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Problem. In computer vision and graphics research, facial expression and iden-
tity are commonly modeled as a high-dimensional vector space, often with a multidi-
mensional Gaussian density. This choice of representation has associated algorithmic
approaches such as linear interpolation and maximum a posteriori (MAP) solution of
inverse problems.

In this paper we argue several things: 1) the linear and Gaussian assumptions
are not strictly correct. 2) existing research that starts from these assumptions has
implicitly assumed a low dimensional setting. In high dimensions, common algorithmic
approaches such as MAP may not be justified. 3) most importantly, we show that the
problems resulting from these assumptions are not just hypothetical, but are visible in
a practical computation.

Linear models. The faces of realistic computer characters in movies are most often
generated using the “blendshape” representation [LA10, ATL12, SILN11, LYYB13].
This is a linear representation of the form f = Bw, where B is a linear but non-
orthogonal basis having semantic meaning. Bilinear (tensor) face models have also been
proposed [VBPP05]. In computer vision, approaches such as active appearance models
(AAM) [CET98] and morphable models [BV99] use an orthogonal basis generated
by principal component analysis (PCA), and assume the multidimensional Gaussian
prior. Psychological research has also employed such linear models with a multivariate
Gaussian prior [Val12].

PCA assumes that the data is jointly Gaussian, in that the PCA basis vectors are the
eigenvectors of a covariance matrix that does not capture any non-Gaussian statistics.

Figure 1. Face proportions are not Gaussian: rendering of the kernel
density of several face proportions from a database of 400 faces.
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Figure 2. The closest distance among 1000 unit-variance multidimen-
sional Gaussian random variables to the mean (vertical axis) as a function
of the dimension (horizontal axis). In 100 dimensions every point in this
simulation is more than six standard deviations from the mean.

The Gaussian assumption leads to a frequently employed prior or regularizer of the
form cTΛ−1c where c is the vector of PCA coefficients and Λ is the diagonal matrix
of eigenvalues (variances). The Gaussian assumption also naturally leads to the MAP
approach to regularising inverse problems. This approach selects model parameters M
as the mode of the posterior P (D|M)P (M) given data D. With a Gaussian model the
posterior also has a Gaussian form.

The appropriate number of dimensions for a linear facial model of expression or
identity has been variously estimated to be in the range 40–100 [MS07, PS00, MXB06].
High quality blendshape facial models used in movie visual effects typically have on
the order of 100 dimensions [LA10].

In figure 1 we show that the common multidimensional Gaussian assumption is not
strictly accurate. This figure shows a kernel density plot of several simple measure-
ments of facial proportions measured from 400 selected photographs from the facial
database [PWHR98]. It is also somewhat obvious that a linear model is not entirely
appropriate for facial expression. For example, the motion of the jaw has a clear
rotational component. On the other hand, the widespread use of the blendshape rep-
resentation in movies (albeit sometimes with nonlinear correction terms [SILN11]) is
an argument that linear models suffice even if they are not strictly accurate. It is less
clear whether a vector space model of facial identity is appropriate, or if a (nonlinear)
manifold assumption would be more accurate. While these comments call into question
the linear and Gaussian assumptions, existing research does not indicate whether these
objections are important in practical computations.

High-dimensional phenomena. High dimensional data is generally subject to a
collection of nonintuitive phenomena collectively known as the “curse of dimensional-
ity” [Wan11]. Examples of such phenomena are that a) in high dimensions, “all data
is far away” with high probability (Figure 2), b) randomly chosen vectors are nearly
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Figure 5. The radially integrated Gaussian N(0, In) in various dimen-
sions. Each subfigure shows the radially integrated Gaussian profile
Sd−1(r)G(r) (vertical axis) plotted in units of

√
d (horizontal axis). From

left to right: 1, 2, 10, and 100 dimensions. In high dimensions the prob-
ability concentrates in a shell centered at radius

√
d.

difference between the variance and mean. A zero-mean random variable can (and
typically does!) have a nonzero variance. Randomly sampling from a multidimensional
Gaussian will generate a sequence of samples that have both the expected mean and
variance of course.

Discussion. Next we will establish the statement that high dimensional data is
concentrated overwhelmingly near the surface of the hypervolume. In the case of a
uniformly distributed random variable in a hypercube, this is easy to see. Consider a
unit hypercube in d dimensions, that encloses a smaller hypercube of side 1 − . As
d → ∞, the volume of the enclosed hypercube is (1 − )d → 0.

The fact that the multivariate Gaussian is a heavy tailed distribution in high di-
mensions is less obvious. For example, [Val12] states, “even for a face space of high
dimensionality, the assumption of a multivariate normal distribution means that...
There will be many typical faces that will be located relatively close to the center”.

Discussion of the multivariate Gaussian is simplified by a “whitening” transforma-
tion ci → ci/

√
λi from the original hyperellipsoidal density to an isotropic density. We

can also consider a unit-variance density without loss of generality. In this case the
probability that a point is within a hypersphere of radius r is proportional to

 r

0

Sd−1(r)G(r) =
2πd/2

Γ(d/2)

 r

0

rd−1G(r)dr

where d is the dimension, G(r) = 1√
(2π)d

exp−r2/2 is the isotropic unit variance Gaussian

density function, Sd−1(r) = 2πd/2rd−1

Γ(d/2)
is the “surface area” of the d-hypersphere, and Γ

is the Gamma function. This can be used to plot the tail probability that a point lies
outside the unit hypersphere in various dimensions (Figure 4). While in one dimension
the majority of the probability mass is within the unit interval, in 100 dimensions
the probability that a point is outside the unit hypersphere is 1. to within machine
precision! It may be worth contrasting the mode of the high-dimensional Gaussian
with the Dirac delta generalised function. The delta function has zero width but unit
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difference between the variance and mean. A zero-mean random variable can (and
typically does!) have a nonzero variance. Randomly sampling from a multidimensional
Gaussian will generate a sequence of samples that have both the expected mean and
variance of course.

Discussion. Next we will establish the statement that high dimensional data is
concentrated overwhelmingly near the surface of the hypervolume. In the case of a
uniformly distributed random variable in a hypercube, this is easy to see. Consider a
unit hypercube in d dimensions, that encloses a smaller hypercube of side 1 − . As
d → ∞, the volume of the enclosed hypercube is (1 − )d → 0.

The fact that the multivariate Gaussian is a heavy tailed distribution in high di-
mensions is less obvious. For example, [Val12] states, “even for a face space of high
dimensionality, the assumption of a multivariate normal distribution means that...
There will be many typical faces that will be located relatively close to the center”.

Discussion of the multivariate Gaussian is simplified by a “whitening” transforma-
tion ci → ci/

√
λi from the original hyperellipsoidal density to an isotropic density. We

can also consider a unit-variance density without loss of generality. In this case the
probability that a point is within a hypersphere of radius r is proportional to

 r

0

Sd−1(r)G(r) =
2πd/2

Γ(d/2)

 r

0

rd−1G(r)dr

where d is the dimension, G(r) = 1√
(2π)d

exp−r2/2 is the isotropic unit variance Gaussian

density function, Sd−1(r) = 2πd/2rd−1

Γ(d/2)
is the “surface area” of the d-hypersphere, and Γ

is the Gamma function. This can be used to plot the tail probability that a point lies
outside the unit hypersphere in various dimensions (Figure 4). While in one dimension
the majority of the probability mass is within the unit interval, in 100 dimensions
the probability that a point is outside the unit hypersphere is 1. to within machine
precision! It may be worth contrasting the mode of the high-dimensional Gaussian
with the Dirac delta generalised function. The delta function has zero width but unit

volume when integrated over. In contrast, the high-dimensional Gaussian has nonzero
width near the origin, but negligible volume.

High dimensional data can also be tightly concentrated in a shell of relatively narrow
thickness. In the case of the multi-dimensional Gaussian, the majority of its mass is
concentrated within a shell centered at radius

√
d. Figure 5 plots the radially integrated

unit variance Gaussian profile Sd−1(r)G(r) relative to the distance
√
d (i.e. with a

change of variable r → r
√
d). The data is concentrated increasingly around

√
d (relative

to the distance
√
d itself) in high dimensions.

The observations collected above lead to the remarkable conclusion that algorithms
such as MAP may be nonsensical in high dimensions! While this conclusion is not
widely known in the computer vision and graphics community (MAP is commonly
used for face computations with models having 10-100 dimensions), it has been noted
elsewhere. Mackay states [Mac96], “probability density maxima often have very little
associated probability mass even though the value of the probability density there
may be immense, because they have so little associated volume... the locations of
probability density maxima in many dimensions are generally misleading and irrelevant.
Probability densities should only be maximized if there is good reason to believe that
the location of the maximum conveys useful information about the whole distribution.”

Example computation: interpolating in face space. Figure 6 contrasts two
approaches to interpolating facial identity. The images are not photographs but are
synthesized with an AAM [MLN04]. The face on the far left is generated from a coef-
ficient vector cl sampled from a multivariate Gaussian with the appropriate variances
(eigenvalues). The face on the far right is also randomly chosen, but its coefficient vec-
tor cr is modified to constrain it to having a specified inner product cl, crΛ−1 = −0.8
so as to place it on the opposite side of the coefficient volume. The inner product uses
the inverse eigenvalue-weighted norm cl, crΛ−1 = cTl Λ

−1cr. The dimensionality of
the space (length of the coefficient vector) is 181.

The top rows in figure 6 shows linear interpolation through the Gaussian coefficient
space. The midpoint of this interpolation passes closer to the center (mean) face than
either end. This results in a somewhat “ghostly” face that lacks detail. The linear
interpolation also has the undesired result that (for example) interpolating from a
person of age 40 to a person of age 45 might pass through an intermediate face of
apparent age 25, if that is the mean age of the database underlying the AAM.

In the lower panels of figure 6 we interpolate “around” a hyperellipsoidal shell in
the coefficient space rather than across the volume. Given initial and final coefficient
vectors cl, cr, at each step a coefficient vector is generated that interpolates the norm
of these vectors (although in fact the difference in norm is expected to be small due to
phenomena mentioned above). This interpolation remains inside the high probability
shell of the hyperGaussian and generates distinctive faces throughout the interpolation.

Conclusion. This paper describes known high-dimensional phenomena that call
into question common assumptions underlying much computer vision, graphics, and
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Figure 6. Interpolating between a randomly chosen face (left column)
and a second face (right column) nearly on the opposite side of the hy-
perellipse of coefficients. Top row of each image: linear interpolation
of coefficients. The middle images lack distinctiveness. Bottom row of
each image: interpolating “around the hyperellipse”. Detail is preserved
throughout the interpolation. Please enlarge to see details.

psychological research on face computation. In particular, we question approaches that
assume that typical faces lie in the interior of a high-dimensional Gaussian density.
These objections are not merely hypothetical, but are visible in a simple face compu-
tation. Our conclusion highlights the need to develop new algorithms that address the
intrinsically high-dimensional nature of facial identity and expression.
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