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INTRODUCTION

A number of scientists have stated that the phyloge-
netic classification should be based on the concept of 
polyphasic taxonomy (Colwell, 1970; Gills et al., 1995; 
Vandamme et al., 1996).  The identification of microor-
ganisms should also be practiced using the same polypha-
sic concepts.  However, the presumptive differentiation 
of microorganisms requires the establishment of one or 
several benchmarks that are easy to detect, highly repro-
ducible and consistent with the phylogenetic classifica-
tion.  Much effort has been applied to ascertain the suit-
ability of various cell wall and/or membrane components 
such as peptidoglycans, proteins, and fatty acids as mark-
ers for preliminary differentiation of bacteria (Suzuki et 
al., 1993; Schleifer and Kandler, 1972; Dristig and 
Dianese, 1990; Li and Hayward, 1994; Chase et al., 1992; 
De Boer and Sasser, 1986; Bouzar et al., 1993; Stead, 

1992; Wells et al., 1993; Margaret, 1988; Galbraith and 
Wilkinson, 1991; Sawada et al., 1992; Kori et al., 1992; 
Jarvis et al., 1996; Young et al., 1992).  Meanwhile in the 
clinical field, simplified identification of aerobic and 
infectious actinomycetes such as genus Nocardia with 
diaminopimelic acid (DAP) isomers was performed suc-
cessfully by using thin–layer chromatography (Staneck 
and Roberts, 1974).  This procedure is now well estab-
lished and used as a routine test for the identification of 
the actinomycetes.

 In 1993, the application of the direct colony thin–
layer chromatography (invented by Matsuyama et al., 
1986) for the presumptive differentiation of phytopatho-
genic bacteria was firstly performed (Matsuyama et al., 
1993a, b, c, d).  This method was then simplified and 
developed into a rapid extraction TLC method (Khan and 
Matsuyama, 1998).  This novel method was improved well 
(Matsuyama et al., 2003a, b; Furuya et al., 2004) and has 
been used for obtaining the fingerprint profiles of phy-
topathogenic bacteria and some of non–pathogenic bac-
teria.  The details will be presented in this report.

MATERIALS AND METHODS

Bacterial isolates tested 
 As can be seen in Table 1, a total of 315 strains, pre-
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TLC profiles of aminolipids extracted from phytopathogenic and non–pathogenic bacteria with chloro-
form–methanol–0.3%NaCl (2:1:0.2, v/v/v) or 2–propanol are useful for discrimination of bacteria.  For many 
bacteria, each TLC profile is genus or species specific and highly reproducible.  For most gram–negative 
bacteria, the uppermost spot (Up) appeared at ca. Rf 0.7 on the chromatograms developed with chloroform–
methanol–0.2% CaCl2·2H2O (55:35:8, v/v/v).  This spot was absent on the chromatograms of gram–positive 
bacteria, Clavibacter michiganensis.  The profiles of Agrobacterium spp. and Rhizobium spp. were dif-
ferent from other gram–negative bacteria with the uppermost spots at ca. Rf 0.75.  For the case of Agrobac-
terium spp., the chromatograms of the strains belonging to the same biovar were identical.  Distinct differ-
ences were found among the profiles of Agrobacterium biovar 1, A. biovar 2, A. biovar 3 and A.rubi.  The 
profiles of Rhizobium spp., except for R. tropici, and their relatives such as Bradyrhizobium, Mesorhizo-
bium and Sinorhizobium spp. were quite simple and different from those of Agrobacterium spp.  For the 
case of Burkholderia species, except for B. andropogonis, three spots (designated as S1, S2, S3) 
appeared under the uppermost spot (Up) and their profiles were species specific for several species such as 
B. plantarii and B. caryophylli.  On the chromatogram of B. andropogonis, the S1 spot (non–phospho-
rous) was absent and the S3 spot was faint.  The profiles of 96 Ralstonia solanacearum strains from vari-
ous sources were identical.  For the case of Erwinia carotovora an intensive benchmark spot appeared at 
Rf 0.64 but this spot was absent on the chromatograms of pathovars of E. chrysanthemi and E. herbicola.  
Clear diversity in profiles was observed between Xanthomonas campestris and X. oryzae.  The profile of 
pathovars of Pseudomonas syringae were identical and simple.  Substitution of chloroform solvent sys-
tems with less hazardous organic solvents was tested.  2–propanol for the lipid extraction and 1–butanol–
acetic acid–water (3:1:1 and 5:3:1, v/v/v) for the developing solvents were usable, though development with 
the butanol systems was highly time–consuming. 
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Table 1.	 List of bacteria tested

(Gram positive bacteria)
Bacillus subtilis
Clavibacter michiganensis subsp. michiganensis
C. michiganensis subsp. sepedonicus
C. michiganensis subsp. nebraskens
(Gram negative bacteria)
Acidovorax avenae subsp. avenae
*Agrobacterium biovar 1 (=A. tumefaciens)     

Agrobacterium biovar 2 (=A.rhizogenes)

Agrobacterium biovar 3 (=A. vitis)

A. rubi
Unclassified agrobacteria (cherry)
Unclassified agrobacteria (kiwi)
Bradyrhizobium japonicum
Mesorhizobium huakuii
Rhizobium etli
R. galegae
R. leguminosarum
R. phaseoli
R. tropici
Sinorhizobium meliloti
Burkholderia andropogonis
B. caryophylli
B. cepacia complex

B. gladioli pv. alliicola
B. gladioli pv. gladioli

B. gladioli
B. glumae

B. plantarii

B. vandii
Comamonas acidovorans
Erwinia carotovora subsp. atroseptica
E. carotovora subsp. carotovora

E. chrysanthemi pv. chrysanthemi
E. chrysanthemi pv. dianthicola
E. chrysanthemi pv. zeae
E.herbicola pv. milletiae
Herbaspirillum rubrisubalbicans
Pseudomonas aeruginosa
P. fluorescens
P. syringae pv. lachrymans     
P. syringae pv. pisi
P. syringae pv. tabaci
P. syringae pv. syringae    
Ralstonia solanacearum

NBRC 13719T, AKU–AB89, AKU–AN83530, NIAES1702,AKU558
NBRC 12471, NBRC 13762, NIAS–N6206, NIAS–N6601 (t)
ATCC 33113T, NBRC 13763, NBRC 13764 (po)
ATCC 27794T (co)

ATCC 19860T, HNAES–H8206, HNAES –H8210, HNAES –H8505 (r)
ATCC 23308T (Ti), NIAS–Ku7415 (ro.,Ti), MAFF 301001(Prunus sp.,Ti), MAFF 301222, MAFF 301223 
(mar.,Ti), MAFF 301224 (ro.,Ti), MAFF 301276, MAFF 301277, MAFF 301278 (chry.,Ti), MAFF 106577, 
MAFF 106578, MAFF 106579, MAFF 106580, MAFF 106581, MAFF 106582, MAFF 106583, MAFF 
106584, MAFF 106585, MAFF 106586 (mel.,Ri), NBRC 14555, NBRC 15188, NBRC 15191 (mel.,Ri), 
MAFF 520014, MAFF 520019, 
MAFF 520020 (non–pathogenic,cu.rhiz.)
ATCC 11325T(app.,Ri), NIAS–Ku7411(ro.,Ri), NBRC 14793, NBRC 15196, NBRC 15198, NBRC 15201 
(ro.,Ti), MAFF 301279, MAFF 301280, MAFF 301539 (ro.,Ti), Kerr84 (non–pathogenic,soil)
NBRC 15140T, MAFF 302147, MAFF 302148, MAFF 302149, MAFF 302150, MAFF 302297, MAFF 
302652 (g.v.,Ti)
NBRC 13261T, NBRC 13260 (Rubus sp.,Ti))
NBRC 15292, NBRC 15293, NBRC 15294, NBRC 19295 (cher.,Ti), Sa–4 (cher.,Ti)
NBRC 15296, NBRC 15297 (kw.,Ti)
NBRC 15001 (root nodule, soy) (R. japonicum)
NBRC 15243T (root nodule,m.vetch.) (R. huakuii)
NBRC 15573T (root nodule,kid.b.)
NBRC 14965T (root nodule, Galega orientalis)
NBRC 14778T, NBRC 13337 (root nodule,w.clov.)
NBRC 14168, NBRC 14994 (root nodule,kid.b)
NBRC 15247T (root nodule,kid.b.)
NBRC 14782T (root nodule,med.)(R.meliloti)
JCM 10487T, MAFF 301006 (su.g), MAFF 301129 (tu)
ATCC 25418T, NIAS1192, NIAS 1406, MAFF 301060, MAFF 302555 (car), AKU–Yame1 (r.p.g.)
ATCC 25416T (o), TARC 243–4, TARC 356–3, TARC 356–5 (o), Pc4 (le.rhiz.), Pc6W (c.ca.rhiz.), Pc13, 
Pc14, Pc16, Pc17M–1, Pc17M–2 (w.o.rhiz.), Pc20, Pc22w, Pc23, Pc24 (soy.rhiz.), Pc28, Pc29, Pc30, 
Pc33SW, Pc34 (bar,rhiz.), Pc35, Pc36, Pc39, Pc40, Pc40M, Pc41, Pc42, Pc43(to.rhiz.), Pc518 (f.soil), 
Pc685(H), Pc2046 (H), Pc2423 (unknown) [Genomvar 1], Pc639(H, 3–B), Pc1211 (H, 3–B), Pc1751(H, 
3–A), Pc2046 (H, 3–A), Pc3018 (H, 3–B), MAFF 302528(r. rhiz,3–B) [Genomvar 3]
ATCC 19302T (o)
ATCC 10248T (gla), MAFF 302515 (tu), MAFF 302537 (o), MAFF 302544 (r), MAFF 301580(den), 
NIAS1064, NIAS 1065 (fr)
MAFF 302409 (a.b.), MAFF 302418 (g.g), MAFF 302424 (cy), AKU–H–1, AKU–H–2 (r)
MAFF 301169T, AKU–Ku8104, AKU–Ku8112, AKU–Ku8114, NIAES–N7503, NIAES–N7504, KNAES 2, 
KNAES 8012, KNAES 8015, KNAES 8020, Kyu82–34–2, AZ8224, AZ84448, AKU–T–2, AKU–T–7 (r)
JCM 5492T, MAFF 302387, MAFF 302392, MAFF 302412, MAFF 302467, MAFF 302470, MAFF 302475, 
MAFF 302481, MAFF 302484, MAFF 302485, AZ8201(r)
JCM 7957T(va)
ATCC 15668T (soil)
ATCC 33260T (po)
ATCC 15713T (po), NIAS–EH8519 (cu), NIAS–N7101 (s.pe), NIAS–N7129(rad), LSPPM 473–1 (c.ca), 
LSPPM 489–4 (ca), LSPPM 493–1 (po), IU 645ar (c.ca)
SU E8301 (ep), AKU–Ku8601 L1 (pear), TUA –Ichihara 1–1 (pear), SU–Ech44
Dianthi 1e, 2n (car)
NCPPB 377T, R–7, R–8, Corn801 (co), ALE829p
NIAS 1 (Japanese wisteria)
ATCC 19308T, MAFF 301626, MAFF 301628(s.c)
ATCC 7700T
ATCC 13525T, ATCC 520049
NIAS1319, NIAS1321 (cu)
MAFF 301211, MAFF 301213(pea)
KTES–PA28, NIAS–P41, AKU–Ku8102
ATCC 19310T, NIAS I
ATCC 11696T, AKU 6211 (t), AKU 6224 (t), AKU 6227 (t), AKU 6237 (ma), AKU 6257 (ep), AKU 6277 
(po), AKU 6303 (ep), AKU 6509 (to), AKU 6511 (ep), AKU 6513 (ep), AKU 6515 (t), AKU 7501–1 (ep), 
MAFF 301559 (po), NESVOT8109, NESVOT8202 (s.p), NESVOT8224, NESVOT7601–1 (ep), 
NESVOT7602–1 (t), KTES–C319–SR, BY–4 (to),  Brasil;13, 72, 92, 128, 788, 800, 578, 613, 799, 933, 61, 
113, 131, 66, 67, 98, 106, 964, 982, 1005 (po), 7, 127, 162, 468, 582, 20, 629 (pe), 129, 656 (cu), 19, 630, 
633, 31, 33, 35, 855, 798, 1033, 62, 76, 985, 140, 290, 535, 49, 1102, 1103, 1104 (t), 555 (to), 51, 56, 71, 
79, 87, 795, 796, 804, 858, 534 (ep), 574, 575, 576, 577, 579, 603 (eu), 47 (S.g), 73, 401, 655, 661, 
821(ba),  Bangladesh; C1 (chi), E1 (ep), P1 (po), T1 (t)

Genus & Species Strains
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viously identified by standard tests, were used in this 
study.

Extraction of bacterial aminolipids and thin layer 
chromatography

The procedures for extraction of lipids from bacte-
rial whole–cells and the development with the thin–layer 
chromatography (TLC) are as follows.  Each bacterial iso-
late was cultured at 25 °C for 3days on King’s B (KB; 
peptone 20 g, K2HPO4 1.5 g, MgSO4·7H2O 1.5 g, agar 15 g 
in 1 litre of 1% glycerol solution, pH 7.2, Eiken Co.) slant 
medium.  For the Xanthomonas species, nutrient broth 
agar (NBA; beef extract 5 g, peptone 5 g, NaCl 5 g, agar 
15 g in 1 litre of distilled water, pH 7.0) slant medium 
was also used.  Since King’s B medium was not suitable 
for culturing Rhizobium etli, the medium No. 805 (yeast 
extract 1 g, mannitol 5 g, K2HPO4 0.7 g, KH2PO4 0.1 g, 
MgSO4·7H2O 1 g, agar 15 g in 1 litre of distilled water, pH 
7.0–7.2 ) was used. 

Four loopfuls of bacterial cells were pasted onto the 
bottom of a small glass–vial (1 cm in diameter, 5 cm in 
length) and 1 ml of a chloroform–methanol–0.3% NaCl 
solution (2:1:0.2, v/v/v) was added.  Bacterial cells were 
suspended roughly in the solution by stirring gently with 
the flame–sterilized loop.  The vial was capped tightly and 
allowed to stand undisturbed for 30 min at room temper-
ature.  Forty μl (70 μl for the cases Agrobacterium and 
Rhizobium spp.) of the transparent lower chloroform–
layer which contains lipids was taken with a micropi-
pette and spotted onto the origin spots of a pre–coated 
silica gel TLC plate (Merck Co., Si 60, 0.25 mm in thick-
ness).  The origin spots were placed at 2.5 cm from the 

bottom edge of the silica gel plate and separated 1.5 cm 
each other.  To avoid the edge effects during TLC devel-
opment, the spots at the extreme left and right sides were 
placed 2.5 cm from the respective edges of the plate.  
Development of the TLC plates was conducted in a rec-
tangular glass tank (25 × 25 × 12 cm) sheeted inside with 
filter–papers moistened well with the developing sol-
vents.  One hundred ml of chloroform–methanol–0.2% 
CaCl2･2H2O (55:35:8, v/v/v) was used for development.  
The development was conducted at 25 °C for 90 min.  
Renewal of the solvent at each development and keeping 
vapor–saturation in the tank are preferable for reproduc-
ible results.  After development, the TLC plate was dried 
for ca.10 min in a draft chamber.  Aminolipids on TLC 
plate were detected by spraying of ninhydrin (Ninhydrin 
spray, Wako Chem. Co.) followed by heating at ca. 
100 °C for 5 min in a small oven.  The chromatograms 
obtained were recorded by a personal computer using a 
scanner and the resulting images treated with Adobe 
Photoshop 5.0 LE to adjust contrast and brightness for 
optimal visualization of spots. 

Substitution of chloroform solvent systems with less 
hazardous organic solvents was tested (Daikohara et al., 
2003).  Instead of chloroform–methanol–0.3% NaCl 
(2:1:0.2, v/v/v) solution for extraction of lipids, ace-
tonitrile, methanol, ethylacetate and 2–propanol were 
individually tested.  For the developing solvent, 14 solvent 
systems were tested.  The constituents were as follows: 
hexane–ether–acetic acid (90:10:1, 90:20:1, v/v/v), 1–buta-
nol–acetic acid–water (3:1:1, 5:3:1, v/v/v), heptanes–iso-
propylether–acetic acid (60:40:4, v/v/v), diisobutylke-
tone–acetic acid–water (40:25:4, v/v/v), cyclohexane–

Table 1.	 Continued

R. pickettii
Xanthomonas campestris pv. campestris
X. campestris pv. citri
X. campestris pv. cucurbitae
X. campestris pv. pisi
X. campestris pv. pruni
X. campestris pv. vitians
X. oryzae pv. oryzae

ATCC 27511T (H)
ATCC 33913T (b.s), NIAS I
N6113–1, N6829–1–3, N6831–1–1, Kawa (ci) (X. axonopodis pv. citri)
Ishikawa I
NIAS II
NIAS 1–10–1
NIAS I
ATCC 35933T, Q75114, Q7781, Q7602, Q7660, T7144 (r)

Genus & Species Strains

Note: Alphabetical abbreviation in the parentheses mean as follows;
a.b, adzuki bean; ba, bananas; bar.rhiz., barley rhizosphere; b.s, brussels sprout; ca:cabbage; car., carnation; c.ca, chinese cabbage; c.ca.
rhiz., chinese cabbage rhizosphere; cher, cherry; ci, citrus; chi, chili; chry, chrysanthemum; co, corn; cu, cucumber; cy, cymbidium; den, 
dendrobium; ep, egg plant; eu, eucalyptus; f.soil, forest soil; fr, freesia; g.g, green gram; gla, gladiolus; g.v, grape vine; kid.b., kidney bean; 
le, lettuce; le.rhiz., lettuce rhizosphere; ma, marguerite; med, medicago; mel, melon; m.vetch, milky vetch; pe, pepper; po, potato; o, 
onion; ra, radish; r, rice; r.rhiz., rice rhizosphere; ro, rose; r.p.g., russell prairie gentian; s.c, sugarcane; S.g, Solanum gilo; s.g, sudan 
grass; s.p, sweet pepper; soy, soy bean; t, tomato; to, tobacco; to.rhiz., tobacco rhizosphere; tu, tulip; va, vanda; w.o, welsh onion; w.o.rhiz., 
welsh onion rhizosphere; w.clov., white clover; H, human (clinical); Ti, harboring Ti plasmid (tumorigenetic); Ri, harboring Ri plasmid 
(rhizogenetic).
Abbreviation of institutions and culture collections: 
AKU and Ku, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; ATCC, American Type Culture Collection, USA; AZ, Dr. K. 
Azegami; HNAES, Hokuriku Agricultural Experiment Station, Jyoetsu, Japan; JCM, Japan Collection of Microorganisms, Saitama, Japan; 
KNAES and Kyu, Kyushu National Agricultural Experiment Station, Nishigoushi, Kumamoto, Japan; KTES, Kagoshima Tobacco 
Experimental Station, Japan; LSPPM, Ministry of Agriculture, Thailand; MAFF, Ministry of Agriculture, Forestry and Fishery, Japan; 
NBRC, Biological Resource Center, Chiba, Japan (IFO); NIAES, National Institute of Agro–environmental Sciences, Ibaraki, Japan; NIAS, 
National Institute of Agricultural Sciences, Tokyo, Japan (NIAES); NRSVOT, National Research Station of Vegetable Ornamental and Tea, 
Iwate, Japan; SU, Shizuoka University, Shizuoka, Japan; TUA, Tokyo University of Agriculture, Atsugi, Japan. 
* The taxon of the genus Agrobacterium is indicated according to the nomenclature, biovar system (Kersters and De Ley, 1984; Sawada 
et al., 1995).
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dioxane (7:3, v/v), ethylacetate–carbontetrachloride (6:4, 
v/v), 2–butanol– acetic acid–water (3:1:1, v/v/v), 
2–Methyl–2–propanol (tert–Butyl alcohol)–acetic acid–
water (5:3:1, v/v/v), phenol–water (8:2, v/v), 2–propa-
nol–12% ammonia water (4:1, v/v), petroleum ether–die-
thyl ether– acetic acid (90:10:1, 10:20:1, v/v/v).

RESULTS

Comparison of the thin–layer chromatograms of ami-
nolipids extracted from 315 phytopathogenic and non–
pathogenic bacteria (Table 1) was conducted.  TLC pro-
files were characteristic at the genus or species level and 
highly reproducible.  This method is quite easy to prac-
tice and suitable for preliminary differentiation of vari-
ous phytopathogenic bacteria. 

Extraction of lipids and their development on silica 
gel plate

Chloroform–methanol– 0.3% NaCl (2:1:0.2, v/v/v) 
and 2–propanol were suitable for the extraction of lipids 
from whole–cells of bacteria.  For the development of 
the extracts on silica gel TLC plates, chlofoform–metha-
nol–0.2% CaCl2·2H2O (55:35:8, v/v/v) was optimal.  
Though butanol–acetic acid –water (3:1:1 and 5:3:1, v/v/v) 
is less hazardous, development with this solvent system 
gave different profiles with the chloroform solvent sys-
tem, naturally, and required 3.5 hrs. 

Reproducibility of chromatograms
The chromatographic profiles were highly reproduc-

ible when culture age and chromatographic conditions 
were uniformly maintained. 

Chromatograms of the gram–positive and negative 
bacteria 

As can be seen in Figs. 1, 2, 3, 8, striking differences 

between the TLC profiles of gram–positive and negative 
bacteria were observed.  For the chromatograms of gram–
negative bacteria such as Burkholderia, Ralstonia, 
Erwinia, Pseudomonas and Xanthomonas, the upper-
most spot (Up) appeared at ca. Rf 0.7.  For genera 
Agrobacterium and Rhizobium, the uppermost spot 
appeared at ca. Rf 0.75.  Below the uppermost spots vari-
ous benchmark spots appeared.  Their profiles were genus 
or species specific (Figs. 1–10). 

For gram–positive bacteria such as Clavibacter 
michiganensis and Bacillus subtilis, spots at Rf 

0.70–0.75 were absent.  Though a spot appeared near Rf 

0.7 for the case of B. subtilis, it was quite faint (Fig. 3). 

Chromatograms of Agrobacterium and Rhizobium 
spp.

For the cases of Agrobacterium and Rhizobium spe-
cies, the uppermost spots (Up) appeared at ca. Rf 0.75.  
Distinct diversities in chromatographic profiles were 
found among A. biovar 1, A. biovar 2, A. biovar 3 and A. 
rubi (Figs. 2–7).  The profile corresponded clearly with 
each biovar and not with the symptoms generated by Ti 
or Ri plasmid.  The profiles of the agrobacteria isolated 
from cherry and kiwi fruit (these strains were originally 
isolated by Sawada (1994) and have been reported as 
novel Agrobacterium spp.) resembled with the profiles 
of biovar 2 and R. tropici, though minor differences 
were found (Fig. 5).  For example, the profiles of the 
strains from cherry and kiwi fruit were different each 
other with respect to the presence of Rf 0.65 spot (Fig. 
5).  The profile of R. tropici was almost the same as that 
of the cherry type.  With the exception of the profile of 
R. tropici, the profiles of R. leguminosarum (Type spe-
cies), R. phaseoli, R. galegae, R. etli and their relatives 
such as Bradyrhizobium japonicum, Mesorhizobium 
huakuii, Sinorhizobium meliloti were quite simple 
and obviously different from those of Agrobacterium 

Fig. 1.	 Diagrammatic representations of TLC profiles of gram negative and positive bacteria.  
		  1. Burkholderia cepacia, 2. B. caryophylli, 3. B. plantarii & B. vandii, 4. B. gladioli, 5. 

B. glumae, 6. B. andropogonis, 7. Ralstonia solanacearum, 8. Erwinia carotovora, 9. E. 
chrysanthemi, 10. Agrobacterium biovar 1, 11. Xanthomonas campestris pathovars, 12. X. 
oryzae, 13. Pseudomonas syringae pathovars, 14. Clavibacter michiganensis pathovars, 
15. Bacillus subtilis.

		  Up: Uppermost spot appearing at Rf 0.70, S1, S2, S3: Benchmark spots appear on the TLC 
chromatograms of Burkholderia species. Diagrammatic representation was performed with 
the result for each type strain. 
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spp. (Fig. 2, 5–7) in so far as the strains tested. 

Chromatograms of Burkholderia species 
Under the uppermost spot (Up, Rf 0.70), several 

spots designated as S1 (Rf 0.65), S2 (Rf 0.62) and S3 (Rf 

0.60) appeared (Figs. 1, 3, 8, 9).  The profiles of S1, S2, 
S3 spots were characteristic for some Burkholderia spe-
cies.  An intensive S3 spot was always observed on the 
chromatograms of B. plantarii and B. vandii (Figs. 1, 
8).  The profile of B. caryophylli was quite unique and 
its S2 spot always appeared intensively (Figs. 1, 3).  An 
intensive S1 spot was characteristic for the profiles of 
the type strains of B. gladioli pv. gladioli and pv. allii-
cola.  However, this profile was not common for other 

strains.  No distinct differences between B. gladioli and 
B. glumae were observed, though the profiles of both 
type strains were different.  The profiles of the B. cepacia 
complex were not uniform.  The profile of the type strain 
(ATCC 25416T) was highly reproducible and an intensive 
S1 spot always appeared (Figs. 1, 3, 8).  This profile of the 
type strain, however, was inconsistent with the some 
profiles of clinical and environmental strains.  The chro-
matogram of B. andropogonis was clearly different from 
those of other Burkholderia spp.  In particular, the pro-
file of B. andropogonis lacked an S1 spot (Fig. 9).  By 
spraying of Dittmer’s reagent (Dittmer and Lester, 
1964), used for the detection of phosphate, we clarified 
that the Up, S2 and S3 spots are phosphatidyl aminolip-

Fig. 2.	 Diagrammatic representations of TLC profiles of Bradyrhizobium, Sinorhizobium, 
Rhizobium, Mesorhizobium species and Agrobacterium species.

		  1. Bradyrhizobium japonicum, 2. Sinorhizobium meliloti, 3. Rhizobium leguminosar-
um, 4. Rhizobium galegae, 5. Mesorhizobium huakuii, 6. R. tropici, 7. Agrobacterium 
sp. (cherry), 8. Agrobacterium sp. (kiwi), 9. Agrobacterium biovar 2, 10. Agrobacterium 
biovar 1, 11. Agrobacterium biovar 3, 12. Agrobacterium rubi 

		  Diagrammatic representation was performed with the result for each type strain. 

Fig. 3.	 Chromatograms of aminolipids isolated from phytopatho-
genic and non–pathogenic bacteria. 

		  1. Clavibacter michiganensis subsp. michiganensis 
NBRC 12471, 2. C. michiganensis subsp. sepedonicus 
NBRC 13764T, 3. Bacillus subtilis NBRC 13719T, 4. 
Agrobacterium biovar 1 Ku7415 (Ti), 5. A. biovar 2 
Ku7411(Ri), 6. Burkholderia cepacia ATCC 25416T, 7. B. 
caryophylli MAFF 301192, 8. B. gladioli H–1, 9. Ralstonia 
solanacearum MAFF 301559, 10. Erwinia carotovora 
subsp. carotovora 486–4, 11. Pseudomonas syringae pv. 
syringae I.

Fig. 4.	 Chromatograms of aminolipids isolated from various 
Agrobacterium species.

		  1. Agrobacterium biovar 3 MAFF 302150 (Ti), 2. A. biovar 
3 MAFF 302297 (Ti), 3. A. biovar 1 Ku7415 (Ti), 4. A. bio-
var 2 Ku7411 (Ri).
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ids, while S1 is not a phospholipid.

Chromatograms of Ralstonia species
A distinct benchmark spot at Rf 0.62 appeared with-

out exception for 96 strains from various plant sources 

(Figs. 1, 3, 9).  No major differences in the profiles were 
observed between R. solanacearum and R. pickettii.

Chromatograms of Erwinia species
The benchmark spot of E. carotovora appeared at 

Fig. 5.	 Chromatograms   of   aminolipids   isolated   from 
Mesorhizobium, Rhizobium and Agrobacterium species.   

		  1. Mesorhizobium huakuii NBRC 15243T, 2. Rhizobium 
tropici NBRC 15247T, 3. Agrobacterium sp. Sa–4 (cherry, 
Ti), 4. Agrobacterium sp. NBRC 15292 (cherry, Ti), 5. 
Agrobacterium sp. NBRC 15297 (kiwi, Ti), 6. A. biovar 2 
ATCC 11325T (Ri),  7. A. biovar 1 ATCC 23308T (Ti), 8. A. 
biovar 1 Ku7415 (Ti), 9. A. rubi NBRC 13260.

Fig. 7.	 Chromatograms of aminolipids isolated from 
Agrobacterium and Rhizobium species.

		  1. Agrobacterium biovar 1 Ku7415(Ti), 2. A. biovar 2 
Ku7411(Ri), 3. Rhizobium phaseoli NBRC 14994, 4. 
Sinorhizobium meliloti NBRC 14782, 5. Bradyrhizobium 
japonicum NBRC 15001.

Fig. 6.	 Chromatograms of aminolipids isolated from Rhizobium 
and Agrobacterium species.

		  1. Rhizobium leguminosarum NBRC 13337, 2. R. legu-
minosarum NBRC 14778T, 3. Agrobacterium biovar 1 
Ku7415 (Ti), 4. A. biovar 2 Ku7411(Ri).

Fig. 8.	 Chromatograms of aminolipids isolated from various phy-
topathogenic bacteria.

		  1. Burkholderia vandii JCM 7957T, 2. B. plantarii MAFF 
302484, 3. B. plantarii MAFF 302475,  4. B. cepacia 356–5, 
5. B. cepacia ATCC 25416T, 6. Clavibacter michiganen-
sis subsp.  michiganensis N6206, 7. B. glumae 
Kyu82–34–2, 8. B. glumae Ku8111, 9. Erwinia carotovo-
ra subsp. carotovora 486–4, 10. E. carotovora subsp. 
carotovora N7129.
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Rf 0.64 (Figs. 1, 3, 8) and this spot was absent on the 
chromatograms of E. chrysanthemi and E. herbicola.

Chromatograms of Xanthomonas species
As can be seen in Figs. 1 and 10, the profiles of X. 

campestris pv. citri (X. axonopodis pv. citri) and X. 
oryzae pv. oryzae were clearly different.  The profiles of 
X. campestris pathovars were identical and the bench-
mark spot appeared at Rf 0.50.  This spot was absent on 
the chromatogram of X. oryzae pv. oryzae.  The differ-
ences between both species appeared more striking when 
cultured on NBA slant medium instead of King’s B 
medium.  Before the spraying of the ninhydrin, several 
yellowish spots were seen near the uppermost spot at Rf 
0.70.  Several differences in the profiles of these yellow 
spots were observed between X. campestris and X. 
oryzae (data not shown).

Chromatograms of Acidovorax, Comamonas, 
Herbaspirillum and Pseudomonas spp.

The profiles of A. avenae, C. acidovorans, H. 
rubrisubalbicans, P. fluorescens, P. aeruginosa and 
P. syringae pathovars were simple and only an upper-
most spot appeared at Rf 0.70.  For the chromatograms of 
H. rubrisubalbicans and P. aeruginosa, characteristic 
spots that could be pigments appeared above the upper-
most spot.

DISCUSSION

Since morphological characteristics are not always 
determinative keys in bacterial identification, routine 

characterization of 40–50 biochemical and physiological 
properties, along with pathogenicity tests have been 
used to identify phytopathogenic bacteria.  However, 
these experiments are highly laborious, time–consuming 
and require technical skills.  Recently, DNA and/or RNA 
analyses have been introduced into the identification 
process.  The analysis of the complete base sequences of 
bacterial genomes is the most reliable procedure for the 
identifying bacteria.  However, it is difficult and expensive 
to practice, and so alternative methods such as DNA–
DNA/DNA–rRNA hybridization, RFLP and 16S/23S rRNA 
gene analyses and others have been proposed (Palleroni 
et al., 1973; De Vos and De Ley, 1983; De Vos et al., 
1985; Xiang et al., 1993; Yamamoto et al., 1999).  Fatty 
acid analysis of bacterial membranes by GLC and the 
protein analysis by electrophoresis also have been used 
and are recognized to be reliable methods (Oyaizu and 
Komagata, 1983; De Boer and Sasser, 1986; Galbraith 
and Wilkinson, 1991; Chase et al., 1992; Sawada et al., 
1992; Kori et al., 1992; Stead, 1992; Bouzar et al., 1993; 
Jarvis et al., 1996; Tighe et al., 2000; Khan et al., 2002; 
Dristig and Dianese, 1990; Li and Hayward, 1994; 
Schleifer and Kandler, 1972 ).

For systematic classification of actinomycetes and 
some bacteria such as genus Deinococcus, the TLC pro-
files of polar lipids have been used effectively (Komura et 
al., 1975; Lechevalier et al., 1977; Hasegawa et al., 1979; 
Counsell and Murray, 1986).  This technique was simpli-
fied and the direct colony TLC method was invented 
(Matsuyama et al., 1986, 1987).  In 1993, one of the 
authors tried to apply this method for presumptive dif-
ferentiation of various phytopathogenic bacteria 

Fig. 9.	 Chromatograms of aminolipids isolated from Burkholderia 
species and Ralstonia solanacearum.

		  1. Burkholderia gladioli pv. alliicola ATCC 19302T, 2. B. 
glumae MAFF 301169T, 3. B. gladioli H–1, 4. B. andropog-
onis MAFF 301006, 5. R. solanacearum C319, 6. R. solan-
acearum ATCC 11676T, 7. B. andropogonis MAFF 301006.

Fig. 10.	 Chromatograms of aminolipids isolated from 
Xanthomonas species.

		  1. Xanthomonas campestris pv. citri N6113–1, 2. X. 
campestris pv. citri N6829–1–9, 3. X. campestris pv. 
citri N6831–1–1, 4. X. campestris pv. citri Kawa, 5. X. 
oryzae pv. oryzae Q75114, 6. X. oryzae pv. oryzae 
Q7781, 7. X. oryzae pv. oryzae Q7602 , 8. X. oryzae pv. 
oryzae Q7660, 9. X. oryzae pv. oryzae T7144. 

		  NBA medium was used for culture.
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(Matsuyama et al., 1993a, b, c, d).  The chromatographic 
profiles of some phytopathogenic bacteria were genus or 
species specific and thus useful for differentiation 
(Matsuyama, 1995a, b, 1998; Furuya et al., 2000, 2004; 
Khan et al., 2000; Narayanasamy, 2003; Palleroni, 2005).  
The chromatographic profiles were stable if culture con-
ditions were uniformly maintained.  The benchmark spot 
or spots appeared clearly on the chromatogram for cul-
tures up to seven days old.  The appearance of the bench-
mark spot or spots was likewise unaffected in such cul-
tures (Matsuyama et al., 1993a, 2003a, b).  In the case of 
the direct colony TLC method, pasting the bacterial col-
onies on the origin spot of the silica gel plate, drying the 
samples, and developing the plate twice in the same direc-
tion with two different kinds of chloroform solvent sys-
tems were laborious and time–consuming.  Therefore, 
simplifying the original method became a high priority 
and led to invention of the rapid extraction–TLC method 
(Khan and Matsuyama, 1998).  Since its original inven-
tion, this method has been considerably improved 
(Matsuyama et al., 2003a, b).  This method now is quite 
easy to practice and the results obtained are highly 
reproducible. 

Striking differences in TLC profiles were observed 
between C. michiganensis, gram–positive bacteria, and 
negative bacteria (Figs. 1, 3, 8).  The uppermost spot at Rf 
0.70 (Up), which was commonly observed on the chro-
matograms of gram–negative bacteria, was absent on the 
chromatograms of three subspecies of C. michiganen-
sis such as subsp. michiganensis, sepedonicus and 
nebraskens.  A similar profile was also observed for 
Micrococcus luteus (NBRC 16250, datum was not 
shown).  At first, the absence of this Up spot was assumed 
to be a common characteristic of gram–positive bacteria.  
However, it was not universal and the spots with similar 
Rf value of Rf 0.70 were also observed for Bacillus spp., 
gram–positive bacteria, such as B. cereus, B. lichen-
formis and others (data were not shown).  For B. subti-
lis, a spot at Rf 0.69 was faintly observed (Fig. 3).  Based 
on its reaction to the Dittmer’s reagent and comparison 
with the authentic samples, the Up spot was assumed to 
be phosphatidyl ethanolamine or its relatives.  The upper-
most spots of Agrobacterium spp. and Rhizobium spp. 
appeared at ca. Rf 0.75 and were clearly different from 
those of other gram–negative bacteria. 

The chromatograms of A. biovar 1, A. biovar 2 A. 
biovar 3 and A. rubi were distinctly different from each 
another (Figs. 2–7).  The chromatograms of the strains 
belong to the same biovar were identical without excep-
tion.  The difference between A. biovar 3 and other 
Agrobacterium species was obvious (Figs. 2, 4).  Though 
the identification of A. biovar 3 with PCR techniques was 
newly reported (Kawaguchi et al., 2005), reliable A. bio-
var 3 discrimination with this TLC method can also be 
performed (Matsuyama et al., 2004).

Lately, the amalgamation of two genera, 
Agrobacterium and Rhizobium, into the single genus 
Rhizobium and corresponding striking changes of the 
genus and species names such as R. radiobacter, R. 
rhizogenes and R. vitis were proposed (Young et al., 

2001; Young et al., 2003).  However, vigorous opposition 
to this proposal has also been expressed (Farrand et al., 
2003; Broughton, 2003).  In our present experiments, we 
note that the chromatograms of R. etli, R. galegae, R. 
leguminosarum (the type species of genus Rhizobium), 
R. phaseoli and their relatives such as B. japonicum, 
M. huakuii and S. meliloti were quite different from 
those of A. biovar 1 and A. biovar 2 (Figs. 2, 5–7). 

The one exception, however, was the chromatogram 
of R. tropici, which resembled the chromatograms of A. 
biovar 2 and Agrobacterium species which were iso-
lated originally from cherry and kiwi fruit by Sawada 
(1994) (Matsuyama et al., 2005).  In particular, the pro-
file of R. tropici was identical with that of the cherry 
isolates (Fig. 5).  These TLC results agreed partly with 
16S rDNA analyses and fatty acid analyses (Sawada, 
1994; Tighe et al., 2000).  Although the authors could not 
decide if both genera should be amalgamated as genus 
Rhizobium, we point out that R. tropici is unique in the 
genus Rhizobium and will be involved in the same chro-
mosomal group with A. biovar 2 (Fig. 5).  Similar data has 
been reported by other groups (Sawada et al., 1992; 
Sawada, 1994; Tigh et al., 2000; Eardly et al., 2005).

The profiles of Burkholderia spp. are characteristic 
and three spots designated as S1, S2, S3 appeared under 
the uppermost spot (Up) of ca. Rf 0.70 on the chromato-
gram.  The profiles of these three spots were species spe-
cific for the cases of B. plantarii, B. caryophylli, and B. 
andropogonis.  Though B. vandii was reported to be a 
novel species of genus Burkholderia (Urakami et al., 
1994), objections have been made that B. vandii will 
turn out to be a synonym or junior synonym of B. 
plantarii (Ura et al., 1998; Hirakawa et al., 1999; 
Coenye et al., 1999; Hirakawa et al., 2001).  As shown in 
Fig. 8, the chromatograms of B. vandii and B. plantarii 
were identical (Matsuyama et al., 2003a, b).  As reported 
before, a distinction between B. gladioli and B. glumae 
was not observed by the TLC, but was observed by 
HPLC (Matsuyama et al., 1998). 

The profiles of the B. cepacia complex were varied, 
though S1, S2 and S3 spots always appeared.  For strains 
from onion (isolated in Thailand), the chromatograms 
agreed well with that of the type strain (ATCC 25416T, 
onion).  However, some profiles, especially of clinical or 
environmental strains, were not always identical with 
that of type strain.  Thus, B. cepacia is a complex of 
strains (Stanier et al., 1966; Ballard et al., 1977; Richard 
et al., 1981; Bebivino et al., 1994; Tabacchioni et al., 
1995; Yohalem and Lorbeer, 1994; Lessie et al., 1996; 
Sotokawa and Takikawa, 2003) and nine new species 
names have now been proposed.  The difficulties in iden-
tifying B. cepacia complex strains have been elucidated 
(Mahenthiralingam and Vanddamme, 2005). 

The profile of B. andropogonis lacks S1 spot and is 
quite different from the profiles of other Burkholderia 
species (Figs. 1, 9).  The 16SrDNA sequences data 
(Viallard et al., 1998) support this result.  At first sight 
the profile rather resembled with that of R. 
solanacearum. 

It has been well documented that races, genetic 
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groups and phylotypes exist in R. solanacearum spe-
cies complex (Buddenhagen et al., 1962; Cook et al., 
1989; Villa et al., 2005).  However, no differences were 
observed for the TLC chromatogram of 96 strains of R. 
solanacearum isolated from various plants and various 
places.  The benchmark spot distinctly appeared at Rf 

0.62 (Figs. 1, 3, 9).  The profile of R. pickettii was almost 
identical with that of R. solanacearum.  In 1992, R. 
solanacearum initially was placed in the genus 
Burkholderia (Yabuuchi et al., 1992) and transferred 
afterwards to the genus Ralstonia.  The TLC profile of 
R. solanacearum is obviously different from those of 
Burkholderia spp.(Figs. 1, 3, 8, 9).

The differences between E. carotovora and other 
Erwinia spp. such as E. chrysanthemi and E. herbi-
cola were obvious.  The benchmark spot appeared at Rf 

0.64 on the chromatograms of subspecies carotovora and 
atroseptica of E. carotovora (Figs. 1, 3, 8).

The distinct benchmark spot appeared at Rf 0.5 on 
the chromatogram of X. campestris.  This spot was 
absent on the chromatogram of X. oryzae (Fig. 10).  The 
benchmark spot was detected more clearly when NBA 
medium was used.  It has been documented that the chro-
matographic profiles of yellow pigments in xanthomon-
ads are species specific (Starr et al., 1997).  In our experi-
ments obvious differences between the chromatograms 
of X. campestris pv. citri and X. oryzae pv. oryzae for 
yellow pigments were also observed (data not shown).

The identification of the causal agent of devastating 
plant diseases, especially the identification of phytopath-
ogenic bacteria, is currently highly laborious and time–
consuming.  For rapid identification of these bacteria vari-
ous chemotaxonomic means have been used.  　The use-
fulness of the cellular fatty acid methylester (FAME) 
analyses by gas–liquid chromatography (GLC) has been 
well documented and reliable procedures have been 
established.  Lately, the analyses of the polar lipids 
extracted from whole–cells of microbes have also been 
stressed.  In 1993, the authors have first reported the use-
fulness of TLC profiles of aminolipids extracted from 
whole–cells of bacteria as an important tool for the rapid 
and presumptive differentiation of phytopathogenic bac-
teria.  Since then, these procedures have been simplified 
and well established.  This procedure is quite easy to 
implement and the profiles obtained are highly repro-
ducible.  
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