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Two controller design procedures using SDP and
QE for a Power Supply Unit

Yoshinobu Matsui∗1,a) Hidenao Iwane∗1,b) Hirokazu Anai∗1,∗2,c)

Abstract: In this paper, we propose two controller design procedures using semi-definite programing (SDP)
and quantifier elimination (QE), respectively. We consider to design controllers for a principal circuit in
a power supply unit as an example. In general, a controller design problem is given as a problem finding
a controller that satisfies given specifications in the open-loop transfer function’s frequency characteristic.
This is so-called an open-loop shaping problem in linear control theory. There exist some numerical meth-
ods for solving the problem using SDP. We propose an SDP-based controller design method via generalized
Kalman-Yakubovich-Popov (GKYP) lemma. These SDP-based methods are effective for finding a feasible
controller efficiently, but we cannot describe exact mathematical constraints for the required specifications
by these methods.
In order to obtain exact controller’s feasible regions for the required specifications, we describe the specifica-
tions as exact constraints formulated by sign definite conditions (SDCs) and solve them symbolically using
QE.

Keywords: Open-loop shaping design problem, Linear matrix inequality, Semi-definite programing, Sign
definite condition, Quantifier elimination

1. Introduction

The open-loop shaping design problem is a problem find-

ing a controller, in a feedback control system, that satisfies

given specifications in the open-loop transfer function’s fre-

quency characteristic. The open-loop shaping design prob-

lem for a single input and single output linear time-invariant

system (SISO-LTI system) is a popular controller design

problem in actual control system designs. Many control

performances’ characteristics are described by the open-loop

transfer function’s frequency characteristic. These are given

as specifications.

Many methods for solving the problem have been pro-

posed. The following methods are typical methods.

• The classical open-loop shaping design procedures in

the classical linear control theory.

• The H∞ mixed sensitivity design procedure [4] and the

H∞ loop shaping design procedure [13] in the H∞ con-

trol theory.

• The design procedure using the generalized Kalman-

Yakubovich-Popov (GKYP) lemma [11].

• The mixed sensitivity and Hurwitz stability design pro-

cedure using quantifier elimination (QE) [1], [3].

In modern linear control theory, the controller design pro-

cedures using semi-definite programing (SDP) have become

the mainstream. The typical example is the procedure us-
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ing the GKYP lemma. However, in the open-loop shap-

ing design problem, we cannot describe exact mathematical

constraints for the given specifications by the procedures

using SDP, because SDP belongs to the convex programing

problem. On the other hand, we may describe exact math-

ematical constraints by supposing to use QE and get the

controller’s exact feasible region.

In this paper, we propose two controller design proce-

dures using SDP and QE for the open-loop shaping design

problem. We apply these procedures to a controller design

problem in a power supply unit, respectively and compare

them. The controller design problem is the open-loop shap-

ing design problem and many specifications are given in the

open-loop transfer function’s frequency characteristic.

We use the design procedure using the GKYP lemma as

the SDP procedure. On the other hand, we formulate ex-

act constrains for the required specifications by sign definite

conditions (SDCs) and solve them exactly using QE. We

note that we use a special QE algorithm for SDCs [1], [8].

We use the following notations. R denotes the field of real
numbers. C denotes the field of complex numbers. N denotes
the set of natural numbers. Rn×m denotes the ring of n×m

matrices, where n,m ∈ N. j denotes an imaginary unit. L[·]
denotes a Laplace transform. For a square-integrable func-

tion f(t),

L[f(t)] :=
∫ ∞

0

f(t) exp(−st)dt,

where s ∈ C, t ∈ R. For a matrixM , its positive definiteness

and transpose and complex conjugate transpose are denoted

by M > 0, MT and M∗, respectively. For a vector v ∈ Rn,
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.lib x0 y0 x1 y1 x2 y2 x3 y3

.i 8

.o 1

.ob f0
01010101 1
01010001 1
01011001 1
01011000 1
01011010 1
00011000 1
10010101 1
10010001 1
10011001 1
10011000 1
10011010 1
01000101 1
01000001 1
01001001 1
01001010 2
00001000 1
10001010 1
01100101 1
01100001 1
01101001 1
01100100 1
01100110 1
01101010 2
00100100 2
10101010 1
11------ 2
--11---- 2
----11-- 2
------11 2
00----1- 2
00-----1 2
--101000 2
--010100 2
----0010 2
----0000 2
1000--00 2
0100--00 2
.e

.lib x0 y0 x1 y1 x2 y2 x3 y3

.i 8

.o 1

.ob f0

.p 4
-11----- 1
-1-----1 1
---1---1 1
-----0-0 1
.e

図 2: 3 次の問題に対する ESPRESSO コマンドの入力ファイル（左）と出力ファイル（右）
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[4] L. González-Vega, T. Recio, H. Lombardi, and M.-F. Roy. Sturm-Habicht sequences determinants and

real roots of univariate polynomials, pp. 300–316. Texts and Monographs in Symbolic Computation.

Springer, 1998.

[5] R. Loos and V. Weispfenning. Applying linear quantifier elimination. The Computer Journal,

36(5):450–462, 1993.

[6] Y. Matsui, H. Iwane, and H. Anai. Two controller design procedures using SDP and QE for a power

supply unit. 数式処理研究と産学連携の新たな発展, 2013.

[7] 穴井, 横山. QE の計算アルゴリズムとその応用 – 数式処理による最適化. 東京大学出版会, 8 2011.

10

43



the real and imaginary parts are denoted by ℜv and ℑv, the
transpose is denoted by vT . For matrices T and S, S ⊗ T

denotes the Kronecker product.

We note that we use the following control theory’s terms.

For a real coefficient rational polynomial h(s), the gain,

the phase and the angular frequency are denoted as |h(s)|,
∠h(s) and d

dt∠h(s), respectively. We call x = 20 log10 |h(s)|
the gain is x dB, x = 180

π ∠h(s) the phase is x degree and
x = 1

2π
d
dt∠h(s) the angular frequency is x Hz, respectively.

2. Power supply unit

A principal circuit in a power supply unit is an AC/DC

converter that converts alternating current (AC) input volt-

age to direct current (DC) output voltage. This mainly con-

sists of the former power factor correction (PFC) circuit and

the latter DC/DC converter circuit [5]. In this paper, we fo-

cus on the DC/DC back converter.

2.1 DC/DC back converter

The purpose of a DC/DC back converter is a conversion of

the voltage level from the high DC input voltage Vin which

is the output voltage of the former PFC circuit to a desired

low DC output voltage Vout. This conversion must be done

electrical efficiently in a power supply unit.

Fig. 1 shows a simplified equivalent circuit. This shows

operating principles of a DC/DC back converter. S signifies

a switch. The switching is done as follows:

S(t) =

{
1, kh ≤ t < (k + d[k])h,

0, (k + d[k])h ≤ t < (k + 1)h,

where t ∈ R is continuous time (in seconds), h ∈ R is a con-
stant period (in seconds), k ∈ N is discrete time, d[k] ∈ R
is called a duty ratio. When S connects with 1 (we call

Fig. 1 Simplified equivalent circuit

this state ON), the output voltage level rises, because the

load is connected with Vin. On the other hand, when S

connects with 0 (OFF), the output voltage falls. The ON

time changes at every period. This ON time ratio at each

constant period is duty ratio. In order to make the level

of Vout follow the desired level, we control the duty ratio.

The level of Vout must follow the desired level robustly in

some unpredictable situations. For example, PFC influences

a DC/DC back converter or the load electrical changes and

so on. Therefore, feedback control is used.

Fig. 2 Operating principle

2.2 Piecewise state space model

In this paper, we employ the normal equivalent circuit

in Fig. 3 as an original model of a DC/DC back converter,

where C is a condenser (unit is F), L is a coil (unit is H), IL

is an electric current in L, VC is a voltage in C, and R, rC ,

rq, rd, rL are resistances (units are ohm). Here, we define

the load electric current as Vout

R .

Fig. 3 Normal equivalent circuit

We get the following piecewise state space model from the

normal equivalent circuit by Kirchhoff’s law [12].

d

dt
ξ(t) =

{
A1ξ(t) +B1Vin, S(t) = 1,

A2ξ(t), S(t) = 0,

Vout(t) =

{
CV ξ(t), S(t) = 1,

CV ξ(t), S(t) = 0,

where ξ(t) := [IL(t) VC(t)]
T . A1 ∈ R2×2, A2 ∈ R2×2,

B1 ∈ R2×1, CV ∈ R1×2 are defined as follows:

A1 :=

[
− (rq+rL+αrC)

L −α
L

α
C − α

CR

]
,

A2 :=

[
− (rd+rL+αrC)

L −α
L

α
C − α

CR

]
,

B1 :=

[
1
L

0

]
, CV :=

[
αrC α

]
,

where

α :=
R

R + rC
.

Remark 1 Note that the electrical efficiency of a DC/DC

back converter is deeply related to rq and rd. The study

about the relationship between the electrical efficiency and

the control performance would be one of our future works.
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2.3 Averaged state space model

In order to design a controller by linear control theory, we

need to employ a linear time-invariant system model. Here,

we employ the averaged state space model as a linear time-

invariant system model. When we design a controller of a

DC/DC back converter, the averaged state space model is a

popular model.

We get the following averaged state space model from the

piecewise state space model by defining η(t) as the average

of ξ(t) in a period [12].





d

dt
∆η(t) = A∆η(t) +B∆d(t),

∆Vout(t) = CV∆η(t),

(1)

where ∆η(t), ∆Vout(t), ∆d(t) are small perturbation’s sig-

nals of η(t), Vout(t), d[k], respectively. A ∈ R2×2, B ∈ R2×1

are defined as follows:

A := d0A1 + (1− d0)A2,

B := (A1 −A2)η0 +B1Vin,

where

d0 :=
(rd + rL +R)V0

RV0 − (rq − rd)V0
, (2)

η0 := −A−1B1Vind0, (3)

where V0 is the desired level of the output voltage. Let us

suppose that the differential function of η(t) is always 0 in

a steady state, then we get (2) and (3).

We define Laplace transforms of ∆Vout(t) and ∆d(t) as

follows:

∆V̂out(s) := L[∆Vout(t)],

∆d̂(s) := L[∆d(t)].

We get the following equation from (1).

∆V̂out(s) = P (s)∆d̂(s),

where

P (s) := CV (sI −A)−1B.

This P (s) is a transfer function model for the averaged state

space model.

Remark 2 Note that the averaged state space model is

an accurate model in the only low frequency band for the

piecewise state space model [14]. A DC/DC back converter

its conversion is done electrical efficiently needs also high

frequency band model to design the controller. An accurate

model in the whole frequency band for the piecewise state

space model by sampled-data control theory [15] would be

one of our future works.

3. Controller design problem

In this section, we show a controller design problem for the

normal DC/DC back converter. The original controller de-

sign problem is a problem finding a controller, in a feedback

control system (shown in §3.1), satisfying the requirement
that Vout follows V0 under the following situations.

• Situation 1 The PFC influences the DC/DC back con-

verter.

• Situation 2 The load electric current is time-

independent.

The control performances for this requirement are described

by the specifications in the open-loop transfer function’s fre-

quency characteristic as shown in §3.2.

3.1 Feedback control system

Fig. 4 shows a feedback control system for P (s), where r

is a reference signal, K(s) is a controller to be designed. In

this paper, we consider the following one order controller:

K(s) =
bK0s+ bK1

s+ aK1

,

where bK0
∈ R, bK1

∈ R, aK1
∈ R are design parameters for

the requirement. We define the open-loop transfer function

Fig. 4 Feedback control system

as follows:

L(s) := P (s)×(gain factor)×(phase delay factor)×K(s).

Here, the open-loop transfer function’s frequency character-

istic is L(jω), where ω is the angular frequency (unit is Hz).

In this paper, we assume that the phase delay factor and the

gain factor is given as exp(−1.4× 10−5s) and 9.294× 10−2,

respectively. See Fig. 5. We define G(·) as follows:

Fig. 5 Phase delay factor

G(·) = P (·)× (gain factor).
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Fig. 6 Feedback control system for G(s)

3.2 Open-loop shaping design problem

For L(jω), when ω increases from 0 to∞, we call the tra-
jectory in a complex plain a Nyquist diagram. The stability

margin is defined by the separation condition between the

trajectory and −1 + 0j for the gain and the phase, respec-
tively. These stability margins are called the gain margin

and the phase margin, respectively (Fig. 7). The closed-loop

system is internal stable when the following lemma holds.

Lemma 1 (Nyquist’s satbility criterion [4]) The

closed-loop is internal stable as long as the intersection

point axis between the trajectory and the negative real axis

> −1.

In order to satisfy the requirement mentioned above, L(jω)

must satisfy the following specifications.

• Specification 0 The closed-loop system is internal sta-

ble.

• Specification 1 The gain> 45 dB when 0 ≤ ω ≤ 1.

• Specification 2 The gain> 25 dB when 1 ≤ ω ≤ 100.

• Specification 3 The gain crossover frequency >3000.

• Specification 4 The phase margin (PM) >45 degree.

• Specification 5 The gain margin (GM) >7 dB.

Here, we call the problem finding a controller that satisfies

these specifications “the open-loop shaping design problem”.

These specifications are described in a Nyquist diagram of

L(jω) (Fig. 7).

Fig. 7 Specifications described by a Nyquist diagram

These specifications are specified on the circuit design-

ers experiences. We show what these specifications mean

for the original controller design problem, but do not prove

them mathematically in this paper.

First, specification 0 must be satisfied so as to make the

control system stable. Second, specification 1 must be satis-

fied so as to make Vout follow r. Third, the influence by the

PFC becomes smaller when specification 2 is satisfied. Fi-

nally, even if the load electric current changes, Vout follows

r robustly, when specifications 3,4,5 are satisfied. There is

a trade-off between specification 3 and specification 4. The

larger the gain crossover frequency and the phase margin

are, the better the control performance for the load electric

current changing is.

4. SDP and QE

In modern linear control theory, the controller design pro-

cedures using SDP have become the mainstream [2].

SDP is a convex optimization. On the other hand, QE is

a symbolic and algebraic algorithm to deal with first-order

formulas over R and can solve non-convex optimization ex-

actly [3], [9], [10].

For the exact optimal controller design, QE is better, but

QE requires enormous computation time.

5. Mathematical formulation

In this section, we formulate mathematical constraints for

the open-loop shaping deign problem’s specifications in two

formulations: a linear matrix inequality (LMI) and a sign

definite condition (SDC). We propose two procedures to

solve the LMI formulation problems by using SDP and the

SDC formulation problems by using QE.

An LMI is a matrix inequality that can be come down to

the following inequality.

F (z) > 0,

where F (z) := F0 + z1F1 + · · · + znFn. Each Fi ∈ Rn×n

is a symmetric matrix, and z := [z1, . . . , zn]
T is a variable

vector. A mathematical optimization problem whose con-

straints are formulated by LMIs and objective functions are

linear in z, belongs to the class of SDP.

An SDC is defined for a real coefficient rational polyno-

mial f(x) as follows:

∀x ≥ 0 (f(x) > 0).

This can be described by a first-order formula.

∀x(x ≥ 0→ f(x) > 0).

We can solve an SDC efficiently by using QE which uses the

Strum-Habicht sequence [1], [8].

5.1 LMI formulation

The open-loop shaping design problem’s specifications can

be formulated by LMI constraints using the generalized

Kalman-Yakubovich-Popov (GKYP) lemma. Here, we in-

troduce a special case of the GKYP lemma.

Lemma 2 The following inequality is called a frequency

domain inequality (FDI) for G(s).
[
G(s) I

]
Π
[
G(s) I

]∗
< 0, ∀s ∈ Λ(Φc,Ψ). (4)

Π and Λ(Φc,Ψ) are defined as follows:

Π(ag, bg, γ) :=

[
0 ag − jbg

ag + jbg −2γ

]
.
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Λ(Φc,Ψ) := {λ ∈ C|σ(λ,Φc) = 0, σ(λ,Ψ) ≥ 0},

where

σ(λ,Φc) :=
[
λ∗ 1

]
Φc

[
λ

1

]
,Φc :=

[
0 1

1 0

]
,

Ψ(ωL, ωH) :=

[
−1 j(ωL + ωH)/2

−j(ωL + ωH)/2 −ωLωH

]
,

A necessary and sufficient condition for (4) is given as fol-

lows:

There exist a symmetric matrix P ∈ R3×3 and a positive

definite matrix Q ∈ R3×3 such that G(Ψ,Π) < 0, where

G(Ψ,Π) :=W (P,Q) + V,

W (P,Q) :=

[
AG I

CG 0

]
(ΦT

c ⊗ P +ΨT ⊗Q)

[
AG I

CG 0

]T

,

V :=

[
0 BG(ag − jbg)

BT
G(ag + jbg) 2agDG − 2γ

]
,

where the set {AG, BG, CG, DG} is the state-space repre-
sentation of G(s).

Proof See [11].

We explain what Lemma 2 means. Equation (4) means the

following convex region in a complex plain in which G(jω)

occurs, that is a feasible region for G(jω).

agℜG(jω) + bgℑG(jω) < γ, ωL ≤ ω ≤ ωH .

Φ decides s = jω, Ψ decides the interval ωL ≤ ω ≤ ωH , Π

decides the convex region.

We define the following matrix inequalities.

G1 := {G(Ψ,Π) < 0|Ψ(L1, H1), Π(−1, 0,−g1)},

G2 := {G(Ψ,Π) < 0|Ψ(L2, H2), Π(0, 1,−g2)},

G3 := {G(Ψ,Π) < 0|Ψ(L3, H3), Π(0, 1,−g3)} and

G4 := {G(Ψ,Π) < 0|Ψ(L4,∞), Π(−10, 1, γ)},

where, L1 := 0,H1 := 1×2×π, L2 := H1,H2 := 100×2×π,

L3 := H2, H3 := 3000 × 2 × π, L4 := H3, g1 := 1045/20,

g2 := 10
25/20, g3 := 1.

Then the following Lemma 3 holds.

Lemma 3 When γ < 5−
√
3/2 ≒ 4.134,

Specification 1← G1, (5)

Specification 2← G2, (6)

Specification 3← G3 and (7)

Specifications 4, 5← G4 (8)

hold.

Proof (5),. . . ,(7) are obvious by Fig. 7 and Fig. 8. For

γ < 5−
√
3/2 and (8), see Fig. 9. Note that we must assure

Fig. 8 Specifications formulated by G1, . . . ,G4

Fig. 9 Stability margin formulated by G4

the phase margin > 60 degree, because the phase delay fac-

tor is given as Fig. 5 (§3.1). Fig. 5 shows the phase delay is
15 degree in 3 kHz.

Remark 3 Note that we can formulate other formulations

to the specifications by LMIs using the GKYP lemma. For

example we also define G2 as

G2 := {G(Ψ,Π) < 0|Ψ(L2,H2), Π(1, 1,−
√
2g2)}.

However, we cannot express the outside region of a circle by

LMIs, because LMIs are based on convex regions.

When we consider parameterizing the controller, aK1
, bK0

,

bK1
, Pi and Qi, i = 1, . . . , 4 are parameters. In this case

Gi < 0 are not LMIs but are bilinear matrix inequalities

(BMIs), because there exists a cross-term between aK1
and

Pi. BMIs are not SDP. For converting Gi < 0 to LMIs,

first we must fix aK1
. In this paper, we fix aK1

as 35.34.

This aK1
is given by circuit designers experience. Second,

we define the following BG

BG :=

[
w

BbK0

]
,

where w is a design parameter and w := bK1
− aK1

bK0
.

Remark 4 Note that the controller’s pole (= −35.34) is
not always the best pole for the open-loop shaping design

problem. We should consider the case that aK1
is a free

parameter and a full-order controller case, but we do not

consider the cases, in this paper, it would be one of our

future works.
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Finally, we can convert Gi < 0 to LMIs Ĝi(Pi, Qi, w, bK0
) <

0 in case parameterizing the controller and formulate the

original open-loop shaping design problem as the following

SDP problem, and we can solve it by an interior point

method.

Problem (SDP) minimize γ

subject to




Ĝ1(P1, Q1, w, bK0
)

. . .

Ĝ4(P4, Q4, w, bK0
)


 < 0.

We can get w, bK0
, Pi and Qi by solving this SDP, and

from this w, we can parametrize bK1
as w+ aK1

bK0
. These

are optimal controller parameters for the open-loop shaping

design problem.

5.2 SDC formulation

The open-loop shaping design problem’s specifications can

be formulated by SDC constraints. We formulate the spec-

ifications 2, . . . ,6 exactly by SDCs. We define the following

SDCs.

S1 : ∀ω(L1 ≤ ω ≤ H1 → |G(jω)|2 − g21 > 0), (9)

S2 : ∀ω(L2 ≤ ω ≤ H2 → |G(jω)|2 − g22 > 0), (10)

S3 : ∀ω(L3 ≤ ω ≤ H3 → |G(jω)|2 − g23 > 0) and (11)

S4 : ∀ω(L4 ≤ ω → 3.8ℜG(jω)+1−ℑG(jω) > 0). (12)

These show the feasible regions for G(jω) as Fig. 10. Note

Fig. 10 Specifications formulated by S1, . . . ,S3

that 3.8 in S4 is given by Lemma 5. Obviously, the following

lemma holds.

Lemma 4 The specifications 2, . . . ,6 are formulated by

SDCs as follows:

Specification 1↔ S1, (13)

Specification 2↔ S2, (14)

Specification 3↔ S3 and (15)

Specifications 4, 5← S4. (16)

Proof For specification 1, . . . ,3, (13), . . . ,(15) obviously

hold by Fig. 7 and Fig. 10, respectively.

In order to show why (16) holds, we indicate the following

lemma.

Lemma 5 When the closed-loop system of a feedback sys-

tem in Fig. 6 (§3.1) is internal stable and aℜG(jω) + 1 −
ℑG(jω) > 0 holds, the phase margin and the gain margin

satisfy the followings:

PM ≥ 360 arctan(a)/π − 90 degree,

GM ≥ 20 log10(a) dB. (17)

Proof When the closed-loop system is internal stable,

(17) is obviously holds. See Fig. 11.

Fig. 11 Stability margin formulated by S4

From (17), when a > 3.8, the phase margin is over 60 degree

and the gain margin is over 7 dB. See Fig. 12. Therefore,

when a > 3.8, (16) holds.

Fig. 12 a vs PM, GM

We solve the specification 0 algebraically by the Hurwitz

stability condition. The following Lemma 6 holds [7].

Lemma 6 Let a characteristic polynomial for G(s) be

g(s). The following two propositions are equivalent.

• The closed-loop system is internal stable.

• All coefficients of g(s) are positive or negative and the

all leading principal minor of a Hurwitz matrix for g(s)

are positive.

We can get feasible regions of the controller parameters for
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each specification by using Lemma 6 algebraically and solve

S1, . . . ,S4 using QE, and by superposing obtained feasible

regions, we can get the feasible regions of the controller for

the open-loop shaping design problem’s specifications.

6. Numerical example

We show a numerical example with the following P (s).

P (s) =
4.622× 107s+ 2.140× 1012

1.128× 104s2 + 1.906× 108s+ 1.453× 1012 .

The computational experiments for the following SDP solu-

tion (§6.1) was executed on a computer with an Intel (R)
Core (TM) i5-2520M CPU 2.5 GHz and 4.0 GByte memory.

We solved SDP by LMI control toolbox [6]. The computa-

tional experiments for the following QE solution (§6.2) was
executed on a computer with an Intel (R) Core (TM) i7-

3540M CPU 3.0 GHz and 2.0 GByte memory. We solved

QE by our own solver SyNRAC [8].

6.1 SDP solution

We get the following optimal controller by solving the SDP

problem.

Kgkyp =
1.944s+ 7587

s+ 35.34
, (18)

and the optimal γ,

γopt = 3.303. (19)

The computing time to obtain the Kgkyp is 1.443 seconds.

6.2 QE solution

We consider decreasing the degree of the polynomial in Si

for reducing the computing time.

Si : ∀ω(Li ≤ ω ≤ Hi → |G(jω)|2 − g2i > 0),

where i = 1, 2, 3. The degrees of the numerator polynomial

and the denominator polynomial of |G(jω)|2 − g2i are 12

and 12, respectively. We can decrease the degrees to 6 and

6 by substituting ω2 for Ω, because the numerator and the

denominator of |G(jω)|2−g2i are even polynomials. We can

decrease the degree of Si in Ω to 6, because the denominator

polynomial is always positive.

Feasible regions for S1 and S2 are obtained by QE and

shown as shaded regions in Fig. 13. We note the feasible re-

gion for S2 is non-convex. The computing time to obtain the

feasible regions for S1 and S2 are 3.386 seconds and 4.852

seconds, respectively.

The feasible region for S3 is given as Fig. 14. We note

the feasible region for S3 is non-convex. The computing

time to obtain the feasible region for S3 is 1.794 seconds.

In general, a gain-cross over frequency is deeply related to

a dead-beat step response. Fig. 14 shows the feasible region

for a dead-beat step response is non-convex.

Feasible regions for the Hurwitz stability condition and

S4 are shown in Fig. 15. The superposition of these feasible

regions shows a robust stability region that assures PM> 60

Fig. 13 Feasible regions for S1 and S2

Fig. 14 Feasible region for S3

Fig. 15 Feasible regions for Hurwitz stability and S4

and GM> 7 for G(jω). The computing time to obtain the

feasible region for S4 is 2.948 seconds.

The superposition of all the feasible regions is given by

Fig. 16. This is a feasible region for the open-loop shap-

Fig. 16 Feasible region for the open-loop shaping design problem

ing design problem. Kgkyp is in the superposition of all the

feasible regions.

49



6.3 Comparison

We select the desired controller from Fig. 16 as follows:

Ksdc =
2.4s+ 7500

s+ 35.34
. (20)

The Bode diagram of the open-loop shaped by Ksdc and

Kgkyp are Fig. 17. This shows both controllers designed by

Fig. 17 Bode diagram

the two procedures satisfy the required specifications.

The time response controlled by Ksdc and Kgkyp are

Fig. 18. When the load electric current changing occurs,

Fig. 18 Time response

Vout follows V0 robustly. Here, the load electric current

changes from 108 to 208, V0 = 12, Kgkyp and Ksdc are

discretized.

7. Conclusion

In this paper, we proposed two controller design proce-

dures using SDP and QE, and compared them by applying

to the controller design problem of a normal DC/DC back

converter.

We designed controllers that satisfy the desired specifi-

cations by the both procedures. We designed an optimal

controller by the procedure using SDP numerically. The

mathematical constraints and the objective function that we

formulated by LMIs were not exact for the desired specifica-

tions. We cannot formulate exact (i.e. relaxed expression)

mathematical constraints and an objective function by LMIs

in principle, because, in the open-loop shaping design prob-

lem, many of the desired specifications are non-convex. On

the other hand, we can formulate exact mathematical con-

straints for the many desired specifications by SDCs straight

forwardly, and we could get controller’s exact feasible regions

for the open-loop shaping design problem’s specifications by

the procedure using a specialized QE. We confirmed the con-

troller’s feasible region is non-convex. Therefore, we can de-

sign an exact optimal controller for the open-loop shaping

problem by the procedure using QE. Hereby, circuit design-

ers can select the best controller for the specifications which

they set by their experience even if the specifications are

non-convex.

In other words, this means we showed an open-loop shap-

ing design problem for an LTI-system its order is 1/2 and

the controller its order is 1/1 can be actually resolved by the

procedure using QE as long as the controller’s pole is fixed.

However, we should consider the case that aK1
is a free pa-

rameter and a full-order controller case, respectively as we

remarked before. Especially, from the viewpoint of modern

linear control theory we should consider the full-order con-

troller case. In modern control theory, the existence of the

controller that stabilize the closed-loop in a feedback con-

trol system is assured by a full-order controller. Therefore,

we should consider at least a full-order controller case for

the case that the dynamics of the DC/DC back converter

changes significantly.
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