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Abstract

In this paper, we consider a matroid generalization of the popular matching problem intro-
duced by Abraham, Irving, Kavitha and Mehlhorn. We present a polynomial-time algorithm
for this problem.

1 Introduction

In this paper, we consider a problem of assigning applicants having preferences to posts. Such
a matching problem naturally arises when a school assigns students to lectures or a firm assigns
workers to tasks. For this matching problem, several solution concepts have been introduced.
The concept of popularity introduced by Gärdenfors [7] is one of such solution concepts. Intu-
itively speaking, popularity of a matching M guarantees that there exists no other matching N
such that more applicants prefer N to M than prefer M to N . Using the concept of popularity,
Abraham, Irving, Kavitha and Mehlhorn [1] introduced the popular matching problem, and
presented a linear-time algorithm for this problem. Several extensions of the popular matching
problem have been investigated. For example, Manlove and Sng [10] considered a many-to-one
variant of the popular matching problem, Mestre [11] considered a weighted variant, and Sng and
Manlove [14] considered a weighted many-to-one variant. Furthermore, in the papers [3, 8, 9],
the authors considered the popular matching problem in which posts also have preferences.

In this paper, we introduce a matroid generalization of the popular matching problem, and
present a polynomial-time algorithm for this problem. Our model can represent the many-to-
one variant of the popular matching problem introduced by Manlove and Sng [10] as a special
case. A matroid generalization of the stable matching problem introduced by Fleiner [4] led
to the discrete-convex generalization of the stable matching problem introduced by Fujishige
and Tamura [6] and the matroid approach to the stable matching problem with lower quotas
presented by Fleiner and Kamiyama [5]. We hope that our abstract model helps further progress
in the field of the popular matching problem.

The rest of this paper is organized as follows. In Section 2, we formally define our problem.
In Section 3, we give a characterization of a popular matching in our problem. In Section 4, we
present our algorithm.

2 Preliminaries

Throughout this paper, let Z+ be the set of non-negative integers. For each subset X and each
element x, we define X + x := X ∪ {x} and X − x := X \ {x}, respectively.

∗This work is partly supported by KAKENHI(25730006).
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An ordered pair M = (U, I) is called a matroid, if U is a finite set and I is a nonempty
family of subsets of U satisfying the following conditions.

(I1) If I ∈ I and J ⊆ I, then J ∈ I.

(I2) If I, J ∈ I and |I| < |J |, then there exists an element u in J \ I with I + u ∈ I

2.1 Problem formulation

Here we define the popular matching problem under matroid constraints (the PMuMC problem
for short).

In the PMuMC problem, we are given a finite simple bipartite graph G = (V,E) in which V
is partitioned into two subsets A,P , and each edge in E connects a vertex in A and a vertex in
P . We call a vertex in A an applicant, and a vertex in P a post. We denote by (a, p) the edge
in E between an applicant a in A and a post p in P . For each vertex v in V and each subset M
of E, we define M(v) as the set of edges in M incident to v.

In addition, we are given an injective function π : E → Z+. That is, π(e) ̸= π(e′) for every
distinct edges e, e′ in E. Intuitively speaking, π represents preference lists of applicants. For
each applicant a in A and each edges e, e′ in E(a), if π(e) > π(e′), then a prefers e to e′. Since
π is injective, it represents “strict” preference lists of applicants. Without loss of generality, we
assume that for each applicant a in A, there exists a post p(a) in P such that E(p(a)) consists of
only (a, p(a)) and π(e) > π((a, p(a))) for every edge e in E(a)− (a, p(a)). Furthermore, for each
post p in P , we are given a matroid Mp = (E(p), Ip). For each applicant a in A, we assume
that {(a, p(a))} ∈ Ip(a). Without loss of generality, we assume that for each applicant a in A,
there exists a post p in P − p(a) such that (a, p) ∈ E and {(a, p)} ∈ Ip.

A subset M of E is called a matching in G, if it satisfies the following two conditions.

• For every applicant a in A, we have |M(a)| = 1.

• For every post p in P , we have M(p) ∈ Ip.

For each matching M in G and each applicant a in A, we denote by µM (a) the unique edge in
M(a). For each matchings M,N in G, we denote by preM (N) the number of applicants a in A
with

π(µN (a)) > π(µM (a)),

i.e., preM (N) represents the number of applicants that prefer N to M . A matching M in G is
said to be popular, if

preN (M) ≥ preM (N)

for every matching N in G. That is, if a matching M in G is popular, then there exists no other
matching N in G such that more applicants in A prefer N to M than prefer M to N . The goal
of the PMuMC problem is to discern whether there exists a popular matching in G, and find it
if one exists.

2.2 Examples

Here we give several examples that can be represented by the PMuMC problem.
We first consider the problem in which for each post p in P , we are given a matroid Mp =

(E(p), Ip) defined by
Ip := {{e} | e ∈ E(p)} ∪ {∅}.
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That is, at most one edge is assigned to each post. This problem is called the popular matching
problem. Abraham, Irving, Kavitha and Mehlhorn [1] introduced this problem, and presented a
linear-time algorithm for this problem. Our algorithm can be regarded as a matroid generaliza-
tion of the algorithm presented in [1].

Next we consider the problem in which we are given a capacity function c : P → Z+ and for
each post p in P , we are given a matroid Mp = (E(p), Ip) defined by

Ip := {E′ ⊆ E(p) | |E′| ≤ c(p)}.

That is, for each p in P , at most c(p) edges are assigned to p. Manlove and Sng [10] introduced
this problem, and presented a polynomial-time algorithm by generalizing the algorithm presented
in [1].

Finally, we consider a variant of the popular matching problem with laminar capacity con-
straints. For each post p in P , we are given a laminar family Cp of subsets of E(p), i.e.,

∀ distinct C1, C2 ∈ Cp : C1 ∩ C2 = ∅, or C1 ⊆ C2, or C2 ⊆ C1.

In addition, for each post p in P , we are given a capacity function cp : Cp → Z+. For each post
p in P , a matroid Mp = (E(p), Ip) is defined by

Ip := {E′ ⊆ E(p) | ∀C ∈ Cp : |E′ ∩ C| ≤ cp(C)}.

It is not difficult to see that Mp is a matroid for every post p in P . A laminar capacity constraint
naturally arises when we assign students to projects (see, e.g., [2]). To the best of our knowledge,
this problem has not been investigated.

2.3 Matroids

Here we give properties of matroids that are used in the sequel.
Let M = (U, I) be a matroid. A subset I in I is called an independent set in M. A subset

C of U is a circuit in M, if C /∈ I, but every proper subset C ′ of C is an independent set in
M. It is known [12, Prop. 1.1.6] that if I is an independent set in M and u is an element in
U \ I with I + u /∈ I, then there exists the unique circuit CM(u, I) in M which is a subset of
I + u, and we have u ∈ CM(u, I). We call CM(u, I) the fundamental circuit of u with respect to
I in M. It is known [12, Ex. 6 in p. 21] that CM(u, I) consists of all elements u′ in I + u with
I + u− u′ ∈ I. For each subset X of U , a subset B of X is called a base of X in M, if B is an
inclusion-wise maximal subset of X that is an independent set in M. We call a base of U in M
a base in M. The condition (I2) implies that for each subset X of U , every two bases of X in M
have the same size, which is called the rank of X in M and denoted by rM(X). It is known [12,
Prop. 1.3.5] that a subset X of U is an independent set in M if and only if |X| = rM(X).

Let M = (U, I) and S be a matroid and a subset of U , respectively. Define

I|S := {X ⊆ S | X ∈ I},

and M|S := (S, I|S). It is not difficult to see that M|S is a matroid. Furthermore, we define a
function r′ : 2U\S → Z+ by

r′(X) := rM(X ∪ S)− rM(S).

In addition, we define
I/S := {X ⊆ U \ S | |X| = r′(X)},

and M/S := (U \ S, I/S). It is known [12, Prop. 3.1.6] that M/S is a matroid.
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Let M1 = (U1, I1) and M2 = (U2, I2) be matroids with U1 ∩ U2 = ∅. Define

I1 ⊕ I2 := {X ⊆ U1 ∪ U2 | X ∩ U1 ∈ I1, X ∩ U2 ∈ I2},

and M1 ⊕M2 := (U1 ∪U2, I1 ⊕I2). It is known [12, Prop. 4.2.12] that M1 ⊕M2 is a matroid,
and called the direct sum of M1 and M2.

Although the following lemma easily follows from well-known facts about matroids, we give
its proof for completeness.

Lemma 1. Let M = (U, I) and S be a matroid and a subset of U , respectively.

1. Let B be an arbitrary base in M|S. For every subset Y of U \ S, Y is an independent set
in M/S if and only if Y ∪B is an independent set in M.

2. For every independent set I in M such that I ∩ S is a base in M|S, I is an independent
set in M|S ⊕M/S.

3. For every independent set I in M|S⊕M/S and every element u in S such that (I+u)∩S
is an independent set in M|S, I + u is an independent set in M|S ⊕M/S.

4. For every independent set I in M|S ⊕M/S, I is an independent set in M.

Proof. 1. Since B is a base in M|S, we have rM(S) = |B|. We first prove that

rM(Y ∪ S) = rM(Y ∪B). (1)

The condition (I2) implies that there exists a base B′ of Y ∪ B in M with B ⊆ B′. Assume
that (1) does not hold, i.e., there exists an independent set I in M such that I ⊆ Y ∪ S and
|B′| < |I|. It follows from the condition (I2) that there exists u in I \ B′ with B′ + u ∈ I. If u
is in Y , then this contradicts the fact that B′ is a base of Y ∪ B in M. Thus, we have u ∈ S.
However, this implies that

|(B′ + u) ∩ S| ≥ |B|+ 1 > |B|,
which contradicts the fact that B is a base of S in M. This completes the proof of (1).

Assume that Y is an independent set in M/S. It follows from (1) that

|Y | = rM(Y ∪ S)− rM(S) = rM(Y ∪B)− |B|,

which implies that |Y ∪B| = rM(Y ∪B). Thus, Y ∪B ∈ I.
Conversely, we assume that Y ∪B is an independent set in M. It follows from (1) that

rM(Y ∪ S)− rM(S) = rM(Y ∪B)− rM(S) = |Y ∪B| − |B| = |Y |,

which implies that Y is an independent set in M/S.
2. It suffices to prove that I \ S ∈ I/S. It follows from (1) that

rM((I \ S) ∪ S)− rM(S) = rM((I \ S) ∪ (I ∩ S))− rM(S)

= rM(I)− rM(S) = |I| − |I ∩ S| = |I \ S|.

This completes the proof.
3. Since u ∈ S, we have (I + u) \ S = I \ S. This completes the proof.
4. Let X and Y be subsets in I|S and I/S, respectively. The condition (I2) implies that

there exists a base B in M|S with X ⊆ B. It follows from (1) that

|Y ∪B| = |Y |+ |B| = rM(Y ∪ S)− rM(S) + rM(S) = rM(Y ∪B),

which implies that Y ∪B ∈ I. Thus, the statement 4 follows from the condition (I1).
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Let M1 = (U, I1) and M2 = (U, I2) be matroids on the same ground set U . A subset I of U
is called a common independent set of M1 and M2, if I ∈ I1∩I2. If I is a common independent
set of M1 and M2 with maximum cardinality, we call I a maximum-size common independent
set of M1 and M2. It is well known that if we can check whether a subset of U belongs to I1 (or
I2) in time bounded by a polynomial in |U |, we can find a maximum-size common independent
set of M1 and M2 in time bounded by a polynomial in |U |. See, e.g., [13, Sect. 41.2] for a survey
of algorithms for finding a maximum-size common independent set.

3 Characterization

For each applicant a in A, we define the f-edge f(a) of a as the unique element in

argmax{π((a, p)) | (a, p) ∈ E(a), {(a, p)} ∈ Ip}.

For each post p in P , we denote by Fp the set of edges (a, p) in E(p) with (a, p) = f(a). For
each applicant a is A, we define the s-edge s(a) of a as the unique edge in

argmax{π((a, p)) | (a, p) ∈ E(a)− f(a), {(a, p)} ∈ Ip/Fp}.

Notice that for each applicant a in A, the s-edge s(a) of a is well-defined because there exists
the post p(a). Define the reduced edge set Ere by

Ere := {f(a), s(a) | a ∈ A}.

The goal of this section is to prove the following Theorem 2. This theorem can be regarded
as a matroid generalization of Theorem 2.5 in [1] and Theorem 1 in [10].

Theorem 2. For every matching M in G, M is popular if and only if it satisfies the following
two conditions.

(P1) For every post p in P , M(p) ∩ Fp is a base in Mp|Fp.

(P2) M is a subset of Ere.

For proving Theorem 2, we prove several lemmas. We first prove lemmas that are necessary
for proving the only if-part.

Lemma 3. Let M be a matching in G. If M is popular, then for every post p in P , M(p)∩ Fp

is a base in Mp|Fp.

Proof. Assume that there exists a post p in P such that M(p) ∩ Fp is not a base in Mp|Fp. It
follows from the condition (I2) that there exists an applicant a in A such that f(a) ∈ Fp \M(p)
and

(M(p) ∩ Fp) + f(a) ∈ Ip|Fp. (2)

If M(p) + f(a) ∈ Ip, then we define

N := M + f(a)− µM (a).

It follows from the condition (I1) thatN is a matching. Furthermore, since π(µN (a)) > π(µM (a))
and N(a′) = M(a′) for every applicant a′ in A− a, we have

preM (N)− preN (M) = 1.
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This contradicts the fact that M is a popular matching in G.
Next we consider the case where M(p)+f(a) /∈ Ip. Let C be the fundamental circuit of f(a)

with respect to M(p) in Mp. It follows from (2) that C contains an edge (b, p) in M(p) \Fp and
we have M(p) + f(a)− (b, p) ∈ Ip. Assume that f(b) = (b, q). Notice that q ̸= p because (b, p)
is not in Fp.

If M(q) + f(b) ∈ Iq, then we define

N := (M \ {µM (a), (b, p)}) ∪ {f(a), f(b)}

(see Figure 1(a)). It follows from the condition (I1) that N is a matching. Since we have

π(µN (a)) > π(µM (a)), π(µN (b)) > π(µM (b)), ∀a′ ∈ A \ {a, b} : N(a′) = M(a′),

we have
preM (N)− preN (M) = 2,

which contradicts the fact that M is a popular matching in G.

µM (a)

a

b

p

q

(a)

µM (a)

a

b

c

p

q

p(c)

(b)

Figure 1: Bold edges are removed and dashed edges are added.

Assume that M(q) + f(b) /∈ Iq. Since {f(b)} is an independent set in Mq, there exists an
edge (c, q) in the fundamental circuit of f(b) with respect to M(q) in Mq such that f(b) ̸= (c, q).
Define

N := (M \ {µM (a), (b, p), (c, q)}) ∪ {f(a), f(b), (c, p(c))}
(see Figure 1(b)). It follows from the condition (I1) that N is a matching. Since we have

π(µN (a)) > π(µM (a)), π(µN (b)) > π(µM (b)), ∀a′ ∈ A \ {a, b, c} : N(a′) = M(a′),

we have
preM (N)− preN (M) = 1,

which contradicts the fact that M is a popular matching in G.

Lemma 4. Let M be a matching in G. If M is popular, then for every post p in P , M(p) does
not contain an edge (a, p) in E(p) with

π(f(a)) > π((a, p)) > π(s(a)).

Proof. Assume that there exists an edge (a, p) in M(p) satisfying the condition in this lemma.
It follows from M(p) ∈ Ip and the condition (I1) that

(M(p) ∩ Fp) + (a, p) ∈ Ip. (3)

Since Lemma 3 implies that M(p) ∩ Fp is a base in Mp|Fp, it follows from the statement 1 of
Lemma 1 that {(a, p)} ∈ Ip/Fp. However, this observation contradicts the definition of s(a),
which completes the proof.
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Lemma 5. Let M be a matching in G. If M is popular, then M is a subset of Ere.

Proof. Assume that there exists an applicant a in A with µM (a) /∈ Ere. Since it follows from the
definition of f(a) that {(a, p′)} is not an independent set in Mp′ for every edge (a, p′) in E(a)
with π((a, p′)) > π(f(a)), Lemma 4 implies that π(µM (a)) < π(s(a)). Assume that s(a) = (a, p).

If M(p) + s(a) ∈ Ip, then we define

N := M + s(a)− µM (a).

It follows from the condition (I1) thatN is a matching. Furthermore, since π(µN (a)) > π(µM (a))
and N(a′) = M(a′) for every applicant a′ in A− a, we have

preM (N)− preN (M) = 1.

This contradicts the fact that M is a popular matching in G.
Next we consider the case where M(p)+ s(a) /∈ Ip. Let C be the fundamental circuit of s(a)

with respect to M(p) in Mp. Since {s(a)} is an independent set in Mp/Fp, Lemma 3 and the
statement 1 of Lemma 1 imply that that

(M(p) ∩ Fp) + s(a) ∈ Ip. (4)

It follows from (4) that C \Fp contains an edge (b, p) with a ̸= b. Assume that f(b) = q. Notice
that p ̸= q follows from (b, p) /∈ Fp.

If M(q) + f(b) ∈ Iq, then we define

N := (M \ {µM (a), (b, q)}) ∪ {s(a), f(b)}.

It follows from the condition (I1) that N is a matching. Since we have

π(µN (a)) > π(µM (a)), π(µN (b)) > π(µM (b)), ∀a′ ∈ A \ {a, b} : N(a′) = M(a′),

we have
preM (N)− preN (M) = 2,

which contradicts the fact that M is a popular matching in G.
Assume that M(q) + f(b) /∈ Iq. Since {f(b)} is an independent set in Mq, there exists an

edge (c, q) in the fundamental circuit of f(b) with respect to M(q) in Mq such that f(b) ̸= (c, q).
Define

N := (M \ {µM (a), (b, p), (c, q)}) ∪ {s(a), f(b), (c, p(c))}.

It follows from the condition (I1) that N is a matching. Since we have

π(µN (a)) > π(µM (a)), π(µN (b)) > π(µM (b)), ∀a′ ∈ A \ {a, b, c} : N(a′) = M(a′),

we have
preM (N)− preN (M) = 1,

which contradicts the fact that M is a popular matching in G.

Next we prove a lemma that is necessary for proving the if-part. For each matching M in G
and each post p in P , we define betM (p) as the set of edges (a, p) in E(p) such that (a, p) ∈ M(p)
and

π(f(a)) > π((a, p)) > π(s(a)).
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Lemma 6. Let M be a matching in G such that for every post p in P , M(p) ∩ Fp is a base in
Mp|Fp. For every matching N in G and every post p in P , we have

|M(p) ∩ Fp| ≥ |N(p) ∩ Fp|+ |betN (p)|.

Proof. Assume that
|M(p) ∩ Fp| < |N(p) ∩ Fp|+ |betN (p)|.

In this case, it follows from the condition (I2) that there exists an edge e in

[(N(p) ∩ Fp) ∪ betN (p)] \ (M(p) ∩ Fp)

with (M(p) ∩ Fp) + e ∈ Ip. If e is in Fp, then this contradicts the fact that M(p) ∩ Fp is a base
in Mp|Fp. Thus, we assume that e is in betN (p). Since M(p)∩Fp is a base in Mp|Fp, it follows
from the statement 1 of Lemma 1 that {e} is in Ip/Fp. However, this observation contradicts
the definition of s(a), which completes the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Since the only if-part follows from Lemmas 3 and 5, we prove the if-part.
Let M be a matching in G satisfying the conditions (P1) and (P2). Let us fix a matching N in
G. Define ∆M and ∆N as the sets of applicants a in A such that

π(µM (a)) > π(µN (a)) and π(µN (a)) > π(µM (a)),

respectively. For proving the if-part, if suffices to prove that |∆M | ≥ |∆N |. For proving this, we
construct an injective function σ : ∆N → ∆M as follows.

Lemma 6 implies that for each post p in P , there exists an injective function φp from

[(N(p) ∩ Fp) ∪ betN (p)] \ (M(p) ∩ Fp) (5)

to
(M(p) ∩ Fp) \ [(N(p) ∩ Fp) ∪ betN (p)].

We construct an injective function σ : ∆N → ∆M by using the injective functions φp for posts p in
P . Let a be an applicant in ∆N . Assume that µN (a) = (a, p). Recall that {(a, p′)} /∈ Ip′ for every
edge (a, p′) in E(a) with π((a, p′)) > π(f(a)). It follows fromM ⊆ Ere and π(µN (a)) > π(µM (a))
that µM (a) = s(a) and µN (a) is in (5). Assume that φp(µN (a)) = (b, p). Since (b, p) is in Fp, b
is in ∆M . Thus, we can define σ(a) := b. Since φp is an injective function for every post p in P
and |M(a′)| = 1 for every applicant a′ in A, σ is also an injective function. This completes the
proof.

4 Algorithm

In this section, we present our algorithm for the PMuMC problem that is called the algorithm
PMuMC. Define a matroid Map = (Ere, Iap) by

Iap := {M ⊆ Ere | ∀p ∈ P : |M(p)| ≤ 1}.

Furthermore, define

Mpo :=
⊕
p∈P

[(Mp|Fp ⊕Mp/Fp)|Ere(p)],

i.e., Mpo is the direct sum of (Mp|Fp ⊕Mp/Fp)|Ere(p) for all posts p in P .
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Lemma 7. Let M be a matching in G. If M is popular, then M is a common independent set
of Map and Mpo.

Proof. Clearly, M is an independent set in Map. It follows from the condition (P2) of Theorem 2
that for every post p in P , M(p) is a subset of Ere(p). Moreover, it follows from the condition
(P1) of Theorem 2 and the statement 2 of Lemma 1 that M(p) is an independent set in Mp|Fp⊕
Mp/Fp for every post p in P , which completes the proof.

The algorithm PMuMC is described as follows.

Algorithm PMuMC

Step 1. Find a maximum-size common independent set M of Map and Mpo.

Step 2. If there exists an applicant a in A with M(a) = ∅, then output null, i.e., there exists
no popular matching in G. Otherwise, i.e., if |M(a)| = 1 for every applicant a in A, then
go to Step 3.

Step 3 Set i := 0, Mi := M , and do the following.

(3-a) If Mi(p) ∩ Fp is a base in Mp|Fp for every post p in P , then go to Step 4.

(3-b) Arbitrarily choose a post p in P such that Mi(p) ∩ Fp is not a base in Mp|Fp, and
find an edge (a, p) in Fp \Mi(p) with Mi(p) + (a, p) ∈ Ip|Fp. Furthermore, set

Mi+1 := Mi + (a, p)− µMi(a).

(3-c) Update i := i+ 1 and go to Step (3-a).

Step 4. Output Mi, i.e., Mi is a popular matching in G.

End of Algorithm

Notice that in Step (3-b), the condition (I2) guarantees that there exists an edge (a, p) in
Fp \Mi(p) with Mi(p)+ (a, p) ∈ Ip|Fp. Moreover, it follows from the following two lemmas that
the algorithm PMuMC is well-defined.

Lemma 8. In Step (3-b), Mi+1 is a common independent set of Map and Mpo.

Proof. It suffices to prove that Mi+1(p) is an independent set in Mp|Fp ⊕Mp/Fp. This follows
from the statement 3 of Lemma 1.

Lemma 9. The number of iterations of Step (3-b) is at most |E|.

Proof. Define δi by

δi :=
∑
p∈P

|Mi(p) ∩ Fp|.

In Step (3-b), we have µMi(a) ̸= f(a), which implies that δi < δi+1. Thus, this lemma follows
from δi ≤ |E|.

We are now ready to prove a main result of this paper.

Theorem 10. The algorithm PMuMC correctly solves the PMuMC problem.
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Proof. Lemma 7 implies that if the algorithm PMuMC outputs null, then there exists no popular
matching in G. Assume that there exists a common independent set M of Map and Mpo such
that |M(a)| = 1 for every applicant a in A. It follows from the statement 4 of Lemmas 1 that
M is a matching. Moreover, Theorem 2 implies that M is a popular matching. This completes
the proof.

Here we analyze the time complexity of the algorithm PMuMC. We assume that for every post
p in P , we can check whether a subset of E(p) belongs to Ip in time bounded by a polynomial
in |E|. Clearly, we can check whether a subset of Fp belongs to Ip|Fp in time bounded by a
polynomial in |E|. Furthermore, the statement 1 of Lemma 1 implies that once we find a base
in Mp|Fp, we can check whether a subset of E(p) \ Fp belongs to Ip/Fp in time bounded by a
polynomial in |E|. Thus, we can check whether a subset of E is an independent set in Mpo in
time bounded by a polynomial in |E|, which implies that we can do Step 1 in time bounded
by a polynomial in |E|. Since the other steps can be done in time bounded by a polynomial in
|E|, the time complexity of the algorithm PMuMC is bounded by a polynomial in |E|.
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with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles
System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma inWeak Commutation Relations of Heisenberg-
Lie Algebra



MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy pro-
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