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1. INTRODUCTION

An effective visualization of the global behavior of a dynamical system or a fluid
simulation inevitably involves a sort of the partition, or the decomposition of the phase
space of the system. This is because, in a generic system there exist uncountably many
points having “similar” dynamical behavior and if we plot too many of them then
typically we end up with a picture carrying no information. See Figure 1, in which 300
(left) and 3,000 (right) different trajectories of the standard map, the most important
example of Hamiltonian dynamics, of length 100 are plotted. It easy to imagine that
this problem will be more serious in higher dimensions.

FIGURE 1. Too much information makes no sense

Thus, a natural way to visualize the global behavior of the systems is to classify
the points in the phase space into a relatively small number of clusters, so that each
cluster corresponds to a particular dynamical behavior.

In following sections, we will explain two ideas for such a clustering. In the next
section, we will briefly review the Conley-Morse decomposition, a decomposition of the
phase space according to the gradient-like structure of the system. This method does
not work fine for conservative dynamics and hence we will discuss another algorithm
based on a graph clustering algorithm in the last section. This is a work in progress in
the JST CREST project [6].
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2. CONLEY-MORSE DECOMPOSITION

In this section, we discuss the method of the Conley-Morse decomposition [1, 2].
The key idea here is to find small subsets in the phase space which are invariant under
the dynamics, and then decompose the phase space into these subsets and connecting
orbits among them. These invariant subsets will be called Morse sets.

Historically, this idea was first applied to the gradient flows satisfying a certain
non-degeneracy condition by M. Morse. Here by a gradient flow we mean a flow on a
manifold M that is defined by the gradient vector field grad f for a smooth function
f : M — R. Note that in a gradient flow, there will be no chaotic orbit and thus
Morse sets are just equilibrium points of the flow. Then C. Conley generalized the
theory to arbitrary dynamical systems yielding the celebrated Fundamental theorem
of dynamical systems, which says that a dynamical system can always be decomposed
into possibly chaotic subinvariant sets (Morse sets) and non-chaotic connecting orbit
among them.

Theoretically, there may be infinitely many Morse sets, but since we are mainly
interested in the application to practical problems in which noise and errors are in-
evitably involved, we restrict ourselves to finitely many larger Morse sets. In practice,
we fix the grid size for our computation and then ignore Morse sets smaller than the
grid size.

Given a dynamical system and a grid decomposition of the phase space, the first step
of the algorithm is to define a graph G whose edges imitate the dynamics (see [2]). Then
we can expect that a Morse set corresponds to a strongly-connected component in G.
By collapsing each strongly connected component of G to a single node, we can obtain
a much smaller graph representing the structure of the Conley-Morse decomposition
(Figure 2). Note that G could be very huge depending on the dimension of the phase
space and the size of the grid we are using, however, the graph obtained after collapsing
would be much smaller than G.

FiGUurE 2. Collapsing strongly connected components of G

A node in the collapsed graph corresponds to a Morse set of the system. For each
Morse set, we can compute the Conley index, which is an algebraic topological invariant
carrying the information of the dynamics in a neighborhood of the Morse set.
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FIGURE 3. the “bifurcation” diagram of the Leslie population model

Figure 3 illustrates an example of the application of Conley-Morse decomposition
to the Leslie population model, a map defined by

f(l'l, T2, 61, 192) = ((91I1 + 92.’,52) . 8—0.1(m1+m2)’ 07.]5‘1)

The figure shows a decomposition of the parameter (6;,0s)-plane according to the
obtained Conley-Morse graph structure; adjacent boxes in the parameter space with
equivalent Conley-Morse graphs are plotted in the same color. A square, a filled circle,
a hollow circle in directed graphs indicates an attractor, a Morse set with non-trivial
Conley index, and a Morse set with trivial Conley index, respectively.

F1GURE 4. Morse sets for a flow on the surface of a cooling jacket

Although the algorithm works fine for the Leslie model and some other lower di-
mensional problems, its computational cost is still expensive to be applied to more
practical problems. To overcome this computational difficulty, Szymczak et al. devel-
oped the method of the piecewise constant approximation of a vector field [4, 5] using
the theory of differential inclusions. The trajectories in a piecewise constant vector filed
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can be determined by simple geometric rules and hence we can avoid computationally
expensive numerical integrations.

FIGURE 5. A close up view of Morse sets

Figures 4 and 5 show the result of the application of Szymczak’s idea to the vector
field on the surface of a cooling jacket which is induced by extrapolating data from 3D
fluid simulation in the jacket (figures are provided by the courtesy of A. Szymeczak).

3. GRAPH CLUSTERING ALGORITHMS

The idea of Conley-Morse decomposition that we have seen in the previous section
works generally well for dissipative dynamics, in which we can expect the existence of
attractors and repellers. On the other hand, in conservative systems, for example in
Hamiltonian dynamics, there is no attractor and repeller and thus the only possible
Conley-Morse decomposition is a trivial one.

To obtain an effective visualization of conservative systems, therefore, another cri-
terion for the phase space partition is required. Note that if the system T : X — X
is ergodic, we can not use a function f : X — R to find a partition of X because
for almost all initial point z € X, the time average lim, o 1/n> i_y f(T%(x)) takes
the same value. This suggests that our criterion should be based on the finite-time
behavior of trajectories, rather than the asymptotic behavior as we have done in the
Conley-Morse decomposition.

Here we propose a practical algorithm based on a graph clustering algorithm called
Peer Pressure Clustering (PPC) [3]. Given a directed graph, PPC iteratively refines
an approximated clustering of the graph so that the connectivity inside a cluster will
be higher than the connectivity between different clusters. The convergence of the
algorithm is not guaranteed for a general graph, however, in most of our cases the
algorithm stops after a small number of iterations and runs faster than other clustering
algorithms such as Markov clustering.

We apply PPC algorithm for the graph G obtained from a given dynamics (see the
previous section). Then the resulting clustering of G' corresponds to a partition of the
phase space. Since G imitates the behavior of the original dynamics, we can expect
that this partition of the phase space enjoys a property similar to the clustering of G;
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FiGure 6. PPC algorithm applied for the standard map

the mixing inside a partition element is stronger than then mixing between different
partition elements.

Figure 6 shows the result of PPC for a graph obtained from the standard map.
We note that quasi-periodic motions and chaotic motions are clearly separated by the
algorithm. Figure 7 shows a 2D numerical fluid simulation and the result of PPC
applied to it. Two PPC results are shown for different values of a parameter in the
algorithm that control the granularity of the clustering.

FIGURE 7. The original flow (top) and the results of coarser (bottom
left) and finer (bottom right) PPC clustering
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