九州大学学術情報リポジトリ Kyushu University Institutional Repository

Large time behavior of the semigroup on \${L^p}\$ spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Ishihara, Yuya Faculty of Mathematics, Kyushu University

Kagei, Yoshiyuki Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/14002

出版情報: MI Preprint Series. 2009-15, 2010-01-15. Academic Press

バージョン:

権利関係:(C) 2009 Elsevier Inc.

MI Preprint Series

Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Y. Ishihara & Y. Kagei

MI 2009-15

(Received March 31, 2009)

Faculty of Mathematics Kyushu University Fukuoka, JAPAN

Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Yuya Ishihara and Yoshiyuki Kagei*

Abstract

Large time behavior of solutions to the linearized compressible Navier-Stokes equation around the motionless state in a cylindrical domain is investigated. The L^p decay estimates of the associated semigroup are established for all 1 . It is also shown that the time-asymptotic leading part of the semigroup is given by a one dimensional heat semigroup.

Mathematics Subject Classification (2000). 35Q30, 76N15.

Keywords. Compressible Navier-Stokes equation, large time behavior, cylindrical domain.

1. Introduction

This paper studies large time behavior of solutions to the following system of equations

$$(1.1) \partial_t u + Lu = 0,$$

where $u = {}^{T}(\phi, v)$, $\phi = \phi(x, t) \in \mathbf{R}$, $v = {}^{T}(v^{1}(x, t), v^{2}(x, t), v^{3}(x, t)) \in \mathbf{R}^{3}$, and L is an operator defined by

$$L = \begin{pmatrix} 0 & \gamma \operatorname{div} \\ \gamma \nabla & -\nu \Delta - \tilde{\nu} \nabla \operatorname{div} \end{pmatrix}$$

with positive constants ν , $\tilde{\nu}$ and γ . Here $t \geq 0$ is the time variable and $x = (x_1, x_2, x_3) \in \mathbf{R}^3$ is the space variable and T stands for the transposition.

^{*}Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, JAPAN

MI Preprint Series

Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

Y. Ishihara & Y. Kagei

MI 2009-15

(Received March 31, 2009)

Faculty of Mathematics Kyushu University Fukuoka, JAPAN In this paper we consider (1.1) in a cylindrical domain

$$\Omega = D \times \mathbf{R} = \{x = (x', x_3); x' = (x_1, x_2) \in D, x_3 \in \mathbf{R}\}\$$

under the boundary condition

$$(1.2) v|_{\partial\Omega} = 0.$$

Here D is a bounded domain in \mathbb{R}^2 with smooth boundary ∂D .

The system (1.1) arises from the linearization of the compressible Navier-Stokes equation

(1.3)
$$\partial_t \rho + \operatorname{div} m = 0,$$

$$\partial_t m + \operatorname{div} \left(\frac{m \otimes m}{\rho} \right) + \nabla P(\rho) = \mu \Delta \left(\frac{m}{\rho} \right) + (\mu + \mu') \nabla \operatorname{div} \left(\frac{m}{\rho} \right)$$

around the constant motionless state $(\rho, m) = (\rho_*, 0)$, where $\rho = \rho(x, t)$ is the density; $m = {}^{T}(m^1(x, t), m^2(x, t), m^3(x, t))$ is the velocity field; and ρ_* is a given positive number.

Large time behavior of solutions of (1.3) in unbounded domains has been widely studied, which presents interesting aspects. Concerning the Cauchy problem for (1.3) on the whole space \mathbb{R}^3 , it was shown in [13, 17, 18] that if the initial perturbation $(\rho(0) - \rho_*, v(0))$ is sufficiently small in H^3 , then there exists a unique global solution to (1.3) and the leading part of the perturbation $u(t) = (\rho(t) - \rho_*, v(t))$ in large time is given by the solution of the linearized problem, which exhibits a hyperbolic-parabolic aspect of system (1.3). (See |12| for the case of a general class of quasilinear hyperbolicparabolic systems.) The solution of the linearized problem is approximated in large time by the sum of two terms; one is given by the convolution of the heat kernel and the fundamental solution of the wave equation, the so-called diffusion wave; and the other is the solution of the heat equation. It was found in [3, 4] that hyperbolic and parabolic aspects of the diffusion wave exhibits an interesting interaction phenomena in the decay properties of L^p norms with $1 \leq p \leq \infty$. (See also [16].) Such an interaction phenomena also appears in the exterior domain problem [14, 15] and the half space problem [8, 9]. Furthermore, in the case of the half space problem, some different aspect appears in the decay property of spatial derivatives due to the presence of unbounded boundary.

On the other hand, solutions on the infinite layer $\mathbf{R}^{n-1} \times (0,1)$ behave in a different manner from the ones on the domains mentioned above. The

leading part of the solution on the infinite layer is given by a solution of an n-1 dimensional heat equation [7]. This is due to the fact that the infinite layer has an infinite extent in n-1 unbounded directions and the remaining one direction has a finite thickness. An analogous result was obtained in [10] for the cylindrical domain Ω that has one unbounded direction x_3 and two dimensional bounded cross section D. In this case, under suitable assumptions on the initial value, the perturbation $u(t) = (\rho(t) - \rho_*, v(t))$ satisfies

$$||u(t)||_{L^2} = O(t^{-1/4}), \quad ||u(t) - u^{(0)}(t)||_{L^2} = O(t^{-3/4} \log t)$$

as $t \to \infty$. Here $u^{(0)} = (\phi^{(0)}(x_3, t), 0)$ with $\phi^{(0)}(x_3, t)$ satisfying

(1.4)
$$\partial_t \phi^{(0)} - \kappa \partial_{x_3}^2 \phi^{(0)} = 0, \quad \phi^{(0)}|_{t=0} = \frac{1}{|D|} \int_D (\rho_0(x', x_3) - \rho_*) dx',$$

where κ is a positive constant and |D| denotes the Lebesgue measure of D. In [10] large time behavior was investigated only in the L^2 space, while in the case of the infinite layer [5, 6, 7] it was investigated in general L^p spaces. The analysis in L^p spaces in the case of the infinite layer relies on a solution formula ([5]) whose analogous version seems to be unavailable in the case of cylindrical domains since D is a general bounded domain of \mathbb{R}^2 .

In this paper we will extend the analysis in the L^2 space in [10] to general L^p spaces. We here treat only the linearized problem (1.1)–(1.2), since the nonlinear problem (1.3)–(1.2) can be treated as in [7] based on the energy method by Matsumura and Nishida [19] and the analysis of the linearized problem (1.1)–(1.2).

The main result of this paper is summarized as follows. Let 1 and let <math>u(t) be a solution of (1.1)–(1.2) with $u|_{t=0} = {}^{T}(\phi_0, v_0) \in [W^{1,p} \times L^p] \cap L^1$. Then

(1.5)
$$||u(t)||_{L^p} = O(t^{-\frac{1}{2}(1-\frac{1}{p})}),$$

$$||u(t) - u^{(0)}(t)||_{L^p} = O(t^{-\frac{1}{2}(1-\frac{1}{p})-\frac{1}{2}})$$

as $t \to \infty$. Here $u^{(0)} = {}^T(\phi^{(0)}(x_3, t), 0)$ with $\phi^{(0)}(x_3, t)$ satisfying the equation in (1.4) and $\phi^{(0)}|_{t=0} = \frac{1}{|D|} \int_D \phi_0(x', x_3) dx'$.

To prove (1.5) we will consider the Fourier transform of problem (1.1)–(1.2) with respect to x_3 variable which is written in the form

(1.6)
$$\begin{aligned} \partial_t \widehat{u} + \widehat{L}_{\xi} \widehat{u} &= 0, \\ \widehat{v}|_{\partial D} &= 0, \quad \widehat{u}|_{t=0} &= \widehat{u}_0. \end{aligned}$$

Here $\widehat{u} = \widehat{u}(x', \xi, t) = {}^{T}(\widehat{\phi}(x', \xi, t), \widehat{v}(x', \xi, t))$ $(x' \in D, \xi \in \mathbf{R}, t \geq 0)$ denotes the Fourier transform of $u(x', x_3, t) = {}^{T}(\phi(x', x_3, t), v(x', x_3, t))$ with respect to x_3 variable. We investigate problem (1.6) according to the following three cases:

(i)
$$|\xi| \ll 1$$
, (ii) $|\xi| \gg 1$, (iii) $r \le |\xi| \le M$

with suitable constants $0 < r < M < \infty$. The case (i) is treated similarly as in [6, 10]. We regard problem (1.6) as a perturbation from the one with $\xi = 0$ and analyze the spectral properties of \hat{L}_{ξ} by applying the analytic perturbation theory. As for the case (ii), we treat it as a perturbation from the problem on the half space and derive necessary estimates for the corresponding part of the resolvent in L^p spaces by using the Fourier-Multiplier Theorem. As for the case (iii), we derive estimates for the derivatives of $(\lambda + \hat{L}_{\xi})^{-1}$ with respect to ξ and then obtain necessary estimates for the resolvent by employing the Riemann-Lebesgue lemma. To investigate the cases (ii) and (iii), we will use the solution formula for the half space problem [8, 9].

This paper is organized as follows. In section 2 we state our main result of this paper. The analysis for the cases (ii) and (iii) are done in sections 3 and 4. Section 5 is devoted to the analysis for the case (i). Based on the analysis in sections 3–5, we prove our main result in section 6.

2. Main Result

We first introduce some notation.

For $1 \leq p \leq \infty$ we denote by $L^p(\Omega)$ the usual Lebesgue space on Ω and its norm is denoted by $\|\cdot\|_p$. Let ℓ be a nonnegative integer. The symbol $W^{\ell,p}(\Omega)$ denotes the ℓ -th order L^p Sobolev space on Ω with norm $\|\cdot\|_{W^{\ell,p}}$. When p=2, the space $W^{\ell,2}(\Omega)$ is denoted by $H^{\ell}(\Omega)$ and its norm is denoted by $\|\cdot\|_{H^{\ell}}$. $C_0^{\ell,p}(\Omega)$ stands for the set of all C^{ℓ} functions which have compact support in Ω . We denote by $W_0^{\ell,p}(\Omega)$ the completion of $C_0^{\ell,p}(\Omega)$ in $W^{\ell,p}(\Omega)$. In particular, $W_0^{\ell,2}(\Omega)$ is denoted by $H_0^{\ell}(\Omega)$.

We simply denote by $L^p(\Omega)$ (resp., $W^{\ell,p}(\Omega)$, $H^{\ell}(\Omega)$) the set of all vector fields $v = {}^T(v^1, v^2, v^3)$ on Ω with $v^j \in L^p(\Omega)$ (resp., $W^{\ell,p}(\Omega)$, $H^{\ell}(\Omega)$), j = 1, 2, 3, and its norm is also denoted by $\|\cdot\|_{L^p}$ (resp., $\|\cdot\|_{W^{\ell,p}}, \|\cdot\|_{H^\ell}$). For $u = {}^T(\phi, v)$ with $\phi \in W^{\ell,p}(\Omega)$ and $v = {}^T(v^1, v^2, v^3) \in W^{j,p}(\Omega)$, we define $\|u\|_{W^{\ell,p} \times W^{j,p}} = \|\phi\|_{W^{\ell,p}} + \|v\|_{W^{j,p}}$. When $\ell = j$, we simply write $\|u\|_{W^{\ell,p}}$ for $\|u\|_{W^{\ell,p} \times W^{\ell,p}}$.

Similarly we introduce the function spaces $L^p(D)$, $W^{\ell,p}(D)$, $H^{\ell}(D)$ and

 $H_0^{\ell}(D)$. Their norms are denoted by

$$|\cdot|_p, |\cdot|_{W^{\ell,p}}, |\cdot|_{H^{\ell}}.$$

For $u = {}^{t}(\phi, v)$ with $\phi \in W^{\ell,p}(D)$ and $v = {}^{T}(v^{1}, v^{2}, v^{3}) \in W^{j,p}(D)$, we denote $|u|_{W^{\ell,p} \times W^{j,p}} \equiv |\phi|_{W^{\ell,p}} + |v|_{W^{j,p}}$.

The inner product of $L^2(D)$ is denoted by

$$(f,g) \equiv \int_{D} f(x') \overline{g(x')} dx'$$

for $f, g \in L^2(D)$. We also denote the inner product of $L^2(\Omega)$ by the same symbol if no confusion occurs. We define $\langle \cdot, \cdot \rangle$ by

$$\langle f, g \rangle \equiv \frac{1}{|D|} (f, g)$$

for $f, g \in L^2(D)$. In particular, when $g = 1, \langle f, 1 \rangle$ is denoted by $\langle f \rangle$, i.e.,

$$\langle f \rangle \equiv \frac{1}{|D|} \int_D f(x') \, dx'.$$

For a Banach space X, we denote by $S(\mathbf{R}; X)$ the set of all rapidly decreasing functions on \mathbf{R} with values in X.

We next introduce some notations about integral operators. We denote the Fourier transform of f = f(z) ($z \in \mathbf{R}^k$) by

$$[\mathcal{F}_{z\to\zeta}f](\zeta) = \int_{\mathbf{R}^k} f(z)e^{-i\zeta\cdot z}dz,$$

and the inverse Fourier transform is denoted by

$$[\mathcal{F}_{\zeta \to z}^{-1} f](z) = (2\pi)^{-k} \int_{\mathbf{R}^k} f(\zeta) e^{i\zeta \cdot z} d\zeta.$$

In particular, the Fourier transform of $f = f(x_3)$ $(x_3 \in \mathbf{R})$ is denoted by \widehat{f} or $\mathcal{F}f$, i.e.,

$$\widehat{f}(\xi) = \mathcal{F}f(\xi) = \int_{\mathbf{R}} f(x_3)e^{-i\xi\cdot x_3}dx_3,$$

and the inverse Fourier transform is denoted by $\mathcal{F}^{-1}f$, i.e.,

$$\mathcal{F}^{-1}f(x_3) = (2\pi)^{-1} \int_{\mathbf{R}} f(\xi)e^{i\xi \cdot x_3} d\xi.$$

For a function K(y,z) on $(0,\infty)\times(0,\infty)$ we will denote by Kf the integral operator $\int_0^\infty K(y,z)f(z)\,dz$.

We denote the resolvent set of a closed operator A by $\rho(A)$ and the spectrum by $\sigma(A)$. For $c \in \mathbf{R}$ and $\theta \in (\frac{\pi}{2}, \pi)$, we will denote

$$\Sigma(c, \theta) = \{\lambda \in \mathbf{C}; |\arg(\lambda - c)| \le \theta\}.$$

We denote by Q_0 , \tilde{Q} and Q' the 4×4 diagonal matrices

$$Q_0 = \operatorname{diag}(1, 0, 0, 0) , \ \widetilde{Q} = \operatorname{diag}(0, 1, 1, 1) , \ Q' = \operatorname{diag}(0, 1, 1, 0),$$

respectively. We then have for $u = {}^{T}(\phi, v), v = {}^{T}(v^{1}, v^{2}, v^{3}),$

$$Q_0 u = \begin{pmatrix} \phi \\ 0 \end{pmatrix}, \quad \widetilde{Q} u = \begin{pmatrix} 0 \\ v \end{pmatrix}, \quad Q' u = \begin{pmatrix} 0 \\ v' \\ 0 \end{pmatrix} \quad (v' = {}^T(v^1, v^2)).$$

We now state our main result. Let 1 . We define an operator <math>L on $W^{1,p}(\Omega) \times L^p(\Omega)$ with domain of definition D(L) by

$$L = \begin{pmatrix} 0 & \gamma \operatorname{div} \\ \gamma \nabla & -\nu \Delta - \tilde{\nu} \nabla \operatorname{div} \end{pmatrix},$$

$$D(L) = W^{1,p}(\Omega) \times [W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)]$$

with positive constants ν , $\tilde{\nu}$ and γ .

Theorem 2.1. Let 1 . Then <math>-L generates an analytic semigroup e^{-tL} on $W^{1,p}(\Omega) \times L^p(\Omega)$ and e^{-tL} has the following properties.

(i) There hold the estimates

$$||e^{-tL}u_0||_{W^{1,p}\times L^p} \le C||u_0||_{W^{1,p}\times L^p}$$

and

$$\|\partial_x^{\ell} \tilde{Q} e^{-tL} u_0\|_p \le C t^{-\frac{\ell}{2}} \|u_0\|_{W^{1,p} \times L^p} \quad (\ell = 1, 2)$$

for 0 < t < 1.

(ii) If $u_0 = {}^T(\phi_0, v_0) \in [W^{1,p}(\Omega) \times L^p(\Omega)] \cap L^1(\Omega)$, then $e^{-tL}u_0$ is decomposed as

$$e^{-tL}u_0 = \mathcal{U}_0(t)u_0 + \mathcal{U}_\infty(t)u_0.$$

Here $\mathcal{U}_0(t)u_0$ and $\mathcal{U}_{\infty}(t)u_0$ satisfy the following (ii-a) and (ii-b). (ii-a) $\mathcal{U}_0(t)u_0$ is written as

$$\mathcal{U}_0(t)u_0 = \mathcal{W}_0(t)u_0 + \mathcal{R}_0(t)u_0.$$

Here $W_0(t)u_0$ takes the form

$$\mathcal{W}_0(t)u_0 = \begin{pmatrix} \phi^{(0)}(t) \\ 0 \end{pmatrix},$$

and $\phi^{(0)}(x_3,t)$ satisfies the following heat equation on **R**:

$$\partial_t \phi^{(0)} - \kappa \partial_{x_3}^2 \phi^{(0)} = 0, \quad \phi^{(0)}|_{t=0} = \frac{1}{|D|} \int_D \phi_0(x', x_3) dx'$$

with some positive constant κ .

For $1 \le r \le \infty$ and $\ell = 0, 1$, the function $\mathcal{R}_0(t)u_0$ satisfies the estimate

$$\|\partial_x^{\ell} \mathcal{R}_0(t) u_0\|_r \le C t^{-\frac{1}{2}(1-\frac{1}{r})-\frac{1}{2}} \|u_0\|_1$$

uniformly for $t \geq 1$. Furthermore,

$$\mathcal{U}_0(t)\tilde{Q} = \mathcal{R}_0(t)\tilde{Q}$$

and the estimates hold for $t \geq 1$:

$$\|\partial_x \mathcal{U}_0(t)\tilde{Q}u_0\|_r \leq Ct^{-\frac{1}{2}(1-\frac{1}{r})-1}\|\tilde{Q}u_0\|_1,$$

$$\|\mathcal{U}_0(t)[\partial_x \tilde{Q}u_0]\|_r \leq Ct^{-\frac{1}{2}(1-\frac{1}{r})-\frac{1}{2}}\|\tilde{Q}u_0\|_1.$$

(ii-b) For $\ell = 0, 1$, the function $\mathcal{U}_{\infty}(t)u_0$ satisfies the estimate

$$\|\partial_x^{\ell} \mathcal{U}_{\infty}(t)u_0\|_p \le Ce^{-ct}\|u_0\|_{W^{1,p}\times L^p}$$

uniformly for $t \geq 1$.

Remark 2.2. Since $\phi^{(0)}$ is a solution of a one dimensional heat equation, we have

$$\|\mathcal{W}_0(t)u_0\|_r \le Ct^{-\frac{1}{2}(1-\frac{1}{r})}\|u_0\|_1.$$

This implies that

$$\|\mathcal{U}_0(t)u_0\|_r < Ct^{-\frac{1}{2}(1-\frac{1}{r})}\|u_0\|_1.$$

The proof of Theorem 2.1 is based on the resolvent problem associated with (1.1)–(1.2):

(2.1)
$$(\lambda + L)u = f, \quad v|_{\partial\Omega} = 0.$$

Here $u = {}^{T}(\phi, v)$.

Hereafter we will often write

$$x = {}^{t}(x', x_3), \quad x' = {}^{t}(x_1, x_2) \in D, \quad \nabla' = {}^{t}(\partial_{x_1}, \partial_{x_2}), \quad \Delta' = \partial_{x_1}^2 + \partial_{x_2}^2.$$

We take the Fourier transform of (2.1) with respect to x_3 to obtain

$$\begin{cases} \lambda \widehat{\phi} + \gamma \nabla' \cdot \widehat{v}' + i\gamma \xi \widehat{v}^3 = \widehat{f}^0, \\ \lambda \widehat{v}' - \nu \Delta' \widehat{v}' + \nu \xi^2 \widehat{v}' - \widetilde{\nu} \nabla' (\nabla' \cdot \widehat{v}' + i\xi \widehat{v}^3) + \gamma \nabla' \widehat{\phi} = \widehat{g}', \\ \lambda \widehat{v}^3 - \nu \Delta' \widehat{v}^3 + \nu \xi^2 \widehat{v}^3 - i\widetilde{\nu} \xi (\nabla' \cdot \widehat{v}' + i\xi \widehat{v}^3) + i\gamma \xi \widehat{\phi} = \widehat{g}^3, \\ \widehat{v}|_{\partial D} = 0, \end{cases}$$

which is written in the form

(2.3)
$$(\lambda + \widehat{L}_{\xi})\widehat{u} = \widehat{f}, \quad \widehat{v}|_{\partial D} = 0.$$

Here $\xi \in \mathbf{R}$ denotes the dual variable; the unknown $\widehat{u} = {}^{T}(\widehat{\phi}, \widehat{v}', \widehat{v}^{3})$ is a function on D with values in \mathbf{C} ; and

$$\widehat{L}_{\xi} = \begin{pmatrix} 0 & \gamma^{T} \nabla' & i\gamma \xi \\ \gamma \nabla' & -\nu \Delta' + \nu \xi^{2} - \widetilde{\nu} \nabla'^{T} \nabla' & -i\widetilde{\nu} \xi \nabla' \\ i\gamma \xi & -i\widetilde{\nu} \xi^{T} \nabla' & -\nu \Delta' + (\nu + \widetilde{\nu}) \xi^{2} \end{pmatrix}.$$

Problem (2.3) will be investigated according to the cases

(i)
$$|\xi| \ll 1$$
, (ii) $|\xi| \gg 1$, (iii) $r \le |\xi| \le M$

with constants $0 < r < M < \infty$. We will study the cases (ii) and (iii) in sections 3 and 4, respectively. The case (i) will be studied in section 5. Based on the analysis of problem (2.3), we will prove Theorem 2.1 in section 6.

3. Resolvent problem for high frequency part

In this section we establish estimates on $(\lambda + \widehat{L}_{\xi})^{-1}$ for $|\xi| \gg 1$.

Let M > 0 and set $\widehat{u}_M = \kappa_M(\xi)(\lambda + \widehat{L}_{\xi})^{-1}\widehat{f}$. Here κ_M is a C^{∞} function on \mathbf{R} satisfying

$$0 \le \kappa_M \le 1, \quad \kappa_M(\xi) = \begin{cases} 1 & (|\xi| > M), \\ 0 & (|\xi| < \frac{M}{2}). \end{cases}$$

We will show the following estimate.

Theorem 3.1. Let $1 and let <math>\kappa_M$ be a function defined as above. Then there exist $M_0 > 0$, $c_\infty > 0$ and $\theta_\infty \in (\frac{\pi}{2}, \pi)$ such that if $M \ge M_0$ and $\lambda \in \Sigma(-c_\infty, \theta_\infty)$, then $\mathcal{F}^{-1}[\kappa_M(\xi)(\lambda + \widehat{L}_\xi)^{-1}\widehat{f}]$ satisfies the estimate

$$\|\mathcal{F}^{-1}[\kappa_M(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}]\|_{W^{1,p}\times W^{2,p}} \le C\|f\|_{W^{1,p}\times L^p}$$

uniformly in $M \geq M_0$ and $\lambda \in \Sigma(-c_{\infty}, \theta_{\infty})$.

Theorem 3.1 is proved by establishing interior and boundary estimates. We here give a proof of the estimate near the boundary only, since the interior estimate can be proved similarly.

We see from (2.2) that $\widehat{u}_M = \kappa_M(\xi)(\lambda + \widehat{L}_{\xi})^{-1}\widehat{f}$ satisfies

(3.1)
$$\begin{cases} \lambda \widehat{\phi}_{M} + \gamma \nabla' \cdot \widehat{v}'_{M} + i\gamma \xi \widehat{v}^{3}_{M} = \kappa_{M} \widehat{f}^{0}, \\ \lambda \widehat{v}'_{M} - \nu \Delta' \widehat{v}'_{M} + \nu \xi^{2} \widehat{v}'_{M} - \widetilde{\nu} \nabla' (\nabla' \cdot \widehat{v}'_{M} + i\xi \widehat{v}^{3}_{M}) + \gamma \nabla' \widehat{\phi}_{M} = \kappa_{M} \widehat{g}', \\ \lambda \widehat{v}^{3}_{M} - \nu \Delta' \widehat{v}^{3}_{M} + \nu \xi^{2} \widehat{v}^{3}_{M} - i\widetilde{\nu} \xi (\nabla' \cdot \widehat{v}'_{M} + i\xi \widehat{v}^{3}_{M}) + i\gamma \xi \widehat{\phi}_{M} = \kappa_{M} \widehat{g}^{3}, \\ \widehat{v}_{M}|_{\partial D} = 0. \end{cases}$$

We take a point $\bar{x}' = (\bar{x}_1, \bar{x}_2) \in \partial D$ and an open neighborhood $\mathcal{O} \subset \mathbf{R}^2$ of \bar{x}' . Let $\chi \in C_0^{\infty}(\mathcal{O})$. Then, by (3.1), we have

(3.2)
$$\begin{cases} \lambda(\chi \widehat{\phi}_{M}) + \gamma \nabla' \cdot (\chi \widehat{v}'_{M}) + i \gamma \xi(\chi \widehat{v}^{3}_{M}) = F_{M}, \\ \lambda(\chi \widehat{v}'_{M}) + \nu(\xi^{2} - \Delta')(\chi \widehat{v}'_{M}) \\ -\widetilde{\nu} \nabla' \{ \nabla' \cdot (\chi \widehat{v}'_{M}) + i \xi(\chi \widehat{v}^{3}_{M}) \} + \gamma \nabla' (\chi \widehat{\phi}) = G'_{M}, \\ \lambda(\chi \widehat{v}^{3}_{M}) + \nu(\xi^{2} - \Delta')(\chi \widehat{v}^{3}_{M}) \\ -i \widetilde{\nu} \xi \{ \nabla' \cdot (\chi \widehat{v}'_{M}) + i \xi(\chi \widehat{v}^{3}_{M}) \} + i \gamma \xi(\chi \widehat{\phi}_{M}) = G^{3}_{M}, \\ (\chi \widehat{v}_{M})|_{\partial D \cap \mathcal{O}} = 0. \end{cases}$$

Here

$$\begin{cases} F_{M} = \chi \kappa_{M} \widehat{f}^{0} + (\nabla' \chi) \cdot \widehat{v}'_{M}, \\ G'_{M} = \chi \kappa_{M} \widehat{g}' - \nu(\Delta' \chi) \widehat{v}'_{M} - 2\nu \nabla' \chi \cdot \nabla' \widehat{v}'_{M} - \widetilde{\nu} \nabla' (\nabla' \chi \cdot \widehat{v}'_{M}) \\ -\widetilde{\nu} \nabla' \chi (\nabla' \cdot \widehat{v}'_{M}) - i \xi \widetilde{\nu} (\nabla' \chi) \widehat{v}^{3}_{M} + \gamma (\nabla' \chi) \widehat{\phi}_{M}, \end{cases}$$

$$G^{3}_{M} = \chi \kappa_{M} \widehat{g}^{3}_{M} - \nu(\Delta' \chi) \widehat{v}^{3}_{M} - 2\nu \nabla' \chi \cdot \nabla' \widehat{v}^{3}_{M} - i \widetilde{\nu} \xi (\nabla' \chi) \cdot \widehat{v}'_{M}.$$

For any $\eta > 0$, if the diameter of \mathcal{O} is sufficiently small, then one can find a function h with the following properties (i)–(iii).

- (i) $h \in C^{\infty}(\mathbf{R}), \, \bar{x}_1 = h(\bar{x}_2), h'(\bar{x}_2) = 0.$
- (ii) $D \cap \mathcal{O} \subset \{x' = (x_1, x_2); x_1 > h(x_2)\}, \ \partial D \cap \mathcal{O} \subset \{x' = (x_1, x_2); x_1 = h(x_2)\}.$
- (iii) There are an open neighborhood $\tilde{\mathcal{O}}$ of the origin of \mathbf{R}^2 and a diffeomorphism $\omega = {}^T(\omega_1, \omega_2)$ from \mathcal{O} to $\tilde{\mathcal{O}}$ such that

$$\begin{cases} y' = \omega(x') = \begin{pmatrix} x_1 - h(x_2) \\ x_2 - \bar{x}_2 \end{pmatrix} = \begin{pmatrix} \omega_1(x') \\ \omega_2(x') \end{pmatrix}, & \omega(\bar{x}') = 0, \\ \omega(D \cap \mathcal{O}) \subset \{ y = (y_1, y_2); y_1 > 0 \}, \\ \omega(\partial D \cap \mathcal{O}) \subset \{ y = (y_1, y_2); y_1 = 0 \}, \\ x' = \omega^{-1}(y') = \begin{pmatrix} y_1 + h(y_2 + \bar{x}_2) \\ y_2 + \bar{x}_2 \end{pmatrix}, \\ \sup_{y_2} |h'(y_2 + \bar{x}_2)| < \eta. \end{cases}$$

Using the map ω , we define $V_M(y',\xi)$, $\Phi_M(y',\xi)$, $\tilde{F}_M(y',\xi)$, $\tilde{G}'_M(y',\xi)$ and $\tilde{G}^3_M(y',\xi)$ by

$$V_M(y',\xi) = \chi \widehat{v}_M(\omega^{-1}(y'),\xi), \quad \Phi_M(y',\xi) = \chi \widehat{\phi}_M(\omega^{-1}(y'),\xi),$$

$$\tilde{F}_M(y',\xi) = F_M(\omega^{-1}(y'),\xi), \quad \tilde{G}'_M(y',\xi) = G'_M(\omega^{-1}(y'),\xi),$$

$$\tilde{G}^3_M(y',\xi) = G^3_M(\omega^{-1}(y'),\xi).$$

Problem (3.2) is then transformed into the following one on the half space $\mathbf{R}_{+}^{2} = \{y = (y_1, y_2) \in \mathbf{R}^2; y_1 > 0, y_2 \in \mathbf{R}\}:$

(3.3)
$$\begin{cases} \lambda \Phi_{M} + \gamma \nabla' \cdot V'_{M} + i \gamma \xi V_{M}^{3} = \tilde{R}_{M}^{0}, \\ \lambda V'_{M} + \nu (\xi^{2} - \Delta') V'_{M} - \tilde{\nu} \nabla' (\nabla' \cdot V'_{M} + i \xi V_{M}^{3}) + \gamma \nabla' \Phi_{M} = \tilde{R}'_{M}, \\ \lambda V_{M}^{3} + \nu (\xi^{2} - \Delta') V_{M}^{3} - i \tilde{\nu} \xi (\nabla' \cdot V'_{M} + i \xi V_{M}^{3}) + i \gamma \xi \Phi_{M} = \tilde{R}_{M}^{3}, \\ V_{M}|_{y_{1}=0} = 0. \end{cases}$$

Here $V_M = {}^T(V_M', V_M^3), V_M' = {}^T(V_M^1, V_M^2),$

$$\tilde{R}_M^0 = \tilde{F}_M + \gamma h' \partial_{y_1} V_M^2,$$

$$\tilde{R}'_M = {}^T(\tilde{R}^1_M, \tilde{R}^2_M),$$

$$\begin{array}{lll} R_M & = & (R_M, R_M), \\ & & \\ \tilde{R}_M^1 & = & \tilde{G}_M^1 - \nu \{h'' \partial_{y_1} V_M^1 + 2h' \partial_{y_1 y_2} V_M^1 - (h')^2 \partial_{y_1}^2 V_M^1\} - \tilde{\nu} h' \partial_{y_1}^2 V_M^2, \end{array}$$

$$\begin{split} \tilde{R}_{M}^{2} &= \tilde{G}_{M}^{2} - \nu \{h'' \partial_{y_{1}} V_{M}^{2} + 2h' \partial_{y_{1}y_{2}} V_{M}^{2} - (h')^{2} \partial_{y_{1}}^{2} V_{M}^{2} \} \\ &- \tilde{\nu} \{h' \partial_{y_{1}}^{2} V_{M}^{1} + h'' \partial_{y_{1}} V_{M}^{2} + 2h' \partial_{y_{1}y_{2}} V_{M}^{2} - (h')^{2} \partial_{y_{1}}^{2} V_{M}^{2} + i \xi h' \partial_{y_{1}} V_{M}^{3} \} \\ &+ \gamma h' \partial_{y_{1}} \Phi_{M}, \end{split}$$

$$\tilde{R}_{M}^{3} = \tilde{G}_{M}^{3} - \nu \{h'' \partial_{y_{1}} V_{M}^{3} + 2h' \partial_{y_{1}y_{2}} V_{M}^{3} - (h')^{2} \partial_{y_{1}}^{2} V_{M}^{3}\} - i \tilde{\nu} \xi h' \partial_{y_{1}} V_{M}^{2}.$$

As for problem (3.3), we have the following estimates. In what follows we will write y for $(y_1, y_2, x_3) \in \mathbf{R}^3_+$.

Proposition 3.2. Let $1 and let <math>M_0 > 0$ be given. Then there exists a number $\delta > 0$ such that if $\operatorname{diam}(\mathcal{O}) \leq \delta$, $M \geq M_0$ and $\lambda \in \Sigma(-c_\infty, \theta_\infty)$, then the solution $U_M = {}^T(\Phi_M, V_M', V_M^3)$ of (3.3) satisfies the following estimates with $C = C(\chi, \mathcal{O}) > 0$ uniformly for $M \geq M_0$ and $\lambda \in \Sigma(-c_\infty, \theta_\infty)$:

(i)
$$\|\mathcal{F}_{\xi \to x_3}^{-1} V_M\|_p \le \frac{C}{M} \{ \|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \kappa_M f] \|_{W^{1,p} \times L^p} + \|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \widehat{u}_M] \|_{L^p \times W^{1,p}} \},$$

$$\|\mathcal{F}_{\xi \to x_3}^{-1} \Phi_M\|_p + \|\partial_y \mathcal{F}_{\xi \to x_3}^{-1} V_M\|_p$$

(ii)
$$\leq C \{ \|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \kappa_M \widehat{f}^0] \|_{W^{1,p}} + \|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \widehat{v}_M] \|_p$$

$$+ \frac{1}{M} (\|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \kappa_M \widehat{g}] \|_p + \|\mathcal{F}_{\xi \to x_3}^{-1} [\chi \widehat{u}_M] \|_{L^p \times W^{1,p}}) \},$$

$$\|\partial_{y}\mathcal{F}_{\xi\to x_{3}}^{-1}\Phi_{M}\|_{p} + \|\partial_{y}^{2}\mathcal{F}_{\xi\to x_{3}}^{-1}V_{M}\|_{p}$$
(iii)
$$\leq C\{\|\partial_{y}\mathcal{F}_{\xi\to x_{3}}^{-1}[\chi\kappa_{M}\widehat{f}^{0}]\|_{p} + \|\mathcal{F}_{\xi\to x_{3}}^{-1}[\chi\kappa_{M}\widehat{g}]\|_{p}$$

$$+ \|\mathcal{F}_{\xi\to x_{3}}^{-1}[\chi\widehat{u}_{M}]\|_{L^{p}\times W^{1,p}}\}.$$

To prove Proposition 3.2, we consider the Fourier transform of (3.3) in y_2 variable. In what follows we will write $\tilde{\zeta}$ for $^T(\zeta_2, \xi) \in \mathbf{R}^2$. Then the Fourier transform of (3.3) in y_2 gives

(3.4)
$$\begin{cases} (\lambda + \widehat{A}_{\tilde{\zeta}}) \mathcal{F}_{y_2 \to \zeta_2} U_M = \mathcal{F}_{y_2 \to \zeta_2} \widetilde{R}_M & (y_1 > 0), \\ \mathcal{F}_{y_2 \to \zeta_2} V_M|_{y_1 = 0} = 0. \end{cases}$$

Here $U_M = {}^T(\Phi_M(y_1, y_2, \xi), V_M(y_1, y_2, \xi))$ with $V_M' = {}^T(V_M'(y_1, y_2, \xi), V_M^3(y_1, y_2, \xi))$ is the solution of (3.3); $\tilde{R}_M = {}^T(\tilde{R}_M^0(y_1, y_2, \xi), \tilde{R}_M'(y_1, y_2, \xi), \tilde{R}_M^3(y_1, y_2, \xi))$; and

$$\widehat{A}_{\widetilde{\zeta}} = \begin{pmatrix} 0 & \gamma \partial_{y_1} & i \gamma^T \widetilde{\zeta} \\ \gamma \partial_{y_1} & \nu(|\widetilde{\zeta}|^2 - \partial_{y_1}^2) - \widetilde{\nu} \partial_{y_1}^2 & -i \widetilde{\nu}^T \widetilde{\zeta} \partial_{y_1} \\ i \gamma \widetilde{\zeta} & -i \widetilde{\nu} \widetilde{\zeta} \partial_{y_1} & \nu(|\widetilde{\zeta}|^2 - \partial_{y_1}^2) I_2 + \widetilde{\nu} \widetilde{\zeta}^T \widetilde{\zeta} \end{pmatrix},$$

where I_2 is the 2×2 identity matrix.

As for problem (3.4) we make use of some results by [9]. For a given $f \in C_0^{\infty}(\overline{\mathbf{R}_+^3}) \times C_0^{\infty}(\mathbf{R}_+^3)$ let us consider the problem

(3.5)
$$\begin{cases} (\lambda + \widehat{A}_{\tilde{\zeta}})u = \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f & (y_1 > 0), \\ v|_{y_1=0} = 0 \end{cases}$$

for the unknown $u = {}^{T}(\phi, v)$. To investigate problem (3.5) we introduce some quantities. We set

$$\lambda_1 = -\nu |\tilde{\zeta}|^2,$$

$$\lambda_{\pm} = -\frac{\nu_1}{2} |\tilde{\zeta}|^2 \pm \frac{1}{2} \sqrt{\nu_1^2 |\tilde{\zeta}|^4 - 4\gamma^2 |\tilde{\zeta}|^2}$$

and

$$\tilde{\lambda}_{\pm} = -\frac{\tilde{\nu}_1}{2} |\tilde{\zeta}|^2 \pm \frac{1}{2} \sqrt{\tilde{\nu}_1^2 |\tilde{\zeta}|^4 - 4\gamma^2 |\tilde{\zeta}|^2},$$

where $\nu_1 = \nu + \tilde{\nu}$ and $\tilde{\nu}_1 = 2\nu + \tilde{\nu}$. It was shown in [8, 9] that if $\tilde{\zeta} \neq 0$ and $\lambda \notin \{\lambda_1, \lambda_{\pm}, \tilde{\lambda}_{\pm}, -\gamma^2/\nu_1\}$, then (3.5) has a unique solution u. We denote the solution operator for (3.5) by $\hat{S}(\lambda, \tilde{\zeta})$. Then for the solution $U_M = {}^T(\Phi_M, V_M)$ of (3.3) we have

$$\mathcal{F}_{\nu_2 \to \zeta_2} U_M = \widehat{S}(\lambda, \widetilde{\zeta}) \mathcal{F}_{\nu_2 \to \zeta_2} \widetilde{R}_M,$$

and, therefore,

$$\mathcal{F}_{\xi \to x_3}^{-1} U_M = \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{y_2 \to \zeta_2} \tilde{R}_M
= \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} [\mathcal{F}_{\xi \to x_3} \tilde{R}_M].$$

As for $\mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}}$, we have the following estimates.

Lemma 3.3. For any $M_0 > 0$ there exist $c_{\infty} > 0$ and $\theta_0 \in (\frac{\pi}{2}, \pi)$ such that if $\sup_{\tilde{y} \to \tilde{\zeta}} f \in \{|\xi| \geq M/2\}$ with $M \geq 2M_0$ and $\lambda \in \Sigma(-c_{\infty}, \theta_{\infty})$, then there hold the following estimates uniformly for $M \geq M_0$ and $\lambda \in \Sigma(-c_{\infty}, \theta_{\infty})$:

$$(3.6) \qquad \begin{aligned} \|\partial_y^{\alpha} Q_0 \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [\widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f] \|_p \\ & \leq C \{ \|\partial_y^{\alpha} f^0 \|_p + \frac{1}{M^{1-|\alpha|}} \|g\|_p \} \quad (|\alpha| = 0, 1), \end{aligned}$$

(3.7)
$$\|\partial_{y}^{\alpha} \tilde{Q} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [\widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f] \|_{p}$$

$$\leq C \left\{ \frac{1}{M^{(1-|\alpha|)_{+}}} \|\partial_{y}^{(|\alpha|-1)_{+}} f^{0} \|_{p} + \frac{1}{M^{2-|\alpha|}} \|g\|_{p} \right\} (|\alpha| = 0, 1, 2).$$

Lemma 3.3 will be proved in a similar argument to that given in [5, Sections 4 and 5], but we here need to pay attention to the dependence on M. The spectral bound, sup $\operatorname{Re} \sigma(\widehat{A}_{\tilde{\zeta}})$, of $\widehat{A}_{\tilde{\zeta}}$ satisfies sup $\operatorname{Re} \sigma(\widehat{A}_{\tilde{\zeta}}) = O(1) < 0$ as $|\tilde{\zeta}| \to \infty$, and so we in general have $\|\mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} \kappa_M \| = O(1)$ as $M \to \infty$, but we can gain a factor M^{-1} as in (3.6) and (3.7) which work well to obtain the desired estimate of Theorem 3.1.

To prove Lemma 3.3, we will make use of an integral representation of the solution $u = \hat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f$ of (3.5) given by [9].

We introduce the characteristic roots of the ordinary differential system $(\lambda + \widehat{A}_{\tilde{\xi}})u = 0$, which are given by $\pm \mu_j(\lambda, \tilde{\xi})$, j = 1, 2, where

$$\mu_1 = \mu_1(\lambda, |\tilde{\zeta}|^2) = \sqrt{\frac{\lambda + \nu |\tilde{\zeta}|^2}{\nu}},$$

$$\mu_2 = \mu_2(\lambda, |\tilde{\zeta}|^2) = \sqrt{\frac{\lambda^2 + \nu_1 |\tilde{\zeta}|^2 \lambda + \gamma^2 |\tilde{\zeta}|^2}{\nu_1 \lambda + \gamma^2}}, \quad \nu_1 = \nu + \tilde{\nu}.$$

We next introduce the Green functions $g_{\mu_j}^{(+)}(y_1, z_1)$ and $g_{\mu_j}^{(-)}(y_1, z_1)$ of the equation $\mu_j^2 w - \partial_{y_1}^2 w = f$ under the Neumann boundary condition and the Dirichlet one at $y_1 = 0$ respectively. We define $g_{\mu_j}^{(\pm)}(y_1, z_1)$ by

$$g_{\mu_j}^{(\pm)}(y_1, z_1) = \frac{1}{2\mu_j} (e^{-\mu_j|y_1 - z_1|} \pm e^{-\mu_j(y_1 + z_1)}) \quad (j = 1, 2).$$

We set

$$g_{\mu_1,\mu_2}^{(\pm)}(y_1,z_1) = g_{\mu_1}^{(\pm)}(y_1,z_1) - g_{\mu_2}^{(\pm)}(y_1,z_1).$$

We also define functions $h_{\mu_i}(y_1)$, $h_{\mu_1,\mu_2}(y_1)$, $\beta_0(z_1)$, $\beta(z_1)$ and $\mathbf{b}(z_1)$ by

$$h_{\mu_{j}}(y_{1}) = \frac{1}{\mu_{j}} e^{-\mu_{j} y_{1}} \quad (j = 1, 2), \quad h_{\mu_{1}, \mu_{2}}(y_{1}) = h_{\mu_{1}}(y_{1}) - h_{\mu_{2}}(y_{1}),$$

$$\beta_{0}(z_{1}) = \frac{\gamma \lambda}{d(\lambda)} e^{-\mu_{2} z_{1}}, \quad \beta(z_{1}) = |\tilde{\zeta}|^{2} (e^{-\mu_{1} z_{1}} - e^{-\mu_{2} z_{1}}),$$

$$\mathbf{b}(z_{1}) = i\tilde{\zeta} \mu_{2} (e^{-\mu_{1} z_{1}} - e^{-\mu_{2} z_{1}}).$$

Using the functions defined above, we have an integral representation of the solution $u = \hat{S}(\lambda, \tilde{\zeta})f$ of (3.5).

Lemma 3.4. If $\tilde{\zeta} \neq 0$ and $\lambda \notin \{\lambda_1, \lambda_{\pm}, \tilde{\lambda}_{\pm}, -\gamma^2/\nu_1\}$, then the solution $u = \widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{v} \to \tilde{\zeta}} f$ of (3.5) is represented as

$$\widehat{S}(\lambda, \widetilde{\zeta})f = \widehat{G}(\lambda, \widetilde{\zeta})\mathcal{F}_{\widetilde{v} \to \widetilde{\zeta}}f + \widehat{H}(\lambda, \widetilde{\zeta})\mathcal{F}_{\widetilde{v} \to \widetilde{\zeta}}f,$$

where $\widehat{G}(\lambda, \widetilde{\zeta})$ and $\widehat{H}(\lambda, \widetilde{\zeta})$ are the integral operators given by

$$(\widehat{G}(\lambda,\widetilde{\zeta})\mathcal{F}_{\widetilde{y}\to\widetilde{\zeta}}f)(y_1) = \int_0^\infty \widehat{G}(\lambda,\widetilde{\zeta},y_1,z_1)\mathcal{F}_{\widetilde{y}\to\widetilde{\zeta}}f(z_1)\,dz_1$$

and

$$(\widehat{H}(\lambda,\widetilde{\zeta})\mathcal{F}_{\widetilde{y}\to\widetilde{\zeta}}f)(y_1) = \int_0^\infty \widehat{H}(\lambda,\widetilde{\zeta},y_1,z_1)\mathcal{F}_{\widetilde{y}\to\widetilde{\zeta}}f(z_1)\,dz_1.$$

Here $\widehat{G}(\lambda, \widetilde{\zeta}, y_1, z_1)$ is a 4×4 matrix of the form

$$\widehat{G}(\lambda, \widetilde{\zeta}, y_1, z_1) = \frac{\nu_1}{d(\lambda)} \delta(y_1 - z_1) Q_0 + \widehat{G}_1(\lambda, \widetilde{\zeta}, y_1, z_1) + \widehat{G}_2(\lambda, \widetilde{\zeta}, y_1, z_1),$$

where $\delta(y_1)$ denotes the Dirac delta function;

$$\widehat{G}_{1} = \frac{1}{d(\lambda)} \begin{pmatrix} \frac{\gamma \lambda}{d(\lambda)} g_{\mu_{2}}^{(+)}(y_{1}, z_{1}) & -\partial_{y_{1}} g_{\mu_{2}}^{(-)}(y_{1}, z_{1}) & -i \, {}^{T} \tilde{\zeta} g_{\mu_{2}}^{(-)}(y_{1}, z_{1}) \\ -\partial_{y_{1}} g_{\mu_{2}}^{(+)}(y_{1}, z_{1}) & 0 & 0 \\ -i \tilde{\zeta} g_{\mu_{2}}^{(+)}(y_{1}, z_{1}) & 0 & 0 \end{pmatrix};$$

$$\widehat{G}_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{\nu} g_{\mu_{1}}^{(-)}(y_{1}, z_{1}) - \frac{1}{\lambda} \partial_{y_{1}}^{2} g_{\mu_{1}, \mu_{2}}^{(-)}(y_{1}, z_{1}) & -\frac{i^{T} \tilde{\zeta}}{\lambda} \partial_{y_{1}} g_{\mu_{1}, \mu_{2}}^{(-)}(y_{1}, z_{1}) \\ 0 & -\frac{i\tilde{\zeta}}{\lambda} \partial_{y_{1}} g_{\mu_{1}, \mu_{2}}^{(-)}(y_{1}, z_{1}) & \frac{1}{\nu} g_{\mu_{1}}^{(-)}(y_{1}, z_{1}) I_{2} + \frac{\tilde{\zeta}^{T} \tilde{\zeta}}{\lambda} g_{\mu_{1}, \mu_{2}}^{(-)}(y_{1}, z_{1}) \end{pmatrix}$$

with $d(\lambda) = \nu_1 \lambda + \gamma^2$; and $\widehat{H}(\lambda, \widetilde{\zeta}, y_1, z_1)$ is a 4 × 4 matrix of the form

$$\widehat{H}(y_1, z_1)$$

$$= \frac{1}{\mu_1 \mu_2 - |\tilde{\zeta}|^2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{i\tilde{\zeta}}{\nu} h_{\mu_1}(y_1) \beta_0(z_1) & \frac{1}{\nu} h_{\mu_1}(y_1) \mathbf{b}_0(z_1) & -\frac{1}{\nu} h_{\mu_1}(y_1) \frac{\tilde{\zeta}^T \tilde{\zeta}}{|\tilde{\zeta}|^2} \beta(z_1) \end{pmatrix}$$

$$+\frac{1}{\mu_{1}\mu_{2}-|\tilde{\zeta}|^{2}} \begin{pmatrix} -\frac{\gamma|\tilde{\zeta}|^{2}}{d(\lambda)}h_{\mu_{2}}(y_{1})\beta_{0}(z_{1}) & -\frac{i\gamma\tilde{\zeta}}{d(\lambda)}h_{\mu_{2}}(y_{1})\mathbf{b}(z_{1}) & \frac{i\gamma^{T}\tilde{\zeta}}{d(\lambda)}h_{\mu_{2}}(y_{1})\beta(z_{1}) \\ \frac{|\tilde{\zeta}|^{2}}{\lambda}\partial_{y_{1}}h_{\mu_{1},\mu_{2}}(y_{1})\beta_{0}(z_{1}) & -\frac{i\tilde{\zeta}}{\lambda}\partial_{y_{1}}h_{\mu_{1},\mu_{2}}(y_{1})\mathbf{b}(z_{1}) & \frac{i^{T}\tilde{\zeta}}{\lambda}\partial_{y_{1}}h_{\mu_{1},\mu_{2}}(y_{1})\beta(z_{1}) \\ \frac{i\tilde{\zeta}|\tilde{\zeta}|^{2}}{\lambda}h_{\mu_{1},\mu_{2}}(y_{1})\beta_{0}(z_{1}) & \frac{|\tilde{\zeta}|^{2}}{\lambda}h_{\mu_{1},\mu_{2}}(y_{1})\mathbf{b}(z_{1}) & -\frac{\tilde{\zeta}^{T}\tilde{\zeta}}{\lambda}h_{\mu_{1},\mu_{2}}(y_{1})\beta(z_{1}) \end{pmatrix}.$$

The solution formula above is given in [9, Section 3]. (See also [8, Section 3 and Appendix] and [5, Theorem 3.8].)

Remark 3.5. (i) For $g_{\mu_i}^{(\pm)}$ (j = 1, 2), we have

$$\partial_{y_1}^2(g_{\mu_j}^{(\pm)}f) = \mu_j^2 g_{\mu_j}^{(\pm)}f - f \ (j=1,2), \quad \partial_{y_1}^2(g_{\mu_1,\mu_2}^{(\pm)}) = \mu_1^2 g_{\mu_1}^{(\pm)}f - \mu_2^2 g_{\mu_2}^{(\pm)}f.$$

(ii) As for μ_j (j=1,2), an elementary observation shows that $\mu_1 = \sqrt{\frac{\lambda-\lambda_1}{\nu}}$; $\mu_2 = \sqrt{\frac{(\lambda-\lambda_+)(\lambda-\lambda_-)}{(\nu_1\lambda+\gamma^2)}}$; and if $|\tilde{\zeta}| < 2\gamma/\nu_1$, then $\lambda_- = \overline{\lambda_+}$ and $\text{Im}\lambda_+ = \gamma|\tilde{\zeta}|\sqrt{1-\frac{\nu_1^2}{4\gamma^2}|\tilde{\zeta}|^2}$, while if $|\tilde{\zeta}| > 2\gamma/\nu_1$, then $\lambda_{\pm} \in \mathbf{R}$. We also have

$$\frac{1}{\mu_1\mu_2 - |\tilde{\zeta}|^2} = \frac{\nu(\nu_1\lambda + \gamma^2)(\mu_1\mu_2 + |\tilde{\zeta}|^2)}{\lambda(\lambda - \tilde{\lambda}_+)(\lambda - \tilde{\lambda}_-)}.$$

Furthermore,

$$\lambda_{\pm} = -\frac{\nu_1}{2} |\tilde{\zeta}|^2 \pm i\gamma |\tilde{\zeta}| + O(|\tilde{\zeta}|^3) \text{ as } |\tilde{\zeta}| \to 0,$$

$$\lambda_{+} = -\frac{\gamma^2}{\nu_1} + O(|\tilde{\zeta}|^{-2}), \quad \lambda_{-} = -\nu_1 |\tilde{\zeta}|^2 + O(1) \text{ as } |\tilde{\zeta}| \to \infty,$$

and similar asymptotics also hold for $\tilde{\lambda}_{+}$.

To estimate $\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}\widehat{G}(\lambda,\tilde{\zeta})\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}$ and $\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}\widehat{H}(\lambda,\tilde{\zeta})\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}$, we prepare several lemmas. We proceed as in [5, Sections 4 and 5].

Lemma 3.6 (Fourier Multiplier Theorem). Let 1 and let <math>s be an integer satisfying $s \ge \lfloor k/2 \rfloor + 1$. Suppose that $\Psi(\omega) \in C^s(\mathbf{R}^k - \{0\}) \cap L^{\infty}(\mathbf{R}^k)$ and that there exists a constant $C_0 > 0$ such that

$$|\omega|^{|\alpha|} |\partial_{\omega}^{\alpha} \Psi(\omega)| \le C_0$$

for all $\omega \in \mathbf{R}^k - \{0\}$ and $|\alpha| \leq s$. Then the operator $\mathcal{F}_{\omega \to w}^{-1}[\Psi(\omega)(\mathcal{F}_{w \to \omega}f)(\omega)]$ is extended to a bounded linear operator on $L^p(\mathbf{R}^k)$ and there holds the estimate

$$\|\mathcal{F}_{\omega \to w}^{-1}[\Psi(\omega)(\mathcal{F}_{w \to \omega}f)(\omega)]\|_{L^p(\mathbf{R}^k)} \le CC_0\|f\|_{L^p(\mathbf{R}^k)}.$$

See, e.g., [2] for the proof of Lemma 3.6.

An elementary observation yields the following lemma.

Lemma 3.7. Let $g_{\mu_j}^{(1)}(y_1, z_1) = \frac{1}{2\mu_j} e^{-\mu_j |y_1 - z_1|}$ with $\mu_j = \mu_j(\lambda, |\tilde{\zeta}|^2)$ (j = 1, 2). Then

$$\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}\left[\int_0^\infty g_{\mu_j}^{(1)}(y_1,z_1,\tilde{\zeta})(\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f)(z_1,\tilde{\zeta})dz_1\right] = \mathcal{F}_{\zeta\to y}^{-1}\left[\frac{1}{\mu_j^2+\zeta_1^2}\mathcal{F}_{y\to\zeta}(Ef)\right].$$

Here $y = (y_1, \tilde{y}), \zeta = (\zeta_1, \tilde{\zeta})$ with $\tilde{\zeta} = (\zeta_2, \xi)$ and

$$(Ef)(y) = \begin{cases} f(y) & (y_1 \ge 0), \\ 0 & (y_1 < 0). \end{cases}$$

The following lemma follows from the boundedness of the Hilbert transform. (See [1, Lemma 2.6].)

Lemma 3.8. Let 1 and set

$$Tf(y_1) = \int_0^\infty \frac{1}{y_1 + z_1} f(z_1) dz_1, \ y_1 \in (0, \infty), \ f \in L^p(0, \infty).$$

Then there exists a positive constant C = C(p) > 0 such that

$$||Tf||_{L^p(0,\infty)} \le C||f||_{L^p(0,\infty)}.$$

By Remark 3.5 (ii) one can obtain the following estimates. (Cf., [5, Lemma 4.5].) In what follows we will denote

$$\sigma(\lambda, \tilde{\zeta}) = |\lambda| + |\tilde{\zeta}|^2.$$

Lemma 3.9. Let $M_0 > 0$. Then there exist $c_{\infty} > 0$ and $\theta_{\infty} \in (\frac{\pi}{2}, \pi)$ such that if $|\tilde{\zeta}| \geq M_0$ and $\lambda \in \Sigma(-c_{\infty}, \theta_{\infty})$, then for any multi-index $\tilde{\alpha}$ the following estimates hold with some positive constants $c = c(\tilde{\alpha})$ and $C = C(\tilde{\alpha})$ uniformly for $|\tilde{\zeta}| \geq M_0$ and $\lambda \in \Sigma(-c_{\infty}, \theta_{\infty})$:

(i)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \mu_j| \le C(|\lambda| + |\tilde{\zeta}|^2)^{\frac{1}{2} - \frac{|\tilde{\alpha}|}{2}} \ (j = 1, 2),$$

(ii)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \frac{1}{\mu_i}| \leq C(|\lambda| + |\tilde{\zeta}|^2)^{-\frac{1}{2} - \frac{|\tilde{\alpha}|}{2}},$$

(iii)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}}(\mu_1 - \mu_2)| \le C|\lambda|(|\lambda| + |\tilde{\zeta}|^2)^{-\frac{1}{2} - \frac{|\tilde{\alpha}|}{2}},$$

(iv)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}}(\mu_1\mu_2 - |\tilde{\zeta}|^2)| \le C|\lambda|(|\lambda| + |\tilde{\zeta}|^2)^{-\frac{|\tilde{\alpha}|}{2}},$$

(v)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}}(\mu_1\mu_2 - |\tilde{\zeta}|^2)^{-1}| \le C \frac{1}{|\lambda|} (|\lambda| + |\tilde{\zeta}|^2)^{-\frac{|\tilde{\alpha}|}{2}},$$

(vi)
$$|\partial_{\tilde{\zeta}}^{\tilde{\alpha}} e^{-\mu_j y_1}| \le C(|\lambda| + |\tilde{\zeta}|^2)^{-\frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda, \tilde{\zeta})^{\frac{1}{2}} y_1}$$
 $(j = 1, 2),$

$$(\text{vii}) |\partial_{\tilde{\zeta}}^{\tilde{\alpha}}(e^{-\mu_1 y_1} - e^{-\mu_2 y_1})| \le C|\lambda|(|\lambda| + |\tilde{\zeta}|^2)^{-1 - \frac{|\tilde{\alpha}|}{2}}e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}y_1},$$

We are now in a position to prove Lemma 3.3.

Proof of Lemma 3.3. Let $M_0 > 0$ and let $M \ge 2M_0$. Suppose that $\sup(\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f) \subset \{(y_1, \tilde{\zeta}), \tilde{\zeta} = (\zeta_2, \xi); |\xi| \ge M/2\}.$

We first estimate the $\widehat{G}(\lambda, \widetilde{\zeta})$ part of $\widehat{S}(\lambda, \widetilde{\zeta})$. We begin with the terms concerning $g_{\mu_1}^{(-)}$. We write

$$g_{\mu_1}^{(-)}[\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f^0](y_1,\tilde{\zeta})=I_1-I_2,$$

where

$$I_{1} = \frac{1}{2\mu_{1}} \int_{0}^{\infty} e^{-\mu_{1}|y_{1}-z_{1}|} (\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f^{0})(z_{1})dz_{1},$$

$$I_{2} = \frac{1}{2\mu_{1}} \int_{0}^{\infty} e^{-\mu_{1}(y_{1}+z_{1})} (\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f^{0})(z_{1})dz_{1}.$$

As for I_1 , by Lemma 3.7,

$$\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[I_1] = \mathcal{F}_{\zeta\to y}^{-1} \left[\frac{1}{\mu_1^2 + \zeta_1^2} \mathcal{F}_{y\to\zeta}(Ef^0) \right].$$

If $|\xi| \geq M/2$, then

$$\left| \partial_{\zeta}^{\alpha} \left[\frac{1}{\mu_1^2 + \zeta_1^2} \right] \right| \le C_{\alpha} \frac{1}{|\zeta|^2} |\zeta|^{-|\alpha|} \le \frac{C_{\alpha}}{M^2} |\zeta|^{-|\alpha|}$$

for any α ($|\alpha| \geq 0$). It then follows from Lemma 3.6 that

$$\|\mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[I_1]\|_p \le \frac{C}{M^2} \|f^0\|_p.$$

Similarly one can obtain

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[I_1]\|_p \le \frac{C}{M^{2-|\beta|}} \|f^0\|_p \ (|\beta| = 1, 2).$$

We next consider I_2 . Let $|\tilde{\beta}| + \ell = 0, 1, 2$. By Lemma 3.9, we have

$$\begin{split} \left| \partial_{\tilde{\zeta}}^{\tilde{\alpha}} \left[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_{1}}^{\ell} \frac{1}{2\mu_{1}} e^{-\mu_{1}(y_{1}+z_{1})} \right] \right| & \leq C_{\tilde{\alpha}}(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{1}{2} + \frac{\ell}{2} + \frac{\tilde{\beta}}{2} - \frac{\tilde{\alpha}}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}(y_{1}+z_{1})} \\ & \leq C_{\tilde{\alpha}}(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{1}{2} + \frac{\ell+|\tilde{\beta}|}{2} - \frac{\tilde{\alpha}}{2}} \frac{1}{|\tilde{\zeta}|(y_{1}+z_{1})} \\ & \leq \frac{C_{\alpha}}{M^{2-\ell-|\tilde{\beta}|}} \cdot \frac{|\tilde{\zeta}|^{-|\tilde{\alpha}|}}{y_{1}+z_{1}} \end{split}$$

for $|\xi| \geq M/2$. It then follows from Lemma 3.6 that

$$\left\| \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_1}^{\ell} \frac{1}{2\mu_1} e^{-\mu_1(y_1 + z_1)} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^0)(z_1) \right] \right\|_{L_{\tilde{y}}^p(\mathbf{R}^2)} \le \frac{C}{M^{2-\ell-|\tilde{\beta}|}} \cdot \frac{\| f^0(z_1, \tilde{y}) \|_{L_{\tilde{y}}^p}}{y_1 + z_1},$$

and, therefore, by Minkowski's inequality for integrals, we have

$$\left\| \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_{1}}^{\ell} \frac{1}{2\mu_{1}} \int_{0}^{\infty} e^{-\mu_{1}(y_{1}+z_{1})} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^{0})(z_{1}) dz_{1} \right] \right\|_{p} \\ \leq \frac{C}{M^{2-\ell-|\tilde{\beta}|}} \left(\int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{\|f^{0}\|_{L_{\tilde{y}}^{p}}}{y_{1}+z_{1}} dz_{1} \right)^{p} dy_{1} \right)^{\frac{1}{p}}.$$

Using Lemma 3.8, we see that for $|\beta| = |\tilde{\beta}| + \ell = 0, 1, 2$,

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[I_2]\|_p = \|\mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_1}^{\ell} I_2]\|_p \le \frac{C}{M^{2-|\beta|}} \|f^0\|_p.$$

From the estimates for I_1 and I_2 obtained above, we conclude

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [g_{\mu_1}^{(-)} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^0)(y_1)]\|_p \le \frac{C}{M^{2-|\beta|}} \|f^0\|_p \quad (|\beta| = 0, 1, 2).$$

Also, since

$$\partial_{y_1}[g_{\mu_j}^{(+)}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f] = g_{\mu_j}^{(-)}[\partial_{y_1}[\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f]] \quad (j=1,2),$$

$$\tilde{\zeta}[g_{\mu_j}^{(+)}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f] = g_{\mu_j}^{(+)}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}[\partial_{\tilde{y}}f] \quad (j=1,2),$$

one can similarly conclude for $\partial_{y_1} g_{\mu_2}^{(+)}$ and $i \tilde{\zeta} g_{\mu_2}^{(+)}$ that

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [\partial_{y_1} g_{\mu_2}^{(+)} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^0)(y_1)]\|_p \le \frac{C}{M^{(1-|\beta|)_+}} \|\partial_y^{(|\beta|-1)_+} f^0\|_p \quad (|\beta| = 0, 1, 2),$$

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [i\tilde{\zeta} g_{\mu_2}^{(+)} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^0)(y_1)]\|_p \le \frac{C}{M^{(1-|\beta|)_+}} \|\partial_y^{(|\beta|-1)_+} f^0\|_p \quad (|\beta| = 0, 1, 2).$$

It remains to estimate the terms concerning $g_{\mu_1,\mu_2}^{(\pm)}$. This will be complete if we show the estimates

(3.8)
$$\left\| \partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\frac{\tilde{\zeta}^{\tilde{a}}}{\lambda} \partial_{y_1}^{b} g_{\mu_1, \mu_2}^{(\pm)} (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f)(y_1) \right] \right\|_{p} \leq \frac{C}{M^{2-|\beta|}} \|f\|_{p}$$

for any \tilde{a} and b with $|\tilde{a}| + b = 2$ and $|\beta| = 0, 1, 2$.

Let us prove (3.8). We write

$$\frac{\tilde{\zeta}^{\tilde{a}}}{\lambda} \partial_{y_1}^b g_{\mu_1,\mu_2}^{(\pm)}(\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f)(y_1) = J_1 \pm J_2,$$

where

$$\begin{split} J_1 &= \int_0^\infty \frac{\tilde{\zeta}^{\tilde{a}}}{\lambda} \partial_{y_1}^b \big(\frac{1}{2\mu_1} e^{-\mu_1|y_1 - z_1|} - \frac{1}{2\mu_2} e^{-\mu_2|y_1 - z_1|} \big) \big(\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f \big)(z_1) dz_1, \\ J_2 &= \int_0^\infty \frac{\tilde{\zeta}^{\tilde{a}}}{\lambda} \partial_{y_1}^b \big(\frac{1}{2\mu_1} e^{-\mu_1(y_1 + z_1)} - \frac{1}{2\mu_2} e^{-\mu_2(y_1 + z_1)} \big) \big(\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f \big)(z_1) dz_1. \end{split}$$

As for J_1 , by Lemma 3.7,

$$\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[J_1] = \mathcal{F}_{\zeta\to y}^{-1} \left[\frac{\tilde{\zeta}^{\tilde{a}}}{\lambda} \partial_{y_1}^b N(\lambda,\zeta) \mathcal{F}_{y\to\zeta}(Ef) \right].$$

Here

$$N(\lambda,\zeta) = \frac{1}{\mu_1^2 + \zeta_1^2} - \frac{1}{\mu_2^2 + \zeta_1^2}$$

An elementary computation gives

$$N(\lambda,\zeta) = -\frac{\lambda(\tilde{\nu}\lambda + \gamma^2)}{(\lambda + \nu|\zeta|^2)(\lambda^2 + \nu_1|\zeta|^2\lambda + \gamma^2|\zeta|^2)}.$$

In view of Remark 3.5 (ii), one can see that

$$\left| \partial_{\zeta}^{\alpha} \left(\frac{\zeta^{j} N(\lambda, \zeta)}{\lambda} \right) \right| \leq \frac{C_{\alpha}}{M^{2}} |\zeta|^{-|\alpha|} \quad (|j| = |\tilde{a}| + b)$$

for $|\xi| \ge M/2$. Lemma 3.6 then implies that

$$\|\mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[J_1]\|_p \le \frac{C}{M^2} \|f\|_p.$$

Similarly we have

$$\|\partial_y^{\beta} \mathcal{F}_{\tilde{\xi} \to \tilde{y}}^{-1}[J_1]\|_p \le \frac{C}{M^{2-|\beta|}} \|f\|_p \ (|\beta| = 1, 2).$$

We next consider J_2 . We set

$$g_{\mu_1,\mu_2}^{(2)}(y_1,z_1) = \frac{1}{2\mu_1}e^{-\mu_1(y_1+z_1)} - \frac{1}{2\mu_2}e^{-\mu_2(y_1+z_1)}.$$

By Lemma 3.9, we have, for $|\xi| \ge M/2$,

$$\begin{vmatrix}
\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \left[\frac{\tilde{\zeta}^{\tilde{\beta}+\tilde{a}}}{\lambda} \partial_{y_{1}}^{\ell+b} \frac{1}{2\mu_{1}} (e^{-\mu_{1}(y_{1}+z_{1})} - e^{-\mu_{2}(y_{1}+z_{1})}) \right] \\
\leq C_{\tilde{\alpha}}(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{1}{2} + \frac{\ell+b}{2} + \frac{|\tilde{\beta}|+|\tilde{a}|}{2} - \frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}(y_{1}+z_{1})} \\
\leq C_{\tilde{\alpha}}(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{1}{2} + \frac{\ell+b+|\tilde{\beta}|+|\tilde{a}|}{2} - \frac{|\tilde{\alpha}|}{2}} \frac{1}{|\tilde{\zeta}|(y_{1}+z_{1})} \\
\leq \frac{C_{\alpha}}{M^{2-\ell-b-|\tilde{\beta}|-|\tilde{a}|}} \cdot \frac{|\tilde{\zeta}|^{-|\tilde{\alpha}|}}{y_{1}+z_{1}}$$

and

$$(3.10) \quad \left| \partial_{\tilde{\zeta}}^{\tilde{\alpha}} \left[\frac{\tilde{\zeta}^{\tilde{\beta} + \tilde{a}}}{\lambda} \partial_{y_1}^{\ell + b} \left(\frac{1}{\mu_1} - \frac{1}{\mu_2} \right) e^{-\mu_2 (y_1 + z_1)} \right] \right| \leq \frac{C_{\alpha}}{M^{2 - \ell - b - |\tilde{\beta}| - |\tilde{a}|}} \cdot \frac{|\tilde{\zeta}|^{-|\tilde{\alpha}|}}{y_1 + z_1}.$$

Since

$$g_{\mu_1,\mu_2}^{(2)}(y_1,z_1) = \frac{1}{2\mu_1} \left(e^{-\mu_1(y_1+z_1)} - e^{-\mu_2(y_1+z_1)} \right) + \frac{1}{2} \left(\frac{1}{\mu_1} - \frac{1}{\mu_2} \right) e^{-\mu_2(y_1+z_1)},$$

we see from Lemma 3.6, (3.9) and (3.10) that

$$\left\| \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\frac{\tilde{\zeta}^{\tilde{\beta} + \tilde{a}}}{\lambda} \partial_{y_1}^{\ell + b} g_{\mu_1, \mu_2}^{(2)}(y_1, z_1) (\mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f)(z_1) \right] \right\|_{L^p_{\tilde{y}}(\mathbf{R}^2)} \leq \frac{C}{M^{2 - \ell - b - |\tilde{\beta}| - |\tilde{a}|}} \cdot \frac{\|f\|_{L^p_{\tilde{y}}}}{y_1 + z_1}$$

for $|\xi| \geq M/2$. Therefore, by Lemma 3.8 and (3.9), we have, for $|\beta| = |\tilde{\beta}| + \ell = 0, 1, 2$,

$$\left\| \partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1}[J_2] \right\|_p = \left\| \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_1}^{\ell} J_2 \right] \right\|_p \le \frac{C}{M^{2-|\beta|}} \|f\|_p.$$

Combining the estimates for J_1 and J_2 we obtain (3.8); and the desired estimates for the \widehat{G} -part are obtained.

We next consider the $\widehat{H}(\lambda, \widetilde{\zeta})$ part of $\widehat{S}(\lambda, \widetilde{\zeta})$. By Lemma 3.9, we have

$$(3.11) \begin{cases} |\partial_{\tilde{\zeta}}^{\tilde{\alpha}} h_{\mu_{j}}(y_{1})| \leq C(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{1}{2} - \frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}y_{1}}, \\ |\partial_{\tilde{\zeta}}^{\tilde{\alpha}} h_{\mu_{1},\mu_{2}}(y_{1})| \leq C|\lambda|(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{3}{2} - \frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}y_{1}}, \\ |\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \beta_{0}(z_{1})| \leq C|\lambda|(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}z_{1}}, \\ |\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \beta(z_{1})| \leq C|\lambda|(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}z_{1}}, \\ |\partial_{\tilde{\zeta}}^{\tilde{\alpha}} \mathbf{b}(z_{1})| \leq C|\lambda|(|\lambda| + |\tilde{\zeta}|^{2})^{-\frac{|\tilde{\alpha}|}{2}} e^{-c\sigma(\lambda,\tilde{\zeta})^{\frac{1}{2}}z_{1}}. \end{cases}$$

These inequalities yield the desired estimates for the \widehat{H} -part. For example, let us consider the term $\frac{1}{\mu_1\mu_2-|\tilde{\zeta}|^2}\cdot\frac{\tilde{\zeta}}{\nu}h_{\mu_1}(y_1)\beta_0(z_1)$. By (3.11) and Lemma 3.9 (v), we have

$$\begin{split} \left| \partial_{\tilde{\zeta}}^{\tilde{\alpha}} \left[\tilde{\zeta}^{\tilde{\beta}} \partial_{y_1}^{\ell} \frac{1}{\mu_1 \mu_2 - |\tilde{\zeta}|^2} \cdot \frac{\tilde{\zeta}}{\nu} h_{\mu_1}(y_1) \beta_0(z_1) \right] \right| & \leq & C |\tilde{\zeta}|^{|\tilde{\beta}| + \ell - |\alpha|} e^{-c\sigma(\lambda, \tilde{\zeta})^{\frac{1}{2}}(y_1 + z_1)} \\ & \leq & \frac{C}{M^{1 - |\tilde{\beta}| - \ell}} \cdot \frac{1}{y_1 + z_1} |\tilde{\zeta}|^{-|\tilde{\alpha}|} \end{split}$$

for $|\xi| \geq M/2$. As in the estimates for I_2 and J_2 above, we see from Lemmas 3.6 and 3.8 that

$$\left\| \partial_y^{\beta} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} \left[\frac{1}{\mu_1 \mu_2 - |\tilde{\zeta}|^2} \cdot \frac{\tilde{\zeta}}{\nu} h_{\mu_1}(y_1) \beta_0(z_1) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}} f^0 \right] \right\|_p \le \frac{C}{M^{(1-|\beta|)_+}} \|\partial_y^{(|\beta|-1)_+} f^0\|_p$$

for $|\beta| = 0, 1, 2$. Similarly one can obtain

$$\begin{split} \|\partial_{y}^{\beta}\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[Q_{0}\hat{H}Q_{0}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f]\|_{p} &\leq C\|\partial_{y}^{\beta}f^{0}\|_{p} \quad (|\beta|=0,1), \\ \|\partial_{y}^{\beta}\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[\tilde{Q}\hat{H}Q_{0}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f]\|_{p} &\leq \frac{C}{M^{(1-|\beta|)_{+}}}\|\partial_{y}^{(|\beta|-1)_{+}}f^{0}\|_{p} \quad (|\beta|=0,1,2), \\ \|\partial_{y}^{\beta}\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[Q_{0}\hat{H}\tilde{Q}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f]\|_{p} &\leq \frac{C}{M^{1-|\beta|}}\|g\|_{p} \quad (|\beta|=0,1), \\ \|\partial_{y}^{\beta}\mathcal{F}_{\tilde{\zeta}\to\tilde{y}}^{-1}[\tilde{Q}\hat{H}\tilde{Q}\mathcal{F}_{\tilde{y}\to\tilde{\zeta}}f]\|_{p} &\leq \frac{C}{M^{2-|\beta|}}\|g\|_{p} \quad (|\beta|=0,1,2). \end{split}$$

This completes the proof.

We now prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.3, if $\sup_{y_2} |h'(y_2)| \leq \eta$, then (3.12)

$$\begin{split} \|\partial_{y}\mathcal{F}_{\xi\to x_{3}}^{-1}\Phi_{M}\|_{p} + \|\partial_{y}^{2}\mathcal{F}_{\xi\to x_{3}}^{-1}V_{M}\|_{p} \\ &\leq C\{\|\mathcal{F}_{\xi\to x_{3}}^{-1}[\partial_{y}Q_{0}\tilde{R}_{M}]\|_{p} + \|\mathcal{F}_{\xi\to x_{3}}^{-1}[\tilde{Q}\tilde{R}_{M}]\|_{p}\} \\ &\leq C\{\|\partial_{y}\mathcal{F}_{\xi\to x_{3}}^{-1}[\tilde{F}_{M}]\|_{p} + \|\mathcal{F}_{\xi\to x_{3}}^{-1}[\partial_{y'}V_{M}]\|_{p} + \eta\|\mathcal{F}_{\xi\to x_{3}}^{-1}[\partial_{y'}^{2}V_{M}]\|_{p} \\ &+ \|\mathcal{F}_{\xi\to x_{3}}^{-1}[\tilde{G}_{M}]\|_{p} + \eta\|\mathcal{F}_{\xi\to x_{3}}^{-1}[\partial_{y'}^{2}V_{M}]\|_{p} + \eta\|\mathcal{F}_{\xi\to x_{3}}^{-1}[\partial_{y'}\Phi_{M}]\|_{p}\}. \end{split}$$

We now take $\eta > 0$ in such a way that $C\eta \leq \frac{1}{2}$ and then choose $\delta > 0$ so small that $\sup_{y_2} |h'(y_2)| \leq \eta$ whenever $\operatorname{diam}(\mathcal{O}) \leq \delta$. It then follows from (3.12) that

(3.13)
$$\|\partial_{y}\mathcal{F}_{\xi \to x_{3}}^{-1}\Phi_{M}\|_{p} + \|\partial_{y}^{2}\mathcal{F}_{\xi \to x_{3}}^{-1}V_{M}\|_{p}$$

$$\leq C\{\|\partial_{y}\mathcal{F}_{\xi \to x_{3}}^{-1}[\tilde{F}_{M}]\|_{p} + \|\mathcal{F}_{\xi \to x_{3}}^{-1}[\tilde{G}_{M}]\|_{p} + \|\partial_{y}\mathcal{F}_{\xi \to x_{3}}^{-1}V_{M}\|_{p}\}.$$

Similarly, by Lemma 3.3,

$$\|\mathcal{F}_{\xi \to x_{3}}^{-1} \Phi_{M}\|_{p} + \|\partial_{y} \mathcal{F}_{\xi \to x_{3}}^{-1} V_{M}\|_{p}$$

$$\leq C \{\|\mathcal{F}_{\xi \to x_{3}}^{-1} [Q_{0} \tilde{R}_{M}]\|_{p} + \frac{1}{M} \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{Q} \tilde{R}_{M}]\|_{p} \}$$

$$\leq C \{\|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{F}_{M}]\|_{p} + \eta \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\partial_{y'} V_{M}]\|_{p}$$

$$+ \frac{1}{M} (\|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{G}_{M}]\|_{p} + \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\partial_{y'}^{2} V_{M}]\|_{p}$$

$$+ \eta \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\partial_{y'} V_{M}]\|_{p} + \eta \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\partial_{y'} \Phi_{M}]\|_{p}) \}.$$

We see from (3.13) and (3.14) that

$$\|\mathcal{F}_{\xi \to x_3}^{-1} \Phi_M\|_p + \|\partial_y \mathcal{F}_{\xi \to x_3}^{-1} V_M\|_p$$

$$(3.15) \leq C \{ \|\mathcal{F}_{\xi \to x_3}^{-1} [\tilde{F}_M] \|_p$$

$$+ \frac{1}{M} (\|\mathcal{F}_{\xi \to x_3}^{-1} [\tilde{G}_M] \|_p + \|\partial_y \mathcal{F}_{\xi \to x_3}^{-1} [\tilde{F}_M] \|_p + \|\partial_y \mathcal{F}_{\xi \to x_3}^{-1} V_M \|_p) \}$$

by taking η and δ smaller if necessary. It then follows from Lemma 3.3, (3.13) and (3.15) that (3.16)

$$\|\mathcal{F}_{\xi \to x_{3}}^{-1} V_{M}\|_{p} \leq \frac{C}{M} \{ \|\mathcal{F}_{\xi \to x_{3}}^{-1} [Q_{0} \tilde{R}_{M}]\|_{p} + \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{Q} \tilde{R}_{M}]\|_{p} \}$$

$$\leq \frac{C}{M} \{ \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{F}_{M}]\|_{W^{1,p}} + \|\mathcal{F}_{\xi \to x_{3}}^{-1} [\tilde{G}_{M}]\|_{p} + \|\partial_{y} \mathcal{F}_{\xi \to x_{3}}^{-1} V_{M}\|_{p} \}.$$

Proposition 3.2 now follows from (3.13), (3.15) and (3.16). This completes the proof. \Box

We finally prove Theorem 3.1.

Proof of Theorem 3.1. For each $\bar{x}' \in \partial D$ we take $\mathcal{O}_{\bar{x}'}$ so that the estimates in Proposition 3.2 hold with \mathcal{O} replaced by $\mathcal{O}_{\bar{x}'}$. Since D is bounded, one can find an open covering $\{\mathcal{O}_j\}_{j=0}^k$ of D and $\{\chi_j\}_{j=0}^k \subset C_0^{\infty}$ such that $U_M^{(j)} = \chi_j \widehat{u}_M$ $(j=1,\cdots,k)$ satisfy the estimates in Proposition 3.2 with \mathcal{O} replaced by \mathcal{O}_j . Here $\{\mathcal{O}_j\}_{j=0}^k$ satisfies $\overline{\mathcal{O}}_0 \subset D$, $\mathcal{O}_j = \mathcal{O}_{\bar{x}_j}$, for some $\bar{x}_j \in \partial D$ $(j=1,2,\cdots,k)$, and $D \subset \bigcup_{j=0}^k \mathcal{O}_j$; and $\{\chi_j\}_{j=0}^k \subset C^{\infty}$ is a partition of unity subordinate to $\{\mathcal{O}_{j=0}^k\}$, i.e., there hold $\chi_j \in C_0^{\infty}(\mathcal{O}_j)$ and $\sum_{j=0}^k \chi_j \equiv 1$ on D. One can see that $U_M^{(0)} = \chi_0 \widehat{u}_M$ satisfies similar estimates to those in Proposition 3.2. Furthermore, the constants C appearing in the estimates for $U_M^{(j)}$ $(j=0,\cdots,k)$ can be taken uniformly in $j=0,\cdots,k$.

Proposition 3.2 (i) then yields (3.17)

$$\|\mathcal{F}^{-1}\widehat{v}_{M}\|_{p} \leq \sum_{j=0}^{k} \|\mathcal{F}^{-1}V_{M}^{(j)}\|_{p}$$

$$\leq \frac{C}{M} \sum_{j=0}^{k} \{\|\mathcal{F}^{-1}[\chi_{j}\kappa_{M}\widehat{f}]\|_{W^{1,p}\times L^{p}} + \|\mathcal{F}^{-1}[\chi_{j}\widehat{u}_{M}]\|_{L^{p}\times W^{1,p}}\}$$

$$\leq \frac{C}{M} \{\|\mathcal{F}^{-1}[\kappa_{M}\widehat{f}]\|_{W^{1,p}\times L^{p}} + \|\mathcal{F}^{-1}\widehat{u}_{M}\|_{L^{p}\times W^{1,p}}\}.$$

By (3.17) and Proposition 3.2 (ii), we have

$$\|\mathcal{F}^{-1}\widehat{u}_{M}\|_{L^{p}\times W^{1,p}} \leq \sum_{j=0}^{k} \|\mathcal{F}^{-1}U_{M}^{(j)}\|_{L^{p}\times W^{1,p}}$$

$$\leq C\{\|\mathcal{F}^{-1}[\kappa_{M}\widehat{f}]\|_{W^{1,p}\times L^{p}} + \frac{1}{M}\|\mathcal{F}^{-1}\widehat{u}_{M}\|_{L^{p}\times W^{1,p}}\}.$$

Therefore, if M > 0 is taken so large, we obtain

(3.18)
$$\|\mathcal{F}^{-1}\widehat{u}_M\|_{L^p \times W^{1,p}} \le C \|\mathcal{F}^{-1}[\kappa_M \widehat{f}]\|_{W^{1,p}}.$$

It then follows from (3.18) and Proposition 3.2 (iii) that

$$\|\mathcal{F}^{-1}\widehat{u}_{M}\|_{W^{1,p}\times W^{2,p}} \leq \sum_{j=0}^{k} \|\mathcal{F}^{-1}U_{M}^{(j)}\|_{W^{1,p}\times W^{2,p}}$$
$$\leq Ck\|\mathcal{F}^{-1}[\kappa_{M}\widehat{f}]\|_{W^{1,p}\times L^{p}}.$$

This completes the proof.

4. Resolvent problem for the middle frequency part

Let M > 0 and r > 0. In this section we establish estimates on $(\lambda + \widehat{L}_{\xi})^{-1}$ for $r/2 \leq |\xi| \leq M$.

We begin with estimating $(\lambda + \widehat{L}_{\xi})^{-1}$ for λ in compact sets. We first estimate $\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f$ for $f \in W^{1,p}(D) \times L^p(D)$. Here $\kappa_{r,M}$ is a function in $C_0^{\infty}(\mathbf{R})$ satisfying

$$0 \le \kappa_{r,M} \le 1, \quad \kappa_{r,M}(\xi) = \begin{cases} 1 & (r \le |\xi| \le \frac{M}{2}) \\ 0 & (|\xi| < \frac{r}{2}, |\xi| > M). \end{cases}$$

Note that here f is a function of $x' \in D$ and does not depend on ξ .

Proposition 4.1. Let r and M be numbers satisfying $0 < r < \frac{M}{2}$ and let $\Lambda_1 > 0$. Then there exist constants $c_1 = c_1(r, M) > 0$ and $\theta_1 = \theta_1(r, M) \in (\frac{\pi}{2}, \pi)$ such that if $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$, then for any integer $k \geq 0$ the function $\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f$ satisfies the following estimate

$$\left|\partial_{\xi}^{k} \left[\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1} f\right]\right|_{W^{1,p} \times W^{2,p}} \le C_{k} |f|_{W^{1,p} \times L^{p}}$$

with some constant C_k uniformly for ξ and $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$.

Proof. Let $\tilde{\zeta} = (\zeta_2, \xi) \in \mathbf{R}^2$ and let $\widehat{S}(\lambda, \tilde{\zeta})$ be the solution operator for problem (3.5) introduced in section 3. We consider the following problem on $\{y_1 > 0\}$

(4.1)
$$\begin{cases} (\lambda + \widehat{A}_{\tilde{\zeta}})w = F & (y_1 > 0), \\ \widetilde{Q}w|_{y_1=0} = 0 \end{cases}$$

for the unknown $w=w(y_1,\tilde{\zeta})$ and a given $F=F(y_1,\zeta_2)$ with $\tilde{\zeta}=(\zeta_2,\xi)$ regarded as a parameter. Note that F does not depend on ξ . In view of Lemma 3.4 and Remark 3.5 (ii), similarly to the proof of Lemma 3.3, we see that there exist $c_1=c_1(r,M)>0$ and $\theta_1=\theta_1(r,M)\in(\frac{\pi}{2},\pi)$ such that if $\frac{r}{2}\leq |\xi|\leq M$ and $\lambda\in\Sigma(-c_1,\theta_1)$, then (4.1) has a unique solution $w(y_1,\tilde{\zeta})=\widehat{S}(\lambda,\tilde{\zeta})F(y_1)$. Furthermore, $\mathcal{F}_{\zeta_2\to y_2}^{-1}w=\mathcal{F}_{\zeta_2\to y_2}^{-1}\widehat{S}(\lambda,\tilde{\zeta})F$, which is a function of $y'=(y_1,y_2)\in\mathbf{R}_+^2$ with parameter ξ , satisfies the estimates

(4.2)
$$\|\partial_{y'}^{\alpha'} Q_0 \mathcal{F}_{\zeta_2 \to y_2}^{-1} [\widehat{S}(\lambda, \widetilde{\zeta}) F](y', \xi) \|_{L^p_{y'}(\mathbf{R}^2_+)}$$

$$\leq C \{ \|\partial_{y'}^{\alpha'} \mathcal{F}_{\zeta_2 \to y_2}^{-1} [Q_0 F] \|_{L^p_{y'}(\mathbf{R}^2_+)} + \|\mathcal{F}_{\zeta_2 \to y_2}^{-1} \widetilde{Q} F \|_{L^p_{y'}(\mathbf{R}^2_+)} \}$$

for $|\alpha'| = 0, 1$, and,

$$(4.3) \qquad \begin{aligned} \|\partial_{y'}^{\alpha'} \tilde{Q} \mathcal{F}_{\zeta_{2} \to y_{2}}^{-1} [\widehat{S}(\lambda, \tilde{\zeta}) F](y', \xi) \|_{L_{y'}^{p}(\mathbf{R}_{+}^{2})} \\ & \leq C \{ \|\partial_{y'}^{(|\alpha|-1)} \mathcal{F}_{\zeta_{2} \to y_{2}}^{-1} [Q_{0} F] \|_{L_{y'}^{p}(\mathbf{R}_{+}^{2})} + \|\mathcal{F}_{\zeta_{2} \to y_{2}}^{-1} \tilde{Q} F \|_{L_{y'}^{p}(\mathbf{R}_{+}^{2})} \} \end{aligned}$$

for $|\alpha'| = 0, 1, 2$.

We write f and $\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f$ as

$$f = {}^{T}(f^{0}, g), \quad \kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f = {}^{T}(\widehat{\phi}_{r,M}, \widehat{v}_{r,M}).$$

Based on (4.2) and (4.3), by using the localization argument as in the proof of Theorem 3.1, one can obtain the estimate

$$(4.4) \quad |\widehat{\phi}_{r,M}|_{W^{1,p}} + |\widehat{v}_{r,M}|_{W^{2,p}} \le C\{|f^0|_{W^{1,p}} + |g|_p + |\widehat{\phi}_{r,M}|_p + |\widehat{v}_{r,M}|_{W^{1,p}}\}.$$

Let us prove

$$(4.5) |\widehat{\phi}_{r,M}|_{p} + |\widehat{v}_{r,M}|_{W^{1,p}} \le C\{|f^{0}|_{W^{1,p}} + |g|_{p}\}.$$

We will prove (4.5) by a contradiction. Assume that (4.5) does not hold. Then for any $n \in \mathbb{N}$, there are $f_n = {}^T(f_n^0, g_n', g_n^3) \in W^{1,p}(D) \times L^p(D)^3$, $\xi_n \in \mathbb{R}$, $\lambda_n \in \mathbb{C}$ and $\widehat{u}_n = {}^T(\widehat{\phi}_n, \widehat{v}_n) \in W^{1,p}(D) \times [W^{2,p}(D) \cap W_0^{1,p}(D)]$ satisfying the following (4.6)–(4.8):

(4.6)
$$\frac{r}{2} \le |\xi_n| \le M, \quad \lambda_n \in \Sigma(-c_1, \theta_1), \quad |\lambda_n| \le \Lambda_1,$$

(4.7)
$$(\lambda + \widehat{L}_{\xi_n})\widehat{u}_n = \kappa_{r,M}(\xi_n)f_n,$$

$$(4.8) |\widehat{\phi}_n|_p + |\widehat{v}_n|_{W^{1,p}} \ge n\{|f_n^0|_{W^{1,p}} + |g_n|_p\}.$$

We may assume that

$$(4.9) |\widehat{\phi}_n|_p + |\widehat{v}_n|_{W^{1,p}} = 1.$$

By (4.3), we have

$$|\widehat{\phi}_n|_{W^{1,p}} + |\widehat{v}_n|_{W^{2,p}} \le C\left(\frac{1}{n} + 1\right) \le 2C.$$

Therefore, we can find a subsequence of $\{f_n, \xi_n, \lambda_n, \widehat{u}_n\}$, which we again denote by $\{f_n, \xi_n, \lambda_n, \widehat{u}_n\}$, such that, as $n \to \infty$,

$$f_n^0 \to 0 \text{ in } W^{1,p}(D), \quad g_n \to 0 \text{ in } L^p(D),$$

$$\xi_n \to \xi \quad (\frac{r}{2} \le |\xi| \le M), \quad \lambda_n \to \lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \le \Lambda_1\},$$

$$\phi_n \rightharpoonup \phi \text{ in } W^{1,p}(D), \quad \phi_n \to \phi \text{ in } L^p(D),$$

$$v_n \rightharpoonup v \text{ in } W^{2,p}(D), \quad v_n \to v \text{ in } W_0^{1,p}(D).$$

Letting $n \to \infty$ in (4.7) and (4.9), we have

$$(\lambda + \widehat{L}_{\mathcal{E}})\widehat{u} = 0, \quad \widehat{u} \in W^{1,p}(D) \times [W^{2,p}(D) \cap W_0^{1,p}(D)], \quad |\widehat{u}|_{L^p \times W^{1,p}} = 1.$$

But, by Lemma 4.2 below, if $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$, then $\widehat{u} = 0$, which contradicts $|\widehat{u}|_{L^p \times W^{1,p}} = 1$. Therefore, we have (4.5).

It now follows from (4.4) and (4.5) that

$$(4.10) |\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f|_{W^{1,p}\times W^{2,p}} \le C|f|_{W^{1,p}\times L^{p}}.$$

We next estimate $\partial_{\xi}^{k} [\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}f]$. We set

$$\widehat{u}_{(k)} = \partial_{\xi}^{k} [\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1} f] = {}^{T}(\widehat{\phi}_{(k)}, \widehat{v}'_{(k)}, \widehat{v}'_{(k)}).$$

Then $\widehat{u}_{(k)}$ is a solution of the problem

$$\begin{cases} \lambda \widehat{\phi}_{(k)} + \gamma \nabla' \cdot \widehat{v}'_{(k)} + i \gamma \xi \widehat{v}^3_{(k)} = (\partial_{\xi}^k \kappa_1) f^0 + \sum_{j=0}^{k-1} \binom{k-j}{j} \partial_{\xi}^{k-1} (i \gamma \xi) \widehat{v}^3_{(j)}, \\ \lambda \widehat{v}'_{(k)} - \nu \Delta' \widehat{v}'_{(k)} + \nu \xi^2 \widehat{v}'_{(k)} - \widetilde{\nu} \nabla' (\nabla' \cdot \widehat{v}'_{(k)} + i \xi \widehat{v}^3_{(k)}) + \gamma \nabla' \widehat{\phi}_{(k)} \\ = (\partial_{\xi}^k \kappa_1) g' + \sum_{j=0}^{k-1} \binom{k-j}{j} \{ \partial_{\xi}^{k-1} (\nu \xi^2) \widehat{v}'_{(j)} - \partial_{\xi}^{k-1} (\widetilde{\nu} i \xi) \nabla' \widehat{v}^3_{(j)} \}, \\ \lambda \widehat{v}^3_{(k)} - \nu \Delta' \widehat{v}^3_{(k)} + \nu \xi^2 \widehat{v}^3_{(k)} - i \widetilde{\nu} \xi (\nabla' \cdot \widehat{v}'_{(k)} + i \xi \widehat{v}^3_{(k)}) + i \gamma \xi \widehat{\phi}_{(k)} \\ = (\partial_{\xi}^k \kappa_1) g^3 + \sum_{j=0}^{k-1} \binom{k-j}{j} \{ \partial_{\xi}^{k-1} (\nu \xi^2) \widehat{v}^3_{(j)} - \partial_{\xi}^{k-1} (\widetilde{\nu} i \xi) \nabla' \cdot \widehat{v}'_{(j)} + \partial_{\xi}^{k-1} (\widetilde{\nu} \xi^2) \widehat{v}^3_{(j)} + \partial_{\xi}^{k-1} (i \gamma \xi) \widehat{\phi}_{(j)} \}, \\ \widehat{v}_{(k)}|_{\partial D} = 0. \end{cases}$$

By (4.10), we have

$$|\widehat{\phi}_{(k)}|_{W^{1,p}} + |\widehat{v}_{(k)}|_{W^{2,p}} \le C_k \{|f^0|_{W^{1,p}} + |g|_p\} + \sum_{j=0}^{k-1} \{|\widehat{\phi}_{(j)}|_p + |\widehat{v}_{(j)}|_{W^{1,p}}\}.$$

The desired estimate now follows by an induction argument. This completes the proof. $\hfill\Box$

Lemma 4.2. Let $1 . If <math>u \in W^{1,p}(D) \cap [W^{2,p}(D) \times W_0^{1,p}(D)]$, $(\lambda + \widehat{L}_{\xi})u = 0$, $\frac{r}{2} \leq |\xi| \leq M$ and $\lambda \in \Sigma(-c_1, \theta_1)$, then u = 0.

To prove Lemma 4.2, we prepare some propositions.

Proposition 4.3. Let $k \in \mathbb{N}$. If $\frac{r}{2} \leq |\xi| \leq M$ and $\lambda \in \Sigma(-c_1, \theta_1)$, then for any $f \in H^k(D) \times H^{k-1}(D)$ there exists a unique solution $u \in H^k(D) \times [H^{k+1}(D) \cap H_0^1(D)]$ of $(\lambda + \widehat{L}_{\xi})u = f$ and u satisfies the estimate

$$|u|_{H^k \times H^{k+1}} \le C|f|_{H^k \times H^{k-1}}.$$

Proposition 4.3 for k=1 was proved in [10]. (See [10, Proposition 3.14].) The proof for $k \geq 2$ is done in a similar line to that of [10, Proposition 3.14] by using the Matsumura-Nishida energy method [19]. We here omit the details.

Remark 4.4. Proposition 4.3 remains true for the adjoint problem $(\lambda + \widehat{L}_{\varepsilon}^*)u = f$, where

$$\widehat{L}_{\xi}^{*} = \begin{pmatrix} 0 & -\gamma^{T} \nabla' & -i\gamma \xi \\ -\gamma \nabla' & -\nu \Delta' + \nu \xi^{2} - \tilde{\nu} \nabla'^{T} \nabla' & -i\tilde{\nu} \xi \nabla' \\ -i\gamma \xi & -i\tilde{\nu} \xi^{T} \nabla' & -\nu \Delta' + (\nu + \tilde{\nu}) \xi^{2} \end{pmatrix}.$$

Proposition 4.5. Let $2 \leq q < \infty$. If $\frac{r}{2} \leq |\xi| \leq M$ and $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$, then for any $f \in W^{1,q}(D) \times L^q(D)$ there exists a unique solution $u^* \in W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$ of $(\lambda + \widehat{L}_{\varepsilon}^*)u^* = f$.

Proof. Let $f \in C^{\infty}(\bar{D}) \times C_0^{\infty}(D)$. Then, by Remark 4.4, there exists a unique solution u^* of $(\lambda + \widehat{L}_{\xi}^*)u^* = f$, which belongs to $H^k(D) \times [H^{k+1}(D) \cap H_0^1(D)]$ for any $k \in \mathbf{N}$. By the Sobolev embedding theorem, we have $u^* \in W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$. Similarly to the proof of Proposition 4.1, we can obtain the estimate

$$(4.11) |u^*|_{W^{1,q} \times W^{2,p}} \le C|f|_{W^{1,q} \times L^q},$$

if we show that $(\lambda + \widehat{L}_{\xi}^*)u = 0$ and $u \in W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$ implies that u = 0. But, since $q \geq 2$, we have $W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)] \subset H^1(D) \times [H^2(D) \cap H_0^1(D)]$; and, hence, by Remark 4.4, u = 0. We thus obtain (4.11).

We next assume that $f \in W^{1,q}(D) \times L^q(D)$. Then there exists $\{f^{(n)}\}_{n=1}^{\infty} \subset C^{\infty}(\bar{D}) \times C_0^{\infty}(D)$ such that

$$f^{(n)} \to f$$
 in $W^{1,q}(D) \times L^q(D)$.

By the preceding argument, for each n, there exists $u^{*(n)} \in W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$ such that

$$(\lambda + \widehat{L}_{\varepsilon}^*)u^{*(n)} = f^{(n)}$$

and

$$|u^{*(n)} - u^{*(m)}|_{W^{1,q} \times W^{2,q}} \le C|f^{(n)} - f^{(m)}|_{W^{1,q} \times L^q}.$$

Therefore, $\{u^{*(n)}\}$ is a Cauchy sequence in $W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$, and we can find a function $u^* \in W^{1,q}(D) \times [W^{2,q}(D) \cap W_0^{1,q}(D)]$ such that

$$|u^{*(n)} - u^*|_{W^{1,q} \times W^{2,q}} \to 0 \ (n \to \infty).$$

Letting $n \to \infty$ in $(\lambda + \widehat{L}_{\xi}^*)u^{*(n)} = f^{(n)}$, we obtain

$$(\lambda + \widehat{L}_{\xi}^*)u^* = f.$$

The uniqueness of u^* follows from Remark 4.4 since $q \geq 2$. This completes the proof.

We now prove Lemma 4.2.

Proof of Lemma 4.2. It suffices to prove Lemma 4.2 for $1 . Let <math>q \in (2, \infty)$ be the Hölder conjugate to p. Assume that $u \in W^{1,p}(D) \cap [W^{2,p}(D) \times W_0^{1,p}(D)]$ satisfies $(\lambda + \widehat{L}_{\xi})u = 0$. By Proposition 4.5, for any $f \in C^{\infty}(\bar{D}) \times C_0^{\infty}(D)$, there exists a unique solution $u^* \in W^{1,q}(D) \cap (W^{2,q}(D) \times W_0^{1,q}(D))$ of $(\bar{\lambda} + \widehat{L}_{\xi}^*)u^* = f$. By integration by parts,

$$(u, f) = (u, (\bar{\lambda} + \hat{L}_{\xi}^*)u^*) = ((\lambda + \hat{L}_{\xi})u, u^*) = 0,$$

which implies u = 0. This completes the proof.

We now establish the estimate on $\mathcal{F}^{-1}[\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}]$ for $f \in W^{1,p}(\Omega) \times L^p(\Omega)$.

Theorem 4.6. Let $f \in W^{1,p}(\Omega) \times L^p(\Omega)$. If $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$, there holds the estimate

$$\|\mathcal{F}^{-1}[\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}]\|_{W^{1,p}\times W^{2,p}} \le C\|f\|_{W^{1,p}\times L^p}$$

uniformly for $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$.

It suffices to prove Theorem 4.6 for $f \in \mathcal{S}(\mathbf{R}; W^{1,p}(D) \times L^p(D))$. In fact, since $f \in W^{1,p}(\Omega) \times L^p(\Omega)$ can be approximated by elements in $\mathcal{S}(\mathbf{R}; W^{1,p}(D) \times L^p(D))$, Theorem 4.6 immediately follows from the following proposition.

Proposition 4.7. Let $\lambda \in \Sigma(-c_1, \theta_1) \cap \{|\lambda| \leq \Lambda_1\}$ and set $\widehat{K}(\lambda, \xi) = \kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}$. Define $K(\lambda, x_3)$ by

$$K(\lambda, x_3)F = \mathcal{F}^{-1}[\widehat{K}(\lambda, \xi)F] = \frac{1}{2\pi} \int_{\mathbf{R}} e^{ix_3\xi} \widehat{K}(\lambda, \xi)F d\xi$$

for $F \in W^{1,p}(D) \times L^p(D)$. Then for $f \in \mathcal{S}(\mathbf{R}; W^{1,p}(D) \times L^p(D))$, the function $u = \mathcal{F}^{-1}[\widehat{K}(\lambda, \xi)\widehat{f}(\xi)]$ satisfies $u = K(\lambda, \cdot) *f$ and the estimate

$$||u||_{W^{1,p}\times W^{2,p}} \le C||f||_{W^{1,p}\times L^p}.$$

Here * means the convolution in x_3 .

Proof. We first show

$$\widehat{K}(\lambda, \cdot)\widehat{f}(\xi) = \mathcal{F}[K(\lambda, \cdot) * f]$$

for any $f \in \mathcal{S}(\mathbf{R}; W^{1,p}(D) \times L^p(D))$. Since

$$e^{ix_3\xi} = \frac{1}{(ix_3)^k} \partial_{\xi}^k e^{ix_3\xi},$$

we see from Proposition 4.1 that for $F \in W^{1,p}(D) \times L^p(D)$

$$\begin{split} &|\partial_{x_{3}}^{\ell}K(\lambda,x_{3})F|_{W^{1,p}\times W^{2,p}} \\ &\leq \left| \frac{1}{2\pi} \int_{\mathbf{R}} (i\xi)^{\ell} e^{ix_{3}\xi} \widehat{K}(\lambda,\xi) F d\xi \right|_{W^{1,p}\times W^{2,p}} \\ &\leq \left| \frac{1}{2\pi} \frac{(-1)^{k}}{(ix_{3})^{k}} \int_{\mathbf{R}} e^{ix_{3}\xi} \partial_{\xi}^{k} [(i\xi)^{\ell} \widehat{K}(\lambda,\xi)] F d\xi \right|_{W^{1,p}\times W^{2,p}} \\ &\leq C(1+M)^{\ell} |x_{3}|^{-k} \sum_{j=0}^{k} \int_{\{r/2 \leq |\xi| \leq M\}} |\partial_{\xi}^{j} \widehat{K}(\lambda,\xi) F|_{W^{1,p}\times W^{2,p}} d\xi \\ &\leq C(1+M)^{\ell} |x_{3}|^{-k} \int_{\{r/2 \leq |\xi| \leq M\}} |F|_{W^{1,p}\times L^{p}} d\xi \\ &\leq C_{rM} |x_{3}|^{-k} |F|_{W^{1,p}\times L^{p}} (\ell=0,1,2). \end{split}$$

It then follows that

$$(4.12) |\partial_{x_3}^{\ell} K(\lambda, x_3)|_{\mathcal{L}(W^{1,p}(D) \times L^p(D), W^{1,p}(D) \times W^{2,p}(D))} \le \frac{C}{1 + |x_3|^2}.$$

Here $|T|_{\mathcal{L}(X,Y)}$ denotes the operator norm of a bounded operator $T: X \to Y$. By (4.12), for any $f \in \mathcal{S}(\mathbf{R}; W^{1,p}(D) \times L^p(D))$, there hold the estimates

$$|K(\lambda, x_3)f(y_3)|_{W^{1,p}\times W^{2,p}} \le \frac{C}{1+|x_3|^2}|f(y_3)|_{W^{1,p}\times L^p} \in L^1(\mathbf{R}_{x_3}\times \mathbf{R}_{y_3})$$

and

$$|K(\lambda, z_3 - y_3)f(y_3)|_{W^{1,p} \times W^{2,p}}$$

$$\leq \frac{C}{1 + |z_3 - y_3|^2} |f(y_3)|_{W^{1,p} \times L^p} \in L^1(\mathbf{R}_{z_3} \times \mathbf{R}_{y_3}).$$

Therefore, by Fubini's theorem, we have $\widehat{K}(\lambda,\xi)\widehat{f}(\xi) = \mathcal{F}[K(\lambda,\cdot)*f]$, which implies $u = K(\lambda, \cdot) * f$.

Furthermore, we see from (4.12) that

$$\begin{aligned} &\|Q_{0}K(\lambda,\cdot)*f\|_{W^{1,p}}^{p} \\ &= \sum_{\ell+k\leq 1} \|\partial_{x_{3}}^{\ell}Q_{0}K(\lambda,\cdot)*f\|_{L^{p}(\mathbf{R};W^{k,p}(D))}^{p} \\ &= \sum_{\ell+k\leq 1} \int_{\mathbf{R}} \left|\partial_{x_{3}}^{\ell}\int_{\mathbf{R}} Q_{0}K(\lambda,x_{3}-y_{3})f(\cdot,y_{3})dy_{3}\right|_{W^{k,p}}^{p} dx_{3} \\ &\leq C \sum_{\ell+k\leq 1} \int_{\mathbf{R}} \left(\int_{\mathbf{R}} \frac{1}{1+|x_{3}-y_{3}|^{2}}|f(\cdot,y_{3})|_{W^{1,p}\times L^{p}}dy_{3}\right)^{p} dx_{3} \\ &\leq C \|f\|_{W^{1,p}\times L^{p}}^{p}. \end{aligned}$$

Similarly one can estimate $\|\tilde{Q}K(\lambda,\cdot)*f\|_{W^{2,p}}$ and the desired estimate is obtained. This completes the proof.

We next consider estimates on $\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}$ for large $|\lambda|$, which can

be obtained by a similar argument as in section 3. Let $f \in C_0^{\infty}(\overline{\Omega}) \times C_0^{\infty}(\Omega)$. Then $\kappa_{r,M}(\xi)(\lambda + \widehat{L}_{\xi})^{-1}\widehat{f} = {}^T(\widehat{\phi}_{r,M}, \widehat{v}_{r,M})$ is a solution of (3.1) with κ_M replaced by $\kappa_{r,M}$.

Similarly to the proof of Lemma 3.3, one can prove the following estimate (cf., [5, Sections 4 and 5]).

Lemma 4.8. There are $\tilde{\Lambda} > 0$ and $\tilde{\theta} \in (\frac{\pi}{2}, \pi)$ such that if $\lambda \in \Sigma(\tilde{\Lambda}, \tilde{\theta})$, then there hold the estimate

$$\|\partial_y^{\alpha} \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [\widehat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}}^{-1} f]\|_p \le C \left\{ \frac{\|\partial_y^{\alpha} f^0\|_p}{|\lambda|} + \frac{\|g\|_p}{|\lambda|^{1 - \frac{|\alpha|}{2}}} \right\} \quad (|\alpha| = 0, 1)$$

and

$$\|\partial_y^2 \mathcal{F}_{\tilde{\zeta} \to \tilde{y}}^{-1} [\tilde{Q}\hat{S}(\lambda, \tilde{\zeta}) \mathcal{F}_{\tilde{y} \to \tilde{\zeta}}^{-1} f]\|_p \le C\{\|\partial_y f^0\|_p + \|g\|_p\}.$$

Based on Lemma 4.8 and the localization argument as in the proof of Theorem 3.1, we have the following estimate (by taking $\tilde{\Lambda}$ larger if necessary).

Theorem 4.9. There are $\tilde{\Lambda} > 0$ and $\tilde{\theta} \in (\frac{\pi}{2}, \pi)$ such that if $\lambda \in \Sigma(\tilde{\Lambda}, \tilde{\theta})$, then there hold the estimate

$$\|\mathcal{F}^{-1}[\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}]\|_{W^{1,p}\times W^{2,p}} \le C\|f\|_{W^{1,p}\times L^{p}}.$$

Combining Theorems 4.6 and 4.9, we obtain the following estimate for $\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}$.

Theorem 4.10. Let r and M be numbers satisfying $0 < r < \frac{M}{2}$. Then there are constants $\tilde{\Lambda} > 0$, $c_1 > 0$ and $\tilde{\theta} \in (\frac{\pi}{2}, \pi)$ such that If $\lambda \in \Sigma(\tilde{\Lambda}, \tilde{\theta}) \cup \{\text{Re}\lambda \geq -c_1\}$, then

$$\|\mathcal{F}^{-1}[\kappa_{r,M}(\xi)(\lambda+\widehat{L}_{\xi})^{-1}\widehat{f}]\|_{W^{1,p}\times W^{2,p}} \le C\|f\|_{W^{1,p}\times L^{p}}.$$

5. Spectral properties of low frequency part

In this section we investigate spectral properties of $-\hat{L}_{\xi}$ for $|\xi| \ll 1$. This case is treated as a perturbation from the case $\xi = 0$.

We begin with some spectral properties of $-L_0$. We set $\xi = 0$ in (2.2) to obtain

(5.1)
$$(\lambda + \widehat{L}_0)\widehat{u} = \widehat{f}, \quad \widehat{v}|_{\partial D} = 0,$$

where $\widehat{u}={}^T(\widehat{\phi},\widehat{v}',\widehat{v}^3),$ $\widehat{f}={}^T(\widehat{f}^0,\widehat{g}',\widehat{g}^3)$ and

$$\widehat{L}_0 = \begin{pmatrix} 0 & \gamma^T \nabla' & 0 \\ \gamma \nabla' & -\nu \Delta' - \widetilde{\nu} \nabla'^T \nabla' & 0 \\ 0 & 0 & -\nu \Delta' \end{pmatrix}.$$

We decompose $\widehat{\phi}$ and \widehat{f}^0 into

$$\widehat{\phi} = \widehat{\phi}_0 + \widehat{\phi}_1, \ \widehat{\phi}_0 \equiv \frac{1}{|D|} \int_D \widehat{\phi}(x') dx',$$

$$\hat{f}^0 = \hat{f}_0^0 + \hat{f}_1^0, \ \hat{f}_0^0 \equiv \frac{1}{|D|} \int_D \hat{f}(x') dx',$$

respectively. This gives an orthogonal decomposition in $L^2(D)$, and we have

$$|\widehat{\phi}|_2^2 = |\widehat{\phi}_0|_2^2 + |\widehat{\phi}_1|_2^2.$$

Furthermore, since $\widehat{\phi}_1$ -component has vanishing mean value, by the Poincaré inequality, there holds the estimate

$$|\widehat{\phi}_1|_p \le C|\partial_{x'}\widehat{\phi}_1|_p = C|\partial_{x'}\widehat{\phi}|_p.$$

In terms of this decomposition, problem (5.1) is reduced to the following problem (5.2)–(5.5):

$$\lambda \widehat{\phi}_0 = \widehat{f}_0^0,$$

(5.3)
$$\lambda \widehat{\phi}_1 + \gamma \nabla' \cdot \widehat{v}' = \widehat{f}_1^0,$$

(5.4)
$$\lambda \widehat{v}' - \nu \Delta' \widehat{v}' - \widetilde{\nu} \nabla' (\nabla' \cdot \widehat{v}') + \gamma \nabla' \widehat{\phi}_1 = \widehat{g}', \quad \widehat{v}'|_{\partial D} = 0,$$

(5.5)
$$\lambda \widehat{v}^3 - \nu \Delta' \widehat{v}^3 = \widehat{g}^3, \quad \widehat{v}^3|_{\partial D} = 0.$$

As for the solvability of (5.2)–(5.5) we have the following facts.

It is clear that (5.2) is uniquely solvable if and only if $\lambda \neq 0$, and in this case the solution is given by $\widehat{\phi}_0 = \frac{1}{\lambda} \widehat{f}_0^0$. It is also easy to see that $\lambda = 0$ is a simple eigenvalue with eigenfunction $\widehat{\phi}_0 = 1$.

As for (5.5), it is well known that there are $\{\lambda_j\}_{j=1}^{\infty}$ $(\lambda_j < 0, |\lambda_1| < |\lambda_2| \le |\lambda_3| \le \cdots \to \infty)$ such that each λ_j is a semi-simple eigenvalue and, for $\lambda \notin \{\lambda_j\}_{j=1}^{\infty}$, (5.5) has a unique solution $\hat{v}^3 \in W^{2,p}(D) \cap W_0^{1,p}(D)$. Furthermore, if $|\arg(\lambda - \frac{1}{2}\lambda_1)| \le \pi - \varepsilon$ $(\varepsilon > 0)$, then the solution \hat{v}^3 satisfies the estimate

$$|\lambda||\widehat{v}^3|_p + |\lambda|^{\frac{1}{2}} |\partial_{x'}\widehat{v}^3|_p + |\partial_{x'}^2\widehat{v}^3|_p \le C_{\varepsilon}|\widehat{g}^3|_p.$$

As for the solvability of (5.3)–(5.4), we have the following result.

Proposition 5.1. Let $1 . Then there exist constants <math>c_0 > 0$, $\Lambda > 0$ and $\theta \in (\frac{\pi}{2}, \pi)$ such that if $\lambda \in \Sigma(\Lambda_0/2, \theta_0) \cup \{\text{Re}\lambda \geq -2c_0\}$, then for any

 ${}^T(\widehat{f}_1^0,\widehat{g}') \in W^{1,p}(D) \times L^p(D)$ with $\int_D \widehat{f}_1^0 dx' = 0$, there exists a unique solution ${}^T(\widehat{\phi}_1,\widehat{v}') \in W^{1,p}(D) \times \left[W^{2,p}(D) \cap W_0^{1,p}(D)\right]$ with $\int_D \widehat{\phi}_1 dx' = 0$ of (5.3)–(5.4), which satisfies the estimate

$$|\lambda|\{|\widehat{\phi}_1|_{W^{1,p}} + |\widehat{v}'|_p\} + |\lambda|^{\frac{1}{2}}|\partial_{x'}\widehat{v}'|_p + |\partial_{x'}^2\widehat{v}'|_p \le C\{|\widehat{f}_1^0|_{W^{1,p}} + |\widehat{g}'|_p\}.$$

Proposition 5.1 was proved by [21]. (See also [20].) We summarize the spectral properties of $-\hat{L}_0$ obtained above.

Proposition 5.2. There are constants $c_0 > 0$, $\Lambda_0 > 0$ and $\theta_0 \in (\frac{\pi}{2}, \pi)$ such that

$$(\Sigma(\Lambda_0/2, \theta_0) \cup \{\operatorname{Re}\lambda \ge -2c_0\}) \cap \{|\lambda| \ge c_0\} \subset \rho(-\widehat{L}_0)$$

and

$$\sigma(-\widehat{L}_0) \cap \{|\lambda| < c_0\} = \{0\}.$$

If $\lambda \in (\Sigma(\Lambda_0/2, \theta_0) \cup \{\text{Re}\lambda \ge -2c_0\}) \cap \{|\lambda| \ge c_0\}$, then

$$|(\lambda + \widehat{L}_0)^{-1} f|_{W^{1,p} \times L^p} \le \frac{C}{|\lambda| + 1} |f|_{W^{1,p} \times L^p},$$

$$|\partial_{x'}^{\ell} \tilde{Q}(\lambda + \hat{L}_0)^{-1} f|_p \le \frac{C}{(|\lambda|+1)^{1-\frac{\ell}{2}}} |f|_{W^{1,p} \times L^p} \quad (\ell = 1, 2).$$

Furthermore, 0 is a simple eigenvalue and the associated eigenprojection $\widehat{P}^{(0)}$ is given by

$$\widehat{P}^{(0)}u = {}^{T}(\langle \phi \rangle, 0)$$
 for $u = {}^{T}(\phi, v)$.

Based on Proposition 5.2, one can obtain the following result by a perturbation argument as in the proof of [10, Propositions 4.3 and 4.4].

Theorem 5.3. There exists a positive constant $r_1 > 0$ such that the following assertions hold.

(i) If $|\xi| \leq r_1$, then

$$(\Sigma(\Lambda_0, \theta_0) \cup \{\operatorname{Re}\lambda \ge -c_0\}) \cap \{|\lambda| \ge \frac{c_0}{2}\} \subset \rho(-\widehat{L}_{\xi}).$$

(ii) If
$$\lambda \in (\Sigma(\Lambda_0, \theta_0) \cup \{\text{Re}\lambda \ge -c_0\}) \cap \{|\lambda| \ge \frac{c_0}{2}\}$$
, then
$$|(\lambda + \widehat{L}_{\xi})^{-1} f|_{W^{1,p} \times L^p} \le \frac{C}{|\lambda|+1} |f|_{W^{1,p} \times L^p},$$

$$|\partial_{x'}^{\ell} \widetilde{Q}(\lambda + \widehat{L}_{\xi})^{-1} f|_{p} \le \frac{C}{(|\lambda|+1)^{1-\frac{\ell}{2}}} |f|_{W^{1,p} \times L^p} \quad (\ell = 1, 2).$$

(iii) If $|\xi| \leq r_1$, then

$$\sigma(-\widehat{L}_{\xi}) \cap \left\{ |\lambda| < \frac{c_0}{2} \right\} = \{\lambda_0(\xi)\}.$$

Here $\lambda_0(\xi)$ is a simple eigenvalue of $-\widehat{L}_{\xi}$, which satisfies

$$\lambda_0(\xi) = -\frac{a_1 \gamma}{\nu} |\xi|^2 + O(|\xi|^4) \quad (|\xi| \to 0).$$

for some constant $a_1 > 0$.

We next give an estimate for the eigenprojection $\widehat{P}(\xi)$ associated with the eigenvalue $\lambda_0(\xi)$. For this purpose we write \widehat{L}_{ξ} as

$$\widehat{L}_{\xi} = \widehat{L}_0 + \xi \widehat{L}^{(1)} + \xi^2 \widehat{L}^{(2)}.$$

Here

$$\widehat{L}^{(1)} = \begin{pmatrix} 0 & 0 & i\gamma \\ 0 & 0 & -i\tilde{\nu}\nabla' \\ i\gamma & -i\tilde{\nu}^T\nabla' & 0 \end{pmatrix}, \quad \widehat{L}^{(2)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \nu I & 0 \\ 0 & 0 & \nu + \tilde{\nu} \end{pmatrix}.$$

We begin with following

Proposition 5.4. Let R > 0. Then the following estimate holds for $\lambda \in (\Sigma(\Lambda_0/2, \theta_0) \cup \{\text{Re}\lambda \geq -2c_0\}) \cap \{c_0 \leq |\lambda| \leq R\}$:

$$|(\lambda + \widehat{L}_0)^{-1}\widehat{f}|_{H^3 \times H^4} \le C_R |\widehat{f}|_{H^3 \times H^2}.$$

Proof. We here give an outline of the proof. As was shown in [10], an application of the Matsumura-Nishida energy method [19] to (5.3)–(5.4) gives

$$|\widehat{v}'|_{H^2} + |\widehat{\phi}_1|_{H^1} \le C_R(|\widehat{f}_1^0|_{H^1} + |\widehat{g}'|_2)$$

for some constant C = C(R) > 0. Then higher order derivatives can also be estimated by the Matsumura-Nishida energy method to obtain

$$(5.6) |\widehat{v}'|_{H^4} + |\widehat{\phi}_1|_{H^3} \le C_R(|\widehat{f}_1^0|_{H^3} + |\widehat{g}'|_{H^2}).$$

Applying the elliptic regularity estimate to (5.5), we have

$$|\widehat{v}^3|_{H^4} \le C_R |\widehat{g}^3|_{H^2}.$$

Proposition 5.4 now follows from (5.2), (5.6) and (5.7). This completes the proof.

Lemma 5.5. There holds the following estimates

$$|L^{(j)}(\lambda + \widehat{L}_0)^{-1}\widehat{f}|_{H^3} \le C|\widehat{f}|_{H^3} \quad (j = 1, 2)$$

for
$$\lambda \in (\Sigma(\Lambda_0/2, \theta_0) \cup {\text{Re}\lambda \ge -2c_0}) \cap {c_0 \le |\lambda| \le R}.$$

Proof. Let $T(\widehat{\phi}, \widehat{v}) = (\lambda + \widehat{L}_0)^{-1} \widehat{f}$. It follows from Proposition 5.4 that

$$|L^{(1)}(\lambda + \widehat{L}_0)^{-1}\widehat{f}|_{H^3} = |L^{(1)}\widehat{u}|_{H^3} \leq C\{|\widehat{v}^3|_{H^3} + |\nabla'\widehat{v}^3|_{H^3} + |\widehat{\phi}|_{H^3} + |\nabla' \cdot \widehat{v}'|_{H^3}\}$$

$$\leq C|\widehat{f}|_{H^3 \times H^2}$$

and

$$|L^{(2)}(\lambda+\widehat{L}_0)^{-1}\widehat{f}|_{H^3} = |L^{(2)}\widehat{u}|_{H^3} \le C\{|\widehat{v}'|_{H^3} + |\widehat{v}^3|_{H^3}\} \le C|\widehat{f}|_{H^3 \times H^2}.$$

This completes the proof.

We now estimate the integral kernel of the eigenprojection $\widehat{P}(\xi)$ associated with the eigenvalue $\lambda_0(\xi)$ for $|\xi| \ll 1$.

Theorem 5.6. There exists $r_2 > 0$ such that if $|\xi| \le r_2$, then the following assertions hold.

(i) The eigenprojection $\widehat{P}(\xi)$ associated with the eigenvalue $\lambda_0(\xi)$ is written in the form

$$\begin{split} \widehat{P}(\xi) &= \widehat{P}^{(0)} + \xi \widehat{P}^{(1)} + \widehat{P}^{(2)}(\xi), \\ \widehat{P}^{(j)}u &= \int_{D} \widehat{P}^{(j)}(x', y')u(y')dy', \quad j = 0, 1, \\ \widehat{P}^{(2)}u &= \int_{D} \widehat{P}^{(2)}(\xi, x', y')u(y')dy'. \end{split}$$

Here
$$\widehat{P}^{(0)} = \frac{1}{|D|} Q_0$$
; and $\widehat{P}^{(1)}(x', y')$ and $\widehat{P}^{(2)}(\xi, x', y')$ satisfy

$$\partial_{x'}^{\alpha'}\partial_{y'}^{\beta'}\widehat{P}^{(1)}(x',y'),\ \partial_{x'}^{\alpha'}\partial_{y'}^{\beta'}\widehat{P}^{(2)}(\xi,x',y')\in L^{\infty}(D\times D)$$

for $|\alpha'| \leq 1$ and $|\beta'| \leq 1$. Furthermore, for any $\alpha \geq 0$, $\widehat{P}^{(2)}(\xi, x', y')$ satisfies the estimate

$$|\partial_{\xi}^{\alpha} \partial_{x'}^{\alpha'} \partial_{y'}^{\beta'} \widehat{P}^{(2)}(\xi, \cdot, \cdot)|_{L^{\infty}(D \times D)} \le C_{\alpha} |\xi|^{2-\alpha}.$$

(ii) $\lambda_0(\xi)$ is a simple eigenvalue of the adjoint operator $-\widehat{L}_{\xi}^*$ and the associated eigenprojection $\widehat{P}^*(\xi)$ is written as

$$\begin{split} \widehat{P}^*(\xi) &= \widehat{P}^{(0)*} + \xi \widehat{P}^{(1)*} + \widehat{P}^{(2)*}(\xi), \\ \widehat{P}^{(j)*}u &= \int_D \widehat{P}^{(j)*}(x',y')u^*(y')dy', \quad j = 0, 1, \\ \widehat{P}^{(2)*}(\xi)u &= \int_D \widehat{P}^{(2)*}(\xi,x',y')u^*(y')dy'. \end{split}$$

Here
$$\widehat{P}^{(j)*}(x',y')$$
 $(j=0,1)$ and $P^{(2)*}(\xi,x',y')$ satisfy
$$\widehat{P}^{(0)*}=\widehat{P}^{(0)},\ \widehat{P}^{(1)*}(x',y')=\overline{\widehat{P}^{(1)}(y',x')},$$

$$\widehat{P}^{(2)*}(\xi,x',y')=\overline{\widehat{P}^{(2)}(\xi,y',x')}.$$

(iii) There hold the following relations

$$(\widehat{P}(\xi)[\partial_{x'}\widetilde{Q}u], u^*) = -(u, \partial_{x'}\widetilde{Q}\widehat{P}^*(\xi)u^*),$$

$$(\widehat{P}^{(1)}[\partial_{x'}\widetilde{Q}u], u^*) = -(u, \partial_{x'}\widetilde{Q}\widehat{P}^{(1)}u^*),$$

$$(\widehat{P}^{(2)}[\partial_{x'}\widetilde{Q}u], u^*) = -(u, \partial_{x'}\widetilde{Q}\widehat{P}^{(2)}u^*).$$

Proof. As for (i), we here give an outline of the proof, since it is similar to that of [6, Theorem 3.3].

Let $\psi_0 = {}^T(1,0)$, which is an eigenfunction for the eigenvalue 0 of $-\widehat{L}_0$ and $-\widehat{L}_0^*$. Clearly, $|\psi_0|_{H^k} = |D|^{\frac{1}{2}}$ for all $k \geq 0$.

We define $\psi(\xi)$ and $\psi^*(\xi)$ by

$$\psi(\xi) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda + \widehat{L}_{\xi})^{-1} \psi_0 d\lambda$$

and

$$\psi^*(\xi) = \frac{1}{\langle \psi(\xi), \tilde{\psi}^*(\xi) \rangle} \tilde{\psi}^*(\xi)$$

with

$$\widetilde{\psi}^*(\xi) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda + \widehat{L}_{\xi}^*)^{-1} \psi_0 d\lambda.$$

where $\Gamma = \{|\lambda| = \frac{c_0}{2}\}$. Then as in the proof of [6, Theorem 3.3], one can see the following estimates on $\psi(\xi)$ and $\psi^*(\xi)$. By Lemma 5.5 and the Neumann series expansion of $(\lambda + \widehat{L})^{-1}$, $\psi(\xi)$ is expanded as

$$\psi(x',\xi) = \psi_0 + \xi \psi^{(1)}(x') + \psi^{(2)}(x',\xi),$$

and, with the aid of the Sobolev embedding $H^3 \hookrightarrow W^{1,\infty}$,

$$|\psi^{(1)}|_{W^{1,\infty}} \le C|\psi^{(1)}|_{H^3} \le C,$$

$$|\partial_{\xi}^{\alpha}\psi^{(2)}(\xi)|_{W^{1,\infty}} \le C|\partial_{\xi}^{\alpha}\psi^{(2)}(\xi)|_{H^3} \le C|\xi|^{2-\alpha}.$$

The same expansion also holds for $\psi^*(\xi)$:

$$\psi^*(x',\xi) = \psi_0 + \xi \psi^{(1)*}(x') + \psi^{(2)*}(x',\xi),$$

where $\psi^{(j)*}$ (j=1,2) satisfy the estimates

$$|\psi^{(1)*}|_{W^{1,\infty}} \le C$$
 and $|\partial_{\xi}^{\alpha} \tilde{\psi}^{(2)*}(\xi)|_{W^{1,\infty}} \le C|\xi|^{2-\alpha}$.

In terms of $\psi(x',\xi)$ and $\psi^*(x',\xi)$, $\widehat{P}(\xi)$ is given in the form

$$\widehat{P}(\xi)u = \langle u, \psi^*(\xi) \rangle \psi(\xi) = \int_D \widehat{P}(\xi, x', y')u(y')dy'$$

with

$$\widehat{P}(\xi, x', y') = \frac{1}{|D|} \psi(x', \xi)^T \psi^*(y', \xi)
= \frac{1}{|D|} Q_0 + \xi \widehat{P}^{(1)}(x', y') + \widehat{P}^{(2)}(\xi, x', y').$$

Here

$$\widehat{P}^{(1)}(x',y') = \frac{1}{|D|} \{ \psi^{(1)}(x')^T \psi_0 + \psi_0^T \psi^{(1)*}(y') \},
\widehat{P}^{(2)}(\xi,x',y') = \frac{1}{|D|} \{ \psi_0^T \psi^{(2)*}(y',\xi) + \psi^{(2)}(x',\xi)^T \psi_0,
+ \psi^{(2)}(x',\xi)^T \psi^{(2)*}(y',\xi) + \xi \psi^{(1)}(x')^T \psi^{(2)*}(y',\xi)
+ \xi \psi^{(2)}(x',\xi)^T \psi^{(1)*}(y') + \xi^2 \psi^{(1)}(x')^T \psi^{(1)*}(y') \}.$$

It follows from the estimates for $\psi(\xi)$ and $\psi^*(\xi)$ obtained above that

$$|\partial_{x'}^{\alpha'}\partial_{y'}^{\beta'}\widehat{P}^{(1)}(x',y')|_{L^{\infty}(D\times D)} \le C$$

and

$$|\partial_{\xi}^{\alpha}\partial_{x'}^{\alpha'}\partial_{y'}^{\beta'}\widehat{P}^{(2)}(\xi,x',y')|_{L^{\infty}(D\times D)} \le C|\xi|^{2-\alpha}.$$

For the details, see the proof of [6, Theorem 3.3].

Assertion (ii) easily follows from the relation

$$((\lambda + \widehat{L}_{\xi})^{-1}u, u^*) = (u, (\bar{\lambda} + \widehat{L}_{\xi}^*)^{-1}u^*)$$

for $u, u^* \in W^{1,p}(D) \times L^p(D)$.

As for (iii), since $\tilde{Q}(\bar{\lambda} + \hat{L}_{\xi}^*)^{-1}u^*|_{\partial D} = 0$, by integration by parts, we have

$$((\lambda + \widehat{L}_{\varepsilon})^{-1} [\partial_{x'} \widetilde{Q}u], u^*) = -(u, \partial_{x'} \widetilde{Q}(\lambda + \widehat{L}_{\varepsilon})^{-1} u^*),$$

which yields the desired results. This completes the proof.

6. Proof of Theorem 2.1

In this section we give an outline of the proof of Theorem 2.1.

The following proposition implies that -L generates an analytic semi-group.

Proposition 6.1. There are $\Lambda > 0$ and $\theta \in (\frac{\pi}{2}, \pi)$ such that $\Sigma(\Lambda, \theta) \subset \rho(-L)$ and there hold the following estimates uniformly for $\lambda \in \Sigma(\Lambda, \theta)$:

(i)
$$\|(\lambda + L)^{-1}f\|_{W^{1,p}\times L^p} \le \frac{C}{|\lambda|} \|f\|_{W^{1,p}\times L^p}$$
,

(ii)
$$\|\partial_x^{\ell} \tilde{Q}(\lambda + L)^{-1} f\|_p \le \frac{C}{|\lambda|^{1 - \frac{\ell}{2}}} \|f\|_{W^{1,p} \times L^p} \quad (\ell = 1, 2).$$

Proof. We here give an outline of the proof. Let $\lambda \neq 0$. By (2.1),

(6.1)
$$\phi = \frac{1}{\lambda} (f^0 - \gamma \operatorname{div} v)$$

Substituting this into the second equation of (2.1), we have

(6.2)
$$\lambda v - \nu \Delta v - \tilde{\nu} \nabla \operatorname{div} v = F, \quad v|_{\partial \Omega} = 0.$$

Here

$$F \equiv g - \frac{\gamma}{\lambda} \nabla (f^0 - \gamma \operatorname{div} v).$$

Since $Bv = -\nu \Delta v - \tilde{\nu} \nabla \text{div} v$ is strongly elliptic, it holds that there are $\Lambda' > 0$ and $\theta \in (\frac{\pi}{2}, \pi)$ such that for $\lambda \in \Sigma(\Lambda', \theta)$

$$\begin{split} |\lambda| \|v\|_p + |\lambda|^{\frac{1}{2}} \|\partial_x v\|_p + \|\partial_x^2 v\|_p &\leq C \|F\|_p \\ &\leq C \{ \|f\|_{W^{1,p} \times L^p} + \frac{1}{|\lambda|} \|\partial_x^2 v\|_p \}. \end{split}$$

We take $\Lambda > 0$ large enough so that $\frac{C^p}{|\lambda|} \leq \frac{1}{2}$ for $\lambda \in \Sigma(\Lambda, \theta)$. Then

$$|\lambda| ||v||_p + |\lambda|^{\frac{1}{2}} ||\partial_x v||_p + ||\partial_x^2 v||_p \le 2C ||f||_{W^{1,p} \times L^p}.$$

This, together with (6.1), yields

$$\|\phi\|_{W^{1,p}} \le \frac{C}{|\lambda|} (\|f^0\|_{W^{1,p}} + \|\operatorname{div} v\|_{W^{1,p}}) \le \frac{C}{|\lambda|} \|f\|_{W^{1,p} \times L^p}.$$

This completes the proof.

By Proposition 6.1, -L generates an analytic semigroup e^{-tL} on $W^{1,p}(\Omega) \times L^p(\Omega)$; and e^{-tL} is represented as

$$e^{-tL} = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda + L)^{-1} d\lambda.$$

Here $\Gamma = \{\lambda = \Lambda + se^{\pm\theta}; s \ge 0\}.$

Using the estimates (i) and (ii) in Proposition 6.1, one can show Theorem 2.1 (i) by a standard argument.

We now give a proof of asymptotic behavior of e^{-tL} given in Theorem 2.1 (ii).

Proof of Theorem 2.1 (ii). The proof is done by a similar argument to that in [6, Section 4]. We here give an outline of the proof.

We decompose e^{-tL} as

$$e^{-tL} = \mathcal{V}_0(t) + \mathcal{V}_{\infty}(t).$$

Here

$$\mathcal{V}_0(t) = \mathcal{F}^{-1}[\kappa_0(\xi)e^{-t\hat{L}_{\xi}}], \quad \mathcal{V}_{\infty}(t) = \mathcal{F}^{-1}[(1-\kappa_0(\xi))e^{-t\hat{L}_{\xi}}]$$

where κ_0 is a function satisfying

$$\kappa_0(\xi) \in C_0^{\infty}(\mathbf{R}), \quad \kappa_0(\xi) = \begin{cases} 1 & (|\xi| \le \frac{r}{2}), \\ 0 & (|\xi| \ge r) \end{cases}$$

and

$$e^{-t\widehat{L}_{\xi}} = \frac{1}{2\pi i} \int_{\Gamma} e^{\lambda t} (\lambda + \widehat{L}_{\xi})^{-1} d\lambda$$

with $\Gamma = \{\lambda = \Lambda + se^{\pm \theta}; s \geq 0\}$. We here take r > 0 in such a way that $0 < r \leq \min\{r_1, r_2\}$ with r_1 and r_2 given in Theorems 5.3 and 5.6 respectively.

To prove Theorem 2.1 (ii), we will deform the contour Γ in a suitable way.

We first consider $\mathcal{V}_0(t)$. By Theorem 5.3, we can deform Γ into $\Gamma_0 \cup \tilde{\Gamma}_0$ and a suitable circle around 0, where

$$\Gamma_0 = \{ \lambda = -c_0 + is; |s| \le s_0 \}, \ \tilde{\Gamma}_0 = \{ \lambda = \Lambda_0 + se^{\pm i\theta_0} : s \ge \tilde{s}_0 \}.$$

Here Λ_0 and θ_0 are the numbers given in Theorem 5.3; and we choose s_0 and \tilde{s}_0 in such a way that Γ_0 connects with $\tilde{\Gamma}_0$ at the end points of Γ_0 . It then follows from Theorems 5.3, 5.6 and the residue theorem that $\mathcal{V}_0(t)$ is written as

$$\mathcal{V}_0(t)u_0 = W^{(0)}(t)u_0 + W^{(1)}(t)u_0,$$

where

$$W^{(j)}(t)u_0 = \mathcal{F}^{-1}[\widehat{W}^{(j)}(t)\widehat{u}_0] \ (j=0,1),$$

$$\widehat{W}^{(0)}(t)\widehat{u}_0 = \kappa_0(\xi)e^{\lambda_0(\xi)t}\widehat{P}(\xi)\widehat{u}_0,$$

$$\widehat{W}^{(1)}(t)\widehat{u}_0 = \frac{1}{2\pi i} \int_{\Gamma_0 \cup \widetilde{\Gamma}_0} e^{\lambda t} \kappa_0(\xi) (\lambda + \widehat{L}_{\xi})^{-1} \widehat{u}_0 d\lambda.$$

By using Theorems 5.3 and 5.6, one can show that $W^{(0)}(t)u_0$ is written in the form

$$W^{(0)}(t)u_0 = \mathcal{W}^{(0)}(t)u_0 + \mathcal{R}^{(0)}(t)u_0,$$

where $W^{(0)}(t)u_0$ and $\mathcal{R}^{(0)}(t)u_0$ have the properties in Theorem 2.1 (ii-a). We here omit the details since it can be shown in the same way as in [6, Section 4]. Also, by using Theorem 5.3, one can show that $W^{(1)}(t)$ satisfies the estimate

$$||W^{(1)}(t)u_0||_{W^{1,p}\times W^{2,p}} \le Ce^{-c_0t}||u_0||_{W^{1,p}\times L^p}.$$

As for $\mathcal{V}_{\infty}(t)$, by Theorems 3.1 and 4.10, one can deform the contour Γ into $\Gamma = \Gamma_{\infty} \cup \widetilde{\Gamma}_{\infty}$, where

$$\Gamma_{\infty} = \{\lambda; \lambda = -c_{\infty} + is \ (|s| \le s_{\infty})\}, \quad \tilde{\Gamma}_{\infty} = \{\lambda; \lambda = \Lambda_0 + se^{\pm i\theta_0}, s \ge \tilde{s}_{\infty}\},$$

for some $c_{\infty} > 0$. We here take s_{∞} and \tilde{s}_{∞} so that Γ_{∞} connects with $\tilde{\Gamma}_{\infty}$ at the end points of Γ_{∞} . It then follows from Theorems 3.1 and 4.10 that

$$\|\mathcal{V}_{\infty}(t)u_0\|_{W^{1,p}\times W^{2,p}} \le Ce^{-c_{\infty}t}\|u_0\|_{W^{1,p}\times L^p}.$$

Setting $\mathcal{U}_{\infty}(t) = W^{(1)}(t) + \mathcal{V}_{\infty}(t)$, we see that $\mathcal{U}_{\infty}(t)$ satisfies the estimate in Theorem 2.1 (ii-b). This completes the proof.

Acknowledgment. This work was partially supported by Grant-in Aid for Scientific Research (B) No.19340033 from the Japan Society for the Promotion of Science.

References

- [1] H. Abels and M. Wiegner, Resolvent estimates for the Stokes operator on an infinite layer, Differential and Integral Equations 18 (2005), pp. 1081–1110.
- [2] J. Bergh and J. Löfström, *Interpolation Spaces, An Introduction*, Springer-Verlag, Berlin, Heidelberg, New York (1796)
- [3] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), pp. 604–676.

- [4] D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), pp. 597–614.
- [5] Y. Kagei, Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer, Funkcial. Ekvac., 50 (2007), pp. 287–337.
- [6] Y. Kagei, Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer, Publ. Res. Inst. Math. Sci., 43 (2007), pp. 763–794.
- [7] Y. Kagei, Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer, Hiroshima Math. J., **38** (2008), pp. 95–124.
- [8] Y. Kagei and T. Kobayashi, On large time behavior of solutions to the Compressible Navier-Stokes Equations in the half space in R³, Arch. Rational Mech. Anal., 165 (2002), pp. 89–159.
- [9] Y. Kagei, and T. Kobayashi, Asymptotic behavior of solutions to the compressible Navier-Stokes equations on the half space, Arch. Rational Mech. Anal., 177 (2005), pp. 231–330.
- [10] Y. Kagei and T. Nukumizu, Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain, Osaka J. Math., 45 (2008), pp. 987–1026.
- [11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York (1980).
- [12] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto University (1983).
- [13] S. Kawashima, A. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation, Comm. Math. Phys., **70** (1979), pp. 97–124.
- [14] T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \mathbb{R}^3 , J. Differential Equations, 184 (2002), pp. 587–619.

- [15] T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \mathbb{R}^3 , Comm. Math. Phys., **200** (1999), pp. 621–659.
- [16] T. Kobayashi and Y. Shibata, Remarks on the rate of decay of solutions to linearized compressible Navier-Stokes equations, Pacific J. Math., 207 (2002), pp. 199–234.
- [17] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A., 55 (1979), pp. 337–342.
- [18] A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., **20** (1980), pp.67–104.
- [19] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), pp. 445–464.
- [20] Y. Shibata and K. Tanaka, On a resolvent problem for the linearized system from the dynamical system describing the compressible viscous fluid motion, Math. Meth. Appl. Sci., 27 (2004), pp. 1579–1606.
- [21] G. Ströhmer, About the resolvent of an operator from fluid dynamics, Math. Z., **194** (1987), pp. 183–191.

List of MI Preprint Series, Kyushu University

The Grobal COE Program Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA

The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO

On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU

Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI

Torsion points of abelian varieties with values in nfinite extensions over a padic field

MI2008-6 Yoshiyuki TOMIYAMA

Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI

The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA Alpha-determinant cyclic modules and Jacobi polynomials

MI2008-10 Sangyeol LEE & Hiroki MASUDA

Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA

A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO

On the L^2 a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA

Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

MI2008-14 Takashi NAKAMURA

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO

Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI

Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI

Variable selection for functional regression model via the L_1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI

Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings

MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA

Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI

Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA

Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA

Hypergeometric -functions of the q-Painlevé system of type $E_8^{(1)}$

MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI & Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA

On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA & Yoshiyuki KAGEI

Large time behavior of the semigroup on L^p spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain