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Sparse interpolation and signal processing

Annie Cuyt and Wen-shin Lee∗

Department of Mathematics and Computer Science
University of Antwerp, Belgium

Conventional interpolation algorithms do not take sparsity into consid-
eration and depend on the total degree or the maximum possible size of the
function. Traditionally, polynomial interpolation of n values fj at points xj
is a technique that determines the coefficients ai, i = 1, . . . , n in the model
a1φ1(x) + · · ·+ anφn(x) from the conditions

n
i=1

aiφi(xj) = fj , j = 1, . . . , n,

where the functions φ1(x), . . . , φn(x) satisfy the Haar condition. Several
numerical techniques to determine the values ai, for use with different φi(x),
are well-known. The numerical conditioning of the problem and the stability
of the algorithms have been analyzed in great detail.

On the other hand, sparse interpolation algorithms are sensitive to the
number of nonzero terms in the underlying representation and thus account
for the sparsity of the function. In computer algebra, the problem of inter-
polating a sparse polynomial has always been a major research focus. The
purpose is to improve computational performance: sparse interpolation and
representation algorithms are developed to control the intermediate swell
encountered in symbolic computation.

In 1979, Zippel gave the first sparse polynomial interpolation algorithm
[22]. Then in 1988, Ben-Or and Tiwari presented a different algorithm [2]
that is based on the Berlekamp/Massey algorithm [15] from coding theory.
The Ben-Or/Tiwari sparse interpolation algorithm can determine both the
correct indices ki and the coefficients ai, for i = 1, . . . ,m, in the model
a1x

k1 + . . .+ amxkm , with k1 < ... < km, from the 2m conditions
m
i=1

aix
ki
j = fj , j = 1, . . . , 2m.

Besides the monomial basis xi−1, the problem of interpolating
m
i=1

aiφki(xj) = fj , j = 1, . . . , 2m,
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from 2m evaluations is also solved for certain sequences of functions φi(x),
including the Chebyshev polynomials Ti−1(x), the Pochhammer symbols
(x)i−1 [13] and some multivariate generalizations of these [2]. In addition, a
probabilistic strategy called “early termination” is developed to detect the
number of nonzero terms (being m) when it is not supplied in the input
[12]. Sparse techniques solve the interpolation problem from a number of
samples fj proportional to the number of terms in the representation (being
m) rather than the number of available generating elements (being km).
In floating point arithmetic, the connection between Prony’s method [18]
and error-correcting codes has led to the development of symbolic-numeric
sparse polynomial interpolation [9], which exploits a generalized eigenvalue
reformulation [11, 10] and a link to Rutishauser’s qd-algorithm [5]. This
connection further enables a generalization of variants of Prony to other
basis functions [8].

Closely related to Padé approximation, the classical method of Prony has
found applications in the shape from moments problem [16], spectral analysis
[14], and lately sparse sampling of signals with finite rate of innovation [21],
etc. The modern least squares approaches [20, 19] of exponential modeling
have evolved quite significantly from Prony’s original version. Still, it is
well-known that in general such inverse problem can be both ill-posed and
ill-conditioned.

Interestingly, techniques from symbolic-numeric sparse interpolation can
be used to tackle these numerical issues. New sparse interpolation algo-
rithms are thus developed by drawing from various disciplines such as numer-
ical linear algebra, computer algebra and numerical approximation theory.
The new method is efficient, and the technique is generalized for functions
φk(x) where the parameter k can vary continuously [6].

In signal processing, sparsity has recently emerged as an important con-
cept [3, 7, 4]. Sparse signals admit a representation by a linear combination
of only a few elementary waveforms or atoms. Currently, the acquisition
and reconstruction of such signals receives a great deal of attention. The
ultimate goal is to determine the underlying sparse representation directly
from as few data samples as possible. In many applications, such technique
offers a promising alternative to the standardized Fourier transform. More-
over, the fact that signals can be reconstructed from undersampled data
opens up a whole new range of possibilities. In this talk, we discuss the use
of interpolation methods in this setting. We depart from sparse polynomial
interpolation in the field of computer algebra and explain an interesting con-
nection to Prony’s method, as well as some of its variants. We present some
new signal processing methods and discuss the corresponding issues in linear
algebra and approximation theory. Selected applications will be presented
(e.g. [17, 1]).
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