√
3
)3n

(1/3, n)

22n (1/6, n)
if a = 1/6− 2n,

−33/2n+1
(
2 +

√
3
)3n+4

(5/3, n)

22n (3/2, n)
if a = −5/2− 2n,

0 if a = −7/6− 2n

(The first case is identical to Theorem 28 in [Ek]).

(ii)F (a, 1/2 a+ 1/4; 2 a; 8 + 4
√
3)

=



5 · 33/2n+1/2
(
−2−

√
3
)n+1

(17/12, n)

22n+2 (5/4, n)
if a = −2− 2n,

−33/2n+1/2
(
−2−

√
3
)n

(11/12, n)

22n+1 (3/4, n)
if a = −1− 2n,

33/2n
(
−2−

√
3
)n

(2/3, n)

22n (1/2, n)
if a = −1/2− 2n

(The third case is identical to Theorem 16 in [Ek]).

(iii)F (a, 1/2 a+ 1/4; 2 a; 8− 4
√
3)

=



5 · 33/2n+1/2
(
2−

√
3
)n+1

(17/12, n)

22n+2 (5/4, n)
if a = −2− 2n,

33/2n+1/2
(
2−

√
3
)n

(11/12, n)

22n+1 (3/4, n)
if a = −1− 2n,

33/2n
(
2−

√
3
)n

(2/3, n)

22n (1/2, n)
if a = −1/2− 2n

(The third case is identical to Theorem 16 in [Ek]).

(iv)F (a, 3/2 a− 1/4; 2 a; 8− 4
√
3)

=



5 · 33/2n+1/2
(√

3− 2
)3n+3

(17/12, n)

22n+2 (5/4, n)
if a = −2− 2n,

33/2n+1/2
(√

3− 2
)3n+2

(11/12, n)

22n+1 (3/4, n)
if a = −1− 2n,

33/2n
(√

3− 2
)3n

(1/3, n)

22n (1/6, n)
if a = 1/6− 2n,

−33/2n+1
(√

3− 2
)3n+4

(5/3, n)

22n (3/2, n)
if a = −5/2− 2n,

0 if a = −7/6− 2n
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(The first case is identical to Theorem 28 in [Ek]).

(v)F (a, 3/2 a− 1/4; 1/2 a+ 3/4; −7− 4
√
3)

=



24n33/2n
(
−2−

√
3
)3n

(5/12, n)

(1/4, n)
if a = −2n,

−24n+233/2n+1/2
(
−2−

√
3
)3n+2

(11/12, n)

(3/4, n)
if a = −1− 2n,

24n33/2n
(
−2−

√
3
)3n

(1/3, n)

(1/6, n)
if a = 1/6− 2n,

24n+133/2n+1/2
(
−2−

√
3
)3n+1

(2/3, n)

(1/2, n)
if a = −1/2− 2n,

0 if a = −7/6− 2n

(The first case is identical to Theorem 31 in [Ek]).

(vi)F (1− a, 3/4− 1/2 a; 1/2 a+ 3/4; −7− 4
√
3)

=



24n
(
−2−

√
3
)n

(5/4, n)

33/2n (13/12, n)
if a = 1 + 2n,

−24n+2
(
−2−

√
3
)n

(7/4, n)

7 · 33/2n−1/2 (19/12, n)
if a = 2 + 2n,

24n
(
−2−

√
3
)n

(3/2, n)

33/2n (4/3, n)
if a = 3/2 + 2n.

(vii)F (a, 1− a; 1/2 a+ 3/4; 1/2 + 1/4
√
3)

=
4
(
2−

√
3
)1/2 a−1/4√

π sin (π (1/2 a+ 1/12)) Γ (1/2 a+ 3/4)

33/4 a+3/8Γ (2/3) Γ (1/2 a+ 7/12)

(The above is a generalization of Theorem 37 in [Ek]).

(viii)F (3/4− 1/2 a, 3/2 a− 1/4; 1/2 a+ 3/4; 1/2 + 1/4
√
3)

=
2a+3/2

√
π sin (π (1/2 a+ 1/12)) Γ (1/2 a+ 3/4)

33/4 a+3/8Γ (2/3) Γ (1/2 a+ 7/12)
.

(ix)F (a, 1− a; 5/4− 1/2 a; 1/2− 1/4
√
3)

=

(
2−

√
3
)1/2 a−1/4

Γ(1/3)Γ (5/4− 1/2 a)

35/8−3/4 a
√
πΓ (13/12− 1/2 a)

(The above is a generalization of Theorem 37 in [Ek]).

(x)F (5/4− 3/2 a, 1/2 a+ 1/4; 5/4− 1/2 a; 1/2− 1/4
√
3)

=
21/2−a Γ(1/3)Γ (5/4− 1/2 a)

35/8−3/4 a
√
πΓ (13/12− 1/2 a)

.
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(xi)F (a, 1/2 a+ 1/4; 5/4− 1/2 a; −7 + 4
√
3)

=
2−2 a

(
2 +

√
3
)1/2 a+1/4

Γ(1/3)Γ (5/4− 1/2 a)

35/8−3/4 a
√
πΓ (13/12− 1/2 a)

.

(xii)F (1− a, 5/4− 3/2 a; 5/4− 1/2 a; −7 + 4
√
3)

=
22 a−2

(
2−

√
3
)3/2 a−5/4

Γ(1/3)Γ (5/4− 1/2 a)

35/8−3/4 a
√
πΓ (13/12− 1/2 a)

(The above is a generalization of Theorem 31 in [Ek]). The special values obtained
from (xiii)-(xxiv) are contained in the above those.

(2,3,4-2) The special values obtained from (2,3,4-2) coincide with those obtained
from (2,3,4-1).

(k, l,m) = (2, 4, 4)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2), (2,4,4-1)
(a, b, c, x) = (a, 2 a− 1/2, 2 a,−2 + 2

√
2),

S(n) =
22n

(√
2− 1

)4n
(1/2 a+ 3/8, n) (1/2 a+ 5/8, n)

(a+ 1/2, 2n)
,

(2,4,4-2)


(a, b, c, x) = (a, 2 a− 1/2, 2 a,−2− 2

√
2),

S(n) =
22n

(√
2 + 1

)4n
(1/2 a+ 3/8, n) (1/2 a+ 5/8, n)

(a+ 1/2, 2n)
.

(2,4,4-3)

(2,4,4-1) The special values obtained from (2,4,4-1) are evaluated in the case
(1,2,2-1).

(2,4,4-2)

(i)F (a, 2 a− 1/2; 2 a; −2 + 2
√
2)

=



21/4−a
(√

2− 1
)1/2−2 a √

πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)
,

5
(√

2− 1
)4n+4

(13/8, n) (11/8, n)

4 (7/4, n) (5/4, n)
if a = −2− 2n,

−
(√

2− 1
)4n+3

(9/8, n) (7/8, n)

2 (5/4, n) (3/4, n)
if a = −1− 2n.

(ii)F (1/2, a; 2 a; −2 + 2
√
2)
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=



21/4−a
(
1 +

√
2
)1/2√

πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)
,

5 (13/8, n) (11/8, n)

4 (7/4, n) (5/4, n)
if a = −2− 2n,(

1 +
√
2
)
(9/8, n) (7/8, n)

2 (5/4, n) (3/4, n)
if a = −1− 2n

(The second case is identical to Theorem 33 in [Ek]).

(iii)F (1/2, a; 2 a; −2− 2
√
2)

=


5 (13/8, n) (11/8, n)

4 (7/4, n) (5/4, n)
if a = −2− 2n,(

1−
√
2
)
(9/8, n) (7/8, n)

2 (5/4, n) (3/4, n)
if a = −1− 2n

(The first case is identical to Theorem 33 in [Ek]).

(iv)F (a, 2 a− 1/2; 2 a; −2− 2
√
2)

=



5
(
1 +

√
2
)4n+4

(13/8, n) (11/8, n)

4 (7/4, n) (5/4, n)
if a = −2− 2n,(

1 +
√
2
)4n+3

(9/8, n) (7/8, n)

2 (5/4, n) (3/4, n)
if a = −1− 2n,(

1 +
√
2
)4n

(1/2, n) (1/4, n)

(5/8, n) (1/8, n)
if a = 1/4− 2n,

√
2
(
1 +

√
2
)4n+1

(3/4, n) (1/2, n)

(7/8, n) (3/8, n)
if a = −1/4− 2n,

0 if a = −3/4− 2n,

0 if a = −5/4− 2n.

(v)F (a, 2 a− 1/2; a+ 1/2; 3− 2
√
2) =

23/4−3 a
(√

2− 1
)1/2−2 a √

πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)

(The above is a generalization of Theorem 25 in [Ek]).

(vi)F (1/2, 1− a; a+ 1/2; 3− 2
√
2) =

2−a−1/4(1 +
√
2)1/2

√
πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)
.

(vii)F (a, 1− a; a+ 1/2; 1/2− 1/2
√
2) =

23/4−2 a
(√

2− 1
)1/2−a √

πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)

(The above is a generalization of Theorem 36 in [Ek]).

(viii)F (1/2, 2 a− 1/2; a+ 1/2; 1/2− 1/2
√
2) =

21/4−a
√
πΓ (a+ 1/2)

Γ (1/2 a+ 3/8) Γ (1/2 a+ 5/8)
.
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(ix)F (a, 1− a; 3/2− a; 1/2 + 1/2
√
2)

=



(4n+ 1)
(√

2− 1
)2n

(1/4, n) (3/4, n)

22n (7/8, n) (9/8, n)
if a = −2n,

1

15

(4n+ 3)
(√

2− 1
)2n+2

(3/4, n) (5/4, n)

22n (11/8, n) (13/8, n)
if a = −1− 2n,

22n
(
1 +

√
2
)2n

(3/8, n) (5/8, n)

(1/4, n) (3/4, n)
if a = 1 + 2n,

22n
(
1 +

√
2
)2n+2

(7/8, n) (9/8, n)

(3/4, n) (5/4, n)
if a = 2 + 2n

(The third case is identical to Theorem 36 in [Ek]).

(x)F (1/2, 3/2− 2 a; 3/2− a; 1/2 + 1/2
√
2)

=



(1/4, n) (1/2, n)

(1/8, n) (5/8, n)
if a = 3/4 + 2n,

−
√
2 (1/2, n) (3/4, n)

(3/8, n) (7/8, n)
if a = 5/4 + 2n,

0 if a = 7/4 + 2n,

0 if a = 9/4 + 2n.

(xi)F (1/2, a; 3/2− a; 3 + 2
√
2)

=


(3/4, n) (5/4, n)

(7/8, n) (9/8, n)
if a = −2n,

2
(
1−

√
2
)
(5/4, n) (7/4, n)

5 (11/8, n) (13/8, n)
if a = −1− 2n.

(xii)F (1− a, 3/2− 2 a; 3/2− a; 3 + 2
√
2)

=



(4n+ 1) 24n
(
1 +

√
2
)4n

(3/8, n) (5/8, n)

(3/4, n) (5/4, n)
if a = 1 + 2n,

−24n+1
(
1 +

√
2
)4n+3

(7/8, n) (9/8, n)

(3/4, n) (5/4, n)
if a = 2 + 2n,

24n
(
1 +

√
2
)4n

(1/4, n) (1/2, n)

(1/8, n) (5/8, n)
if a = 3/4 + 2n,

24n+3/2
(
1 +

√
2
)4n+1

(1/2, n) (3/4, n)

(3/8, n) (7/8, n)
if a = 5/4 + 2n,

0 if a = 7/4 + 2n,

0 if a = 9/4 + 2n

(The first case is identical to Theorem 25 in [Ek]). The special values obtained from
(xiii)-(xxiv) coincide with the above.

(2,4,4-3) The special values obtained from (2,4,4-3) coincide with those obtained
from (2,4,4-2).
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(k, l,m) = (2, 5, 4)

In this case, we have
(a, b, c, x) = (a, 5/2 a− 1, 2 a,−1/2 + 1/2

√
5),

S(n) =
55/2n

(√
5− 1

)5n
(1/2 a+ 2/5, n) (1/2 a+ 3/5, n)

211n (1/2 a+ 1/4, n) (1/2 a+ 3/4, n)
,

(2,5,4-1)


(a, b, c, x) = (a, 5/2 a− 1, 2 a,−1/2− 1/2

√
5),

S(n) =
55/2n

(√
5 + 1

)5n
(1/2 a+ 2/5, n) (1/2 a+ 3/5, n)

211n (1/2 a+ 1/4, n) (1/2 a+ 3/4, n)
,

(2,5,4-2)


(a, b, c, x) = (a, 5/2 a− 1/2, 2 a,−1/2 + 1/2

√
5),

S(n) =
55/2n

(√
5− 1

)5n
(1/2 a+ 3/10, n) (1/2 a+ 7/10, n)

211n (1/2 a+ 1/4, n) (1/2 a+ 3/4, n)
,

(2,5,4-3)


(a, b, c, x) = (a, 5/2 a− 1/2, 2 a,−1/2− 1/2

√
5),

S(n) =
55/2n

(√
5 + 1

)5n
(1/2 a+ 3/10, n) (1/2 a+ 7/10, n)

211n (1/2 a+ 1/4, n) (1/2 a+ 3/4, n)
.

(2,5,4-4)

(2,5,4-1)

(i)F (a, 5/2 a− 1; 2 a; −1/2 + 1/2
√
5)

=



51/2−5/4 a
(√

5− 1
)1−5/2 a

Γ (3/5) Γ (4/5) Γ (a+ 1/2)

29/5−9/2 aΓ (9/10) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2
(√

5− 1
)5n+5

(8/5, n) (7/5, n)

211n+6 (7/4, n) (5/4, n)
if a = −2− 2n,

−55/2n+1/2
(√

5− 1
)5n+4

(11/10, n) (9/10, n)

211n+6 (5/4, n) (3/4, n)
if a = −1− 2n.

(ii)F (a, 1− 1/2 a; 2 a; −1/2 + 1/2
√
5)

=



51/2−5/4 a
(√

5− 1
)1/2 a−1

Γ (3/5) Γ (4/5) Γ (a+ 1/2)

2−3/2 a−1/5Γ (9/10) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2
(√

5 + 1
)n+1

(8/5, n) (7/5, n)

27n+2 (7/4, n) (5/4, n)
if a = −2− 2n,

55/2n+1/2
(√

5 + 1
)n+2

(11/10, n) (9/10, n)

27n+4 (5/4, n) (3/4, n)
if a = −1− 2n

(The first case is a generalization of Theorem 24 in [Ek]).

(iii)F (a, 1− 1/2 a; 2 a; −1/2− 1/2
√
5)

=



55/2n+1/2
(√

5− 1
)n+1

(8/5, n) (7/5, n)

27n+2 (7/4, n) (5/4, n)
if a = −2− 2n,

−55/2n+1/2
(√

5− 1
)n+2

(11/10, n) (9/10, n)

27n+4 (5/4, n) (3/4, n)
if a = −1− 2n,

25n
(√

5 + 1
)n

(5/4, n) (7/4, n)

55/2n (7/5, n) (8/5, n)
if a = 2 + 2n.
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(iv)F (a, 5/2 a− 1; 2 a; −1/2− 1/2
√
5)

=



55/2n+1/2
(√

5 + 1
)5n+5

(8/5, n) (7/5, n)

211n+6 (7/4, n) (5/4, n)
if a = −2− 2n,

55/2n+1/2
(√

5 + 1
)5n+4

(11/10, n) (9/10, n)

211n+6 (5/4, n) (3/4, n)
if a = −1− 2n,

55/2n
(√

5 + 1
)5n

(1/5, n) (2/5, n)

211n (11/20, n) (1/20, n)
if a = 2/5− 2n,

55/2n+1
(√

5 + 1
)5n+2

(4/5, n) (3/5, n)

211n+3 (19/20, n) (9/20, n)
if a = −2/5− 2n,

0 if a = −4/5− 2n,

0 if a = −6/5− 2n.

(v)F (a, 5/2 a− 1; 3/2 a; 3/2− 1/2
√
5)

=


33/2 a−3/5

(√
5 + 1

)5/2 a−1
Γ (3/5) Γ (4/5) Γ (1/2 a+ 1/3) Γ (1/2 a+ 2/3)

25/2 a−155/4 a−1/2Γ (8/15) Γ (13/15) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2
(√

5− 1
)5n+5

(8/5, n) (7/5, n)

25n+533n (5/3, n) (4/3, n)
if a = −2− 2n.

(vi)F (1− a, 1/2 a; 3/2 a; 3/2− 1/2
√
5)

=


33/2 a−3/5

(√
5 + 1

)1/2 a
Γ (3/5) Γ (4/5) Γ (1/2 a+ 1/3) Γ (1/2 a+ 2/3)

21/2 a55/4 a−1/2Γ (8/15) Γ (13/15) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2
(√

5− 1
)n+1

(8/5, n) (7/5, n)

2n+133n (5/3, n) (4/3, n)
if a = −2− 2n

(The second case is identical to Theorem 21 in [Ek]).

(vii)F (a, 1− a; 3/2 a; 1/2− 1/2
√
5)

=


33/2 a−3/5

(√
5 + 1

)3/2 a−1
Γ (3/5) Γ (4/5) Γ (1/2 a+ 1/3) Γ (1/2 a+ 2/3)

23/2 a−155/4 a−1/2Γ (8/15) Γ (13/15) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2
(√

5− 1
)3n+3

(8/5, n) (7/5, n)

23n+333n (5/3, n) (4/3, n)
if a = −2− 2n.

(viii)F (1/2 a, 5/2 a− 1; 3/2 a; 1/2− 1/2
√
5)

=


33/2 a−3/5Γ (3/5) Γ (4/5) Γ (1/2 a+ 1/3) Γ (1/2 a+ 2/3)

55/4 a−1/2Γ (8/15) Γ (13/15) Γ (1/2 a+ 2/5) Γ (1/2 a+ 3/5)
,

55/2n+1/2 (8/5, n) (7/5, n)

33n (5/3, n) (4/3, n)
if a = −2− 2n.

(ix)F (a, 1− a; 2− 3/2 a; 1/2 + 1/2
√
5)
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=



33n
(√

5− 1
)3n

(4/3, n) (2/3, n)

23n55/2n (6/5, n) (4/5, n)
if a = −2n,

33n
(√

5− 1
)3n+3

(11/6, n) (7/6, n)

7 · 23n+355/2n−1/2 (17/10, n) (13/10, n)
if a = −1− 2n,

55/2n
(√

5 + 1
)3n

(3/10, n) (7/10, n)

23n33n (1/6, n) (5/6, n)
if a = 1 + 2n,

55/2n+1/2
(√

5 + 1
)3n+6

(9/5, n) (11/5, n)

23n+633n (5/3, n) (7/3, n)
if a = 4 + 2n

(The third case is identical to Theorem 34 in [Ek]).

(x)F (2− 5/2 a, 1− 1/2 a; 2− 3/2 a; 1/2 + 1/2
√
5)

=



55/2n (1/5, n) (3/5, n)

(−3)3n (1/15, n) (11/15, n)
if a = 4/5 + 2n,

−55/2n+1/2 (2/5, n) (4/5, n)

(−3)3n (4/15, n) (14/15, n)
if a = 6/5 + 2n,

0 if a = 8/5 + 2n,

55/2n (4/5, n) (6/5, n)

(−3)3n (2/3, n) (4/3, n)
if a = 2 + 2n,

0 if a = 12/5 + 2n.

(xi)F (a, 1− 1/2 a; 2− 3/2 a; 3/2 + 1/2
√
5)

=



33n
(√

5− 1
)n

(4/3, n) (2/3, n)

2n55/2n (6/5, n) (4/5, n)
if a = −2n,

−33n
(√

5− 1
)n+2

(11/6, n) (7/6, n)

7 · 2n+255/2n−1/2 (17/10, n) (13/10, n)
if a = −1− 2n,

55/2n
(√

5 + 1
)n

(4/5, n) (6/5, n)

2n33n (2/3, n) (4/3, n)
if a = 2 + 2n

(The third case is identical to Theorem 22 in [Ek]).

(xii)F (1− a, 2− 5/2 a; 2− 3/2 a; 3/2 + 1/2
√
5)

=



55/2n
(√

5 + 1
)5n

(3/10, n) (7/10, n)

25n33n (1/6, n) (5/6, n)
if a = 1 + 2n,

−55/2n+1/2
(√

5 + 1
)5n+9

(9/5, n) (11/5, n)

25n+933n (5/3, n) (7/3, n)
if a = 4 + 2n,

55/2n
(√

5 + 1
)5n

(1/5, n) (3/5, n)

25n33n (1/15, n) (11/15, n)
if a = 4/5 + 2n,

55/2n+1/2
(√

5 + 1
)5n+1

(2/5, n) (4/5, n)

25n+133n (4/15, n) (14/15, n)
if a = 6/5 + 2n,

0 if a = 8/5 + 2n,

0 if a = 12/5 + 2n.
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(xiii)F (1/2 a, 5/2 a− 1; 3/2 a; 1/2 + 1/2
√
5)

=



−55/2n+1/2 (8/5, n) (7/5, n)

(−3)3n (5/3, n) (4/3, n)
if a = −2− 2n,

55/2n (2/5, n) (1/5, n)

(−3)3n (7/15, n) (2/15, n)
if a = 2/5− 2n,

−55/2n+1 (4/5, n) (3/5, n)

(−3)3n+1 (13/15, n) (8/15, n)
if a = −2/5− 2n,

0 if a = −4/5− 2n,

0 if a = −6/5− 2n.

(xiv)F (a, 1− a; 3/2 a; 1/2 + 1/2
√
5)

=



55/2n+1/2
(√

5 + 1
)3n+3

(8/5, n) (7/5, n)

23n+333n (5/3, n) (4/3, n)
if a = −2− 2n,

55/2n+1/2
(√

5 + 1
)3n+3

(11/10, n) (9/10, n)

23n+333n+1 (7/6, n) (5/6, n)
if a = −1− 2n,

33n
(√

5− 1
)3n

(5/6, n) (7/6, n)

23n55/2n (9/10, n) (11/10, n)
if a = 1 + 2n,

−33n−1
(√

5− 1
)3n+3

(4/3, n) (5/3, n)

23n+355/2n (7/5, n) (8/5, n)
if a = 2 + 2n

(The first case is identical to Theorem 35 in [Ek]).

(xv)F (a, 5/2 a− 1; 3/2 a; 3/2 + 1/2
√
5)

=



55/2n+1/2
(√

5 + 1
)5n+5

(8/5, n) (7/5, n)

25n+533n (5/3, n) (4/3, n)
if a = −2− 2n,

−55/2n+1/2
(√

5 + 1
)5n+4

(11/10, n) (9/10, n)

25n+433n+1 (7/6, n) (5/6, n)
if a = −1− 2n,

55/2n
(√

5 + 1
)5n

(2/5, n) (1/5, n)

25n33n (7/15, n) (2/15, n)
if a = 2/5− 2n,

55/2n+1
(√

5 + 1
)5n+2

(4/5, n) (3/5, n)

25n+233n+1 (13/15, n) (8/15, n)
if a = −2/5− 2n,

0 if a = −4/5− 2n,

0 if a = −6/5− 2n.

(xvi)F (1/2 a, 1− a; 3/2 a; 3/2 + 1/2
√
5)

=



55/2n+1/2
(√

5 + 1
)n+1

(8/5, n) (7/5, n)

2n+133n (5/3, n) (4/3, n)
if a = −2− 2n,

33n
(√

5− 1
)n

(5/6, n) (7/6, n)

2n55/2n (9/10, n) (11/10, n)
if a = 1 + 2n,

33n−1
(√

5− 1
)n+2

(4/3, n) (5/3, n)

2n+255/2n (7/5, n) (8/5, n)
if a = 2 + 2n
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(The first case is identical to Theorem 21 in [Ek]).

(xvii)F (1/2 a, 1− a; 2− 2 a; −1/2 + 1/2
√
5)

=



2−3/2 a
(√

5− 1
)−1/2 a

Γ (6/5) Γ (4/5) Γ (3/2− a)

5−5/4 aΓ (3/2) Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

7 · 55/2n+1/2
(√

5 + 1
)n+1

(13/10, n) (17/10, n)

27n+5 (5/4, n) (7/4, n)
if a = 3 + 2n,

55/2n
(√

5 + 1
)n+2

(4/5, n) (6/5, n)

27n+3 (3/4, n) (5/4, n)
if a = 2 + 2n

(The first case is a generalization of Theorem 23 in [Ek]).

(xviii)F (1− a, 2− 5/2 a; 2− 2 a; −1/2 + 1/2
√
5)

=



22−9/2 a
(√

5− 1
)5/2 a−2

Γ (6/5) Γ (4/5) Γ (3/2− a)

5−5/4 aΓ(3/2)Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

7 · 55/2n+1/2
(√

5− 1
)5n+5

(13/10, n) (17/10, n)

211n+9 (5/4, n) (7/4, n)
if a = 3 + 2n,

55/2n
(√

5− 1
)5n+4

(4/5, n) (6/5, n)

211n+5 (3/4, n) (5/4, n)
if a = 2 + 2n,

(xix)F (1− a, 2− 5/2 a; 2− 2 a; −1/2− 1/2
√
5)

=



7 · 55/2n+1/2
(√

5 + 1
)5n+5

(13/10, n) (17/10, n)

211n+9 (5/4, n) (7/4, n)
if a = 3 + 2n,

55/2n
(√

5 + 1
)5n+4

(4/5, n) (6/5, n)

211n+5 (3/4, n) (5/4, n)
if a = 2 + 2n,

55/2n
(√

5 + 1
)5n

(1/5, n) (3/5, n)

211n (3/20, n) (13/20, n)
if a = 4/5 + 2n,

55/2n+1/2
(√

5 + 1
)5n+1

(2/5, n) (4/5, n)

211n+2 (7/20, n) (17/20, n)
if a = 6/5 + 2n,

0 if a = 8/5 + 2n,

0 if a = 12/5 + 2n.

(xx)F (1/2 a, 1− a; 2− 2 a; −1/2− 1/2
√
5)

=



25n
(√

5 + 1
)n

(5/4, n) (3/4, n)

55/2n (6/5, n) (4/5, n)
if a = −2n,

7 · 55/2n+1/2
(√

5− 1
)n+1

(13/10, n) (17/10, n)

27n+5 (5/4, n) (7/4, n)
if a = 3 + 2n,

55/2n
(√

5− 1
)n+2

(4/5, n) (6/5, n)

27n+3 (3/4, n) (5/4, n)
if a = 2 + 2n.

(xxi)F (a, 1− 1/2 a; 2− 3/2 a; 3/2− 1/2
√
5)
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=


3−3/2 a

(√
5 + 1

)−1/2 a
Γ (6/5) Γ (4/5) Γ (4/3− 1/2 a) Γ (2/3− 1/2 a)

2−1/2 a5−5/4 aΓ (4/3) Γ (2/3) Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

55/2n
(√

5− 1
)n

(4/5, n) (6/5, n)

2n33n (2/3, n) (4/3, n)
if a = 2 + 2n

(The second case is identical to Theorem 22 in [Ek]).

(xxii)F (1− a, 2− 5/2 a; 2− 3/2 a; 3/2− 1/2
√
5)

=


3−3/2 a

(√
5 + 1

)1−5/2 a
Γ (6/5) Γ (4/5) Γ (4/3− 1/2 a) Γ (2/3− 1/2 a)

21−5/2 a5−5/4 aΓ (4/3) Γ (2/3) Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

−55/2n+1/2
(√

5− 1
)5n+9

(9/5, n) (11/5, n)

25n+933n (5/3, n) (7/3, n)
if a = 4 + 2n.

(xxiii)F (a, 1− a; 2− 3/2 a; 1/2− 1/2
√
5)

=


3−3/2 a

(√
5 + 1

)−3/2 a
Γ (6/5) Γ (4/5) Γ (4/3− 1/2 a) Γ (2/3− 1/2 a)

2−3/2 a5−5/4 aΓ (4/3) Γ (2/3) Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

−55/2n+1/2
(√

5− 1
)3n+6

(9/5, n) (11/5, n)

23n+633n (5/3, n) (7/3, n)
if a = 4 + 2n.

(xxiv)F (2− 5/2 a, 1− 1/2 a; 2− 3/2 a; 1/2− 1/2
√
5)

=


3−3/2 a

(√
5− 1

)
Γ (6/5) Γ (4/5) Γ (4/3− 1/2 a) Γ (2/3− 1/2 a)

2 · 5−5/4 aΓ (4/3) Γ (2/3) Γ (6/5− 1/2 a) Γ (4/5− 1/2 a)
,

55/2n (4/5, n) (6/5, n)

33n (2/3, n) (4/3, n)
if a = 2 + 2n.

(2,5,4-2), (2,5,4-3), (2,5,4-4) The special values obtained from (2,5,4-2), (2,5,4-
3) and (2,5,4-4) coincide with those obtained from (2,5,4-1).

(k, l,m) = (2, 6, 4)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2), (2,6,4-1)

(a, b, c, x) = (a, b, b+ 1− a,−1), (2,6,4-2)

(a, b, c, x) = (a, b, 1/2 a+ 1/2 b+ 1/2, 1/2), (2,6,4-3)

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2 + 1/2 i
√
3), (2,6,4-4)

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2− 1/2 i
√
3). (2,6,4-5)

(2,6,4-1), (2,6,4-2), (2,6,4-3) The special values obtained from (2,6,4-1), (2,6,4-
2) and (2,6,4-3) are evaluated in paragraphs (1,2,2-1) and (0,2,2-1).

(2,6,4-4), (2,6,4-5) The special values obtained from (2,6,4-4) and (2,6,4-5) co-
incide with those obtained from (1,3,2-1).
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3.4.5 m = 5

(k, l,m) = (0, 5, 5)

In this case, we have

(a, b, c, x) = (1, b, b, λ), S(n) = 1, (0,5,5-1)

(a, b, c, x) = (0, b, b+ 1, λ), S(n) = 1, (0,5,5-2)

where λ is a solution of x4 + x3 + x2 + x+ 1 = 0.

(0,5,5-1) The special values obtained from (0,5,5-1) except trivial values are the
special cases of (3.4.1).

(0,5,5-2) The special values obtained from (0,5,5-2) coincide with those obtained
from (0,5,5-1).

(k, l,m) = (1, 4, 5)

In this case, there is no admissible quadruple.

(k, l,m) = (1, 5, 5)

In this case, we have

(a, b, c, x) = (a, 5 a+ 1, 5 a, 5/4), S(n) =
(−5)5n (a+ 1, n) (4 a, 4n)

210n (5 a, 5n)
, (1,5,5-1)

(a, b, c, x) = (a, 5 a− 5, 5 a− 3, 5/4), S(n) =
5 a− 4

(−4)n (5 a− 4 + 5n)
. (1,5,5-2)

(1,5,5-1)

(i)F (a, 5 a+ 1; 5 a; 5/4) =



0 if a = −1− n,

(−5)5n (1/5, n) (9/5, 4n)

210n (2, 5n)
if a = −1/5− n,

3 (−5)5n (2/5, n) (13/5, 4n)

210n+2 (3, 5n)
if a = −2/5− n,

7 (−5)5n (3/5, n) (17/5, 4n)

210n+4 (4, 5n)
if a = −3/5− n,

11 (−5)5n (4/5, n) (21/5, 4n)

210n+6 (5, 5n)
if a = −4/5− n.
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The special values obtained from (ii) and (iii) are trivial.

(iv)F (4 a, 5 a+ 1; 5 a; 5) =



0 if a = −1/4− 1/4n,
55n (1/5, n) (9/5, 4n)

(2, 5n)
if a = −1/5− n,

−3 · 55n (2/5, n) (13/5, 4n)
(3, 5n)

if a = −2/5− n,

7 · 55n (3/5, n) (17/5, 4n)
(4, 5n)

if a = −3/5− n,

−11 · 55n (4/5, n) (21/5, 4n)
(5, 5n)

if a = −4/5− n.

(v)F (a, 5 a+ 1; a+ 2; −1/4) = 210 a5−5 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(vi)F (2, 1− 4 a; a+ 2; −1/4) = 4/5 a+ 4/5

(The above is a special case of (1.5) in [Eb2]).

(vii)F (a, 1− 4 a; a+ 2; 1/5) = 28 a5−4 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(viii)F (2, 5 a+ 1; a+ 2; 1/5) = 5/4 a+ 5/4

(The above is a special case of (1.5) in [Eb2]).

(ix)F (a, 1− 4 a; −4 a; 4/5) =



0,
28n (9/4, 5n)

54n (5/4, n) (2, 4n)
if a = 1/4 + n,

3 · 28n+1 (7/2, 5n)

54n+1 (3/2, n) (3, 4n)
if a = 1/2 + n,

77 · 28n−1 (19/4, 5n)

54n+2 (7/4, n) (4, 4n)
if a = 3/4 + n,

28n+8 (6, 5n)

54n+3 (2, n) (5, 4n)
if a = 1 + n.

The special values obtained from (x) and (xi) are trivial.

(xii)F (−5 a, 1− 4 a; −4 a; −4) =



0 if a = 1/5 + n,

0 if a = 2/5 + n,

0 if a = 3/5 + n,

0 if a = 4/5 + n,
28n (9/4, 5n)

(5/4, n) (2, 4n)
if a = 1/4 + n,

3 · 28n+1 (7/2, 5n)

(3/2, n) (3, 4n)
if a = 1/2 + n,

77 · 28n−1 (19/4, 5n)

(7/4, n) (4, 4n)
if a = 3/4 + n,

28n+8 (6, 5n)

(2, n) (5, 4n)
if a = 1 + n.
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(xiii)F (2, 5 a+ 1; 4 a+ 2; 4/5) = 5 (4 a+ 1)

(The above is a special case of (1.5) in [Eb2]).

(xiv)F (4 a, 1− a; 4 a+ 2; 4/5) = 5−a (4 a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xv)F (4 a, 5 a+ 1; 4 a+ 2; −4) =


−55n (20n− 1) if a = −1/5− n,

−55n+1 (20n+ 3) if a = −2/5− n,

−55n+2 (20n+ 7) if a = −3/5− n,

−55n+3 (20n+ 11) if a = −4/5− n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xvi)F (2, 1− a; 4 a+ 2; −4) = 4/5n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]).

(xvii)F (2, 1− 4 a; 2− 5 a; 5/4) = 5n+ 1 if a = 1/4 + 1/4n

(The above is a special case of (1.5) in [Eb2]).

(xviii)F (−5 a, 1− a; 2− 5 a; 5/4) = − (−4)−n−1 (5n+ 4) if a = 1 + n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xix)F (−5 a, 1− 4 a; 2− 5 a; 5) =


28n (20n+ 1) if a = 1/4 + n,

−28n+2 (20n+ 6) if a = 1/2 + n,

28n+4 (20n+ 11) if a = 3/4 + n,

−28n+14 (20n+ 36) if a = 2 + n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xx)F (2, 1− a; 2− 5 a; 5) = 5/4n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]). The special values obtained from
(xxi) are trivial.

(xxii)F (−5 a, 1− a; −a; −1/4) =

0,
(5, 5n)

22n (2, n) (4, 4n)
if a = 1 + n

(The first case is identical to (29.6) in [Ge]).

(xxiii)F (4 a, 1− a; −a; 1/5) =

0,
(5, 5n)

5n (2, n) (4, 4n)
if a = 1 + n.

The special values obtained from (xxiv) are trivial.
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(1,5,5-2) The special values obtained from (1,5,5-2) coincide with those obtained
from (1,5,5-1).

(k, l,m) = (1, 6, 5)

In this case, we have

(a, b, c, x) = (a, b, b+ 1− a,−1). (1,6,5-1)

(1,6,5-1) The special values obtained from (1,6,5-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1).

(k, l,m) = (2, 3, 5)

In this case, there is no admissible quadruple.

(k, l,m) = (2, 4, 5)

In this case, there is no admissible quadruple.

(k, l,m) = (2, 5, 5)

In this case, we have

(a, b, c, x) = (a, 5/2 a+ 1, 5/2 a, 5/3), S(n) =
55n (a+ 1, 2n) (3/2 a, 3n)

35n (5/2 a, 5n)
, (2,5,5-1)

(a, b, c, x) = (a, 5/2 a− 5/2, 5/2 a− 1/2, 5/3), S(n) =
22n(5 a− 3)

5 a− 3 + 10n
. (2,5,5-2)

(2,5,5-1)

(i)F (a, 5/2 a+ 1; 5/2 a; 5/3)

=



0 if a = −1− n,
55n (2/5, 2n) (8/5, 3n)

35n (2, 5n)
if a = −2/5− 2n,

55n (4/5, 2n) (11/5, 3n)

35n+1 (3, 5n)
if a = −4/5− 2n,

−2 · 55n (6/5, 2n) (14/5, 3n)
35n+2 (4, 5n)

if a = −6/5− 2n,

−7 · 55n (8/5, 2n) (17/5, 3n)
35n+3 (5, 5n)

if a = −8/5− 2n.

The special values obtained from (ii) and (iii) are trivial.

(iv)F (3/2 a, 5/2 a+ 1; 5/2 a; 5/2)
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=



0 if a = −2/3− 2/3n,

(−5)5n (2/5, 2n) (8/5, 3n)

25n (2, 5n)
if a = −2/5− 2n,

− (−5)5n (4/5, 2n) (11/5, 3n)

25n+1 (3, 5n)
if a = −4/5− 2n,

− (−5)5n (6/5, 2n) (14/5, 3n)

25n+1 (4, 5n)
if a = −6/5− 2n,

7 (−5)5n (8/5, 2n) (17/5, 3n)

25n+3 (5, 5n)
if a = −8/5− 2n.

(v)F (a, 5/2 a+ 1; a+ 2; −2/3) = 35/2 a5−5/2 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(vi)F (2, 1− 3/2 a; a+ 2; −2/3) = 3/5 a+ 3/5

(The above is a special case of (1.5) in [Eb2]).

(vii)F (a, 1− 3/2 a; a+ 2; 2/5) = 33/2 a5−3/2 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2] and is a general-
ization of Theorem 38 in [Ek]).

(viii)F (2, 5/2 a+ 1; a+ 2; 2/5) = 5/3 a+ 5/3

(The above is a special case of (1.5) in [Eb2]).

(ix)F (a, 1− 3/2 a; −3/2 a; 3/5)

=



0,
33n (8/3, 5n)

53n (5/3, 2n) (2, 3n)
if a = 2/3 + 2n,

7 · 33n (13/3, 5n)
53n+1 (7/3, 2n) (3, 3n)

if a = 4/3 + 2n,

18 · 33n+1 (6, 5n)

53n+2 (3, 2n) (4, 3n)
if a = 2 + 2n.

The special values obtained from (x) and (xi) are trivial.

(xii)F (−5/2 a, 1− 3/2 a; −3/2 a; −3/2)

=



0 if a = 2/5 + 2n,

0 if a = 4/5 + 2n,

0 if a = 6/5 + 2n,

0 if a = 8/5 + 2n,
33n (8/3, 5n)

23n (5/3, 2n) (2, 3n)
if a = 2/3 + 2n,

7 · 33n (13/3, 5n)
23n+1 (7/3, 2n) (3, 3n)

if a = 4/3 + 2n,

33n+3 (6, 5n)

23n+1 (3, 2n) (4, 3n)
if a = 2 + 2n.
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(xiii)F (2, 5/2 a+ 1; 3/2 a+ 2; 3/5) = 15/4 a+ 5/2

(The above is a special case of (1.5) in [Eb2]).

(xiv)F (3/2 a, 1− a; 3/2 a+ 2; 3/5) = 2a−15−a (3 a+ 2)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xv)F (3/2 a, 5/2 a+ 1; 3/2 a+ 2; −3/2)

=


2−5n−155n (2− 15n) if a = −2/5− 2n,

2−5n−255n+1 (−1− 15n) if a = −4/5− 2n,

2−5n−355n+2 (−4− 15n) if a = −6/5− 2n,

2−5n−455n+3 (−7− 15n) if a = −8/5− 2n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xvi)F (2, 1− a; 3/2 a+ 2; −3/2) = 3/5n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]).

(xvii)F (2, 1− 3/2 a; 2− 5/2 a; 5/3) = 5/2n+ 1 if a = 2/3 + 2/3n

(The above is a special case of (1.5) in [Eb2]).

(xviii)F (−5/2 a, 1− a; 2− 5/2 a; 5/3) = (−2)n 3−n−1 (5n+ 3) if a = 1 + n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xix)F (−5/2 a, 1− 3/2 a; 2− 5/2 a; 5/2)

= 2−n−1 (−3)n (5n+ 2) if a = 2/3 + 2/3n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xx)F (2, 1− a; 2− 5/2 a; 5/2) = 5/3n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]). The special values obtained from
(xxi) are trivial.

(xxii)F (−5/2 a, 1− a; −a; −2/3) =


0,

22n (5/2, 5n)

32n (2, 2n) (3/2, 3n)
if a = 1 + 2n,

22n+3 (5, 5n)

32n+1 (3, 2n) (3, 3n)
if a = 2 + 2n.

(xxiii)F (3/2 a, 1− a; −a; 2/5) =


0,

22n (5/2, 5n)

52n (2, 2n) (3/2, 3n)
if a = 1 + 2n,

22n+3 (5, 5n)

52n+1 (3, 2n) (3, 3n)
if a = 2 + 2n.

The special values obtained from (xxiv) are trivial.
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(2,5,5-2) The special values obtained from (2,5,5-2) coincide with those obtained
from (2,5,5-1).

(k, l,m) = (2, 6, 5)

In this case, there is no admissible quadruple.

(k, l,m) = (2, 7, 5)

In this case, there is no admissible quadruple.

3.4.6 m = 6

(k, l,m) = (0, 6, 6)

In this case, we have

(a, b, c, x) = (a, b, b+ 1− a,−1), (0,6,6-1)

(a, b, c, x) = (1, b, b, λ), (0,6,6-2)

(a, b, c, x) = (0, b, b+ 1, λ), (0,6,6-3)

(a, b, c, x) = (1, b, b, µ), (0,6,6-4)

(a, b, c, x) = (0, b, b+ 1, µ)., (0,6,6-5)

where λ and µ are solutions of x2 + x+ 1 = 0 and x2 − x+ 1 = 0, respectively.

(0,6,6-1) The special values obtained from (0,6,6-1) are contained in those from
(1,2,2-1) and (0,2,2-1).

(0,6,6-2) The special values obtained from (0,6,6-2) except trivial values are spe-
cial cases of (3.4.1).

(0,6,6-3) The special values obtained from (0,6,6-3) coincide with those obtained
from (0,6,6-2).

(0,6,6-4) The special values obtained from (0,6,6-4) except trivial values are spe-
cial cases of (3.4.1).

(0,6,6-5) The special values obtained from (0,6,6-5) coincide with those obtained
from (0,6,6-4).

(k, l,m) = (1, 5, 6)

In this case, we have(a, b, c, x) = (a, 5 a− 1/2, 6 a,−4),

S(n) =
55n (a+ 1/5, n) (a+ 4/5, n) (a+ 3/10, n) (a+ 7/10, n)

36n (a+ 1/3, n) (a+ 2/3, n) (a+ 1/6, n) (a+ 5/6, n)
,

(1,5,6-1)
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(a, b, c, x) = (a, 5 a− 3/2, 6 a− 1,−4),

S(n) =
55n (a+ 2/5, n) (a+ 3/5, n) (a− 1/10, n) (a+ 1/10, n)

36n (a+ 1/3, n) (a+ 2/3, n) (a− 1/6, n) (a+ 1/6, n)
,

(1,5,6-2)

(a, b, c, x) = (a, 5 a− 5/2, 6 a− 3,−4),

S(n) =
55n (a− 1/5, n) (a+ 1/5, n) (a− 3/10, n) (a+ 3/10, n)

36n (a− 1/3, n) (a+ 1/3, n) (a− 1/6, n) (a+ 1/6, n)
,

(1,5,6-3)

(a, b, c, x) = (a, 5 a− 7/2, 6 a− 4,−4),

S(n) =
55n (a− 3/5, n) (a− 2/5, n) (a− 1/10, n) (a+ 1/10, n)

36n (a− 2/3, n) (a− 1/3, n) (a− 1/6, n) (a+ 1/6, n)
.

(1,5,6-4)

(1,5,6-1)

(i)F (a, 5 a− 1/2; 6 a; −4)

=



14 · 55n (9/5, n) (6/5, n) (17/10, n) (13/10, n)
36n+1 (5/3, n) (4/3, n) (11/6, n) (7/6, n)

if a = −1− n,

55n (7/10, n) (1/10, n) (3/5, n) (1/5, n)

36n (17/30, n) (7/30, n) (11/15, n) (1/15, n)
if a = 1/10− n,

55n+1 (9/10, n) (3/10, n) (4/5, n) (2/5, n)

36n+1 (23/30, n) (13/30, n) (14/15, n) (4/15, n)
if a = −1/10− n,

0 if a = −3/10− n,
13 · 55n+1 (23/10, n) (17/10, n) (11/5, n) (9/5, n)

36n+1 (13/6, n) (11/6, n) (7/3, n) (5/3, n)
if a = −3/2− n,

0 if a = −7/10− n.

(ii)F (5 a, a+ 1/2; 6 a; −4)

=



14 · 55n (9/5, n) (6/5, n) (17/10, n) (13/10, n)
36n+1 (5/3, n) (4/3, n) (11/6, n) (7/6, n)

if a = −1− n,

0 if a = −1/5− n,
55n+2 (6/5, n) (3/5, n) (11/10, n) (7/10, n)

7 · 36n+1 (16/15, n) (11/15, n) (37/30, n) (17/30, n)
if a = −2/5− n,

55n+3 (7/5, n) (4/5, n) (13/10, n) (9/10, n)

26 · 36n+1 (19/15, n) (14/15, n) (43/30, n) (23/30, n)
if a = −3/5− n,

0 if a = −4/5− n,
55n (13/10, n) (7/10, n) (6/5, n) (4/5, n)

36n (7/6, n) (5/6, n) (4/3, n) (2/3, n)
if a = −1/2− n.

(iii)F (a, a+ 1/2; 6 a; 4/5)

36 a−3/5Γ (3/5) Γ (4/5) Γ (2 a+ 1/3) Γ (2 a+ 2/3)

54 a−1/2Γ (8/15) Γ (13/15) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
,

14 · 54n−1 (9/5, n) (6/5, n) (17/10, n) (13/10, n)

36n+1 (5/3, n) (4/3, n) (11/6, n) (7/6, n)
if a = −1− n,

54n (13/10, n) (7/10, n) (6/5, n) (4/5, n)

36n (7/6, n) (5/6, n) (4/3, n) (2/3, n)
if a = −1/2− n.
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(iv)F (5 a, 5 a− 1/2; 6 a; 4/5)

36 a−3/5Γ (3/5) Γ (4/5) Γ (2 a+ 1/3) Γ (2 a+ 2/3)

Γ (8/15) Γ (13/15) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
,

14

55
(9/5, n) (6/5, n) (17/10, n) (13/10, n)

36n+1 (5/3, n) (4/3, n) (11/6, n) (7/6, n)
if a = −1− n,

13

57
(11/5, n) (9/5, n) (23/10, n) (17/10, n)

36n+1 (7/3, n) (5/3, n) (13/6, n) (11/6, n)
if a = −3/2− n.

(v)F (a, 5 a− 1/2; 1/2; 5) =



26n (7/10, n) (3/10, n)

(3/5, n) (2/5, n)
if a = −n,

26n (3/5, n) (1/5, n)

(1/2, n) (3/10, n)
if a = 1/10− n,

26n+1 (4/5, n) (2/5, n)

(7/10, n) (1/2, n)
if a = −1/10− n,

0 if a = −3/10− n,
26n+4 (6/5, n) (4/5, n)

(11/10, n) (9/10, n)
if a = −1/2− n,

0 if a = −7/10− n.

(vi)F (1− 5 a, 1/2− a; 1/2; 5) =



26n (3/5, n) (4/5, n)

(1/2, n) (9/10, n)
if a = 1/5 + n,

0 if a = 2/5 + n,

0 if a = 3/5 + n,
26n+6 (6/5, n) (7/5, n)

5 (11/10, n) (3/2, n)
if a = 4/5 + n,

−26n+7 (7/5, n) (8/5, n)

7 (13/10, n) (17/10, n)
if a = 1 + n,

26n (9/10, n) (11/10, n)

(4/5, n) (6/5, n)
if a = 1/2 + n.

(vii)F (a, 1− 5 a; 1/2; 5/4)

=



(−16)n (7/10, n) (3/10, n)

(3/5, n) (2/5, n)
if a = −n,

(3/5, n) (4/5, n)

(−16)n (1/2, n) (9/10, n)
if a = 1/5 + n,

0 if a = 2/5 + n,

0 if a = 3/5 + n,
− (6/5, n) (7/5, n)

5 (−16)n (11/10, n) (3/2, n)
if a = 4/5 + n,

− (7/5, n) (8/5, n)

14 (−16)n (13/10, n) (17/10, n)
if a = 1 + n.
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(viii)F (5 a− 1/2, 1/2− a; 1/2; 5/4)

=



(3/5, n) (1/5, n)

(−16)n (1/2, n) (3/10, n)
if a = 1/10− n,

− (4/5, n) (2/5, n)

2 (−16)n (7/10, n) (1/2, n)
if a = −1/10− n,

0 if a = −3/10− n,
− (6/5, n) (4/5, n)

4 (−16)n (11/10, n) (9/10, n)
if a = −1/2− n,

0 if a = −7/10− n,
(−16)n (9/10, n) (11/10, n)

(4/5, n) (6/5, n)
if a = 1/2 + n.

(ix)F (a, 1− 5 a; 3/2− 4 a; −1/4)

=
55 aΓ (4/5) Γ (6/5) Γ (3/2− 4 a)

28 aΓ (3/2) Γ (4/5− 2 a) Γ (6/5− 2 a)
.

(x)F (3/2− 5 a, a+ 1/2; 3/2− 4 a; −1/4)

=
55 a−1/2Γ (4/5) Γ (6/5) Γ (3/2− 4 a)

28 a−1Γ (3/2) Γ (4/5− 2 a) Γ (6/5− 2 a)
.

(xi)F (a, a+ 1/2; 3/2− 4 a; 1/5) =
56 aΓ (4/5) Γ (6/5) Γ (3/2− 4 a)

210 aΓ (3/2) Γ (4/5− 2 a) Γ (6/5− 2 a)

(The above is a generalization of Theorem 20 in [Ek]).

(xii)F (1− 5 a, 3/2− 5 a; 3/2− 4 a; 1/5)

=
5Γ (4/5) Γ (6/5) Γ (3/2− 4 a)

22−2 aΓ (3/2) Γ (4/5− 2 a) Γ (6/5− 2 a)
.

(xiii)F (5 a− 1/2, 1/2− a; 4 a+ 1/2; −1/4)

=
28 a−4Γ (7/5) Γ (8/5) Γ (4 a+ 1/2)

55 a−5/2Γ (5/2) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
.

(xiv)F (5 a, 1− a; 4 a+ 1/2; −1/4) =
28 a−3Γ (7/5) Γ (8/5) Γ (4 a+ 1/2)

55 a−2Γ (5/2) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
.

(xv)F (5 a, 5 a− 1/2; 4 a+ 1/2; 1/5) =
25 · 2−2 a−3Γ (7/5) Γ (8/5) Γ (4 a+ 1/2)

Γ (5/2) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
.

(xvi)F (1− a, 1/2− a; 4 a+ 1/2; 1/5) =
210 a−5Γ (7/5) Γ (8/5) Γ (4 a+ 1/2)

56 a−3Γ (5/2) Γ (2 a+ 2/5) Γ (2 a+ 3/5)
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(The above is a generalization of Theorem 19 in [Ek]).

(xvii)F (1− 5 a, 1/2− a; 2− 6 a; −4)

=



55n (1/10, n) (3/10, n) (3/5, n) (4/5, n)

36n (1/30, n) (11/30, n) (8/15, n) (13/15, n)
if a = 1/5 + n,

0 if a = 2/5 + n,

0 if a = 3/5 + n,
55n+3 (7/10, n) (9/10, n) (6/5, n) (7/5, n)

7 · 36n+1 (19/30, n) (29/30, n) (17/15, n) (22/15, n)
if a = 4/5 + n,

−22 · 55n (19/10, n) (21/10, n) (12/5, n) (13/5, n)
36n (11/6, n) (13/6, n) (7/3, n) (8/3, n)

if a = 2 + n,

55n (2/5, n) (3/5, n) (9/10, n) (11/10)

36n (1/3, n) (2/3, n) (5/6, n) (7/6, n)
if a = 1/2 + n.

(xviii)F (1− a, 3/2− 5 a; 2− 6 a; −4)

=



55n (9/10, n) (11/10, n) (7/5, n) (8/5, n)

36n (5/6, n) (7/6, n) (4/3, n) (5/3, n)
if a = 1 + n,

55n (1/5, n) (2/5, n) (7/10, n) (9/10, n)

36n (2/15, n) (7/15, n) (19/30, n) (29/30, n)
if a = 3/10 + n,

−11 · 55n (7/5, n) (8/5, n) (19/10, n) (21/10, n)
7 · 36n−1 (4/3, n) (5/3, n) (11/6, n) (13/6, n)

if a = 3/2 + n,

55n+2 (3/5, n) (4/5, n) (11/10, n) (13/10, n)

11 · 36n (8/15, n) (13/15, n) (31/30, n) (41/30, n)
if a = 7/10 + n,

0 if a = 9/10 + n,

0 if a = 11/10 + n.

(xix)F (1− 5 a, 3/2− 5 a; 2− 6 a; 4/5)

=



36/5−6 aΓ (2/5) Γ (4/5) Γ (2/3− 2 a) Γ (4/3− 2 a)

Γ (4/15) Γ (14/15) Γ (4/5− 2 a) Γ (6/5− 2 a)
,

−22 (19/10, n) (21/10, n) (12/5, n) (13/5, n)

5936n (11/6, n) (13/6, n) (7/3, n) (8/3, n)
if a = 2 + n,

−11 (7/5, n) (8/5, n) (19/10, n) (21/10, n)

56 · 7 · 36n−1 (4/3, n) (5/3, n) (11/6, n) (13/6, n)
if a = 3/2 + n.

(xx)F (1− a, 1/2− a; 2− 6 a; 4/5)

=



36/5−6 aΓ (2/5) Γ (4/5) Γ (2/3− 2 a) Γ (4/3− 2 a)

51/2−4 aΓ (4/15) Γ (14/15) Γ (4/5− 2 a) Γ (6/5− 2 a)
,

54n (9/10, n) (11/10, n) (7/5, n) (8/5, n)

36n (5/6, n) (7/6, n) (4/3, n) (5/3, n)
if a = 1 + n,

54n (2/5, n) (3/5, n) (9/10, n) (11/10, n)

36n (1/3, n) (2/3, n) (5/6, n) (7/6, n)
if a = 1/2 + n.
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(xxi)F (5 a, a+ 1/2; 3/2; 5) =



26n (4/5, n) (1/5, n)

(11/10, n) (9/10, n)
if a = −n,

0 if a = −1/5− n,
26n+4 (6/5, n) (3/5, n)

15 (3/2, n) (13/10, n)
if a = −2/5− n,

26n+6 (7/5, n) (4/5, n)

35 (17/10, n) (3/2, n)
if a = −3/5− n,

0 if a = −4/5− n,
26n (13/10, n) (7/10, n)

(8/5, n) (7/5, n)
if a = −1/2− n.

(xxii)F (1− a, 3/2− 5 a; 3/2; 5) =



26n (9/10, n) (11/10, n)

(6/5, n) (9/5, n)
if a = 1 + n,

26n (1/5, n) (2/5, n)

(1/2, n) (11/10, n)
if a = 3/10 + n,

−26n+1 (2/5, n) (3/5, n)

3 (7/10, n) (13/10, n)
if a = 1/2 + n,

26n+3 (3/5, n) (4/5, n)

5 (9/10, n) (3/2, n)
if a = 7/10 + n,

0 if a = 9/10 + n,

0 if a = 11/10 + n.

(xxiii)F (5 a, 1− a; 3/2; 5/4)

=



(4/5, n) (1/5, n)

(−16)n (11/10, n) (9/10, n)
if a = −n,

0 if a = −1/5− n,
(6/5, n) (3/5, n)

15 (−16)n (3/2, n) (13/10, n)
if a = −2/5− n,

− (7/5, n) (4/5, n)

35 (−16)n (17/10, n) (3/2, n)
if a = −3/5− n,

0 if a = −4/5− n,
(−16)n (9/10, n) (11/10, n)

(6/5, n) (9/5, n)
if a = 1 + n.

(xxiv)F (a+ 1/2, 3/2− 5 a; 3/2; 5/4)

=



(−16)n (13/10, n) (7/10, n)

(8/5, n) (7/5, n)
if a = −1/2− n,

(1/5, n) (2/5, n)

(−16)n (1/2, n) (11/10, n)
if a = 3/10 + n,

(2/5, n) (3/5, n)

6 (−16)n (7/10, n) (13/10, n)
if a = 1/2 + n,

(3/5, n) (4/5, n)

10 (−16)n (9/10, n) (3/2, n)
if a = 7/10 + n,

0 if a = 9/10 + n,

0 if a = 11/10 + n.
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(1,5,6-2), (1,5,6-3), (1,5,6-4) The special values obtained from (1,5,6-2), (1,5,6-
3) and (1,5,6-4) coincide with those obtained from (1,5,6-1).

(k, l,m) = (1, 6, 6)

In this case, we have

(a, b, c, x) = (a, 6 a+ 1, 6 a, 6/5), S(n) =
(−1)n 26n36n (a+ 1, n) (5 a, 5n)

56n (6 a, 6n)
, (1,6,6-1)

(a, b, c, x) = (a, 6 a− 6, 6 a− 4, 6/5), S(n) =
6 a− 5

(−5)n (6 a− 5 + 6n)
. (1,6,6-2)

(1,6,6-1)

(i)F (a, 6 a+ 1; 6 a; 6/5)

=



0 if a = −1− n,
(−1)n 26n36n (1/6, n) (11/6, 5n)

56n (2, 6n)
if a = −1/6− n,

(−1)n 26n+236n (1/3, n) (8/3, 5n)

56n+1 (3, 6n)
if a = −1/3− n,

(−1)n 26n−136n+3 (1/2, n) (7/2, 5n)

56n+2 (4, 6n)
if a = −1/2− n,

7 (−1)n 26n+436n−1 (2/3, n) (13/3, 5n)

56n+3 (5, 6n)
if a = −2/3− n,

1729 (−1)n 26n−336n−1 (5/6, n) (31/6, 5n)

56n+4 (6, 6n)
if a = −5/6− n.

The special values obtained from (ii) and (iii) are trivial.

(iv)F (5 a, 6 a+ 1; 6 a; 6)

=



0 if a = −1/5− 1/5n,
(−1)n 26n36n (1/6, n) (11/6, 5n)

(2, 6n)
if a = −1/6− n,

(−1)n+1 26n+236n (1/3, n) (8/3, 5n)

(3, 6n)
if a = −1/3− n,

(−1)n 26n−136n+3 (1/2, n) (7/2, 5n)

(4, 6n)
if a = −1/2− n,

7 (−1)n+1 26n+436n−1 (2/3, n) (13/3, 5n)

(5, 6n)
if a = −2/3− n,

1729 (−1)n 26n−336n−1 (5/6, n) (31/6, 5n)

(6, 6n)
if a = −5/6− n.

(v)F (a, 6 a+ 1; a+ 2; −1/5) = 56 a6−6 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(vi)F (2, 1− 5 a; a+ 2; −1/5) = 5/6 a+ 5/6
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(The above is a special case of (1.5) in [Eb2]).

(vii)F (a, 1− 5 a; a+ 2; 1/6) = 55 a6−5 a (a+ 1)

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(viii)F (2, 6 a+ 1; a+ 2; 1/6) = 6/5 a+ 6/5

(The above is a special case of (1.5) in [Eb2]).

(ix)F (a, 1− 5 a; −5 a; 5/6)

=



0,
55n (6/5, 6n)

25n35n (6/5, n) (1, 5n)
if a = 1/5 + n,

7 · 55n (12/5, 6n)
25n+135n+1 (7/5, n) (2, 5n)

if a = 2/5 + n,

13 · 55n (18/5, 6n)
25n35n+2 (8/5, n) (3, 5n)

if a = 3/5 + n,

133 · 55n (24/5, 6n)
25n+335n+2 (9/5, n) (4, 5n)

if a = 4/5 + n,

55n+5 (6, 6n)

25n+435n+4 (2, n) (5, 5n)
if a = 1 + n.

The special values obtained from (x) and (xi) are trivial.

(xii)F (−6 a, 1− 5 a; −5 a; −5) =



0 if a = 1/6 + n,

0 if a = 1/3 + n,

0 if a = 1/2 + n,

0 if a = 2/3 + n,

0 if a = 5/6 + n,
55n (6/5, 6n)

(6/5, n) (1, 5n)
if a = 1/5 + n,

7 · 55n (12/5, 6n)
(7/5, n) (2, 5n)

if a = 2/5 + n,

52 · 55n (18/5, 6n)
(8/5, n) (3, 5n)

if a = 3/5 + n,

399 · 55n (24/5, 6n)
(9/5, n) (4, 5n)

if a = 4/5 + n,

55n+5 (6, 6n)

(2, n) (5, 5n)
if a = 1 + n.

(xiii)F (2, 6 a+ 1; 5 a+ 2; 5/6) = 6 (5 a+ 1)

(The above is a special case of (1.5) in [Eb2]).

(xiv)F (5 a, 1− a; 5 a+ 2; 5/6) = 6−a (5 a+ 1)
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(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xv)F (5 a, 6 a+ 1; 5 a+ 2; −5) =



66n (1− 30n) if a = −1/6− n,

66n+1 (−4− 30n) if a = −1/3− n,

66n+2 (−9− 30n) if a = −1/2− n,

66n+3 (−14− 30n) if a = −2/3− n,

66n+4 (−19− 30n) if a = −5/6− n

(The above are special cases of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xvi)F (2, 1− a; 5 a+ 2; −5) = 5/6n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]).

(xvii)F (2, 1− 5 a; 2− 6 a; 6/5) = 6n+ 1 if a = 1/5 + 1/5n

(The above is a special case of (1.5) in [Eb2]).

(xviii)F (−6 a, 1− a; 2− 6 a; 6/5) = −5−n−1 (6n+ 5) if a = 1 + n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xix)F (−6 a, 1− 5 a; 2− 6 a; 6) = (−5)n (6n+ 1) if a = 1/5 + 1/5n

(The above is a special case of (a/b.1) in [Go] and (1.6) in [Eb2]).

(xx)F (2, 1− a; 2− 6 a; 6) = 6/5n+ 1 if a = 1 + n

(The above is a special case of (1.5) in [Eb2]). The special values obtained from
(xxi) are trivial.

(xxii)F (−6 a, 1− a; −a; −1/5) =

0,
(6, 6n)

5n (2, n) (5, 5n)
if a = 1 + n.

(xxiii)F (5 a, 1− a; −a; 1/6) =

0,
(6, 6n)

2n3n (2, n) (5, 5n)
if a = 1 + n.

The special values obtained from (xxiv) are trivial.

(1,6,6-2) The special values obtained from (1,6,6-2) coincide with those obtained
from (1,6,6-1).

(k, l,m) = (1, 7, 6)

In this case, there is no admissible quadruple.
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(k, l,m) = (2, 4, 6)

In this case, we have

(a, b, c, x) = (a, 2 a− 1/3, 3 a, 9), (2,4,6-1)

(a, b, c, x) = (a, 2 a− 2/3, 3 a− 1, 9), (2,4,6-2)
(a, b, c, x) = (a, 2 a− 1/3, 3 a,−9 + 6

√
3),

S(n) =
(−2)n

(√
3− 1

)6n
(1/2 a+ 3/4, n) (1/2 a+ 5/12, n)

33/2n (1/2 a+ 1/3, n) (1/2 a+ 5/6, n)
,

(2,4,6-3)


(a, b, c, x) = (a, 2 a− 1/3, 3 a,−9− 6

√
3),

S(n) =
2n

(√
3 + 1

)6n
(1/2 a+ 3/4, n) (1/2 a+ 5/12, n)

33/2n (1/2 a+ 1/3, n) (1/2 a+ 5/6, n)
,

(2,4,6-4)


(a, b, c, x) = (a, 2 a− 2/3, 3 a− 1,−9 + 6

√
3),

S(n) =
(−2)n

(√
3− 1

)6n
(1/2 a+ 1/4, n) (1/2 a+ 7/12, n)

33/2n (1/2 a+ 2/3, n) (1/2 a+ 1/6, n)
,

(2,4,6-5)


(a, b, c, x) = (a, 2 a− 2/3, 3 a− 1,−9− 6

√
3),

S(n) =
2n

(√
3 + 1

)6n
(1/2 a+ 1/4, n) (1/2 a+ 7/12, n)

33/2n (1/2 a+ 2/3, n) (1/2 a+ 1/6, n)
.

(2,4,6-6)

(2,4,6-1), (2,4,6-2) The special values obtained from (2,4,6-1) and (2,4,6-2) co-
incide with those obtained from (1,2,3-1).

(2,4,6-3)

(i)F (a, 2 a− 1/3; 3 a; −9 + 6
√
3)

=



7 (−2)n−3 (√3− 1
)6n+6

(5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

(−2)n−1 (√3− 1
)6n+4

(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

(−2)n
(√

3− 1
)6n

(1/6, n) (1/2, n)

33/2n (7/12, n) (1/12, n)
if a = 1/6− 2n,

−(−2)n−2 (√3− 1
)6n+8

(17/12, n) (7/4, n)

33/2n−1/2 (11/6, n) (4/3, n)
if a = −7/3− 2n

0 if a = −5/6− 2n,

(−2)n−1 (√3− 1
)6n+4

(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(ii)F (2 a, a+ 1/3; 3 a; −9 + 6
√
3)
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=



7 (−2)n−3 (√3− 1
)6n+6

(5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

−(−2)n+1 (√3− 1
)6n+1

(1/2, n) (5/6, n)

33/2n+1/2 (11/12, n) (5/12, n)
if a = −1/2− 2n,

(−2)n
(√

3− 1
)6n+2

(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

0 if a = −3/2− 2n,

(−2)n
(√

3− 1
)6n

(5/12, n) (3/4, n)

33/2n (5/6, n) (1/3, n)
if a = −1/3− 2n,

(−2)n−2 (√3− 1
)6n+4

(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(iii)F (a, a+ 1/3; 3 a; 9/4 + 3/4
√
3)

=



7 (−2)n−3 (5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

− (−2)n−1 (√3− 1
)
(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

(−2)n (5/12, n) (3/4, n)

33/2n (5/6, n) (1/3, n)
if a = −1/3− 2n,

− (−2)n−2 (√3− 1
)
(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(iv)F (2 a, 2 a− 1/3; 3 a; 9/4 + 3/4
√
3)

=



7
(√

3 + 1
)6n+6

(5/4, n) (19/12, n)

(−2)5n+9 33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,(√

3 + 1
)6n+2

(1/2, n) (5/6, n)

(−2)5n+1 33/2n+1/2 (11/12, n) (5/12, n)
if a = −1/2− 2n,(√

3 + 1
)6n+4

(3/4, n) (13/12, n)

(−2)5n+4 33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

0 if a = −3/2− 2n,(√
3 + 1

)6n
(1/6, n) (1/2, n)

(−2)5n 33/2n (7/12, n) (1/12, n)
if a = 1/6− 2n,

−
(√

3 + 1
)6n+7

(17/12, n) (7/4, n)

(−2)5n+9 33/2n−1/2 (11/6, n) (4/3, n)
if a = −7/3− 2n,

0 if a = −5/6− 2n,(√
3 + 1

)6n+5
(11/12, n) (5/4, n)

(−2)5n+6 33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(v)F (a, 2 a− 1/3; 2/3; 10− 6
√
3) =

33/8−9/4 a
(√

3− 1
)1/2−3 a √

πΓ (2/3)

21/4−3/2 aΓ (3/4− 1/2 a) Γ (1/2 a+ 5/12)
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(The above is a generalization of Theorem 26 in [Ek]). We find (vi)≤(v).

(vii)F (a, 1− 2 a; 2/3; 2/3− 2/9
√
3) =

33/8−3/4 a
(√

3− 1
)1/2−a √

πΓ (2/3)

21/4−1/2 aΓ (3/4− 1/2 a) Γ (1/2 a+ 5/12)

(The above is a generalization of Theorem 40 in [Ek]). We find (viii)≤(vii).

(ix)F (a, 1− 2 a; 4/3− a; 1/3 + 2/9
√
3)

=
3−3/4 a

(√
3− 1

)−a
sin (π (5/12− 1/2 a)) Γ (3/4) Γ (5/12) Γ (4/3− a)

21/2−7/2 aΓ (2/3) Γ (13/12− 1/2 a) Γ (3/4− 1/2 a)
.

(x)F (4/3− 2 a, a+ 1/3; 4/3− a; 1/3 + 2/9
√
3)

=
31/2−3/4 a

(√
3− 1

)−a−1/3
sin (π (5/12− 1/2 a)) Γ (3/4) Γ (5/12) Γ (4/3− a)

25/6−7/2 aΓ (2/3) Γ (13/12− 1/2 a) Γ (3/4− 1/2 a)
.

(xi)F (a, a+ 1/3; 4/3− a; −5/4− 3/4
√
3)

=



39/2n (7/6, n) (2/3, n)

(−2)7n (13/12, n) (3/4, n)
if a = −2n,

−39/2n+3/2
(√

3− 1
)
(5/3, n) (7/6, n)

7 (−2)7n+1 (19/12, n) (5/4, n)
if a = −1− 2n,

39/2n (4/3, n) (5/6, n)

(−2)7n (5/4, n) (11/12, n)
if a = −1/3− 2n,

39/2n+1
(√

3− 1
)
(11/6, n) (4/3, n)

(−2)7n+3 (7/4, n) (17/12, n)
if a = −4/3− 2n.

(xii)F (1− 2 a, 4/3− 2 a; 4/3− a; −5/4− 3/4
√
3)

=



39/2n
(√

3 + 1
)6n

(1/6, n) (1/2, n)

(−2)5n (1/12, n) (7/12, n)
if a = 1/2 + 2n,

39/2n+1
(√

3 + 1
)6n+1

(5/12, n) (3/4, n)

(−2)5n+1 (1/3, n) (5/6, n)
if a = 1 + 2n,

0 if a = 3/2 + 2n,

−39/2n+4
(√

3 + 1
)6n+5

(11/12, n) (5/4, n)

(−2)5n+6 (5/6, n) (4/3, n)
if a = 2 + 2n,

39/2n
(√

3 + 1
)6n

(1/4, n) (7/12, n)

(−2)5n (1/6, n) (2/3, n)
if a = 2/3 + 2n,

39/2n+3/2
(√

3 + 1
)6n+2

(1/2, n) (5/6, n)

(−2)5n+1 (5/12, n) (11/12, n)
if a = 7/6 + 2n,

−39/2n+5/2
(√

3 + 1
)6n+4

(3/4, n) (13/12, n)

(−2)5n+4 (2/3, n) (7/6, n)
if a = 5/3 + 2n,

0 if a = 13/6 + 2n.
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The special values obtained from (xiii)-(xx) are contained in the above.

(xxi)F (2 a, a+ 1/3; 4/3; 10− 6
√
3)

=
3−9/4 a−5/8

(√
3− 1

)−3 a−1/2 √
πΓ (1/3)

25/4−3/2 a Γ (13/12− 1/2 a) Γ (1/2 a+ 3/4)
.

(The above is a generalization of Theorem 27 in [Ek]). We find (xxii)≤ (xxi).

(xxiii)F (2 a, 1− a; 4/3; 2/3− 2/9
√
3)

=
33/4 a−5/8

(√
3− 1

)a−1/2 √
πΓ (1/3)

21/2 a+5/4 Γ (13/12− 1/2 a) Γ (1/2 a+ 3/4)

(The above is a generalization of Theorem 39 in [Ek]). We find (xxiv)≤ (xxiii).

(2,4,6-4)

(i)F (a, 2 a− 1/3; 3 a; −9− 6
√
3)

=



7 · 2n−3
(√

3 + 1
)6n+6

(5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

2n−1
(√

3 + 1
)6n+4

(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

2n
(√

3 + 1
)6n

(1/6, n) (1/2, n)

33/2n (7/12, n) (1/12, n)
if a = 1/6− 2n,

2n−2
(√

3 + 1
)6n+8

(17/12, n) (7/4, n)

33/2n−1/2 (11/6, n) (4/3, n)
if a = −7/3− 2n

0 if a = −5/6− 2n,

−2n−1
(√

3 + 1
)6n+4

(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(ii)F (2 a, a+ 1/3; 3 a; −9− 6
√
3)

=



7 · 2n−3
(√

3 + 1
)6n+6

(5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

2n+1
(√

3 + 1
)6n+1

(1/2, n) (5/6, n)

33/2n+1/2 (11/12, n) (5/12, n)
if a = −1/2− 2n,

−2n
(√

3 + 1
)6n+2

(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

0 if a = −3/2− 2n,

2n
(√

3 + 1
)6n

(5/12, n) (3/4, n)

33/2n (5/6, n) (1/3, n)
if a = −1/3− 2n,

2n−2
(√

3 + 1
)6n+4

(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(iii)F (a, a+ 1/3; 3 a; 9/4− 3/4
√
3)

92



=



33/4 a−1/8
(√

3 + 1
)1/2√

πΓ (a+ 2/3)

23/2 a−1/4Γ (1/2 a+ 5/12) Γ (1/2 a+ 3/4)
,

7 · 2n−3 (5/4, n) (19/12, n)

33/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

2n−1
(√

3 + 1
)
(3/4, n) (13/12, n)

33/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,

2n (5/12, n) (3/4, n)

33/2n (5/6, n) (1/3, n)
if a = −1/3− 2n,

2n−2
(√

3 + 1
)
(11/12, n) (5/4, n)

33/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(iv)F (2 a, 2 a− 1/3; 3 a; 9/4− 3/4
√
3)

=



33/4 a−1/8
(√

3 + 1
)3 a−1/2 √

πΓ (a+ 2/3)

23/2 a−1/4Γ (1/2 a+ 5/12) Γ (1/2 a+ 3/4)
,

7
(√

3− 1
)6n+6

(5/4, n) (19/12, n)

25n+933/2n+1/2 (5/3, n) (7/6, n)
if a = −2− 2n,

−
(√

3− 1
)6n+4

(3/4, n) (13/12, n)

25n+433/2n+1/2 (7/6, n) (2/3, n)
if a = −1− 2n,(√

3− 1
)6n+7

(17/12, n) (7/4, n)

25n+933/2n−1/2 (11/6, n) (4/3, n)
if a = −7/3− 2n,

−
(√

3− 1
)6n+5

(11/12, n) (5/4, n)

25n+633/2n (4/3, n) (5/6, n)
if a = −4/3− 2n.

(v)F (a, 2 a− 1/3; 2/3; 10 + 6
√
3)

=



39/2n
(√

3 + 1
)6n

(7/12, n)

23n (3/4, n)
if a = −2n,

39/2n+3/2
(√

3 + 1
)6n+4

(13/12, n)

23n+2 (5/4, n)
if a = −1− 2n,

39/2n
(√

3 + 1
)6n

(1/2, n)

23n (2/3, n)
if a = 1/6− 2n,

39/2n+1
(√

3 + 1
)6n+2

(3/4, n)

23n+1 (11/12, n)
if a = −1/3− 2n,

0 if a = −5/6− 2n,

−39/2n+4
(√

3 + 1
)6n+4

(5/4, n)

5 · 23n+2 (17/12, n)
if a = −4/3− 2n.

(The first case is identical to Theorem 26 in [Ek]). We find (vi)≤(v).

(vii)F (a, 1− 2 a; 2/3; 2/3 + 2/9
√
3)
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=



33/2n
(√

3 + 1
)2n

(7/12, n)

2n (3/4, n)
if a = −2n,

−33/2n
(√

3 + 1
)2n+2

(13/12, n)

2n+1 (5/4, n)
if a = −1− 2n,(√

3− 1
)2n

(1/2, n)

2n33/2n (2/3, n)
if a = 1/2 + 2n,

−
(√

3− 1
)2n

(3/4, n)

2n33/2n+1/2 (11/12, n)
if a = 1 + 2n,

0 if a = 3/2 + 2n,(√
3− 1

)2n+2
(5/4, n)

5 · 2n+133/2n+1/2 (17/12, n)
if a = 2 + 2n

(The first case is identical to Theorem 40 in [Ek]). We find (viii)≤(vii).

(ix)F (a, 1− 2 a; 4/3− a; 1/3− 2/9
√
3)

=
3−3/4 a

(√
3 + 1

)−a
Γ (3/4) Γ (13/12) Γ (2/3− 1/2 a) Γ (7/6− 1/2 a)

2−5/2 aΓ (2/3) Γ (7/6) Γ (3/4− 1/2 a) Γ (13/12− 1/2 a)
.

(x)F (a+ 1/3, 4/3− 2 a; 4/3− a; 1/3− 2/9
√
3)

=
31/2−3/4 a

(√
3 + 1

)−a−1/3
Γ (3/4) Γ (13/12) Γ (2/3− 1/2 a) Γ (7/6− 1/2 a)

21/3−5/2 aΓ (2/3) Γ (7/6) Γ (3/4− 1/2 a) Γ (13/12− 1/2 a)
.

(xi)F (a, a+ 1/3; 4/3− a; −5/4 + 3/4
√
3)

=
3−9/4 aΓ (3/4) Γ (13/12) Γ (2/3− 1/2 a) Γ (7/6− 1/2 a)

2−7/2 aΓ (2/3) Γ (7/6) Γ (3/4− 1/2 a) Γ (13/12− 1/2 a)
.

(xii)F (1− 2 a, 4/3− 2 a; 4/3− a; −5/4 + 3/4
√
3)

=
39/4 a−3/2

(√
3 + 1

)1−3 a
Γ (3/4) Γ (13/12) Γ (2/3− 1/2 a) Γ (7/6− 1/2 a)

2−1/2 a−1Γ (2/3) Γ (7/6) Γ (3/4− 1/2 a) Γ (13/12− 1/2 a)
.

The special values obtained from (xiii)-(xx) are contained in the above.

(xxi)F (2 a, a+ 1/3; 4/3; 10 + 6
√
3)

=



39/2n
(√

3 + 1
)6n

(1/4, n)

23n (13/12, n)
if a = −2n,

39/2n+3/2
(√

3 + 1
)6n+1

(1/2, n)

23n+2 (4/3, n)
if a = −1/2− 2n,

−39/2n+5/2
(√

3 + 1
)6n+2

(3/4, n)

7 · 23n+1 (19/12, n)
if a = −1− 2n,

0 if a = −3/2− 2n,

39/2n
(√

3 + 1
)6n

(5/12, n)

23n (5/4, n)
if a = −1/3− 2n,

39/2n+1
(√

3 + 1
)6n+4

(11/12, n)

23n+2 (7/4, n)
if a = −4/3− 2n
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(The fifth case is identical to Theorem 27 in [Ek]). We find (xxii)≤(xxi).

(xxiii)F (2 a, 1− a; 4/3; 2/3 + 2/9
√
3)

=



(√
3− 1

)2n
(1/4, n)

2n33/2n (13/12, n)
if a = −2n,

−
(√

3− 1
)2n+1

(1/2, n)

2n+233/2n (4/3, n)
if a = −1/2− 2n,

−
(√

3− 1
)2n+2

(3/4, n)

7 · 2n+133/2n+1/2 (19/12, n)
if a = −1− 2n,

0 if a = −3/2− 2n,

33/2n
(√

3 + 1
)2n

(5/12, n)

2n (5/4, n)
if a = 1 + 2n,

−33/2n−1/2
(√

3 + 1
)2n+2

(11/12, n)

2n+1 (7/4, n)
if a = 2 + 2n

(The fifth case is identical to Theorem 39 in [Ek]). We find (xxiv)≤(xxiii).

(2,4,6-5) The special values obtained from (2,4,6-5) coincide with those (2,4,6-3).

(2,4,6-6) The special values obtained from (2,4,6-6) coincide with those (2,4,6-4).

(k, l,m) = (2, 5, 6)

In this case, there is no admissible quadruple.

(k, l,m) = (2, 6, 6)

In this case, we get

(a, b, c, x) = (a, 3 a− 1/2, 3 a,−3), (2,6,6-1)

(a, b, c, x) = (a, 3 a− 3/2, 3 a− 1,−3), (2,6,6-2)

(a, b, c, x) = (a, 3 a+ 1, 3 a, 3/2), (2,6,6-3)

(a, b, c, x) = (a, 3 a− 3, 3 a− 1, 3/2). (2,6,6-4)

(2,6,6-1), (2,6,6-2) The special values obtained from (2,6,6-1) and (2,6,6-2) co-
incide those obtained from (1,3,3-1).

(2,6,6-3), (2,6,6-4) The special values obtained from (2,6,6-3) and (2,6,6-4) co-
incide those obtained from (1,3,3-3).

(k, l,m) = (2, 7, 6)

In this case, there is no admissible quadruple.
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(k, l,m) = (2, 8, 6)

In this case, we have

(a, b, c, x) = (a, b, b+ 1− a,−1), (2,8,6-1)

(a, b, c, x) = (a, 4 a− 1/2, 3 a,−1), (2,8,6-2)

(a, b, c, x) = (a, 4 a− 5/2, 3 a− 1,−1). (2,8,6-3)

(2,8,6-1) The special values obtained from (2,8,6-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1).

(2,8,6-2), (2,8,6-3) The special values obtained from (2,8,6-2) and (2,8,6-3) co-
incide with those obtained from (1,4,3-2).

(k, l,m) = (3, 3, 6)

In this case, we have

(a, b, c, x) = (a, a− 1/2, 2 a, 4), S(n) = 1, (3,3,6-1)

(a, b, c, x) = (a, a+ 1/2, 2 a, 4), S(n) = 1, (3,3,6-2)

(a, b, c, x) = (a, a− 1/2, 2 a− 1, 4), S(n) = 1, (3,3,6-3)

(a, b, c, x) = (a, a+ 1/2, 2 a+ 1, 4), S(n) = 1, (3,3,6-4)

(a, b, c, x) = (a, a+ 3/2, 2 a− 1, 4), S(n) =
(2 a− 3) (2 a+ 1 + 6n)

(2 a+ 1) (2 a− 3 + 6n)
, (3,3,6-5)

(a, b, c, x) = (a, a− 3/2, 2 a+ 1, 4), S(n) =
(2 a− 1) (2 a+ 3 + 6n)

(2 a+ 3) (2 a− 1 + 6n)
, (3,3,6-6)

(a, b, c, x) = (a, a− 3/2, 2 a− 4, 4), S(n) =
(a− 3) (a− 1 + 3n)

(a− 1) (a− 3 + 3n)
, (3,3,6-7)

(a, b, c, x) = (a, a+ 3/2, 2 a+ 4, 4), S(n) =
(a+ 1) (a+ 3 + 3n)

(a+ 3) (a+ 1 + 3n)
, (3,3,6-8)

(a, b, c, x) = (a, a− 1/2, 2 a, 4/3), S(n) = (−3)−3n , (3,3,6-9)

(a, b, c, x) = (a, a+ 1/2, 2 a, 4/3), S(n) = (−3)−3n , (3,3,6-10)

(a, b, c, x) = (a, a− 1/2, 2 a− 1, 4/3), S(n) = (−3)−3n , (3,3,6-11)

(a, b, c, x) = (a, a+ 1/2, 2 a+ 1, 4/3), S(n) = (−3)−3n , (3,3,6-12)

(a, b, c, x) = (a, a− 5/2, 2 a− 1, 4/3), S(n) =
(2 a− 3) (2 a+ 1 + 6n)

(−3)3n (2 a+ 1) (2 a− 3 + 6n)
,

(3,3,6-13)

(a, b, c, x) = (a, a+ 5/2, 2 a+ 1, 4/3), S(n) =
(2 a− 1) (2 a+ 3 + 6n)

(−3)3n (2 a+ 3) (2 a− 1 + 6n)
,

(3,3,6-14)

(a, b, c, x) = (a, a− 5/2, 2 a− 4, 4/3), S(n) =
(a− 3) (a− 1 + 3n)

(−3)3n (a− 1) (a− 3 + 3n)
,

(3,3,6-15)
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(a, b, c, x) = (a, a+ 5/2, 2 a+ 4, 4/3), S(n) =
(a+ 1) (a+ 3 + 3n)

(−3)3n (a+ 3) (a+ 1 + 3n)
.

(3,3,6-16)

(3,3,6-1)

(i)F (a, a− 1/2; 2 a; 4) =



1 if a = −3− 3n,

−2 if a = −1− 3n,

1 if a = −2− 3n,

2 if a = −5/2− 3n,

−1 if a = −7/2− 3n,

−1 if a = −3/2− 3n.

(ii)F (a, a+ 1/2; 2 a; 4) =



1 if a = −3− 3n,

0 if a = −1− 3n,

−1 if a = −2− 3n,

1 if a = −1/2− 3n,

−1 if a = −3/2− 3n,

0 if a = −5/2− 3n.

(iii)F (a, a+ 1/2; 2 a; 4/3) =



(−3)−3n−3 if a = −3− 3n,

−2 (−3)−3n−1 if a = −1− 3n,

(−3)−3n−2 if a = −2− 3n,

(−3)−3n if a = −1/2− 3n,

− (−3)−3n−1 if a = −3/2− 3n,

0 if a = −5/2− 3n.

(iv)F (a, a− 1/2; 2 a; 4/3) =



(−3)−3n−3 if a = −3− 3n,

0 if a = −1− 3n,

− (−3)−3n−2 if a = −2− 3n,

2 (−3)−3n−3 if a = −5/2− 3n,

− (−3)−3n−4 if a = −7/2− 3n,

− (−3)−3n−2 if a = −3/2− 3n.

(v)F (a, a− 1/2; 1/2; −3) =



26n if a = −3n,

−26n+3 if a = −1− 3n,

26n+4 if a = −2− 3n,

26n if a = 1/2− 3n,

−26n+1 if a = −1/2− 3n,

−26n+3 if a = −3/2− 3n.
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We find (vi)≤(v).

(vii)F (a, 1− a; 1/2; 3/4) = 2 sin (1/6 (4 a+ 1) π) .

(viii)F (1/2− a, a− 1/2; 1/2; 3/4) = sin (1/6 (4 a+ 1) π) .

(ix)F (a, 1− a; 3/2; 1/4) =
2 sin (1/6 (2 a− 1) π)

2 a− 1
.

(x)F (3/2− a, a+ 1/2; 3/2; 1/4) =
4 sin (1/6 (2 a− 1) π)√

3 (2 a− 1)
.

(xi)F (a, a+ 1/2; 3/2; −1/3) =
3a sin (1/6 (2 a− 1)π)

22 a−1 (2 a− 1)
.

We find (xii)≤(xi).

(xiii)F (1/2− a, a− 1/2; 1/2; 1/4) = sin (1/3 (2− a)π) .

(xiv)F (a, 1− a; 1/2; 1/4) =
2√
3
sin (1/3 (2− a) π) .

(xv)F (a, a− 1/2; 1/2; −1/3) =
3a−1/2 sin (1/3 (2− a) π)

22 a−1
.

We find (xvi)≤(xv), (xvii)≤(i), (xviii)≤(ii), (xix)≤(iii) and (xx)≤(iv).

(xxi)F (a, a+ 1/2; 3/2; −3) =



26n

6n+ 1
if a = −3n,

0 if a = −1− 3n,
−26n+4

6n+ 5
if a = −2− 3n,

26n

3n+ 1
if a = −1/2− 3n,

−26n+2

3n+ 2
if a = −3/2− 3n,

0 if a = −5/2− 3n.

We find (xxii)≤(xxi).

(xxiii)F (a, 1− a; 3/2; 3/4) =
2 sin (1/3 (2 a− 1) π)√

3 (2 a− 1)
.

(xxiv)F (3/2− a, a+ 1/2; 3/2; 3/4) =
4 sin (1/3 (2 a− 1) π)√

3 (2 a− 1)
.
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(3,3,6-2), (3,3,6-3), (3,3,6-4), (3,3,6-9), (3,3,6-10), (3,3,6-11), (3,3,6-12)
The special values obtained from (3,3,6-2), (3,3,6-3), (3,3,6-4), (3,3,6-9), (3,3,6-10),
(3,3,6-11) and (3,3,6-12) coincide with those obtained from (3,3,6-1).

(3,3,6-5)

(i)F (a, a+ 3/2; 2 a− 1; 4) =



−2n+ 1

6n− 1
if a = −3n,

6n+ 5

18n+ 3
if a = −1− 3n,

0 if a = −2− 3n,
n+ 1

3n+ 1
if a = −3/2− 3n,

− 3n+ 4

9n+ 6
if a = −5/2− 3n,

0 if a = −7/2− 3n.

(ii)F (a− 1, a− 5/2; 2 a− 1; 4) =



−12n+ 14

2n+ 1
if a = −2− 3n,

18n+ 27

6n+ 5
if a = −3− 3n,

18n+ 15

6n+ 1
if a = −1− 3n,

6n+ 10

n+ 1
if a = −7/2− 3n,

−9n+ 18

3n+ 4
if a = −9/2− 3n,

−9n+ 12

3n+ 2
if a = −5/2− 3n.

(iii)F (a, a− 5/2; 2 a− 1; 4/3) =



− 2n+ 1

(−3)3n (6n− 1)
if a = −3n,

− 6n+ 5

(−3)3n+2 (6n+ 1)
if a = −1− 3n,

0 if a = −2− 3n,
6n+ 10

(−3)3n+6 (n+ 1)
if a = −7/2− 3n,

3n+ 6

(−3)3n+6 (3n+ 4)
if a = −9/2− 3n,

3n+ 4

(−3)3n+4 (3n+ 2)
if a = −5/2− 3n.
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(iv)F (a− 1, a+ 3/2; 2 a− 1; 4/3) =



− 12n+ 14

(−3)3n+3 (2n+ 1)
if a = −2− 3n,

2n+ 3

(−3)3n+2 (6n+ 5)
if a = −3− 3n,

− 6n+ 5

(−3)3n+1 (6n+ 1)
if a = −1− 3n,

n+ 1

(−3)3n (3n+ 1)
if a = −3/2− 3n,

3n+ 4

(−3)3n+2 (3n+ 2)
if a = −5/2− 3n,

0 if a = −7/2− 3n.

(v)F (a, a+ 3/2; 7/2; −3) =



−5 · 26n

(6n+ 5) (3n+ 1) (6n− 1)
if a = −3n,

5 · 26n+2

(6n+ 7) (3n+ 2) (6n+ 1)
if a = −1− 3n,

0 if a = −2− 3n,
5 · 26n+2

(3n+ 4) (6n+ 5) (3n+ 1)
if a = −3/2− 3n,

−5 · 26n+4

(3n+ 5) (6n+ 7) (3n+ 2)
if a = −5/2− 3n,

0 if a = −7/2− 3n.

We find (vi)≤(v).

(vii)F (a, 2− a; 7/2; 3/4) =
10 sin (1/3 (2 a+ 1) π)√

3 (a− 1) (2 a+ 1) (2 a− 5)
.

(viii)F (a+ 3/2, 7/2− a; 7/2; 3/4) =
80√
3

sin (1/3 (2 a+ 1) π)

(2 a+ 1) (2 a− 5) (a− 1)
.

(ix)F (a, 2− a; −1/2; 1/4) =
−2

33/2
(2 a− 1) (2 a− 3) sin (1/3 (a+ 2) π)

a− 1
.

(x)F (a− 5/2,−a− 1/2; −1/2; 1/4) =
−3

16

(2 a− 1) (2 a− 3) sin (1/3 (a+ 2) π)

a− 1
.

(xi)F (a, a− 5/2; −1/2; −1/3) =
−3a−3/2

22 a−1

(2 a− 1) (2 a− 3) sin (1/3 (a+ 2) π)

a− 1
.

We find (xii)≤(xi).

(xiii)F (a+ 3/2, 7/2− a; 5/2; 1/4) =
−32√

3

sin (1/3 (a+ 1/2) π)

(2 a− 5) (2 a+ 1)
.
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(xiv)F (a− 1, 1− a; 5/2; 1/4) =
−9 sin (1/3 (a+ 1/2) π)

(2 a− 5) (2 a+ 1)
.

(xv)F (a− 1, a+ 3/2; 5/2; −1/3) =
−3a+1

22 a−2

sin (1/3 (a+ 1/2) π)

(2 a− 5) (2 a+ 1)
.

We find (xvi)≤(xv), (xvii)≤(i), (xviii)≤(ii), (xix)≤(iii), (xx)≤(iv).

(xxi)F (a− 1, a− 5/2; −3/2; −3)

=



−26n+6 (6n+ 5) (6n+ 7) if a = −2− 3n,

26n+1 (6n+ 1) (6n+ 3) if a = −3n,

26n+3 (6n+ 3) (6n+ 5) if a = −1− 3n,

26n−3 (6n− 2) (6n− 4) if a = 5/2− 3n,

−26n+4 (6n+ 4) (6n+ 6) if a = −3/2− 3n,

−26n+6 (6n+ 6) (6n+ 8) if a = −5/2− 3n.

We find (xxii)≤(xxi).

(xxiii)F (a− 1, 1− a; −3/2; 3/4) = − (2 a− 1) (2 a− 3) sin (1/6 (4 a− 1) π) .

(xxiv)F (a− 5/2,−a− 1/2; −3/2; 3/4)

= −1/8 (2 a− 1) (2 a− 3) sin (1/6 (4 a− 1) π) .

(3,3,6-6), (3,3,6-7), (3,3,6-8), (3,3,6-13), (3,3,6-14), (3,3,6-15), (3,3,6-16)
The special values obtained from (3,3,6-6), (3,3,6,-7), (3,3,6-8), (3,3,6-13), (3,3,6-14),
(3,3,6-15) and (3,3,6-16) coincide with those obtained from (3,3,6,5).

(k, l,m) = (3, 4, 6)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2). (3,4,6-1)

(3,4,6-1) The special values obtained from (3,4,6-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1).

(k, l,m) = (3, 5, 6)

In this case, we have
(a, b, c, x) = (a, 5/3 a− 1/2, 2 a,−8 + 4

√
5),

S(n) =
55/2n

(√
5− 1

)15n
(1/3 a+ 3/10, n) (1/3 a+ 7/10, n)

215n33n (1/3 a+ 1/6, n) (1/3 a+ 5/6, n)
,

(3,5,6-1)


(a, b, c, x) = (a, 5/3 a− 1/2, 2 a,−8− 4

√
5),

S(n) =
55/2n

(√
5 + 1

)15n
(1/3 a+ 3/10, n) (1/3 a+ 7/10, n)

215n33n (1/3 a+ 1/6, n) (1/3 a+ 5/6, n)
,

(3,5,6-2)
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(a, b, c, x) = (a, 5/3 a− 1/6, 2 a,−8 + 4

√
5),

S(n) =
55/2n

(√
5− 1

)15n
(1/3 a+ 17/30, n) (1/3 a+ 23/30, n)

215n33n (1/3 a+ 1/2, n) (1/3 a+ 5/6, n)
,

(3,5,6-3)


(a, b, c, x) = (a, 5/3 a− 1/6, 2 a,−8− 4

√
5),

S(n) =
55/2n

(√
5 + 1

)15n
(1/3 a+ 17/30, n) (1/3 a+ 23/30, n)

215n33n (1/3 a+ 1/2, n) (1/3 a+ 5/6, n)
.

(3,5,6-4)

(3,5,6-1)

(i)F (a, 5/3 a− 1/2; 2 a; −8 + 4
√
5)

=



51/4−5/6 a
(√

5− 1
)3/2−5 a

Γ (2/5) Γ (4/5) Γ (1/3 a+ 1/6) Γ (1/3 a+ 5/6)

23/2−5 a33/10−aΓ (4/15) Γ (14/15) Γ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)
,

7 · 55/2n−1/2
(√

5− 1
)15n+15

(17/10, n) (13/10, n)

215n+1533n (11/6, n) (7/6, n)
if a = −3− 3n,

−55/2n
(√

5− 1
)15n+7

(31/30, n) (19/30, n)

215n+633n+1 (7/6, n) (1/2, n)
if a = −1− 3n,

−11 · 55/2n+1/2
(√

5− 1
)15n+12

(41/30, n) (29/30, n)

215n+1233n+3 (3/2, n) (5/6, n)
if a = −2− 3n,

−55/2n+1
(√

5− 1
)15n+24

(11/5, n) (9/5, n)

215n+2433n (7/3, n) (5/3, n)
if a = −9/2− 3n,

(ii)F (a, 1/3 a+ 1/2; 2 a; −8 + 4
√
5)

=



51/4−5/6 a
(√

5− 1
)−a−3/2

Γ (2/5) Γ (4/5) Γ (1/3 a+ 1/6) Γ (1/3 a+ 5/6)

2−a−3/233/10−aΓ (4/15) Γ (14/15) Γ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)
,

7 · 55/2n−1/2
(√

5− 1
)3n+3

(17/10, n) (13/10, n)

23n+333n (11/6, n) (7/6, n)
if a = −3− 3n,

55/2n
(√

5− 1
)3n−1

(31/30, n) (19/30, n)

23n−233n+1 (7/6, n) (1/2, n)
if a = −1− 3n,

11 · 55/2n+1/2
(√

5− 1
)3n

(41/30, n) (29/30, n)

23n33n+3 (3/2, n) (5/6, n)
if a = −2− 3n,

55/2n
(√

5− 1
)3n

(6/5, n) (4/5, n)

23n33n (4/3, n) (2/3, n)
if a = −3/2− 3n.

(iii)F (a, 1/3 a+ 1/2; 2 a; −8− 4
√
5)

=



7 · 55/2n−1/2
(√

5 + 1
)3n+3

(17/10, n) (13/10, n)

23n+333n (11/6, n) (7/6, n)
if a = −3− 3n,

−55/2n
(√

5 + 1
)3n−1

(31/30, n) (19/30, n)

23n−233n+1 (7/6, n) (1/2, n)
if a = −1− 3n,

−11 · 55/2n+1/2
(√

5 + 1
)3n

(41/30, n) (29/30, n)

23n33n+3 (3/2, n) (5/6, n)
if a = −2− 3n,

55/2n
(√

5 + 1
)3n

(6/5, n) (4/5, n)

23n33n (4/3, n) (2/3, n)
if a = −3/2− 3n.

102



(iv)F (a, 5/3 a− 1/2; 2 a; −8− 4
√
5)

=



7 · 55/2n−1/2
(√

5 + 1
)15n+15

(17/10, n) (13/10, n)

215n+1533n (11/6, n) (7/6, n)
if a = −3− 3n,

55/2n
(√

5 + 1
)15n+7

(31/30, n) (19/30, n)

215n+633n+1 (7/6, n) (1/2, n)
if a = −1− 3n,

11 · 55/2n+1/2
(√

5 + 1
)15n+12

(41/30, n) (29/30, n)

215n+1233n+3 (3/2, n) (5/6, n)
if a = −2− 3n,

55/2n
(√

5 + 1
)15n

(3/5, n) (1/5, n)

215n33n (11/15, n) (1/15, n)
if a = 3/10− 3n,

55/2n+1/2
(√

5 + 1
)15n+3

(4/5, n) (2/5, n)

215n+333n (14/15, n) (4/15, n)
if a = −3/10− 3n,

0 if a = −9/10− 3n,

−55/2n+1
(√

5 + 1
)15n+24

(11/5, n) (9/5, n)

215n+2433n (7/3, n) (5/3, n)
if a = −9/2− 3n,

0 if a = −21/10− 3n.

(v)F (a, 5/3 a− 1/2; 2/3 a+ 1/2; 9− 4
√
5)

=
5−5/6 a

(√
5− 1

)1−5 a
Γ (1/3 a+ 1/4) Γ (1/3 a+ 3/4)

21/2−11/3 aΓ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)
.

(vi)F (1− a, 1/2− 1/3 a; 2/3 a+ 1/2; 9− 4
√
5)

=
5−5/6 a

(√
5− 1

)a−2
Γ (1/3 a+ 1/4) Γ (1/3 a+ 3/4)

2−5/3 a−1/2Γ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)

(The above is a generalization of Theorem 14 in [Ek]).

(vii)F (a, 1− a; 2/3 a+ 1/2; 1/2− 1/4
√
5)

=
5−5/6 a

(√
5− 1

)1−2 a
Γ (1/3 a+ 1/4) Γ (1/3 a+ 3/4)

21/2−8/3 aΓ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)
.

(viii)F (1/2− 1/3 a, 5/3 a− 1/2; 2/3 a+ 1/2; 1/2− 1/4
√
5)

=
5−5/6 a

(√
5− 1

)−1/2
Γ (1/3 a+ 1/4) Γ (1/3 a+ 3/4)

2−2 aΓ (1/3 a+ 3/10) Γ (1/3 a+ 7/10)
.

(ix)F (a, 1− a; 3/2− 2/3 a; 1/2 + 1/4
√
5)
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=



(√
5− 1

)6n
(5/4, n) (3/4, n)

(−16)n 55/2n (11/10, n) (9/10, n)
if a = −3n,(√

5− 1
)6n+4

(19/12, n) (13/12, n)

104 (−16)n 55/2n (43/30, n) (37/30, n)
if a = −1− 3n,

11
(√

5− 1
)6n+6

(23/12, n) (17/12, n)

1564 (−16)n+1 55/2n−1/2 (53/30, n) (47/30, n)
if a = −2− 3n,

55/2n
(√

5 + 1
)6n

(7/30, n) (13/30, n)

(−256)n (1/12, n) (7/12, n)
if a = 1 + 3n,

−55/2n+1/2
(√

5 + 1
)6n+2

(17/30, n) (23/30, n)

2 (−256)n (5/12, n) (11/12, n)
if a = 2 + 3n,

−55/2n+1/2
(√

5 + 1
)6n+6

(9/10, n) (11/10, n)

64 (−256)n (3/4, n) (5/4, n)
if a = 3 + 3n.

(x)F (1/3 a+ 1/2, 3/2− 5/3 a; 3/2− 2/3 a; 1/2 + 1/4
√
5)

=



(−64)n (7/4, n) (5/4, n)

55/2n (8/5, n) (7/5, n)
if a = −3/2− 3n,

55/2n (1/5, n) (2/5, n)

(−64)n (1/20, n) (11/20, n)
if a = 9/10 + 3n,

−55/2n+1/2 (2/5, n) (3/5, n)

2 (−64)n (1/4, n) (3/4, n)
if a = 3/2 + 3n,

55/2n+1 (3/5, n) (4/5, n)

2 (−64)n (9/20, n) (19/20, n)
if a = 21/10 + 3n,

0 if a = 27/10 + 3n,

0 if a = 33/10 + 3n.

(xi)F (a, 1/3 a+ 1/2; 3/2− 2/3 a; 9 + 4
√
5)

=



25n
(√

5 + 1
)3n

(5/4, n) (3/4, n)

55/2n (11/10, n) (9/10, n)
if a = −3n,

−25n+4
(√

5 + 1
)3n−1

(19/12, n) (13/12, n)

13 · 55/2n (43/30, n) (37/30, n)
if a = −1− 3n,

−11 · 25n+4
(√

5 + 1
)3n

(23/12, n) (17/12, n)

391 · 55/2n−1/2 (53/30, n) (47/30, n)
if a = −2− 3n,

25n
(√

5 + 1
)3n

(7/4, n) (5/4, n)

55/2n (8/5, n) (7/5, n)
if a = −3/2− 3n

(The fourth case is identical to Theorem 15 in [Ek]).

(xii)F (1− a, 3/2− 5/3 a; 3/2− 2/3 a; 9 + 4
√
5)
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=



55/2n
(√

5 + 1
)15n

(7/30, n) (13/30, n)

211n (1/12, n) (7/12, n)
if a = 1 + 3n,

55/2n+1/2
(√

5 + 1
)15n+5

(17/30, n) (23/30, n)

211n+2 (5/12, n) (11/12, n)
if a = 2 + 3n,

−55/2n+1/2
(√

5 + 1
)15n+12

(9/10, n) (11/10, n)

211n+8 (3/4, n) (5/4, n)
if a = 3 + 3n,

55/2n
(√

5 + 1
)15n

(1/5, n) (2/5, n)

211n (1/20, n) (11/20, n)
if a = 9/10 + 3n,

55/2n+1/2
(√

5 + 1
)15n+3

(2/5, n) (3/5, n)

211n+2 (1/4, n) (3/4, n)
if a = 3/2 + 3n,

55/2n+1
(√

5 + 1
)15n+6

(3/5, n) (4/5, n)

211n+3 (9/20, n) (19/20, n)
if a = 21/10 + 3n,

0 if a = 27/10 + 3n,

0 if a = 33/10 + 3n.

(xiii)F (1/2− 1/3 a, 5/3 a− 1/2; 2/3 a+ 1/2; 1/2 + 1/4
√
5)

=



(−64)n (3/4, n) (5/4, n)

55/2n (4/5, n) (6/5, n)
if a = 3/2 + 3n,

55/2n (3/5, n) (1/5, n)

(−64)n (13/20, n) (3/20, n)
if a = 3/10− 3n,

−55/2n+1/2 (4/5, n) (2/5, n)

2 (−64)n (17/20, n) (7/20, n)
if a = −3/10− 3n,

0 if a = −9/10− 3n,

−55/2n+1/2 (6/5, n) (4/5, n)

4 (−64)n (5/4, n) (3/4, n)
if a = −3/2− 3n,

0 if a = −21/10− 3n.

(xiv)F (a, 1− a; 2/3 a+ 1/2; 1/2 + 1/4
√
5)

=



55/2n
(√

5 + 1
)6n

(7/10, n) (3/10, n)

(−256)n (3/4, n) (1/4, n)
if a = −3n,

55/2n
(√

5 + 1
)6n+4

(31/30, n) (19/30, n)

8 (−256)n (13/12, n) (7/12, n)
if a = −1− 3n,

−11 · 55/2n+1/2
(√

5 + 1
)6n+6

(41/30, n) (29/30, n)

320 (−256)n (17/12, n) (11/12, n)
if a = −2− 3n,(√

5− 1
)6n

(7/12, n) (13/12, n)

(−16)n 55/2n (19/30, n) (31/30, n)
if a = 1 + 3n,

−
(√

5− 1
)6n+2

(11/12, n) (17/12, n)

22 (−16)n 55/2n−1/2 (29/30, n) (41/30, n)
if a = 2 + 3n,

−
(√

5− 1
)6n+6

(5/4, n) (7/4, n)

2240 (−16)n 55/2n−1/2 (13/10, n) (17/10, n)
if a = 3 + 3n.

(xv)F (a, 5/3 a− 1/2; 2/3 a+ 1/2; 9 + 4
√
5)
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=



55/2n
(√

5 + 1
)15n

(7/10, n) (3/10, n)

211n (3/4, n) (1/4, n)
if a = −3n,

−55/2n
(√

5 + 1
)15n+7

(31/30, n) (19/30, n)

211n+4 (13/12, n) (7/12, n)
if a = −1− 3n,

−11 · 55/2n−1/2
(√

5 + 1
)15n+12

(41/30, n) (29/30, n)

211n+8 (17/12, n) (11/12, n)
if a = −2− 3n,

55/2n
(√

5 + 1
)15n

(3/5, n) (1/5, n)

211n (13/20, n) (3/20, n)
if a = 3/10− 3n,

55/2n+1/2
(√

5 + 1
)15n+3

(4/5, n) (2/5, n)

211n+2 (17/20, n) (7/20, n)
if a = −3/10− 3n,

0 if a = −9/10− 3n,

55/2n+1/2
(√

5 + 1
)15n+9

(6/5, n) (4/5, n)

211n+5 (5/4, n) (3/4, n)
if a = −3/2− 3n,

0 if a = −21/10− 3n.

(xvi)F (1− a, 1/2− 1/3 a; 2/3 a+ 1/2; 9 + 4
√
5)

=



25n
(√

5 + 1
)3n

(7/12, n) (13/12, n)

55/2n (19/30, n) (31/30, n)
if a = 1 + 3n,

25n+2
(√

5 + 1
)3n+1

(11/12, n) (17/12, n)

11 · 55/2n−1/2 (29/30, n) (41/30, n)
if a = 2 + 3n,

−25n+4
(√

5 + 1
)3n

(5/4, n) (7/4, n)

7 · 55/2n+1/2 (13/10, n) (17/10, n)
if a = 3 + 3n,

25n
(√

5 + 1
)3n

(3/4, n) (5/4, n)

55/2n (4/5, n) (6/5, n)
if a = 3/2 + 3n

(The fourth case is identical to Theorem 14 in [Ek]).

(xvii)F (1− a, 1/2− 1/3 a; 2− 2 a; −8 + 4
√
5)

=



39/10−a
(√

5 + 1
)3/2−a

Γ (4/5) Γ (3/5) Γ (7/6− 1/3 a) Γ (5/6− 1/3 a)

23/2−a53/4−5/6 aΓ (13/15) Γ (8/15) Γ (11/10− 1/3 a) Γ (9/10− 1/3 a)
,

91 · 55/2n+1/2
(√

5− 1
)3n+3

(37/30, n) (43/30, n)

23n+333n+4 (7/6, n) (3/2, n)
if a = 4 + 3n,

55/2n+1/2
(√

5− 1
)3n+1

(17/30, n) (23/30, n)

23n33n+1 (1/2, n) (5/6, n)
if a = 2 + 3n,

55/2n+1/2
(√

5− 1
)3n

(9/10, n) (11/10, n)

23n33n+1 (5/6, n) (7/6, n)
if a = 3 + 3n,

55/2n
(√

5− 1
)3n

(2/5, n) (3/5, n)

23n33n (1/3, n) (2/3, n)
if a = 3/2 + 3n.

(xviii)F (1− a, 3/2− 5/3 a; 2− 2 a; −8 + 4
√
5)
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=



39/10−a
(√

5 + 1
)9/2−5 a

Γ (4/5) Γ (3/5) Γ (7/6− 1/3 a) Γ (5/6− 1/3 a)

29/2−5 a53/4−5/6 aΓ (13/15) Γ (8/15) Γ (11/10− 1/3 a) Γ (9/10− 1/3 a)
,

91 · 55/2n+1/2
(√

5− 1
)15n+15

(37/30, n) (43/30, n)

215n+1533n+4 (7/6, n) (3/2, n)
if a = 4 + 3n,

55/2n+1/2
(√

5− 1
)15n+5

(17/30, n) (23/30, n)

215n+433n+1 (1/2, n) (5/6, n)
if a = 2 + 3n,

−55/2n+1/2
(√

5− 1
)15n+12

(9/10, n) (11/10, n)

215n+1233n+1 (5/6, n) (7/6, n)
if a = 3 + 3n,

55/2n+1
(√

5− 1
)15n+18

(7/5, n) (8/5, n)

215n+1833n (4/3, n) (5/3, n)
if a = 9/2 + 3n.

(xix)F (1− a, 3/2− 5/3 a; 2− 2 a; −8− 4
√
5)

=



91 · 55/2n+1/2
(√

5 + 1
)15n+15

(37/30, n) (43/30, n)

215n+1533n+4 (7/6, n) (3/2, n)
if a = 4 + 3n,

55/2n+1/2
(√

5 + 1
)15n+5

(17/30, n) (23/30, n)

215n+433n+1 (1/2, n) (5/6, n)
if a = 2 + 3n,

55/2n+1/2
(√

5 + 1
)15n+12

(9/10, n) (11/10, n)

215n+1233n+1 (5/6, n) (7/6, n)
if a = 3 + 3n,

55/2n
(√

5 + 1
)15n

(1/5, n) (2/5, n)

215n33n (2/15, n) (7/15, n)
if a = 9/10 + 3n,

55/2n+1
(√

5 + 1
)15n+18

(7/5, n) (8/5, n)

215n+1833n (4/3, n) (5/3, n)
if a = 9/2 + 3n,

55/2n+1
(√

5 + 1
)15n+6

(3/5, n) (4/5, n)

215n+633n+1 (8/15, n) (13/15, n)
if a = 21/10 + 3n,

0 if a = 27/10 + 3n,

0 if a = 33/10 + 3n.

(xx)F (1− a, 1/2− 1/3 a; 2− 2 a; −8− 4
√
5)

=



91 · 55/2n+1/2
(√

5 + 1
)3n+3

(37/30, n) (43/30, n)

23n+333n+4 (7/6, n) (3/2, n)
if a = 4 + 3n,

55/2n+1/2
(√

5 + 1
)3n+1

(17/30, n) (23/30, n)

23n33n+1 (1/2, n) (5/6, n)
if a = 2 + 3n,

−55/2n+1/2
(√

5 + 1
)3n

(9/10, n) (11/10, n)

23n33n+1 (5/6, n) (7/6, n)
if a = 3 + 3n,

55/2n
(√

5 + 1
)3n

(2/5, n) (3/5, n)

23n33n (1/3, n) (2/3, n)
if a = 3/2 + 3n.

(xxi)F (a, 1/3 a+ 1/2; 3/2− 2/3 a; 9− 4
√
5)

=
25/2−5/3 a

(√
5− 1

)−a−1
Γ (5/4− 1/3 a) Γ (3/4− 1/3 a)

51−5/6 aΓ (11/10− 1/3 a) Γ (9/10− 1/3 a)
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(The above is a generalization of Theorem 15 in [Ek]).

(xxii)F (1− a, 3/2− 5/3 a; 3/2− 2/3 a; 9− 4
√
5)

=
27/2−11/3 a

(√
5− 1

)5 a−4
Γ (5/4− 1/3 a) Γ (3/4− 1/3 a)

51−5/6 aΓ (11/10− 1/3 a) Γ (9/10− 1/3 a)
.

(xxiii)F (a, 1− a; 3/2− 2/3 a; 1/2− 1/4
√
5)

=
25/2−8/3 a

(√
5− 1

)2 a−1
Γ (5/4− 1/3 a) Γ (3/4− 1/3 a)

51−5/6 aΓ (11/10− 1/3 a) Γ (9/10− 1/3 a)
.

(xxiv)F (1/3 a+ 1/2, 3/2− 5/3 a; 3/2− 2/3 a; 1/2− 1/4
√
5)

=
22−2 a

(√
5− 1

)1/2
Γ (5/4− 1/3 a) Γ (3/4− 1/3 a)

51−5/6 aΓ (11/10− 1/3 a) Γ (9/10− 1/3 a)
.

(3,5,6-2), (3,5,6-3), (3,5,6-4) The special values obtained from (3,5,6-2), (3,5,6-
3), (3,5,6-4) coincide with those obtained from (3,5,6-1).

(k, l,m) = (3, 6, 6)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2) (3,6,6-1)

(3,6,6-1) The special values obtained from (3,6,6-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1).

(k, l,m) = (3, 7, 6)

In this case, there is no admissible quadruple.

(k, l,m) = (3, 8, 6)

In this case, we have

(a, b, c, x) = (a, b, 2 a, 2) (3,8,6-1)

(3,8,6-1) The special values obtained from (3,8,6-1) are evaluated in paragraphs
(1,2,2-1) and (0,2,2-1).

(k, l,m) = (3, 9, 6)

In this case, we have

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2 + 1/2 i
√
3), (3,9,6-1)

(a, b, c, x) = (a, 3 a− 1, 2 a, 1/2− 1/2 i
√
3). (3,9,6-2)
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(3,9,6-1), (3,9,6-2) The special values obtained from (3,9,6-1) and (3,9,6-2) co-
incide with those obtained from (1,3,2-1).
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[Erd] A.Erdélyi (editor), Higher transcendental functions Vol.1, McGraw-Hill, (1953).

[Ga] C.F.Gauss, Disquisitiones generales circa seriem infinitam, Comm. Soc. Reg
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