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This talk is intended to give a summary of Lie groups and Lie algebras for computer
graphics, including an example from interpolations and blending of motions and defor-
mation. See also the forthcoming SIGGRAPH ASIA 2013 course note.

1. Lie groups and Lie algebras

Lie groups are used for describing the transformations, and Lie algebra is its linear
approximation which has a main feature of Lie groups.
A Lie group is a manifold with a group structure. A typical example of Lie group is

a subset of a matrix spaceM(N) = M(N,R) for some N closed under the product and
the inverse. To focus applications to computer graphics, we may restrict Lie groups to
be this sub-classes without loss of generality.
An affine transformation of Rn is a map from Rn to Rn which maps every line to a

line. We denote by Aff(n) the set of affine transformations, and by Aff+(n) the set of
positive (i.e., reflection-free) affine transformations. In CG, we mainly treat n = 2 and
n = 3, while a part of the theory holds for general n in parallel manner. We see that
Aff(n) is a group and Aff+(n) is a subgroup. A well-known homogeneous realization
of Aff(n) is given as a set of block upper-triangular matrices:

(1) Aff(n) =

{
A =

(
Â dA

0 1

)���� Â ∈ GL(n), dA ∈ Rn

}
,

where GL(n) = {A ∈ M(n,R) | det(A) �= 0}. This realization shows that Aff(n) is a
Lie group.
The exponential of a square matrix X ∈ M(N) is defined to be

(2) exp(X) =
∞∑

k=0

1

k!
Xk,

motivated by the exactly the same Taylor expansion formula for the scalar exponen-
tial function. This infinite series always converges, however, the computation is re-
duced to the exponential of diagonal matrices by using the formula exp(PXP−1) =
P exp(X)P−1.
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Let G be a Lie group realized in M(N, R). The tangent space of G at the origin
is denoted by g, the corresponding German letter, and is called the Lie algebra of G.
The Lie algebra approximates the Lie group, without loosing the (local) informations,
rather surprisingly. The exponential map gives a map from g to G. If G is abelian(=
commutative) and connected, then the exponential map is surjective. If G is simply-
connected, connected, and abelian, then the exponential map is bijective. If G is
compact and connected, then the exponential map is surjective. The exponential map
is a local isomorphism at the origin, but is not necessarily injective or surjective, e.g.
G = SL(2, R). To relax this difficulty on the exponential functions for general Lie
groups, we will introduce the decomposition/factorization of matrices.

2. Matrix factorization

In order to understand and analyze a complicated groups, several types decomposi-
tions of Lie groups and their generalization are known and used. We here recall some
of them.

semi-direct product. The affine transformation group is an example of semi-direct
product groups, so that Aff(n) = GL(n)�Rn. In general, let G be a group and H1, H2

subgroups of G. If the multiplication map

(3) H1 × H2 � (h1, h2) �→ h1h2 ∈ G

is bijective and h1h2h
−1
1 ∈ H2 for all h1 ∈ H1 and h2 ∈ H2, then G is isomorphic to the

semi-direct product group H1 �H2. Another example of the semi-direct product group
is a motion group SE+(n) = SO(n)� Rn, or a congruence group SE(n) = O(n)� Rn.
If h1h2h

−1
1 = h2 in the above, then G is isomorphic to the direct product group H1×H2.

For K = R, C, or H, the group of invertible dual numbers (see [5] Definition 1 for
the notation) is

(4) K̂× = (K+Kε)× = K× +Kε = K× � Kε

which also gives an example of semi-direct product groups. The set K̂1 of unit dual
numbers is a subgroup of K̂×, which is also a semi-direct product group K1 � Kε.

Diagonalization of symmetric matrix. Every (real) symmetric matrix is diagonal-
ized by the conjugate of an orthogonal matrix. This fact is rephrased as the subjectivity
of the multiplication map

(5) O(n)×Diag(n) � (R, D) �→ RDR−1 ∈ Sym(n).

Note that the diagonal entries of diagonal matrix D is the set of eigenvalues (with
multiplicities) of a given symmetric matrix X = RDR−1, so that it is determined by
X up to the ordering of eigenvalues. The column vectors of R are the corresponding
eigenvectors which form orthonormal frame of Rn. These facts give an algorithm to
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compute (R,D) from X. As a special case of this decomposition (5), every positive-
definite symmetric matrix is diagonalized into diagonal matrices with positive diagonal
entries:

(6) O(n)×Diag+(n) � (R, D) �→ RDR−1 ∈ Sym+(n).

Note that Sym+(n) is not a group since the product of two symmetric matrices are not
necessarily symmetric. But still the exponential map gives a bijective from Sym(n) to
Sym+(n). This enables us to consider the logarithm, which is defined to be the inverse
of the exponential, and the fractional power St for t ∈ R defined to be exp(t log(S)) for
S ∈ Sym+(n). (An example is the square root S1/2.) This is a key for interpolations.

Polar decomposition. Every invertible matrix is a product of orthogonal matrix and
a positive-definite symmetric matrix. In other words, the multiplication map

(7) O(n)× Sym+(n) � (R,S) �→ RS ∈ GL(n)

is bijective.

Singular value decomposition (SVD). The following multiplication map is surjec-
tive:

(8) SO(n)×Diag+(n)× SO(n) � (R, D,R�) �→ RDR� ∈ GL+(n).

Triangular decomposition. In some setting, almost all matrices can be decomposed.
Here is an example form Gaussian elimination of systems of linear equations. Let N±

be the set of upper/lower triangular matrices whose diagonal entries are 1. Then the
multiplication map

(9) N− ×Diag(n)× N+ � (U �, D, U) �→ U �DU ∈ GL(n)

is injective and its image is an open dense subset of GL(n).

Iwasawa decomposition. Some decomposition can treat shears. The multiplication
map

(10) SO(n)×Diag+(n)× N+ � (R, D, U) �→ RDU ∈ GL+(n)

gives a bijection.

3. Interpolation and blend

By combining the matrix factorization and the exponential map, we get a straight
forward idea for interpolation. Graphically,

(11)
GL+(2)

∼→ SO(2)× Sym+(2)
log→ so(2)× sym(2)

↓ linear interpolation

GL+(2)
∼← SO(2)× Sym+(2)

exp← so(2)× sym(2).

Our goal is to give an interpolation on GL+(2), but this space is not convex subset
of M(2). By decomposition, we switch to the spaces whose exponential maps behave
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well, and then by the exponential map, we move to a linear space where we have a
reasonable interpolation. This is a modification of the idea of [1], employed in [3]. Note
that the right-most column is a vector space, so we can blend more than two objects
just as a linear combination

∑m
i=1 wiSi. A further example is given in [2].
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