The Popular Condensation Problem under Matroid Constraints

Kami yama，Naoyuki
Institute of Mathematics for Industry，Kyushu University
https：／／hdl．handle．net／2324／1434328

出版情報：Combinatorial optimization and applications：8th International Conference，COCOA 2014，Wailea，Maui，HI，USA，December 19－21，2014，Proceedings，pp．713－728，2014－11－13． Springer International Publishing
バージョン：
権利関係：

MI Preprint Series

Mathematics for Industry Kyushu University

The Popular Condensation
 Problem under Matroid Constraints

Naoyuki Kamiyama

MI 2014-4
(Received March 4, 2014)

Institute of Mathematics for Industry
Graduate School of Mathematics
Kyushu University
Fukuoka, JAPAN

The Popular Condensation Problem under Matroid Constraints

Naoyuki Kamiyama*
Institute of Mathematics for Industry, Kyushu University
kamiyama@imi.kyushu-u.ac.jp

Abstract

The popular matching problem introduced by Abraham, Irving, Kavitha, and Mehlhorn is one of assignment problems in strategic situations. It is known that a given instance of this problem may admit no popular matching. For coping with such instances, Wu, Lin, Wang, and Chao introduced the popular condensation problem whose goal is to transform a given instance so that it has a popular matching by deleting a minimum number of agents. In this paper, we consider a matroid generalization of the popular condensation problem, and give a polynomial-time algorithm for this problem.

1 Introduction

In this paper, we consider a problem of assigning applicants to posts in strategic situations. Such problems occur, e.g., when a school assigns students to lectures or a firm assigns workers to tasks. For such strategic assignment problems, several solution concepts have been introduced. For example, Gärdenfors [5] introduced the concept of popularity. Intuitively speaking, if a matching M is popular, then there exists no other matching N such that more applicants prefer N to M than prefer M to N. Using the concept of popularity, Abraham, Irving, Kavitha, and Mehlhorn [1] introduced the popular matching problem, and presented a linear-time algorithm for this problem. Several extensions of the popular matching problem have been investigated. For example, Manlove and Sng [10] considered a many-to-one variant of the popular matching problem, Mestre [11] considered a weighted variant, and Sng and Manlove [14] considered a weighted many-to-one variant. Furthermore, Kamiyama [6] introduced a matroid generalization of the popular matching problem, and gave a polynomial-time algorithm for this problem. This matroid generalization can represent a many-to-one variant of the popular matching problem presented by Manlove and Sng [10] and the popular matching with laminar capacity constraints (see [6] for details).

Unfortunately, it is known [1] that a given instance of the popular matching problem may admit no popular matching. For coping with such instances, several alternative solutions were presented. For example, Kavitha and Nasre [7] considered the problem of copying several posts so that a given instance admits a popular matching. Furthermore, Kavitha, Nasre, and Nimbhorkar [8] considered the problem of augmenting several posts with minimum costs. These problems have been shown to be hard in general. Wu, Lin, Wang, and Chao [15] considered the problem of transforming the set of agents so that a given instance admits a popular matching. More precisely, they introduced the popular condensation problem whose goal is to transform a given instance so that it has a popular matching by deleting a minimum number of agents,

[^0]and gave a polynomial-time algorithm for this problem. In this paper, we consider a matroid generalization of the popular condensation problem (i.e., the popular condensation problem in the matroid setting presented by Kamiyama [6]), and give a polynomial-time algorithm for this problem. Our algorithm can be regarded as a matroid generalization of the algorithm presented by Wu, Lin, Wang, and Chao [15].

The rest of this paper is organized as follows. In Section 2, we give the formal definition of our problem. In Section 3, we review a characterization of the existence of a popular matching under matroid constraints presented by Kamiyama [6]. In Section 4, we give our algorithm, and prove its correctness.

2 Preliminaries

We denote by \mathbb{Z}_{+}the set of non-negative integers. For each subset X and each element x, we define $X+x:=X \cup\{x\}$ and $X-x:=X \backslash\{x\}$.

An ordered pair $\mathcal{M}=(U, \mathcal{I})$ is called a matroid, if U is a finite set and \mathcal{I} is a nonempty family of subsets of U satisfying the following conditions.
(I1) If $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$.
(I2) If $I, J \in \mathcal{I}$ and $|I|<|J|$, then there exists an element u in $J \backslash I$ with $I+u \in \mathcal{I}$

2.1 Problem formulation

Throughout this paper, we are given a finite simple bipartite graph $G=(V, E)$ in which V is partitioned into two subsets A and P, and each edge in E connects a vertex in A and a vertex in P. We call a vertex in A an applicant, and a vertex in P a post. We denote by (a, p) the edge in E between an applicant a in A and a post p in P. For each vertex v in V and each subset M of E, we define $M(v)$ as the set of edges in M incident to v. Furthermore, for each subset X of A and each subset M of E, we write $M(X)$ instead of $\cup_{a \in X} M(a)$.

In addition, we are given an injective function $\pi: E \rightarrow \mathbb{Z}_{+}$. That is, $\pi(e) \neq \pi\left(e^{\prime}\right)$ for every distinct edges e, e^{\prime} in E. Intuitively speaking, π represents preference lists of applicants. For each applicant a in A and each edges e, e^{\prime} in $E(a)$, if $\pi(e)>\pi\left(e^{\prime}\right)$, then a prefers e to e^{\prime}. Since π is injective, it represents "strict" preference lists of applicants. Without loss of generality, we assume that for each applicant a in A, there exists a post p_{a} in P such that $E\left(p_{a}\right)=\left\{\left(a, p_{a}\right)\right\}$ and

$$
\forall e \in E(a)-\left(a, p_{a}\right): \pi(e)>\pi\left(\left(a, p_{a}\right)\right)
$$

Furthermore, for each post p in P, we are given a matroid $\mathcal{M}_{p}=\left(E(p), \mathcal{I}_{p}\right)$. We assume that for each applicant a in $A,\left\{\left(a, p_{a}\right)\right\} \in \mathcal{I}_{p_{a}}$. Furthermore, we assume that for each applicant a in A, there exists a post p in $P-p_{a}$ such that $(a, p) \in E$ and $\{(a, p)\} \in \mathcal{I}_{p}$.

For each subset X of A, a subset M of E is called a matching with respect to X, if it satisfies the following two conditions.

- For every applicant a in A,

$$
|M(a)|= \begin{cases}1 & \text { if } a \in X \\ 0 & \text { if } a \notin X\end{cases}
$$

- For every post p in P, we have $M(p) \in \mathcal{I}_{p}$.

For each subset X of A, each matching M with respect to X, and each applicant a in X, we denote by $\mu_{M}(a)$ the unique edge in $M(a)$. Let M, N be matchings with respect to some subset X of A. We denote by pre $_{M}(N)$ the number of applicants a in X with

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right)
$$

i.e., $\operatorname{pre}_{M}(N)$ represents the number of applicants that prefer N to M.

A matching M with respect to a subset X of A is called a popular matching with respect to X, if

$$
\operatorname{pre}_{N}(M) \geq \operatorname{pre}_{M}(N)
$$

for every matching N with respect to X. That is, there exists no other matching N with respect to X such that more applicants in A prefer N to M than prefer M to N. A subset X of A is called a popular condensation, if there exists a popular matching with respect to X. Notice that for every applicant a in $A,\{a\}$ is a popular condensation. The goal of the popular condensation problem under matroid constraints is to find a maximum-size popular condensation.

2.2 Matroids

In this subsection, we give properties of matroids that will be used in the sequel.
Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid. A subset I in \mathcal{I} is called an independent set in \mathcal{M}. For each subset X of U, a subset B of X is called a base of X in \mathcal{M}, if B is an inclusion-wise maximal subset of X that is an independent set in \mathcal{M}. We call a base of U in \mathcal{M} a base in \mathcal{M}. It follows from the condition (I2) that for each subset X of U, every two bases of X in \mathcal{M} have the same size, which is called the rank of X in \mathcal{M} and denoted by $r_{\mathcal{M}}(X)$. It is known [12, Lemma 1.3.1] that

$$
\begin{equation*}
\forall X, Y \subseteq U: r_{\mathcal{M}}(X)+r_{\mathcal{M}}(Y) \geq r_{\mathcal{M}}(X \cup Y)+r_{\mathcal{M}}(X \cap Y) \tag{1}
\end{equation*}
$$

It follows from (1) that for every subsets X, Y, Z of U such that $X \subseteq Y$ and $Z \cap Y=\emptyset$,

$$
\begin{equation*}
r_{\mathcal{M}}(Y \cup Z)-r_{\mathcal{M}}(Y) \leq r_{\mathcal{M}}(X \cup Z)-r_{\mathcal{M}}(X) \tag{2}
\end{equation*}
$$

Furthermore, it follows from (1) and the non-negativity of $r_{\mathcal{M}}(\cdot)$ that

$$
\begin{equation*}
\forall X, Y \subseteq U: r_{\mathcal{M}}(X \cup Y) \leq r_{\mathcal{M}}(X)+r_{\mathcal{M}}(Y) \tag{3}
\end{equation*}
$$

Let S be a subset of U. Define

$$
\begin{aligned}
\mathcal{I} \mid S & :=\{X \subseteq S \mid X \in \mathcal{I}\} \\
\mathcal{M} \mid S & :=(S, \mathcal{I} \mid S)
\end{aligned}
$$

It is not difficult to see that $\mathcal{M} \mid S$ is a matroid and $r_{\mathcal{M} \mid S}(X)=r_{\mathcal{M}}(X)$ for every subset X of S. Define a function $r^{\prime}: 2^{U \backslash S} \rightarrow \mathbb{Z}_{+}$by

$$
r^{\prime}(X):=r_{\mathcal{M}}(X \cup S)-r_{\mathcal{M}}(S)
$$

In addition, we define

$$
\begin{aligned}
\mathcal{I} / S & :=\left\{X \subseteq U \backslash S\left|r^{\prime}(X)=|X|\right\}\right. \\
\mathcal{M} / S & :=(U \backslash S, \mathcal{I} / S)
\end{aligned}
$$

It is known [12, Proposition 3.1.6] that \mathcal{M} / S is a matroid and $r_{\mathcal{M} / S}(X)=r^{\prime}(X)$ for each subset X of $U \backslash S$.

Let $\mathcal{M}_{1}=\left(U_{1}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U_{2}, \mathcal{I}_{2}\right)$ be matroids with $U_{1} \cap U_{2}=\emptyset$. Define

$$
\begin{aligned}
\mathcal{I}_{1} \oplus \mathcal{I}_{2} & :=\left\{X \subseteq U_{1} \cup U_{2} \mid X \cap U_{1} \in \mathcal{I}_{1}, X \cap U_{2} \in \mathcal{I}_{2}\right\} \\
\mathcal{M}_{1} \oplus \mathcal{M}_{2} & :=\left(U_{1} \cup U_{2}, \mathcal{I}_{1} \oplus \mathcal{I}_{2}\right)
\end{aligned}
$$

It is known [12, Proposition 4.2.12] that $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ is a matroid and

$$
\begin{equation*}
\forall X \subseteq U_{1} \cup U_{2}: r_{\mathcal{M}_{1} \oplus \mathcal{M}_{2}}(X)=r_{\mathcal{M}_{1}}\left(X \cap U_{1}\right)+r_{\mathcal{M}_{2}}\left(X \cap U_{2}\right) \tag{4}
\end{equation*}
$$

Let $\mathcal{M}_{1}=\left(U, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)$ be matroids on the same ground set U. A subset I of U is called a common independent set of \mathcal{M}_{1} and \mathcal{M}_{2}, if $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. It is known [2, 9] that we can find a maximum-size common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} in $O\left(n^{3} \gamma\right)$ time, where $n:=|U|$ and γ is the time required to check whether $I-u+u^{\prime}$ and $I+u^{\prime}$ belong to \mathcal{I}_{1} (or \mathcal{I}_{2}) for each independent set I in $\mathcal{M}_{1}\left(\right.$ or $\left.\mathcal{M}_{2}\right)$ and each elements u in I and u^{\prime} in $U \backslash I$ (see also [13, Section 41.2]). Furthermore, the following characterization of the size of a maximum-size common independent set is known.

Theorem 1 (Edmonds [3]). For each matroids $\mathcal{M}_{1}=\left(U, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)$, the size of a maximum-size common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} is equal to

$$
\min _{X \subseteq U}\left(r_{\mathcal{M}_{1}}(X)+r_{\mathcal{M}_{2}}(U \backslash X)\right)
$$

The following lemmas will be used in the sequel.
Lemma 2 (see, e.g., [6]). Let $\mathcal{M}=(U, \mathcal{I}), S$, and B be a matroid, a subset of U, and a base in $\mathcal{M} \mid S$, respectively. Then, for every subset X of $U \backslash S, X$ is an independent set in \mathcal{M} / S if and only if $X \cup B$ is an independent set in \mathcal{M}.

Lemma 3. Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid. For each subsets X, Y, Z of U such that $X \subseteq Y$ and $Z \cap Y=\emptyset$, we have

$$
r_{\mathcal{M} / X}(Z)-r_{\mathcal{M} / Y}(Z) \leq r_{\mathcal{M}}(Y)-r_{\mathcal{M}}(X)
$$

Proof. It follows from the definition of \mathcal{M} / X and \mathcal{M} / Y that

$$
\begin{aligned}
& r_{\mathcal{M} / X}(Z)=r_{\mathcal{M}}(Z \cup X)-r_{\mathcal{M}}(X), \\
& r_{\mathcal{M} / Y}(Z)=r_{\mathcal{M}}(Z \cup Y)-r_{\mathcal{M}}(Y)
\end{aligned}
$$

This lemma follows from this and the monotonicity of $r_{\mathcal{M}}(\cdot)$.

3 Characterization

For each applicant a in A, we define the f-edge $f(a)$ of a as the unique element in

$$
\arg \max \left\{\pi((a, p)) \mid(a, p) \in E(a),\{(a, p)\} \in \mathcal{I}_{p}\right\}
$$

For each subset X of A and each post p in P, we denote by $\Gamma_{X, p}$ the set of edges (a, p) in $E(p)$ such that $a \in X$ and $(a, p)=f(a)$. For each subset X of A and each applicant a in X, we define the s-edge $s_{X}(a)$ of a as the unique edge in

$$
\arg \max \left\{\pi((a, p)) \mid(a, p) \in E(a)-f(a),\{(a, p)\} \in \mathcal{I}_{p} / \Gamma_{X, p}\right\}
$$

Notice that $s_{X}(a)$ is well-defined because there exists the post p_{a}. For each subset X of A, we define the reduced edge set Π_{X} by

$$
\Pi_{X}:=\left\{f(a), s_{X}(a) \mid a \in X\right\} .
$$

For each subset X of A, we define a matroid $\mathcal{A}_{X}=\left(\Pi_{X}, \mathcal{I}_{X}\right)$ by

$$
\mathcal{I}_{X}:=\left\{M \subseteq \Pi_{X}|\forall a \in X:|M(a)| \leq 1\}\right.
$$

For each subset X of A and each post p in P, we define

$$
\mathcal{P}_{X, p}:=\left(\mathcal{M}_{p} \mid \Gamma_{X, p} \oplus \mathcal{M}_{p} / \Gamma_{X, p}\right) \mid \Pi_{X}(p)
$$

Furthermore, for each subset X of A, we define

$$
\mathcal{P}_{X}:=\bigoplus_{p \in P} \mathcal{P}_{X, p}
$$

For simplicity, we define $s(\cdot):=s_{A}(\cdot), \Gamma_{p}:=\Gamma_{A, p}, \Pi:=\Pi_{A}, \mathcal{A}:=\mathcal{A}_{A}$, and $\mathcal{P}:=\mathcal{P}_{A}$.
The following characterization of a popular condensation plays an important role. Precisely speaking, Kamiyama [6] proved Theorem 4 in the case of $X=A$, but Theorem 4 for a general subset X of A can be proved in the same way.

Theorem 4 (Kamiyama [6]). For each subset X of A, X is a popular condensation if and only if there exists a common independent set M of \mathcal{A}_{X} and \mathcal{P}_{X} with $|M|=|X|$.

The following lemmas will be used in the sequel.
Lemma 5. There exists a subset D of A such that

$$
\begin{equation*}
|D|+r_{\mathcal{P}}(\Pi(A \backslash D))=\min _{F \subseteq \Pi}\left(r_{\mathcal{A}}(F)+r_{\mathcal{P}}(\Pi \backslash F)\right) \tag{5}
\end{equation*}
$$

Proof. Let F be a minimizer of the right-hand side of (5). If $\Pi(X)=F$ for some subset X of A, then the proof is done. Let X be the set of applicants a in A such that there exists an edge e in F with $e \in \Pi(a)$, and assume that there exists an edge e^{\prime} in $\Pi(X)$ with $e^{\prime} \notin F$. Clearly, we have

$$
\begin{gathered}
r_{\mathcal{A}}\left(F+e^{\prime}\right)=r_{\mathcal{A}}(F)(=|X|) \\
r_{\mathcal{P}}\left(\Pi \backslash\left(F+e^{\prime}\right)\right) \leq r_{\mathcal{P}}(\Pi \backslash F)
\end{gathered}
$$

This implies that there exists a subset D of A satisfying (5).
Lemma 6. For each subset X of A, if there exists a common independent set M of \mathcal{A}_{X} and \mathcal{P}_{X} with $|M|=|X|$, then

$$
\forall Y \subseteq X:|Y| \leq r_{\mathcal{P}_{X}}\left(\Pi_{X}(Y)\right)
$$

Proof. It follows from Theorem 1 that

$$
\begin{equation*}
\forall F \subseteq \Pi_{X}:|X| \leq r_{\mathcal{A}_{X}}(F)+r_{\mathcal{P}_{X}}\left(\Pi_{X} \backslash F\right) \tag{6}
\end{equation*}
$$

Let Y be a subset of X. It follows from (6) with $F=\Pi_{X}(X \backslash Y)$ that

$$
\begin{aligned}
|X| & \leq r_{\mathcal{A}_{X}}\left(\Pi_{X}(X \backslash Y)\right)+r_{\mathcal{P}_{X}}\left(\Pi_{X} \backslash \Pi_{X}(X \backslash Y)\right) \\
& =|X \backslash Y|+r_{\mathcal{P}_{X}}\left(\Pi_{X}(Y)\right)
\end{aligned}
$$

which completes the proof.

4 Algorithm

Our algorithm PCuMC for the popular condensation problem under matroid constraints can be described as follows.

Algorithm PCuMC

Step 1. Find a maximum-size common independent set M of \mathcal{A} and \mathcal{P}.
Step 2. Output the set Δ of applicants a in A with $M(a) \neq \emptyset$.

End of Algorithm

From now on, we prove the correctness of the algorithm PCuMC. Let M be the maximumsize common independent set found in Step 1 of the algorithm PCuMC, and we denote by Δ the output of the algorithm of PCuMC.

We first prove that Δ is a popular condensation.
Lemma 7. $\Pi_{\Delta}=\Pi(\Delta)$.
Proof. It suffices to prove that for every applicant a in Δ, we have $s_{\Delta}(a)=s(a)$. For proving this, we prove that for every post p, there exists a base B in $\mathcal{M}_{p} \mid \Gamma_{p}$ with $B \subseteq \Gamma_{\Delta, p}$. If there exists such a base B, then B is also a base in $\mathcal{M}_{p} \mid \Gamma_{\Delta, p}$. Thus, the above statement follows from Lemma 2.

Let p be a post in P, and assume that any base in $\mathcal{M}_{p} \mid \Gamma_{p}$ is not a subset of $\Gamma_{\Delta, p}$. Since $M \cap \Gamma_{p}$ is an independent set in $\mathcal{M}_{p} \mid \Gamma_{p}$, there exists a base B in $\mathcal{M}_{p} \mid \Gamma_{p}$ with $M \cap \Gamma_{p} \subseteq B$. The above assumption implies that there exists an edge $(a, p) \in B$ and $a \notin \Delta$. It follows from the definition of Step 2 that $M(a)=\emptyset$, which implies that $M+(a, p)$ is an independent set of \mathcal{A}. Furthermore, it follows from the condition (I1) that $\left(M \cap \Gamma_{p}\right)+(a, p)$ is an independent set in $\mathcal{M}_{p} \mid \Gamma_{p}$, and thus $M+(a, p)$ is an independent set in \mathcal{P}. Since $(a, p) \notin M$, these facts contradict the fact that M is a maximum-size common independent set of \mathcal{A} and \mathcal{P}. This completes the proof.

Lemma 8. Δ is a popular condensation.
Proof. It follows from Theorem 4 that if M is a common independent set of \mathcal{A}_{Δ} and \mathcal{P}_{Δ}, then the proof is done. It follows from Lemma 7 that M is a subset of Π_{Δ}. Furthermore, M is clearly an independent set of \mathcal{A}_{Δ}. What remains is to prove that M is an independent set of \mathcal{P}_{Δ}.

Let p be a post of P. For proving that $M(p)$ is an independent set in $\mathcal{P}_{\Delta, p}$, we first prove that $M \cap \Gamma_{\Delta, p}$ is an independent set in $\mathcal{M}_{p} \mid \Gamma_{\Delta, p}$. It follows from the definition of Step 2 that

$$
\begin{equation*}
M \cap \Gamma_{\Delta, p}=M \cap \Gamma_{p} . \tag{7}
\end{equation*}
$$

Furthermore, $M \cap \Gamma_{p}$ is an independent set in \mathcal{M}_{p}. These facts implies that $M \cap \Gamma_{\Delta, p}$ is an independent set in $\mathcal{M}_{p} \mid \Gamma_{\Delta, p}$.

Next we prove that $M(p) \backslash \Gamma_{\Delta, p}$ is an independent set in $\mathcal{M}_{p} / \Gamma_{\Delta, p}$. It follows from (7) that $M(p) \backslash \Gamma_{\Delta, p}=M(p) \backslash \Gamma_{p}$. Moreover, in the same way as in the proof of Lemma 7, we can prove that there exists a base B in $\mathcal{M}_{p} \mid \Gamma_{p}$ with $B \subseteq \Gamma_{\Delta, p}$. Since $\Gamma_{\Delta, p}$ is a subset of Γ_{p}, B is also a base in $\mathcal{M}_{p} \mid \Gamma_{\Delta, p}$. Thus, since $M(p) \backslash \Gamma_{p}$ is an independent set in $\mathcal{M}_{p} / \Gamma_{p}$, it follows from these facts and Lemma 2 that $M(p) \backslash \Gamma_{\Delta, p}$ is an independent set in $\mathcal{M}_{p} / \Gamma_{\Delta, p}$.

Next we prove that Δ is a maximum-size popular condensation. Let D be a subset of A satisfying (5) in Lemma 5, and define $Q:=A \backslash D$.

Lemma 9. $|A \backslash \Delta|=|Q|-r_{\mathcal{P}}(\Pi(Q))$.
Proof. It follows from $|\Delta|=|M|$ and Theorem 1 that

$$
|\Delta|=|M|=|D|+r_{\mathcal{P}}(\Pi(A \backslash D))=|A|-|Q|+r_{\mathcal{P}}(\Pi(Q)),
$$

which completes the proof.
Lemma 10. For every popular condensation Ω, we have $|A \backslash \Omega| \geq|Q|-r_{\mathcal{P}}(\Pi(Q))$.
Proof. Define $\Omega_{0}:=A \backslash \Omega, \Omega_{1}:=Q \cap \Omega_{0}$, and $\Omega_{2}:=\Omega_{0} \backslash \Omega_{1}$. Notice that $Q \backslash \Omega_{1}$ is a subset of Ω. Thus, it follows from Theorem 4 and Lemma 6 that

$$
\left|Q \backslash \Omega_{1}\right| \leq r_{\mathcal{P}_{\Omega}}\left(\Pi_{\Omega}\left(Q \backslash \Omega_{1}\right)\right) .
$$

It follows from this that if

$$
\begin{equation*}
r_{\mathcal{P}_{\Omega}}\left(\Pi_{\Omega}\left(Q \backslash \Omega_{1}\right)\right) \leq r_{\mathcal{P}}(\Pi(Q))+\left|\Omega_{2}\right|, \tag{8}
\end{equation*}
$$

then the proof is done because $|A \backslash \Omega|=\left|\Omega_{1}\right|+\left|\Omega_{2}\right|$.
Let p be a post in P. Define F_{1} as the set of edges (a, p) in Γ_{p} such that $a \in Q$ or $a \in \Omega_{2}$. In addition, define F_{2} as the set of edges (a, p) in $\Pi(p)$ such that $a \in Q$ and $(a, p)=s(a)$. Notice that

$$
F_{1} \cup F_{2}=(\Pi(Q) \cap \Pi(p)) \cup\left\{(a, p) \in \Gamma_{p} \mid a \in \Omega_{2}\right\} .
$$

It follows from this and (3) that

$$
\begin{align*}
r_{\mathcal{P}_{p}}\left(F_{1} \cup F_{2}\right) & =r_{\mathcal{P}_{p}}\left((\Pi(Q) \cap \Pi(p)) \cup\left\{(a, p) \in \Gamma_{p} \mid a \in \Omega_{2}\right\}\right) \\
& \leq r_{\mathcal{P}_{p}}(\Pi(Q) \cap \Pi(p))+r_{\mathcal{P}_{p}}\left(\left\{(a, p) \in \Gamma_{p} \mid a \in \Omega_{2}\right\}\right) \\
& \leq r_{\mathcal{P}_{p}}(\Pi(Q) \cap \Pi(p))+\left|\left\{(a, p) \in \Gamma_{p} \mid a \in \Omega_{2}\right\}\right| \tag{9}\\
& =r_{\mathcal{P}_{p}}(\Pi(Q) \cap \Pi(p))+\left|\left\{a \in \Omega_{2} \mid f(a) \in \Pi(p)\right\}\right| .
\end{align*}
$$

Define F_{1}^{\prime} as the set of edges (a, p) in $\Gamma_{\Omega, p}$ with $a \in Q \backslash \Omega_{1}$. In addition, define F_{2}^{\prime} as the set of edges (a, p) in $\Pi_{\Omega}(p)$ such that $a \in Q \backslash \Omega_{1}$ and $(a, p)=s_{\Omega}(a)$. Notice that

$$
\begin{equation*}
F_{1}^{\prime} \cup F_{2}^{\prime}=\Pi_{\Omega}\left(Q \backslash \Omega_{1}\right) \cap \Pi_{\Omega}(p) . \tag{10}
\end{equation*}
$$

It follows from (4), (9), and (10) that if

$$
\begin{equation*}
r_{\mathcal{P}_{\Omega, p}}\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right) \leq r_{\mathcal{P}_{p}}\left(F_{1} \cup F_{2}\right), \tag{11}
\end{equation*}
$$

then (8) follows and the proof is done because

$$
\begin{aligned}
r_{\mathcal{P}_{\Omega}}\left(\Pi_{\Omega}\left(Q \backslash \Omega_{1}\right)\right) & =\sum_{p \in P} r_{\mathcal{P}_{\Omega, p}}\left(\Pi_{\Omega}\left(Q \backslash \Omega_{1}\right) \cap \Pi_{\Omega}(p)\right) \\
& =\sum_{p \in P} r_{\mathcal{P}_{\Omega, p}}\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right) \\
& \leq \sum_{p \in P} r_{\mathcal{P}_{p}}\left(F_{1} \cup F_{2}\right) \\
& \leq \sum_{p \in P} r_{\mathcal{P}_{p}}(\Pi(Q) \cap \Pi(p))+\sum_{p \in P}\left|\left\{a \in \Omega_{2} \mid f(a) \in \Pi(p)\right\}\right| \\
& =r_{\mathcal{P}}(\Pi(Q))+\left|\Omega_{2}\right| .
\end{aligned}
$$

It follows from (4) that

$$
\begin{align*}
r_{\mathcal{P}_{p}}\left(F_{1} \cup F_{2}\right) & =r_{\mathcal{M}_{p}}\left(F_{1}\right)+r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2}\right), \\
r_{\mathcal{P}_{\Omega, p}}\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right) & =r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right)+r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2}^{\prime}\right) \tag{12}
\end{align*}
$$

For every edge (a, p) in $F_{2}^{\prime} \backslash F_{2}$, we have

$$
\pi(f(a))>\pi((a, p))>\pi(s(a))
$$

This implies that $(a, p) \notin \mathcal{I}_{p} / \Gamma_{p}$ for every edge (a, p) in $F_{2}^{\prime} \backslash F_{2}$. Thus, we have

$$
\begin{equation*}
r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2}\right)=r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2} \cup F_{2}^{\prime}\right) \tag{13}
\end{equation*}
$$

Furthermore, it follows from the monotonicity of $r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}(\cdot)$ that

$$
\begin{equation*}
r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2}^{\prime}\right) \leq r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2} \cup F_{2}^{\prime}\right) \tag{14}
\end{equation*}
$$

It follows from $\Gamma_{\Omega, p} \subseteq \Gamma_{p}$ and Lemma 3 that

$$
\begin{equation*}
r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2} \cup F_{2}^{\prime}\right)-r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2} \cup F_{2}^{\prime}\right) \leq r_{\mathcal{M}_{p}}\left(\Gamma_{p}\right)-r_{\mathcal{M}_{p}}\left(\Gamma_{\Omega, p}\right) \tag{15}
\end{equation*}
$$

Since $\Gamma_{p} \backslash \Gamma_{\Omega, p}=F_{1} \backslash F_{1}^{\prime}$ and $F_{1}^{\prime} \subseteq \Gamma_{\Omega, p}$, it follows from (2) that

$$
\begin{equation*}
r_{\mathcal{M}_{p}}\left(\Gamma_{p}\right)-r_{\mathcal{M}_{p}}\left(\Gamma_{\Omega, p}\right) \leq r_{\mathcal{M}_{p}}\left(F_{1}\right)-r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right) \tag{16}
\end{equation*}
$$

It follows from (13), (14), (15), and (16) that

$$
\begin{align*}
r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2}^{\prime}\right)-r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2}\right) & \leq r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2} \cup F_{2}^{\prime}\right)-r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2} \cup F_{2}^{\prime}\right) \\
& \leq r_{\mathcal{M}_{p}}\left(\Gamma_{p}\right)-r_{\mathcal{M}_{p}}\left(\Gamma_{\Omega, p}\right) \tag{17}\\
& \leq r_{\mathcal{M}_{p}}\left(F_{1}\right)-r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right)
\end{align*}
$$

It follows from (12) and (17) that

$$
\begin{aligned}
r_{\mathcal{P}_{\Omega, p}}\left(F_{1}^{\prime} \cup F_{2}^{\prime}\right)-r_{\mathcal{P}_{p}}\left(F_{1} \cup F_{2}\right) & =r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right)-r_{\mathcal{M}_{p}}\left(F_{1}\right)+r_{\mathcal{M}_{p} / \Gamma_{\Omega, p}}\left(F_{2}^{\prime}\right)-r_{\mathcal{M}_{p} / \Gamma_{p}}\left(F_{2}\right) \\
& \leq r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right)-r_{\mathcal{M}_{p}}\left(F_{1}\right)+r_{\mathcal{M}_{p}}\left(F_{1}\right)-r_{\mathcal{M}_{p}}\left(F_{1}^{\prime}\right) \\
& =0 .
\end{aligned}
$$

This implies (11), which completes the proof.
Theorem 11. The algorithm PCuMC correctly solves the popular condensation problem under matroid constraints.

Proof. This theorem follows from Lemmas 8, 9 and 10.
Here we analyze the time complexity of the algorithm PMuMC. Define $m:=|E|$, and we assume that for each post p in P, each independent set I in \mathcal{M}_{p}, and each edges e in I and e^{\prime} in $E(p) \backslash I$, we can check in $O(\gamma)$ time whether $I-e+e^{\prime}$ and $I+e^{\prime}$ belong to \mathcal{I}_{p}. It follows from Lemma 2 that once we find a base in $\mathcal{M}_{p} \mid \Gamma_{p}$, for each independent set I in $\mathcal{M}_{p} / \Gamma_{p}$ and each edges e in I and e^{\prime} in $E(p) \backslash\left(I \cup \Gamma_{p}\right)$, we can check in $O(\gamma)$ time whether $I-e+e^{\prime}$ and $I+e^{\prime}$ belong to $\mathcal{I}_{p} / \Gamma_{p}$. Thus, for each independent set I in \mathcal{P} and each edges e in I and e^{\prime} in $E \backslash I$, we can check in $O(\gamma)$ time whether $I-e+e^{\prime}$ and $I+e^{\prime}$ are independent sets in \mathcal{P}. This implies that the time complexity of the algorithm PCuMC is $O\left(m^{3} \gamma\right)$.

Next we consider a weighted variant of the popular condensation problem under matroid constraints. More precisely, in this problem, we are given a weight function $w: A \rightarrow \mathbb{Z}_{+}$. The goal is to find a maximum-size popular condensation X maximizing $\sum_{a \in X} w(a)$. This problem can be solved as follows. For each edge (a, p) in Π, we define the weight of (a, p) as $w(a)$. This weighted variant can be solved by finding a maximum-size common independent set of \mathcal{A} and \mathcal{P} with maximum-weight at Step 1 of the algorithm PCuMC. It is known [4] that this problem can be solved in $O\left(m^{3} \gamma\right)$ time (see also [13, Section 41.3]). Thus, this weighted variant can be solved in $O\left(m^{3} \gamma\right)$ time.

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, 37(4):1030-1045, 2007.
[2] M. Aigner and T. A. Dowling. Matching theory for combinatorial geometries. Transactions of the American Mathematical Society, 158(1):231-245, 1971.
[3] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani, N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications, pages 69-87. Gordon and Breach, 1970.
[4] A. Frank. A weighted matroid intersection algorithm. Journal of Algorithms, 2(4):328-336, 1981.
[5] P. Gärdenfors. Match making: Assignments based on bilateral preferences. Behavioral Science, 20(3):166-173, 1975.
[6] N. Kamiyama. Popular matchings under matroid constraints. MI Preprint Series 2014-1, Kyushu Univeristy.
[7] T. Kavitha and M. Nasre. Popular matchings with variable item copies. Theoretical Computer Science, 412(12):1263-1274, 2011.
[8] T. Kavitha, M. Nasre, and P. Nimbhorkar. Popularity at minimum cost. In Proceedings of the 21st International Symposium on Algorithms and Computation, volume 6506 of Lecture Notes in Computer Science, pages 145-156, 2010.
[9] E. L. Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31-56, 1975.
[10] D. F. Manlove and C. T. S. Sng. Popular matchings in the capacitated house allocation problem. In Proceedings of the 14th Annual European Symposium on Algorithms, volume 4168 of Lecture Notes in Computer Science, pages 492-503, 2006.
[11] J. Mestre. Weighted popular matchings. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, volume 4051 of Lecture Notes in Computer Science, pages 715-726, 2006.
[12] J. G. Oxley. Matroid theory. Oxford University Press, 2nd edition, 2011.
[13] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[14] C. T. S. Sng and D. F. Manlove. Popular matchings in the weighted capacitated house allocation problem. Journal of Discrete Algorithms, 8(2):102-116, 2010.
[15] Y.-W. Wu, W.-Y. Lin, H.-L. Wang, and K.-M. Chao. An optimal algorithm for the popular condensation problem. In Proceedings of the 24th International Workshop on Combinatorial Algorithms, volume 8288 of Lecture Notes in Computer Science, pages 412-422, 2013.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings
MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations
MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

[^1]
MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing
MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization
MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks
MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun's differential equations, eigenstates degeneration, and Rabi's model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible NavierStokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA \& Sadanori KONISHI Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space
MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties
MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression
MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints
MI2014-2 Yasuhide FUKUMOTO \& Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetrybreaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

[^0]: *This work is partly supported by KAKENHI(25730006).

[^1]: MI2010-24 Toshimitsu TAKAESU
 A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

