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Affine transformation (or geometric transformation) provides a mathematical founda-
tion for shape manipulation and motion analysis in computer graphics. In particular,
the set Aff+(3) of positive (or, reflection free) affine transformations is important since
it consists of rotation, shear, translation, and their compositions. The elements in
Aff+(3) are usually represented by 4× 4-homogeneous matrices with algebraic opera-
tions such as addition, scalar product, and product. While the product corresponds
to the composition of the transformations, geometric meaning of addition and scalar
product are not clear. There are many situations where we want to have geometri-
cally meaningful weighted sum (linear combination) of transformations, for example,
for skinning [10], and for motion analysis and compression [1]. To mention a few pa-
rameterization developed previously: Euler angle, and Quaternion parameterizes the
rotation. Dual quaternion, and axis-angle presentation parameterizes the rigid trans-
formation (rotation and translation altogether). The above parameterizations are all
partial; they deal only subsets of Aff+(3), and cannot handle shear and scale. On the
other hand, Alexa [1] introduced a Euclidean parameterization of Aff+(3) using the
Lie correspondence. The idea is that Aff+(3) forms a Lie group and it corresponds to
a linear space called Lie algebra through the matrix exponential and logarithm. How-
ever, this method yet fails to give a parameterization for the whole transformations; it
is limited for transformations without negative eigenvalues. The limitation is due to
mathematical nature of the Lie correspondence, which guarantees only local bijectivity.
Here we introduce a novel parameterization of Aff+(3) based on Lie theory. Our

general framework can also be found in [12], which includes more precise definitions of
Lie group and Lie algebra. It has several advantages over previous ones;

• No limitation; it parameterizes the whole transformations.
• Smooth and having the same degree of freedom; ordinary variational techniques
can be applied.

• With geometrically meaningful operations; for example, the sum of two rigid
transformations is again rigid.

• Low computational cost; fast enough for real-time applications.
In the following sections, we will give the new parameterization method, a computation
algorithm, and applications to shape deformation.

1. Parameterization of affine transformation

The elements of Aff+(3) are represented by 4×4-homogeneous matrices whose linear
parts have positive determinants:

Aff+(3) =

{
A =

(
Â dA

0 1

)
| det(Â) > 0, dA ∈ R3

}
.

We follow the convention that column vectors are multiplied by matrices from the left.
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1. Parameterization of affine transformation

The elements of Aff+(3) are represented by 4×4-homogeneous matrices whose linear
parts have positive determinants:

Aff+(3) =

{
A =

(
Â dA

0 1

)
| det(Â) > 0, dA ∈ R3

}
.

We follow the convention that column vectors are multiplied by matrices from the left.

LetMn(R) be the set of n×n-matrices. We set the 12-dimensional parameter space

se(3)× sym(3),

where

se(3) :=

{
X =

(
X̂ lX
0 0

)
| X̂ = −tX̂ ∈ M3(R), lX ∈ R3

}

is the Lie algebra for the 3-dimensional rigid transformation group SE(3) and

sym(3) :=
{
Y | Y = tY ∈ M3(R)

}

is the set of the 3× 3-symmetric matrices.
Now we define the parameterization map

φ : se(3)× sym(3) → Aff+(3)(1)

X × Y �→ exp(X)ι(exp(Y )),

where exp is the matrix exponential defined by

exp(B) =
∞∑

k=0

Bk/k!,

and ι : M3(R)→ M4(R) is given by

ι(B) =

(
B 0
0 1

)
.

This gives a mathematically well-defined parameterization, since it is surjective and
has a continuous inverse as we see below. However, computation by the infinite series
is very slow, and hence, it is crucial to have an efficient algorithm for applications. In
the next section, we will discuss the fast and explicit formula for the computation.
Although the above map φ is not one-to-one, we can compute its continuous inverse

explicitly, thanks to the Cartan decomposition theorem. The inverse map ψ is given by

ψ : Aff+(3) → se(3)× sym(3)(2)

A �→ log(A ι(
√

tÂÂ)−1)× log(
√

tÂÂ).

Note that tÂÂ is symmetric positive definite so that the square root is uniquely de-
termined and the logarithm is also well-defined (it is calculated by [5] and [4], for

example). Note also that A ι(
√

tÂÂ)−1 is an element in SE(3) and the logarithm is
defined up to modulo 2π. We discuss the explicit formulae in the next section.

2. The parameterization algorithm

First, we consider how to compute (2). Note that tÂÂ is a positive definite sym-
metric matrix so that it is diagonalized as

P




λ1 0 0
0 λ2 0
0 0 λ3


 tP

with some orthogonal matrix P and λi > 0. Then we can compute

log(
√

tÂÂ) = P



log(

√
λ1) 0 0

0 log(
√

λ2) 0
0 0 log(

√
λ3)


 tP.
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Let R = A ι(
√

tÂÂ)−1. Since R ∈ SE(3), we can write R =

(
R̂ dR

0 1

)
. By

mimicking the famous Rodrigues’ formula [3] for the rotation matrices, we have

log(R) =

(
X̂ lX
0 0

)
,

where X̂ =
θ

2 sin θ
(R − tR), θ = cos−1

(
Tr(R)− 1

2

)
, and

lX =

(
I3 −

1

2
X̂ +

2 sin θ − (1 + cos θ)θ
2θ2 sin θ

X̂2

)
dR.

As we mentioned before, here we have indeterminacy of cos−1 up to modulo 2π. How-
ever, if we impose continuity, we can take one explicit choice. (An explicit code is given
in [8].)
Next, we consider how to compute (1). For any symmetric matrix Y ∈ sym(3), any

matrix function can be computed using diagonalization. However, we introduce a faster
algorithm to compute the exponential based on the spectral decomposition (see [11], for
example). In applications, we have to compute (2) only once as pre-computation and
(1) many times in real-time. Hence it is important to have a fast algorithm to compute
the exponential maps.
Let λ1, λ2, λ3 be the eigenvalues of Y ∈ sym(3). They are the roots of the charac-

teristic polynomial of Y :

(3) λ3 − Tr(Y )λ2 +
Tr(Y )2 − ||Y ||2F

2
λ − det(Y ),

where ||Y ||F is the Frobenius norm of Y . Note that computing eigenvalues is much
faster than computing diagonalization. Now we can compute the exponential of Y as
a degree two polynomial of Y rather than the infinite Taylor series.
When all the three eigenvalues are same, put

a = exp(λ1), b = c = 0.

When two of them are same, say λ1 = λ2, put

s = exp(λ2)/(λ2 − λ3), t = exp(λ3)/(λ2 − λ3), a = s − t, b = tλ2 − sλ3, c = 0.

When all of them are distinct, put

s = exp(λ1)/(λ1 − λ2)(λ1 − λ3),

t = exp(λ2)/(λ2 − λ3)(λ1 − λ2),

u = exp(λ3)/(λ2 − λ3)(λ3 − λ1),

a = sλ2λ3 − tλ3λ1 − uλ1λ2,

b = −s(λ2 + λ3) + t(λ3 + λ1) + u(λ1 + λ2),

c = s+ t+ u.

Then we have

(4) exp(Y ) = aI3 + bY + cY 2.
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Finally, for X =

(
X̂ lX
0 0

)
∈ se(3), again by mimicking Rodrigues’ formula, we

have

exp(X) =

(
R̂ d
0 1

)
,

where

R̂ = I3 +
sin θ

θ
X̂ +

1− cos θ
θ2

X̂2,

and

d =

(
I3 +

1− cos θ
θ2

R̂ +
θ − sin θ

θ3
R̂2

)
lX .

3. Deformer applications

Now we explain the algorithm of our deformers. The basic framework is the follow-
ing: the input is:

• a target shape to be deformed,
• a set of affine transformations {Ai ∈ Aff+(3) | 1 ≤ i ≤ m},
• and weight functions on the vertices (or the simplex) {wi : V → R | 1 ≤ i ≤ m},
where V is the set of the vertices (or the simplex) of the target shape.

With the above data, we deform the given shape by the following recipe:

(5) V � v �→
m∑

i=1

φ(wiψ(Ai))v,

where we think of the vertex positions v ∈ R3 as column vectors and the matrices
multiply from the left. When we take V as the set of simplex, the above formula
gives non-consistent map on the edges, and we need to patch them by certain en-
ergy minimizing technique such as ARAP (§3.3). Among the good properties of our
parameterization is that

∑m
i=1 φ(wiψ(Ai)) is rigid when Ai’s are.

According to how users specify (2) and (3) above, we introduce the three deformers.

3.1. Probe-based deformer. Given a target shape and any number of “probes”
which carry transform data. If probes are transformed by the user, the target shape
will be deformed according to it. More precisely, each probe detects the affine map
Ai ∈ Aff+(3) which transforms it to the current position from the initial position.
A vertex v ∈ R3 on the target shape is transformed by the equation (5), where the
weights wi’s are either painted manually, or computed automatically from the distance
between v and the probe location (see Figures 1 and 2).

3.2. Cage-based deformer. Given a target shape and a “cage” surrounding it. The
cage can be any triangulated polyhedron wrapping the target shape. We want to
deform the target shape by manipulating not directly on it but through proxy cage
(see [7]).
Our parameterization can be used in this framework. We associate a tetrahedra

to each face triangle by adding its normal vector. Then each face detects the affine
map Ai ∈ Aff+(3) which transforms the initial tetrahedra to the current tetrahedra.
A vertex v ∈ R3 on the target shape is transformed by the equation (5), where the
weights wi’s are either painted manually, or computed automatically from the distance
between v and the center of the face. In automatic weight computation, it is better to
set wi = 0 when v sits in the outer half space of the i-th face (see Figure 3).
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Figure 1. Left: set up
initial positions of (red)
probes. Right: the target
shape is deformed accord-
ing to user’s manipulation
of the probes.

Figure 2. Probe-based de-
former can be used for the
deformation of particles.

Figure 3. Left: initialize the target shape and the cage. Right: the
target shape is deformed according to user’s manipulation of the cage.

3.3. Shape blender. Given a target mesh V0 and meshes to be blended Vi (1 ≤
i ≤ n). We assume that all the meshes are compatibly triangulated, i.e., a one-to-one
correspondence for each pair of mesh is explicitly given.
A blended shape V (w1, . . . , wn) will be generated with respect to specified weights

{wi ∈ R | 1 ≤ i ≤ n} such that V (w1, . . . , wn) = V0 if wi = 0 for any i, and

V (w1, . . . , wn) = Vk if wi =

{
1 (i = k)

0 (i �= k)
.

First, we associate for each face fij (1 ≤ j ≤ m) of Vi the unique affine transfor-
mation Aij which maps the corresponding face f0j with the unit normal vector to fij

with the unit normal vector.
Then, we define

A�
j(w1, . . . , wn) := φ(

∑
1≤i≤n

wiψ(Aij)).

We cannot use those blended transformations as they are since they are not coherent
on the edges. Finally, by minimizing a certain energy function (see [2], for example),
we obtain a piecewise linear transformation {Aj(w1, . . . , wn) | 1 ≤ j ≤ m} and the
blended shape is obtained as

V (w1, . . . , wn) =
∪

1≤j≤m

Aj(w1, . . . , wn)f0j

(see Figures 4 and 5).
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(a) (b)

Figure 4. (a): upper-left is the target shape. The upper-right is a
controller. The other three are the shapes to be blended. The blue ball
corresponds to the target shape, and the left (resp., center, right) red
ball corresponds to the left (resp., center, right) shape. (b): the target
shape is deformed according to the weights specified through the ball
controller.

(c) (d)

Figure 5. (c): the target shape matches the blended shape when the
weights are (0, 0, 1). (d): the weight can be outside the range of 0 to 1;
this means extrapolation.
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