九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Discrete mKdV Flow on Discrete Curves
Kajiwara，Kenji
Institute of Mathematics for Industry，Kyushu University

https：／／hdl．handle．net／2324／1430829

出版情報：MI lecture note series．50，pp．94－99，2013－10－21．九州大学マス・フォア・インダストリ研究所
バージョン：
権利関係：

Discrete mKdV flow on discrete curves

Kenji KAJIWARA

Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan (joint work with Jun-ichi Inoguchi, Nozomu Matsuura and Yasuhiro Ohta)

1. Plane curves

1.1. mKdV flow on plane smooth curves. It is well-known that the plane/space smooth curves admit the isoperimetric motion described by the modified Korteweg-de Vries (mKdV) equation[6, 3]

$$
\begin{equation*}
\dot{\kappa}=\frac{3}{2} \kappa^{2} \kappa^{\prime}+\kappa^{\prime \prime \prime} \tag{1}
\end{equation*}
$$

which is known as one of the most typical integrable systems. Here $\kappa=\kappa(x, t)$, and ' denote t - and x-derivatives, respectively. Actually, let $\gamma(x, t) \in \mathbb{R}^{2}$ be an arclengthparametrized curve, x be an arclength and t be a deformation parameter. Note that we have $\left|\gamma^{\prime}\right|=1$. Consider the Frenet frame
(2) $\Phi(x, t)=[T(x, t), N(x, t)] \in \mathrm{SO}(2), T(x, t):=\gamma^{\prime}(x, t), N(x, t):=R\left(\frac{\pi}{2}\right) T(x, t)$, where

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{3}\\
\sin \theta & \cos \theta
\end{array}\right] .
$$

Then we have the Frenet formula

$$
\Phi^{\prime}(x, t)=\Phi(x, t) L(x, t), \quad L=\left[\begin{array}{cc}
0 & -\kappa \tag{4}\\
\kappa & 0
\end{array}\right]
$$

where $\kappa=\kappa(x, t)$ is the curvature. We consider the isoperimetric motion of the curve given by

$$
\begin{equation*}
\dot{\gamma}=\frac{\kappa^{2}}{2} T+\kappa^{\prime} N \tag{5}
\end{equation*}
$$

which can be expressed in terms of the Frenet frame as

$$
\dot{\Phi}(x, t)=\Phi(x, t) M(x, t), \quad M=\left[\begin{array}{cc}
0 & \kappa^{\prime \prime}+\frac{\kappa^{3}}{2} \tag{6}\\
-\kappa^{\prime \prime}-\frac{\kappa^{3}}{2} & 0
\end{array}\right] .
$$

The linear system (4) and (6) is known as the auxiliary linear problem of the mKdV equation (1), and the matrices L and M are called the Lax pair. The compatibility condition $\dot{L}-M^{\prime}=[L, M]=L M-M L$ yields the $m K d V$ equation (1).
1.2. Discrete $\mathbf{m K d V}$ flow on plane discrete curves[4]. Let $\gamma_{n}^{m} \in \mathbb{R}^{2}$ be a plane discrete curve, where n is the index of the vertices and m is the discrete deformation parameter. We put the length of the segment as a_{n}, namely, $\left|\gamma_{n+1}^{m}-\gamma_{n}^{m}\right|=a_{n}$. The discrete Frenet frame is given by

$$
\begin{equation*}
\Phi_{n}^{m}=\left[T_{n}^{m}, N_{n}^{m}\right] \in \mathrm{SO}(2), T_{n}^{m}:=\frac{\gamma_{n+1}^{m}-\gamma_{n}^{m}}{a_{n}}, \quad N_{n}^{m}:=R\left(\frac{\pi}{2}\right) T_{n}^{m} . \tag{7}
\end{equation*}
$$

Figure 1.

Figure 2.

Then we have the discrete Frenet formula

$$
\begin{equation*}
\Phi_{n+1}^{m}=\Phi_{n}^{m} L_{n}^{m}, \quad L_{n}^{m}=R\left(\kappa_{n+1}^{m}\right), \tag{8}
\end{equation*}
$$

where κ_{n}^{m} denotes the angle between T_{n}^{m} and T_{n-1}^{m} (see Figure 1). We consider the isoperimetric motion of the curve given by (see Figure 2)

$$
\begin{equation*}
\frac{\gamma_{n}^{m+1}-\gamma_{n}^{m}}{b_{m}}=\cos w_{n}^{m} T_{n}^{m}+\sin w_{n}^{m} N_{n}^{m}, \tag{9}
\end{equation*}
$$

where b_{m} is an arbitrary function of m, and w_{n}^{m} is determined by the following equation

$$
\begin{equation*}
\tan \frac{w_{n+1}^{m}+\kappa_{n+1}^{m}}{2}=\frac{b_{m}+a_{n}}{b_{m}-a_{n}} \tan \frac{w_{n}^{m}}{2} . \tag{10}
\end{equation*}
$$

The motion can be expressed in terms of the discrete Frenet frame as

$$
\begin{equation*}
\Phi_{n}^{m+1}=\Phi_{n}^{m} M_{n}^{m}, \quad M_{n}=R\left(\kappa_{n+1}^{m}+w_{n+1}^{m}+w_{n}^{m}\right) . \tag{11}
\end{equation*}
$$

The compatibility condition of the linear system (8) and (11) $L_{n}^{m} M_{n+1}^{m}=M_{n}^{m} L_{n}^{m+1}$ yields $w_{n+1}^{m}-w_{n-1}^{m}=\kappa_{n}^{m+1}-\kappa_{n+1}^{m}$ and the discrete mKdV equation
(12) $\frac{w_{n+1}^{m+1}}{2}-\frac{w_{n}^{m}}{2}=\arctan \left(\frac{b_{m+1}+a_{n}}{b_{m+1}-a_{n}} \tan \frac{w_{n}^{m+1}}{2}\right)-\arctan \left(\frac{b_{m}+a_{n+1}}{b_{m}-a_{n+1}} \tan \frac{w_{n+1}^{m}}{2}\right)$,
which is known as an integrable discretization of the mKdV equation.

Remark 1.

The continuous limit of the discrete mKdV equation (12) to the mKdV equation (1) is described as follows[5]. First put
(13) $a_{n}=a$ (const.), $b_{m}=b$ (const.) $\delta=\frac{a+b}{2}, \epsilon=\frac{a-b}{2}, \frac{s}{\delta}=n+m, l=n-m$.

Taking the limit $\epsilon \rightarrow 0$ yields the semi-discrete mKdV equation for $\kappa_{l}(s)=-w_{l}(s)$

$$
\begin{equation*}
\frac{d \kappa_{l}}{d s}=\frac{1}{\epsilon}\left(\tan \frac{\kappa_{l+1}}{2}-\tan \frac{\kappa_{l-1}}{2}\right) . \tag{14}
\end{equation*}
$$

Next putting

$$
\begin{equation*}
x=\epsilon l+s, \quad t=-\frac{\epsilon^{2}}{6} s, \tag{15}
\end{equation*}
$$

and taking the limit $\epsilon \rightarrow 0$, we obtain the mKdV equation (1) for $\kappa(x, t)$. The semidiscrete mKdV equation (14) also describes certain isoperimetric flows on plane/space discrete curves [2, 5].

Remark 2.

By using the standard technique of the theory of the integrable systems, it is possible to construct explicit formulas for γ in terms of the τ function. The τ functions corresponding to the soliton or the breather type solutions are given by determinants.

2. Space curves

2.1. mKdV flow on space smooth curves[6]. Let x be the arclength, $\gamma(x, t) \in$ \mathbb{R}^{3} be an arclength-parametrized curve so that $\left|\gamma^{\prime}\right|=1$, and t be the deformation parameter. The Frenet frame is defined by

$$
\begin{equation*}
\Phi(x, t)=[T(x, t), N(x, t), B(x, t)] \in \mathrm{SO}(3), T:=\gamma^{\prime}, N:=\frac{\gamma^{\prime \prime}}{\left|\gamma^{\prime \prime}\right|}, B:=T \times N \tag{16}
\end{equation*}
$$

where T, N, B are the tangent vector, the normal vector and the binormal vector, respectively. Then we have the Frenet-Serret formula

$$
\Phi^{\prime}=\Phi L, \quad L=\left[\begin{array}{ccc}
0 & -\kappa & 0 \tag{17}\\
\kappa & 0 & -\lambda \\
0 & \lambda & 0
\end{array}\right], \quad \kappa=\left|\gamma^{\prime \prime}\right|, \quad \lambda=-\left\langle B^{\prime}, N\right\rangle
$$

where κ and λ are curvature and torsion, respectively, and $\langle\cdot, \cdot\rangle$ is the standard inner product. We assume that the torsion λ is a constant. We consider the isoperimetric motion of curves defined by

$$
\begin{equation*}
\dot{\gamma}=\left(\frac{\kappa^{2}}{2}-3 \lambda^{2}\right) T+\kappa^{\prime} N-2 \lambda \kappa N \tag{18}
\end{equation*}
$$

which can be expressed in terms of the Frenet frame as

$$
\dot{\Phi}=\Phi M, \quad M=\left[\begin{array}{ccc}
0 & -\frac{\kappa^{3}}{2}+\lambda^{2} \kappa-\kappa^{\prime \prime} & \lambda \kappa \tag{19}\\
\frac{\kappa^{3}}{2}-\lambda^{2} \kappa+\kappa^{\prime \prime} & 0 & -\frac{\lambda}{2} \kappa^{2}+\lambda^{3} \\
-\lambda \kappa & \frac{\lambda}{2} \kappa^{2}-\lambda^{3} & 0
\end{array}\right]
$$

The compatibility condition of the linear system (17) and (19) $\dot{L}-M^{\prime}=[L, M]$ yields the mKdV equation (1).
2.2. discrete mKdV flow on space discrete curves. This section contains the main result of our presentation. For some fixed m, let $\gamma_{n}^{m} \in \mathbb{R}^{3}$ be an space discrete curve, and ϵ_{n} be the length of the segment, namely, $\epsilon_{n}=\left|\gamma_{n+1}^{m}-\gamma_{n}^{m}\right|$. We introduce the discrete Frenet frame by

$$
\begin{equation*}
\Phi_{n}^{m}=\left[T_{n}^{m}, N_{n}^{m}, B_{n}^{m}\right] \in \mathrm{SO}(3), \tag{20}
\end{equation*}
$$

where the tangent vector T_{n}^{m}, the normal vector N_{n}^{m} and the binormal vector B_{n}^{m} are defined by

$$
\begin{equation*}
T_{n}^{m}:=\frac{\gamma_{n+1}^{m}-\gamma_{n}^{m}}{\epsilon_{n}}, \quad B_{n}^{m}:=\frac{T_{n-1}^{m} \times T_{n}^{m}}{\left|T_{n-1}^{m} \times T_{n}^{m}\right|}, \quad N_{n}^{m}:=B_{n}^{m} \times T_{n}^{m}, \tag{21}
\end{equation*}
$$

respectively. Note that the normal vector is chosen as $N_{n}^{m} \in \operatorname{span}\left\{T_{n-1}^{m}, T_{n}^{m}\right\}$ (see Figure 3).

Figure 3.

Figure 4.

Figure 5.

We define κ_{n}^{m} and ν_{n}^{m} by (see Figure 4)

$$
\begin{equation*}
\left\langle T_{n}^{m}, T_{n-1}^{m}\right\rangle=\cos \kappa_{n}^{m}, \quad\left\langle B_{n}^{m}, B_{n-1}^{m}\right\rangle=\cos \nu_{n}^{m}, \quad\left\langle B_{n}^{m}, N_{n-1}^{m}\right\rangle=\sin \nu_{n}^{m} . \tag{22}
\end{equation*}
$$

Then we see that the Frenet frame satisfies the discrete Frenet-Serret formula

$$
\begin{equation*}
\Phi_{n+1}^{m}=\Phi_{n}^{m} L_{n}^{m}, \quad L_{n}^{m}=R_{1}\left(-\nu_{n+1}^{m}\right) R_{3}\left(\kappa_{n+1}^{m}\right), \tag{23}
\end{equation*}
$$

where $R_{1}(\theta)$ and $R_{3}(\theta)$ are the rotation matrices given by

$$
R_{1}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{24}\\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right], \quad R_{3}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right],
$$

respectively. We define the function λ_{n} by

$$
\begin{equation*}
\lambda_{n}=\frac{\sin \nu_{n+1}}{\epsilon_{n}} \tag{25}
\end{equation*}
$$

which we refer to as the torsion of γ. In the following, we assume that $\lambda_{n}=\lambda$ (const.).
Now we formulate the discrete flow of the space discrete curve γ_{n}^{m} described by the discrete mKdV equation (12):
Theorem 1. Let γ^{0} be a space discrete curve with constant torsion λ. We introduce a_{n}, δ_{m} and α_{n}^{m} by

$$
\begin{equation*}
\epsilon_{n}=\frac{a_{n}}{1+\left(\frac{a_{n} \lambda}{2}\right)^{2}}, \quad \delta_{m}=\frac{b_{m}}{1+\left(\frac{b_{m} \lambda}{2}\right)^{2}}, \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{n}^{m}=\frac{b_{m}+a_{n}}{b_{m}-a_{n}} \tag{27}
\end{equation*}
$$

respectively, where b_{m} is an arbitrary function in m. For an arbitrary sequence w_{0}^{m} we determine the function w_{n}^{m} by

$$
\begin{equation*}
w_{n+1}^{m}=2 \arctan \left(\alpha_{n}^{m} \tan \frac{w_{n}^{m}}{2}\right)-\kappa_{n+1}^{m}, \tag{28}
\end{equation*}
$$

and define the sequence of space discrete curves $\gamma^{1}, \gamma^{2}, \ldots$ by (see Figure 5)

$$
\begin{equation*}
\frac{\gamma_{n}^{m+1}-\gamma_{n}^{m}}{\delta_{m}}=\cos w_{n}^{m} T_{n}^{m}+\sin w_{n}^{m} N_{n}^{m} . \tag{29}
\end{equation*}
$$

Then we have the following:
(1) For any m, γ^{m} satisfies $\left|\gamma_{n+1}^{m}-\gamma_{n}^{m}\right|=\epsilon_{n}$, and the torsion of γ^{m} is λ. Namely, (29) gives a torsion preserving isoperimetric deformation.
(2) The Frenet frame Φ_{n}^{m} satisfies

$$
\begin{align*}
& \Phi_{n+1}^{m}=\Phi_{n}^{m} L_{n}^{m}, \quad L_{n}^{m}=R_{1}\left(-\nu_{n+1}\right) R_{3}\left(\kappa_{n+1}^{m}\right), \tag{30}\\
& \Phi_{n}^{m+1}=\Phi_{n}^{m} M_{n}^{m}, \quad M_{n}^{m}=R_{3}\left(w_{n}^{m}\right) R_{1}\left(-\mu_{m}\right) R_{3}\left(w_{n+1}^{m}+\kappa_{n+1}^{m}\right), \tag{31}
\end{align*}
$$

where

$$
\begin{align*}
& \nu_{n}=2 \arctan \frac{a_{n} \lambda}{2}, \tag{32}\\
& \mu_{m}=2 \arctan \frac{b_{m} \lambda}{2}, \tag{33}
\end{align*}
$$

Compatibility condition of the linear system (30) and (31) gives $w_{n+1}^{m}-w_{n-1}^{m}=$ $\kappa_{n}^{m+1}-\kappa_{n+1}^{m}$ which yields the the discrete mKdV equation (12).
(3) Conversely, for a constant λ and sequences a_{n}, b_{m}, w_{n}^{0} and w_{0}^{m}, we determine the function ν, μ, w and κ by (32), (33), (12) and (28), respectively. Let Φ be a solution to the linear system (30) and (31). Transforming Φ to $\mathrm{SU}(2)$-valued function ϕ by the $\mathrm{SU}(2)-\mathrm{SO}(3)$ correspondence, Sym's formula

$$
\begin{equation*}
\gamma_{n}^{m}=-\left(\frac{\partial}{\partial \lambda} \phi_{n}^{m}\right)\left(\phi_{n}^{m}\right)^{-1} \in \mathfrak{s u}(2) \simeq \mathbb{R}^{3} \tag{34}
\end{equation*}
$$

recovers the sequence of isoperimetric deformation of the space discrete curves $\ldots, \gamma^{-1}, \gamma^{0}, \gamma^{1}, \ldots$ with constant torsion λ.

Remark 3.

The space curve motions recovers the plane curve motions by setting $\lambda=0$ for both smooth and discrete curves.

Remark 4.

One can see from (26) that the lattice intervals ϵ, δ for the space discrete curve and
a, b for the discrete mKdV are different. This is an essential feature of the discrete motion of space discrete curves. They coincide by setting $\lambda=0$ (case of plane curves).

Remark 5. (Discrete sine-Gordon flow)

Space discrete curves also admits the deformation described by the discrete sine-Gordon equation. Actually, for a space discrete curve γ^{m} and a sequence c_{m} we put

$$
\begin{equation*}
\delta_{m}=\frac{c_{m}}{c_{m}^{2}+\left(\frac{\lambda}{2}\right)^{2}}, \quad \alpha_{n}^{m}=\frac{1+a_{n} c_{m}}{1-a_{n} c_{m}} \tag{35}
\end{equation*}
$$

and define the discrete flow of γ by (28) and (29). Then it follows that the Frenet frame Φ satisfies

$$
\begin{equation*}
\Phi_{n}^{m+1}=\Phi_{n}^{m} M_{n}^{m}, \quad M_{n}^{m}=R_{3}\left(w_{n}^{m}\right) R_{1}\left(-\mu_{m}\right) R_{3}\left(-w_{n+1}^{m}-\kappa_{n}^{m}\right), \quad \mu_{m}=-2 \arctan \frac{2 c_{m}}{\lambda} \tag{36}
\end{equation*}
$$

Consistency of the discrete flow is guaranteed by $w_{n+1}^{m}-w_{n-1}^{m}=-\kappa_{n}^{m+1}-\kappa_{n+1}^{m}$, from which we obtain the discrete sine-Gordon equation

$$
\begin{equation*}
\frac{w_{n+1}^{m+1}}{2}+\frac{w_{n}^{m}}{2}=\arctan \left(\alpha_{n}^{m+1} \tan \frac{w_{n}^{m+1}}{2}\right)+\arctan \left(\alpha_{n+1}^{m} \tan \frac{w_{n+1}^{m}}{2}\right) \tag{37}
\end{equation*}
$$

or in terms of the potential function defined by $w_{n}^{m}=-\frac{\theta_{n}^{m+1}+\theta_{n+1}^{m}}{2}$

$$
\begin{equation*}
\sin \frac{\theta_{n+1}^{m+1}-\theta_{n}^{m+1}-\theta_{n+1}^{m}+\theta_{n}^{m}}{4}=a_{n} c_{m} \sin \frac{\theta_{n+1}^{m+1}+\theta_{n}^{m+1}+\theta_{n+1}^{m}+\theta_{n}^{m}}{4} \tag{38}
\end{equation*}
$$

Remark 6. (Discrete K-surface)
The sequence of isoperimetric deformations of space discrete curves $\gamma=\gamma_{n}^{m}$ described in Theorem 1 and Remark 5 both form discrete surfaces with the constant negative Gaussian curvature (discrete K-surfaces)[1]. Conversely, any discrete K-surface can be constructed as Theorem 1 or Remark 5. This gives a new method of construction of discrete K-surfaces.

References

[1] A. Bobenko and U. Pinkall, Discrete surfaces with constant negative Gaussian curvature and the Hirota equation, J. Diff. Geom. 43 (1996) 527-611.
[2] A. Doliwa and P. M. Santini, Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy, J. Math. Phys. 36 (1995)1259-1273.
[3] R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 67 (1991) 3203-3206.
[4] J. Inoguchi, K. Kajiwara, N. Matsuura, and Y. Ohta, Motion and Bäcklund transformations of discrete plane curves, Kyushu J. Math. 66 (2012) 303-324.
[5] J. Inoguchi, K. Kajiwara, N. Matsuura, and Y. Ohta, Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves, J. Phys. A: Math. Theor. 45 (2012) 045206 (16pp)
[6] G. Lamb Jr., Solitons and the motion of helical curves, Phys. Rev. Lett. 37 (1976) 235-237.

