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INTRODUCTION

Basic growth analysis of the ruminant animal 
(Brody, 1945; Shimojo et al., 1997) and the forage plant 
(Blackman, 1919; Watson, 1952; Radford, 1967; Hunt, 
1990) is given by weight changes with the passage of 
time.  Shimojo et al. (2006, 2007a, 2007b, 2008) intro-
duced viewpoints of mechanics into basic growth analy-
sis to suggest basic growth mechanics with the aid of an 
analogy with Newton’s laws of motion (Kawabe, 2006), 
which also showed the growth with time.  However, the 
growth is closely related with the formation of body 
frame not only with time but also in space.  This sug-
gests adding the body frame formation in three–dimen-
sional space that is composed of width, length from 
front to back and height of an individual ruminant ani-
mal and forage plant.  Combining time and three–
dimensional space might be expected to give quasi–
four–dimensional growth mechanics for the ruminant 
animal and the forage plant. 

 The present study was designed to investigate the 
concept of quasi–four–dimensional growth mechanics 
in analyzing the body frame formation in the ruminant 

animal and the forage plant. 

SUGGESTED CONCEPT OF QUASI–FOUR 
DIMENSIONAL GROWTH MECHANICS

(A) Basic growth mechanics based on time
The function of basic growth mechanics with the 

passage of time is given by a series of the following cal-
culations. 

(1/W) · (dW/dt)=rW,				    (1)

W=W0 · exp(rW· t),				    (2)

where W=weight, t=time, rW = relative growth rate 
(RGR), W0=the weight at t=0. 

 
AGR=dW/dt=rW· W0 · exp(rW· t),		  (3)
GA=d2W/dt2=rW

2· W0 · exp(rW· t),		  (4)
 

where AGR=absolute growth rate, GA=growth accelera-
tion. 

                =                 =rW,			   (5)

(dW/dt)2=W · (d2W/dt2),			   (6)

dW/dt=   W · (d2W/dt2).			   (7)

It is differential equation (7) that gives basic growth 
mechanics of an individual ruminant animal and forage 
plant (Shimojo et al., 2006).  It shows an analogy with 
Newton’s equation of motion (Shimojo et al., 2006, 
2007a, 2007b, 2008). 
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(B) Basic growth mechanics for body frame forma-
tion based on time

The basic growth mechanics for three–dimensional 
body frame formation of an individual ruminant animal 
and forage plant is given by the following differential 
equations when based on the passage of time, 

 
dx/dt=   x · (d2x/dt2),

dy/dt=   y · (d2y/dt2),

dz/dt=   z · (d2z/dt2),				    (8)

where x=width, y=length from front to back, z=height. 
Therefore, combining equations (7) and (8) gives a group 
of differential equations (9) for body frame formation, 

 
dW/dt=   W · (d2W/dt2),       dx/dt=   x · (d2x/dt2),

dy/dt=   y · (d2y/dt2),          dz/dt=   z · (d2z/dt2). (9)

Basic growth functions corresponding differential equa-
tions (9) are as follows, 

 
W=W0 · exp(rW· t),       x=x0 · exp(rx· t),

y=y0 · exp(ry· t),         z=z0 · exp(rz· t). 	               (10)

Functions (10) show that weight and space are not relat-
ed, though each of them is related with time. 

(C) Basic growth mechanics for body frame forma-
tion based on weight

The body frame formation is related with the weight, 
because the distribution of matter forms the body 
frame.  Therefore, the following differential equations 
are given, 

 
dW/dt=   W · (d2W/dt2),       dx/dW=   x · (d2x/dW 2),

dy/dW=   y · (d2y/dW 2),      dz/dW=   z · (d2z/dW 2), 
					                   (11)
W=W0 · exp(rW· t),       x=x0 · exp(rj· W),

y=y0 · exp(rk· W),         z=z0 · exp(rl· W).             (12)

The relationship between weight (W) and time is differ-
ent from that between W and space in expressions (11) 
and (12). 

(D) Basic growth mechanics of weight based on 
time and space

We suggest the following expressions, where W is 
related with time and space.  Thus, 

 
dW/dt=   W · (d2W/dt2),       dW/dx=   W · (d2W/dx2),

dW/dy=   W · (d2W/dy2),     dW/dz=   W · (d2W/dz2),
					                   (13)
W=W0 · exp(rW· t),       W=W0 · exp(ra· x),

W=W0 · exp(rb· y),        W=W0 · exp(rc· z).             (14)

Differential equations (13) suggest that the rate of mat-
ter distribution along axes of space and time is described 
using the product of weight and distribution acceleration.  
Basic growth functions (14) lead to the following equali-
ty (15), and thus equality (16), 

 
W=W0 · exp(rW· t)=W0 · exp(ra· x)=W0 · exp(rb· y)

    =W0 · exp(rc· z), 			                 (15)

rW· t=ra· x=rb· y=rc· z. 			                (16)

The feature of equality (16) is that time and space are 
treated equally and there is an inverse proportion.  Thus, 
if x < y < z < t, then ra > rb > rc > rW.  This shows how 
much the matter is distributed along not only space axes 
but also time axis, where ra, rb, rc and rW suggest values 
of resistance to matter distribution along each axis of 
time and three–dimensional space.  Equality (15) and 
equality (16) show weight–space–time relationships, sug-
gesting quasi–four–dimensional growth mechanics. 

(E) Basic growth mechanics for the ruminant ani-
mal based on time, space and feed intake

The basic growth mechanics of the ruminant ani-
mal is given by inserting feed intake (dF) into differen-
tial equations (13).  The term dF is derived from cumu-
lative feed intake (F) according to the procedure: 
F→ΔF→dF.  Thus, 

 
               =           ·                 ,   

                =           ·                 , 

                =           ·                 ,

                =           ·                 .      	               (17)

There are two features in expressions (17).  One is that 
feed intake, as well as weight, is related to space and time, 
intake–weight–space–time relationships in the growth of 
the ruminant animal.  The other is that feed intake is 
given to the denominator of every term in expressions, 
suggesting that the ruminant animal itself and its growth 
are supported by nutrients of eaten feeds.  Expressions 
(17) suggest, in the ruminant animal body, the matter 
distribution along axes of space and time based on feed 
intake. 

(F) Basic growth mechanics of the forage plant 
based on time, space and leaf area

The growth mechanics of the forage plant is given 
by inserting leaf area (A) into differential equations 
(13).  Thus, 
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               =           ·                 ,   

                =           ·                 , 

                =           ·                 ,

                =           ·                 .      	               (18)

There are two features in expressions (18).  One is that 
leaf area, as well as weight, is related to space and time, 
leaf–weight–space–time relationships in the growth of 
the forage plant.  The other is that leaf area is given to the 
denominator of every term in expressions, suggesting 
that the forage plant itself and its growth are supported 
by photosynthesis of leaves.  Expressions (18) suggest, 
in the forage plant body, the matter distribution along 
axes of space and time based on leaf area.  

(G) Problems
The concept suggested to quasi–four–dimensional 

growth mechanics is only a hypothesis that includes 
many problems.  Expressions suggested here include 
terms whose forms may look strange.  Treating time 
and space equally may look illogical.  Weight–space–time 
relationships may look unnatural.  There is a need of 
further studies that will correct problems and introduce 
new ideas in order to develop growth mechanics with 
four–dimensions for the ruminant animal and the for-
age plant. 

(H) Conclusions
It is suggested from the present study that intro-

ducing three–dimensional space with an equal treatment 
of space and time gives hypothetic quasi–four–dimen-

sional growth mechanics for the ruminant animal and 
the forage plant. 
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