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1 Introduction

Rewriting techniques are very common in many area of Computer Science

and related fields. Term rewriting system can be used to represent abstract

interpreters of programming languages and to model formula manipulating

systems used in various applications, such as program optimization, program

validation, and automatic theorem proving [Hue80]. Terms are transformed

by given rewriting rules. If we are not able to apply rewriting rules any

more, then the computation based on rewritings is finished and we decide

results of computations by the final term. Rewritings without overlapping

can be done parallel, so it can be considered as a computational model of

parallel computing. The confluence property is one of the most important

properties of term rewriting system. Various sufficient criteria for proving

this property have been widely investigated. A necessary and sufficient

criterion for confluence of terminating term rewriting system, in which every

reduction must terminate, was demonstrated by Knuth and Bendix [KB70].

The completion procedure suggests that rewriting system is closely related

to the theory of equation.

Quantum computers were proposed in the early 1980s [Ben80, Ben82].

Significant contributions to quantum algorithms include the Shor factoriza-

tion algorithm [Sho94, Sho97] and the Grover search algorithm [Gro96]. The
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quantum circuit model of computation is due to Deutsch [Deu89], and it was

further developed by Yao [Yao93]. After the works of Deutsch and Yao the

concept of a universal set of quantum gates became central in the theory of

quantum computation. A set G = {G1,n1 , · · · , Gr,nr} of r quantum gates

Gj,nj acting on nj qubits (j = 1, · · · , r), is called universal if any unitary

action Un on n input quantum states can be decomposed into a product of

successive actions of Gj,nj on different subsets of the input qubits [GMD02].

A first example of 3 qubits universal gate sets consists of Deutsch’s gates

Q [Deu89]. The gate Q is an extension of the Toffoli gate [Tof81]. DiVin-

cenzo showed that a set of 2 qubits gates is exactly universal for quantum

computation [DiV95]. After the result of DiVincenzo, Barenco showed that

a large subclass of 2 qubits gates are universal, and moreover, that almost

any 2 qubits gates is universal [Bar95]. Barenco et al. showed that the set

consisting of 1 qubit gates and CNOT gates is universal [BBC+95]. There

have been a number of studies that investigate the number of gates for de-

composing any gate of n qubits in U(2n).

• G1 = {U2 : U2 ∈ U(22)} (DiVincenzo 1995)

• G2 = {U1, CNOT : U1 ∈ U(2)} (Barenco et al. 1995)

• G3 = {D} Deutch gate (Deutsch 1989)
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For the universal set consisting of 1 qubit gates and CNOT gates, Barenco

et. al. showed the number of gates is O(n34n) [BBC+95]. Knill reduced this

bound to O(n4n) [Kni95]. Most useful information about universal quantum

gates can be obtained from a survey paper written by A. Galindo and M.A.

Marin-Delgado [GMD02].

The design of a good quantum circuit plays a key role in the successful

implementation of a quantum algorithm. For this reason, Iwama et al.

presented transformation rules that transform any ‘proper’ quantum circuit

into a ‘canonical’ form circuit [IKY02]. There is, however, no discussion

about the minimal size of a quantum circuit. In this article, we formulate

a quantum circuit as a string and then simplify the circuit by using string

rewriting rules to investigate them formally. Since a string rewriting system

can be analyzed by using a monoid, we require several properties about

monoids and groups.

String rewriting systems simplify strings by using transformation rules,

and they have played a major role in the development of theoretical com-

puter science. Several studies of string rewriting systems have been inves-

tigated [BO93]. Let M be a monoid and T a submonoid of finite index in

M . If T can be presented by a finite complete rewriting system, so M can

[Wan98]. The problem of confluence is, in general, undecidable. Parkes et
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al. showed that the class of groups that have monoid presentations obtain-

able by finite special [λ]-confluent string rewriting systems strictly contains

the class of plain groups (the groups which are free products of a finitely

generated free group and finitely many finite groups) [PS04]. The word

problem is, in general, undecidable. If R is a finite string rewriting sys-

tem that are Noetherian and confluent, then the word problem is decidable

[Boo82, OZ91]. Book considered the word problem for finite string rewriting

systems in which the notion of ‘reduction’ is based on rewriting the string as

a shorter string [Boo82]. He showed that for any confluent systems of this

type, there is a linear-time algorithm for solving the word problem. Using

a technique developed in [Boo82], Book and Ó’Dúlaing [BO81] showed that

there is a polynomial-time algorithm for testing if a finite string rewriting

system is confluent. Gilman [Gil79] considered a procedure that, beginning

with a finite string rewriting system, attempts to construct an equivalent

string rewriting system that is Noetherian and confluent, that is, a string

rewriting system such that every congruence class has a unique ‘irreducible’

string. This procedure appears to be a modification of the completion proce-

dure developed by Knuth and Bendix [KB70] in the setting of term-rewriting

systems. Narendran and Otto [NO88] also contributed to this topic. Later,

Kapur and Narendran [KN85] showed how the Knuth-Bendix completion
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algorithm could be adapted to the setting of string rewriting systems.

We do not deal with the general theory whether string rewriting systems

are decidable or undecidable. We introduce an idea to reduce the size of a

quantum circuit by using a string rewriting system. Our string rewriting

Figure 1: A circuit equation

rules based on 18 equations introduced by Iwama et al. 2002 [IKY02]. The

Iwama’s equations can not be considered as a complete rewriting rules as

it is. That is, it does not have properties of termination and confluence.

We would like to obtain a complete transformation rule set (i.e., a set of

transformation rules with the properties of ‘termination’ and ‘confluence’)

for reducing a quantum circuits. Therefore, we apply the Knuth-Bendix

completion algorithm to a set of modified 18 equations. We obtain our

complete transformation rule set consisted of 114 rules. We also obtain the

length of a normal form is at most 6 and the number of normal forms is
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168. Furthermore, we found a minimal subset of equations which induce the

same rewriting system.

We use the Mathematica software to obtain a complete transformation

rule set. We implemented the KnuthBendix function that obtain a complete

transformation rule set, and the Irreduce function that obtain an irre-

ducible transformation rule set. We investigated about the Cayleygraph

that is constructed by quantum circuits.

This article consists of as follows. In section 2, we define several proper-

ties for term rewriting systems and string rewriting systems . In section 3,

we describe formal definitions of a quantum circuit. We consider a circuit

that consists of just CNOT gates on 3 qubits. We define a quantum circuit

rewriting system for 3 qubits and show several related properties about it.

We show that the number of normal forms is 168 on 3 qubits. We obtain a

minimal subset of equations that is a good hint to construct an efficient ini-

tial equation set for n qubits. Further, we consider how to extend n qubits

quantum circuits rewriting system. In section 4, we introduce our software

implementations. We show examples of the implementations that compute

complete transformation rule sets. Moreover, we consider the Cayley graph

of 3 qubits circuits rewriting system.
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2 Rewriting System

2.1 Abstract Reduction System

In this section, we introduce definitions of an abstract reduction system and

properties of it.

Definition 2.1. (Abstract Reduction System) Let A be a set and → a

binary relation on A. An Abstract Reduction System A is a pair A =

(A,→). We call the binary relation as a reduction relation. For a, b ∈ A, if

(a, b) ∈→, we write a→ b and call b a one-step reduct of a. The transitive

reflexive closure of → is written as →∗. a→∗ b is defined as

a = a0 → a1 → · · · → an = b, (n ≥ 0).

We define confluence property of rewriting system. The property is one

of the most important properties of a rewriting system. If we identify the

transformations with computation, the confluence property assures unique-

ness of answers.

Definition 2.2. (weakly confluent) A reduction relation→ is called weakly confluent

(WCR) if ∀ a, b, c ∈ A (a→ b and a→ c) =⇒ ∃d ∈ A (b→∗ d and c→∗ d).

Definition 2.3. (confluent) A reduction relation → is called confluent

(CR) if ∀ a, b, c ∈ A (a→∗ b and a→∗ c) =⇒ ∃d ∈ A (b→∗ d and c→∗ d).
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We draw the difference of weakly confluent and confluent is Figure 2.

Weakly confluent suppose one-step reductions of a. Confluent suppose tran-

sitive reflexive closure →∗ of a.
a

	 Rb
R

c
	

R	
d

weakly confluent

a

	 R

	 R

b
R

c
	

R	
d

confluent

Figure 2: weakly confluent and confluent

We define termination property of rewriting system. The property is

one of the most important properties of rewriting system. The termination

property assures the termination of computations.

Definition 2.4. (normal form) We call that a ∈ A is a normal form if there

is no b ∈ A such that a → b. Further, b ∈ A has a normalform if there

exist a transitive reflexive closure →∗ that is b→∗ a for some normal form

a ∈ A. We denote the normal form of b as NF (b).

Definition 2.5. (weakly normalizing, strongly normalizing) A reduction

relation → is weakly normalizing if every a ∈ A has a normal form. A

reduction relation → is strongly normalizing (SN) if every reduction se-

quence a0 → a1 → · · · eventually must terminate in normal form.
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Lemma 2.1. (Newman’s lemma) Let (A,→) be an abstract reduction sys-

tem. If (A,→) is strongly normalizing and weakly confluent, then it is

confluent.

SN &WCR =⇒ CR

Strongly normalizing and confluent are important properties. Therefore

we define a complete transformation rule set that is strongly normalizing

and confluent.

Definition 2.6. (complete transform rule set) A set of rewriting rule set R

is complete if R is SN and CR.

2.2 Term Rewriting System

In this section, we introduce definitions of term rewriting system and we

summarize elementary the properties of it.

Definition 2.7. (term rewriting system) A term rewriting system (Σ, R) is

a pair of an alphabet Σ and a set of rewriting rules R. The alphabet consists

of:

1. A countably infinite set of variables x1, x2, x3, · · · .
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2. A non-empty set of function symbols F , G, · · · each equipped with an

arity (a natural number), i.e. the number of arguments it is supposed

to have. 0-ary is a function symbol. We call it a constant symbol.

A set of terms over Σ is Ter(Σ). It is defined inductively:

1. If x1, x2, x3, · · · ∈ Σ are variables, then x1, x2, x3, · · · ∈ Ter(Σ).

2. If F is an n-ary function symbol and t1, · · · tn ∈ Ter(Σ) (n ≥ 0), then

F (t1, · · · , tn) ∈ Ter(Σ).

A set of rewriting rules R = {si → ti|si, ti ∈ Ter(Σ), i ∈ I} consists of:

1. si is not variable.

2. Let V(t) be a set of variables that is contained in t. V(ti) ⊆ V(si).

We define several definitions of term rewriting system to define a critical

pair.

Definition 2.8. (Position, Subterm) For all t ∈ Ter(Σ), we define a set

of positions O(t) and a subterm of t for the position u. We denote the

subterm of t for the position u as t/u.

1. If t is a variable, then O(t) = {ε} and t/ε = t.

2. If t = f(t1, · · · , tn), then

O(t) = {ε} ∪ {i · u | i ≤ n, u ∈ O(ti)} and
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t/ε = t, t/(i · u) = (t/i)/u.

Example 2.1. For a term t = plus(plus(x, y), z), the set of positions is

O(t) = {ε, 1, 1 · 1, 1 · 2, 2}.

A subterm t/1 is plus(x, y). A subterm t/(1 · 2) is

t/(1 · 2) = (t/1)/2 = plus(x,y)/2 = y.

We draw a figure 3 that express subterms of t for all positions.

plus(ε)

plus(1) z(2)

x(1·1) y(1·2)

Figure 3: A example of position

Definition 2.9. (substitution) A subtituition is a finite set {v1 → t1, · · · , vn →

tn} where every vi is a variable and every ti is a term. No two elements in

the set haeve the same variable vi.
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Let t be a term and θ a substitution. We denote the substituting all

variables of t by θ as θ(t).

Definition 2.10. (Composition of substitution) Let θ = {x1 → t1, · · · , xn →

tn} and λ = {y1 → u1, · · · ym → um} be substitutions. Then the composition

of θ and λ is defined by building the set

{x1 → λ(t1), · · · , xn → λ(tn), y1 → u1, · · · , ym → um},

and deleting the following elements

• any element xj → λ(tj) such that λ(tj) = xj and

• any element yj → uj such that yj is in {x1, · · · , xn}.

We denote the composition of θ and λ as θ ◦ λ.

Definition 2.11. (unifier)

Let θ be a substitution and t1, t2, · · · , and tn terms. θ is called a unifier for

a set {t1, · · · , tn} if and only if

θ(t1) = θ(t2) = · · · = θ(tn).

The set {t1, · · · , tn} is unifiable if and only if there exists a unifier for it.

Definition 2.12. (most general unifier)

Let θ be a substitution and ti (i = 1, · · · , n) terms. θ is called a most general

15



unifier for a set {t1, · · · , tn} if and only if for any unifier ν there exists a

substitution γ such that ν = θ ◦ γ.

Definition 2.13. (overlap of terms)

Let r1 : s1 → t1 and r2 : s2 → t2 be rewriting rules. If there exists a position

u ∈ O(s1) and an unifier θ such that

s1/u /∈ V and θ(s1/u) ≡ θ(s2)

then we call that r2 overlap with r1.

There is a possibility that reducing terms occurs critical pairs. Let s, t

be terms and the position u ∈ O(t). t[u← s] is a term rewritten a subterm

t/u to s.

Definition 2.14. (Critical pair)

Let r1 : s1 → t1, r2 : s2 → t2 be rewriting rules that r2 overlap with r1 at

the position u ∈ O(s1) by most general unifier θ. A critical pair of r1 and

r2 is a pair of terms such that

〈θ(s1[u← t2]), θ(t1)〉

Example 2.2. Let r1, r2 rewriting rules such that

r1 : (x′ + y′) + z′ → x′ + (y′ + z′)

r2 : (−x) + x→ 0,
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and θ a most general unifier such that

θ(x′) = −x, θ(y′) = x.

r2 overlap with r1 at the position (1). We compute a critical pair of r1 and

r2.

θ(s1[u← t2]) = 0 + z′

θ(t1) = (−x) + (x + z′)

Therefore,

〈θs1 [u← t2], θt1〉 = 〈0 + z′, (−x) + (x + z′)〉.

Lemma 2.2. Let (Σ, R) be a term rewriting system, CP a set of critical

pairs for R.

(Σ, R) is WCR if and only if ∀〈p, q〉 ∈ CP, ∃d ∈ A(p→∗ d and q →∗ d).

Since this lemma and Newman’s lemma, we have the following proposition.

Proposition 2.1. Let (Σ, R) be a term rewriting system which reduction

relation is SN. Let CP be a set of critical pairs for R.

(Σ, R) is CR if and only if ∀〈p, q〉 ∈ CP, p̂ ≡ q̂.

We denote the normal form of t as t̂.
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Example 2.3. There are 3 transformation rules where

r1 : 0 + x→ x

r2 : (−x) + x→ 0

r3 : (x + y) + z → x + (y + z).

We are able to have a complete transformation rule set for the 3 rules in

Table 1.

r1 : 0 + x→ 0

r2 : (−x) + x→ 0:

r3 : (x + y) + z → x + (y + z)

r4 : (−x) + (x + y)→ y

r5 : x + 0→ x

r6 : x + (−x)→ 0

r7 : x + ((−x) + y)→ y

r8 : (−0)→ 0

r9 : (−(−x))→ x

r10 : (−(y + x))→ (−x) + (−y)

Table 1: An example of complete rewriting system
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2.3 String Rewriting System

In this section, we introduce the definition of a string rewriting system,

for investigating about quantum circuits using it. Let Σ be a finite set of

alphabets. We denote the set of all strings over Σ, including the empty string

λ, as Σ∗. The length of a string w ∈ Σ∗ is denoted by |w|. A rewriting rule

(u, v) is a pair of strings u, v ∈ Σ∗ where u 6= λ.

Definition 2.15 (string rewriting system). A string rewriting system is a

pair (Σ, R) of a finite set of alphabets Σ and a finite set of rewriting rules

R .

Definition 2.16 (string rewriting). Let (Σ, R) be a rewriting system and

s, t ∈ Σ∗. We denote s →R t if and only if there exist strings x, y, u and v

in Σ∗ such that s = xuy, t = xvy and (u, v) ∈ R.

The reflexive transitive closure relation of →R over Σ∗ is denoted by →∗
R.

Further ↔∗
R is the symmetric closure relation of →∗

R.

An equivalence class of a string rewriting systems are considered using

monoids, so we introduce several definitions and properties about monoids

and their interprelations.

Definition 2.17 (monoid). A monoid M = (M, ·, λ) is a tuple of a set M ,

a binary operation · : M ×M →M , and a unit element e ∈M that satisfies
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the following two axioms.

• For any a, b, and c in M, (a · b) · c = a · (b · c).

• For any a in M , a · λ = λ · a = a.

We note (Σ∗, ·, λ) is a monoid where · is concatenation and λ is an empty

string.

Definition 2.18 (homomorphism, isomorphic). A homomorphism between

two monoids (M1, ·1, λ1) and (M2, ·2, λ2) is a function f : M1 → M2 such

that

• f(x ·1 y) = f(x) ·2 f(y) for any x, y ∈M1, and

• f(λ1) = λ2.

If there exists a bijective homomorphism f : M1 → M2, then M1 and M2

are isomorphic. We denote isomorphic as M1 ∼M2.

Proposition 2.2. Let Σ be a finite set and (M, ·, λ) a monoid. A function

f : Σ→M is uniquely extended to the homomorphism f∗ : Σ∗ →M where

f∗(x1 · x2 · · ·xn) = f(x1)f(x2) · · · f(xn) and f∗(λ) = λ.

Definition 2.19 (model, interpretation). Let (Σ, R) be a rewriting system

and (M, ·, λ) a monoid. We say (M, ·, λ) is a model of (Σ, R) if there exists
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a function f : Σ → M such that f∗(u) = f∗(v) for any (u, v) ∈ R. We call

the function f∗ an interpretation of the string rewriting system (Σ, R) to a

monoid M .

A string rewriting system can be investigated using monoids and inter-

pretations. We now add further definitions for discussing the equivalence of

rewriting systems.

Definition 2.20 (factor monoid). Let (Σ, R) be a rewriting system. A

factor monoid (Σ∗/R, ·, [λ]) is defined by Σ∗/R = Σ∗/↔∗
R and [x] · [y] = [xy]

where [x] = {x′|x↔∗
R x′}

Proposition 2.3. Let (Σ, R) be a rewriting system, (M, ·, λ) a model of R

and f∗ : Σ∗ →M an interpretation. The function [f∗] : Σ∗/R→M defined

by [f∗]([x]) = [f∗(x)](x ∈ Σ∗) is a homomorphism.

Definition 2.21 (rewriting system equivalence). Let (Σ, R1) and (Σ, R2)

be rewriting systems. R1 and R2 are equivalent if and only if Σ∗/R1 and

Σ∗/R2 are isomorphic.

Finally, we introduce a lemma to compare two rewriting systems that

have the same alphabet Σ.

Lemma 2.3. Let (Σ, R1) and (Σ, R2) be rewriting systems, and let (M, ·, λ)

be a model of (Σ, R2). If there exists (x1, x2) ∈ R1 and an interpretation
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f : Σ∗ →M for Σ∗/R2 such that f∗(x1) 6= f∗(x2), then Σ∗/R1 � Σ∗/R2.

Proof.

3 Quantum circuits

3.1 3 qubits ciruits

3.1.1 Definitions of Quantum Circuits

In this section, we introduce several definitions related to quantum circuits.

First, we define quantum bits (qubits), quantum gates, and quantum cir-

cuits.

Definition 3.1 (Quantum bits, gates, and circuits). Let α, β ∈ C, |0〉 =

(1, 0), |1〉 = (0, 1) and m ∈ N.

• A single qubit is denoted by a vector |x〉 = α|0〉+ β|1〉.

• A n qubits is denoted by |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ∈ C2n
.

• A n qubits quantum gate is an unitary operator

G : C2n → C2n
.

• A quantum circuit Cir of size m is denoted by Cir = (G1, G2, · · · , Gm)

where Gi (i = 1, 2, · · · ,m) are n qubits quantum gates.
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• An empty circuit is denoted by λ.

• The output of a circuit Cir = (G1, G2, · · · , Gm) for an input |x〉 is

(Gm ◦ · · · ◦G2 ◦G1)|x〉.

Definition 3.2. Let m, l ∈ N , Cir1 = (G1, G2, · · · , Gm) and Cir2 =

(G′
1, G

′
2, · · · , G′

l) be n qubits quantum circuits. We define an equivalence

relation =cir by

Cir1 =cir Cir2

⇐⇒ ∀|x〉 ∈ C2, (Gm ◦ · · · ◦G1)|x〉 = (G′
l ◦ · · · ◦G′

1)|x〉.

Next, we introduce a quantum gate that plays an important role in proving

the universality of quantum circuits.

Definition 3.3. The n qubits controlled-NOT (CNOT) gate is a unitary

operator [c, t]n : C2n → C2n
(c, t ∈ {1, 2, · · · , n}) defined by

n⊗
i=1

|δi〉 7→
t−1⊗
i=1

|δi〉 ⊗ |δt ⊕ δc〉 ⊗
n⊗

i=t+1

|δi〉.

We call c the control bit and t the target bit. We use a version of Feynmann’s

notation [Fey85] for diagrammatic representations of CNOT gates (cf. Fig-

ure 4). An example of 3 qubits quantum circuits is illustrated in Figure 5.

Each gate is applied in turn from left to right to the n qubits.
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Figure 4: 2 qubits CNOT gate

Figure 5: A quantum circuit

Next, we define an equivalence relation between two quantum circuits.

This definition is important and allows us to discuss the equivalence of cir-

cuits. In this paper, we consider only quantum circuits that are constructed

by 3 qubits CNOT gates. We denote as the set of circuits CQC3 as

CQC3 = {([c1, t1]3, [c2, t2]3, · · · , [cm, tm]3)|

ci, ti ∈ {1, 2, 3}, ci 6= ti,m ∈ N}.

We note that two different circuits Cir1 and Cir2 in CQC3 , may be equiv-
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alent in the sense of =cir, i.e. Cir1 =cir Cir2.

Example 3.1. The following equation can be considered as illustrated in

Figure.6:

([1, 2]3, [2, 3]3) =cir ([2, 3]3, [1, 2]3, [1, 3]3).

For all input qubits |δ1〉 ⊗ |δ2〉 ⊗ |δ3〉, we need to prove the equivalence of

the outputs. First, we compute ([1, 3]3 ◦ [1, 2]3 ◦ [2, 3]3)(|δ1〉 ⊗ |δ2〉 ⊗ |δ3〉),

([2, 3]3 ◦ [1, 2]3)(|δ1〉 ⊗ |δ2〉 ⊗ |δ3〉)

=cir [2, 3]3(|δ1〉 ⊗ |δ1 ⊕ δ2〉 ⊗ |δ3〉)

=cir |δ1〉 ⊗ |δ1 ⊕ δ2〉 ⊗ |δ1 ⊕ δ2 ⊕ δ3〉.

Next, we compute ([1, 3]3 ◦ [1, 2]3 ◦ [2, 3]3)(|δ1〉 ⊗ |δ2〉 ⊗ |δ3〉),

([1, 3]3 ◦ [1, 2]3 ◦ [2, 3]3)(|δ1〉 ⊗ |δ2〉 ⊗ |δ3〉)

=cir ([1, 3]3 ◦ [1, 2]3)(|δ1〉 ⊗ |δ2〉 ⊗ |δ2 ⊕ δ3〉)

=cir [1, 3]3(|δ1〉 ⊗ |δ1 ⊕ δ2〉 ⊗ |δ2 ⊕ δ3〉)

=cir |δ1〉 ⊗ |δ1 ⊕ δ2〉 ⊗ |δ1 ⊕ δ2 ⊕ δ3〉.

Thus we have ([1, 2]3, [2, 3]3) =cir ([2, 3]3, [1, 2]3, [1, 3]3).

We chose three types of simple equations to construct a string rewriting

system.
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Figure 6: A circuit equation

Definition 3.4. Let G1, G2, and G3 ∈ CQC3 be CNOT gates.

• For any CNOT gate G, (G,G) =cir λ is an eliminated equation.

• (G1, G2) =cir (G2, G1) is a commutative equation.

• (G1, G2) =cir (G2, G1, G3) is an anti-commutative equation .

In this article, we denote six CNOT gates for the 3 qubits a = [1, 2]3,

b = [1, 3]3, c = [2, 1]3, d = [2, 3]3, e = [3, 1]3 and f = [3, 2]3.

Figure 7: eliminated type: (a , a) = λ
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Figure 8: commutative type: (a , b) = (b , a)

Figure 9: anti-commutative type: (a, d) =cir (d, a, b)

3.1.2 Quantum circuit rewriting system

We define a quantum circuit rewriting system for CQC3.

Definition 3.5 (Quantum circuit rewriting system). Let (Σ, R) be a string

rewriting system and i∗ : Σ∗ → CQC3/ =cir a function where Σ = {a, b, c, d, e, f},

i(a) = [1, 2]3, i(b) = [1, 3]3, i(c) = [2, 1]3, i(d) = [2, 3]3, i(e) = [3, 1]3 and

i(f) = [3, 2]3. (Σ, R) is a quantum circuit rewriting system, if i∗ is an inter-

pretation of (Σ, R). We identify a string w = x1x2 · · ·xn ∈ Σ∗ as a circuit
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(i(x1), i(x2), · · · , i(xn)) ∈ CQC3, and we also call w a circuit.

In general, a string rewriting system does not have properties of ‘termi-

nation’ and ‘confluence’. So we would like to construct a quantum circuit

rewriting system that has both properties termination and confluence. To do

so, we use the Knuth-Bendix completion algorithm [KB70, BO93, Met83].

Definition 3.6. Let E be an equation set. If the Knuth-Bendix completion

algorithm succeeds for E, then we have a complete transformation rule set

R (i.e., a set of transformation rules with the properties of termination

and confluence). We denote KBA(E) as the result of the Knuth-Bendix

completion algorithm for E.

Example 3.2. Let A be an equation set s.t.

A =



aa = λ, baba = abab, dbd = bdb,

bb = λ, dbabd = abab, da = ad,

dd = λ


.
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We can compute KBA(A):

KBA(A) =



aa→ λ, ababd→ dbab,

abadb→ bdba, abdba→ badb,

adbab→ babd, baba→ abab,

babdb→ adba, badba→ abdb,

bb→ λ, bdbab→ abad,

da→ ad, dbabd→ abab,

dbad→ bdba, dbd→ bdb,

dd→ λ



.

Next, we apply the Knuth-Bedix completion algorithm to 18 equations

Eall =



aa = λ, fbfb = a, ab = ba

bb = λ, adad = b, bd = db

cc = λ, dede = c, cd = dc

dd = λ, bcbc = d. ce = ec

ee = λ, fcfc = e, af = fa

ff = λ, eaea = f, ef = fe



(1)

introduced by Iwama et. al. 2002 [IKY02]. We note that anti-commutative

equations xy = yxz (x, y and z ∈ Σ) equivalent to xyxy = z (xyxy =

xyyxz = z). We also call xyxy = z (x, y and z ∈ Σ) anti-commutative

equations. We used the Mathematica software (version 9) to compute the
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complete transformation rule set KBA(Eall), and we list it in the Appendix.

The number of elements of KBA(Eall) is 114.

|KBA(Eall)| = 114.

We note that we have applied an extended Knuth-Bendix completion algo-

rithm which produce an irreducible transformation rule set introduced in

[Met83]. The transformation rule set KBA(Eall) is an irreducible transfor-

mation rule set. The number of rules obtained by the original Knuth-Bendix

completion algorithm is 244. A string rewriting system (Σ, REall
) is thus de-

fined where REall
= KBA(Eall).

We would like to investigate commutativity of Eall.

Lemma 3.1. We prove the following equations.

1. (acac, ca) ∈ REall
,

2. (bebe, eb) ∈ REall
and

3. (dfdf, fd) ∈ REall
.

Proof.

1. First, we show fbca = caed. Since bcbc = d, fcfc = e, adad = b and

eaea = f , we have bc = cbd, fc = cfe, da = bad and ea = fae. So we
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have

f(bc)a = f(cbd)a

= (cfe)bda

= cfeb(bad)

= cf(ea)d

= cf(fae)d

= caed.

Since fbca = caed and fbfb = a,

acac = (fbfb)cac

= fb(caed)c

= (caed)edc

= ca(eded)c

= cacc

= ca.

2. We can prove bebe = eb by the same method to prove acac = ca. We

rewrite a→ b, b→ d, c→ e, d→ c, e→ f and f → a in the proof of

acac = ca.

31



3. We can prove dfdf = fd by the same method to prove acac = ca. We

rewrite a→ d, b→ c, c→ f , d→ e, e→ a and f → b in the proof of

acac = ca.

Similarly, we obtain the following corollary.

Corollary 3.1.

1. (caca, ac) ∈ REall
,

2. (ebeb, be) ∈ REall
and

3. (fdfd, df) ∈ REall
.

Proof.

1. Since acac = ca and cc = λ, we have

caca = caca(cc)

= c(acac)c

= c(ca)c

= ac.

2. 3. Similarly, we can prove.
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By Lemma 3.1 and Corollary 3.1, we have the complete table of xyxy

for Σ∗/Eall.

x

y
a b c d e f

a λ λ ca b f λ

b λ λ d λ eb a

c ac d λ λ λ e

d b λ λ λ c fd

e f be λ c λ λ

f λ a e df λ λ

Table 2: xyxy for Σ∗/Eall

Example 3.3. We show an equation (ebe, beb) ∈ Σ/REall
. Since bb = λ and

ebeb = be, we have ebe = ebe(bb) = (ebeb)b = beb and (ebe, beb) ∈ Σ/REall
.

We note that the rewriting rule ebe → beb appears on the last 6 line of

Appendix.

We prove commutator of the general case. Let x = [i, j]3, y = [j, i]3,

v = [i, k]3, w = [k, j]3, vy = [j, k] and wy = [k, i] (i, j, k = 1, 2, 3, i 6= j,

j 6= k, k 6= i).

x = [i, k]3[k, j]3[i, k]3[k, j]3 = vwvw.
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First, we show vwyx = yxvywy.

wy = ywwy, vy = yvvy,

wyx = wxwy and vyx = vxvy.

vwyx = v(ywwy)x

= (yvvy)wwyx

= yvvyw(wxwy)

= yvvyxwy

= yv(vxvy)wy

= yxvywy.

Since vwyx = yxvywy, vwvw = x and vywyvywy = y.

xyxy = (vwvw)yxy

= vw(yxvywy)y

= (yxvywy)vywyy

= yx(vywyvywy)y

= yxyy

= yx.

Proposition 3.1. Let (Σ, REall
) be a quantum circuit rewriting system

where Eall a set of equations defined by (1). Then we have followings;
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1. |NF (w)| ≤ 6, (w ∈ Σ7),

2. |NF (w)| ≤ 6, (w ∈ Σ∗), and

3. |Σ∗/REall
| = 168.

That is the length of NF (w) is at most 6 for any string w ∈ Σ∗ and the

number of normal forms is 168.

Proof.

1. We compute the normalform for any string w ∈ Σ7, then we have

the length of a normalform is at most 6.

2. For any string w ∈ Σ∗ which length is n ≥ 7, w contain a substring

which length is 7. Thus w is rewritten to w′ which length is at most

n − 1. Inductively, for any string w ∈ Σ∗, the length of NF (w) is at

most 6.

3. We compute the normalform for any string w ∈ Σk (1 ≤ k ≤ 6). So

we have all elements of Σ∗/REall
and we have |Σ∗/REall

| = 168.

We list the all elements of Σ∗/REall
in Appendix. The question now

arises: Is the set of equations redundant? Let E6 be a set of equations such
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that

E6 = Eall −



ab = ba

bd = db

cd = dc

ce = ec

af = fa

ef = fe



=



aa = λ, fbfb = a

bb = λ, adad = b

cc = λ, dede = c

dd = λ, bcbc = d

ee = λ, fcfc = e

ff = λ, eaea = f



. (2)

The size of this equation set is |E6| = 12.

Lemma 3.2. We prove the following equations.

1. (ba, ab) ∈ RE6 ,

2. (db, bd) ∈ RE6 ,

3. (dc, cd) ∈ RE6 ,

4. (ec, ce) ∈ RE6 ,

5. (fa, af) ∈ RE6 , and

6. (fe, ef) ∈ RE6 .

Proof.

1. Since adad = b and aa = bb = dd = λ, we have ba = ba(bb) =

(adad)a(adad)b = ab and (ba, ab) ∈ RE6 .
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2. 3. 4. 5. 6. We can prove similarly.

We compute a complete transformation rule set KBA(E6) by using

the Knuth-Bendix completion algorithm, and we can have KBA(E6) =

KBA(Eall). The above results mean that commutative type equations is

not required for the initial equation set. We have the next proposition.

Proposition 3.2. Let (Σ, R) be a quantum circuit rewriting system, Eall

and E6 sets of equations defined by (1) and (2),

Σ∗/RE6 = Σ∗/REall
.

In the following section, we reduce the size of an equation set and show

the existence of the minimal set of equations Emin of E6 that generates the

isomorphic monoid Σ∗/REmin = Σ∗/RE6 .

3.1.3 Minimal set of equations

Definition 3.7 (Minimal set of equations). Let E ⊆ Σ∗ × Σ∗. A subset

Emin ⊂ E is a minimal equation set of E if and only if

• Σ∗/REmin = Σ∗/RE , and
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• If Σ∗/RE′ = Σ∗/RE then |Emin| ≤ |E′| for all E′ ⊂ E.

In this section, we investigate a minimal set of equations of E6 such that

Σ∗/REmin = Σ∗/RE6 . We delete some equations from E6 and prove that the

factor monoids of the equations are isomorphic. We follow the same line of

thought as was used for the elementary Tietze transformation [BO93]. We

first prove the following proposition.

Proposition 3.3. Let (Σ, R) be a quantum circuit rewriting system, E6 a

set of equations defined by (2),

E5 =



aa = λ, fbfb = a

bb = λ, adad = b

cc = λ, dede = c

dd = λ, bcbc = d

ee = λ, fcfc = e

eaea = f



, and
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E2 =



aa = λ, fbfb = a

bb = λ, adad = b

dede = c

bcbc = d

fcfc = e

eaea = f



. (3)

Then we have followings:

1. (efc, cf), ((fc)e, e(fc)) ∈ RE5 ,

2. (ff, λ) ∈ RE5 ,

3. Σ∗/RE5 = Σ∗/RE6 , and

4. Σ∗/RE2 = Σ∗/RE6 .

Proof. We prove this proposition in following procedures.

1. Since aa = ee = cc = λ, eaea = f and fcfc = e , we have

cf = (ee)(aeaeeaea)cf(cc)

= e(eaea)e(eaea)cfcc

= efe(fcfc)c

= efeec

= efc
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and (efc, cf) ∈ RE5 .

Since fcfc = e, we have

fce = fc(fcfc)

= efc,

and ((fc)e, e(fc)) ∈ RE5 .

2. Since cc = λ, efc = cf , fce = efc and fcfc = e, we have

ff = f(cc)f

= fc(efc)

= (efc)fc

= e(e)

= λ,

and (ff, λ) ∈ RE5 .

3. We show that Σ∗/RE5 = Σ∗/RE6 . Since [ff ]E5 = [λ]E5 , we have

Σ∗/RE5 = Σ∗/RE6 .

4. Let E4, E3 and E2 be sets of equations where

E4 = E6 − {ee = λ, ff = λ},

E3 = E6 − {dd = λ, ee = λ, ff = λ}, and

E2 = E6 − {cc = λ, dd = λ, ee = λ, ff = λ}.
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Similarly, we have (ee, λ) ∈ RE4 , (dd, λ) ∈ RE3 and (cc, λ) ∈ RE2 . So

we obtain

Σ∗/RE6 = Σ∗/RE5 = Σ∗/RE3 = Σ∗/RE4

= Σ∗/RE2 .

Next, we prove that E2 is a minimal set of equations.

Proposition 3.4.

Let E′ ⊂ E6. If Σ∗/RE′ = Σ∗/RE6 , then |E′| ≥ 8.

Proof. We will prove this in two steps.

step 1: First, we prove that we cannot remove an anti-commutative equa-

tion from E6 .

We define a set of equations

Eanti =


fbfb = a, adad = b, dede = c,

bcbc = d, fcfc = e, eaea = f

 .

Let u ∈ Eanti and consider u as xyxy = z (x, y, z ∈ Σ). We define Eu

as Eu = E6 − {u} = E6 − {xyxy = z}. Then we can show Σ∗/REu 6=

Σ∗/RE6 as follows. We consider a monoid M = ({0, 1}, ·, 0) where a
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binary operator · ⊂ {0, 1} × {0, 1} → {0, 1} is defined by Table 3, and

a function i : Σ∗ →M is defined as

i(λ) = i(k) = 0(∀k 6= z), and i(z) = 1.

We consider a homomorphism i∗ and show that i∗ is an interpretation

for Eu:

i∗(kk) = 0 · 0 = 0 = i∗(λ),

i∗(zz) = 1 · 1 = 0 = i∗(λ), and

i∗(mnmn) = i∗(mn) · i∗(mn)

= 0

= i∗(k),∀m,n ∈ Σ, k 6= z.

Since x 6= z and y 6= z, then the value of i∗(xyxy) is

i∗(xyxy) = i(0) · i(0) · i(0) · i(0) = 0 · 0 · 0 · 0 = 0.

Since i∗(z) is

i∗(z) = i(z) = 1.

We have i∗(xyxy) 6= i∗(z). By Lemma 2.3, [xyxy]Eu 6= [z]Eu . On the

other hand, it is obvious that [xyxy]E6 = [z]E6 . Therefore,

Σ∗/REu 6= Σ∗/RE6 .
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· 0 1

0 0 1

1 1 0

Table 3: Definition of the binary operator ·

step 2: Let x ∈ Σ and Ex a set of equations defined by

Ex =



xx = λ, fbfb = a

adad = b

dede = c

bcbc = d

fcfc = e

eaea = f



.

Then we can have Σ∗/REx 6= Σ∗/RE6 as follows. For example, if

we consider x = a, we can prove Σ∗/REa 6= Σ∗/RE6 . Let N =

({0, 1, 2}, ·, 0) be a monoid where a binary operator · ⊂ {0, 1} ×

{0, 1} → {0, 1} is defined by Table 4, and let the function j : Σ∗ → N

be j(λ) = j(a) = j(c) = 0, j(b) = j(e) = 1 and j(d) = j(f) = 2. We

consider a homomorphism j∗ and show that j∗ is an interpretation for

43



Ea:

j∗(aa) = j(a) · j(a) = 0 = j∗(λ),

j∗(fbfb) = j∗(fb) · j∗(fb) = 0 · 0 = 0 = j∗(a),

j∗(adad) = j∗(ad) · j∗(ad) = 2 · 2 = 1 = j∗(b),

j∗(dede) = j∗(de) · j∗(de) = 0 · 0 = 0 = j∗(c),

j∗(bcbc) = j∗(bc) · j∗(bc) = 1 · 1 = 2 = j∗(d),

j∗(fcfc) = j∗(fc) · j∗(fc) = 2 · 2 = 1 = j∗(e)and

j∗(eaea) = j∗(ea) · j∗(ea) = 1 · 1 = 2 = j∗(d).

The value of j∗(bb) is

j∗(bb) = j(b) · j(b) = 1 · 1 = 2.

The value of j∗(λ) is

j∗(λ) = j(λ) = 0.

Since j∗(bb) 6= j∗(λ), we have [bb]Ea 6= [λ]Ea by Lemma 2.3 . On the

other hand, it is obvious that [bb]E6 = [λ]E6 . Therefore,

Σ∗/REa 6= Σ∗/RE6 .
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· 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 4: Definition of the binary operator ·

Let E′ ⊂ E6 be a set of equations. If Σ∗/RE′ = Σ∗/RE6 , it contained at

least six anti-commutative equations by step1 and at least two eliminated

equations by step2. Therefore, if ∀E′ ⊂ E6 it holds that Σ∗/RE′ = Σ∗/RE6 ,

then

|E′| ≥ 8.

Lemma 3.3. Let Eac be a set of equations where

Eac =



aa = λ, fbfb = a

adad = b

cc = λ, dede = c

bcbc = d

fcfc = e

eaea = f



.
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Then

Σ∗/REac 6= Σ∗/RE6 . (4)

Proof. We show [bb]Eac 6= [λ]Eac . Let N = ({0, 1, 2}, ·, 0) be a monoid where

a binary operator · ⊂ {0, 1} × {0, 1} → {0, 1} is defined by Table 4, and

let the function j : Σ∗ → N be j(λ) = j(a) = j(c) = 0, j(b) = j(e) = 1

and j(d) = j(f) = 2. The function j is the same function used in step 2 of

Proposition 3.4. We consider a homomorphism j∗ and show that j∗ is an

interpretation for Ea. We check that j∗(cc) = j∗(λ).

j∗(cc) = j(c) · j(c) = 0 = j∗(λ).

The value of j∗(bb) is

j∗(bb) = j(b) · j(b) = 1 · 1 = 2.

The value of j∗(λ) is

j∗(λ) = j(λ) = 0.

Since j∗(bb) 6= j∗(λ), we have [bb]Eac 6= [λ]Eac by Lemma 2.3. On the other

hand, it is obvious that [bb]E6 = [λ]E6 . Therefore,

Σ∗/REac 6= Σ∗/RE6 .
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From the above discussion, we derive the next theorem.

Theorem 3.1. There exists a minimal equation set Emin of E6 such that

|Emin| = 8.

Proof. E2 is a minimal equation of E6 by Proposition 3.3 and Proposition

3.4.

Next, we show that there is an 8 element set of equations F2 * E6 such

that Σ∗/RF2 = Σ∗/RE6 .

Proposition 3.5. Let F2 * E6 be a set of equations defined by

F2 =



aa = λ, bfbf = a

bb = λ, dada = b

eded = c

cbcb = d

cfcf = e

aeae = f



.

Then Σ∗/RF2 = Σ∗/RE6 .

Proof. Let Fanti and F6 be sets of equations defined by

Fanti =


bfbf = a, dada = b, eded = c

cbcb = d, cfcf = e, aeae = f

 , and
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F6 =



aa = λ, bfbf = a

bb = λ, dada = b

cc = λ, eded = c

dd = λ, cbcb = d

ee = λ, cfcf = e

ff = λ, aeae = f



.

We can prove

Σ∗/RF2 = Σ∗/RF6 (5)

by following the same method in Proposition 4. Since we can prove bfbf =

a, dada = b, eded = c, cbcb = d, cfcf = e and aeae = f in F6, we have

Σ∗/RF6 = Σ∗/RE6∪Fanti . (6)

Similarly, we can have

Σ∗/RE6∪Fanti = Σ∗/RE6 . (7)

By (5), (6), and (7), we have Σ∗/RF2 = Σ∗/RE6 .

3.2 General Case

In this section, we consider how to extend quantum circuits rewriting system

to higher qubits circuits. There exists two CNOT gates [1, 2] and [2, 1] in 2

qubits rewriting system. We should define commutators as following in the
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Table 5. In 3 qubits rewriting system, we add 4 new gates [1, 3], [2, 3], [3, 1]

x

y
[1, 2] [2, 1]

[1, 2] λ [2, 1][1, 2]

[2, 1] [1, 2][2, 1] λ

Table 5: 2 qubits commutator xyxy

and [3, 2]. We should suppose commutators between [2, 3] and [3, 2] such that

we need to define the commutators {[1, 2], [2, 1], [1, 3], [2, 3], [3, 1], [3, 2]}.

x

y
[2, 3] [3, 2]

[2, 3] λ [3, 2][2, 3]

[3, 2] [2, 3][3, 2] λ

Table 6: 2 qubits commutator xyxy

Since proposition 3.4 step 2, it is necessary to suppose 6 anti-commutative

type equations that decompose gates [i, j] by two gates,

∃k 6= i and k 6= j, [i, j] = [i, k][k, j][i, k][k, j].

Equations for a general case can be defined by equations of commutators.

We extend our formulation for n qubits CNOT gates. First, we calculate

the number of CNOT gates for n qubits. For example, there are 6 CNOT
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x

y
[1, 2] [2, 1] [2, 3] [3, 2] [1, 3] [3, 1]

[1, 2] λ [2, 1][1, 2] [1, 3] λ ∗1,6 = [3, 2]

[2, 1] [1, 2][2, 1] λ λ [3, 1] ∗2,5 = [2, 3]

[2, 3] [1, 3] λ λ [3, 2][2, 3] ∗3,6 = [2, 1]

[3, 2] λ [3, 1] [2, 3][3, 2] λ ∗4,5 = [1, 2]

[1, 3]

[3, 1]

Table 7: 3 qubits xyxy

gates for 3 qubits and 12 gates for 4 qubits. Let Σn be an alphabet of n

qubits quantum rewriting system such that Σn = {[i, j]n|i, j = 1, 2, · · ·n}.

We count the permutation of 2 qubits,

|Σn| = n(n− 1).

Hence, the number of CNOT gates for n qubits is n(n− 1).

Next, we consider the number of equations of CNOT circuits for n qubits.

For example, there are 18 circuit equations for 3 qubits and 72 circuit equa-

tions for 4 qubits. For n qubits, For all i, j = 1, 2, · · · , n, there exists a

eliminate type equation [i, j]n[i, j]n = λ. Thus, the number of eliminate
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type equations is

n(n− 1).

Let [i, j]n and [i′, j′]n be n qubits CNOT gates. If i 6= j′ and j 6= i′, then

there exists a commutative equation ([i, j]n[i′, j′]n = [i′, j′]n[i, j]n). Thus ,

the number of commutative type equations is

n(n− 1)2(n− 2)
2

.

If (i = j′ and j 6= i′) or (j = i′ and i 6= j′), then there exists a anti-

commutative type of equation. Thus, the number of anti-commutative type

of equations is

n(n− 1)(n− 2).

Let Eqn be a set of equations for n qubits. The number of equations of

CNOT circuits for n qubits

|Eqn| = n(n− 1) +
n(n− 1)2(n− 2)

2
+ n(n− 1)(n− 2)

=
(n(n− 1))2

2
.

Therefore, we are able to discuss about n qubits quantum rewriting systems.

1. If i1 = i2 and j1 = j2, then [i1, j1]n[i1, j1]n = λ.

2. If i1 = i2 and j1 6= j2, then [i1, j1]n[i1, j2]n = [i1, j2]n[i1, j1]n.

3. If i1 6= i2 and j1 = j2, then [i1, j1]n[i2, j1]n = [i2, j1]n[i1, j1]n.
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4. If i1 6= i2, j1 6= j2, i1 6= j2 and j1 6= i2, then [i1, j1]n[i2, j2]n =

[i2, j2]n[i1, j1]n.

5. If i1 = j2 and j1 = i2, then [i1, j1]n[j1, i1]n = [j1, i1]n[i1, j1]n[j1, i1]n[i1, j1]n.

6. If i1 = j2 and j1 6= i2, then [i1, j1]n[i2, i1]n = [i2, i1]n[i1, j1]n[i2, j1]n.

7. If i1 6= j2 and j1 = i2, then [i1, j1]n[j1, j2]n = [j1, j2]n[i1, j1]n[i1, j2]n

4 Implementations using Mathematica

We introduce Mathematica functions to investigate string rewriting systems.

We used the Mathematica software (version 9) to compute complete trans-

formation rule sets.

4.1 The Knuth-Bendix completion algorithm

Let R be a set of rewriting rules, � an order of strings and CP a set of

critical pairs. We introduce the Knuth-Bendix completion algorithm.
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1. Input : CP, �

2. While CP 6= π

3. begin

4. (p, q) ∈ CP

5. CP = CP − (p, q)

6. Compute normal forms of p and q for R

7. if p = q

8. then begin

9. (α, β) = analyze(NF (p), NF (q) �)

10. R = R ∪ {(α, β)}

11. CP = CP
∪

r∈R(set of critical pairs of (α, β) and r)

12. end

13. end

14. return R

The analyze procedure outputs a new rule observing the order � or error.
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1. Input : s, t, �

2. if s � t

3. then (α, β) = (s, t)

4. else if t � s

5. then (α, β) = (t, s)

6. else Error

7. return (α, β)

4.2 Critical, MakeCriticalPair

The source code of components used in the Knuth-Bendix completion al-

gorithm is listed in this section. The function ‘IterationLimit’ gives the

maximum length of evaluation chain used in trying to evaluate any expres-

sion. When we compute normal forms for a rewriting system, it is necessary

to repeat many evaluations.

$IterationLimit = 10^15;

In the Knuth-Bendix completion algorithm, it is necessary to compute criti-

cal pairs from an equation set. We compute critical pairs using the following
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functions. The function Critical[x] has an argument x = ((s1, t1), (s2, t2))

that means a pair of transformation rules.

(*x = (s1->t1, s2->t2)*)

Critical[x_] :=

If[

x[[1]] == x[[2]]

(*Same transformation rule does not make critical pair*),

{},

{StringReplacePart[x[[2, 1]], x[[1, 2]], #],

StringReplace[StringReplacePart[x[[2, 1]], x[[1, 1]], #],

x[[2, 1]] -> x[[2, 2]]]} & /@

Flatten[{StringPosition[x[[2, 1]], x[[1, 1]]]}~

Join~(StringPosition[x[[2, 1]], StartOfString ~~ #] & /@

Rest[StringCases[x[[1, 1]], __, Overlaps -> True]])

~Join~(StringPosition[x[[2, 1]], # ~~ EndOfString]

& /@ (Rest[

StringCases[

StringReverse[x[[1, 1]]], __, Overlaps -> True]]

//StringReverse))

, 1]

]

Example 4.1. We find overlap points from each starting point, and rewrite
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the overlap string by each transformation rules. We have computed critical

pairs for a pair of xaxa→ ab for axa→ c.

Let X and Y be variables. For r1 : s1 → t1 = xaxaX → abX, r2 : s2 →

t2 = axaY → cY , r2 overlap with r1 at 2 (case 1)and 2 · 2 (case 2) and r1

overlap with r2 at 2 (case 3).

case 1 θ = {X → Y }

θ(s1[2← t2]) = xcY, θ(t1) = abY,

case 2 θ = {X → xaY }

θ(s1[2 · 2← t2]) = xaxcY, θ(t1) = abxaY,

case 3 θ = {Y → xaX}

θ(s2[2 · 2← t1]) = aabX, θ(t2) = cxaX.

In[573]:= Critical[{{"axa", "c"}, {"xaxa", "ab"}}]

Out[573]= {{"xc", "ab"}, {"cxa", "aab"}, {"xaxc", "abxa"}}

We identify a pair of strings x = (s, t) as a transformation rule s → t.

The function Rule[x] is a type conversion function from a pair of strings

to a transformation rule.
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Rule[x_] := If[x == {}, {}, {x[[1]] -> x[[2]]}]

In[578]:= Rule[{"axa", "c"}]

Out[578]= {"axa" -> "c"}

The function Makerules transform from a list of pairs to a list of transfor-

mation rules.

(*A list of pairs to a list of transformation rules*)

Makerules[list_] := Flatten[Rule /@ list]

In[575]:=

Makerules[{{"axa", "c"}, {"xaxa", "ab"}}]

Out[575]= {"axa" -> "c", "xaxa" -> "ab"}

We compute all critical pairs to construct a complete transformation rule

set.

(*A list of pairs to a list of critical pairs*)

MakeCriticalPair[list_]

:= Flatten[Critical /@ Tuples[{list, list}], 1]
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(*A list of pairs and a pair to a list of critical pairs*)

MakeNewCriticalPair[list_, rule_] :=

Flatten[Critical /@ (Tuples[{list, rule}]~Union~

Tuples[{rule, list}]), 1]

Example 4.2. We compute a set of critical pairs for the set of transforma-

tion rules axa→ c, xaxa→ ab.

In[576]:= MakeCriticalPair[{{"axa", "c"}, {"xaxa", "ab"}}]

Out[576]= {{"xc", "ab"}, {"cxa", "aab"}, {"xaxc", "abxa"},

{"ab", "xc"}, {"abxa", "xcxa"}, {"aab", "cxa"}}

4.3 Order, Normlform

An order of string is important to succeed the Kunth-Bendix completion

algorithm. We used the following order.

1. The one which the length of string is smaller is smaller.

2. If two strings have the same length, we apply the lexicographical order

for the strings.

The function Order[(s, t)] corrects the order.
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(*A order of strings*)

Order[{x_, y_}] :=

If[StringLength[x] > StringLength[y], {{x, y}},

If[StringLength[y] > StringLength[x], {{y, x}},

If[x == y, {},

If[Sort[{x, y}] === {x, y}, {{y, x}},

{{x, y}}

]]

]]

Example 4.3. We have checked orders of several pairs of strings.

In[579]:= Order[{"bac", "ab"}]

Out[579]= {{"bac", "ab"}}

In[580]:= Order[{"ab", "bac"}]

Out[580]= {{"bac", "ab"}}

In[581]:= Order[{"abc", "bac"}]

Out[581]= {{"bac", "abc"}}

59



In the Kuntuh-Bendix completion algorithm, it is necessary to compute

normal forms of each element of critical pairs.

(*Computeing a normal form*)

Normalform[pair_, list_] :=

FixedPoint[StringReplace[#, Makerules[list]] &, #] & /@ pair

Example 4.4. Let pair be a pair of strings and list a set of transformation

rules. The function Normalform[pari, list] compute a normal form of

pair in list.

In[31]:= Normalform[{"abababcb",

"cacbac"}, {{"aa", ""}, {"ababc", "caba"}, {"abaca",

"bcab"}, {"abcab", "baca"}, {"acaba", "babc"}, {"baba",

"abab"}, {"babca", "acab"}, {"bacab", "abca"}, {"bb",

""}, {"bcaba", "abac"}, {"cabab", "abac"}, {"cabac",

"abab"}, {"cabc", "acab"}, {"cac", "aca"}, {"cb", "bc"}, {"cc",

""}}]

Out[31]= {"babc", "bab"}
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4.4 KnuthBendix

In the Knuth-Bendix completion algorithm, the first thing we have to do

is to compute critical pairs for an initial equation set. We construct new

transform rules from a set of critical pairs, and reduce elements of the set.

We repeat the procedure until the set of critical pairs becomes empty.

(*A Knuth-Bendix completion algorithm*)

KnuthBendix[list_] :=

Module[{CP, f},

CP = MakeCriticalPair[list];

f[cp_, l_] :=

If[

cp === {}, l,

If[Order[Normalform[cp[[1]], l]] === {}, f[Rest[cp], l],

f[(Rest[cp]~Join~

MakeNewCriticalPair[l, Order[Normalform[cp[[1]], l]]]),

l~Join~Order[Normalform[cp[[1]], l]]]]

];

f[CP, list]

]

Example 4.5. Let example be a set of string pairs.

example =
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{{"aa", ""}, {"bb", ""}, {"cc", ""}, {"baba", "abab"},

{"cb", "bc"}, {"cac", "aca"}, {"cbaba", "abac"}};

For the set ‘example’, we are able to compute a complete transformation

rule set. The computation time of KnuthBendix[example] take 0.36 second

(Core 2 Duo 2.13 GHz, 4GB).

In[25]:= KnuthBendix[example] // Union

Out[25]= {{"aa", ""}, {"ababc", "caba"}, {"abaca", "bcab"},

{"abcab", "baca"}, {"acaba", "babc"}, {"baba", "abab"},

{"babca", "acab"}, {"bacab", "abca"}, {"bb", ""},

{"bcaba", "abac"}, {"cabab", "abac"}, {"cabac", "abab"},

{"cabc", "acab"}, {"cac", "aca"}, {"cb", "bc"},

{"cbaba", "abac"}, {"cc", ""}}

4.5 Irreduce

In generally, the result of the Knuth-Bendix completion algorithm is not

irreducible. Therefore we apply the function Irreduce[x] to transform the

set to be irreducible.

(*A transformation rule set to an irreducible set*)

Irreduce[list_] := Module[{comp},
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comp[l_] :=

Module[{step1, list2, step2},

step1[pair_] := {pair[[1]],

FixedPoint[StringReplace[pair[[2]], Makerules[list]] &,

pair[[2]]]};

list2 = step1 /@ l;

step2[

pair_] := {FixedPoint[

StringReplace[pair[[1]],

Makerules[Cases[list2, Except[pair]]]] &, pair[[1]]],

pair[[2]]};

DeleteCases[Union[(step2 /@ list2)], {x__, x__}]

];

FixedPoint[comp, list]

]

Example 4.6. A small example of the Knuth-Bendix completion algorithm.

We can reduce the element {cbaba, abac} of the result of KnuthBendix[example].

Since cb→ bc and bcaba→ abac, we have

cbaba→ bcaba→ abac,

and the result is reducible. Therefore we are able to improve the set KnuthBendix[example].
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In[24]:= KnuthBendix[example] // Irreduce

Out[24]= {{"aa", ""}, {"ababc", "caba"}, {"abaca", "bcab"},

{"abcab", "baca"}, {"acaba", "babc"}, {"baba", "abab"},

{"babca", "acab"}, {"bacab", "abca"}, {"bb", ""},

{"bcaba", "abac"}, {"cabab", "abac"}, {"cabac", "abab"},

{"cabc", "acab"}, {"cac", "aca"}, {"cb", "bc"}, {"cc", ""}}

4.6 Cayley graph

We used equations that are introduced by Iwama et. al. to compute com-

plete transformation rule sets. Since there may be other efficient equa-

tions, we considered Cayley graphs to find other possible equations. Cayley

graphs for quantum circuit rewriting systems could be a good hint to find

them. We were able to construct a Cayley graph for a 3 qubits quantum

circuit rewriting system ({a, b, c, d, e, f}, R). The graph shows how circuits

are transformed by CNOT gates. The diameter Dabcdef is 6.

Dabcdef = 6.

The result suppose that the length of normal form is at most 6 for 3 qubits

quantum circuit rewriting system ({a, b, c, d, e, f}, R) in Figure 10. Next we
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Figure 10: The Cayley graph for {a, b, c, d, e, f}

consider another 3 qubits quantum circuit rewriting system ({a, c, d, f}, R)

that uses a different alphabet set. Since b = adad and e = cfcf , the

rewriting system ({a, c, d, f}, R) and ({a, b, c, d, e, f}, R) are equivalent. We

calculate the complete transformation rule set for ({a, c, d, f}, R) in Figure

11.

Eshort = {{"aa", ""}, {"cc", ""}, {"dd", ""}, {"ff", ""},

{"eaea", "f"}, {"dc", "cd"}, {"fa", "af"}, {"cac", "aca"},

{"fdf", "dfd"}, {"dada", "adad"}, {"fcfc", "cfcf"}};
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Figure 11: The Cayley graph for {a, c, d, f}

We calculate the Cayley graph for ({a, c, d, f}, R). The diameter Dacdf is 8.

Dacdf = 8.

The maximum length of normal forms for 3 qubits quantum circuit rewriting

systems are not always same. If we add new quantum gate that are easy to

create, we will construct normal forms that are smaller than previous one.

As a result of our computing of the Cayley graphs we are able to check

transformations that CNOT gates operate each circuits. It is difficult to
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find minimum circuits in the graph. Therefore we computed the shortest

paths of the graph between λ and each vertexes. We show the result of

shortest paths graph for ({a, b, c, d, e, f}, R) and ({a, c, d, f}, R) in Figure

12 and Figure 13, respectively. We are able to check 168 minimum circuits

for each vertexes. The figure shows an example of minimum circuits. A

path from center vertex to a leaf vertex corresponds to a circuits. We note

that a path does not always correspond to an our normal form.
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67



a

f

d
c

f

d
c

a
d

c

a

c

f
d

ad
c

c

f
d

ac
f
d

a
c

fad

d

c

fa
c

ac

fa
d

f
c dc

f
f

f
a
cc

c

fd

f
c

fd

c d

f
a

d

d

f
a

fd

f
ad

d

d

c

c

d

f

ac

a

f d

d
a

c a f

c
a

d

f

d

a
c

c

a

d

a

a

d
cfa

d
a

ca

c

a
c

f

a
c
f

d

a

f

fd
a

a f c

f

f

df

a

f

af

f

a

f

a

c

c

d

f
d

a

d
c

f

f
a

f

f
c

f

c a

d

c

f

f
a

a
f

f

f

a
c

a
c

a f

c

a

Figure 13: The graph of shortest path from λ for ({a, c, d, f}, R)

5 Conclusion & Future Work

We considered rewriting systems in order to reduce the size of quantum cir-

cuits. We compute a set of complete transformation rules using the Knuth-

Bendix completion algorithm. We discovered that the length of the normal

form of w ∈ Σ is at most 6 and the number of |Σ∗/RE2 | is 168.
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We found a minimal equation set E2 of the set of equations E6 such that

|E2| = 8. On the other hand, we were able to construct a set of 8 equations

F2 * E6 such that Σ∗/RE6 = Σ∗/RF2 . At the same time, we do not have

any equation set E such that Σ∗/RE6 = Σ∗/RE and |E| < 8.

In fact, we observed that the calculation time of the Knuth-Bendix com-

pletion algorithm does not necessarily decrease with the size of equation set,

for certain parameters. The computation time of our implementation of the

Knuth-Bendix completion algorithm takes 108 seconds for Eall, 221 seconds

for E6 and 757 seconds for E5 (CPU Intel Xeon W3530 (2.80 GHz), Memory

12 GB). In this paper, we restricted the size of qubits, so as a future work,

Equation set Eall E6 E5

Computation time 108 s 221 s 757 s

we would like to investigate about 4 or more qubits quantum circuits. It is

computationally expensive to run the Knuth-Bendix completion algorithm

for 4 qubits quantum circuit rewriting systems. Our future work includes

finding an efficient initial equation set for this algorithm to improve the

computing cost. The minimal equation set for 3 qubits could be a good hint

to construct an efficient initial equation set for 4 qubits.
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Appendix

We show the reslut KBA(Eall) of Kunth-Bendix algorithm for Eall and the

monoid Σ∗/REall
.

KBA(Eall) = { aa → λ, abcae → caed, abcfbd → beabc, abcfd → fbde, abd → da,

abea → bef , abef → bea, abf → fb, acaed → bcae, acfbd → eabc, ada → bd, adfcb →

dfcd, adfcd → dfcb, aea → ef , aef → ea, afb → bf , ba → ab, bb → λ, bcab → cda, bcaeb

→ afcda, bcaed → acae, bcb → cd, bcd → cb, bceab → adefd, bcead → adefb, bda → ad,

bdea → adef , bdef → adea, bfb → af , bfcb → afcd, bfcd → afcb, cabc → acda, cabeb

→ bebdf , cabed → acabe, cac → aca, cad → bca, caebd → fcda, caeda → fbc, cafc →

acea, cbc → bd, cbd → bc, cbe → bed, cbfc → adea, cc → λ, cdaeb → ebdf , cdaf → bcfb,

cde → ed, cdfc → def , ceabc → acbfd, cebd → deb, ced → de, cef → fc, cfbc → aeda,

cfbde → beabc, cfc → ef , dab → ad, dac → acb, dad → ab, daebd → abceb, daed → abce,

dafcb → bdfcd, dafcd → bdfcb, db → bd, dc → cd, dd → λ, deab → cead, dead → ceab,

debd → ceb, ded → ce, dfb → adf , dfcda → aebdf , eabca → acafd, eabce → bcfbd, eabcf

→ beabc, eabe → befb, eac → acf , eade → afcd, eadf → dfcb, eae → af , eaf → ae, ebc

→ deb, ebde → bceb, ebdfc → bebdf , ebdfd → aebdf , ebe → beb, ebf → aeb, ec → ce, edae

→ bcfb, edaf → cdae, ede, cd, edf → dfc, ee → λ, efbc → cfbd, efbd → aeda, efc → cf ,

fa → af , fbca → caed, fbce → abcf , fbcf → abce, fbdeb → beabc, fbdf → dafd, fbe →

bea, fbf → ab, fca → cae, fcbf → ceab, fcdae → aebdf , fcdf → defd, fce → cf , fcf

→ ce, fda → bfd, fde → cfd, fdf → dfd, fe → ef , ff → λ }
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Σ∗/REall = {λ, a, ab, abc, abca, abcaf , abcafd, abce, abcea, abceb, abcf , abcfb, abe,

abeb, abebd, abebdf , abed, abeda, ac, aca, acab, acabe, acae, acaeb, acaf , acafd, acb, acbf ,

acbfd, acd, acda, acdae, acdf , acdfd, ace, acea, aceab, acead, aceb, acf , acfb, acfd, ad,

ade, adea, adeb, adef , adefb, adefd, adf , adfc, adfd, ae, aeb, aebd, aebdf , aed, aeda, af ,

afc, afcb, afcd, afcda, afd, b, bc, bca, bcae, bcaf , bcafd, bce, bcea, bceb, bcf , bcfb, bcfbd,

bcfd, bd, bde, bdeb, bdf , bdfc, bdfcb, bdfcd, bdfd, be, bea, beab, beabc, bead, beb, bebd, bebdf ,

bed, beda, bef , befb, befd, bf , bfc, bfd, c, ca, cab, cabe, cae, caeb, caed, caf , cafd, cb,

cbf , cbfd, cd, cda, cdae, cdf , cdfd, ce, cea, ceab, cead, ceb, cf , cfb, cfbd, cfd, d, da, dae,

daeb, daf , dafc, dafd, de, dea, deb, def , defb, defd, df , dfc, dfcb, dfcd, dfd, e, ea, eab,

eabc, ead, eb, ebd, ebdf , ed, eda, ef , efb, efd, f , fb, fbc, fbd, fbde, fc, fcb, fcd, fcda,

fd}.
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