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Abstract

When we work on an intractable non-perturbative problem of strongly interacting gauge �eld
theory, the method of the gauge/gravity duality is a very useful tool. In this approach, we
can treat the full quantum �eld theory in �at d-dimensional Minkowski spacetime as the dual
of a classical gravitational theory in curved D (> d) dimensional spacetime. In this thesis
we study two types of the problems that are very di�cult to investigate in the ordinary
�eld theoretical approach, namely the physics of an accelerated quark in a scale dependent
strongly interacting �eld theory and a QCD-like model with a �nite chemical potential.

We �rst review the idea of gauge/gravity duality brie�y and introduce the models that
we consider in this thesis. Next, we discuss a quark accelerated with a constant acceleration
in a scale dependent strongly interacting gauge theory by using the duality introduced in
the review. We study thermal aspects for an accelerated quark (Unruh e�ect) by applying
the gauge/gravity duality in the co-moving frame of the quark. There is a screening of the
color force due to the thermal e�ect of the acceleration and the thermal e�ect is anisotropic
in contrast to the ordinary thermal e�ect.

We also study a QCD-like model with a �nite chemical potential by using Sakai-Sugimoto
model. In our approach, an in�nite number of baryons are introduced as the sum of an
in�nite number of solitons of SU (Nf ) gauge �eld on Nf probe D8-branes. This �dilute gas
approximation� of solitons makes the action simple. We get non-trivial results for the relation
between the baryon number density nB and the baryon chemical potential µB; we �nd a �rst-
order phase transition from nB = 0 phase (the vacuum) to �nite nB phase (in�nite nuclear
matter) when the chemical potential is increased. We then extract the equation of state of
neutrons from this result and apply it to neutron stars. The radius and the mass which
are obtained from our calculation is, however, much smaller than the empirical values. The
results implies that our approach should be improved by taking the contributions from the
repulsive force into account.
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Chapter 1

Introduction

1.1 Overview

In elementary particle physics, the �eld theoretical approach is a fundamental method for
clear understanding of nature. Quantum electrodynamics(QED) is a prominent example of
the success of the approach. The theory predicts many physical values from only two values,
the electron mass me and the electric charge e. The fact that many physical quantities are
predicted by only a few parameters is marvelous.

Though quantum �eld theories is successful for a wide region of elementary particle
physics, it is not always possible to obtain useful predictions for all of physical quantities.
It usually depends on perturbation theory that works only when the coupling constants are
small. Moreover couplings depend on the energy scale of the process in question. Thus the
perturbative expansion is not possible in all the scales. For example, at low energies, the
perturbation theory works in QED and the theory predicts the correct values, the method
however does not work in Quantum chromodynamics(QCD) that describes the physics of
hadrons. We are unable to make predictions for low-energy quantities by using perturbation
theory. This problem can occur in any �asymptotic free� theory in which couplings increase
with the decreasing energy scale. It is therefore important to understand non-perturbative
aspects of quantum �eld theory.

When we cannot use perturbation theory, we must choose other methods for the calcu-
lation. The numerical simulations using lattice �eld theory and the calculation by using a
gauge/gravity duality are two of the main non-perturbative methods. Lattice �eld theory is
de�ned on a discretized Euclidean spacetime and may be used as a de�nition of a theory of
continuous spacetime in an appropriate limit. This approach is very clear, but it costs us
much time and money to get results with high accuracy. The method using a gauge/gravity
duality, which is a duality between a gauge theory with a large number of colors Nc with
a gravitational theory, is a another viable non-perturbative one. In this approach, we can
calculate quantities easier than in lattice gauge theory. However it has several problems�it
is applied to gauge theory with large Nc that is quite far from QCD and the correspondence
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between a physical quantity in a gauge theory and that in the dual gravitational theory is
not very clear in general. Moreover the gauge/gravity duality is just a conjecture and it has
not been proven.

Even though gauge/gravity duality has some problems, it is very powerful for analyzing
a complicated system of strongly interacting gauge theory. Since we can analyze a full
quantum �eld theory by examining a corresponding classical gravitational theory by using
a gauge/gravity duality, we can easily calculate a physical quantity of the gauge theory.
For example, we can relatively easily calculate physical quantities of a theory with a �nite
chemical potential by using gauge/gravity duality, while it is very di�cult to do it in lattice
gauge theory simulation because of the sign problem. The gauge/gravity duality is a good
approach for analyzing systems which is intractable in other approaches.

1.2 Outline of my work

1.2.1 Background and motivations

In this thesis, I discuss two di�erent types of systems which are intractable in the gauge �eld
theory.

1. A quark accelerated with an uniform acceleration a in the strongly interacting �eld
theory with the non-conformal Yang-Mills coupling constant.

2. A system with �nite baryon density, represented as the Sakai-Sugimoto model with a
baryon chemical potential µB.

Both of these are very awkward systems for the usual technologies of �eld theory because
of the following reasons. First there are problems in strongly interacting �eld theory. Thus
it is impossible to treat these problems by using a perturbative method. Second there are
additional di�culties such as the non-trivial time-dependent motion of the quark and non-zero
chemical potential for the baryon. These additional hurdles make the problem intractable for
any other methods. Therefore the method of the gauge/gravity duality plays an important
role for studying these systems.

The accelerated quark and Unruh e�ect When we consider physics for an accelerated
object, there is very mysterious phenomenon called Unruh e�ect[1, 2]. The statement is
�an observer which accelerate with a constant acceleration a in Minkowski spacetime feels
a thermal bath with the temperature T = a/2π�. This e�ect occurs very commonly and is
independent of the details of the interaction among the �elds and whether �elds are scalar
�elds or fermion �elds or others.

The non-zero chemical potential system The other complicated system is QCD with
a �nite chemical potential. The ordinary lattice QCD with a vanishing chemical potential

4



can be studied by the numerical calculation because the calculation can be performed by
integrating the QCD functional integral with real positive convergent measure. The system
with non-zero chemical potential, however, cannot be calculated by the same way due to
the sign problem. By introducing a chemical potential, the integrand of the QCD partition
function is no longer a real function and thus the usual Monte Carlo simulation with a
positive de�nite probability for the Markov process cannot apply. Thus it is very di�cult for
the lattice QCD approach to studying such system.

Neutron stars are mostly constructed of neutrons. Their mass and radius may be calcu-
lated from the Tolman-Oppenheimer-Volko� (TOV) equation by specifying the equation of
state (EoS) of neutron. Because the EoS of the neutron matter should be derived from QCD
at �nite baryon density (with a �nite chemical potential), the validity of the calculational
method directly a�ects the results of the analysis of TOV equations via the EoS.

1.2.2 Structure of the thesis

The structure of this thesis and the summary of each chapter are the following.

Chapter 2 In Chap. 2 we brie�y review the gauge/gravity duality. We introduce the
four types of the gauge/gravity duality models, that is, the original AdS/CFT correspon-
dence, the SAdS/�nite temperature QFT correspondence, the dAdS/non-conformal QFT
correspondence and the Sakai-Sugimoto model. We also introduce the dualities of physical
quantities, such as Wilson loops, temperature, the friction constant, the baryon number den-
sity and the baryon chemical potential etc.. We explain the concept of gauge/gravity duality
by reviewing the AdS/CFT correspondence. The SAdS model is introduced to explain how
we treat the theory at �nite temperature in the gauge/gravity duality, and in this model
the Wilson loop and the drag force are a�ected by the thermal e�ect. The dAdS model and
Sakai-Sugimoto model are introduced as the preparation for Chap. 3 and Chap. 4 respec-
tively. The dAdS model is one of the simplest deformation of the AdS model and it realizes
the non-conformal YM coupling. The quark is con�ned by the color force in this model. This
model is used to discuss the physics of the accelerated quark in Chap. 3. Sakai-Sugimoto
model is the most close to QCD among the gauge/gravity duality models. In the model
the baryons are introduced as solitons of SU (Nf ) gauge �eld on Nf D8-branes. We use the
model for constructing a system with a �nite chemical potential in Chap. 4.

Chapter 3 In Chap. 3, we discuss the physics of a quark accelerated with a uniform
acceleration a in the non-conformal gauge �eld theory. First we review the preceding study
in the AdS model which has no scale parameter. In the model, the accelerated string which
corresponds to the accelerated quark has a horizon on its induced metric at rc = R2a . To
move to the co-moving frame (Rindler frame) of this string, the ERT is introduced. The
ERT maps the part of the string above rc into the Rindler frame and the part of the string

5



is static in the frame. In the Rindler frame, there is the horizon which may be interpreted
as temperature. The temperature is coincide with the Unruh temperature T = a/2π.

The analysis similar to the AdS model is applied to the dAdS model. In this model, we
can also �nd the same type of the solution as in the case of the AdS model. The horizon in
the induced metric of the string is slightly shifted upward rc > R2a. Then we apply the ERT
to this model. We study the potential between a quark and an anti-quark and the drag force
acting on a quark moving with a constant velocity in this transformed coordinate system.
Because of the energy scale dependence of the YM coupling, several characteristic thermal
features are observed. First, since the dAdS model exhibits con�nement, it is nontrivial that
we �nd an isolated quark in Rindler frame. However we should not regard the existence of
an isolated quark in the Rindler frame as the existence of the con�nement-decon�nement
phase transition of the Minkowski vacuum, because the original Minkowski vacuum does
not experience the phase transition. Second, this thermal e�ect is quite anisotropic. Even
though there also exist anisotropic features in AdS case, these are more drastic in our case.
For example, there is no static state such that the isolated quark moving with constant
velocity to the direction of the acceleration in Rindler frame, while there are in the Rindler-
AdS frame.

Chapter 4 In Chap. 4, we discuss the system with �nite baryon density by using the
Sakai-Sugimoto model. We �rst review the one-baryon and two-baryon systems in the Sakai-
Sugimoto model and then generalize them to the system with an in�nite number of baryons.
Then applying the dilute gas approximation for SU (Nf ) gauge �eld and the mean �eld
approximation for U (1), we make the system of an in�nite number of the baryons tractable.
Comparing the energy at �nite baryon number density with that at zero baryon number
density, under the �xed chemical potential condition, we �nd a �rst-order phase transition
from zero baryon number density phase to �nite baryon number density phase as expected.
However the critical value of the baryon number density is considerably larger than the value
of the normal nuclear density.

We also study neutron stars to check the validity of our model. The EoS which is calcu-
lated in the �eld theory side a�ects the radius and the mass of neutron stars. We extract the
EoS from our model by assuming several statistical-mechanical relations for fermions and the
momentum dependent mass which re�ects the non-trivial interactions among baryons. Then
we solve the TOV equations and study neutron stars. The upper bound of the mass and the
radius of neutron stars, however, is much smaller than the empirical values.
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Chapter 2

Gauge/gravity duality

In this section, we review the concept of the gauge/gravity duality and display some realiza-
tion of that.

2.1 Overview:Gauge/gravity duality

Since gauge theory and gravity are quite di�erent theories, there seems to be no relationship
between them. But it is not generally true.

For example, the relationship between these theories can be seen in large Nc gauge theory.
The action of large Nc gauge theory is written schematically as

S ∼ Nc

λ
Tr

ˆ
d4x

[
A∂2A+ A2∂A+ A4

]
,

where λ ≡ g2YMNc and A denotes SU (Nc) gauge �eld which index is suppressed. Then
Feynman rules of this theory is written as follows,

• Relate each propagator of A with the factor λ
Nc
, because the propagator is the inverse

of the quadratic di�erential operator Nc

λ
∂2

• Relate each loop with the factor Nc, because Nc types of color indices run in the loop.

• Relate each vertex with Nc

λ
, because all coupling constants are this value.

The factor of the diagram with P propagators, L loops and V vertices is(
λ

Nc

)P

NL
c

(
Nc

λ

)V

= λP−VNχ
c , χ ≡ −P + L+ V.

In the large Nc limit, the contribution of the diagram with smaller χ is not important. χ is
coincide with the Euler index of the polygon with P edges, L faces and V vertices and the
diagram is just the polygon when we regard the propagators, the loops and vertices of the
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SU (Nc) Local Lorentz

Transformation Φ → eiθ
aTaΦ Φ → e

1
2
εαβSαβΦ

Connection Aµ = Aa
µTa ωµ = 1

2ω
αβ
µSαβ

Covariant derivative Dµ = ∂µ − igAµ Dµ = ∂µ + ωµ = ∂µ + 1
2ω

αβ
µSαβ

Curvature Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ]
1
2R

αβ
µνSαβ = ∂µων − ∂νωµ + [ωµ, ων ]

Table 2.1: The theoretical structures of SU (Nc) gauge theory and the theory with local Lorentz

symmetry.Φ is a some representation of the gauge group or of the Lorentz group, Aa
µ, T

a

and g are the gauge �eld, the generator and the coupling constant of SU (Nc) gauge theory,
respectively. ωαβ

µ and Sαβ are the spin connection and the generators of local Lorentz group.
Here α, β = 0, · · · , D − 1 represent indices for the local Lorentz coordinate and µ, ν =
0, · · · , D − 1 represent indices for the general coordinate.

diagram as the edges, the faces and the vertices of the polygon respectively. This observation
implies the existence of some relationship between the gauge theory and gravity, because the
strength of the contribution of diagrams of large Nc gauge theory can be determined by the
topology of diagrams.

Another example of a relationship between these theories is the formalism. We can con�rm
that SU (Nc) gauge theory with SU (Nc) gauge symmetry and gravitational theory with local
Lorentz symmetry has the common theoretical structures as in Table 2.1. Replacing θa, Ta,
−ig, Aµ and Fµν with ε

αβ, Sαβ, 1, ωµ and
1
2
Rαβ

µνSαβ, respectively, we �nd a complete analogy
between the theoretical structures of these two theories.

So there must be some relationships between these two di�erent theories. One of the
realizations of this is the gauge/gravity duality. The gauge/gravity duality is a concept
which stems from superstring theory. In string theory, there are open strings which contain
gauge �elds and closed strings which contain gravitons. It is natural to think that gauge
theory is related to gravity. In Appendix A, we argue that in the ls → 0 limit the low
energy e�ective action of the closed string becomes the one of ten dimensional gravity as
in Eq. (A.24) and the Dp-brane action contains the (p+ 1)-dimensional gauge theory as in
Eq. (A.31). Since the gauge theory is on D-branes, they play a crucial role of linking the
gauge theory with gravity. The reason why gauge �elds are localized on D-branes is clear.
The gauge �eld is a set of massless quanta of oscillations of an open string which ends on
D-branes and the masses of the lowest excitations of strings are proportional to the length of
the string. In order for the excitations to be massless, the string should not have length so
that it is localized on a D-brane. On the other hand, the graviton is a set of massless quanta
of oscillation of closed string, so they can be anywhere. We will explain the more detailed
idea of the gauge/gravity duality in the following sections.
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2.2 AdS/CFT correspondence

The AdS/CFT correspondence is one of the realizations of gauge/gravity duality and it is the
clearest model to explain the idea of the duality. AdS stands for the gravitational theory on
Anti-de Sitter spacetime and CFT for N = 4 super Yang-Mills theory which is a conformal
�eld theory. We will explain how the duality realizes this correspondence.

First we explain why gravity on AdS spacetime corresponds to CFT. This may be done
by considering the system of Nc D3-branes from two di�erent points of view. The action of
this system is given by

S = Sbulk + SD3 + Sint,

where Sbulk, SD3 and Sint are the action on ten-dimensional spacetime , that on D3-branes
and the action that describes interactions between the bulk modes and the brane modes.

In the low energy limit ls → 0, the e�ective action in Eq. (A.31) is valid. Then in the
limit Sint → 0 Sbulk becomes the action of the ten-dimensional gravity in a �at spacetime,
SSUGRA and SD3 becomes the action of N = 4 U (Nc) gauge theory in 3 + 1 dimensions,
SCFT . So in this limit we have two decoupled systems, SSUGRA and SCFT .

On the other hand, we can describe the same system in a di�erent fashion. Since D-
branes are massive charged objects which act as sources for the graviton or other �elds in
supergravity, the ten dimensional spacetime geometry is changed from the �at geometry.
Especially in the limit ls → 0, the ten-dimensional Newton constant G10 ∼ l8s → 0 and the
supergravity description of the D-brane action, Eq. (A.24), is valid. Then D3-brane solution
of supergravity takes the form,

ds2 =

(
1 +

R4

r4

)−1/2

ηµνdx
µdxν +

(
1 +

R4

r4

)1/2 (
dr2 + r2dΩ2

5

)
, (2.1)

where R4 ≡ 4πgsα
′2Nc and µ, ν = 0, 1, 2, 3. The metric Eq. (2.1) is decomposed into two

parts,

ds2AdS =
r2

R2
ηµνdx

µdxν +
R2

r2
(
dr2 + r2dΩ2

5

)
(r � R) , (2.2)

ds2flat = ηMNdx
MdxN (r � R) ,

whereM,N = 0, · · · , 9. The metric Eq. (2.2) represents the geometry of AdS5×S5 spacetime.
In the limit ls → 0 with λ = g2YMNc ∼ gsNc being �xed, R goes to zero and the region of Eq.
(2.2) shrinks to a single point r = 0 and all other region becomes Minkowski spacetime. In
this limit, we get two separated theories described by the action S = SAdS + SSUGRA.

Now we have two descriptions for the same system, Nc D3-branes in �at spacetime, and
they share the same action SSUGRA. So we conclude that the residual part of the action
describes same physics. This is a simple reason why we consider gravity on AdS spacetime
corresponds to CFT. We summarize the features of the AdS/CFT correspondence in Table
2.2.
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theory dimensionality coordinates Nc ∼ ∞
Gravity SUGRA in AdS5 × S5 (e�ectively) 5 t, x, y, z, r # of D5-branes

QFT N = 4 SYM in �at 4D space 4 t, x, y, z the gauge group SU (Nc)

Interaction parameters symmetry

Gravity weak(classical) R, α′, gs, Nc SO (3, 2)× SO (6)

QFT strong(full quantum) λ ≡ R4

2α′2 = 2πgsNc, Nc SO (3, 1)×R symmetry

Table 2.2: The summary of the AdS/CFT correspondence. In reality, the dimensionality of the

gravity theory is 10. However it reduces to 5 due to the rotational symmetry of the S5 part of the

geometry. Four of the remaining �ve coordinates of the ten-dimensional spacetime is the coordinates

of 4D Minkowski spacetime common to the dual gauge theory. The �fth coordinate r of the gravity

side is related to the energy scale.

In order for the arguments given above to be valid, several conditions must be satis�ed.
First the limit gs → 0 must be taken for the string perturbation to be valid. Secondly we
need to take the limit Nc → ∞ with �xed λ ∼ gsNc. Finally we need (R/ls)

4 ∼ λ � 1 for
the classical gravity description to be valid. From these it is seen that the validity of the
above arguments is guaranteed when the conditions Nc � λ� 1 is required.

The evidence of the AdS/CFT correspondence is the equivalence of the symmetries on the
both sides. On the CFT side, there is the conformal symmetry (ten Poincaré transformations
Mµν , Pµ and four conformal boost Kµ and one dilatation D) and the conformal algebra is,

[Mµν , Pρ] = −i (ηµρPν − ηνρPµ) ,

[Mµν ,Mρσ] = −iηµρMνσ + iηνρMµσ − iηνσMµρ − iηµσMνρ,

[D,Pµ] = −iPµ, [D,Kµ] = iKµ,

[Mµν , Kρ] = −i (ηµρKν − ηνρKµ) ,

[Pµ, Kν ] = 2iMµν − 2iηµνD,

with all other commutators vanishing. On the AdS side, there is the isometry SO (3, 2)
(which has �fteen generators JMN , (M,N = 0, 1, · · · , 5)) and the SO (3, 2) algebra is,

[JMN , JPQ] = −iη′MPJNQ + iη′NPJMQ − iη′NQJMP − iη′MQJNP ,

where η′MN = diag (−1, 1, 1, 1,−1) and all other commutators vanish. The generators of the
conformal group may be identi�ed with those of the SO (3, 2) isometry group;

Jµν =Mµν , Jµ4 =
1

2
(Kµ − Pµ) , Jµ5 =

1

2
(Kµ + Pµ) , J45 = D.

In addition, the isometry S5 on the AdS side plays a role of R-symmetry on the CFT side.
Thus the symmetries on both sides are the same.

10



On the AdS side, there are �ve coordinates xµ, r. The coordinates xµ have SO (3, 1) isom-
etry, so it is natural that they are interpreted as the coordinates of the (3 + 1)-dimensional
gauge theory. However there is an additional �fth coordinate r which do not exist in the
CFT. What is the meaning of this coordinates? Note that the metric given in Eq. (2.2) is
invariant under the transformation,

xµ → kxµ, r → r/k.

This symmetry represents the scale invariance of the CFT, and the �fth coordinate r has the
same scaling property as that of the energy. Thus we may interpret this coordinate as the
energy scale.

2.2.1 Wilson-loop

In gauge theory, Wilson loops are important operator in analyzing the theory. A Wilson loop
is de�ned as

W (C) = Tr

[
P exp

(
i

˛
C

A

)]
,

where P denotes path ordering and the trace is taken over the gauge indices. C is a closed
path in four dimensional spacetime. When the path C is the rectangular one with the sides
of the time directions of length T and the sides of a space direction of length L, and we take
the limit T → ∞, the expectation value of the Wilson loop behaves as

〈W 〉 ∼ e−TV (L),

where V (L) represents the potential energy between quark and anti-quark with interval L.
The information on V (L) is important because it can be used as the criterion whether the
theory exhibits con�nement or not. If V (L) has an upper bound, we can separate a quark
and an anti-quark as far as we want, that is, the color is decon�ned. Conversely, if ∂

∂L
V does

not approaches zero and has a positive value when L increases, we need in�nite energy to
separate a quark from an anti-quark, then the color is con�ned.

Using the AdS/CFT correspondence, a Wilson loop may be obtained by calculating the
minimal surface of the string world sheet which boundary depict the closed path C on AdS
boundary (r = ∞)[3]. This correspondence is quite natural. C may be interpreted as the
path of a heavy quark anti-quark pair in the gauge theory. Here by a quark we mean a
fundamental representation of SU (Nc). An open string which ends on Nc D-branes is also a
fundamental representation of SU (Nc) in the string theory. However when we represent the
D3 brane action as the supergravity action, two strings which had been ending on D3-branes
lose their endpoints and they must be connected each other. The image of this correspondence
is shown in Fig. 2.1.

In a curved spacetime, Nambu-Goto string action (A.1) is written as

SNG = − 1

2πα′

ˆ
dτdσ

√
− det

(
∂XM

∂σa

∂XN

∂σb
GMN

)
,

11



Figure 2.1: The image of the correspondence between the Wilson loop in the CFT and the minimal

surface Σ of the string world-sheet in AdS5 × S5 space. On the left hand side, two end points of

two strings which have di�erent orientation represents two di�erent fundamental representations of

SU (Nc) in the CFT on Nc D3-branes. Then the closed loop of the end points of the strings C should

represent a Wilson loop with closed path C. In the appropriate limit, namely in the decoupling limit

α′ → 0 and the near horizon limit, this situation can be regarded as the minimal surface Σ which

satis�es ∂Σ = C in AdS5 × S5 space.

where GMN is the metric of ten dimensional spacetime (here, AdS5 × S5 spacetime). By
setting σ0 = t, σ1 = r, X1 = x (r), the action may be rewritten as

SNG = − T

2πα′

ˆ
dr

√
1 +

( r
R

)4
x′2, (2.3)

where x′ ≡ ∂rx. The action does not depend on x, so that there is a conserved momentum

px ≡ −2πα′∂x′L =

(
r
R

)4
x′√

1 +
(
r
R

)4
x′2

= c, (2.4)

where c is a constant. Because we want a static string solution which corresponds with a
rectangular closed path C on the AdS boundary, we search for the solution which has a

turning point rb : x′ (rb) = ∞ . Then we determine the constant c as c =
(
rb
R

)2
, solve Eq.

(2.4) for x′, and get

x′ = ±
(
R
r

)2√(
r
rb

)4
− 1

. (2.5)

Setting x (rb) = 0, x (r = ∞) = L/2 and integrating the both sides of equation, we get the

12



relation between L and rb

L

2
=

ˆ ∞

rb

dr

(
R
r

)2√(
r
rb

)4
− 1

=
R2

rb

ˆ ∞

1

dy
1

y2
√
y4 − 1

=
R2

rb

√
2π3/2

Γ
(
1
4

)2 . (2.6)

Substituting Eq. (2.5) into Eq. (2.3), we get

S = −2rbT

2πα′

ˆ ∞

1

dy
y2√
y4 − 1

. (2.7)

The integral diverges because the integrand y2√
y4−1

goes like ∼ 1 at large y. The divergence

comes from the contributions originated from the in�nitely heavy masses of the quarks. Thus
we should subtract this contribution,

mq ≡ 1

2πα′

ˆ ∞

0

dr =
rm
2πα′

(ˆ y

1

dy + 1

)
,

from Eq. (2.7). Using Eq. (2.6), we �nally get the quark anti-quark potential

V (L) = −S
T

− 2mq

=
2rb
2πα′

{ˆ ∞

1

dy

(
y2√
y4 − 1

− 1

)
− 1

}

= −4π2 (2λ)1/2

Γ
(
1
4

)4 1

L
.

This coulomb-like potential is expected because the CFT has no scale, so L−1 is needed
for this quantity to have the right dimension. In this type of the potential, quarks are not
con�ned because they can go away from the potential force with a �nite energy.

2.3 SAdS/�nite temperature QFT

One of the simple modi�cation of the AdS/CFT correspondence is adding the temperature
to the these theories.
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2.3.1 Black hole and Thermodynamics

In gravitational theory, temperature comes in when one considers a black hole. Thermody-
namics is described by a few quantities, temperature T , entropy S etc.. On the other hand
a black hole is also characterized by a few quantities, the black hole mass M , the black hole
charge Q and the angular momentum J . Let us assume that it is a spherical symmetric and
chargeless black hole in 4 dimensional spacetime, i.e., a Schwarzschild black hole. There are
few quantities to characterize the black hole, the mass M , the area of the horizon A and
the surface gravity κ which is de�ned as the acceleration of a hypothetical particles on the
horizon. In reality these quantities, however, are not independent and can be written with
M only. The area A is determined by the mass M ,

A = 4πr2H = 16πG2M2, (2.8)

where rH = 2GM is the Schwarzschild radius and G is the 4-dimensional Newton constant.
This quantity only increases and it never decreases classically, because no particles can escape
from the inside of the black hole. Thus it may be regarded as an analog of entropy. Then
di�erentiating both sides of Eq. (2.8), we get

dM =
1

32πG2M
dA. (2.9)

This relation looks like the �rst low of thermodynamics, dE = TdS. When the metric of the
black hole is represented as

ds2 = −f (r) dt2 + 1

f (r)
dr2 + · · · , (2.10)

where f (rH) = 0. The temperature may be calculated by the following procedure. After
making a Wick rotation from t to the Euclidean time tE by replacing t → −itE, impose the
periodic condition on tE to avoid the conical singularity,

ds2 =
1

f (r)
dr2 + f (r) dt2E + · · ·

∼ 1

f ′ (rH) (r − rH)
dr2 + f ′ (rH) (r − rH) dt

2
E + · · ·

= dρ2 + ρ2d

(
f ′ (rH)

2
tE

)2

+ · · · ,

where we introduce a new coordinate ρ = 2
√

(r−rH)
f ′(rH)

. Thus we require that the period is

given by δtE = 4π
f ′(rH)

. The Hawking temperature is coincide with the inverse of this period,
namely

TH =
f ′ (rH)

4π
.
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For a Schwarzschild black hole, the temperature becomes TH = 1
8πGM

, so the �rst law of the
black hole dynamics Eq. (2.9) may be rewritten as

dE = THdS,

where

E =M, TH =
1

8πGM
, S =

A

4G
.

As we have seen above, the black hole represents a thermodynamic system, however, its
entropy is not proportional to the volume of the black hole, but to the area of its surface.
This holographic feature is compatible with the gauge/gravity duality.

2.3.2 SAdS/�nite temperature QFT

As we have discussed in section 2.3.1, the gravitational theory at �nite temperature has the
black hole geometry. The metric of such a geometry is written as

ds2 = −
( r
R

)2
f (r) dt2 +

dr2(
r
R

)2
f (r)

+
( r
R

)2 (
dx2 + dy2 + dz2

)
, (2.11)

where f (r) = 1 −
(
rH
r

)4
and there is a horizon at r = rH . This geometry is called

Schwarzschild-AdS (SAdS) black hole. The black hole has the Hawking temperature which
is de�ned by using the surface gravity on the horizon r = rH as

TH =
κ

2π
=
∂r (−Gtt)|r=rH

4π
=

rH
πR2

,

where Gtt = −
(
r
R

)2
f (r).

2.3.3 Wilson loop

Wilson loops in this background are studied in Ref. [4]. We will review the arguments brie�y.
In this background, the string action which represents a Wilson loop is written as

SNG = − 1

2πα′

ˆ
dτdr

√
1 +

( r
R

)4
f (r)x′2,

where x (r) is the function which characterize the con�guration of the string and x′ ≡ ∂rx. We
can extract the information on the quark-antiquark potential V from this action by solving
x with appropriate boundary conditions and identifying −SNG/T with the potential energy
including the contribution of two quark masses, where T and L are the time and the space
intervals of the Wilson loop, respectively.
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Then conserved canonical momentum conjugate to x is

px ∼
(
r
R

)4
f (r)x′√

1 +
(
r
R

)4
f (r) x′2

= c =
(rb
R

)2√
f (rb),

where c is determined by imposing the condition that the string has the bottom at r = rb =
brH > rH , namely x′ (rb) = ∞.1 We also impose the condition x (rb) = 0. Solving this
equation for x′, we get

x′ (r) = ± 1√((
r
rb

)4
f(r)
f(rb)

− 1

)(
r
R

)4
f (r)

. (2.12)

Then space interval L which corresponds to the distance between the quark and the antiquark
is calculated as

L

2
=

ˆ ∞

rb

dr x′ (r)

=
R2

rH

√
b4 − 1

ˆ ∞

b

dy
1√

(y4 − b4) (y4 − 1)
, (2.13)

and the quark-antiquark potential V is

V = −SNG − 2Sfree

T

=
rH
2πα′

ˆ ∞

b

dy

√
y4 − 1

y4 − b4
− 2rH

2πα′

ˆ ∞

1

dy1 (2.14)

where Sfree/T = − rH
2πα′

´∞
1
dy1 represents a contribution of a free quark mass. Evaluating

Eq. (2.13) and Eq. (2.14) for each rb with �xed rH numerically, we obtain the relation
between V and L as shown in Fig. 2.2.

As it can be seen in Fig. 2.2, there are two special point Lmax and L∗. U-shaped strings
cannot extend more than the length Lmax and we have two string con�gurations in L < Lmax.
One of these con�gurations has the energy which is higher than the other con�guration. The
higher energy con�guration at L = 0 agrees with the twice of the energy of an isolated string
which corresponds to quark mass. In addition, two U-shaped string solutions with L > L∗
have the energy higher than that of two isolated string. We can con�rm that L∗ < Lmax

from Fig. 2.2. When there are some solutions with the same physical condition (it means
the same value of L in this case), we should choose the solution of the lowest energy. Then
the quark-antiquark potential V (L) vanishes at L > L∗. The feature of this behavior of V -L
relation can be interpreted as the existence of the screening of the color force in the region
L > L∗. It is characteristic of the theory at �nite temperature.

1If we chose rb < rH , x′ and x would be pure imaginary. Because they have a meaning of the position of
the string, we must choose rb > rH .
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Figure 2.2: V -L relation for �nite temperature theory with α′ = 1, R = 1 and rH = 1. Because

we normalize the potential by subtracting two quark masses, we should consider that the result can

be useful while V (L) < 0 is satis�ed and we regard V (L) as zero in the regions of V (L) > 0 or the

region there are no solution which satis�es the condition (2.12).

2.3.4 Drag force

Since the SAdS space has a temperature, there are various thermodynamic features. One of
such quantities is a drag force [5]. In the thermal theory, an individual quark moving with
an uniform velocity feels resistance from the thermal background. An individual quark is
represented by a string hanging down into the horizon from the AdS boundary in the context
of gauge/gravity duality. So we should analyze a string which hangs down from the AdS
boundary, moving with a uniform velocity

x (t, r) = vt+ ξ (r) . (2.15)

Since we want to know the resistance in equilibrium, ξ (r) should not depend on t. When
the metric is diagonal, the action of this string and the equation of motion become

SNG = − 1

2πα′

ˆ
dτdσ

√
−g, (2.16)

∂r

(
ξ′ |Gtt|Gxx√

−g

)
= ∂ξ

(√
−g
)
, (2.17)

where
√
−g ≡

√
|Gtt|Grr − v2GxxGrr + ξ′2 |Gtt|Gxx. In the SAdS spacetime, |Gtt| =

(
r
R

)2
f (r),

Grr =
1

( r
R)

2
f(r)

, Gxx =
(
r
R

)2
, f (r) = 1−

(
rH
r

)4
and the action given in Eq. (2.16) is rewritten

as

SNG = − 1

2πα′

ˆ
dtdr

√
1− v2

1

f (r)
+ ξ′2

( r
R

)4
f (r).
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Because it does not depend on ξ, the conjugate momentum

pξ ≡ −2πα′∂LNG

∂ξ′
=

(
r
R

)4
f (r) ξ′√

1− v2 1
f(r)

+ ξ′2
(
r
R

)4
f (r)

= C (2.18)

does not depend on r. Solving this equation for ξ′, we get

ξ′ = ± 1

f (r)

(
R

r

)2
√

f (r)− v2(
r
R

)4
f (r) /C2 − 1

, (2.19)

where the sign must be the same as that of the velocity because the string in the bulk is
trailed by the end point on the boundary r = ∞. Since ξ is a spacetime coordinate, it and
its derivative should be real. Thus, to keep the quantity inside the root positive, we impose
the following conditions

f (r) = v2,

(
r

R

)4

f (r)− C2 = 0,

where r is the turning point where the both signs of the denominator and the numerator
inside the root change. These conditions imply that

C = ± v√
1− v2

r2H
R2
, (2.20)

where the sign convention is the same as that of Eq. (2.19). Then plugging Eq. (2.20) into
Eq. (2.19), we get

ξ′ = v
r2HR

2

r4 − r4H
,

ξ = − R2

2rH
v

(
tan−1 r

rH
+ ln

√
r + rH
r − rH

)
.

A typical con�guration of this string is displayed in Fig. 2.3.
Actually − 1

2πα′pξ represents a (r, x) component of a conserved world sheet current of the

spacetime energy-momentum P r
x ≡ ∂LNG

∂(∂rx)
. Thus the quark which corresponds to the end

of this string loses the quantity of the momentum per unit time. Therefore the force of
resistance acting on the quark due to the thermal disturbance is

dp

dt
= − 1

2πα′
v√

1− v2
r2H
R2

= −
√
2λ

2
πT 2

H

p

mq

≡ −ηSAdS
p

mq

,
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Figure 2.3: A typical con�guration of the trailing string with α′ = 1, R = 1, rH = 1 and v = 0.1.

The horizontal line represents the horizon at r = rH .

where mq is a (formally in�nitely heavy) quark mass, λ = g2YMNc = R4/2α′2 is the 't Hooft
coupling, TH = rH

πR2 is the temperature of the dual �eld theory and the friction constant for
a dual thermal QFT of Schwarzschild-AdS ηSAdS is

ηSAdS =

√
2λ

2
πT 2

H (2.21)

This temperature dependence of ηSAdS is peculiar to the �eld theory equivalent to the grav-
itational theory on the SAdS spacetime. The SAdS spacetime is generalization of the AdS
spacetime with the scale rH . Thus the corresponding �eld theory becomes the generalization
of the CFT with temperature TH . Because the theory contains only one scale TH , quantities
that have mass dimension +2 like η must proportional to T 2

H .

2.4 dAdS/non-conformal QFT

Another way of introducing the scale into the theory is making the YM coupling gYM depen-
dent on the scale. A simple model in which such a behavior can be seen is given in Ref. [6, 7].
The model can be obtained by considering 10D IIB supergravity with the self dual �ve-form
�eld strength F5, the dilaton Φ, and the axion χ. This supergravity is the low energy limit
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of the D3-D(-1) (or D-instanton) system. The solution is

ds2 = eΦ/2

{
r2

R2
ηµνdx

µdxν +
R2

r2
dr2 + dΩ2

5

}
, eΦ = 1 +

q

r4
, (2.22)

where R4 = 4πgsNc and q denotes the vacuum expectation value of the gauge �elds con-
densate. Since the metric Eq. (2.22) is the same as the metric of the AdS space up to the
deformation of the dilaton factor eΦ/2, we call the spacetime of this metric deformed-AdS
spacetime or dAdS spacetime in this thesis.

The form of the low energy e�ective action of D-brane, Eq. (A.31), suggests that we
should identify the YM gauge coupling g2YM as

g2YM,p =
gse

Φ

TDp (2πα′)2
(2.23)

in the non-constant dilaton case. If the dilaton �eld Φ depends on the �fth coordinate r, Eq.
(2.23) implies scale dependence of the YM coupling. The model described by the metric in
Eq. (2.22) is just such a case. In this model, thus, quarks would be con�ned by this scale
dependent color force. In fact, we can �nd the quark con�nement because we �nd a linear
rising potential between a quark and an antiquark with the tension ∼ √

q/λ1/2. However,
chiral symmetry is preserved because the vacuum expectation value of the order parameter
is zero. In other words, the dynamical mass generation of massless quarks does not occur.

This model corresponds to N = 2 supersymmetric Yang-Mills theory [7].

2.4.1 Wilson loop

Because of the scale dependence of the YM coupling, the Wilson loop in this theory is
di�erent from the one in CFT. In this model the action given in Eq. (2.3) and the conserved
momentum, Eq. (2.4), are modi�ed as

S = − T

2πα′

ˆ
dreΦ/2

√
1 +

( r
R

)4
x′2,

px ≡ −2πα′∂x′L =
eΦ/2

(
r
R

)4
x′√

1 +
(
r
R

)4
x′2

=
(rb
R

)2
eΦ(rb)/2,

where rb is a bottom point of the string which satis�es x′ (rb) = ∞, rb 6= 0. Then the
separation between a quark and an antiquark L and the quark-antiquark potential may be
estimated as

L/2 =

ˆ ∞

rb

drx′

= eΦ(rb)/2L0/2, (2.24)
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Figure 2.4: V -L relation for non-conformal theory. The parameters are set as α′ = 1, R = 1. We

display the data for q = 4 (upper plots) and q = 0 (lower plots). The potential for q = 4 is linear

rising in the large L region, while the potential for q = 0 is coulomb-like.

and

V (L) = −S
T

− 2mq

=
2rb
2πα′

{ˆ ∞

1

dy
y2√
y4 − 1

(
1 +

q

r4b

1

y4

)
− 1

}
, (2.25)

where L0/2 = R2

rb

√
2π3/2

Γ( 1
4)

2 is the separation in the AdS/CFT case, Eq. (2.6), and the quark

mass mq is de�ned by mq ≡ 1
2πα′

´∞
0
dr.2 The relation between the quark-antiquark potential

V and L are shown in Fig.2.4. Taking limit rb → 0, Eq. (2.24) and Eq.(2.25) become

L/2 ∼ √
q
R2

r3b

√
2π3/2

Γ
(
1
4

)2 ,
V ∼ 2q

2πα′r3b

√
2π3/2

Γ
(
1
4

)2 .
Thus the relation between the potential V and the separation L is given by

V (L) ∼
√
q

2πα′2
√
2λ
L (2.26)

2This �quark mass� is just a regularization of the potential Eq. (2.25) and it is not real isolated physical
quark mass. The natural de�nition of the real quark mass

mq =
1

2πα′

ˆ ∞

0

dreΦ/2

has the IR divergence. It can be interpreted as the absence of the isolated quark in the dAdS model.
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in rb ∼ 0 region. Eq. (2.26) means that the potential increases as a linear function of L with

the coe�cient
√
q

2πα′2
√
2λ

in large L region. We can regard this observation as the sign of the
con�nement.

2.5 Sakai-Sugimoto model

Another holographic model is the Sakai-Sugimoto model [8, 9]. The model is constructed by
placing Nf probe D8-branes into a D4 background. The D4 background[10] is a solution of
the �eld equations of the supergravity that corresponds to a system of Nc D4-branes and one
of the coordinates τ compacti�ed on S1,

ds210 =

(
U

R

)3/2 (
ηµνdx

µdxν + f (U) dτ 2
)

+

(
R

U

)3/2(
dU2

f (U)
+ U2dΩ2

4

)
, (2.27)

eφ = gs

(
U

R

)3/4

, F4 = dC3 =
6πNc

8π2
ε4, f (U) = 1− U3

KK

U3
, R3 = πgsNcl

3
s ,

where dΩ2
4, ε4 are the line element and the volume form, respectively. xµ (µ = 0, 1, 2, 3) and

τ are the direction along which the D4-brane is extended. UKK is a constant parameter. In
order to avoid the conical singularity at U = UKK , τ must be a periodic variable with

τ ∼ τ + δτ, δτ ≡ 4π

3

R3/2

U
1/2
KK

.

The Yang-Mills couping gYM at the Kalzu-Klein mass scale MKK = 2π
δτ

is

g2YM =
(2π)2 gsls

δτ
.

Embedding a D8-brane in the D4 background (2.27) with the D8-brane's coordinates(
ξµ, ξτ , ξU , ξΩ4

)
=
(
xµ, τ, U (τ) , ξΩ4

0 = const.
)
,

we get the induced metric on the D8-brane as

ds2D8 =

(
U

R

)3/2

ηµνdx
µdxν +

((
U

R

)3/2

f (U) +

(
R

U

)3/2
U ′2

f (U)

)
dτ 2

+

(
R

U

)3/2

U2dΩ2
4, (2.28)
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Figure 2.5: A brief sketch of the Sakai-Sugimoto model. On the left side, Nc D4-branes and

Nf (� Nc) D8-branes are embedded in �at spacetime. After taking some appropriate limit, the

contributions of Nc D4-branes are replaced by the geometry with the metric, Eq. (2.27), and Nf

D8 and D8-branes are connected with each other.

where U ′ = d
dτ
U (τ). Imposing appropriate boundary conditions as U (0) = UKK , U

′ (0) = 0,
the induced metric on the D8-brane (2.28) is reduced to

ds2D8 =

(
U

R

)3/2

ηµνdx
µdxν +

4

9

(
R

U

)3/2
UKK

U
dz2 +R3/2U1/2dΩ2

4, (2.29)

U3 = U3
KK + UKKz

2.

A brief sketch of this system is shown in Fig.2.5 . Open strings which are regarded as
quarks in holographic description can end on Nf D8-branes, so the quark has U (Nf ) �avor
symmetry. When we describe the system in terms of supergravity, Nf D8-branes and Nf

D8-branes which are originally distinct objects will connect and become a single component
of Nf D8-branes. This can be interpreted as the holographic description of the spontaneous
breaking of the U (Nf )L × U (Nf )R chiral symmetry.

The gauge �eld on this D8-brane con�guration has nine components, Aµ(µ = 0, 1, 2, 3),
Az and Aα (α = 5, 6, 7, 8, the coordinates on the S4). Since the brane con�guration has
SO (5) isometry which corresponds to the rotation of x5, x6, x7, x8, x9, we assume Aµ =
Aµ (x

µ, z) , Az = Az (x
µ, z) and Aα = 0. Then the DBI part of the D8-brane action becomes

SD8 = −T8
ˆ
d9xe−φ

√
− det (Gab + 2πα′Fab)

= −T̃8
ˆ
d4xdz

[
R3

4U
ηµνηρσFµρFνσ +

9

8

U3

UKK

ηµνFµzFνz

]
+S

(0)
D8 +O

(
α′3) , (2.30)

where T̃8 ≡ 24π2R3/2U
1/2
KKTD8 (2πα

′)2 /32gs, S
(0)
D8 ≡ −T8

´
d9xe−φ

√
− detGab.
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2.5.1 Baryons in Sakai-Sugimoto model

A baryon in terms of holography is represented as a D-brane wrapped around a sphere.[11]
In the Sakai-Sugimoto model, it is a D4-brane wrapped around the S4. This corresponds
to a soliton of the �ve dimensional gauge theory on D8-branes. We can con�rm that these
two descriptions of the baryon are related each other by calculating their mass. The mass of
D4-brane wrapped around the S4 can be extracted from the action of a D4-brane,

SD4 = −T4
ˆ
dt

ˆ
dΩ4 e

−Φ
√

−GttG(S4)

∣∣∣
U=UKK

= −T4
(
8π2

3

)
g−1
s R3UKK

ˆ
dt.

Thus the D4-brane mass is

mD4 = T4

(
8π2

3

)
g−1
s R3UKK =

1

27π
MKKλNc.

On the other hand, the minimum contribution of gauge �eld in D8-brane action in Eq. (2.30)
can be estimated as

SD8 − S
(0)
D8 = −T̃8

ˆ
d4xdz

[
R3

4U
F 2
ij +

9

8

U3

UKK

F 2
iz

]

≥ −3R3/2T̃8
4

ˆ
d4xdz

√√√√UKK

(
1 +

(
z

UKK

)2
)2/3 ∣∣εijkFjkFiz

∣∣
≥ − 1

27π
MKKλNcNB

ˆ
dt

where we use relations
(
εijkFjk

)2
= 2F 2

ij, (Vi −Wi)
2 ≥ 0 for the �rst inequality and 1 +(

z
UKK

)2
≥ 1 and NB ≡ 1

8π2

´
d3xdzεijkFjkFiz for the second inequality. The minimum

contribution from gauge �eld with NB = 1 is coincide with the D4-brane mass,

msoliton ≡ 1

27π
MKKλNc = mD4.

The fact that the mass of soliton with the soliton number Ns = 1 coincide with that of a
D4-brane wrapped around the S4 once can be regarded as an evidence of the equivalence
between these two descriptions of the baryon.
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Chapter 3

Holographic Unruh e�ect

3.1 Introduction of this chapter

Unruh e�ect is the thermal e�ect for an accelerated observer. The statement is �An observer,
who is accelerated with a constant acceleration a in the Minkowski spacetime, would see a
thermal bath of the temperature a/2π�. A brief explanation of this e�ect is given in Appendix
E.1.

A similar situation has been studied for the N = 4 supersymmetric Yang-Mills theory
in the context of the holography [12, 13, 14, 15]. In the approach of Refs. [14, 15], an
accelerated quark has been introduced as a string solution of the Nambu-Goto action which
is embedded in the AdS5 (anti-de Sitter) background dual to the N = 4 supersymmetric
Yang-Mills theory. The solution in this background has been found by Xiao [14], and one
�nds an event horizon in the induced metric (in its world sheet) of this string con�guration.
The position of this horizon is speci�ed by the �fth coordinate of the bulk.

Xiao proposed an extended form of Rindler transformation (ERT) to move to a co-moving
frame of the accelerated quark. Performing this ERT, the event horizon appears in the bulk.
Thus the theory dual to the geometry after the ERT is considered as a Yang-Mills theory
at a �nite temperature. The temperature is given by the Rindler temperature TR = a/2π.
At the same time, the position of the bulk horizon can be put at the same �fth-coordinate
point with the one of the world sheet horizon of the accelerated string. As a result, in the
new coordinate, one �nds a static string which connects the boundary and the event horizon
of the bulk.

This is nothing but a free quark-string con�guration in the Rindler vacuum. Since the
theory dual to the AdS5 is in the decon�nement phase, there is also a free quark in the
Minkowski vacuum at zero temperature. However we should notice that the free quark in a
vacuum is not the same as the one in another vacuum, because the static free quark in the
Minkowski vacuum cannot be transformed to the one of the Rindler vacuum by the ERT,
and vice versa. In both theories dual to AdS5 and to the one transformed by the ERT, the
quarks are not con�ned. So the con�nement-decon�nement transition has not been regarded
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as a thermal e�ect in the Rindler vacuum. Thus, it remains an important point to study this
transition for the gauge theory in the con�nement phase in the Minkowski vacuum. There
had been no such attempt until we did it.

We consider a con�ning Yang-Mills theory in the Minkowski vacuum in order to examine
properties of its Rindler vacuum, which is obtained by performing the ERT. As a concrete
model, we consider a supersymmetric background solution of type IIB theory introduced in
Sec. 2.4. This background is dual to the N = 2 supersymmetric Yang-Mills theory, and the
quark is con�ned in this theory [7, 16].

We look for a solution of the equation of motion for the Nambu-Goto action that is
similar to the one found by Xiao. Then the original coordinates with the Minkowski vacuum
are transformed to the co-moving coordinates of the accelerated string solution by the ERT
given by Xiao. After performing this transformation, we could �nd the free quark-string
con�guration in the Rindler vacuum. This implies that this Rindler vacuum is in the quark
decon�nement phase. However, we should again notice that the �quark� in the Rindler
vacuum is di�erent from the quark in the Minkowski vacuum. Then this phase change
between the Minkowski and Rindler vacuum cannot be interpreted as the phase transition,
which is seen in the usual �nite temperature theory.

In the vacuum de�ned by the new coordinates, the dual theory can be regarded as the
thermal Yang-Mills theory with the Rindler temperature. We examine its thermal properties
and assure that the con�nement has been lost at any �nite value of the Rindler temperature.
So, there is no critical temperature in this case. On the other hand, some remnants of the
con�ning force are seen in various quantities. The situation is similar to the case of the �nite
temperature theory dual to the AdS5-Schwarzschild background.

an accelerated solution In the case of AdS/CFT correspondence[14], it is suggested that
the Unruh e�ect is observed by analyzing the system in which a quark and an anti-quark
are uniformly accelerated along mutually opposite directions. In the AdS/CFT context, the
motion of the quark corresponds to the motion of the end of the string which moves in the
bulk. So such a string solution x (t, r) should behave

x (t, r)2 − t2 =
1

a2
, r → ∞,

and satisfy the equation of motion

∂t

(
∂LNG

∂tx

)
+ ∂r

(
∂LNG

∂rx

)
= 0,
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where

LNG =

√
− det

(
G00 +G11ẋ

2 G11ẋx
′

G11ẋx
′ G11x

′2 +Grr

)
=

√
(|G00| −G11ẋ2) (G11x′2 +Grr) +G2

11ẋ
2x′2

= G11

√
x′2 − ẋ2

Grr

G11

+
Grr

G11

, (3.1)

and −G00 = G11, Grr are the diagonal components of the background spacetime metric which
depends only on r. Then the equation of motion (which is also the momentum conservation
law) is given as

∂tpt + ∂rpr = 0,

where

pt ≡ ∂LNG

∂ẋ
=

−Grrẋ√
x′2 − Grr

G11
ẋ2 + Grr

G11

,

pr ≡ ∂LNG

∂x′
=

G11x
′√

x′2 − Grr

G11
ẋ2 + Grr

G11

.

If we use an ansatz
x (t, r) =

√
t2 + f (r), (3.2)

the equation of motion becomes

− Grr√(
1
2
f ′ (r)

)2
+ Grr

G11
f (r)

+ ∂r

 G11
1
2
f ′ (r)√(

1
2
f ′ (r)

)2
+ Grr

G11
f (r)

 = 0. (3.3)

The induced metric on this string is written as

ds2 =
(
G00 +G11ẋ

2
)
dt2 + 2G11ẋx

′dtdr +
(
G11x

′2 +Grr

)
dr2.

Then the trajectory of light (ds2 = 0) on this metric is represented as

dr =
−2G11ẋx

′ ±
√
(2G11ẋx′)

2 − 4G11 (G11x′2 +Grr) (ẋ2 − 1)

2 (G11x′2 +Grr)
dt,

where the plus sign denotes a trajectory of light which initially goes up to the positive
direction of r, and the minus sign denotes that initially falls down. When ẋ = 1, i.e.,
f (rc) = 0, dr = 0 or negative, any information on the lower part (r < rc) of this solution
cannot propagate to the upper part (rc < r) across rc. The existence of such a point implies
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Figure 3.1: A straight bar moving along with the y axis.

that the physics of the upper part can be represented only by the upper part and do not
need the information on the lower part.

What happen in the region r < rc? At r = rc, ẋ (rc) reaches the speed of light, c = 1. It
implies that ẋ (r) in r < rc may exceeds c. Does this fact cause any problem? If we expand
f (r) near r = rc as

f (r) = f (rc) + f ′ (rc) (r − rc) + · · · ,
the leading order of the equation of motion in r − rc expansion leads to

f ′ (rc) =
4Grr (rc)

G′
11 (rc)

,

where G′
11 ≡ ∂rG11. This quantity is positive when G

′
11 (rc) > 0, Grr (rc) > 0. This condition

is satis�ed in Eqs. (2.2), (2.11), (2.22), (2.27) and (2.29). Thus, indeed, ẋ exceeds the speed
of light c,

ẋ =
t√

t2 + f (r)
> 1, for r < rc. (3.4)

However it does not mean that true string speed exceeds c. Because string is extended object,
the intersection at which string across the hyperplane at r = rc can exceeds the speed of light
even if the actual speed is smaller than c.

Considering a following situation is useful to understand above statement. Imagine a
straight bar moving along with the y axis with a constant velocity v < c in �at Euclidean
space (x, y),

x (σ, t) = L cos θσ, y (σ, t) = L sin θσ − vt, (0 < σ < 1) .

It is shown in Fig. 3.1. Then we consider an intersection x (t) where the bar crosses the
hyperplane at y = 0. It can be written as

x (t) =
cos θ

sin θ
vt, 0 < t <

sin θ

v
L.
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And then, the speed of this intersection becomes

ẋ (t) =
1

tan θ
v.

This can exceeds c if
θ < tan−1 v

c
.

However the actual speed of this object v is clearly smaller than c. This is what happens in
the region Eq. (3.4). So there is no strange point in the string solution Eq. (3.2).

3.2 Holographic Unruh e�ect in AdS/CFT

In the case of AdS/CFT correspondence, substituting −G00 = G11 =
r2

R2 , Grr =
R2

r2
into Eq.

(3.3), we get the equation of motion

−
R2

r2√(
1
2
f ′
0 (r)

)2
+ R4

r4
f0 (r)

+ ∂r

 r2

R2
1
2
f ′
0 (r)√(

1
2
f ′
0 (r)

)2
+ R4

r4
f0 (r)

 = 0. (3.5)

This equation is satis�ed by f0 (r) =
1
a2
− R4

r2
. Thus the accelerated string solution, Eq. (3.2),

is given as

x (t, r) =

√
t2 +

1

a2
− R4

r2
. (3.6)

This solution approaches the ordinary trajectory of an accelerated object in the AdS boundary
r → ∞,

x (t, r → ∞) =

√
t2 +

1

a2
,

and also has the turning point at rb =
R2√
t2+ 1

a2

,

x′ (t, rb) =

R4

r3b√
t2 + 1

a2
− R4

r2b

= ∞.

Thus this solution represents a string, one of whose ends is accelerated to the positive x-
direction and the other is accelerated to the negative x-direction with the acceleration a. A
brief sketch of this solution is displayed in Fig. 3.2.
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Figure 3.2: A brief sketch of the solution Eq. (3.2). The string has the induced metric horizon at

u
(
≡ r

R2

)
= uh.

To move to the co-moving coordinate of the accelerated quark, we perform the transfor-
mation which is introduced by Xiao [14] de�ned as

x =

√
1

a2
− 1

s2
eaβ cosh (aτ) ,

t =

√
1

a2
− 1

s2
eaβ sinh (aτ) ,

r = sR2e−aβ, (3.7)

where −∞ < β, τ < ∞, a < s < ∞. This transformation is the 5-dimensional extension
of the 4-dimensional Rindler transformation. The usual Rindler transformation is the trans-
formation concerning two coordinates in the 4-dimensional spacetime, time and the one of
the accelerated direction, but the extended one contains one additional direction of the �fth
coordinate of AdS5 spacetime. We call this as the extended Rindler transformation (ERT).
Performing the ERT, the metric Eq. (2.2) becomes

ds2 = R2

[
ds2

s2 − a2
−
(
s2 − a2

)
dτ 2 + s2

(
dβ2 + e−2aβ

(
dy2 + dz2

)
+ dΩ2

5

)]
,

and the string con�guration Eq. (3.6) is mapped to

β = 0.

In the Rindler coordinates, the string con�guration is static and an end of the string fall
into the horizon at s = a. Then the quark that corresponds to the other end on the AdS
boundary does not feel the existence of the anti-quark that corresponds to the end falling
into the horizon. Because of the existence of the horizon, the quark feels the temperature

T =
a

2π
.
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This temperature can be calculated by the same method introduced in Sec. 2.3. This �nite
temperature e�ect is similar to the situation in Appendix E.1, so we regard this e�ect as the
holographic description of the Unruh e�ect.

3.3 Holographic Unruh e�ect in dAdS/non-conformal QFT

Here we perform similar analysis to that in Sec. 3. First we �nd the solution for a string
accelerated in the bulk background, Eq. (2.22), dual to the N = 2 supersymmetric con�ning
Yang-Mills theory. It can be obtained by solving the equation of motion, Eq. (3.3), and it
has the induced metric horizon at rc > R2a. Second we perform the ERT to this system in
order to move to a co-moving frame of this accelerated string solution, the Rindler frame.
Then in this frame we investigate two quantities, the drag force and the Wilson loop, which
are sensitive to temperature of the system.

3.3.1 Accelerating string solution

We assume that the solution of the accelerated string is written as in Eq. (3.2) and then
the equation of motion for the string is represented as in Eq. (3.3) with −Gtt = Gxx =
eΦ/2 r2

R2 , Grr = eΦ/2R2

r2
and eΦ = 1 + q

r4
, namely

− eΦ/2R2

r2
√(

1
2
f ′ (r)

)2
+ R4

r4
f (r)

+ ∂r

 eΦ/2r2 1
2
f ′ (r)

R2

√(
1
2
f ′ (r)

)2
+ R4

r4
f (r)

 = 0. (3.8)

It is very di�cult to solve this di�erential equation analytically, but we can solve this nu-
merically by imposing two appropriate boundary conditions, f (r = ∞) = 1/a2, f ′ (rb) = 0,
where rb is the solution of f (rb) = 0. The former condition means that we consider the
quark that is accelerated with a constant acceleration a, and the latter one is necessary to
consider the string, both ends of which come back to the boundary. So it turns out that this
gravitational system represents that the quark and the anti-quark are accelerated with the
same acceleration a back to back in the non-conformal con�ning quantum �eld theory. The
numerical result of f (r) for a = 1 and several values of q are shown in Fig. 3.3.

3.3.2 Extended Rindler transformation and geometry

Then we move to a co-moving frame of the accelerated quark. In the transformed metric,
the quark should not depend on the time coordinate. We again employ the ERT, Eq. (3.7),
as such a transformation. In this case, spacetime metric becomes

ds2 = eΦ/2R2

[
ds2

s2 − a2
−
(
s2 − a2

)
dτ 2 + s2

(
dβ2 + e−2aβ

(
dy2 + dz2

)
+ dΩ2

5

)]
, (3.9)
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Figure 3.3: The numerical results of f (u) (u ≡ r/R2) for a = 1 and q = 0, 0.5, 3.0 and 10 are

shown from left to right. The zero point of the solution moves to the right with increasing q.

eΦ = 1 +
qe4aβ

s4R8
,

and the mapping of the string solution Eq. (3.2) is given by

x2 − t2 = f (r) →
(

1

a2
− 1

s2

)
e2aβ = f

(
sR2e−aβ

)
.

The string con�guration in this Rindler spacetime is shown in Fig. 3.4. We note that the
point rc, that is the solution of f (rc) = 0 on the string, is mapped to sc = a. Thus the
boundary, on which the information on the lower part of the string can propagate, agrees
with the horizon of the spacetime metric. The temperature of this metric can be calculated
by performing the same procedure as in the AdS case. The result is

TH =
a

2π
. (3.10)

In the case of the non-conformal con�ning theory, we again get the same Unruh temperature.
This result is caused by ERT, Eq. (3.7). We employ the transformation to reproduce the
correct Unruh temperature Eq. (3.10). Whether the transformation is the unique transfor-
mation to reproduce the result Eq. (3.10) or not has not been understood. We summarize
the relation between transformations and temperatures for these systems in Appendix E.2.

3.3.3 Thermal features of the emergent Rindler spacetime

In this section, we study thermal properties of the Rindler spacetime Eq. (3.9) by ap-
plying gauge/gravity duality. Resultant properties may be interpreted as the physics that
the accelerated quark feels. It is interesting to see whether the con�nement persists in the
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Figure 3.4: Examples of the string solution β (s) for q = 0 (straight line) and q = 0.5, 3, 10 (from

right to left) with a = 1. Solutions for �nite q are bent due to the Yang-Mills force expressed by the

dilaton. Then the larger q becomes, the larger the deformation of the solution grows.

Rindler-dAdS space or not. We are also interested in the di�erence between the statistical
features along the accelerated direction β and that along another direction y in 4-dimensional
spacetime.

Drag force Let us �rst examine the drag force acting on the quark moving with a constant
velocity in this thermal background. It can be studied by considering a string solution of Eq.
(2.15). It represents a quark moving with the constant velocity in an equilibrium state in a
thermal medium. We obtain the value of the friction constant of the quark in the thermal
medium from this analysis.

Strings moving to the longitudinal direction β A quark moving along β axis
appears to be described by the solution,

β (τ, s) = vτ + ξ (s) .

However such solution is not allowed. The equation of motion may be obtained by substi-
tuting

Gtt → Gττ = −eΦ/2R2
(
s2 − a2

)
,

Grr → Gss = eΦ/2R2 1

s2 − a2
,

Gxx → Gββ = eΦ/2R2s2,

into Eq. (2.17), as

∂s

(
eΦ/2 ξ

′s2 (s2 − a2)√
−g̃

)
− ∂ξ

(
eΦ/2

)√
−g̃ = 0,
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where
√
−g̃ ≡

√
1− v2s2

s2−a2
+ ξ′2s2 (s2 − a2) . This equation is rewritten as

∂s

(
ξ′s2 (s2 − a2)√

−g̃

) √
−g̃

1− v2s2

s2−a2

=
1

2
∂ξ
(
ln eΦ

)
=

2aq

s4R8

e4aβ

1 + qe4aβ

s4R8

.

Since the left-hand side of this equation is independent of τ , the equation of motion is reduced
to

e−4avτ = e4aξ
(
C − q

s4R8

)
,

where C is a constant. This equation has no solution when ξ does not depend on τ . Thus
we conclude that there is no equilibrium state for a quark with a constant velocity in the
dual gauge theory to the geometry of Eq. (3.9). The reason why this situation arises is the

β dependence of the dilaton factor eΦ = 1 + qe4aβ

s4R8 .
If we consider the case of Rindler-AdS spacetime, i.e., the q = 0 case, the equation of

motion becomes

∂spξ = 0, pξ ≡ −2πα′ ∂L

∂ξ′
=

R2ξ′s2 (s2 − a2)√
1− v2s2

s2−a2
+ ξ′2s2 (s2 − a2)

By following parallel arguments to that in Sec. 2.3.4, we get the relation

dp

dt
= −2π

√
2λ

T 2
U√

1− v2
p

mq

where p/mq =
v√
1−v2

, λ = g2YMNc = R4/2α′2 is the 't Hooft coupling, TU = a
2π

is the Unruh
temperature. For v ∼ 0, the friction constant is given by

ηβRAdS = 2π
√
2λT 2

U . (3.11)

Strings moving to the transverse direction y When we choose the coordinate y as
the moving direction, the string solution is supposed to be

y (τ, s) = vτ + ξ (s) , β = β (s) .

Since the metric Eq. (3.9) depends on β, we should keep the dependence of β when we
consider the string con�guration. Then the induced metric of this string and the action are
written as

gττ = −R2eΦ/2
((
s2 − a2

)
− v2e−2aβs2

)
, gτs = vR2eΦ/2e−2aβs2ξ′,

gss = R2eΦ/2

(
1

s2 − a2
+ e−2aβs2ξ′2 + s2β′2

)
,
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and

S =

ˆ
dτdsL

= − 1

2πα′

ˆ
dτds×

eΦ/2R2

√(
1− v2e−2aβs2

s2 − a2

)
(1 + s2 (s2 − a2) β′2) + (s2 − a2) e−2aβs2ξ′2.

Note that the induced metric on the string has a horizon at s that satis�es (s2 − a2) −
v2e−2aβ(s)s2 = 0. We want to know the conserved momentum pξ to derive the drag force for
the quark moving along y axis with a constant velocity. It is de�ned as

pξ ≡ −2πα′∂L
∂ξ′

= eΦ/2R2 (s
2 − a2) e−2aβs2ξ′√

−g̃
= C, (3.12)

pβ ≡ −2πα′ ∂L
∂β′ = eΦ/2R2

(
(s2 − a2)− v2e−2aβs2

)
s2β′

√
−g̃

, (3.13)

where √
−g̃ ≡

√(
1− v2e−2aβs2

s2 − a2

)
(1 + s2 (s2 − a2) β′2) + (s2 − a2) e−2aβs2ξ′2,

and the equation of motion is written as

∂spξ = 0, ∂spβ = −2πα′∂L
∂β

. (3.14)

Solving Eq. (3.12) for ξ′, we get

ξ′ = ±

√√√√ (
1− v2e−2aβs2

s2−a2

)
(1 + s2 (s2 − a2) β′2)C2

(s2 − a2) e−2aβs2 (eΦR4 (s2 − a2) e−2aβs2 − C2)
, (3.15)

where the sign should be chosen appropriately. Since y = vt + ξ is the position of the
string, ξ and ξ′ are real. So the numerator and the denominator inside the square root
must vanish simultaneously on the induced metric horizon s = s. The condition leads to
C2 = eΦ(s)R4v2e−4aβ(s)s4, as is immediately seen from Eq. (3.13) by assuming β′ (s) < ∞.
We can solve the string con�guration (β (s) , ξ (s)) numerically by using Eqs. (3.13) and
(3.14). Typical con�gurations are shown in Fig. 3.5.

Then the canonical momentum conjugate to y is

pξ = v

√
(e−aβ(s)s)

4
R4 +

q

R4

=
v

R2

√
r (s, β (s))4 + q.
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Figure 3.5: Strings trailing along with y axis for v = 0.1, a = 1, R = 1 and q = 0 (on β = 0 plane),
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Thus the drag force for y direction is de�ned as

dp

dt
= − 1

2πα′

√
1− v2

√
r (s, β (s))4 + q

R4

p

mq

∼ −ηy p

mq

(for small v) ,

where

ηy ≡ R2a2

2πα′

√
r4c + q

R8a4

is the friction constant in this �thermal� medium due to acceleration and rc is a point which
satis�es f (rc) = 0. In the limit q → 0, this quantity becomes

ηyRAdS ≡ 2π
√
2λT 2

U . (3.16)

Thus, in the Rindler-AdS case, the friction constants for two di�erent directions agree when
v is su�ciently small. The di�erence between Eq. (3.11) and Eq. (3.16) is evaluated as

ηβRAdS − ηyRAdS ∼ 2π
√
2λT 2

Uv
2 (for small v) .

This result implies that �thermal� e�ect from a constant acceleration is anisotropic. The
situation is quite di�erent from the ordinary isotropic thermal e�ect. This anisotropy is
referred to in the work [17] with the �eld theoretical approach.
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We also notice that the factors of the friction constants in Rindler-AdS system ηβRAdS, η
y
RAdS

are di�erent from that in Schwarzschild-AdS system ηSAdS , Eq. (2.21),

ηβRAdS = ηyRAdS = 4ηSAdS.

Wilson loop Next we consider the potential between a quark and an antiquark. It is
obtained by considering the Wilson loop operator. The expectation value of the operator
corresponds to a static string with the both ends on the boundary. The behavior of the
Wilson loop in the theory at a �nite temperature will be quite di�erent from that in the
theory at zero temperature. Especially the con�nement properties would be lost from the
theory because the infrared strong-force is screened by the �uctuations of the thermal matter.
This situation also arises when the theory is at any �nite value of the Unruh temperature.

In the original background Eq. (2.22), the gauge coupling constant is de�ned by g2YM =
2πgse

Φ and depends on β and s as follows,

g2YM

2πgs
= 1 +

qe4aβ

s4R8
(3.17)

This implies that the Yang-Mills force depends on the energy scale s and also on the coor-
dinate β in the real three space. The Yang-Mills force between a quark and an antiquark
is completely screened when they are separated by the distance (L) larger than a critical
value (L∗) because of the temperature, as we have seen in Sec. 2.3.3.1 Namely the quark is
free from the antiquark which is separated by the distance L > L∗, but we know that the
quark can feel the force from the antiquark in the region of L < L∗ and this force is nearly
equivalent to the one given at zero temperature.

In the present case, we �nd a linear rising potential in the region of L0 < L < L∗, where
L < L0 de�nes the ultraviolet region of the conformally symmetric limit. And we �nd the
tension parameter Eq. (2.26)

τeff =

√
q

2πα′R2

at zero temperature in the present model. Then we expect the tension parameter in the
Rindler coordinate would be given by

τR =

√
qe2aβ

2πα′R2
(3.18)

which is however coordinate dependent. We can assure this point through the Wilson-Loop
calculation given below. Therefore we study the dynamical properties in this vacuum in
two cases, a string which stretches along the longitudinal direction and that stretches along
transverse direction in three dimensional space in the new coordinate.

1Properly speaking, we should subtract the contributions of the isolated quark and the anti-quark from
the potential energy to obtain the contribution from interaction between them. There is however only one
con�guration of the isolated quark and the anti-quark when L is larger than L∗. Thus pointing out the
existence of the maximum value of the separation L∗ is su�cient to con�rm the screening of the color force.
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From the gauge coupling given above Eq. (3.17), we can say that the force between the
quark and the antiquark would depend on a and also on β. In our original metric, the quarks
are con�ned due to the strong infrared gauge coupling constant. Namely, it diverges for
r → 0. In the new Rindler coordinate system, the infrared strong force would be screened
by the �uctuations of the thermal matter with the temperature T = a/2π. The situation
would be parallel to the case of the AdS-Schwarzschild background which is dual to the high
temperature gauge �eld theory. Because of this screening, we would �nd the decon�nement
phase in the Rindler vacuum. This is the Unruh e�ect in the con�nement theory. In order
to assure this point, we study the force between the quark and the antiquark, which are
represented by the static strings in the Rindler vacuum Eq. (3.9).

In this analysis, we consider two types of the string con�guration, the string extended to
the longitudinal (β) direction and the one extended to the transverse (y) direction.. These
two con�gurations correspond to two types of the Wilson loop operator in the �eld theory.
Because of the anisotropy between these two directions Eq. (3.9), It is expected that the
qualitative behavior of these two types of Wilson loop are quite di�erent.

We will use the Hamilton formalism which is explained in Appendix B to analyze the
equation of motion of these string con�gurations. The formalism is useful for the numerical
calculation.

Strings stretched to the longitudinal (β) direction First we consider a string
con�guration which is extended to the longitudinal direction β. An ansatz for this type of
the string con�guration is given in the following form,

(τ, s, β) = (τ, s (σ) , β (σ))

and the other coordinates is set to zero because the metric Eq. (3.9) is symmetric under the
ERT. Then the string action becomes

S = −
ˆ
dτU

U =
R2

2πα′

ˆ
dσL =

R2

2πα′

ˆ
dσeΦ/2

√
s′2 + s2 (s2 − a2) β′2

where the prime denotes the derivative with respect to σ, namely, s′ = ∂σs, β
′ = ∂σβ. Since

there are no τ dependence in U , we can use the technique introduced in Appendix B by
regarding U as the action in Eq. (B.1).

We de�ne the conjugate momenta of s and β as

ps ≡ ∂L
∂s′

= eΦ/2 s′√
s′2 + s2 (s2 − a2) β′2

,

pβ ≡ ∂L
∂β′ = eΦ/2 s2 (s2 − a2) β′√

s′2 + s2 (s2 − a2) β′2
. (3.19)
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Then the Hamiltonian H ≡ s′ps + β′pβ − L becomes

H = ∆H̃,

where

∆ ≡ 2e−Φ/2
√
s′2 + s2 (s2 − a2) β′2, H̃ =

1

2

[
p2s +

p2β
s2 (s2 − a2)

− eΦ
]
. (3.20)

We may con�rm the relation
H̃ = 0 (3.21)

by substituting Eq. (3.19) into Eq. (3.20). Considering the Hamilton's equations of motion
for H̃, we get

s′ = ps, β′ =
pβ

s2 (s2 − a2)
,

p′s =
2s2 − a2

s3 (s2 − a2)2
p2β −

2qe4aβ

s5R8
, p′β =

2aqe4aβ

s4R8
. (3.22)

The equations of motions Eq. (3.22) are solved with appropriate boundary conditions.
Since there are four functions s, β, ps, pβ, four �rst order di�erential equations, and one con-
straint Eq. (3.21), we need three boundary conditions. We choose these boundary conditions
as

smax = s (0) = s0 > a, β (0) = β0, ps (0) = 0, (3.23)

where s0 denotes the bottom of the string and then constraint Eq. (3.21) determines

pβ (0) = s0

√
(s20 − a2)

(
1 +

qe4aβ0

s40R
4

)
. (3.24)

In these conditions Eqs. (3.23) and (3.24), we get the string con�guration which two ends
approach to boundary smax. Thus we have two values (σ1, σ2) of σ which correspond to the
two end points at the boundary. Such σ1 and σ2 satisfy the condition

smax = s (σ1) = s (σ2) . (3.25)

The distance between the quark and the antiquark, L, is de�nes as

L ≡ |β (σ2)− β (σ1)| .

There are an in�nite number of con�gurations with distance L. Since we are interested in
the quark at β = 0, we choose the con�gurations that satis�es β (σ1) = 0. Adjusting the
value β0, we set the point β (σ1) to zero. Then the quark-antiquark potential becomes

E (L) =
R2

2πα′

ˆ σ2

σ1

dσeΦ/2
√
s′2 + s2 (s2 − a2) β′2
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Figure 3.6: E-L relations for a quark and an antiquark in the longitudinally extended case for

smax = 10, R = 1, q = 10, and a = 1 (left), a = 3 (right). The (red) dashed curves represent Eq.

(3.26), which represent as the e�ect of the color force existing in the con�nement phase.

where s (σ) , β (σ) are solutions of the equations of motion. In our analysis, we set smax = 10
to regularize the potential E (L). The results are shown in Fig. 3.6. For su�ciently large q
compared to the temperature a/2π, we can see the color force with a de�nite tension before
the screening e�ects become dominant. The energy could be estimated as follows,

E =
R2

2πα′

ˆ L

0

dβ '
√
qe2aL

4aπα′R2
. (3.26)

Actually, we obtain a good �t with this curve for low temperature case a = 1.0 (See the left
�gure of Fig. 3.6).

Strings stretched to the longitudinal (y) direction Next we consider a string
extended to the y direction which is transverse to the acceleration direction. Because the
metric depends on β, the string con�guration must depend on β even if the position of the
end points of the string do not depend on β on the boundary. Therefore an ansatz of the
string con�guration should be of the form

(τ, s, β, y) = (τ, s (σ) , β (σ) , y (σ)) .

In this case the action becomes

S = −
ˆ
dτU,

where

U =
R2

2πα′

ˆ
dσeΦ/2

√
s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2),
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and a dot denotes the derivative with respect to the parameter σ. The canonical momenta
conjugate to s, β, y and Hamiltonian are de�ned as

ps ≡ ∂L
∂s′

= eΦ/2 s′√
s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2)

,

pβ ≡ ∂L
∂β′ = eΦ/2 s2 (s2 − a2) β′√

s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2)
,

py ≡ ∂L
∂y′

= eΦ/2 e−2aβs2 (s2 − a2) y′√
s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2)

,

H ≡ s′ps + β′pβ + y′py − L
= ∆H̃,

where

H̃ ≡ 1

2

[
p2s +

p2β
s2 (s2 − a2)

+
e2aβp2y

s2 (s2 − a2)
− eΦ

]
= 0, (3.27)

∆ ≡ 2e−Φ/2
√
s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2). (3.28)

The Hamilton's equations of motion are then

s′ = ps, β′ =
pβ

s2 (s2 − a2)
, y′ =

e2aβpy
s2 (s2 − a2)

,

p′s =
2s2 − a2

s3 (s2 − a2)2
(
p2β + e2aβp2y

)
− 2qe4aβ

s5R8
,

p′β = −
ae2aβp2y

s2 (s2 − a2)
+

2aqe4aβ

s4R8
, p′y = 0. (3.29)

When we solve the above equations, we impose the following boundary conditions,

β (0) = β0, s (0) = s0 > a, x (0) = 0,

pβ (0) = 0, ps (0) = 0,

and the constraint Eq. (3.27) leads to

py (0) = s0e
aβ0

√
(s20 − a2)

(
1 +

qe4aβ0

s40R
4

)
.
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Figure 3.7: 3D string con�guration stretched in the y direction. As y decreases the bottom of the

string is stretched to direction.

On the boundary s = smax, β and y represent the position of the quark (βbdy, y1) and the
antiquark (βbdy, y2),

β (σ1) = β (σ2) = βbdy, y (σ1) = y1, y (σ2) = y2

where σ1, σ2 is de�ned as in Eq. (3.25). The distance between the quark and the antiquark,
L, is de�ned as

L = |y2 − y1| .

When all string con�gurations with the same L, βbdy and with the di�erent quark position
y (σ1) represent the same physics because the metric Eq. (3.9) and this con�guration have
the symmetry under the translation of the y coordinate. Now we would like to see the force
in the y direction through the solution of Eq. (3.29). So we solve these equations by imposing
the condition that the end point coordinate βbdy is �xed at a certain value. So here we must
tune the boundary values, β0 and h0 in order to realize the same βbdy for each solution. Since
the ERT is de�ned as in Eq. (3.7), we choose the solution for

βbdy = 0,

and a typical string solution in the present case is shown in Fig. 3.7.
We can see the linear rising part before the screening takes place. This linearly rising

part is �tted by the formula

E =

√
qe2aβR2

2πα′R2
L+ const. , (3.30)
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Figure 3.8: Typical E-L relations for quark and antiquark for a = 0.1 (left) and a = 1.0 (right),

smax = 10, R = 10 and q = 10. The dashed (red) line represents the tension of the potential of

linear rising part, given by Eq. (3.30) and Eq. (3.31), which is expected as the e�ect of the color

force existing in the con�nement phase.

where β is approximately given as,

β ≈ β (s = a)

3
. (3.31)

As for the upper part of the E-L relation, the curve increases with decreasing L. This
may be understood as follows. The upper part represents the string con�gurations whose
bottom points are pulled to near the horizon. Then the lower part of the string grows to the
direction of β as shown in Fig. 3.7 and the energy of the string becomes large. This kind of
behavior cannot be seen in the case of the AdS-Schwarzschild background.

The quark-antiquark potential becomes

E (L) =
R2

2πα′

ˆ σ2

σ1

dσeΦ/2
√
s′2 + s2 (s2 − a2) β′2 + y′2e−2aβs2 (s2 − a2)

where s (σ) , β (σ) , y (σ) are solutions of the equations of motion, Eq. (3.29). The relation
between the energy E and distance L are shown in Fig.3.8

We again come upon the anisotropy of the Unruh e�ect. The quark-antiquark potential
E (L) for the β direction is quite di�erent from that for the y direction especially in the small
a region.

3.4 Relation to the 4D �eld theory

Here we give comments on the statement about the Unruh e�ect given in Ref. [2], where
the analysis is performed within the 4D �eld theory. The main result is that any Green ’
s functions in the vacuum of Minkowski space-time are the same as those of the Rindler
space-time when the calculation is restricted to the same Rindler wedge in the Minkowski
coordinates. So one may think that the phase of the Minkowski vacuum cannot be changed
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in the Rindler vacuum since the VEV of any order parameter would be the same in both
vacuums.

However, in the present paper, we show that the vacuum of the Rindler space-time is in
the quark decon�nement phase in spite of the fact that the original theory in the Minkowski
vacuum is in the con�nement phase. Then our calculation seems to be inconsistent with the
statement of Ref. [2]. However this point would be resolved as follows.

Let us consider the VEV of the Wilson loop operator that determines whether con�nement
takes place or not. In the �eld theory side, the operator is given by,

O (C) = tr

(
P exp

[
ig

˛
C

Aµ (x) dx
µ

])
,

where P denotes the path ordering of a closed path C in the line integration for the gauge
�eld Aµ (x). Its VEV is written as

A (C) = 〈0M | O (C) |0M〉

for the Minkowski vacuum |0M〉, and

B (C) =
Tr
(
e−HR/TO (C)

)
Tr
(
e−HR/T

)
for the �nite temperature (T ) Rindler vacuum, respectively. The statement in Ref. [2] implies
the equivalence of A and B when they are calculated within the same Rindler wedge.

Our calculation of A and B do not lead to A = B due to the following reasons. First, the
paths used in A and B are not related by the ERT. In order to see the potential between the
quark and the antiquark, we have performed the calculations for the rectangular path in the
t-x plane for A and for the one in the τ -y (or τ -β) plane for B respectively. The rectangular
path used in A, CA, cannot be transformed to the one used in B by the ERT since it must be
transformed to the τ dependent path. Actually �xed x (= x1) path in Minkowski coordinates
is written as

β =
1

a
ln
[
a2
(
x21 − t2

)]
,

τ =
1

a
tanh−1

(
t

x1

)
,

in the Rindler coordinates. Moreover, a �xed β (= β1) path, CB,β, or a �xed y (= y1) path,
CB,y, in Rindler coordinates are written as

x =
1

a
eaβ1 cosh (aτ) ,

t =
1

a
eaβ1 sinh (aτ) ,
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for �xed β (= β1) path and,

x =
1

a
cosh (aτ) ,

y = y1

t =
1

a
sinh (aτ) ,

for �xed y (= y1) path with β = 0 in Minkowski coordinates. Thus our Wilson-loop calcu-
lations in A (CA) and B (CB) are not related by the ERT. This is the reason why we could
obtain di�erent results from the calculation of A and B.

Second, let us comment on the quark string con�guration in the Rindler vacuum. This
point is also related to the fact that the quark in the Rindler vacuum is di�erent from the
one in the Minkowski vacuum. In estimating B, the essential string solution responsible
for the proof of the decon�nement is the one which connects the boundary and the event
horizon, because this solution can be interpreted as the free quark and this is possible only
for the decon�nement phase. We could �nd such a solution only in the Rindler vacuum. The
interesting point is that this free-quark con�guration in the Rindler vacuum is obtained by
the ERT from the constantly accelerated quark string con�guration given in the Minkowski
vacuum as shown above. However this con�guration is not used in the evaluation of A in our
theoretical scheme. Because of these reasons, we do not obtain the relation A = B. We are
examining the parts, of A and B which cannot be related by the ERT. Then our statement
does not contradict with the one in Ref. [2].

Let us comment on other possible choices of the coordinate transformation than that
adopted above. For example, the coordinate transformation given in Ref. [2] which does not
include the �fth coordinate of the bulk may be considered as such a transformation. This
is di�erent from the ERT used here. In the latter case, the transformation is performed in
three dimensional coordinate including the �fth one. As a result, the event horizon appears
in the bulk, then the infrared region is cut o� in the dynamics of the dual 4D theory. Then
the dynamical properties responsible for the long-range force would be lost in the vacuum of
the new coordinate system.

We should also study the VEV of other physical quantities. In this context, we notice other
papers [18, 19] from a di�erent 4D non-perturbative approach, and the author demonstrates
chiral symmetry restoration in the Rindler vacuum. So it would be necessary to proceed in
this direction in order to deepen the knowledge of the Rindler vacuum.

3.5 Summary:Holographic Unruh e�ect

We give here a constantly accelerated quark as a string solution of the Nambu-Goto action
which is embedded in the supergravity (dAdS5×S5) background dual to the con�ning Yang-
Mills theory. For the string solution given in the zero-temperature Minkowski spacetime, we
�nd an event horizon in its induced metric. This horizon is also found in the case of AdS5
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background dual to the non-con�ning theory. In any case, this fact can be considered as a
clear signal of the radiation of gluons due to the acceleration of the color charged quark.

We consider the extended Rindler transformation proposed by Xiao in order to move to the
co-moving frame of the accelerated quark and to study the properties of the Rindler vacuum.
The coordinate transformation is generalized to the 5D bulk theory, but the boundary is
described by the usual 4D Rindler metric. The dual theory is found in a thermal medium
with the Rindler temperature T = a/2π, so it is expected that the theory is in a di�erent
vacuum from the one in the inertial frame. To study this point, we have examined several
dynamical properties of the new vacuum to compare them to those observed in the inertial
coordinate. Then we �nd that the vacuum properties are changed from those seen in the
inertial frame. In the Rindler vacuum, the friction arises from the thermal medium when a
quark moves and the color force is screened by the thermal e�ect at long distances.

We discuss the drag force to see the thermal e�ects in the Rindler vacuum. We recognize
the anisotropy between the friction constants for the longitudinal (β) direction and for the
transverse (y) direction. In the Rindler-AdS5 background, the anisotropy appears in the
friction constants as the di�erent dependence on the velocity v, while in the Rindler-dAdS
background we have more a drastic result. Namely we cannot �nd any static states which
corresponds to a quark moving with the constant velocity v in the �eld theory dual to the
Rindler-dAdS background. We also �nd the di�erence of factor four between the friction
constant in the Rindler vacuum and the one in the AdS5-Schwarzschild background.

We also discuss the Wilson loop to study the color force screening by the thermal e�ect.
As a result, we have the potential between the quark and antiquark in Rindler space. In the
Rindler coordinates, the color force is screened by the thermal e�ect at long distances and
the con�ning property is lost. The screening length depends on the temperature and also
on the direction in the three space, namely, if it is accelerated in the longitudinal direction
y, z or in the transverse directions β. As for the temperature dependence, we �nd some
di�erence from the one observed previously in the AdS-Schwarzschild background, especially
for the screening in the longitudinal direction. The reason of this anisotropy in the 3D
space is the behavior of the dilaton. The dilaton expresses the gauge coupling constant, and
it is deformed in the longitudinal direction as in Eq. (3.17) due to the extended Rindler
transformation. Then the potential between the quark and the antiquark has di�erent forms
in the longitudinal and in the transverse directions. This point has been assured through the
direct observation of the potential between the quark and the antiquark.

Even if we calculate the force in the transverse direction, we can see the e�ect of the
longitudinally deformed dilaton. For example, consider an excited bound state of the quark
and the antiquark in the Rindler coordinates. Then we could �nd a small repulsion in the
direction (y) transverse to the accelerated direction (β). This repulsion is understood from
the string con�guration in the 3D space β-y-s. When the distance y decreases, the string is
stretched in the β direction near the horizon s ' a. This phenomenon is understood as the
remnant of the strong con�ning force near the horizon. On the other hand, the attractive
force is exponentially enhanced in the longitudinal direction at fairly large distance. This
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behavior is caused by the deformed dilaton in the Rindler coordinate in the longitudinal
direction.

Finally, we give our main conclusion that we could �nd a new vacuum when we move to
the co-moving coordinate of an accelerated quark by the extended Rindler transformation
considered here and �nd a kind of a high temperature theory in a decon�nement phase.
Then, in the new vacuum, the properties given by the long range force in the inertial frame is
lost. Thus our calculation seems to be inconsistent with the claim given in Ref. [2]. However,
this point is resolved as explained in the previous section. The main reason is that we are
considering the di�erent Green ’s functions to decide the phase of the vacuum.
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Chapter 4

Holographic cold nuclear matter

Abstract of this chapter We study cold nuclear matter based on the Sakai-Sugimoto
model, where baryons are introduced as solitons on probe D8/D8 branes. Within the dilute
gas approximation of solitons, we search for stable states by using the variational method.
We �nd a �rst-order phase transition from the vacuum1 to the nuclear matter phase as we
increase the chemical potential. At the critical chemical potential, we could see a jump in
the baryon density from zero to a �nite value. The baryon number density is rather large
compared to the normal nuclear density. The result is caused by our dilute gas approximation,
and it may be improved by introducing the contribution of two-body interaction of baryons.
We also study the neutron star by solving the Tolman-Oppenheimer-Volko� (TOV) equations
[20, 21]. We read o� the equation of state (EoS) of our nuclear matter by introducing Fermi
momentum. Then, we apply our model to the neutron star. We solve the TOV equations
by plugging in the EoS obtained from the model to get the maximum values of the mass
and the radius. They are considerably smaller than the empirical ones. We suspect that the
discrepancy comes from the dilute gas approximation.

4.1 Finite baryon density system

It is very di�cult to study dense nuclear matter from �rst-principle calculations in non-
perturbative QFTs like QCD. For example, it is di�cult to study that from lattice gauge
theory simulations because of �sign problem� when we introduce the chemical potential to
the theory[22, 23]. So we hope that gauge/gravity duality works in this subject and it may
give some non-trivial results. It is also challenging to make clear the properties of the nuclear
matter from the viewpoint of holographic gauge theory. It may be useful to improve the
understanding of holographic approaches.

In this chapter we use the Sakai-Sugimoto model introduced in Sec. 2.5, which is a
gauge/gravity duality model very close to QCD. In this model, baryons are represented as
the solitons on Nf probe �avor branes[8, 24, 25, 26]. The baryon number NB is identi�ed

1Here, �the vacuum� means the state with the lowest energy at the vanishing chemical potential.
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with the soliton number of the solution Ns and the number of the probe �avor branes Nf

corresponds to the number of �avors of quarks. We set Nf = 2 throughout our analysis
for simplicity. The solution with the soliton number Ns = 1 is given as the BPST instanton
solution of SU (Nf = 2) YM theory in the �at �ve dimensional spacetime on the probe branes
[24]. The solution is characterized by a scale parameter which corresponds to the baryon size.
This size is determined dynamically so that the action of the D8/D8, which is expressed as
the sum of the Dirac-Born-Infeld (DBI) and Chern-Simons (CS) term, is minimized. This
analysis for the system with the baryon number NB = 1 may be generalized to the system
with NB ≥ 2 by using the soliton solution with Ns ≥ 2. Then the CS term plays a crucial
role when we introduce the chemical potential.

There are several papers in which the nuclear system with the chemical potential of
baryons is studied [27, 28, 29, 30, 31, 32, 33, 34]. However we feel dissatisfaction with the
papers. For example, in Ref. [28], the solitons of the �avor gauge �elds are introduced as
a delta-function type source only in the CS term, though the soliton size is �nite and the
contribution must also be included in the DBI term. As a result, the authors of Ref. [28]
have observed a gapless transition from the vacuum to the nuclear matter phase at zero
temperature. However this observation is in contradiction with the ones obtained in other
theories (See for example Ref. [35]).

On the other hand, the authors of Ref. [30] keep the �avor gauge �elds in the DBI action
as well as in the CS term. So they �nd a �rst-order phase transition at �nite baryon density.
However, the con�guration used for the �avored gauge �elds has in�nite baryon number
density, so it is di�cult to study the �nite baryon number density. Furthermore, they do not
check whether their D8-brane con�guration is the lowest-energy solution for the equations of
motion for the D-branes or not, though it may be dependent on the U (Nf ) gauge �elds via
the interactions on D8-branes.

Here we introduce an explicit form of soliton solution which has a smooth pro�le in the
the direction of the �fth coordinate instead of the delta function form. Furthermore, we keep
the �avored Yang-Mills �elds in the DBI action of the D8 probe brane up to the square of
the �eld strength. This is crucial for �nding a gap of the baryon density at the transition
point as in Ref. [30]. In contrast to the case in Ref. [30], in our approach, the �avored YM
�eld is solved by determining the remaining size parameter of the soliton with �xed chemical
potential. After that, the physical quantities, such as chemical potential and baryon number
density, are obtained and used for the search for the phase transition.

We should �x the value of the position of the D8/D8-brane because it determines a
certain feature of the dual gauge theory. Here we restrict the pro�le of the D8/D8-brane to
the antipodal solution. Then, we can use a simple D8-brane pro�le [24], which is obtained
without any solitons as an antipodal U-shaped con�guration. In general, the lowest energy
solution for some �nite baryon density nB is not equivalent to the simple solution mentioned
above, since it is not antipodal. However, the solution is always approximated by the simple
one with a negligible correction for any value of nB. This is the reason why we restrict the
pro�le to the antipodal solution. Another reason is for the simplicity of the present analysis.
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Through our analysis, we �nd a �rst-order phase transition, which is expressed in nB-µB

plane, where µB denote the baryon chemical potential. At the transition point, the baryon
number density jumps from zero to a �nite value, which corresponds to the transition from the
vacuum to a nuclear matter phase. By adjusting the parameters, at the transition point, we
observe the baryon mass as µB ' 2.3 GeV and the baryon number density as nB ' 0.70 fm−3.
These values are considerably large compared to the realistic nucleon mass and the normal
nuclear density. Furthermore, at this transition point, the size of the baryon are rather small.

In this section, we �rst review baryons in the Sakai-Sugimoto model, and then introduce
the dilute gas model of solitons. Finally the results obtained in the model are discussed.

4.1.1 Action and 1-soliton solution

The action of the Sakai-Sugimoto model with Nf = 2 is written as follow[24],

S = SYM + SCS,

SYM = −aλNc

ˆ
d4xdz tr

[
1

2
h (z)F 2

µν + k (z)F 2
µz

]
−aλNc

2

ˆ
d4xdz

[
1

2
h (z) F̂ 2

µν + k (z) F̂ 2
µz

]
+O

(
λ−1
)
, (4.1)

SCS =
Nc

64π2
εMNPQ

ˆ
d4xdz

[
Â0tr (FMNFPQ) + · · ·

]
, (4.2)

where a−1 ≡ 216π3, k (z) = 1+ z2, h (z) = k−1/3, M,N = 1, 2, 3, z and ε123z = +1. AM , ÂM

denote SU (Nf ) , U (1) gauge �elds respectively. The ellipsis in SCS stands for terms that are
irrelevant to the discussion below. Rescaling the �elds and integration variables as

xM → λ−1/2xM , (AM , A0) →
(
λ1/2AM , A0

)
, (4.3)

we can rewrite the YM action Eq. (4.1) as

SYM = −aNc

ˆ
d4dz tr

[
λ

2
F 2
MN +

(
−z

2

6
F 2
ij + z2F 2

iz − F 2
0M

)]
−aNc

2

ˆ
d4dz

[
λ

2
F̂ 2
MN +

(
−z

2

6
F̂ 2
ij + z2F̂ 2

iz − F̂ 2
0M

)]
,

while SCS takes the same form as the one in Eq. (4.2). Then the leading contributions of
the equations of motion for their gauge �elds in λ−1 expansion are,

DMF0M +
1

64π2a
εMNPQF̂MNFPQ = 0,

DNFMN = 0,

∂M F̂0M +
1

64π2a
εMNPQ

{
tr (FMNFPQ) +

1

2
F̂MN F̂PQ

}
= 0,

∂N F̂MN = 0. (4.4)
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These equations can be solved as,

Fij =
2ρ2(

(x− x0)
2 + ρ2

)2 εijaτa Fzj =
2ρ2(

(x− x0)
2 + ρ2

)2 τj, A0 = 0, (4.5)

ÂM = 0, Â0 =
1

8π2a

1

(x− x0)
2

[
1− ρ4(

(x− x0)
2 + ρ2

)2
]
, (4.6)

where τi are Pauli matrices and (x− x0)
2 = z2 + (~x− ~x0)

2. This SU (2) gauge �eld may be
written as

AM = −if (x) g∂Mg−1,

where

f (x) =
(x− x0)

2

(x− x0)
2 + ρ2

, g (x) =
(z − z0)− i (~x− ~x0) · ~τ√

(x− x0)
2

.

x0 and ρ denote the center position and the size of this soliton, respectively. The parameter
ρ is determined by requiring that the action is minimized with respect to the variation of it.
In fact, the variables and the �elds in Eqs. (4.5) and (4.6), xM , FMN and Â0, are rescaled
as in Eq. (4.3). Thus in order to restore the original variables and �elds, we must rescale the
�elds and variables as,

xM → λ+1/2xM , (AM , A0) →
(
λ−1/2AM , A0

)
. (4.7)

Performing the rescaling in Eq. (4.7), we assure that Eq. (4.5) is maintained when we use
the original variables and �eld strengths.

The baryon number is de�ned by

NB ≡ 1

32π2

ˆ
d3xdz εMNPQtr (FMNFPQ) , (4.8)

and the solution Eq. (4.5) gives NB = 1. Substituting Eqs. (4.5), (4.6) into the action, Eqs.
(4.1), (4.2), the soliton mass M is obtained as S = −

´
dtM ,

M =M0

[
1 + λ−1

(
ρ2

6
+

1

320π4a2
1

ρ2
+
z20
3

)
+O

(
λ−2
)]
, M0 ≡ 8π2aλNc. (4.9)

The values of ρ and Z is determined by minimizing M ,

ρ2 = 8π2a

√
6

5
, z0 = 0. (4.10)

Note that the baryon size Eq. (4.10) is very smaller than an expected value. Since we
rescaled the parameter as Eq. (4.3), we should evaluate the size of baryon as

ρ2 =
8π2a

λM2
KK

√
6

5
,
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when we compare ρ with the real value of the baryon size. Setting λ = 16.6 and MKK =
949MeV,2 we �nd

ρ = 5.88× 10−3fm. (4.11)

This value is much smaller than the expected value of the ordinary baryon size ∼ 1fm.

4.1.2 2-soliton solution and repulsive force

A two-baryon solution can be constructed by ADHM construction in [26]. It is parametrized
by four quaternionic parameters

X i = z0,i + i~x0,i · ~τ , yi = y4i + i~yi · ~τ , (i = 1, 2) .

xM0,i = (~x0,i, z0,i) corresponds to the position of the baryons, ρi ≡
√
yIi y

I
i is the size of each

baryon and ai ≡ yi/ρi is the SU (2) orientation of each soliton. In this setup, the potential
of this system U

(
S = −

´
dtU

)
is given as,

U =
2∑

i=1

Mi +H
(SU(2))
pot +H

(U(1))
pot +O

(
λ−1
)
, (4.12)

where

Mi =M0

[
1 + λ−1

(
ρ2i
6

+
1

320π4a2
1

ρ2i
+
z20,i
3

)]
,

H
(SU(2))
pot =

4π2aNc

3
ρ21ρ

2
2

rarb

|r|4
tr
(
iτaa−1

2 a1

)
tr
(
iτ ba−1

2 a1

)
, (4.13)

H
(U(1))
pot ∼ Nc

8π2a

1

|r|2

[
1

2
+

2 (a1 · a2)
2 − 1

5

(
ρ22
ρ21

+
ρ21
ρ22

)]
, (4.14)

, rM = XM
1 − XM

2 (M = 1, 2, 3, z) and |r| =
√
rMrM . These expressions are valid in the

region of O (1/MKK) < |r| < O
(√

λ/MKK

)
. The dependence on + |r|−2 of this potential

implies a repulsive force from the nucleon-nucleon interaction.
To minimize the potential energy of this system, we should take z0,i = 0. Thus SU (2)

soliton is placed on the bottom point of the D8-brane con�guration. Then |r| and ρi become
the separation between baryons and the size of each baryon in three dimensional space of
ordinary Minkowski spacetime, respectively. It is natural to assume that each baryon has
the same size, namely ρ1 = ρ2 = ρ.

2These values of parameters are determined by �tting the rho meson mass and pion decay constant [9].
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In this setup, we can rewrite Eq. (4.12) as

U = 2M0 + H̃
(SU(2))
pot + H̃

(U(1))
pot ,

H̃
(SU(2))
pot = 2

4π2aNc

3
ρ2
(
1 +

2c1 (r̂,a1,a2)

k2

)
, (4.15)

H̃
(U(1))
pot ∼ 54πNc

5

1

ρ2

(
1 +

1

4

1 + 8c2 (a1,a2)

k2

)
, (4.16)

where we denote ~r = kρr̂, r̂2 = 1 and

c1 (r̂,a1,a2) ≡
(
r̂ ·
(
a−1
2 a1

))2
, c2 (a1,a2) ≡ (a1 · a2)

2 (4.17)

are constants which depend on SU (2) orientations and they satisfy 0 ≤ c1, c2 ≤ 1. We notice
that when |r| � ρ, namely k � 1 in the expression Eqs. (4.15), (4.16), the second term of
each potential can be neglected compared with the �rst term and then the net contribution
of these potential agrees with twice of that of one-baryon, Eq. (4.9).

4.1.3 Multi-soliton solution

Dilute gas approximation and mean �eld approximation When we want to analyze
a system with �nite baryon density in 4-dimensional spacetime, we should search for solutions
of the equations of motion Eq. (4.4) with NB = ∞. However it is very di�cult to �nd such
solutions. Then we employ the dilute gas approximation; we treat a SU (2) gauge strength
of the multi-soliton solution as the sum of gauge �eld strengths of one-soliton solutions,

Fij =

NB∑
m=1

Fmεijaτ
a Fzj =

NB∑
m=1

Fmτj , (4.18)

Fm ≡ 2ρ2(
(x− (x0)m)

2 + ρ2
)2 ,

and we ignore the product of one-soliton solutions at two di�erent positions, namely

FmFn6=m ∼ 0. (4.19)

Then the right hand side of Eq. (4.8) becomes,

1

32π2

ˆ
d3xdz εMNPQtr (FMNFPQ) =

4!× 2

32π2

NB∑
m=1

ˆ
d3xdz F 2

m

= NB.

Thus we retain the correct baryon number. We use this solution as a trial function which
is supposed to be a solution of the system. This approximation should be valid when the
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distance between baryons are su�ciently larger than their baryon size ,
∣∣∣(x0)i − (x0)j

∣∣∣� ρ.

It can be con�rmed in the case of two-baryon system (see Sec. 4.1.2).
We assume that the mean �eld approximation is able to apply the U (1) gauge �eld,

namely Â0 (~x, z) is approximated as Â0 (z).
3 We suppose that this approximation will be

valid when baryon number density is �nite, namely NB = ∞.

Back reaction to D8-branes Because of the in�nite number of baryons, Nf D8/D8-
branes may feel the back reaction from the baryons. If this is true, the con�gurations of Nf

D8/D8-branes may be changed and the action Eq. (4.1) is no longer a correct description.
So we should reconsider D8/D8-branes con�gurations as their induced metric is

ds29 =
3

2

(
4

9
k1/2ηµνdx

µdxν + g (τ)
4

9
k−5/6dz2 + k1/6dΩ2

4

)
,

g (τ) = 1 + z2k1/3τ ′2, k = 1 + z2,

where τ ′ = ∂τ
∂z

and τ has a periodicity τ ∼ τ + 2π.
Then, we can write the action as

S = −2κV3

ˆ
dt

ˆ ∞

z0

dzL (nB) , (4.20)

L (nB) = k5/6

√
g (τ) k−1/3 −

(
1

2

27π

2λ
∂zÂ0

)2

Q1

−6

(
1

2

27π

2λ
Â0

)
nB

(
9π

λ

)2

q2, (4.21)

where

Q1 = 1 +
3

2
nB

(
9π

λ

)2

q2
(
k−1 +

k1/3

g (τ)

)
, q2 =

9

8

π2ρ4(
(z − z0)

2 + ρ2
)5/2

nB and V3 are the baryon number density and volume of 3-dimensional space, nB ≡ NB

V3
, V3 ≡´

d3x, respectively. We only expand the Lagrangian in terms of SU (2) �eld and leave U (1)
�eld inside the square root in Eq. (4.21). This is necessary to obtain the correct results

3It is natural that SU (2) gauge �eld depends on 4-dimensional Minkowski coordinates xµ, while U (1)
gauge �eld is not. In the one-soliton case, xµ dependence on their �eld strength is

FMN ∼ |x|−4
, F̂0M ∼ |x|−3

, for |x| ≡
√
xixi � ρ.

So the decrease of the value of U (1) gauge �eld strength is slower than that of SU (2) gauge �eld strength.
This fact implies that our mean �eld approximation is valid only for U (1).
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(See Appendix D). The bottom of D8 branes may shift from z = 0 to z = z0 because of the
existence of NB baryons. Then the equations of motion for Â0 (z) and τ (z) are given by

∂z

(
1

2

27π

2λ
∂zÂ0

k5/6

G
Q1

)
= 6

(
9π

λ

)2

nBq
2, (4.22)

∂z

(
z2τ ′

k5/6

G
Q1

)
= 3

(
9π

λ

)2

nB∂z

(
k3/2G

q2z2τ ′

g2 (τ)

)
, (4.23)

where G ≡
√
g (τ) k−1/3 −

(
1
2
27π
2λ
∂zÂ0

)2
. These equations can be reduced to

z2kτ ′

g1/2

{
H−1Q1 −H

3
(
9π
λ

)2
nBk

1/3q2

g

}
=
[
zQ1k

3/4
]
z=z0

, (4.24)

where

H ≡
k5/6Q1

d√
1 +

(
k5/6Q1

d

)2 .
We can solve Eq. (4.24) numerically. Considering only the class of solutions which satisfy

τ (∞) = π/2 (antipodal solution), we can con�rm numerically that the lowest energy solution
may be approximated as

τ ′ (z) = 0 for z > z0 and z0 → 0.

Therefore we can conclude that the change of the con�guration of D8-branes by the back
reaction is negligible. So we can set g (τ) = 1 and can solve Eq. (4.22) as

Â0 =

(
1

2

27π

2λ

)−1 ˆ z

z0

dz
k−1/6d√
Q2

0k
5/3 + d2

, (4.25)

where Q0 = Q1|g=1 = 1 + 3
2
nB

(
9π
λ

)2
q2
(
k−1 + k1/3

)
and d ≡ 6

(
9π
λ

)2
nB

´ z

z0
dzq2.

Chemical potential The CS term Eq. (4.2) plays a crucial role when we introduce the
chemical potential. In the �eld theory side, the chemical potential for the baryon is introduced
in the partition function as

Z [µB] =

ˆ
DΨBDΨB · · · exp

[
−S

[
ΨB,ΨB, · · ·

]
+

ˆ
dt µBNB

]
,

where ΨB,ΨB are the fermionic baryon �elds and NB ≡
´
d3xΨBγ

0ΨB is the baryon number
operator. Note that the CS term Eq. (4.2) is similar to the de�nition of baryon number Eq.
(4.8). It implies that the quark chemical potential µq =

µB

Nc
should be de�ned as

µq = Â0 (∞) . (4.26)
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Note that this should be the quark chemical potential rather than the baryon chemical
potential, because if we set Â0 = µq the CS term Eq. (4.2) becomes

SCS = µq
Nc

32π2
εMNPQ

ˆ
d4x

ˆ ∞

0

dz tr (FMNFPQ)

= µqNq,

where Nq ≡ NBNc is the number of the valence quarks.

4.1.4 Energy density and phase transition

We de�ne the energy density of the D8-brane as

ε (µB, nB, ρ) =

ˆ
dz L (µB, nB, ρ) , (4.27)

where L (µB, nB, ρ) is the Lagrangian Eq. (4.21) with the solution Eq. (4.25) and the
condition Eq. (4.26). It can be evaluated numerically once U (1) gauge �eld Â0 is solved as
in Eq. (4.25). We should determine the parameters (nB, ρ) by requiring that these minimize
the energy density Eq. (4.27) with �xed µB. Because µB is the parameter which characterizes
the �eld theory, we should not vary the chemical potential when we minimize the energy
density. Then we get a set {(µ, n (µ) , ρ (µ))} for each µ. We will call the minimum value of
Eq. (4.27) for each µ as ε (µ, nB).

Then we compare the energy density ε (µ, nB) with ε (µ, nB = 0) ≡
´
dzk1/3 for various

values of chemical potential µ to probe the phase structure of this �nite baryon system. If
ε (µ, nB) > ε (µ, 0), nB = 0 phase will be realized. On the other hand, if ε (µ, nB) < ε (µ, 0),
the phase with �nite baryon density will be realized.

4.1.5 Results

We �nd a phase transition at µcr = 1.0176 (See Fig. 4.1a and its caption). The phase
transition is of �rst order and the value of the baryon number density jumps from zero up
to a �nite value at the transition point. Our model remains in the state with zero baryon
number for the values of chemical potential smaller than the critical value. This behavior
of the system with nonzero chemical potential also occurs in QCD with a �nite chemical
potential and known as the �silver braze problem� (See Ref.[35]).

The fact that a system with �nite baryon number is stabler than a system with vanishing
baryon number density implies that there may be attractive force between baryons, which
has not been seen in Sec. 4.1.2. This contribution comes from the interaction between U (1)
gauge �eld inside the square root and SU (2) gauge �eld in the Lagrangian Eq. (4.21). The
analyses in Sec. 4.1.1 and Sec. 4.1.2 are performed by keeping only the second order of the
U (1) �eld strength and SU (2) �eld strength. Thus the attractive force cannot be found in
these analyses.
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Figure 4.1: The numerical results for λ = 16.6, MKK = 0.949GeV

Choosing parameters as MKK = 0.949GeV and λ = 16.6 which are same as [8, 24] (these
values are determined by �tting the rho meson mass and the pion decay constant), we get

µB ' 2.3GeV, nB ' 0.70fm−3, ρ ' 0.079fm. (4.28)

This value of nB is larger than the density of the normal nuclear matter, ~0.16fm−3. It can
be interpreted as the e�ect of a lack of the repulsive force between baryons. The value of
baryon size ρ is slightly improved compare to the result of the one-baryon case Eq. (4.11),
but it is still too small.

4.2 Application to neutron stars

We derive the relation between the baryon chemical potential µB and the baryon number
density nB in the previous section. Then it is natural to apply the nB-µB relation to some
baryonic system. In this section we will construct a compact star constructed by our baryonic
matter. Since the baryon considered here is neutral, we may think that such a star as a
neutron star. One of our motivations for constructing a neutron star is a test of our baryonic
matter model. To compare our result with the real physical values is useful for noticing how
we should improve the model.

To analyze a neutron star, we must solve the TOV equations,

dm

dr
= 4πr2ρ (r) ,

dp

dr
= −Gρ (r)m (r)

r2

[
1 +

p (r)

ρ (r)

] [
1 +

4πr3p (r)

m (r)

] [
1− 2Gm (r)

r

]−1

, (4.29)
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where m (r) is a mass inside the sphere of the radius r, ρ (r) and p (r) are a energy density
and pressure at r respectively, and G is the newton constant. There are three unknown
functions m (r) , ρ (r) and p (r), though there are only two equations Eq. (4.29). Thus, in
solving the TOV equations we must know the relation of the energy density ρ and pressure
p of the nuclear matter, namely, the EoS, to eliminate one of the unknown functions. So we
should extract the information from our holographic model.

In general, ρ and p are holographically obtained by using the bulk metric according
to holographic renormalization [36, 37]. In the present case, however, the bulk metric is
independent of the soliton gas since the �avor branes are treated as the probe. An attempt
to solve the TOV equations has been performed by using a holographic EoS obtained in a
context of holographic framework [38], however it leads to a large radius.

Then, we propose an alternative way to get the relation between ρ and p. We require
that our holographic baryonic matter model satis�es the ordinary statistical mechanics for a
fermionic system with zero-temperature. According to the Luttinger's theorem for an inter-
acting fermion system [39], the volume enclosed by a Fermi surface is directly proportional
to the particle density. In general, the shape of the Fermi surface may be changed by the
interaction. In this analysis, however, we assume that, instead of considering a change of the
baryon's Fermi surface, we take into account the e�ect of the interaction among fermions by
introducing a momentum dependent mass. This momentum dependence of the fermion mass
re�ects a non-trivial interaction among the fermions, and this momentum dependent mass is
determined from our holographic model. After that, we obtain the EoS of our holographic
model, and then the TOV equations are solved.

4.2.1 Momentum dependent mass and EoS

As mentioned above, the Luttinger theorem and our assumption imply that the baryon
number density can be written in the term of the Fermi momentum as

nB =
gS2

3 (2π)3
k3F =

8π

3 (2π)3
k3F , (4.30)

where g(= 2) is a number of spin degrees of freedom of the baryon, S2 is a volume of two-
dimensional surface of a three-dimensional-sphere. In order to exploit this relation and our
result µB = µB (nB), we introduce an e�ective baryon mass m(k), which depends on the
momentum k. This e�ective mass is interpreted as a re�ection of the complicated interaction
among nucleons. A similar concept is seen in the ordinary �eld theory approach [40]. Then
it is possible to express µB as

µB (kF ) =
√
k2F +m2 (kF ). (4.31)
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In this context, by extending the formula for the free fermion gas, we get the energy density
ρ and pressure p of the nuclear matter as,

ρ (kF ) = ρc +

ˆ kF

kc

dkk2
√
k2 +m2 (k) (4.32)

p (kF ) = pc +
1

3

ˆ kF

kc

dk
k4√

k2 +m2 (k)
(4.33)

where ρc and pc denote the critical density and pressure respectively. Here we introduce the
lower bound of the momentum, kc, as

nc =
8π

3 (2π)3
k3c ,

since the nuclear matter considered here is de�ned for n ≥ nc = 0.7fm−3. This is our proposal
to obtain the energy momentum tensor of the nuclear matter based on the holographic
approach. Then we obtain the EoS, the relation between ρ and p, at any value of the density
to solve the TOV equations.

4.2.2 Numerical Data of µB (nB) and m2 (k) and EoS

Now we obtain the momentum dependence of an e�ective nucleon mass m(k) in nuclear
matter phase from our (µB, nB) data by using the Eqs. (4.30) and (4.31).

First we assume that the form of the function m2 (nB) as

m2 (nB) = anα
B. (4.34)

We can use this function to �t the parameters a and α from the data of the relation between
µB and nB shown in Fig. 4.1a. Then we have a = 8.54×103 and α = 1.44 in the natural unit
(mass unit is set to GeV). The �tted function Eq. (4.34) and the data points which used to
�t the function is shown in Fig. 4.2. Because nBdepends on kF via the relation Eq. (4.30),
The mass Eq. (4.34) is also dependent on kF as

m2 (kF ) = a

(
8π

3 (2π)3
k3F

)α

The e�ective nucleon mass m(kF ) re�ects the interaction of nucleons in the nuclear matter.
Then the values of the Fermi momentum kc and the mass m0 at phase transition point are
obtained as kc ∼ 0.55GeV and m0 ≡ m (kc) ∼ 2.23GeV.

Next, we calculate the Fermi momentum dependence of the energy density and the pres-
sure from Eqs. (4.32) and (4.33). From the above relation of m2(kF ), we assume that

m2 (k) = a

(
8π

3 (2π)3
k3
)α
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E (k) =
√

k2 +m2 (k) can be approximately replaced by m (k).

60



in the energy function
√
k2 +m2 (k). Moreover, since 2− 3α < 0 and√
k2 +m2 (k) = m (k)

(
1 +O

(
k2

m2 (k)

))
= m (k)

(
1 +O

(
k2−3α

))
and

√
k2c +m2

0 ∼ m0, we can approximate
√
k2 +m2 (k) as m (k) in the whole region of

kc < k. The ratio
√
k2 +m2 (k)/m (k) is shown in Fig. 4.3. Then we can calculate the

integrals in Eqs. (4.32) and (4.33), and have

ρ (kF ) = ρc + b1

(
k
3α/2+3
F − k3α/2+3

c

)
, (4.35)

p (kF ) = ρc + b2

(
k
5−3α/2
F − k5−3α/2

c

)
, (4.36)

where

b1 =

√
a
(

1
3π2

)α
π2 (3α/2 + 3)

, b2 =
1

3π2 (5− 3α/2)
√
a
(

1
3π2

)α .
From Eqs. (4.35) and (4.36) we obtain the relation between ρ and p, the EoS, as

ρ (p) = ρc + b1

((
1

b2
(p− pc) + k5−3α/2

c

) 3α/2+3
5−3α/2

− k3α/2+3
c

)
. (4.37)

Parameters a(= 8.54× 103) and α(= 1.44) lead to b1 = 0.158 and b2 = 1.48× 10−3. Fig. 4.4
shows the relationship between ρ and p.

In the region of p−pc � b2k
5−3α/2
c ∼ 2.72×10−4, the EoS Eq. (4.37) can be approximated

as

p− pc =
b2
bγ1

(ρ− ρc)
γ .

The value of the index γ(= 5−3α/2
3α/2+3

∼ 0.55 < 1) is in contrast to the value of that for many

other kind of matters, which satisfy γ > 1. For example, normal stars satisfy γ = 4/3
and the ideal fermion gas satis�es γ = 5/3. The origin of α ∼ 1.44 is the e�ective nucleon
mass m(kF ). As the nucleon density increases, the e�ective nucleon mass increase in our
holographic model.

4.2.3 Application to Neutron Star and solution of TOV Equations

Since we have the EoS as in Eq. (4.37), we may eliminate a unknown function, ρ (r), in TOV
equations, Eq. (4.29), and can solve them. Then TOV equations are

dm

dr
= 4πr2ρ (p (r)) ,

dp

dr
= −Gρ (p (r))m (r)

r2

[
1 +

p (r)

ρ (p (r))

] [
1 +

4πr3p (r)

m (r)

] [
1− 2Gm (r)

r

]−1

,
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where ρ (p (r)) is the function in Eq. (4.37). Then, we can estimate the radius and mass of
neutron stars by specifying parameters ρc and pc.

The most natural choice of the parameters ρc and pc is

ρc = mBnB (kc) , pc = 0, (4.38)

where mB = m (kc) ∼ 2.3GeV and nB (kc) are the e�ective mass and the baryon number
density at the transition point k = kc, respectively. This is natural because ρc and pc represent
energy density and a pressure at the transition point, respectively. We require pc = 0 for
simplicity. If we choose pc > 0, we cannot solve the TOV equations by only using our EoS
and we would need another assumption about the EoS in the region of 0 < p < pc. Such an
additional assumption makes the point of the discussion obscure.Setting the parameters as
in Eq. (4.38), we get the following values of our neutron star,

M ∼ 2.22× 10−2Ms, R ∼ 1.30km, (4.39)

where M is the maximum mass of the neutron star, Ms is the solar mass and R is the radius
of the neutron star when the mass of the neutron star is maximum. The relation between
total mass M and the radius of the neutron star R, and the pressure p (r) at the distance r
from the center of the star with maximum mass are shown in Fig.4.5. These values of the
results are very smaller than the real values of the maximum mass M ∼ O (1)×Ms and the
radius R ∼ O (10km) of the neutron star.

The considerably di�erent values in Eq. (4.39) about our neutron star imply that there
are some contributions that we omitted. Since our neutron stars are too small (or too soft),
we may infer that the missing contribution is some repulsive forces. In fact, we have dropped
the contributions of repulsive force which exist in the case of two-baryon system when we
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Figure 4.5: The relationship between physical quantities of the neutron star.

apply the dilute gas approximation to our baryonic system in Sec.4.1.3. As a result, the
baryon number density becomes rather large and the neutron stars become very small. This
point will be improved by taking into account the repulsive force in Eqs. (4.15), (4.16).

4.3 Summary:Holographic cold nuclear matter

In this section, we consider the �nite baryon density system in the Sakai-Sugimoto model
and applying it to the neutron star. In the model, baryons are given by the corresponding
solitons of SU (Nf ) gauge �eld on D8-branes.

First we construct the system with �nite baryon number density in Sec. 4.1. We review
one-baryon and two-baryon system and con�rm that two-baryon system can be regarded
as the sum of the two one-baryon system in the limit such that each baryon size is much
smaller than the separation between baryons. Then we construct the �nite baryon density
system by using dilute gas approximation of baryons and mean �eld approximation of the
U (1) gauge �eld A0 (x

µ, z). The z dependent U (1) gauge �eld A0 (z) is dynamically solved
and the boundary value of the �eld de�nes the quark chemical potential µq = µB/Nc. By
comparing the energy density of the �nite baryon density system and that of the zero baryon
density system with �xed µB, we obtain the relation between the chemical potential and the
baryon density which shows the �rst-order phase transition of the baryon number density at
µB ' 2.3GeV. At the critical point, the baryon number density and size of the baryon are
calculated as nB ' 0.70fm−3 and ρ ' 0.079fm, respectively. The stable �nite baryon system
implies that the existence of the attractive force which have not been seen in two-baryon
system[26]. Moreover we retain the some expected features of the nB-µB diagram, that is,
�silver blaze problem� and ��rst-order phase transition�. On the other hand, our baryon
number density is slightly larger than the normal nuclear density and the baryon size is very
smaller than the real size of the baryons ∼ 1fm, though it is slightly improved from the result
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of Ref. [24]. These values imply that our �nite baryon system is too soft and the repulsive
force is needed to improve these result.

Secondly, we apply our baryonic system to the construction of the neutron star in order
to check the validity in Sec. 4.2. We regard our baryonic matter as the matter of the neutron
since they have no electric charges. We introduce the Fermi momentum and the momentum
dependent mass m (k) to reconstruct the energy density ρ and the pressure p of our neutron
system. Fitting m (k) and using some stochastic relations, we �nd the relation between
ρ and p, namely EoS, and one of the unknown functions in TOV equations is eliminated.
Since we have �rst-order phase transition, we must introduce two free parameters, pc and ρc,
which are the pressure and the energy density at the critical point. We set these values as
pc = 0, ρc = m (kc)nB (kc) for our purpose. Then we solve the TOV equations and physical
quantities of neutron stars are studied. The resultant mass and the radius, however, are
very small compare to the familiar values of the quantities. Thus this results also imply
the absence of repulsive force. In our setup, baryons have been introduced as dilute gas of
solitons and the weak attractive force which is needed to form the stable nuclear matter is
realized via the Dirac-Born-Infeld action in the curved background. However, the repulsive
interaction which has been seen in the two baryon system [26] is absent, because we have
neglected the overlap among solitons in Eqs. (4.18) and (4.19). Because of the absence of
repulsive forces, the mass and radius of neutron stars we obtained here are much smaller
than the empirical values.
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Chapter 5

Discussions

In this thesis, we discuss two awkward topics of �eld theory by using gauge/gravity duality.

Holographic Unruh e�ect We consider a quark accelerated with a uniform acceleration
a in the non-conformal gauge �eld theory in Chap. 3. We apply the ERT to the dAdS
model to move to the Rindler frame in which the quark is static. Applying the gauge/gravity
duality to the Rindler-dAdS model, we �nd the temperature which agree with the Unruh
temperature and an anisotropy of the e�ects of the temperature.

Our analyses are based on two assumptions. First, we assume that we may apply the
gauge/gravity duality to the coordinate transformed system. Second, we assume that the
usual four dimensional Rindler transformation, Eq. (E.3), corresponds the ERT, Eq. (3.7),
in terms of the gauge/gravity correspondence. The former assumption cannot be avoided
when we use the gauge/gravity duality as a tool of analyses. The latter assumption may be
improved, perhaps.

The ERT is introduced by Xiao in Ref. [14] to analyze an accelerated quark in the context
of the AdS/CFT correspondence. We employ the ERT in the dAdS model in Chap. 3 as it
is. One think that it is inattentive and the ERT should be changed. Possibly it may be true.
However I think that using the ERT as it is is plausible. Since the Unruh temperature is
independent of the detail of the �eld theory (See Appendix E.1 and Refs. [41], [42], [2]), it is
expected that the procedure of calculating the Unruh temperature by using the gauge/gravity
duality is also independent of the detail of the model. So if the ERT corresponds to the usual
four dimensional Rindler transformation in the AdS/CFT correspondence, it may be true
in other gauge/gravity duality models. Of course, there might be other ways we obtain the
correct Unruh temperature. It is interesting to look for such methods.

The anisotropy of the e�ect of the temperature might be found even if we use any other
transformation instead of the ERT, since the transformation must agree with the usual four
dimensional Rindler transformation, which is anisotropic, on the boundary. Thus, in terms
of the gauge/gravity duality, it is natural that the Unruh e�ect is anisotropic. However the
behavior of the e�ect will be changed if we choose any other transformation instead of the
ERT.
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It is interesting that looking for the correct transformation which corresponds the usual
four dimensional Rindler transformation in terms of the gauge/gravity duality. One of ways
to accomplish the work is tuning the e�ect of the coordinate transformation in terms of the
gauge/gravity duality to the Unruh e�ect of the corresponding theory.

Holographic cold nuclear matter We consider the system with �nite baryon density
by using the Sakai-Sugimoto model in Chap. 4. Applying the dilute gas approximation to
the SU (2) gauge �eld and the mean �eld approximation to the U (1) gauge �eld, we �nd
the relation between the baryon chemical potential µB and the baryon number density nB;
a �rst-order phase transition from nB = 0 phase to �nite nB phase. The critical value of the
baryon number density is considerably larger than the value of the normal nuclear density.
We also consider neutron stars and calculate the upper bound of the mass and the radius of
neutron stars. However these values are much smaller than the empirical values.

These results imply that the absence of the repulsive force which is omitted in the dilute
gas approximation. The consideration of the contribution of the repulsive force must be
needed to improve our �nite baryon density system. However the tractability of our system
relies on the simple form of the SU (Nf ) soliton solution by our approximation. So it is very
di�cult to add the contribution of the repulsive force even if we restrict our consideration
only to the contributions from two-baryon interaction Eqs. (4.13) and (4.14). One of the
ways of including these contributions into our model is simply adding these potentials to the
energy density Eq. (4.27) as

ε̃ ≡ ε (µ, nB, ρ) +
ZnB

2

(
H

(SU(2))
pot (|r| , ρ) +H

(U(1))
pot (|r| , ρ)

)
,

where

H
(SU(2))
pot (|r (nB)| , ρ) =

4π2aNc

3
ρ4

c1

|r (nB)|2
,

H
(U(1))
pot (|r (nB)| , ρ) =

Nc

8π2a

1

|r (nB)|2

[
1

2
+ 2

2c2 − 1

5

]
,

with |r (nB)| =
(
1/
(
4
3
πnB

))1/3
and c1, c2 is the averaged values of Eq. (4.17) and Z is the

number of the nearest neighbor baryons. We leave the analysis of this direction as the future
work and do not discuss anymore.

Finally I want to discuss a way of deepening the understanding of gauge/gravity duality.
Currently, gauge/gravity duality is used as a tool for analyzing theories and for giving pre-
dictions for the physical quantities which are di�cult to access in other methods. However,
in fact, we have a trouble when we use the tool for investigating new physics. Gauge/gravity
duality is surely useful for the calculations in strongly interacting QFT, but we do not know
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why the duality actually works, how we generalize the duality, and how we identify a quantity
of a gauge theory with a quantity of the dual gravitational theory. Moreover we do not know
how far we can extend the AdS/CFT correspondence. Thus we should study gauge/gravity
duality itself, while the application is also important. To do this, it is useful that the appli-
cations of gauge/gravity duality to well-known physics in order to make clear how it works.
The Unruh e�ect is one of such topics to apply the duality for the purpose of advancing
our understanding of duality, because the phenomenon is very universal among various �eld
theories [2] and it contains the non-trivial coordinate transformation. It is very interesting
for us to investigate the relation between the 4-dimensional ordinary Rindler transforma-
tion and 5-dimensional extended Rindler transformation not restricted to Eq. (3.7) in terms
of gauge/gravity duality. I believe that deeper understanding of such interesting and spe-
cial applications must become a clue to advance our understanding of general features of
gauge/gravity duality.
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Appendix A

Review:Superstring theory

Since the gauge/gravity duality is based on the superstring theory, analyses with the duality
need the knowledge of the superstring theory.

String theory was originally constructed as the theory of hadrons in early 1970s. The
theory can explain some stringy feature of hadrons like Regge trajectory and linear rising
potential between a quark and an anti-quark. But, the theory is well-de�ned only in 26
dimensional spacetime and contains tachyons which unstabilize the theory. In addition, it
also has massless spin 1 and 2 particles which do not exist in actuality. So this theory is not
appropriate for describing hadrons. Once the massless spin 1 particles are regarded as gauge
particles and the massless spin 2 particles as gravitons, the string theory with supersymmetry,
the superstring theory, has become a good candidate of the ultimate theory of Nature.

The fundamental objects of string theories are fundamental superstring (F-string) and
D-branes. The superstring is a 2-dimensional object. A string may have one of two di�erent
forms:an open string or a closed string. An open string contains gauge particles, while a
closed string has gravitons. Open strings must be ended on D-branes. D-branes are p + 1-
dimensional objects and they contains a gauge theory on their action. The characters in the
superstring theory is displayed in Fig. A.1.

A.1 Superstring

A.1.1 Action

The string is a one-dimensional generalization of the relativistic particle to a two-dimensional
object. The action is given by Nambu and Goto as

SNG = − 1

2πα′

ˆ
dτdσ

√
− det

(
∂Xµ

∂σa

∂Xµ

∂σb

)
, (A.1)

where σ0 = τ, σ1 = σ and µ = 0, · · · , d = D−1, a, b = 0, 1. A point on the string is speci�ed
by a point on the world sheet (τ, σ), and Xµ (τ, σ) is the function which maps the point
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Figure A.1: Characters in superstring theory. Open strings whose ends end on the same position

have massless states, namely the state corresponds to gauge �eld Aµ and the state which corresponds

to the gaugino λa, while open strings whose ends end on di�erent positions become massive. The

states of open strings are localized on the D-branes. On the other hand, closed strings can propagate

in the whole region of spacetime.

on τ -σ space to the point on d + 1-dimensional spacetime. The action is a straightforward
generalization of that for a relativistic particle because both of them are represented as the
integration of invariant volume. But it is di�cult to treat the Nambu-Goto (NG) action
because �elds Xµ are in the square root. So the Polyakov action SP is often used instead of
the NG action,

SP = − 1

4πα′

ˆ
dτdσ

√
−γγab∂aXµ∂bXµ , (A.2)

where γab (τ, σ) is a metric on the world-sheet, independent of Xµ. The equivalence of two
actions can be checked by eliminating γab from Eq. (A.2) by using the equations of motion.

The Polyakov action is invariant under the following three transformations;

• Poincaré transformations:

δXµ = aµνX
ν + bµ, δγab = 0.

• Reparametrizations:

σa → fa (τ, σ) = σ′a, γab (τ, σ) =
∂f c

∂σa

∂fd

∂σb
γ′cd (τ

′, σ′)

• Weyl transformations:
γab → γ′ab = e2ω(τ,σ)γab, δX = 0
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Here reparametrizations and Weyl transformations are local symmetries. These local sym-
metries must be �xed by choosing a gauge-�xing condition. Two of the three components
of γab are �xed by the reparametrization invariance, while the remaining one is �xed by the
Weyl invariance. Then γab has only one component, but this remaining component also can
be gauged away by using the Weyl transformations. So we can choose γab as

γab = ηab =

(
−1 0
0 1

)
. (A.3)

Even after choosing this gauge, there is a residual gauge symmetry. In the light-cone coordi-
nate

σ± = τ ± σ, ∂± ≡ ∂

∂σ± =
1

2
∂τ ±

1

2
∂σ, η

LC
ab =

(
ηLC−− ηLC−+

ηLC+− ηLC++

)
=

(
0 −1

2

−1
2

0

)
,

ds2 = ηabdσ
adσb = 2ηLC+−dσ

+dσ− (A.4)

we can easily see from (A.4) that successive transformations,{
σ± → σ′± (σ±) (reparametrization)

ηLCab → ∂σ+

∂σ′+
∂σ−

∂σ′−η
LC
ab (Weyl transformation)

, (A.5)

make the metric ηLC invariant.
Once we �x the gauge as in Eq. (A.3), we can write the bosonic string action as

S = − 1

4πα′

ˆ
dτdσ∂aXµ∂

aXµ (A.6)

Adding the fermionic action to the gauge �xed bosonic action Eq. (A.6), we get a super-
symmetric string action

S = − 1

4πα′

ˆ
dτdσ

(
∂aXµ∂

aXµ + ψ
µ
ρa∂aψµ

)
, (A.7)

where ρa, with a = 0, 1, represent the two-dimensional Dirac matrices, which obey the Dirac
algebra {

ρa, ρb
}
= 2ηab.

We will use an explicit form of these matrices,

ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
.

ψµ (µ = 0, 1, . . . , D − 1)are D Majorana fermions which satisfy the Majorana condition

ψc ≡ Cψ
T
= ψ ≡

(
ψ−
ψ+

)
,
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where ψ
µ ≡ ψ†iρ0 and C = iρ0 is a charge conjugation matrix which satis�es ρaT = −C−1ρaC.

In our notation, the Majorana condition means that the spinors are real,

ψµ∗ = ψµ. (A.8)

We will sometimes suppress the Lorentz index µ from now on for the notational simplicity.
Then the Majorana condition Eq. (A.8) is written as ψ∗ = ψ.

The action is invariant up to total derivative term under the in�nitesimal supersymmetric
transformation

δXµ = εψµ

δψµ = ρa∂aX
µε

where ε is a in�nitesimal constant Majorana spinor.

A.1.2 Equations of motion, boundary conditions and solutions

The equations of motion of the action (A.7) is written as

∂+∂−X = 0, (A.9)

∂+ψ− = 0, ∂−ψ+ = 0, (A.10)

where ∂± ≡ ∂
∂σ± and σ± ≡ τ ± σ. Since the string has a �nite interval of σ, we also have

boundary conditions

∂σXδX|σ=π − ∂σXδX|σ=0 = 0, (A.11)

(ψ+δψ+ − ψ−δψ−)|σ=π − (ψ+δψ+ − ψ−δψ−)|σ=0 = 0. (A.12)

So Eqs. (A.9) and (A.10) are just free wave equations, we can solve them with appropriate
boundary conditions and the choice of the boundary conditions which satisfy Eqs. (A.11)
and (A.12) gives some features, open or closed and NS or R, to the string.

Open strings One of the types of strings is the open string. In this case, σ = π term and
σ = 0 term in Eqs. (A.11) and (A.12) vanish respectively and then conditions reduce to

∂σX|σ=π or δX|σ=π = 0 and ∂σX|σ=0 or δX|σ=π = 0,

ψ+|σ=0 = ψ−|σ=0 , ψ+|σ=π = ± ψ−|σ=π . (A.13)

Since one relative sign can be absorbed in the de�nition of the �eld ψ, we can choose the
de�nition such as Eq. (A.13). The remaining relative sign at σ = π determines the spin-
statics of the states of the string.
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Boundary conditions for bosonic �elds X at one end are of two types. One of these is the
Neumann boundary condition,

∂σX|σ=0 or π = 0,

and the other is the Dirichlet boundary condition,

X (σ = 0) = X0 or X (σ = π) = Xπ.

Actually, these conditions are linked with the D-branes on which the string ends.The general
solution of the equation of motion for an open string with the Neumann boundary conditions
on both ends is given by

Xµ (τ, σ) = xµ + l2sp
µτ + ils

∑
m6=0

1

m
αµ
me

−imτ cos (mσ) , (A.14)

and the one with the Dirichlet boundary conditions on both ends is given by

Xµ (τ, σ) =
(
1− σ

π

)
X0 +Xπ

σ

π
+ ils

∑
m6=0

1

m
αµ
me

−imτ sin (mσ) . (A.15)

We denote αµ
0 = lsp

µ for the open string.
Next we consider boundary conditions for fermionic �elds ψ. One of these is the Ramond

condition (R)
ψ+|σ=π = ψ−|σ=π , (A.16)

and the other condition is the Neveu-Schwarz boundary condition (NS)

ψ+|σ=π = − ψ−|σ=π . (A.17)

The general solution in the R sector is

ψµ
− (τ, σ) =

1√
2

∑
n∈Z

dµ−,ne
−in(τ−σ),

ψµ
+ (τ, σ) =

1√
2

∑
n∈Z

dµ+,ne
−in(τ+σ),

and that in the NS sector is

ψµ
− (τ, σ) =

1√
2

∑
r∈Z+1/2

bµ−,re
−ir(τ−σ),

ψµ
+ (τ, σ) =

1√
2

∑
r∈Z+1/2

bµ+,re
−ir(τ+σ).
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Closed strings The other type of the string is the closed string. The boundary condition
is written by

X (σ) = X (σ + π) ,

ψ± (σ) = ψ± (σ + π) or ψ± (σ) = −ψ± (σ) .

These conditions satisfy Eqs. (A.11) and (A.12). In this case, X (τ, σ) = X− (τ − σ) +
X+ (τ + σ) is written by

Xµ
− (τ − σ) =

1

2
xµ +

1

2
l2sp

µ (τ − σ) +
i

2
ls
∑
n6=0

1

n
αµ
−,ne

−2in(τ−σ),

Xµ
+ (τ + σ) =

1

2
xµ +

1

2
l2sp

µ (τ + σ) +
i

2
ls
∑
n6=0

1

n
αµ
+,ne

−2in(τ+σ).

We denote αµ
0 = 1

2
lsp

µ for the closed string.
Boundary conditions for fermionic �elds are two types again, and we call the periodic

condition ψ± (σ) = ψ± (σ + π) �R� and call the anti-periodic condition ψ± (σ) = −ψ± (σ + π)
�NS�. In the R (periodic) sector, the general solution of the fermionic �eld is written by

ψ− (τ, σ) =
∑
n∈Z

dµ−,ne
−2in(τ−σ),

ψ+ (τ, σ) =
∑
n∈Z

dµ+,ne
−2in(τ+σ),

and in the NS (anti-periodic) sector,

ψ− (τ, σ) =
∑

r∈Z+1/2

bµ−,re
−2ir(τ−σ),

ψ+ (τ, σ) =
∑

r∈Z+1/2

bµ+,re
−2ir(τ+σ).

A.1.3 Quantization

To perform canonical quantization, we impose the (anti) commutation relations on the modes
in the Fourier expansion of the �elds,

[αµ
m, α

ν
n] = mδm+n,0η

µν , (A.18)

{bµr , bνs} = ηµνδr+s,0, {dµm, bνn} = ηµνδm+n,0, (A.19)

for the open string. For the closed string, there are two copies of these relations, which
correspond to two di�erent type of modes, α−, b−, d− and α+, b+, d+.
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The Weyl invariance of the action, Eq. (A.2), requires that the trace of energy-momentum
tensor is zero, γabTab ∼ 1√

−γ
γab δS

δγab
= 0. On the other hand, the equation of motion for the

metric requires that all components of the energy-momentum tensor are zero classically,
Tab = 0. So then two components of the energy-momentum tensor do not vanish and they
are zero classically. In superstring theory, we can generalize this argument, and we have
two non-vanishing components of the energy-momentum tensor Tab and two non-vanishing
components of the supercurrent J ,

T++ = ∂+Xµ∂+X
µ +

i

2
ψµ
+∂+ψ+µ,

T−− = ∂−Xµ∂−X
µ +

i

2
ψµ
−∂−ψ−µ,

J+ = ψµ
+∂+Xµ, J− = ψµ

−∂−Xµ,

and all of them are zero classically. Their Fourier modes are called the super-Virasoro gen-
erator,

Lm =
1

π

ˆ π

−π

dσeimσT++ =
1

2

∑
n∈Z

: α−n · αm+n : +L(f)
m m ∈ Z,

and in R sector,

L(f)
m =

1

2

∑
n∈Z

(
n+

m

2

)
: d−n · dm+n : ,

Fm =

√
2

π

ˆ π

−π

dσeimσJ+ =
∑
n∈Z

α−n · dm+n m ∈ Z,

or in NS sector,

L(f)
m =

1

2

∑
r∈Z+1/2

(
r +

m

2

)
: b−r · bm+r : ,

Gr =

√
2

π

ˆ π

−π

dσeirσJ+ =
∑
n∈Z

α−n · br+n r ∈ Z+
1

2
,

for the open string. The physical state |φ〉 must satisfy the condition 〈φ|T++ |φ〉 = 0, and
the condition may be reduced to the conditions, (L0 − a) |φ〉 = 0 and Lm |φ〉 = 0 (m > 0).
The former of these conditions for physical state is regard as the mass shell condition. This
condition can be rewritten as

α′M2 = N (b) +N (f) − a, (A.20)

74



where M2 ≡ −p2 and

N (b) =
∞∑
n=1

(
−α−

−nα
+
n − α+

−nα
−
n +

8∑
i=1

αi
−nα

i
n

)
, (A.21)

N (f) =

{∑∞
n=1 n

(
−d−−nd

+
n − d+−nd

−
n +

∑8
i=1 d

i
−nd

i
n

)
(R sector)∑∞

r=1/2 r
(
−b−−rb

+
r − b+−rb

−
r +

∑8
i=1 b

i
−rb

i
r

)
(NS sector)

, (A.22)

a =

{
0 (R sector)
1
2

(NS sector)
. (A.23)

For the purpose of seeing mass spectrum, it is easy that we quantize the string in light
cone gauge. The light cone coordinates for spacetime is de�ned as

X± =
1√
2

(
X0 ±X9

)
, ψ± =

1√
2

(
ψ0 ± ψ9

)
.

Since there is the residual symmetry corresponds to Eq. (A.5), we can perform the gauge
�xing as

α+
n6=0 = 0, b+r = 0, d+n6=0 = 0.

Then we can solve T++ = T−− = J+ = J− = 0 for minus modes α−, d−, b− and the dynamics
of string is described by only eight transverse modes αi, di, bi (i = 1, · · · 8). In this gauge,
Eqs. (A.21) and (A.22) are written as

N (b) =
∞∑
n=1

8∑
i=1

αi
−nα

i
n,

N (f) =

{∑∞
n=1

∑8
i=1 nd

i
−nd

i
n (R sector)∑∞

r=1/2

∑8
i=1 rb

i
−rb

i
r (NS sector)

.

The ground state is de�ned as

αi
n |0; k;±〉R = din |0; k;±〉R = 0 for n > 0

for R sector and
αi
n |0; k〉NS = bir |0; k〉NS = 0 for n, r > 0

for NS sector, where k is a total momentum of the open string. Since [M2, di0] = 0, the ground
state for R sector is degenerated. Eq. (A.19) implies that di0 behaves as eight dimensional
gamma matrices, di0 ∼ Γi. So the vacuum for R-sector should be represented as a (Euclidean)
eight dimensional Majorana-Weyl spinor. So it has eight real components.

To make the quantum theory consistent, we must perform the GSO projection. The
G-parity is de�ned as

G =

{
Γ (−)

∑∞
n=1 d−n·dn (R sector)

(−)
∑∞

r=1/2 b−n·bn+1 (NS sector)
,
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where Γ is the ten-dimensional analog of the Dirac matrix γ5 in four dimensions. It satis�es
Γ |0; k;±〉R = ± |0; k;±〉R. In the NS sector, we truncate the G-parity odd states. On the
other hand, in the R sector we can project on states with negative or positive G-parity.

The lowest mass state After the GSO projection, the lowest mass states are massless
states. For the open string, the states are given by

bi−1/2 |0; k〉NS (NS sector) , |0; k; +〉R or |0; k;−〉R (R sector) .

In the NS sector there are eight states (i = 1, · · · , 8) and in R sector there are also eight
states. The states in NS sector represent a massless spacetime vector �eld, namely gauge
�eld, because it has su�x i. On the other hand, the states in R sector represent a massless
spacetime fermion because the states |0; k;±〉R is 8-dimensional spinor.

For the closed string, the states are represented as the direct product of two copies of open
string states. However, since the closed string share the total momentum between the left-
moving modes and the right-moving modes, the level matching condition N (+) = N (−) are
imposed on each state. In addition, there are two distinct theories depending on chiralities of
the ground states of two R sectors. The theory which has two same gravitinos is called �type
IIB theory�, while the theory which has two distinct gravitinos is called �type IIA theory�.
Then massless states of closed string are as follows.

• Type IIB theory

|+〉R ⊗ |+〉R
bi−,−1/2 |0〉NS ⊗ |+〉R

|+〉R ⊗ bi+,−1/2 |0〉NS

bi−,−1/2 |0〉NS ⊗ bj+,−1/2 |0〉NS

� NS-NS sector: This sector contains the dilaton Φ (1 state), the graviton Gij (35
states) and the antisymmetric two-form gauge �eld Bij (28 states).

� NS-R and R-NS sector:Each of these sectors contains the dilationo φ̃a (8 states)
and the gravitino ψi

a (56 states). The two gravitinos have the same chirality.

� R-R sector:This sector contains a zero-form C (1 state), a two-form gauge �eld Cij

(28 states), a four-form gauge �eld Cijkl with a self dual �ve-form gauge strength
∗F5 = F5 (35 states)

• type IIA theory

|−〉R ⊗ |+〉R
bi−,−1/2 |0〉NS ⊗ |+〉R

|−〉R ⊗ bi+,−1/2 |0〉NS

bi−,−1/2 |0〉NS ⊗ bj+,−1/2 |0〉NS
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� NS-NS sector: This sector contains the same states as IIB theory.

� NS-R and R-NS sector:This sector contains the same states as IIB theory. But
the two gravitinos have the opposite chirality.

� R-R sector:This sector contains a one-form Ci (8 state), a three-form gauge �eld
Cijk (56 states).

We often write a n-form as Cn and introduce C5, C6, C7, C8 which are dual to C3, C2, C1, C0.
Since the massless states for two types of the superstring theories are �eld contents of

SUGRA, in the low energy limit ls → 0, the superstring theory will be reduced to ten
dimensional SUGRA. In this limit, the closed string action may be written as

S =
1

16πG10

ˆ
d10x

√
−GR

(
1 +O

(
l2sR
))
, (A.24)

where G10 ∼ l8s ∼ α′4 is ten dimensional Newton constant, G is the determinant of the metric
and R is the curvature of the ten dimensional spacetime. We have α′R correction in the
low energy action. In α′R � 1 case, the low energy action will coincide with the usual
Einstein-Hilbert action.

A.1.4 Background �elds

Massless states in NS-NS sector of closed string Gµν , Bµν , Φ have a special meaning. If
there are background �elds of Gµν , Bµν , Φ, the (Euclidean) string action Eq. (A.2) should
be generalize to

S = SG + SB + SΦ, (A.25)

SG =
1

4πα′

ˆ
M

d2σ
√
γγabGµν∂aX

µ∂bX
ν ,

SB =
1

4πα′

ˆ
M

d2σ
√
γγabBµν∂aX

µ∂bX
ν ,

SΦ =
1

4π

ˆ
M

d2σ
√
γΦR(2) (γ) , (A.26)

where R(2) (γ) is the scalar curvature of the two-dimensional string world sheet computed
from the world sheet metric γab and M represents a geometry of world sheet. Since SΦ has
no X , SΦ is one order higher than other terms in the α′ expansion.

SG is a simple generalization of the Polyakov action, Eq. (A.2), with non-trivial back-
ground gravitational �eld. We may obtain it by replacing ηµν with Gµν in Eq. (A.2). Thus
Gµν behaves as the gravitational �eld in the theory. SB may exist when the string is oriented.
In terms of the states, orientation is de�ned by the orientifold projection Ω for closed string.
This projection works as Ωbi±Ω

−1 → bi∓. When the string theory is invariant under this

transformation, the states which are changed by this transformation such as Bijb
i
−b

j
+ |0〉 are
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eliminated. SB is a two-form analog of the coupling of a one-form Maxwell �eld to the world
line of a charged particle, q

´
Aµdx

µ = q
´
Aµ

dxµ

dτ
dτ . In this sense an oriented string can be

regarded as a charged object. The dilaton term SΦ has a special feature when the dilaton
�eld is constant Φ = Φ0. Then the term in Eq. (A.26) is rewritten as

SΦ0 = Φ0χ (M) , χ (M) =
1

4π

ˆ
M

d2σ
√
γR(2) (γ) = 2− 2nh − nb − nc,

where χ (M) is the Euler characteristic of M and it is determined by the number of handles
nh, the number of boundaries nb, and the number of cross-caps nc of the Euclidean world
sheet M .

The path integral of the string world sheet with background �elds is written by

Z [G,B,Φ] ∼
ˆ
Dγab

ˆ
DXµe−S[h,X;G,B,Φ], (A.27)

where S [h,X;G,B,Φ] is the same as in Eq. (A.25) and
´
Dγ means sum over all Riemann

surfaces (M,h). Since Riemann surfaces of di�erent topology are not di�eomorphic, Eq.
(A.27) should be regarded as

Z =
∑

nh,nb,nc

Z (nh, nb, nc) + Z̃, (A.28)

where Z̃ is a term of non-perturbative contributions. The �rst term of Eq. (A.28) is a
perturbative expansion for a constant mode of the dilaton eΦ0 ,∑

nh,nb,nc

Z (nh, nb, nc) =
∑
χ

e−χΦ0Z (χ) ,

where e−χΦ0Z (χ) represents the contribution of the world sheets with the Euler characteristic
χ. Thus the coupling constant of the string is de�ned as

gs ≡ eΦ0 .

Some examples of the string world sheet M is displayed in Fig. A.2a. We can read the
relation between the closed string coupling gs and the open string coupling go,

gs = g2o ,

from the Fig. A.2b.

A.2 D-branes

Another important object of the string theory is Dp-brane which is a p-dimensional extended
object. The bosonic part of its low energy e�ective action is written in terms of the massless
�elds of the string theory,

SDp = SDBI + SCS,
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(a) We display oriented closed string world sheets. The leading order
contribution comes from the sphere (χ = 2) diagrams. Next to lead-
ing order contribution comes from the torus diagrams which has the one
handle, χ = 2 − 2 × 1 = 0 and eχΦ0 = e0. Third contribution comes
from the world sheets which has two handles, χ = 2 − 2 × 2 = −2 and
e−χΦ0 = e+2Φ0 = 1×g2s . Fourth contribution comes from the world sheets
which has three handles, χ = 2−2×3 = −4 and e−χΦ0 = e+4Φ0 = 1×g4s .
Third and fourth contributions may be interpreted that the contribution
of the torus type world sheet, 1, times gns , where n is a number of the
three point vertices of the world sheet.

(b) The oriented open string world sheet with χ = 1(one bound-
ary=disc), χ = 0 (two boundaries=cylinder, eχΦ0 = 1) , χ = −1
(three boundaries, e−χΦ0 = eΦ0 = 1 × g2o , χ = −2 (four boundaries,
e−χΦ0 = e2Φ0 = 1 × g4o) are displayed. Third and fourth contributions
may be interpreted that the contribution of the cylinder type world sheet,
1, times gno , where n is a number of the three point vertices of the world
sheet.

Figure A.2: Some examples of the string world sheet.
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SDBI = −TDp

ˆ
dp+1ξe−Φ

√
− det (Gab +Bab + 2πα′Fab),

SCS = µp

ˆ (
CeB+2πα′F

)
p+1

,

where Fab is the U (1) gauge �eld strength on the single Dp-brane, Gab ≡ Gµν∂aX
µ∂bX

ν ,
Bab ≡ Bµν∂aX

µ∂bX
ν are pull-back of the background metric Gµν and two-form �eld Bµν to

p+ 1-dimensional world volume and a, b = 0, 1, · · · , p. Dp-brane tension is given as

TDp =
1

(2π)p (α′)(p+1)/2
.

In the term SCS,

C ≡
8∑

n=0

Cn,

and ()p+1 means that one should extract the p + 1-form piece from parenthesis. The R-R
charge µp is

µp =
1

(2π)p (α′)(p+1)/2
.

If N Dp-branes are put on the same spacetime region, then �eld Fab will be promoted to
U (N) gauge �elds and the action becomes

SDBI = −TDpTr

ˆ
dp+1ξe−Φ

√
− det (Gab +Bab + 2πα′Fab), (A.29)

SCS = µpTr

ˆ (
CeB+2πα′F

)
p+1

, (A.30)

where ∂aX in the pull-backs are replaced by DaX = ∂aX+[Aa, X], so we treat Xs as adjoint
representations of U (N) gauge group.

It is interesting that the DBI action contains the Yang-Mills action. In the �at spacetime
metric Gµν = ηµν and without Bµν , choosing the gauge as ξa = Xa for a = 0, · · · , p, and
denoting X i = 2πα′Φi for i = p+ 1, · · · , 9, we can expand the action Eq. (A.29) as

SDBI = −TDp (2πα
′)2

4

ˆ
dp+1ξe−ΦTr

[
FabF

ab + 2DaΦ
iDaΦ

i +
([
Φi,Φj

])2]
+const.+ higher order of 2πα′ . (A.31)

The leading terms of low energy expansion of the action contains the Yang-Mills action.
Because of

〈
e−Φ
〉
= 1/gs, the Yang-Mills coupling is written as

g2YM,p =
gs

TDp (2πα′)2

= (2π)p−2 (α′)
(p−3)/2

gs.
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Appendix B

Hamilton formalism

In this section we explain the Hamilton formalism which we used in Sec. 3.3.3.
We start with the action which has the form

S =

ˆ
dσL

[{
qi (σ) , ∂σq

i (σ)
}]

(B.1)

with symmetry under the reparametrization σ → σ′ = f (σ),ˆ
dσL

[{
qi (σ) , ∂σq

i (σ)
}]

=

ˆ
dσ′L

[{
qi′ (σ′) , ∂σ′qi′ (σ′)

}]
and qi (σ) = qi′ (σ′) .

We de�ne the conjugate momenta,

pi ≡
∂L

∂ (∂σqi)
,

and the Hamiltonian,

H
[{
qi, pi

}]
≡
∑
i

pi∂σq
i − L

[{
qi, ∂σq

i
}]
.

Then the equations of motion can be written as

∂qi

∂σ
=
∂H
∂pi

,
∂pi
∂σ

= −∂H
∂qi

.

When this Hamiltonian satis�es a condition

H = ∆
[{
qi, ∂σq

i, pi
}]

H̃
[{
qi, pi

}]
, H̃

[{
qi, pi

}]
= 0,

the equations of motion become

∂qi

∂σ
=

∂
(
∆H̃

)
∂pi

= ∆
∂H̃
∂pi

,

∂pi
∂σ

= −
∂
(
∆H̃

)
∂qi

= −∆
∂H̃
∂pi

. (B.2)
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On the other hand, the reparametrization invariance of the action, Eq. (B.1), implies
that we may de�ne the alternative conjugate momenta p′i and Hamiltonian H′ as

p′i ≡ ∂L
∂ (∂σ′q′i)

,

H′ [{qi′, p′i}] ≡
∑
i

∂σ′qi′p′i − L
[{
qi′, ∂σq

i′}] = H
[{
qi′, p′i

}]
and the equations of motion are

∂qi′

∂σ′ = ∆
∂H̃
∂p′i

→ ∂σ

∂σ′
∂qi′ (σ′ (σ))

∂σ
= ∆

[{
qi′, ∂σ′qi′, p′i

}] ∂H̃ [{qi′, p′i}]
∂p′i

,

∂p′i
∂σ′ = −∆

∂H̃
∂qi′

→ ∂σ

∂σ′
∂p′i (σ

′ (σ))

∂σ
= −∆

[{
qi′, ∂σ′qi′, p′i

}] ∂H̃ [{qi′, p′i}]
∂qi′

.

Setting ∂σ
∂σ′ = ∆, we reduce these equations of motion to

∂qi′ (σ′ (σ))

∂σ
=

∂H̃ [{qi′, p′i}]
∂p′i

,

∂p′i (s
′ (σ))

∂σ
= −∂H̃ [{qi′, p′i}]

∂qi′
. (B.3)

We notice that these equations are regard as the usual Hamilton's equations of motion for
the Hamiltonian H̃ rather than H. Because two set of the equations of motion Eqs. (B.2)
and (B.3) describe the same physics, we get the trajectory qi (σ) = qi′ (s′ (σ)) as the solution
of the equations Eq. (B.3).

82



Appendix C

Small q analysis in the dAdS model

The dAdS model is one of the simplest generalization of the AdS model. Its distinction from
the AdS model is handled by the parameter q in dilaton Φ as

eΦ = 1 +
q

r4
.

Thus the dAdS model with q = 0 is coincide with the original AdS model. Then we expect
that the perturbative expansion in parameter q may work. However, the validity of this
expectation depends on situations. In this section we consider the perturbative expansions
in parameter q in two di�erent situations, namely we consider the calculation of the vacuum
expectation values of the Wilson loops and the calculations of the accelerated string solutions.
In the former case the expansion works, while in the latter case it does not work.

C.1 Wilson loop

Wilson loops with bottom at rb � q1/4 can be estimated by expanding quantities in q
r4b
.

In this expansion, the separation between quark and antiquark L, Eq. (2.24), and the
potential between them V , Eq. (2.25), are expanded as

L =

√
1 +

q

r4b
L0 ∼

(
1 +

1

2

q

r4b

)
L0, (C.1)

and

V =
2rb
2πα′

ˆ ∞

1

dy
y2√
y4 − 1

(
1 +

q

r4b

1

y4

)
− 2mq , (C.2)

where rb is a position of the bottom of the string in r direction, L0 = 2R2

rb

√
2π3/2

Γ( 1
4)

2 and mq is

the quark mass introduced to regularize the potential energy. Thinking naively, mq should
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be de�ned as

mq =
1

2πα′

ˆ ∞

0

dreΦ/2

=
1

2πα′

ˆ ∞

0

dr

√
1 +

q

r4
.

However, this quantity will diverge in the lower limit of the integral. To avoid this problem,
we have two di�erent prescription.

1. We use mq = 1
2πα′

´∞
0
dr which is the de�nition of a quark mass in the AdS/CFT

correspondence

2. We use mq =
1

2πα′

´∞
rmin

dr
√

1 + q
r4

and set rmin �nite.

Which prescription is adopted is not so important, since it just determines an normalization
of the potential. Thus we will de�ne the quark mass mq as

mq = mq,0 +mq,1q,

where mq,0, mq,1 is

mq,0 =
1

2πα′

ˆ ∞

rmin

dr

=
rb

2πα′

ˆ ∞

ymin

dy,

mq,1 =
1

2πα′

ˆ ∞

rmin

dr

(
s

2

1

r4

)
=

1

2πα′
1

r3b

s

6
y−3
min,

and s = 0, rmin = 0 in the case of prescription 1, s = 1, rmin 6= 0 in the case of prescription
2. Then V can be re written as

V (L) = V0 (L) + V1 (L) + 2
rmin

2πα′ −
q

2πα′
1

3

s

r3min

,

V0 (L) = −4π2 (2λ)1/2

Γ
(
1
4

)4 1

L
,

V1 (L) =
Γ
(
1
4

)4
2 (2π)4

q

(2λ)3/2 α′4
L3.
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This description is valid in the region 0 < L . Llim,

Llim ≡ L
(
rb = q1/4

)
=

4π3/2

Γ
(
1
4

)2 α′

q1/4
(2λ)1/2 .

In this region, the �rst order of the potential V1 is bounded in the region,

0 < V1 (L) .
2π1/2

Γ
(
1
4

)2 q1/4α′ .

In the limit q → 0, this description is valid in all region of L and V1 (L) vanishes. Thus,
in this limit, the situation will be coincide with the original AdS/CFT case as might be
expected. V1 (L) is proportional to L

3. However, since L is bounded in the region L . Llim,
we cannot discuss the con�nement property in this approximation. In fact, in the region
L� Llim (r4b � q), V (L) is proportional to L as seen in Eq. (2.26).

C.2 Accelerated string solution

Now we try to consider Eq. (3.8) by expanding quantities in q
r4
. However it turn out that

such a calculation is invalid immediately.
In q expansion, we assume that f (r) can be written as

f (r) = f0 (r) + f1 (r) q +O
(
q2
)
, (C.3)

where f0 (r) =
1
a2

− R4

r2
is the solution of the equation of motion for the accelerated string in

AdS spacetime Eq. (3.5). Substituting Eq. (C.3) into Eq. (3.8) and keep the terms up to
�rst order of q, the equation of motion for f1 becomes

1

2
a∂r

(
r4

R4
f ′
1 − a2r2f ′

1

)
q = 2a

q

r4
. (C.4)

This equation can be solved by

f1 (r) =
4

3

1

a6R8

(
ln

r√
r2 − a2R4

− a2R4

2

1

r2
− a4R8

4

1

r4

)
+
C

a2

(
1

2aR2
ln

(
r − aR2

r + aR2

)
+

1

r

)
+D,

where C, D is integration constants. Because f (r → ∞) = 1
a2
, D = 0 is required. C will be

determined by imposing the condition limq→0 f1 (rc) < ∞. Denoting rc = rc,0 + rc,1q, rc,0 =
R2a, we have

f1 (rc) =
4

3

1

a6R8
ln
R2a+ rc,1q√
2R2arc,1q

(
rc,1q

2R2a+ rc,1q

) 3a3R6C
8

−1

3

1

a4R4

(
2

a2R4 + 2R2arc,1q
+

1

a2R4 + 4aR2rc,1q

)
+
C

a2
1

R2a+ rc,1q
.
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Thus C = 4
3a3R6 is required to make limq→0 f1 (rc) regular and f1 (r) becomes

f1 (r) =
4

3a6R8

(
ln

r

r + aR2
−
(
aR2

r
+
a2R4

2

1

r2
+
a4R8

4

1

r4

))
. (C.5)

Above discussion seems to be valid when the relation, min(r) ≡ rb � q1/4, is satis�ed.
However it is wrong. When we expand Eq. (3.8), we drop the term of order O (q2). Since
q is the constant and r (rb < r <∞)is variable, there are regions where the contributions of
O (q2) exceeds that of O (q). In fact in the region r � q1/4, the situation such that

q

r4
� q2

R2r2

can arise, for example. Thus we must keep every term. It implies that our naive estimation
Eq.(C.5) may be wrong. In fact, an asymptotic solution of Eq. (3.8) behaves

f (r) = f0 (r) +O
(
r−3
)
, r ∼ ∞,

while Eq. (C.5) behaves

f1 (r) = O
(
r
−1
)
, r ∼ ∞.
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Appendix D

Expanding U (1) in Sakai-Sugimoto model

In Sec. 4.1.3, we expand the action only in terms of the SU (2) �eld strength. This is crucial
to keep the validity of the analysis in Sec. 4.1.3. In fact, the critical chemical potential in
Eq. (4.28) is su�ciently large not to be valid the perturbative expansion in terms of the
U (1) gauge �eld strength. Since 1

2
27π
2λ
µq is order one,

1
2
27π
2λ
∂zA0 in Eq. (4.21) is also expected

as O (1). Thus �rst term and second term inside the square root in Eq. (4.21) become the
same order.

We can con�rm above statement concretely by expanding the action in Eq. (4.21) in
terms of U (1) gauge �eld. Then the action, Eq. (4.21), becomes

S/V4 = −κ
ˆ ∞

0

dz

(
12q2nB

(
k−1/3 + k

)
− 1

2
k (z)

(
∂zÂ0

)2
− 324π

λ
nBÂ0q

2

)
, (D.1)

where we subtract S0/V4 = −κ
´∞
0
dzk−2/3 from the action. Then the equations of motion

for A0 is written as

∂z

(
k∂zÂ0

)
=

324π

λ
nBq

2.

Imposing the same boundary conditions as in Eq. (4.25), we get

A0 (z) =
54nBπ

3

λ (1− ρ2)3/2

{
ρ
√

1− ρ2

(
1− ρ√

z2 + ρ2

)

+
(
3ρ2 − 2

)(
tan−1 ρ√

1− ρ2
− tan−1

√
z2 + ρ2

1− ρ2

)}
. (D.2)

Numerical plot of A0 (z) and ∂zA0 are displayed in Fig. D.1. We assure that the value of
the chemical potential becomes larger than that in Eq. (4.28) and 1

2
27π
2λ ∂zA0 becomes order one in

a certain region. Thus the perturbative expansion of the action, Eq. (4.21), in terms of the
U (1) gauge �eld strength is invalid.
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Figure D.1: Numerical plot of the function (D.2) and its derivative. These are evaluated at λ =

16.6, ρ = 0.079, nB = 0.019, namely at critical values (4.28). The value of the chemical potential

A0 (z → ∞) becomes larger than the value of Eq. (4.28). It comes from the invalidity of the

expansion (D.1) because of the existence of the region of 1
2
27π
2λ ∂zA0 (z) > 1.
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Appendix E

Unruh e�ect

E.1 Field theoretical perspective

In this section, we will review the Unruh e�ect brie�y. We argue along the Ref. [41] in this
review. More detailed discussions for the Unruh e�ect are performed in Ref. [41] or Ref.
[42].

Suppose a particle detector moves in Minkowski spacetime along the world line xµ (τ).
The full Hamiltonian density of the system is written as

H = Hφ +H0 +Hint

Hφ, H0 is non-interacting (free) Hamiltonian of the �eld φ and the detector, and Hint =
−Lint = −

´
dτc0m (τ)φ [x (τ)] is the detector-�eld interaction Hamiltonian. c0 is a small

coupling constant and m (τ) is the detector's monopole moment operator. When τ = −∞,
the �eld φ is in the vacuum state |0M〉, which is the usual oscillator vacuum (ak |0M〉 = 0) in
Minkowski spacetime. The states of the detector and the �eld will be changed to excited states
|ψ〉 , |E〉 (H0 |E〉 = E |E〉) from their ground state |0M〉 , |E0〉 (H0 |E0〉 = E0 |E0〉 , E > E0).
For su�cient small c0 the amplitude for transition can be written as

〈E,ψ| (−iHint) |0M , E0〉 = ic0

ˆ ∞

−∞
dτ 〈E,ψ|m (τ)φ [x (τ)] |0M , E0〉 .

The time evolution of m (τ) obey the Heisenberg equation m (τ) = eiH0τm (0) e−iH0τ , then
the transition amplitude becomes

ic0 〈E|m (0) |E0〉
ˆ ∞

−∞
dτei(E−E0)τ 〈ψ|φ [x (τ)] |0M〉 . (E.1)

Squaring Eq. (E.1) and summing over all possible state to transition, we get

c20
∑
E

∣∣〈E|m (0) |E0〉2
∣∣ ˆ ∞

−∞
dτdτ ′F (E − E0) ,
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where
F (E − E0) = e−i(E−E0)(τ−τ ′)G+ (x (τ) , x (τ ′)) ,

and
G+ (x (τ) , x (τ ′)) ≡ 〈0M |φ [x (τ)]φ [x (τ ′)] |0M〉 .

Now we consider the transition probability per unit proper time. For simplicity, we re-
strict φ to be massless and restrict the trajectory x (τ) such that the massless propagator
D (x (τ) , x (τ ′)) only depend on the di�erence∆τ ≡ τ−τ ′, that is, D (x (τ) , x (τ ′)) = D (∆τ).
Then the transition probability per unit proper time is given by

c20
∑
E

|〈E|m (0) |E0〉|2
ˆ ∞

−∞
d (∆τ) e−i(E−E0)∆τD+ (∆τ) , (E.2)

where

D+ (∆τ) = − 1

4π2

1

(t (τ)− t (τ ′)− iε)2 − |~x (τ)− ~x (τ ′)|2
.

If the motion of the detector is uniform motion τ =
√
1− v2t, ~x = ~x0 + ~vt, the transition

probability is

−c20
∑
E

|〈E|m (0) |E0〉|2
√
1− v2

4π2

ˆ ∞

−∞
d∆te−i(E−E0)

√
1−v2∆t 1

(∆t− iε)2
= 0,

So the detector cannot detect any particles as expected. On the other hand, if we consider
another complicated trajectories of the detector, the situation will be changed. Suppose the
motion with an uniform acceleration a. In this case the world line is described as x2 − t2 =
1
a2
, y = z = 0, or

t =
1

a
sinh (aτ) ,

x =
1

a
cosh (aτ) . (E.3)

Then we �nd

D+ (∆τ) = − a2

16π2

1

sinh2
(

a(∆τ−iε)
2

)
= − 1

4π2

∞∑
k=−∞

1

(∆τ − iε+ 2παk)2
.

Substituting this into Eq. (E.2), we get the �nal result of the transition probability as

c20
2π

∑
E

(E − E0) |〈E|m (0) |E0〉|2

e
2π
a
(E−E0) − 1

.
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The factor
(
e

2π
a
(E−E0) − 1

)−1

suggest that the accelerated detector sees a thermal bath with

the temperature

T =
a

2π
.

In this section, though we demonstrate the emergence of the temperature by using a particle
detector, the detector is not need for the demonstration in general. In the Ref. [2], the
authors show the equation,

〈0M |

(∏
i

φ (~xi, ti)

)
t

|0M〉 =
Tr
(
e−βHR

(
∏

i φ (~ri, ηi))η

)
Tr
(
e−βHR

) , (E.4)

in terms of the partition function. Here β = 2π/a, HR is the Hamiltonian in Rindler
coordinates, φ is a �eld. ()t, ()η denote time and η ordering, (~ri, ηi) is the same point as
(~xi, ti) in Rindler coordinates. |0M〉 represents the Minkowski vacuum state.

Note that Eq. (E.4) is shown about a large class of interacting �eld theories. It implies
that the Unruh temperature TU = a/2π may be independent of the detail of the interaction or
the sort of the �elds. Thus we assume that the procedure to extract the Unruh temperature
in terms of the gauge/gravity duality may not be a�ected from the detail of the theory. So
it is natural that we employ the transformation Eq. (3.7) to get the temperature TU = a/2π
in Chap. 3.

E.2 Comment on ERT

In Chap. 3, we perform ERT in order to move to co-moving frame for an accelerated quark
and in order to obtain the correct Unruh temperature. However we may be able to consider
other transformations which are appropriate for these purposes. Actually for the purpose of
making the accelerated string Eq. (3.2) static, it is su�cient to transforming the coordinates
as

x = g (s, β) cosh (ãτ) ,

t = g (s, β) sinh (ãτ) ,

r = h (s, β) . (E.5)

Since we want to regard s→ ∞ as the r → ∞, we require

s (β, r = ∞) = ∞. (E.6)

Then we may have various transformations which agree with the usual four-dimensional
Rindler transformation on the boundary. It sounds strange. So it is a natural question
whether the transformation Eq. (3.7) is the only transformation to describe the physics of
the Unruh e�ect or not.
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One of candidates for the transformation Eqs. (E.5) is

x =

√
1

ã2
− 1

s2
eãβ cosh (ãτ) ,

t =

√
1

ã2
− 1

s2
eãβ sinh (ãτ) ,

r = sR2e−ãβ,

where ã < s < ∞ and ã 6= a. Under this transformation the solution with q = 0, Eq. (3.6),
is mapped onto

β =
1

ã
ln
ã

a
.

Then aR2 < r (s) < +∞. Note that if we choose ã 6= a only upper part r > aR2 of the
accelerated string solution is mapped again. In this case, however, we get the temperature

TH =
ã

2π
.

So imposing the conditions, �making string solution static� and �mapping only upper part of
the string r > rc�, is not su�cient to determine the temperature. In this case an additional
condition �setting the endpoint of the string on boundary as β (s = sbdy) = 0� is needed. We
use this condition through our analysis in Chap. 3.

Generally, the solution will be mapped by the transformation Eq. (E.5) as

x2 − t2 = f (r) → g (s, β)2 = f (h (s, β))

and the both sides of this equation is independent of τ . Then the metric after the transfor-
mation Eq. (E.5) becomes

ds2 = Gxx

(
−dt2 + dx2

)
+Grrdr

2

= −Gxxã
2g2dτ 2 +

[
Gxx

(
∂g

∂s

)2

+

(
∂h

∂s

)2

Grr

]
ds2

+

[
Gxx

(
∂g

∂β

)2

+

(
∂h

∂β

)2

Grr

]
dβ2 + 2

[
Gxx

∂g

∂s

∂g

∂β
+Grr

∂h

∂s

∂h

∂β

]
dsdβ .

Since f (rc) = 0,
g (sc, βc) = 0 (E.7)

where βc is the solution of the equation h (sc, βc) = rc. To keep the metric diagonal and
standard form of the �nite temperature theory as in Eq. (2.10), we impose the condition

Gsβ = Gβs ≡ Gxx
∂g

∂s

∂g

∂β
+Grr

∂h

∂s

∂h

∂β
= 0,

−Gττ ≡ Gxxã
2g2 = A (β)B (s) ,

Gss ≡

[
Gxx

(
∂g

∂s

)2

+

(
∂h

∂s

)2

Grr

]
= A (β)

1

B (s)
,
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where A (β) , B (s) are certain functions. Then g (s, β), h (s, β) should be satisfy the relations

A (β) = Gxx (h (s, β))

√
∂g

∂s

[
∂g

∂s

∂h

∂β
+
∂h

∂s

∂g

∂β

](
∂h

∂β

)−1

B (s) =
ãg√

∂g
∂s

[
∂g
∂s

∂h
∂β

+ ∂h
∂s

∂g
∂β

] (
∂h
∂β

)−1
,

Gxx (h (s, β))

Grr (h (s, β))
=

∂h

∂s

∂h

∂β

(
∂g

∂s

∂g

∂β

)−1

. (E.8)

Wick rotating the time τ → −iτE, and evaluating the metric near horizon s = sc + εn by
using g = 0, β = βc and B (s = sc + εn) = C (sc) ε

l + o
(
εl
)
, we have

ds2 ∼ A

C (a)
n2
(
dρ2 + ρ2dθ2

)
, ρ ≡ 2

n
εn/2, θ ≡ C (sc)

2
τE. (E.9)

It turn out that l = n must be needed to avoid conical singularity. Thus B (s) must be
proportional to s− sc near horizon,

B (s) ∼ (s− sc)C (sc) (s ∼ sc) . (E.10)

Then the temperature is determined as

TH =
C (sc)

4π
. (E.11)

If the conditions Eqs. (E.7), (E.8), and (E.10) are satis�ed, the metric has the temperature
Eq. (E.11) and it may be di�erent from a/2π. However these conditions are very complicated,
so we do not �nd any other transformation which satisfy these conditions, except for the
ERT, Eq. (3.7). Perhaps every transformation which satis�es these conditions represents
a same physics. We may sophisticate the method of the gauge/gravity duality and deepen
an understanding of the duality by investigating these circumstances. This subject is very
attractive. But it is remained as open problem here.

We note that in the case of Eq. (2.22) and the transformation Eq. (E.5) takes the form
as

x = g (s) eaβ cosh (aτ) ,

t = g (s) eaβ sinh (aτ) ,

r = h (s) e−aβ,

the coe�cient g (s) and h (s) can be determined uniquely by imposing the above conditions.
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Performing this transformation, we have the Rindler coordinate,

ds2 = eΦ/2

{
R2h2

((
h′4

h4
+ g′2

)
ds2 − g2a2dτ 2

+a2
(
g2 +

1

h2

)
dβ2 + e−2aβ

[
dx22 + dx23

])
+R2dΩ2

5

}
,

where prime represents the derivative with respect to s, and we set as(
h2
)′
= h4

(
g2
)′

to eliminate the non-diagonal part of the metric (it corresponds to the condition Eq. (E.8)).
Then g is related to h as

g2 = c20 −
1

h2

where c0 is an arbitrary constant. Imposing the condition Eq. (E.6), we must choose c0 =
1
a
.

Then we obtain ERT again and have the Rindler-dAdS metric,

x =

√
1

a2
− 1

h2
eaβ cosh (aτ) ,

t =

√
1

a2
− 1

h2
eaβ sinh (aτ) ,

r = he−aβ,

ds2 = eΦ/2R2

{
dh2

h2 − a2
−
(
h2 − a2

)
dτ 2

+h2
(
dβ2 + e−2aβ

[
dx22 + dx23

])
+ dΩ2

5

}
.

Since

B (h) = C (h) (h− a) , C (h) ≡ h (h+ a)√
2a2 − h2

,

the condition Eq. (E.10) is satis�ed and the temperature Eq. (E.11) becomes a/2π.
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