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INTRODUCTION TO THE
VARIANCE-STABILIZING BANDWIDTH FOR
THE NADARAYA-WATSON REGRESSION

ESTIMATOR

By

Kiheiji NISHIDA∗ and Yuichiro KANAZAWA†

Abstract

In linear regression under heteroscedastic variances, Aitken estimator is em-
ployed to account for the differences in variances. Employing the same princi-
ple, we propose the Nadaraya-Watson regression estimator with variable variance-
stabilizing bandwidth (VS bandwidth) that minimizes asymptotic MISE (AMISE)
while maintaining asymptotic homoscedasticity. We examine its local and global
properties relative to the MISE minimizing fixed bandwidth. The proposed VS
bandwidth produces the asymptotic variance smaller on some part of the support
than the fixed bandwidth and may in some cases achieve smaller AMISE than its
fixed counterpart. In numerical examples, we find that the proposed VS bandwidth
is more serviceable when the distribution of X’s are flatter.

Key Words and Phrases: Aitken estimator, Bandwidth selection, The Nadaraya-Watson esti-

mator, Variable bandwidth, Variance-stabilization.

1. Introduction

Suppose we construct a Nadaraya-Watson regression estimator (henceforth the NW
estimator, Nadaraya, 1964, 1965, 1970; Watson, 1964; Watson and Leadbetter, 1963)
from a pair of observations (xi, yi) i = 1, 2, . . . , n. This simple setup is well suited to
briefly explain the mechanism of variance-stabilization as stated later in (7) and the
relative magnitude of the mean integrated squared error to be determined as stated in
(13). The response Yi is influenced by the explanatory variable Xi in the form of m(Xi)
and the disturbance Ui as

Yi = m(Xi) + Ui, (1)

where the Xi’s, i = 1, 2, ..., n are i.i.d. random variables whose marginal density is
defined as fX(x) on support I and Ui’s, i = 1, 2, ..., n are identically distributed random
variables conditionally independent upon Xi and independent of Xj , i ̸= j. We assume
that their conditional moments are,

EUi|Xi
[Ui|Xi = x] = 0, EUi|Xi

[U2
i |Xi = x] = σ2(x) < ∞.
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Under these assumptions, the function m(Xi) in (1) is expressed as the conditional
expectation m(Xi) = EYi|Xi

(Yi|Xi) =
∫
yfY |X(y|x)dy =

∫
yfX,Y (x, y)/fX(x)dy, where

fX,Y (x, y) is bivariate density function of (X,Y ). By replacing these fX,Y (x, y) and
fX(x) with their kernel bivariate and univariate estimates, the former with multiplicative
kernel KX,Y (x, y) = KX(x)KY (y) of respective bandwidths hx and hy on X and Y and
the latter of kernel KX(x) of the bandwidth hx on X, we arrive at the usual NW

estimator at X = x as m̂hx
(x) =

∑n
i=1 KX

(
x−Xi

hx

)
Yi/

∑n
i=1 KX

(
x−Xi

hx

)
. We write the

kernel function KX(t) as K(t) for brevity.

Variance and bias of the NW estimator have been well known (see e.g. Pagan and
Ullah 1999). With the standard set of assumptions on kernel K1-K3 and the additional
assumptions A1-A6 on fX(x), σ2(x), m(x) and hx in section 2., the theoretical bias of
the NW estimator m̂hx(x) at x is

EX,Y[m̂hx(x)]−m(x) =
h2
xα(x)

2fX(x)

[∫
t2K(t)dt

]
+O

(
1

nhx

)
+ o(h2

x), (2)

where, for notational convenience, we write

α(x) = 2m(1)(x)f
(1)
X (x) +m(2)(x)fX(x).

Similarly the theoretical variance at x is known to be,

VX,Y[m̂hx(x)] =
1

nhx
· σ

2(x)

fX(x)

[∫
K2(t)dt

]
+O

(
1

n

)
+ o

(
1

nhx

)
. (3)

Finding bandwidth selection rule is an important issue in nonparametric regression.
Härdle et al. said, “[W]e are faced with the problem of finding a bandwidth-selection
rule that has desirable theoretical properties and is applicable in practice” (Härdle et.al.,
2004, p.94). One of such desirable theoretical properties is pointwise convergence in prob-
ability of the proposed estimator to the underlying regression function, which naturally
leads to a bandwidth selection rule that minimizes the mean squared error (MSE) at
a single point. But if we are interested in how well the entire m(x) performs over the
support, then we would rather use the global measure of closeness, which leads to the
mean integrated squared error (MISE),

MISE(m(x), m̂hx
(x))

=

∫
I

[∫
I

· · ·
∫
I

[m(x)− m̂hx(x)]
2

n∏
i=1

fXi,Yi(xi, yi)dxidyi

]
fX(x)dx (4)

and the fixed bandwidth so obtained is

hfixed =

 [∫
K2(t)dt

] ∫
I
σ2(x)dx[∫

t2K(t)dt
]2 ∫

I
α2(x)
fX(x)dx

 1
5

n− 1
5 . (5)

It is known that the NW estimator with this fixed bandwidth converges in mean square
and therefore converges in probability pointwise to m(x) with additional assumptions
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K4-K5 (see e.g. Härdle et.al., 2004, pp.93-94). Substituting (5) for (3) gives the leading
term of the theoretical variance (henceforth asymptotic variance or abbreviated as AV),

AVX,Y

[
m̂h

fixed
(x)

]
=

σ2(x)

fX(x)

 [∫
K2(t)dt

] 4
5
[∫

I
σ2(x)dx

]− 1
5[∫

t2K(t)dt
]− 2

5

[∫
I

α2(x)
fX(x)dx

]− 1
5

n− 4
5 . (6)

The MISE minimizing fixed bandwidth in (5) does not achieve asymptotic ho-
moscedasticity of the m̂hx(x) up to the leading term (henceforth asymptotic homoscedas-
ticity) unless fX(x) and σ2(x) are of the same functional form on I. To numerically illus-
trate the point, we consider two non-linear cases where regression function ism(x) = 4x3.
We suppose that the data are clustered around the center of the support I = [0, 1] and
they tapered off towards both tails with density fX(x) is the normal N(0.5, 0.04) trun-
cated on I. As a kernel function, we use the Epanechnikov kernel.

Let us first see a case where the conditional variance σ2(x) stays constant, say, at

0.25. See the left panel of Figure 1 for the m(x), m(x) ± 1.96AV
1/2
Xi,Yi

[
m̂hfixed

(x)
]
and

fX(x) along with one set of randomly generated (Xi, Yi) i = 1, . . . , 1000. Consider next
an often observed case where the conditional variance increases as m(x) increases, say,
σ2(x) = (x + 0.5)2 as in the left panel of Figure 2. In both of these panels, we observe
that the asymptotic variances in (6) are larger at both tails.
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Figure 1: Plots of the asymptotic variances. Conditional variance σ2(x) stays constant at 0.25,
m(x) = 4x3 and fX(x) is a normal distribution N(0.5, 0.04) truncated on [0, 1].

In linear regression under non-spherical or heteroscedastic variances, generalized
least-squares or Aitken estimator is employed to account for the differences in variances
at different x’s. We feel that the NW estimators can be improved by employing the same
principle of variance-stabilization. If we let the bandwidth hx vary, but in the form,

hV S(x) = h0 ·
σ2(x)

fX(x)
, (7)



56 K. NISHIDA and Y. KANAZAWA

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

* *

*

*
*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

**

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

x

D
en

si
ty

 / 
y

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

m(x)

m(x) ± 1.96V1 2[m̂(x)], h=fixed    
fX(x)

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*
*

*

*

*

* *

*

*
*

*

*
*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*
*

*

*

**

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

* *

*

*

*
*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

** *

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

**
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

**

*

**

**

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

**

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

* *

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*
*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
x

D
en

si
ty

 / 
y

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4

m(x)

m(x) ± 1.96V1 2[m̂(x)], h=VS    
fX(x)

Figure 2: Plots of the asymptotic variances.
Conditional variance σ2(x) increases as m(x) increases as σ2(x) = (x+0.5)2, m(x) = 4x3 and fX(x) is
a normal distribution N(0.5, 0.04) truncated on [0, 1].

where h0 is constant possibly dependent on the kernel K(t), the regression function
m(x), the density fX(x) of X and the conditional variance function σ2(x), averaged
over I, it achieves asymptotic homoscedasticity. Hence, variable bandwidth of the form
(7) is variance-stabilizing (henceforth VS).

This variable VS bandwidth can be justified for two reasons: First in the domain
where the density fX(x) is low, (7) forces one to choose wider bandwidth. The fX(x)
being low means that there are relatively few data points on the region, so aggregating
them over wider region to estimate the regression function m(x) makes sense. Second
in the region where the variances σ2(x) are low, the bandwidths should be narrower
because the small variances imply that those data points are more accurate there.

To determine h0 in (7), we choose h0 so as to minimize the MISE among the class
of bandwidths (7). The variable VS bandwidth so obtained is

hV S(x) =

 [∫
K2(t)dt

][∫
t2K(t)dt

]2 [∫
I

σ8(x)α2(x)
f5
X
(x)

dx
]
 1

5

n− 1
5 · σ

2(x)

fX(x)
, (8)

and the corresponding asymptotic variance is

AVX,Y

[
m̂h

V S
(x)

]
=

 [∫
K2(t)dt

] 4
5[∫

t2K(t)dt
]− 2

5

[∫
I

σ8(x)α2(x)
f5
X
(x)

dx
]− 1

5

n− 4
5 . (9)

The derivation of h0 is in Appendix. It is easy to see that the proposed bandwidth
enables m̂hV S

(x) to converge in probability to m(x) pointwise with conditions K1-K5
and A1-A6 because MSE at every point of x is the same order of magnitude n−4/5 of
the MISE minimizing fixed bandwidth in (5).
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To numerically illustrate the effect of this variance stabilization, see the right panels
of Figure 1 where σ2(x) = 0.25, and of Figure 2 where σ2(x) = (x + 0.5)2, for the

aforementioned m(x), m(x) ± 1.96AV
1/2
Xi,Yi

[m̂hV S
(x)] and fX(x) along with the same

set of randomly generated (Xi, Yi) i = 1, . . . , 1000. We observe that the asymptotic
variance (9) stays constant on the domain.

Now we need to ask ourselves three questions: First how well the “stabilized”
asymptotic variance in (9) fares relative to the asymptotic variance in (6) locally. Second
how well the proposed variable VS bandwidth in (8) performs globally in comparison
with the fixed bandwidth in (5) in terms of, say, the MISE. Even if these questions
can be answered affirmatively, we wonder if the variance-stabilizing bandwidth in (8) is
feasible in the sense that its sample-based criterion function such as the cross-validation
statistic can be formulated.

In this paper, we answer the first two questions affirmatively in propositions 1, 2
and 3 in section 2.. As for the last question, it is beyond the scope of this paper given
the available space. In section 3., we present two illustrative examples to demonstrate
propostions 1 and 3 and to investigate how fat-tailedness of the distribution of X’s
affects MISE. In section 4., we give comment on the proposed VS bandwidth.

2. Asymptotic results

Suppose that the kernel function satisfy:

K1 Kernel is a density function K(t) symmetric about zero.

K2
∫
t2K(t)dt < ∞.

K3
∫
K2(t)dt < ∞.

K4
∫
|K(t)|dt < ∞.

K5 limt→±∞ tK(t) → 0.

We place the following standard set of assumptions:

A1 hx → 0 as n goes to infinity.

A2 nhx → ∞ as n goes to infinity.

A3 The density of X is 0 < fX(x) < ∞ on a compact support I.

A4 The fX(x) is bounded continuously differentiable on I. 1

A5 The conditional variance σ2(x) is continuous with respect to x and 0 < σ2(x) < ∞
on I.

A6 The regression function m(x) is twice bounded continuously differentiable 2 and is
bounded and not identically constant on I.

1 At the left (right) boundary, fX(x) is right (left) differentiable.
2 At the left (right) boundary, m(x) is twice right (left) differentiable.
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Define the ratio of two “densities” of the σ2(x) to the fX(x) or

γ(x) =
σ2(x)∫

I
σ2(x)dx

/
fX(x)∫

I
fX(x)dx

. (10)

Consequently, by A3, A4 and A5, we can define xmax = argmaxx∈I γ(x) and xmin =
argminx∈I γ(x). Note that the quantity γ(x), in (10), by virtue of the fact that it is a
ratio of two “densities,” γ(xmin) ≤ 1 ≤ γ(xmax). It is easy to see that (6) is expressed
as a function of γ(x),

AVX,Y

[
m̂h

fixed
(x)

]
= γ(x) ·

 [∫
K2(t)dt

] 4
5
[∫

I
σ2(x)dx

] 4
5[∫

t2K(t)dt
]− 2

5

[∫
I

α2(x)
fX(x)dx

]− 1
5

n− 4
5 ,

where the term on the right hand side other than γ(x) is constant. Then, we show in
proposition 1 that the asymptotic homoscedastic variance in (9) is bounded above and
below by its heteroscedastic counterparts in (6).

Proposition 1. Asymptotic homoscedastic variance AVX,Y [m̂hV S (x)] in (9) is bounded
above and below by the maximal and the minimal heteroscedastic counterparts in (6) for
all x ∈ I, or

AVX,Y

[
m̂hfixed

(xmin)
]
≤ AVX,Y [m̂hV S

(x)] ≤ AVX,Y

[
m̂hfixed

(xmax)
]
. (11)

Proof . Subtracting the leading term of (9) raised to the fifth from that of (6) obtains

AV 5
X,Y

[
m̂hfixed

(x)
]
−AV 5

X,Y [m̂hV S
(x)]

= C0 · n−4

[
γ5(x)

∫
I

α2(z)

fX(z)
dz −

∫
I

γ4(z)
α2(z)

fX(z)
dz

]
, (12)

where C0 =
[∫

K2(t)dt
]4 [∫

t2K(t)dt
]2 [∫

I
σ2(z)dz

]4
> 0. Evaluating (12) at x = xmax,

we obtain

AV 5
X,Y

[
m̂hfixed

(xmax)
]
−AV 5

X,Y [m̂hV S
(xmax)]

= C0 · n−4

∫
I

[
γ5(xmax)− γ4(z)

] α2(z)

fX(z)
dz ≥ 0,

because γ5(xmax) ≥ γ4(xmax) ≥ γ4(z) and α2(z)/fX(z) ≥ 0. Similarly evaluating (12)
at x = xmin, we obtain

AV 5
X,Y

[
m̂hfixed

(xmin)
]
−AV 5

X,Y [m̂hV S
(xmin)]

= C0 · n−4

∫
I

[
γ5(xmin)− γ4(z)

] α2(z)

fX(z)
dz ≤ 0,

because γ5(xmin) ≤ γ4(xmin) ≤ γ4(z) and α2(z)/fX(z) ≥ 0. ⊓⊔

Remark 1. We mentioned before that if fX(x) and σ2(x) are of the same functional
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form, AVX,Y

[
m̂hfixed

(x)
]
is constant. If this is the case, fX(x)/

∫
I
fX(x)dx coincides

with σ2(x)/
∫
I
σ2(x)dx, and, the asymptotic heteroscedastic variance in (6) is identical

to its homoscedastic counterpart in (9). In other words, our proposed VS bandwidth
hV S is the generalization of the hfixed.

Let us call the leading term of theMISE(m(x), m̂hx(x)) in (4) as asymptotic MISE
or the AMISE(m(x), m̂hx(x)) and call the leading term of the bias in (2) as asymptotic
bias. Similarly, we call the asymptotic variance (bias squared) integrated with respect
to fX(x) on I as integrated asymptotic variance (bias squared). Then, we have the fol-
lowing result on global performance of the proposed VS bandwidth in (8) and its fixed
counterpart in (5).

Proposition 2. The ratio of the integrated asymptotic variance to the integrated asymp-
totic bias squared under the proposed VS bandwidth hV S(x) remains the same 4 to 1 as
the ratio under the MISE minimizing fixed bandwidth hfixed.

Proof . It is well-known that the relation,

AMISE(m(x), m̂h
fixed

(x)) =
5

4

∫
I

AVX,Y

[
m̂h

fixed
(x)

]
fX(x)dx,

is obtained because the AMISE is written as the function of a bandwidth hx, (1/nhx)C1+
(h4

x/4)C2, where C1 and C2 are respectively the integrated asymptotic variance and the
integrated asymptotic bias squared under the bandwidth hx. As seen from (A.2), the
same ratio of 4 to 1 is maintained between the integrated asymptotic variance and the
integrated asymptotic bias squared for h0, so

AMISE(m(x), m̂h
V S

(x)) =
5

4
AVX,Y

[
m̂h

V S
(x)

]
. ⊓⊔

Proposition 2 says that the AMISE can be measured by the integrated asymptotic
variance. We would expect from this and proposition 1 that the resulting AMISE under
the m̂hV S

(x) cannot be always larger than the AMISE under the m̂hfixed
(x).

Proposition 3. AMISE(m(x), m̂h
V S

(x)) is not larger than AMISE(m(x), m̂h
fixed

(x))

for all choices of (fX(x), σ2(x),m(x)).

Proof . It suffices to show that there are cases

AMISE5(m(x), m̂h
fixed

(x))−AMISE5(m(x), m̂h
V S

(x))

= C0

(
5

4

)5

· n−4

∫
I

[
1− γ4(x)

]
· α

2(x)

fX(x)
dx > 0. (13)

Since the γ(x) in (10) is the ratio of two “densities,” γ(x) cannot be greater than 1
for all x. Then, the term α2(x)/fX(x) can be found to hold (13) because the term is
independent of 1− γ4(x), given fX(x). ⊓⊔

Remark 2. The inequality (13) holds when the term α2(x)/fX(x) is large in the area
where γ(x) < 1, while the α2(x)/fX(x) is small in the area γ(x) > 1.
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3. Illustrative examples

Illustrative example 1. To demonstrate propositions 1 and 3, we give illustra-
tive example 1. Set fX(x) = 2(2 − x)/3 and m(x) = (x − 2)−2 on the domain
I = [0, 1] as in the left panel of Figure 3. This will determine α2(x)/fX(x) = (8/3)(2−
x)−7 to be a monotone increasing function on I as seen in the right panel of Fig-
ure 3. At the same time, this choice of fX(x) will dictate the choice of σ2(x) to
be a function of (2 − x) in order for γ(x) = 1. Let us set σ2(x) = 0.1(2 − x) or
σ2(x)/

∫
I
σ2(x)dx = 2(2− x)/3. It is easy to see from (10) that γ(x) = 1 and from (13)

that for these cases the AMISE(m(x), m̂hV S (x)) is equal to AMISE(m(x), m̂hfixed
(x)).

In view of Remark 2 and the fact that α2(x)/fX(x) is monotone increasing, we realize
AMISE(m(x), m̂hfixed

(x)) is larger than AMISE(m(x), m̂hV S (x)) when σ2(x) is ro-
tated about x = 0.5 clockwise as in the left panel of Figure 4, say to σ2(x) = 0.1(3−2x)
or σ2(x)/

∫
I
σ2(x)dx = (3 − 2x)/2, and the reverse occurs when σ2(x) is rotated coun-

terclockwise as in the same panel, say to σ2(x) = 0.1(x + 1) or σ2(x)/
∫
I
σ2(x)dx =

2(x+1)/3. Additionally, we see how the relative magnitude of these two measures when
the σ2(x) is constant as σ2(x) = 0.1 or σ2(x)/

∫
I
σ2(x)dx = 1.

For each conditional variance function σ2(x) above, we show in Table 1 the asymp-
totic homoscedastic variance in (9), the maximal and minimal values of the asymptotic
heteroscedastic variance in (6), and the ratio of the two AMISE’s,

r(fX(x), σ2(x),m(x)) =
AMISE(m(x), m̂h

V S
(x))

AMISE(m(x), m̂h
fixed

(x))
. (14)

It is easy to see that the asymptotic homoscedastic variance in (9) is sandwitched by its
maximal and minimal counterparts in (6) as proposition 1 claims for a given σ2(x). We
also observe the ratio r moves from 1.51 to 0.89 as proposition 3 implies. From the two
right panels in Figures 3 and 4, we see that σ2(x) = 0.1(3 − 2x) creates the situation
described in Remark 2. 3

In addition, we present Figure 5 to understand how accurately the NW estimators
are locally estimated by the two bandwidths for the four conditional variance functions.
In each panel of the figure, we plot asymptotic mean squared errors (AMSE) of the NW
estimators for the two bandwidths at every point x. Simply adding the leading term
of the variance in (3) to the squared leading term of the bias in (2), we obtain AMSE.
Our proposed VS bandwidth outperforms MISE minimizing fixed bandwidth in terms
of AMSE at the point x smaller than approximately x = 0.8 for σ2(x) = 0.1(x+1), and
approximately x = 0.9 for σ2(x) = 0.1. When σ2(x) = 0.1(2− x) is employed, AMSE’s
of the two bandwidths coincide at every point. When σ2(x) = 0.1(3− 2x) is employed,
VS bandwidth outperforms MISE minimizing fixed bandwidth at the point x greater
than approximately x = 0.8. In this situation, we notice that, at these points greater
than approximately x = 0.8, AMSE’s are greatly improved by VS bandwidth while we
see small deterioration of AMSE’s at the rest of the points.

3 We are sometimes asked a question if the data characterized by fX(x) = 2(2−x)/3, m(x) = (x−2)−2

and σ2(x) = 0.1(3 − 2x) is often observed in realistic data analysis. We can find a typical example
illustrating the situation when we explain test scores of students by their preparation time spent for
the test. Those students who spent a lot of preparation time can get higher test score with small
variance and the number of those students are small in general.
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Figure 3: Functions in illustrative example 1.
The regression function m(x) = (x − 2)−2 and its associated density of X are illustrated in the left
panel. The function α2(x)/fX(x) = (8/3)(2− x)−7 in the integrand in (13) is in the right panel.
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Figure 4: Functions in illustrative example 1.

The “densities” σ2(x)/
∫
I
σ2(x)dx for the four σ2(x)’s are illustrated in the left panel, while the functions

1− γ4(x) for the four σ2(x)’s are in the right panel.
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Figure 5: Plots of AMSE’s for the four types of σ2(x).
In each panel, we plot AMSE’s of the NW estimators for the two bandwidths at every point x. Please
note that, when employed σ2(x) = 0.1(2− x), plots of the two AMSE’s coincide.
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σ2(x) homo.var. in (9) hetero.var. in (6) r in (14)

min. (arg.min) max. (arg.max)

0.1(x+ 1) 0.0981 0.0324 (x = 0) 0.1297 (x = 1) 1.5133
0.1 0.0587 0.0351 (x = 0) 0.0703 (x = 1) 1.2525
0.1(2− x) 0.0648 0.0648 0.0648 1.0000
0.1(3− 2x) 0.0727 0.0612 (x = 1) 0.0918 (x = 0) 0.8904

Table 1: The result of numerical calculation for illustrative example 1.
The values of the homoscedastic variance in (9), the maximal and the minimal of the asymptotic
heteroscedastic variance in (6) and the ratio r of the AMISE’s in (14) are respectively calculated
numerically for four σ2(x) for a given (fX(x) = 2(2− x)/3 , σ2(x), m(x) = (2− x)−2). In calculating
variances, n is set to be 1 and the Epanechnikov kernel is employed. The calculated numbers are
rounded to the fourth decimal place.

Illustrative example 2. We give illustrative example 2 to investigate how fat-tailedness
of the distribution of X’s affects the ratio r of the AMISE’s in (14). This is because we
expect low density fX(x) at and near the boundaries of I = [0, 1] makes the proposed
VS bandwidth very wide, rendering the bias not to be ignorable. For this, we retain
m(x) = (x− 2)−2 on I = [0, 1] from illustrative example 1. We then set the conditional
variance σ2(x) to be fixed at 0.1 as the regression function m(x) increases. This constant
σ2(x) over the support corresponds to the second row in Table 1. If the σ2(x) varies, it
is more likely to increase as the m(x) increases. Thus we additionally set in the form
of increasing σ2(x) = 0.1(x + 1), which corresponds to first row in Table 1. Now, on
Table 2, we set up 17 cases all truncated normal with mean 0.5 at the center of support
I and with the original (that is, before truncation) normal standard deviation s ranging
from 0.25 to 1 to infinity. The second column of Table 2 shows that how many data
are concentrated on I if the normal is not truncated on I. As s increases, the densities
of X’s are more flat. Especially when s approaches infinity, the distribution of X’s is
uniform. The third and fourth columns on Table 2 give the resulting r’s in (14) for the
aforementioned two cases of σ2(x). In Figure 6, we plotted the points (s, r) shown in
Table 2 for the two σ2(x)’s.

For σ2(x) = 0.1, from Table 2 and Figure 6, the ratio r in (14) rapidly decreases in
the begining but more slowly later from 2.2751 to 0.9956 as s increases from 0.25 to 0.6.
As s increases further from 0.6 to 0.85, the ratio r increases but barely to 1.0220. As
s grows from 0.85 to infinity, the ratio r decreases again slowly to 1.0000. Similarly, in
the case of σ2(x) = 0.1(x+ 1), the ratio r rapidly decreases from 2.8074 to 0.9976 as s
increases from 0.25 to 0.6. As s increases further from 0.6 to 0.95, the ratio r increases
to 1.1934. As s grows from 0.95 to infinity, the ratio r decreases again slowly to 1.1883.
We notice that the ratios r in both cases are quite high when X’s are concentrated in
the middle, but barely affected when X’s has flatter distribution.

4. Discussion

In this paper, we first show, in proposition 1, that the proposed VS bandwidth
produces the asymptotic variance smaller than that proposed by the standard fixed
bandwidth on some part of the support I for the NW estimator. We then show, in
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s
∫
I
ϕ(x; s)dx r in (14)

σ2(x) = 0.1 σ2(x) = 0.1(x+ 1)
0.25 0.9545 2.2751 2.8077
0.3 0.9044 1.7000 2.0834
0.35 0.8468 1.4347 1.7408
0.4 0.7887 1.2762 1.5202
0.45 0.7334 1.1543 1.3178
0.5 0.6826 1.0519 1.0859
0.55 0.4721 0.9980 0.9976
0.6 0.4611 0.9956 0.9976
0.65 0.4500 1.0071 1.0817
0.7 0.4392 1.0157 1.1317
0.75 0.4950 1.0201 1.1596
0.8 0.4186 1.0218 1.1755
0.85 0.4090 1.0220 1.1847
0.9 0.3998 1.0214 1.1901
0.95 0.3911 1.0204 1.1934
1.0 0.3829 1.0193 1.1953
∞ — 1.0000 1.1883

Table 2: The result of numerical calculation for illustrative example 2.
The function ϕ(x; s) in the second column is the density function of N(0.5, s2). The ratio in (14) is
calculated numerically for different values of the parameter s. The calculated numbers are rounded to
the fourth decimal place.
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Figure 6: The plots of (s, r) in Table 2.
We plot the parameter s and the cerresponding r shown in Table 2 for the two conditional variance
functions σ2(x).
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proposition 3, that the proposed bandwidth may in some cases achieve even smaller
AMISE while maintaining homoscedasticity. To demonstrate the propositions, we give
illustrative example 1 to show that the penalty for homoscedasticity in terms of the
AMISE ranges from -11% (that is, the proposed bandwidth is preferable) to 51% in
Table 1.

In illustrative example 2, we examine how fat-tailedness of the distribution of X’s
affects the AMISE. It shows that the proposed VS bandwidth in (7) is more serviceable
when the distribution X’s are somewhat flatter because only several percentage point of
penalty in the form of the increased AMISE is imposed in exchange for homoscedastic
m̂hx(x).

In Table 2, we are surprised to find that the ratios r go below unity when s = 0.55
and 0.60 in both σ2(x). Since the result is based on the limited number of numerical
calculations, however, it is difficult to generalize the result to conclude that there will
always be the cases where the proposed VS bandwidth in (7) outperforms the conven-
tional fixed bandwidth in (5). Further extensive numerical investigation of this matter
will give us more insight into how the proposed VS bandwidth will perform.

Appendix

Integrating square of the bias in (2) and variance in (3) over the support I, MISE
between m̂hx(x) and m(x) is∫

I

[
1

nhx

σ2(x)

fX(x)

[∫
K2(t)dt

]
+ o

(
1

nhx

)
+O

(
1

n

)

+
h4
x

4

α2(x)

f2
X(x)

[∫
t2K(t)dt

]2
+ o

(
h4
x

)
+O

(
1

n2h2
x

)]
fX(x)dx. (A.1)

Substituting hx in (A.1) for hV S(x) in (7),

1

nh0

∫
I

[∫
K2(t)dt

]
fX(x)dx+ o

(
1

nh0

)
+O

(
1

n

)
+
h4
0

4

∫
I

σ8(x)α2(x)

f6
X(x)

[∫
t2K(t)dt

]2
fX(x)dx+ o

(
h4
0

)
+O

(
1

n2h2
0

)
, (A.2)

differentiating the two leading terms in (A.2) with respect to h0 and equating the out-
come to zero,

− 1

nh2
0

[∫
K2(t)dt

]
+ h3

0

[∫
t2K(t)dt

]2 ∫
I

σ8(x)α2(x)

f5
X(x)

dx = 0. (A.3)

The constant term in (8) is obtained by solving (A.3) with respect to h0. ⊓⊔
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