Preparation of Anti-dinitrotoluene Polyclonal Antibody and Effect of the Hapten Spacer Length in Coating Antigen on Immunoassay Sensitivity

Nagatomo, Kazutaka
Laboratory of Food Analysis, Division of Food Biotechnology, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

Matsumoto, Kiyoshi
Laboratory of Food Analysis, Division of Food Biotechnology, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

Ishitobi, Sachiko
Laboratory of Food Analysis, Division of Food Biotechnology, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

Koga, Mao
Laboratory of Food Analysis, Division of Food Biotechnology, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University

他

http://hdl.handle.net/2324/14054
Preparation of Anti-dinitrotoluene Polyclonal Antibody and Effect of the Hapten Spacer Length in Coating Antigen on Immunoassay Sensitivity

Kazutaka NAGATOMO¹, Kiyoshi MATSUMOTO*, Sachiko ISHITOBI¹, Mao KOGA¹, Kiyoshi TOKO² and Norio MIURA³

Laboratory of Food Analysis, Division of Food Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 812–8581, Japan

(Received October 28, 2008 and accepted December 5, 2008)

INTRODUCTION

Environmental pollution of soil, river water, and underground water by explosive–related compounds is a serious problem in the areas of buried landmines and/or landmine factories (Hilmi et al., 1999). These compounds are suspected to have human toxicity, mutagenicity, and carcinogenicity (Kennel et al., 2000; Sayama et al., 2002; Shankaran et al., 2005a; Shankaran et al., 2005b; Matsumoto et al., 2005; Shankaran et al., 2006). According to the reports of Jenkins et al. (2000, 2001), the concentrations of 2,4–DNT and other decomposed nitroaromatic compounds around and over buried landmines are higher than the concentration of TNT.

In the present study, a polyclonal antibody against 2,4–dinitrotoluene (2,4–DNT) has been raised in rabbit, and the antibody was used to detect 2,4–DNT using an enzyme–linked immunosorbent assay (ELISA) method. A 2,4-dinitrophenyl–keyhole limpet hemocyanine (DNPh–KLH) conjugate was injected into a rabbit, and a polyclonal anti-DNPh–KLH antibody was realized after purification of the serum using protein G column. Aspects of the anti–DNPh–KLH antibody to various nitroaromatic compounds, such as cross–reactivities and avidity, were characterized. The temperature dependence of the avidity between the anti–DNPh–KLH antibody and 2,4–DNT was also evaluated. The quantification of 2,4–DNT was based on the principle of indirect competitive ELISA, in which the immunoreaction between the coating antigen–protein conjugates and the anti–DNPh–KLH antibody were inhibited in the presence of free 2,4–DNT in solution. The detection was performed using alkaline phosphatase–labeled anti–rabbit IgG with p–nitrophenolphosphate as a substrate. The addition of a mixture of free 2,4–DNT to the anti–DNPh–KLH antibody was found to decrease the absorbance at 405 nm due to the competitive effect of 2,4–DNT. The effect of the structure of the coating antigen–protein conjugate on the competition of free 2,4–DNT or coating antigen toward anti–DNPh–KLH antibody was also investigated. The immunoassay exhibited excellent sensitivity for the detection of 2,4–DNT in the concentration range of 1 ng mL⁻¹ to 10 μg mL⁻¹.

A polyclonal antibody against 2,4–dinitrotoluene (2,4–DNT) has been raised in rabbit, and the antibody was used to detect 2,4–DNT using an enzyme–linked immunosorbent assay (ELISA) method. A 2,4-dinitrophenyl–keyhole limpet hemocyanine (DNPh–KLH) conjugate was injected into a rabbit, and a polyclonal anti-DNPh–KLH antibody was realized after purification of the serum using protein G column. Aspects of the anti–DNPh–KLH antibody to various nitroaromatic compounds, such as cross–reactivities and avidity, were characterized. The temperature dependence of the avidity between the anti–DNPh–KLH antibody and 2,4–DNT was also evaluated. The quantification of 2,4–DNT was based on the principle of indirect competitive ELISA, in which the immunoreaction between the coating antigen–protein conjugates and the anti–DNPh–KLH antibody were inhibited in the presence of free 2,4–DNT in solution. The detection was performed using alkaline phosphatase–labeled anti–rabbit IgG with p–nitrophenolphosphate as a substrate. The addition of a mixture of free 2,4–DNT to the anti–DNPh–KLH antibody was found to decrease the absorbance at 405 nm due to the competitive effect of 2,4–DNT. The effect of the structure of the coating antigen–protein conjugate on the competition of free 2,4–DNT or coating antigen toward anti–DNPh–KLH antibody was also investigated. The immunoassay exhibited excellent sensitivity for the detection of 2,4–DNT in the concentration range of 1 ng mL⁻¹ to 10 μg mL⁻¹.
MATERIALS AND METHODS

Materials

Bovine serum albumin (BSA), p–nitrophenyl phosphate disodium salt (p–NPP), sodium sulfate, 2,4,6–trinitrobenzenesulfonate sodium salt (TNBS), 1,6–diaminohexane, 6–aminohexanoic acid, N–hydroxysuccinimide (NHS), and gelatin were obtained from Nakalai Tesque, Inc. (Kyoto, Japan). Ovalbumin (OVA), keyhole limpet hemocyanin (KLH), alkaline phosphatase (ALP)–labeled anti–rabbit IgG, 1–ethyl–3–(3–dimethyl aminopropyl) carbodiimide (EDC), hexylamine, ethylamine, 2,4–dinitrotoluene (2,4–DNT), and 2,4–dinitrophenyl (2,4–DNPh–gly) were obtained from Sigma (St. Louis, MO, USA). 2,4–Dinitrobenzenesulfonate sodium salt (2,4–DNBS) was from Research Chemicals (Toronto, Canada).

Detection: 2,4–Dinitrophenyl and 2,4–Dinitrophenol (DNPh–OVA) were purchased from Amersham Bioscience Japan. The Hi Trap Protein G column and PD–10 column were purchased from Kyoyu (Fukushima, Japan). A rabbit (6 weeks old, female) was purchased from Difco (Detroit, MI, USA). 2,4–Dinitrophenol (TNPh–OH) and 2,4–dinitrophenyl (2,4–DNPh–gly) were obtained from Sigma (St. Louis, MO, USA). 2,4,6–Trinitrophenol (TNPh–OH) and 2,4,6–Trinitrotoluene (TNT), 2–amino–4,6–dinitrotoluene (2–amino–4,6–DNT), and 4–amino–2,6–dinitrotoluene (4–amino–2,6–DNT) were purchased from Supelco (Bellfonte, PA, USA). Other reagents were of analytical–reagent grade. All buffer solutions were prepared using water purified with a Milli–Q filter (Millipore, Bedford, MA, USA).

Apparatus

ELISA measurements were performed using a Shimadzu Multi Spec 1500 (Kyoto, Japan).

Preparation of DNPh–KLH

2,4–DNBS (in 1 mg mL–1 H2O, 1 mL) was reacted with 1 mL of 0.48 mol L–1 (M) NaHCO3 solution (pH 8.5) containing 10 mg KLH for 12 h at 40 °C. After the reaction, the preparation was dialyzed against five changes of H2O at room temperature for 2 days, and then lyophilized to produce the DNPh–OVA–1 conjugate. The other five conjugates were prepared by the same procedures as DNPh–OVA–1 except for the concentration of 2,4–DNBS (DNPh–OVA–2: 10 mg mL–1; DNPh–OVA–3: 20 mg mL–1; DNPh–OVA–4: 40 mg mL–1; DNPh–OVA–5: 100 mg mL–1; DNPh–OVA–6: 200 mg mL–1).

DNPh–Cx–OVA: Six different DNPh–Cx–OVA conjugates with different length methylene chains (spacers) between the hapten and protein (OVA) were prepared. In a solution of 25 mM borate buffer (pH 8.0, 1 mL), 8.82 mg of OVA and 2.18 mg of NHS were dissolved, and then 52.9 mg of EDC was added to the solution and stirred over night at room temperature. 1,2–Diaminoethane (0.51 mg, liquid) was gently added to the reaction mixture and stirred overnight. The mixture was dialyzed against three changes of H2O at room temperature and lyophilized to produce C2–OVA. After the lyophilized powder (2 mg) was dissolved in 1 mL of 0.1% NaHCO3 solution, 1 mL of 2,4–DNBS solution (16 mg mL–1) was added to the solution and stirred overnight. The reaction mixture was dialyzed against H2O and lyophilized to produce DNPh–C2–OVA conjugate. Other conjugates were prepared using the same procedures except for the concentrations of diaminoalkanes and 2,4–DNBS (DNPh–C4–OVA: 0.78 mg of 1,4–diaminobutane in 200 μL DMSO, 16 mg mL–1 of 2,4–DNBS; DNPh–C6–OVA: 1.00 mg of 1,6–diaminohexane in 200 μL DMSO, 16 mg mL–1 of 2,4–DNBS; DNPh–C8–OVA: 1.24 mg of 1,8–diaminoocetane in 200 μL DMSO, 16 mg mL–1 of 2,4–DNBS; DNPh–C10–OVA: 1.49 mg of diaminodecane in 200 μL DMSO, 5 mg mL–1 of 2,4–DNBS; DNPh–C12–OVA: 1.49 mg of 1,12–diaminododecane in 200 μL DMSO, 5 mg mL–1 of 2,4–DNBS).

DNPh–glycine–OVA: 25 mg of DNPh–glycine and 13 mg of NHS were dissolved in 1 mL of bis(2–methoxyethyl) ether. Fifty mg of sodium sulfate was added, and the mixture was cooled to 0 °C. The mixture was added 34 mg of EDC, and the reaction mixture was allowed to warm to room temperature and stirred overnight. Ten mg of OVA were dissolved in 1 mL of 25 mM borate buffer (pH 8.0). At intervals of 30 min, three aliquots of the NHS–ester solution (each 62 μL) were added slowly to the OVA solution under intense stirring. After reacting 2 h, the mixture was passed through a PD 10 gel filtration column, and then the eluted fraction was lyophilized to produce DNPh–glycine–OVA conjugate (DNPh–gly–OVA).

Synthesis of TNPh–derivatives

TNPh–derivatives were synthesized according to our previous report (Sakai et al., 2003).

Immunization

A rabbit was immunized with DNPh–KLH conjugate according to the following procedure. Conjugate dissolved in PBS (0.6 mg mL–1) was emulsified with an equal volume of Freund’s complete adjuvant. On days 0, 14,
Preparation and purification of polyclonal anti-DNPh–KLH antibody

Whole blood of the rabbit was collected by cardiocentesis 7 days after the last injection. The purification was performed according to our previous paper (Sakai et al., 2003) with a minor modification.

Indirect competitive ELISAs for 2,4–DNT

ELISAs for 2,4–DNT were performed as follows. Ninety–six–well immunoplates were coated with 100 μL of DNPh–KLH conjugate (10 μg mL⁻¹ in 50 mM carbonate buffer, pH 9.6) over–night at room temperature. The plates were then washed three times with PBS containing 0.05% Tween 20 (PBST), and treated with 150 μL of 1% gelatin for 1 h at room temperature, and again washed three times with PBST and reacted with antiserum at eight different dilutions (1/1000 to 1/128000 in PBS), which were added to the wells (50 μL to each well) and incubated for 2 h at room temperature. The plates were washed again three times with PBST, and a solution of ALP–labeled anti–rabbit IgG (2000–fold dilution in PBS) was added (100 μL to each well) and incubated for 1 h at room temperature. The plates were washed again, and the substrate solution (2 mg mL⁻¹ of p–NPP in 50 mM carbonate buffer, pH 9.6, containing 1 mM MgCl₂ and 0.1 mM ZnCl₂) was added and incubated for 30 min at room temperature. Then absorbance was measured at 405 nm.

Avidity of anti–DNPh–KLH antibody to various kinds of nitroaromatic compounds

The avidity of anti–DNPh–KLH antibody to nitroaromatic compounds was investigated by indirect competitive ELISAs using the DNPh–gly–OVA conjugate and DNPh–CS–OVA as a coating antigen–protein conjugate. The ELISA procedures were the same as described in the section of Indirect competitive ELISAs for 2,4–DNT. The IC₅₀ was defined as the concentration of added DNPh derivative that yields 50% inhibition compared with no inhibition (100%). Molar cross–reactivities were related to 2,4–DNT (100); namely, all molar cross–reactivities were determined in relation to the 2,4–DNT standard inhibition curve. The molar cross–reactivity was calculated using the IC₅₀ of each derivative according to the following equation (Weiler and Zenk, 1976):

\[CR = \frac{(IC₅₀^0/IC₅₀)}{100} \]

where CR is molar cross–reactivity [%], IC₅₀₀ is the IC₅₀ of the DNT standard [M], and IC₅₀ is the IC₅₀ of derivatives or related compounds [M].

RESULTS AND DISCUSSION

Immunization efficacy

The results of the immunization of the rabbit with DNPh–KLH conjugate are shown in Fig. 1. The antiserum was tested by direct enzyme–linked immunosorbent assay (direct–ELISA). Ninety–six–well immunosorebt plates were coated with 100 μL of DNPh–KLH conjugate (10 μg mL⁻¹ in 50 mM carbonate buffer, pH 9.6, containing 1 mM MgCl₂ and 0.1 mM ZnCl₂) was added to the wells (50 μL to each well) and incubated for 30 min at room temperature. The absorbance at 405 nm was measured using a microplate reader.

Temperature dependence of avidity between anti–DNPh–KLH antibody and DNT

Temperature dependencies of the avidity between the anti–DNPh–KLH antibody and 2,4–DNT was investigated by using indirect competitive–ELISA. DNPh–OVA (0.01 μg mL⁻¹) was immobilized on the surface of the wells, and an antibody concentration of 10 μg mL⁻¹ was used. Competitive reactions among free 2,4–DNT, bound DNPh–OVA, and anti–DNPh–KLH antibody were performed for 1 h. The results are shown in Fig. 2. The sen-
sensitivity, or detection limit, of these analyses was defined as the concentration of antigen at which the percentage bound was depressed to 85%. The concentrations for 15% inhibition were almost the same at different temperatures, but there was a tendency toward higher sensitivity at lower temperatures. At lower temperatures, the non–specific binding of the antibody will be depressed, but simultaneously, the signal intensities will be weakened. In this case, differences in sensitivity between the temperatures were hard to distinguish, probably because of the lower signal intensities and avidity. At higher temperatures, the sensitivity observed was lower, but even so, the antibody was usable up to 50 °C.

Optimization of number of DNPh–groups introduced on coating antigen–protein conjugates

To elucidate the effect of DNPh–group on the coating antigen–protein conjugate on the sensitivity, six DNPh–OVA conjugates having DNPh–groups of 0.4–5.3 mol per mol of OVA were examined. The OVA concentrations of the DNPh–groups were: DNPh–OVA–1 (0.4 mol per mol OVA), DNPh–OVA–2 (1.3 mol per mol OVA), DNPh–OVA–3 (2.7 mol per mol OVA), DNPh–OVA–4 (3.0 mol per mol OVA), DNPh–OVA–5 (5.0 mol per mol OVA), and DNPh–OVA–6 (5.3 mol per mol OVA). The DNPh–groups introduced on OVA were increased depending on the increased concentration of 2,4–DNBS, and the number was leveled off at more than 5% of 2,4–DNBS (final concentration). The results of indirect competitive ELISA using these coating antigen–protein conjugates are shown in Fig. 3. DNPh–OVA–5 and –6, having DNPh–group concentrations higher than 5 mol per mol OVA, did not show the association of free 2,4–DNT with antibody (no inhibition, random data), and others (DNPh–OVA–1 to –4) showed a decreased signal, depending on the concentration of free 2,4–DNT. From Fig. 3, the preferable coating antigen–protein conjugates were judged to be DNPh–OVA–1 to –3, which have DNPh–groups at concentrations between 0.4 and 2.7 mol per mol OVA.

Optimization of spacer length introduced on coating DNPh–Cx–OVA conjugates

The spacer length on the coating antigen–protein conjugates also affects the sensitivity of 2,4–DNT detection when using indirect–ELISA. DNPh–Cx–OVA conjugates with different length methylene chains (C2–C12) were synthesized. In this case, the number of DNPh–groups on the coating antigen–protein conjugates was restricted to 1–2 mol per mol OVA, judging from the previous results (Fig. 3). The results of indirect competitive ELISA are shown in Fig. 4. A decrease of signals due to the association between free 2,4–DNT and antibody was observed for all DNPh–Cx–OVA conjugates. The sensitivity evaluated as IC 50 was improved with increasing spacer length up to C10. The preferable coating antigen–protein conjugates were judged to be DNPh–C8–OVA or DNPh–C10–OVA. The improvement of the sensitivity was due to the following reasons: 1) the antibody could bind to the DNPh–moiety without the interference of a bulky protein–moiety of the coating antigen–protein conjugate, and 2) the antibody could recognize free 2,4–DNT and the DNPh–moiety equally because of the relatively long spacer. In general, recognition of a competitor by an antibody is reduced in heterologous systems. A small concentration of analyte, thus, will be sufficient to shift the equilibrium conditions against formation of the antibody–analyte immune complex, thereby inhibiting association of the antibody to the competitor and leading to very sensitive assays (Marco et al., 1995). On the other hand, Kim et al. (2003) reported that heterology in the spacer length of the coating antigen had
no significant effect on the sensitivity of ELISA, but heterology in the spacer structure of the coating antigen produced a remarkable improvement in the sensitivity of ELISA. Although the spacer structure was not examined in our experiment, the spacer length of the coating antigen–protein conjugate also affected the sensitivity of ELISA in our case.

Avidity of anti–DNPh antibody to various kinds of nitroaromatic compounds

The avidity of the raised antibody to nitroaromatic compounds was evaluated by indirect competitive ELISAs. Two coating antigen–protein conjugates were used in this experiment: DNPh–C8–OVA and DNPh–gly–OVA. Midpoints (IC$_{50}$) and molar cross–reactivities are listed in Table 1. On using DNPh–C8–OVA, 2,6–DNT and 4–amino–2,6–DNT showed cross–reactivity of less than 1% or no association, when the molar cross–reactivity of 2,4–DNT was set as 100%. These results show that the anti–DNPh–KLH antibody recognized the nitro group of the 4–position of the benzene ring. 2–Amino–4,6–DNT showed about 3% molar cross–reactivity due to the amino group at the 2–position. TNPh–derivatives showed about 4–5% molar cross–reactivity or no association except to TNPh–amine (TNA). The anti–DNPh–KLH antibody seemed to discriminate between dinitrophenyl– and trinitrophenyl–compounds. On the other hand, 2,4–DNPh–glycine and TNPh–amine (TNA) showed high molar cross–reactivity, especially to 2,4–DNPh–glycine (>900%). These results indicate that the anti–DNPh–KLH antibody recognizes these compounds as an antigen. These phenomena occur because the dinitrophenyl moiety of the immunogen (2,4–DNPh–KLH conjugate) binds to KLH via an NH group and the antibody also recognizes the NH moiety of the 1–position of the benzene ring. 1,3–DNB showed molar cross–reactivity of about 5% because of the meta position of nitro groups.

Table 1. Avidity of anti–DNPh–KLH antibody to the nitroaromatic compounds

<table>
<thead>
<tr>
<th>Nitroaromatic compounds</th>
<th>M.W.</th>
<th>Coating antigen–protein DNPh–C8–OVA</th>
<th>Coating antigen–protein DNPh–gly–OVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 4–dinitrotoluene (2, 4–DNT)</td>
<td>182</td>
<td>1.4×10$^{-7}$ 100</td>
<td>4.9×10$^{-7}$ 100</td>
</tr>
<tr>
<td>2, 6–dinitrotoluene (2, 6–DNT)</td>
<td>182</td>
<td>3.4×10$^{-7}$ 0.4</td>
<td>5.5×10$^{-7}$ 0.9</td>
</tr>
<tr>
<td>2–amino–4, 6–dinitrotoluene (2–ADNT)</td>
<td>197</td>
<td>5.1×10$^{-5}$ 2.7</td>
<td>2.5×10$^{-5}$ 19.5</td>
</tr>
<tr>
<td>4–amino–2, 6–dinitrotoluene (4–ADNT)</td>
<td>197</td>
<td>N.I.*</td>
<td>N.I.*</td>
</tr>
<tr>
<td>2, 4–dinitrophenylglycine (2,4–DNPh–gly)</td>
<td>241</td>
<td>1.5×10$^{-4}$ 933</td>
<td>2.9×10$^{-4}$ 1700</td>
</tr>
<tr>
<td>1,3–dinitrobenezene (1,3–DNB)</td>
<td>168</td>
<td>3.0×10$^{-4}$ 4.7</td>
<td>2.7×10$^{-4}$ 18.1</td>
</tr>
<tr>
<td>Trinitrophenol(TNP)</td>
<td>227</td>
<td>3.1×10$^{-4}$ 4.7</td>
<td>1.3×10$^{-4}$ 37.7</td>
</tr>
<tr>
<td>2, 4, 6–trinitroaniline (TNA)</td>
<td>228</td>
<td>1.3×10$^{-7}$ 107.7</td>
<td>1.3×10$^{-7}$ 375</td>
</tr>
<tr>
<td>N–(2, 4, 6–trinitrophenyl)–hexylamine (TNP–ha)</td>
<td>312</td>
<td>N.I.*</td>
<td>N.I.*</td>
</tr>
<tr>
<td>N–(2, 4, 6–trinitrophenyl)–ethylamine (TNP–ea)</td>
<td>284</td>
<td>3.2×10$^{-4}$ 4.4</td>
<td>7.8×10$^{-4}$ 63.3</td>
</tr>
<tr>
<td>N–(2, 4, 6–trinitrophenyl)–glycine (TNP–gly)</td>
<td>286</td>
<td>3.5×10$^{-4}$ 4.0</td>
<td>7.0×10$^{-4}$ 70.7</td>
</tr>
<tr>
<td>Trinitrotoluene (TNT)</td>
<td>227</td>
<td>N.I.*</td>
<td>1.7×10$^{-4}$ 28.1</td>
</tr>
</tbody>
</table>

N.I.* ; not inhibited. Concentration–dependent inhibition was not observed in the range of the analyte concentrations studied (1.0×10$^{-10}$ – 1.0×10$^{-6}$g mL$^{-1}$).
As shown in Table 1, the molar cross-reactivities and IC₅₀s showed different profiles when DNPh–gly–OVA was used as a coating antigen–protein conjugate. The selectivity for 2,4-DNT of DNPh–C₈–OVA was much better than that of DNPh–gly–OVA. Optimization of a coating antigen–protein conjugate is an important factor for measurement by indirect competitive ELISA.

Detection of 2,4-DNT by indirect competitive ELISA

Figure 5 shows the standard curves of inhibition by 2,4-DNT using the anti–DNPh–KLH antibody and DNPh–C₈–OVA as a coating antigen–protein conjugate in indirect competitive ELISA. As shown in Fig. 5, 2,4-DNT was detected at the concentration of 1 ng mL⁻¹ (more than 15% decrease). Dynamic ranges, defined by the analyte concentrations that inhibited maximum signals by 15% decrease). Dynamic ranges, defined by the analyte concentrations that inhibited maximum signals by 15% (more than 15% decrease). Dynamic ranges, defined by the analyte concentrations that inhibited maximum signals by 15% decrease). Dynamic ranges, defined by the analyte concentrations that inhibited maximum signals by 15% decrease).

Evaluation of affinity constant between free 2,4-DNT and anti–DNPh–KLH antibody

Determination of an affinity constant, Kᵦ, or its reciprocal, the dissociation constant, Kᵦ, is frequently useful in the study of antigen–antibody interactions. Evaluation of Kᵦ, however, is a difficult process because of the different values obtained by the method used for analysis. A convenient method developed by Seligman is widely used for calculating the Kᵦ-value using indirect competitive ELISAs (Seligman, 1994). The basic equation is:

\[\frac{A_0}{A_i} = \frac{K_a}{(1-f)} + i \]

Here, f is the square root of \((A_0-A_i)/A_0\) (A₀ and Aᵢ are the absorbance with and without a competing antigen, respectively), and \(A_0\) and \(A_i\) stand for the initial concentration of the competing antigen (free analyte) and the initial antibody concentration, respectively. We evaluated the Kᵦ-value with the inhibition curve of 2,4-DNT obtained in indirect competitive ELISA using Seligman’s method. First, we evaluated the KD from the data shown in Fig. 3, which used DNPh–OVA–1 to –4 as coating antigen–protein conjugates. As expected from the data shown in Fig. 3, the dissociation constants between free 2,4-DNT and antibody were different, depending on the number of DNPh–groups on the coating antigen–protein conjugates. The evaluated values were 0.4×10⁻⁵–1.4×10⁻⁴ M (Kₑ=0.7×10⁻³–2.5×10⁻⁴ M⁻¹). The Kᵦ value was also evaluated by the data from Fig. 4, which used DNPh–C₈–OVA as a coating antigen–protein conjugate. The calculated value was 0.2×10⁻⁵M (Kₑ=5.0×10⁻⁵ M⁻¹). This means that the association of the antibody with the coating antigen–protein conjugate was reduced and the association of the antibody with free 2,4-DNT was increased, improving the sensitivity of detection.

CONCLUSIONS

A polyclonal antibody against 2,4-DNT was successfully raised in a rabbit. The antibody was applied to detect 2,4-DNT by using indirect competitive ELISA. The measuring temperature scarcely affected on the detection sensitivity. The optimum coating antigen–protein conjugate on the microtiter plate was dinitrophenyl–C₈–ovalbumin (DNPh–C₈–OVA). The association constant between free 2,4-DNT and anti–DNPh–KLH antibody was 5.0×10⁻⁵ M⁻¹ when DNPh–C₈–OVA was used as a coating antigen–protein conjugate. The immunoassay exhibited excellent sensitivity for the detection of 2,4-DNT in the concentration range of 1 ng mL⁻¹ to 10 μg mL⁻¹. The combination of the anti–DNPh–KLH antibody and DNPh–C₈–OVA as a coating antigen–protein conjugate is useful for the detection of 2,4-DNT.

ACKNOWLEDGEMENTS

This work was partly supported by a Grant-in-Aid from JST (Japan Science and Technology Corporation).

REFERENCES

Immunoassay of Dinitrotoluene

