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Triangle meshes have found widespread acceptance in computer graphics as a simple,
convenient, and versatile representation of surfaces. In particular, computing on such
simplicial meshes is a workhorse in a variety of graphics applications. In this context,
mesh duals (tied to Poincaré duality and extending the well known relationship between
Delaunay triangulations and Voronoi diagrams) are often useful, be it for physical
simulation of fluids [5] or parameterization [7]. However, the precise embedding of a
dual diagram with respect to its triangulation (i.e., the placement of dual vertices)
has mostly remained a matter of taste or a numerical after-thought, and barycentric
vs. circumcentric duals are often the only options chosen in practice. In this talk we
discuss the notion of orthogonal dual diagrams, and show through a series of recent
works that exploring the full space of orthogonal dual diagrams to a given simplicial
complex is not only powerful and numerically beneficial, but it also reveals (using tools
from algebraic topology and computational geometry) discrete analogs to continuous
properties.

Starting from a (primal) triangle mesh defined as a simplicial complex (i.e., a piece-
wise linear approximation of a discrete orientable manifold surface of any topology in

(a) Blue Noise Sampling. (b) Well-centered Meshes. (c) Self-supporting Structures.

F1GURE 1. Orthogonal dual diagrams to primal simplicial meshes have
recently been shown key in a wide variety of applications in geometry
processing and graphics, for flat & curved domains of arbitrary topology.



R? with or without boundary), a family of intrinsic dual diagrams [9] can be con-
structed through the addition of a weight per vertex [1]. The resulting diagrams can
be intuitively understood as displacements of the canonical (Euclidean) circumentric
dual along the gradient of the function defined by the weights, resulting in intrinsically
straight dual edges that remain orthogonal to primal edges due to the curl-free nature
of any gradient field [4]. For surfaces of non-trivial genus, there are additional displace-
ment fields that are curl-free but are not gradients: they correspond to the so-called
harmonic 1-forms (of dimension f, the first Betty number of the surface). Therefore,
the total space of orthogonal duals is, accounting for the gauge of the gradient, of
dimension 1 +V —1 where V denotes the number of vertices in the primal mesh. Note
that once a dual diagram is defined through these coordinates, close formulae for the
signed measures of the dual elements (dual lengths, dual cell areas) are available.

This simple definition of orthogonal duals is surprisingly versatile in that it offers
efficient and foundational solutions to numerous applications, including:

e Blue noise sampling: Coined by Ulichney [11], the term blue noise refers to an
even, isotropic, yet unstructured distribution of points in (typically 2D) Eu-
clidean space. Blue noise was first recognized as crucial in dithering of images
since it captures the intensity of an image through its local point density, with-
out introducing artificial structures of its own. It rapidly became prevalent
in various scientific fields, especially in computer graphics, where its isotropic
properties lead to high-quality sampling of multidimensional signals, and its
absence of structure prevents aliasing. However, the generation of high-grade
blue-noise importance sampling remains numerically challenging.

Our orthogonal duals offer a convenient solution to this common requirement.
By writing the density requirement as constraints on dual cell areas of the
diagram and using optimal transport to formally characterize the isotropy of
a point distribution, one ends up with an efficient optimization technique of
point distributions via a constrained minimization in the space of orthogonal
dual diagrams. In this application, the weights are crucial degrees of freedom to
exactly enforce adapted sampling, rendering the formulation not only well-posed
but efficient as well. In practice, the resulting blue noise point distributions
outachieve previous methods based on both spectral and spatial analyses [2].

o Self-supporting structures: Masonry structures are arrangements of material
blocks, such as bricks or stones, that support their own weight. Constructing
curved vaults or domes with compression-only structures of blocks, further pre-
vented from slipping through friction and/or mortar, has been practiced since
antiquity. It is therefore no surprise that form finding and stability analysis of
self-supporting structures have been an active area of research for years. In par-
ticular, it has been shown that equilibrium of a masonry structure is ensured



if there exists an inner thrust surface which forms a compressive membrane
resisting the external loads [6]. Discretizing the continuous balance equations
relating the stress field on the thrust surface to the loads has been, however, an
open problem for years with no fully satisfactory solution.

Our primal-dual structures offer, here again, an unexpected approach to this
problem: a finite-dimensional formulation of the compressive stress field of these
self-supporting membranes represented a triangle meshes can be rigorously de-
rived through homogenization; moreover, equilibrium is guaranteed if (and only
if) the dual planar graph induced by vertex weights forms an orthogonal dual
diagram—corresponding to the force network at play within the membrane.
Therefore, our full characterization of orthogonal duals formally provides dis-
crete (and exact) analogs of continuous properties; in fact, the weight them-
selves correspond in this context to the Airy stress function, a staple of static
continuum mechanics. One can thus derive computational form-finding tools
to alter a reference shape into a free standing simplicial structure, which turns
out to improve upon previous work in terms of efficiency, accuracy, and scala-
bility [3].

e Meshing: Being able not only to choose primal vertex positions, but also a
dual diagram, opens up a series of possibilities in the context of meshing, i.e.,
turning a 2D or 3D domain into a(n often simplicial) complex. A majority of
meshing approaches restrict the space of valid meshes to Delaunay triangula-
tions because they are abundantly vetted by theoretical guarantees; in practice,
however, Delaunay conditions are often too restrictive to be valuable. More-
over, it is extremely difficult in practice to construct “self-centered” Delaunay
triangulations [10] for which each circumcenter lies inside its associated tetra-
hedron: failure to satisfy this property locally can lead to numerical degenera-
cies. Recent methods attempting to optimize meshes to avoid this issue remain
impractical for complex domains [12]. With the added flexibility offered by
weights, one can much more easily optimize a mesh to become well-centered
by finding the weight assignment that results in dual vertices closest to each
triangle’s barycenter. Moreover, as our primal-dual structures are compatible
with Discrete Exterior Calculus (DEC, a finite-dimensional calculus inspired by
Cartan’s exterior calculus), one can also optimize meshes to make a particular
discrete operator (e.g., the commonly-used Laplacian) both better conditioned
and with smaller error bounds [8].

Orthogonal duals have also a number of connections to other research fields, such as
circle packing and discrete conformal structures, which indicates that more results are
likely to come out in the next few years.
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