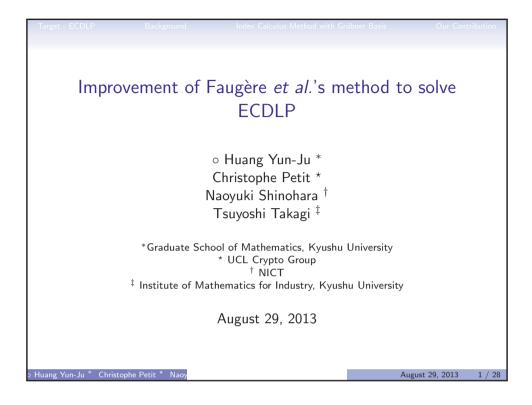
九州大学学術情報リポジトリ Kyushu University Institutional Repository

Improvement of Faugère et al.'s method to solve ECDLP

Yun-Ju, Huang Graduate School of Mathematics, Kyushu University

Petit, Christophe UCL Crypto Group

Shinohara, Naoyuki


Takagi, Tsuyoshi Institute of Mathematics for Industry, Kyushu University

https://hdl.handle.net/2324/1434304

出版情報: MI lecture note series. 53, pp.145-158, 2013-12-26. 九州大学マス・フォア・インダスト

リ研究所 バージョン: 権利関係:

Abstract Target: ECDLP problem. Motivation: A new technique for index calculus method algorithm to solve ECDLP proposed by Faugère et al. at Eurocrypt 2012. Contribution: Give a new idea to improve the algorithm proposed by Faugère et al. Implements different strategies solving ECDLP and compares them. Huang Yun-Ju * Christophe Petit * Naoy

Outline

Target - ECDLP

Background

Target - ECDLP

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Outline

August 29, 2013 3 / 28

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Contribution

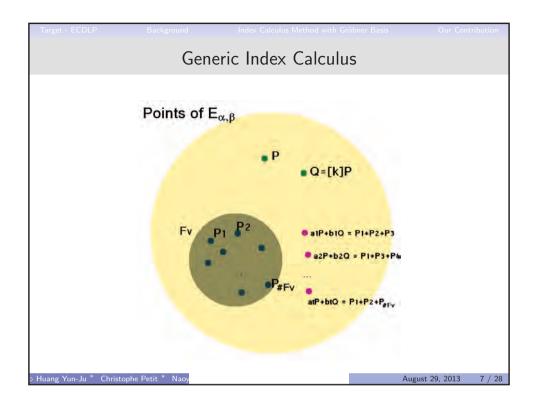
Elliptic Curve Discrete Log Problem (ECDLP)

Let F_{2^n} is a binary field of prime degree n over F_2 .

Let $E_{\alpha,\beta}: y^2+xy=x^3+\alpha x^2+\beta$ over field F_{2^n} , where $\alpha,\beta\in F_{2^n}$. Given $P\in E_{\alpha,\beta}$, $Q\in \langle P\rangle$,

Target

Find smallest non-negative integer k such that Q = [k]P


Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

Farget - ECDLP Background Index Calculus Method with Grobner Basis Our Contribution Known Algorithm

• Exhaustive Search Time Complexity : $O(2^n)$ • Pollard-rho Mehod Time Complexity : $O(2^{\frac{n}{2}})$ • Index Calculus Method Time Complexity : claimed to be sub-exponential $O(2^{cn^{2/3}\log n})$ by Petit et al. at Asiacrypto 2012.

Generic Index Calculus Mehod Generic Index Calculus Method $P, Q \in E_{\alpha,\beta}$ Input: $k \in N$ such that Q = [k]POutput: Setup factor base $F_V = \{P_i \in E_{\alpha,\beta} \mid x(P_i) \in V\}$ phase 1: Find sufficient relations phase 2: Relation Search $\begin{aligned} & \textit{sol}_m = \{ \sum_{1 \leq j \leq \textcolor{red}{m}} P_j' = [\texttt{a}]P + [\texttt{b}]Q \} \\ & \textit{for random } \texttt{a}, \texttt{b} \in N, \ P_j' \in F_V. \end{aligned}$ phase 3: Transform the relation to matrix M. phase 4: Find reduced echelon form M_{-} of M. Solve the relation [a']P + [b']Q = O in M_{-} . phase 5: $k = \frac{-a'}{b'}$. $x(P_i)$ means x-coordinate of P_i .

Target - ECDLP

Background

Index Calculus Method

P1 P2 ...
$$P_{\#F_V}$$
 P Q

$$\begin{pmatrix}
1 & 1 & 0 & a_1 & b_1 \\
1 & 0 & 0 & a_2 & b_2 \\
\vdots & & \ddots & \vdots & & \vdots \\
1 & 1 & \dots & 1 & a_t & b_t
\end{pmatrix}$$

$$\downarrow \text{ reduced row echelon form}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\vdots & & \ddots & \vdots & & \vdots \\
0 & 0 & \dots & 1 & 0 & 0 \\
0 & 0 & \dots & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0$$
Huang Yun-Ju * Christophe Petit * Naoy

August 29, 2013 8 / 28

Target - ECDLF

Background

ndex Calculus Method with Gröbner Basis

Our Contribution

Semaev's Polynomials[1]

Property - Semaev's summation polynomial

For R = [a]P + [b]Q, Semaev's summation polynomials s_{m+1} are multivariate polynomials where :

 $\forall x_1,...,x_m \in F_{2^n}$,

$$s_{m+1}(x_1, x_2, ..., x_m, x_r) = 0$$

if and only if $\exists P'_i, 1 \leq j \leq m$ such that

$$\sum_{1 \le j \le m} P'_j + R = O,$$

where $x_j = x(P'_i)$, $x_r = x(R)$.

The problem to find P'_j s.t, $\sum P'_j = R$ is now reduced to solve $s_{m+1}(x_1, x_m, x_r) = 0$. x_j is variable and x_r is known value.

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

9 / 28

Target - ECDLP

Background

Index Calculus Method with Gröbner Basis

Our Contributio

Version by Faugère et al. (FPPR)

In Eurocrypt 2012, Faug'ere, Perret, Petit and Renault proposed a new version to solve the Semaev's summation polynomials by Gröbner basis for phase 2 (Relation Search).

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

Target - ECDLE

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Variable Rewritten

We can regard F_{2^n} as the vector space defined by the basis $\{v_0, v_1, ..., v_{n'-1}\}$.

Variable Substitution

Let $x_j = x(P_j'), P_j' \in F_v$, if we rewrite $x_j = \sum_{0 \le \ell \le n'-1} c_{j,l} v_\ell$, then

$$\begin{array}{l} s_{m+1}(x_1,...,x_m,x_r) \\ = s_{m+1}(\sum_{0 \leq \ell \leq n'-1} c_{1,\ell} v_\ell,...,\sum_{0 \leq \ell \leq n'-1} c_{m,\ell} v_\ell,\sum_{0 \leq l \leq n-1} r_\ell v_\ell) \end{array}$$

where $c_{j,\ell} \in F_2$ is unknown and r_ℓ is known.

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

11 / 28

Target - ECDLF

Background

Index Calculus Method with Gröbner Basis

Our Contributio

Multivariable Polynomial System

Multivariable Polynomial System

$$\begin{split} s_{m+1} & (\sum_{0 \le \ell \le n'-1} c_{1,\ell} v_{\ell}, ..., \sum_{0 \le \ell \le n'-1} c_{m,\ell} v_{\ell}, \sum_{0 \le \ell \le n-1} r_{\ell} v_{\ell}) \\ & = f_{0}(c_{j,\ell}) v_{1} + f_{1}(c_{j,\ell}) v_{2} + ... + f_{n-1}(c_{j,\ell}) v_{n} \end{split}$$

where $1 \leq j \leq m, 1 \leq \ell \leq n'$, $c_{j,\ell} \in F_2$

 $s_{m+1} = 0$ over $F_{2^n} \iff f_0 = 0, f_1 = 0, f_{n-1} = 0$ over F_2 .

Huang Yun-Ju * Christophe Petit * Nac

August 29, 2013

Outline

Target - ECDLP

Background

Target - ECDLP

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Outline

Target - ECDLP

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Contribution

Symmetric function

Using the fact that Semaev's summation polynomials are symmetric, substitute the polynomials with elementary symmetric functions.

For example:

$$s_3 = (x_1x_2 + x_1x_r + x_2x_r)^2 + x_1x_2x_r + \beta$$

= $(\sigma_2 + \sigma_1x_r)^2 + \sigma_2x_r + \beta$

where

 $\sigma_1 = x_1 + x_2, \sigma_2 = x_1 x_2, \ \beta$ is the parameter of $E_{\alpha,\beta}$.

Huang Yun-Ju * Christophe Petit * Naoy August 29, 2013 14 / 28

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Cont

Rewritten system for symmetric function

Variables rewritten

$$x_1 = c_{1,0}v_1 + c_{1,1}v_2 + \dots + c_{1,n'-1}v_{n'}$$

$$x_2 = c_{2,0}v_1 + c_{2,1}v_2 + \dots + c_{2,n'-1}v_{n'}$$

$$\dots$$

$$x_m = c_{m,0}v_1 + c_{m,1}v_2 + \dots + c_{m,n'-1}v_{n'}$$

• Symmetric function rewritten

$$\sigma_{1} = d_{1,0}v_{1} + d_{1,1}v_{2} + \dots + d_{1,n-1}v_{n}
\sigma_{2} = d_{2,0}v_{1} + d_{2,1}v_{2} + \dots + d_{2,n-1}v_{n}
\dots
\sigma_{m} = d_{m,0}v_{1} + d_{m,1}v_{2} + \dots + d_{m,n-1}v_{n}$$

• Relation of variables and symmetric function

$$d_{1,0} = f_{1,0}(c_{i,j})$$

$$d_{1,1} = f_{1,1}(c_{i,j})$$

$$...$$

$$d_{m,n-1} = f_{m,n-1}(c_{i,j})$$

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

15 / 28

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Contribution

Symmetric function

- Using symmetric function for s_{m+1} is not a new idea. Gaudry, Diem, Joux and Vitse proposed this in composite extension degree. [2, 3, 4, 5]
- However, in prime extension degree makes the number of variables and number of polynomials grows too large. This makes it impracticable.

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

Target - ECDLP

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Special factor base V

Let $F_{2^n} = F_2[\omega]/h(\omega)$, where $h(\omega)$ is an irreducible polynomial of prime degree n over F_2 .

Using the special factor base $V = \{1, \omega, ..., \omega^{n'-1}\}$.

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

17 / 28

Target - ECDLF

Background

ndex Calculus Method with Gröbner Basis

Our Contribution

Rewritten system for symmetric function

• Variables rewritten

$$x_1 = c_{1,0} + c_{1,1}\omega + \dots + c_{1,n'-1}\omega^{n'-1}$$

$$x_2 = c_{2,0} + c_{2,1}\omega + \dots + c_{2,n'-1}\omega^{n'-1}$$

$$\dots$$

$$x_m = c_{m,0} + c_{m,1}\omega + \dots + c_{m,n'-1}\omega^{n'-1}$$

• Symmetric function rewritten

$$\sigma_{1} = d_{1,0} + d_{1,1}\omega + \dots + d_{1,n'-1}\omega^{n'-1}$$

$$\sigma_{2} = d_{2,0} + d_{2,1}\omega + \dots + d_{2,n'-2}\omega^{2n'-2}$$

$$\dots$$

$$\sigma_{2} = d_{m,0} + d_{m,1}\omega + \dots + d_{m,n'-m}\omega^{n-m}$$

• Relation of variables and symmetric function

$$d_{1,0} = f_{1,0}(c_{i,j})$$

$$d_{1,1} = f_{1,1}(c_{i,j})$$
...
$$d_{m,n'-m} = f_{m,n'-m}(c_{i,j})$$

Huang Yun-Ju * Christophe Petit * Nac

August 29, 2013

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Contribution

Symmetric function with specific vector base V

	s_{m+1}	s'_{m+1}	s_{m+1}' with specific V
#var	mn'	mn' + mn	$mn' + (n'-1)\frac{m(m+1)}{2} + m$
#poly	n	n + mn	$n + (n'-1)\frac{m(m+1)}{2} + m$
deg _{reg}	7 or 6	4 or 3	4 or 3

Table: Comparison for different multivariate polynomial system

The time and memory costs are respectively roughly $\#var^{2*deg_{reg}}$ and $\#var^{3*deg_{reg}}$.

Huang Yun-Ju * Christophe Petit * Naoy

August 29, 2013

19 / 28

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Contribution

Experimental Results

CPU: AMD Opteron 6276*4, 16 cores, 2.3GHz, L3 cache 16MB

OS : CentOS 6.3 RAM : 512 GB

Platform : Magma V2.18-9 64-bit version

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

Target - ECDLF

Background

Index Calculus Method with Gröbner Basis

Our Contribution

Experimental Results

Using Magma to finding one relation $\sum P_i = [a]P + [b]Q$.

	n	n'	sol: yes							
		''	D_{reg}	var	poly	mono	t _{trans}	t _{groe}	mem	
Imp _{FPPR}	23	3	6	9	23	2792.97	5.47	1.06	29.10	
Imp _{Ours}	23	3	3	24	38	1079.60	0.91	1.04	15.59	
Imp _{FPPR}	53	3	6	9	53	6358.94	12.86	1.03	72.06	
Imp _{Ours}	53	3	3	24	68	2348.50	2.12	0.79	24.89	
Imp _{FPPR}	23	4	6	12	23	12059.19	21.06	6.83	95.66	
Imp _{Ours}	23	4	3	33	44	2173.29	1.83	3.19	29.63	
Imp _{FPPR}	53	4	6	12	53	27655.34	50.63	1.86	272.55	
Imp _{Ours}	53	4	3	33	74	4701.09	4.19	1.75	40.46	

Table: Comparison of the relation search (m=3, n'=3,4) with two strategies, Imp_{FPPR} and Imp_{Ours}. Units are sec and MB

Huang Yun-Ju * Christophe Petit * Nao

August 29, 2013

21 / 29

Target - ECDLP Background Index Calculus Method with Gröbner Basis Our Con

Experimental Results

Using Magma to finding one relation $\sum P_i = [a]P + [b]Q$.

	n	n'	sol: yes							
	"		D_{reg}	var	poly	mono	t _{trans}	t _{groe}	mem	
Imp _{FPPR}	23	5	7	15	23	40168.90	64.67	70.46	475.55	
Imp _{Ours}	23	5	4	42	50	3572.00	3.01	157.86	323.60	
Imp _{FPPR}	53	5	6	15	53	91642.50	147.66	80.76	810.08	
Imp _{Ours}	53	5	3	42	80	8034.10	6.83	6.68	59.58	
Imp _{FPPR}	23	6	/	18	23	107008.67	163.45	3888.70	6656.13	
Imp _{Ours}	23	6	4	51	56	5270.00	4.36	5150.12	4791.31	
Imp _{FPPR}	53	6	7	18	53	245891.33	366.92	2967.03	7311.44	
Imp _{Ours}	53	6	3	51	86	11748.00	10.48	34.82	151.04	

Table: Comparison of the relation search ($m=3,\ n'=4,5$) with two strategies, Imp_{PPR} and Imp_{Ours}. Units are sec and MB

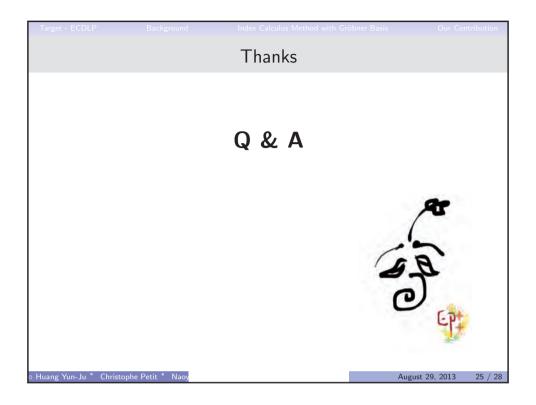
Huang Yun-Ju * Christophe Petit * Nac

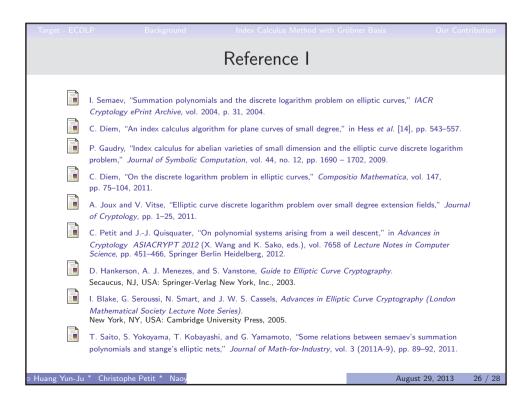
August 29, 2013

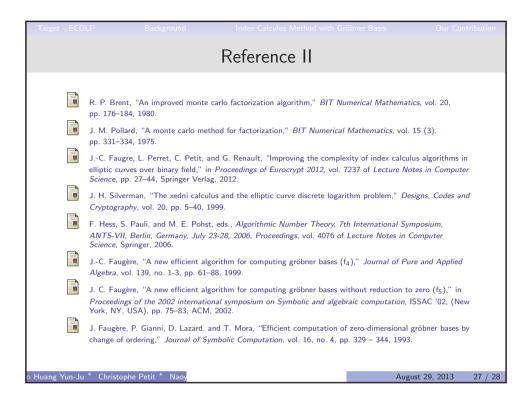
Using Magma to solve ECDLP.

n	$\# E_{\alpha,\beta}$	Imp _{FPPR}	Imp _{Ours}	
7	4*37	1.574	0.864	
11	4*523	8.625	6.702	
13	4*2089	49.698	31.058	
17	4*32941	2454.470	1364.742	
19	4*131431	22474.450	9962.861	

Table: Comparison of two ECDLP strategies, Imp_{FPPR} and Imp_{Ours} . The last two columns are computing time in seconds.


Huang Yun-Ju * Christophe Petit * Naov August 29, 2013 23 / 28


Conclusion


This work has been accepted by IWSEC2013.

We give the experimental evidence of our improvements.

Future work - parallization.

Target - ECD	LP Background Index Calculus Method with Gr	öbner Basis Our Cont	ribution						
	Reference III								
	J. M. Pollard, "Kangaroos, monopoly and discrete logarithms," <i>Journal of</i> 2000. D. Shanks, "Class number, a theory of factorization, and genera," in <i>196 Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y.</i> D. Bernstein, HC. Chen, CM. Cheng, T. Lange, R. Niederhagen, P. Sc. "Ecc2k-130 on nvidia gpus," in <i>Progress in Cryptology - INDOCRYPT 2</i> vol. 6498 of <i>Lecture Notes in Computer Science</i> , pp. 328–346, Springer L. Judge, S. Mane, and P. Schaumont, "A hardware-accelerated ecdlp wimultiplication," <i>International Journal of Reconfigurable Computing</i> , vol.	59 Number Theory Institute (Proc. 7., 1969), pp. 415–440, 1971. chwabe, and BY. Yang, 010 (G. Gong and K. Gupta, eds.) Berlin Heidelberg, 2010. ith high-performance modular 2012, 2012.							
⇒ Huang Yun-Ju	* Christophe Petit * Naoy	August 29, 2013	28 / 28						