九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Popular Matchings under Matroid Constraints

Kamiyama，Naoyuki
Institute of Mathematics for Industry，Kyushu University
https：／／hdl．handle．net／2324／1398520

出版情報 ：MI Preprint Series．2014－1，2014－01－06．Faculty of Mathematics，Kyushu University バージョン：
権利関係：

MI Preprint Series

Mathematics for Industry Kyushu University

Popular Matchings under Matroid Constraints

Naoyuki Kamiyama

MI 2014-1
(Received January 6, 2014)

Institute of Mathematics for Industry Graduate School of Mathematics

Kyushu University
Fukuoka, JAPAN

Popular Matchings under Matroid Constraints

Naoyuki Kamiyama*
Institute of Mathematics for Industry, Kyushu University
kamiyama@imi.kyushu-u.ac.jp

Abstract

In this paper, we consider a matroid generalization of the popular matching problem introduced by Abraham, Irving, Kavitha and Mehlhorn. We present a polynomial-time algorithm for this problem

1 Introduction

In this paper, we consider a problem of assigning applicants having preferences to posts. Such a matching problem naturally arises when a school assigns students to lectures or a firm assigns workers to tasks. For this matching problem, several solution concepts have been introduced. The concept of popularity introduced by Gärdenfors [7] is one of such solution concepts. Intuitively speaking, popularity of a matching M guarantees that there exists no other matching N such that more applicants prefer N to M than prefer M to N. Using the concept of popularity, Abraham, Irving, Kavitha and Mehlhorn [1] introduced the popular matching problem, and presented a linear-time algorithm for this problem. Several extensions of the popular matching problem have been investigated. For example, Manlove and Sng [10] considered a many-to-one variant of the popular matching problem, Mestre [11] considered a weighted variant, and Sng and Manlove [14] considered a weighted many-to-one variant. Furthermore, in the papers [3, 8, 9], the authors considered the popular matching problem in which posts also have preferences.

In this paper, we introduce a matroid generalization of the popular matching problem, and present a polynomial-time algorithm for this problem. Our model can represent the many-toone variant of the popular matching problem introduced by Manlove and Sng [10] as a special case. A matroid generalization of the stable matching problem introduced by Fleiner [4] led to the discrete-convex generalization of the stable matching problem introduced by Fujishige and Tamura [6] and the matroid approach to the stable matching problem with lower quotas presented by Fleiner and Kamiyama [5]. We hope that our abstract model helps further progress in the field of the popular matching problem.

The rest of this paper is organized as follows. In Section 2, we formally define our problem. In Section 3, we give a characterization of a popular matching in our problem. In Section 4, we present our algorithm.

2 Preliminaries

Throughout this paper, let \mathbb{Z}_{+}be the set of non-negative integers. For each subset X and each element x, we define $X+x:=X \cup\{x\}$ and $X-x:=X \backslash\{x\}$, respectively.

[^0]An ordered pair $\mathcal{M}=(U, \mathcal{I})$ is called a matroid, if U is a finite set and \mathcal{I} is a nonempty family of subsets of U satisfying the following conditions.
(I1) If $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$.
(I2) If $I, J \in \mathcal{I}$ and $|I|<|J|$, then there exists an element u in $J \backslash I$ with $I+u \in \mathcal{I}$

2.1 Problem formulation

Here we define the popular matching problem under matroid constraints (the PMuMC problem for short).

In the PMuMC problem, we are given a finite simple bipartite graph $G=(V, E)$ in which V is partitioned into two subsets A, P, and each edge in E connects a vertex in A and a vertex in P. We call a vertex in A an applicant, and a vertex in P a post. We denote by (a, p) the edge in E between an applicant a in A and a post p in P. For each vertex v in V and each subset M of E, we define $M(v)$ as the set of edges in M incident to v.

In addition, we are given an injective function $\pi: E \rightarrow \mathbb{Z}_{+}$. That is, $\pi(e) \neq \pi\left(e^{\prime}\right)$ for every distinct edges e, e^{\prime} in E. Intuitively speaking, π represents preference lists of applicants. For each applicant a in A and each edges e, e^{\prime} in $E(a)$, if $\pi(e)>\pi\left(e^{\prime}\right)$, then a prefers e to e^{\prime}. Since π is injective, it represents "strict" preference lists of applicants. Without loss of generality, we assume that for each applicant a in A, there exists a post $p(a)$ in P such that $E(p(a))$ consists of only ($a, p(a)$) and $\pi(e)>\pi((a, p(a)))$ for every edge e in $E(a)-(a, p(a))$. Furthermore, for each post p in P, we are given a matroid $\mathcal{M}_{p}=\left(E(p), \mathcal{I}_{p}\right)$. For each applicant a in A, we assume that $\{(a, p(a))\} \in \mathcal{I}_{p(a)}$. Without loss of generality, we assume that for each applicant a in A, there exists a post p in $P-p(a)$ such that $(a, p) \in E$ and $\{(a, p)\} \in \mathcal{I}_{p}$.

A subset M of E is called a matching in G, if it satisfies the following two conditions.

- For every applicant a in A, we have $|M(a)|=1$.
- For every post p in P, we have $M(p) \in \mathcal{I}_{p}$.

For each matching M in G and each applicant a in A, we denote by $\mu_{M}(a)$ the unique edge in $M(a)$. For each matchings M, N in G, we denote by $\operatorname{pre}_{M}(N)$ the number of applicants a in A with

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right),
$$

i.e., $\operatorname{pre}_{M}(N)$ represents the number of applicants that prefer N to M. A matching M in G is said to be popular, if

$$
\operatorname{pre}_{N}(M) \geq \operatorname{pre}_{M}(N)
$$

for every matching N in G. That is, if a matching M in G is popular, then there exists no other matching N in G such that more applicants in A prefer N to M than prefer M to N. The goal of the PMuMC problem is to discern whether there exists a popular matching in G, and find it if one exists.

2.2 Examples

Here we give several examples that can be represented by the PMuMC problem.
We first consider the problem in which for each post p in P, we are given a matroid $\mathcal{M}_{p}=$ $\left(E(p), \mathcal{I}_{p}\right)$ defined by

$$
\mathcal{I}_{p}:=\{\{e\} \mid e \in E(p)\} \cup\{\emptyset\} .
$$

That is, at most one edge is assigned to each post. This problem is called the popular matching problem. Abraham, Irving, Kavitha and Mehlhorn [1] introduced this problem, and presented a linear-time algorithm for this problem. Our algorithm can be regarded as a matroid generalization of the algorithm presented in [1].

Next we consider the problem in which we are given a capacity function $c: P \rightarrow \mathbb{Z}_{+}$and for each post p in P, we are given a matroid $\mathcal{M}_{p}=\left(E(p), \mathcal{I}_{p}\right)$ defined by

$$
\mathcal{I}_{p}:=\left\{E^{\prime} \subseteq E(p)| | E^{\prime} \mid \leq c(p)\right\} .
$$

That is, for each p in P, at most $c(p)$ edges are assigned to p. Manlove and Sng [10] introduced this problem, and presented a polynomial-time algorithm by generalizing the algorithm presented in [1].

Finally, we consider a variant of the popular matching problem with laminar capacity constraints. For each post p in P, we are given a laminar family \mathcal{C}_{p} of subsets of $E(p)$, i.e.,

$$
\forall \text { distinct } C_{1}, C_{2} \in \mathcal{C}_{p}: C_{1} \cap C_{2}=\emptyset \text {, or } C_{1} \subseteq C_{2} \text {, or } C_{2} \subseteq C_{1} \text {. }
$$

In addition, for each post p in P, we are given a capacity function $c_{p}: \mathcal{C}_{p} \rightarrow \mathbb{Z}_{+}$. For each post p in P, a matroid $\mathcal{M}_{p}=\left(E(p), \mathcal{I}_{p}\right)$ is defined by

$$
\mathcal{I}_{p}:=\left\{E^{\prime} \subseteq E(p)\left|\forall C \in \mathcal{C}_{p}:\left|E^{\prime} \cap C\right| \leq c_{p}(C)\right\} .\right.
$$

It is not difficult to see that \mathcal{M}_{p} is a matroid for every post p in P. A laminar capacity constraint naturally arises when we assign students to projects (see, e.g., [2]). To the best of our knowledge, this problem has not been investigated.

2.3 Matroids

Here we give properties of matroids that are used in the sequel.
Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid. A subset I in \mathcal{I} is called an independent set in \mathcal{M}. A subset C of U is a circuit in \mathcal{M}, if $C \notin \mathcal{I}$, but every proper subset C^{\prime} of C is an independent set in \mathcal{M}. It is known [12, Prop.1.1.6] that if I is an independent set in \mathcal{M} and u is an element in $U \backslash I$ with $I+u \notin \mathcal{I}$, then there exists the unique circuit $C_{\mathcal{M}}(u, I)$ in \mathcal{M} which is a subset of $I+u$, and we have $u \in C_{\mathcal{M}}(u, I)$. We call $C_{\mathcal{M}}(u, I)$ the fundamental circuit of u with respect to I in \mathcal{M}. It is known [12, Ex. 6 in p. 21] that $C_{\mathcal{M}}(u, I)$ consists of all elements u^{\prime} in $I+u$ with $I+u-u^{\prime} \in \mathcal{I}$. For each subset X of U, a subset B of X is called a base of X in \mathcal{M}, if B is an inclusion-wise maximal subset of X that is an independent set in \mathcal{M}. We call a base of U in \mathcal{M} a base in \mathcal{M}. The condition (I2) implies that for each subset X of U, every two bases of X in \mathcal{M} have the same size, which is called the rank of X in \mathcal{M} and denoted by $r_{\mathcal{M}}(X)$. It is known [12, Prop. 1.3.5] that a subset X of U is an independent set in \mathcal{M} if and only if $|X|=r_{\mathcal{M}}(X)$.

Let $\mathcal{M}=(U, \mathcal{I})$ and S be a matroid and a subset of U, respectively. Define

$$
\mathcal{I} \mid S:=\{X \subseteq S \mid X \in \mathcal{I}\},
$$

and $\mathcal{M} \mid S:=(S, \mathcal{I} \mid S)$. It is not difficult to see that $\mathcal{M} \mid S$ is a matroid. Furthermore, we define a function $r^{\prime}: 2^{U \backslash S} \rightarrow \mathbb{Z}_{+}$by

$$
r^{\prime}(X):=r_{\mathcal{M}}(X \cup S)-r_{\mathcal{M}}(S)
$$

In addition, we define

$$
\mathcal{I} / S:=\left\{X \subseteq U \backslash S| | X \mid=r^{\prime}(X)\right\}
$$

and $\mathcal{M} / S:=(U \backslash S, \mathcal{I} / S)$. It is known [12, Prop. 3.1.6] that \mathcal{M} / S is a matroid.

Let $\mathcal{M}_{1}=\left(U_{1}, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U_{2}, \mathcal{I}_{2}\right)$ be matroids with $U_{1} \cap U_{2}=\emptyset$. Define

$$
\mathcal{I}_{1} \oplus \mathcal{I}_{2}:=\left\{X \subseteq U_{1} \cup U_{2} \mid X \cap U_{1} \in \mathcal{I}_{1}, \quad X \cap U_{2} \in \mathcal{I}_{2}\right\}
$$

and $\mathcal{M}_{1} \oplus \mathcal{M}_{2}:=\left(U_{1} \cup U_{2}, \mathcal{I}_{1} \oplus \mathcal{I}_{2}\right)$. It is known [12, Prop. 4.2.12] that $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$ is a matroid, and called the direct sum of \mathcal{M}_{1} and \mathcal{M}_{2}.

Although the following lemma easily follows from well-known facts about matroids, we give its proof for completeness.

Lemma 1. Let $\mathcal{M}=(U, \mathcal{I})$ and S be a matroid and a subset of U, respectively.

1. Let B be an arbitrary base in $\mathcal{M} \mid S$. For every subset Y of $U \backslash S, Y$ is an independent set in \mathcal{M} / S if and only if $Y \cup B$ is an independent set in \mathcal{M}.
2. For every independent set I in \mathcal{M} such that $I \cap S$ is a base in $\mathcal{M} \mid S$, I is an independent set in $\mathcal{M} \mid S \oplus \mathcal{M} / S$.
3. For every independent set I in $\mathcal{M} \mid S \oplus \mathcal{M} / S$ and every element u in S such that $(I+u) \cap S$ is an independent set in $\mathcal{M} \mid S, I+u$ is an independent set in $\mathcal{M} \mid S \oplus \mathcal{M} / S$.
4. For every independent set I in $\mathcal{M} \mid S \oplus \mathcal{M} / S, I$ is an independent set in \mathcal{M}.

Proof. 1. Since B is a base in $\mathcal{M} \mid S$, we have $r_{\mathcal{M}}(S)=|B|$. We first prove that

$$
\begin{equation*}
r_{\mathcal{M}}(Y \cup S)=r_{\mathcal{M}}(Y \cup B) \tag{1}
\end{equation*}
$$

The condition (I2) implies that there exists a base B^{\prime} of $Y \cup B$ in \mathcal{M} with $B \subseteq B^{\prime}$. Assume that (1) does not hold, i.e., there exists an independent set I in \mathcal{M} such that $I \subseteq Y \cup S$ and $\left|B^{\prime}\right|<|I|$. It follows from the condition (I2) that there exists u in $I \backslash B^{\prime}$ with $B^{\prime}+u \in \mathcal{I}$. If u is in Y, then this contradicts the fact that B^{\prime} is a base of $Y \cup B$ in \mathcal{M}. Thus, we have $u \in S$. However, this implies that

$$
\left|\left(B^{\prime}+u\right) \cap S\right| \geq|B|+1>|B|,
$$

which contradicts the fact that B is a base of S in \mathcal{M}. This completes the proof of (1).
Assume that Y is an independent set in \mathcal{M} / S. It follows from (1) that

$$
|Y|=r_{\mathcal{M}}(Y \cup S)-r_{\mathcal{M}}(S)=r_{\mathcal{M}}(Y \cup B)-|B|
$$

which implies that $|Y \cup B|=r_{\mathcal{M}}(Y \cup B)$. Thus, $Y \cup B \in \mathcal{I}$.
Conversely, we assume that $Y \cup B$ is an independent set in \mathcal{M}. It follows from (1) that

$$
r_{\mathcal{M}}(Y \cup S)-r_{\mathcal{M}}(S)=r_{\mathcal{M}}(Y \cup B)-r_{\mathcal{M}}(S)=|Y \cup B|-|B|=|Y|
$$

which implies that Y is an independent set in \mathcal{M} / S.
2. It suffices to prove that $I \backslash S \in \mathcal{I} / S$. It follows from (1) that

$$
\begin{aligned}
r_{\mathcal{M}}((I \backslash S) \cup S)-r_{\mathcal{M}}(S) & =r_{\mathcal{M}}((I \backslash S) \cup(I \cap S))-r_{\mathcal{M}}(S) \\
& =r_{\mathcal{M}}(I)-r_{\mathcal{M}}(S)=|I|-|I \cap S|=|I \backslash S|
\end{aligned}
$$

This completes the proof.
3. Since $u \in S$, we have $(I+u) \backslash S=I \backslash S$. This completes the proof.
4. Let X and Y be subsets in $\mathcal{I} \mid S$ and \mathcal{I} / S, respectively. The condition (I2) implies that there exists a base B in $\mathcal{M} \mid S$ with $X \subseteq B$. It follows from (1) that

$$
|Y \cup B|=|Y|+|B|=r_{\mathcal{M}}(Y \cup S)-r_{\mathcal{M}}(S)+r_{\mathcal{M}}(S)=r_{\mathcal{M}}(Y \cup B)
$$

which implies that $Y \cup B \in \mathcal{I}$. Thus, the statement 4 follows from the condition (I1).

Let $\mathcal{M}_{1}=\left(U, \mathcal{I}_{1}\right)$ and $\mathcal{M}_{2}=\left(U, \mathcal{I}_{2}\right)$ be matroids on the same ground set U. A subset I of U is called a common independent set of \mathcal{M}_{1} and \mathcal{M}_{2}, if $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. If I is a common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} with maximum cardinality, we call I a maximum-size common independent set of \mathcal{M}_{1} and \mathcal{M}_{2}. It is well known that if we can check whether a subset of U belongs to \mathcal{I}_{1} (or \mathcal{I}_{2}) in time bounded by a polynomial in $|U|$, we can find a maximum-size common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} in time bounded by a polynomial in $|U|$. See, e.g., [13, Sect. 41.2] for a survey of algorithms for finding a maximum-size common independent set.

3 Characterization

For each applicant a in A, we define the f-edge $f(a)$ of a as the unique element in

$$
\arg \max \left\{\pi((a, p)) \mid(a, p) \in E(a),\{(a, p)\} \in \mathcal{I}_{p}\right\}
$$

For each post p in P, we denote by F_{p} the set of edges (a, p) in $E(p)$ with $(a, p)=f(a)$. For each applicant a is A, we define the s-edge $s(a)$ of a as the unique edge in

$$
\arg \max \left\{\pi((a, p)) \mid(a, p) \in E(a)-f(a),\{(a, p)\} \in \mathcal{I}_{p} / F_{p}\right\}
$$

Notice that for each applicant a in A, the s-edge $s(a)$ of a is well-defined because there exists the post $p(a)$. Define the reduced edge set E_{re} by

$$
E_{\mathrm{re}}:=\{f(a), s(a) \mid a \in A\} .
$$

The goal of this section is to prove the following Theorem 2. This theorem can be regarded as a matroid generalization of Theorem 2.5 in [1] and Theorem 1 in [10].

Theorem 2. For every matching M in G, M is popular if and only if it satisfies the following two conditions.
(P1) For every post p in $P, M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$.
(P2) M is a subset of E_{re}.
For proving Theorem 2, we prove several lemmas. We first prove lemmas that are necessary for proving the only if-part.

Lemma 3. Let M be a matching in G. If M is popular, then for every post p in $P, M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$.

Proof. Assume that there exists a post p in P such that $M(p) \cap F_{p}$ is not a base in $\mathcal{M}_{p} \mid F_{p}$. It follows from the condition (I2) that there exists an applicant a in A such that $f(a) \in F_{p} \backslash M(p)$ and

$$
\begin{equation*}
\left(M(p) \cap F_{p}\right)+f(a) \in \mathcal{I}_{p} \mid F_{p} . \tag{2}
\end{equation*}
$$

If $M(p)+f(a) \in \mathcal{I}_{p}$, then we define

$$
N:=M+f(a)-\mu_{M}(a) .
$$

It follows from the condition (I1) that N is a matching. Furthermore, since $\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right)$ and $N\left(a^{\prime}\right)=M\left(a^{\prime}\right)$ for every applicant a^{\prime} in $A-a$, we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=1
$$

This contradicts the fact that M is a popular matching in G.
Next we consider the case where $M(p)+f(a) \notin \mathcal{I}_{p}$. Let C be the fundamental circuit of $f(a)$ with respect to $M(p)$ in \mathcal{M}_{p}. It follows from (2) that C contains an edge (b, p) in $M(p) \backslash F_{p}$ and we have $M(p)+f(a)-(b, p) \in \mathcal{I}_{p}$. Assume that $f(b)=(b, q)$. Notice that $q \neq p$ because (b, p) is not in F_{p}.

If $M(q)+f(b) \in \mathcal{I}_{q}$, then we define

$$
N:=\left(M \backslash\left\{\mu_{M}(a),(b, p)\right\}\right) \cup\{f(a), f(b)\}
$$

(see Figure 1(a)). It follows from the condition (I1) that N is a matching. Since we have

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right), \quad \pi\left(\mu_{N}(b)\right)>\pi\left(\mu_{M}(b)\right), \quad \forall a^{\prime} \in A \backslash\{a, b\}: N\left(a^{\prime}\right)=M\left(a^{\prime}\right),
$$

we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=2,
$$

which contradicts the fact that M is a popular matching in G.

Figure 1: Bold edges are removed and dashed edges are added.
Assume that $M(q)+f(b) \notin \mathcal{I}_{q}$. Since $\{f(b)\}$ is an independent set in \mathcal{M}_{q}, there exists an edge (c, q) in the fundamental circuit of $f(b)$ with respect to $M(q)$ in \mathcal{M}_{q} such that $f(b) \neq(c, q)$. Define

$$
N:=\left(M \backslash\left\{\mu_{M}(a),(b, p),(c, q)\right\}\right) \cup\{f(a), f(b),(c, p(c))\}
$$

(see Figure 1(b)). It follows from the condition (I1) that N is a matching. Since we have

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right), \quad \pi\left(\mu_{N}(b)\right)>\pi\left(\mu_{M}(b)\right), \quad \forall a^{\prime} \in A \backslash\{a, b, c\}: \quad N\left(a^{\prime}\right)=M\left(a^{\prime}\right)
$$

we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=1,
$$

which contradicts the fact that M is a popular matching in G.
Lemma 4. Let M be a matching in G. If M is popular, then for every post p in $P, M(p)$ does not contain an edge (a, p) in $E(p)$ with

$$
\pi(f(a))>\pi((a, p))>\pi(s(a)) .
$$

Proof. Assume that there exists an edge (a, p) in $M(p)$ satisfying the condition in this lemma. It follows from $M(p) \in \mathcal{I}_{p}$ and the condition (I1) that

$$
\begin{equation*}
\left(M(p) \cap F_{p}\right)+(a, p) \in \mathcal{I}_{p} . \tag{3}
\end{equation*}
$$

Since Lemma 3 implies that $M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$, it follows from the statement 1 of Lemma 1 that $\{(a, p)\} \in \mathcal{I}_{p} / F_{p}$. However, this observation contradicts the definition of $s(a)$, which completes the proof.

Lemma 5. Let M be a matching in G. If M is popular, then M is a subset of E_{re}.
Proof. Assume that there exists an applicant a in A with $\mu_{M}(a) \notin E_{\mathrm{re}}$. Since it follows from the definition of $f(a)$ that $\left\{\left(a, p^{\prime}\right)\right\}$ is not an independent set in $\mathcal{M}_{p^{\prime}}$ for every edge $\left(a, p^{\prime}\right)$ in $E(a)$ with $\pi\left(\left(a, p^{\prime}\right)\right)>\pi(f(a))$, Lemma 4 implies that $\pi\left(\mu_{M}(a)\right)<\pi(s(a))$. Assume that $s(a)=(a, p)$.

If $M(p)+s(a) \in \mathcal{I}_{p}$, then we define

$$
N:=M+s(a)-\mu_{M}(a)
$$

It follows from the condition (I1) that N is a matching. Furthermore, since $\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right)$ and $N\left(a^{\prime}\right)=M\left(a^{\prime}\right)$ for every applicant a^{\prime} in $A-a$, we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=1
$$

This contradicts the fact that M is a popular matching in G.
Next we consider the case where $M(p)+s(a) \notin \mathcal{I}_{p}$. Let C be the fundamental circuit of $s(a)$ with respect to $M(p)$ in \mathcal{M}_{p}. Since $\{s(a)\}$ is an independent set in \mathcal{M}_{p} / F_{p}, Lemma 3 and the statement 1 of Lemma 1 imply that that

$$
\begin{equation*}
\left(M(p) \cap F_{p}\right)+s(a) \in \mathcal{I}_{p} . \tag{4}
\end{equation*}
$$

It follows from (4) that $C \backslash F_{p}$ contains an edge (b, p) with $a \neq b$. Assume that $f(b)=q$. Notice that $p \neq q$ follows from $(b, p) \notin F_{p}$.

If $M(q)+f(b) \in \mathcal{I}_{q}$, then we define

$$
N:=\left(M \backslash\left\{\mu_{M}(a),(b, q)\right\}\right) \cup\{s(a), f(b)\}
$$

It follows from the condition (I1) that N is a matching. Since we have

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right), \quad \pi\left(\mu_{N}(b)\right)>\pi\left(\mu_{M}(b)\right), \quad \forall a^{\prime} \in A \backslash\{a, b\}: N\left(a^{\prime}\right)=M\left(a^{\prime}\right)
$$

we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=2
$$

which contradicts the fact that M is a popular matching in G.
Assume that $M(q)+f(b) \notin \mathcal{I}_{q}$. Since $\{f(b)\}$ is an independent set in \mathcal{M}_{q}, there exists an edge (c, q) in the fundamental circuit of $f(b)$ with respect to $M(q)$ in \mathcal{M}_{q} such that $f(b) \neq(c, q)$. Define

$$
N:=\left(M \backslash\left\{\mu_{M}(a),(b, p),(c, q)\right\}\right) \cup\{s(a), f(b),(c, p(c))\}
$$

It follows from the condition (I1) that N is a matching. Since we have

$$
\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right), \quad \pi\left(\mu_{N}(b)\right)>\pi\left(\mu_{M}(b)\right), \quad \forall a^{\prime} \in A \backslash\{a, b, c\}: N\left(a^{\prime}\right)=M\left(a^{\prime}\right)
$$

we have

$$
\operatorname{pre}_{M}(N)-\operatorname{pre}_{N}(M)=1
$$

which contradicts the fact that M is a popular matching in G.
Next we prove a lemma that is necessary for proving the $i f$-part. For each matching M in G and each post p in P, we $\operatorname{definet}_{M}(p)$ as the set of edges (a, p) in $E(p)$ such that $(a, p) \in M(p)$ and

$$
\pi(f(a))>\pi((a, p))>\pi(s(a))
$$

Lemma 6. Let M be a matching in G such that for every post p in $P, M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$. For every matching N in G and every post p in P, we have

$$
\left|M(p) \cap F_{p}\right| \geq\left|N(p) \cap F_{p}\right|+\left|\operatorname{bet}_{N}(p)\right| .
$$

Proof. Assume that

$$
\left|M(p) \cap F_{p}\right|<\left|N(p) \cap F_{p}\right|+\left|\operatorname{bet}_{N}(p)\right| .
$$

In this case, it follows from the condition (I2) that there exists an edge e in

$$
\left[\left(N(p) \cap F_{p}\right) \cup \operatorname{bet}_{N}(p)\right] \backslash\left(M(p) \cap F_{p}\right)
$$

with $\left(M(p) \cap F_{p}\right)+e \in \mathcal{I}_{p}$. If e is in F_{p}, then this contradicts the fact that $M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$. Thus, we assume that e is in bet ${ }_{N}(p)$. Since $M(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$, it follows from the statement 1 of Lemma 1 that $\{e\}$ is in \mathcal{I}_{p} / F_{p}. However, this observation contradicts the definition of $s(a)$, which completes the proof.

We are now ready to prove Theorem 2.
Proof of Theorem 2. Since the only if-part follows from Lemmas 3 and 5, we prove the $i f$-part. Let M be a matching in G satisfying the conditions (P1) and (P2). Let us fix a matching N in G. Define Δ_{M} and Δ_{N} as the sets of applicants a in A such that

$$
\pi\left(\mu_{M}(a)\right)>\pi\left(\mu_{N}(a)\right) \text { and } \pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right),
$$

respectively. For proving the $i f$-part, if suffices to prove that $\left|\Delta_{M}\right| \geq\left|\Delta_{N}\right|$. For proving this, we construct an injective function $\sigma: \Delta_{N} \rightarrow \Delta_{M}$ as follows.

Lemma 6 implies that for each post p in P, there exists an injective function φ_{p} from

$$
\begin{equation*}
\left[\left(N(p) \cap F_{p}\right) \cup \operatorname{bet}_{N}(p)\right] \backslash\left(M(p) \cap F_{p}\right) \tag{5}
\end{equation*}
$$

to

$$
\left(M(p) \cap F_{p}\right) \backslash\left[\left(N(p) \cap F_{p}\right) \cup \operatorname{bet}_{N}(p)\right] .
$$

We construct an injective function $\sigma: \Delta_{N} \rightarrow \Delta_{M}$ by using the injective functions φ_{p} for posts p in P. Let a be an applicant in Δ_{N}. Assume that $\mu_{N}(a)=(a, p)$. Recall that $\left\{\left(a, p^{\prime}\right)\right\} \notin \mathcal{I}_{p^{\prime}}$ for every edge $\left(a, p^{\prime}\right)$ in $E(a)$ with $\pi\left(\left(a, p^{\prime}\right)\right)>\pi(f(a))$. It follows from $M \subseteq E_{\text {re }}$ and $\pi\left(\mu_{N}(a)\right)>\pi\left(\mu_{M}(a)\right)$ that $\mu_{M}(a)=s(a)$ and $\mu_{N}(a)$ is in (5). Assume that $\varphi_{p}\left(\mu_{N}(a)\right)=(b, p)$. Since (b, p) is in F_{p}, b is in Δ_{M}. Thus, we can define $\sigma(a):=b$. Since φ_{p} is an injective function for every post p in P and $\left|M\left(a^{\prime}\right)\right|=1$ for every applicant a^{\prime} in A, σ is also an injective function. This completes the proof.

4 Algorithm

In this section, we present our algorithm for the PMuMC problem that is called the algorithm PMuMC. Define a matroid $\mathcal{M}_{\mathrm{ap}}=\left(E_{\mathrm{re}}, \mathcal{I}_{\mathrm{ap}}\right)$ by

$$
\mathcal{I}_{\mathrm{ap}}:=\left\{M \subseteq E_{\mathrm{re}}|\forall p \in P:|M(p)| \leq 1\} .\right.
$$

Furthermore, define

$$
\mathcal{M}_{\mathrm{po}}:=\bigoplus_{p \in P}\left[\left(\mathcal{M}_{p} \mid F_{p} \oplus \mathcal{M}_{p} / F_{p}\right) \mid E_{\mathrm{re}}(p)\right],
$$

i.e., $\mathcal{M}_{\mathrm{po}}$ is the direct sum of $\left(\mathcal{M}_{p} \mid F_{p} \oplus \mathcal{M}_{p} / F_{p}\right) \mid E_{\mathrm{re}}(p)$ for all posts p in P.

Lemma 7. Let M be a matching in G. If M is popular, then M is a common independent set of $\mathcal{M}_{\mathrm{ap}}$ and $\mathcal{M}_{\mathrm{po}}$.

Proof. Clearly, M is an independent set in $\mathcal{M}_{\mathrm{ap}}$. It follows from the condition (P2) of Theorem 2 that for every post p in $P, M(p)$ is a subset of $E_{\mathrm{re}}(p)$. Moreover, it follows from the condition (P1) of Theorem 2 and the statement 2 of Lemma 1 that $M(p)$ is an independent set in $\mathcal{M}_{p} \mid F_{p} \oplus$ \mathcal{M}_{p} / F_{p} for every post p in P, which completes the proof.

The algorithm PMuMC is described as follows.

Algorithm PMuMC

Step 1. Find a maximum-size common independent set M of $\mathcal{M}_{\mathrm{ap}}$ and $\mathcal{M}_{\mathrm{po}}$.
Step 2. If there exists an applicant a in A with $M(a)=\emptyset$, then output null, i.e., there exists no popular matching in G. Otherwise, i.e., if $|M(a)|=1$ for every applicant a in A, then go to Step 3.

Step 3 Set $i:=0, M_{i}:=M$, and do the following.
(3-a) If $M_{i}(p) \cap F_{p}$ is a base in $\mathcal{M}_{p} \mid F_{p}$ for every post p in P, then go to Step 4.
(3-b) Arbitrarily choose a post p in P such that $M_{i}(p) \cap F_{p}$ is not a base in $\mathcal{M}_{p} \mid F_{p}$, and find an edge (a, p) in $F_{p} \backslash M_{i}(p)$ with $M_{i}(p)+(a, p) \in \mathcal{I}_{p} \mid F_{p}$. Furthermore, set

$$
M_{i+1}:=M_{i}+(a, p)-\mu_{M_{i}}(a)
$$

(3-c) Update $i:=i+1$ and go to Step (3-a).
Step 4. Output M_{i}, i.e., M_{i} is a popular matching in G.

End of Algorithm

Notice that in Step (3-b), the condition (I2) guarantees that there exists an edge (a, p) in $F_{p} \backslash M_{i}(p)$ with $M_{i}(p)+(a, p) \in \mathcal{I}_{p} \mid F_{p}$. Moreover, it follows from the following two lemmas that the algorithm PMuMC is well-defined.

Lemma 8. In Step (3-b), M_{i+1} is a common independent set of $\mathcal{M}_{\mathrm{ap}}$ and $\mathcal{M}_{\mathrm{po}}$.
Proof. It suffices to prove that $M_{i+1}(p)$ is an independent set in $\mathcal{M}_{p} \mid F_{p} \oplus \mathcal{M}_{p} / F_{p}$. This follows from the statement 3 of Lemma 1.

Lemma 9. The number of iterations of Step (3-b) is at most $|E|$.
Proof. Define δ_{i} by

$$
\delta_{i}:=\sum_{p \in P}\left|M_{i}(p) \cap F_{p}\right|
$$

In Step (3-b), we have $\mu_{M_{i}}(a) \neq f(a)$, which implies that $\delta_{i}<\delta_{i+1}$. Thus, this lemma follows from $\delta_{i} \leq|E|$.

We are now ready to prove a main result of this paper.
Theorem 10. The algorithm PMuMC correctly solves the PMuMC problem.

Proof. Lemma 7 implies that if the algorithm PMuMC outputs null, then there exists no popular matching in G. Assume that there exists a common independent set M of $\mathcal{M}_{\mathrm{ap}}$ and $\mathcal{M}_{\mathrm{po}}$ such that $|M(a)|=1$ for every applicant a in A. It follows from the statement 4 of Lemmas 1 that M is a matching. Moreover, Theorem 2 implies that M is a popular matching. This completes the proof.

Here we analyze the time complexity of the algorithm PMuMC. We assume that for every post p in P, we can check whether a subset of $E(p)$ belongs to \mathcal{I}_{p} in time bounded by a polynomial in $|E|$. Clearly, we can check whether a subset of F_{p} belongs to $\mathcal{I}_{p} \mid F_{p}$ in time bounded by a polynomial in $|E|$. Furthermore, the statement 1 of Lemma 1 implies that once we find a base in $\mathcal{M}_{p} \mid F_{p}$, we can check whether a subset of $E(p) \backslash F_{p}$ belongs to \mathcal{I}_{p} / F_{p} in time bounded by a polynomial in $|E|$. Thus, we can check whether a subset of E is an independent set in $\mathcal{M}_{\mathrm{po}}$ in time bounded by a polynomial in $|E|$, which implies that we can do Step 1 in time bounded by a polynomial in $|E|$. Since the other steps can be done in time bounded by a polynomial in $|E|$, the time complexity of the algorithm PMuMC is bounded by a polynomial in $|E|$.

References

[1] D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM Journal on Computing, 37(4):1030-1045, 2007.
[2] P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove. The college admissions problem with lower and common quotas. Theoretical Computer Science, 411(34-36):3136-3153, 2010.
[3] P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates problems. In Proceedings of the 7th International Conference on Algorithms and Complexity, volume 6078 of Lecture Notes in Computer Science, pages 97-108, 2010.
[4] T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of Operations Research, 28(1):103-126, 2003.
[5] T. Fleiner and N. Kamiyama. A matroid approach to stable matchings with lower quotas. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 135-142, 2012.
[6] S. Fujishige and A. Tamura. A two-sided discrete-concave market with possibly bounded side payments: An approach by discrete convex analysis. Mathematics of Operations Research, 32(1):136-155, 2007.
[7] P. Gärdenfors. Match making: Assignments based on bilateral preferences. Behavioral Science, 20(3):166-173, 1975.
[8] C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information and Computation, 222:180-194, 2013.
[9] T. Kavitha. Popularity vs maximum cardinality in the stable marriage setting. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 123-134, 2012.
[10] D. F. Manlove and C. T. S. Sng. Popular matchings in the capacitated house allocation problem. In Proceedings of the 14 th Annual European Symposium on Algorithms, volume 4168 of Lecture Notes in Computer Science, pages 492-503, 2006.
[11] J. Mestre. Weighted popular matchings. In Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, volume 4051 of Lecture Notes in Computer Science, pages 715-726, 2006.
[12] J. G. Oxley. Matroid theory. Oxford University Press, 2nd edition, 2011.
[13] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.
[14] C. T. S. Sng and D. F. Manlove. Popular matchings in the weighted capacitated house allocation problem. Journal of Discrete Algorithms, 8(2):102-116, 2010.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings
MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations
MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

[^1]
MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing
MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization
MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks
MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun's differential equations, eigenstates degeneration, and Rabi's model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible NavierStokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA \& Sadanori KONISHI Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space
MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties
MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression
MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints

[^0]: *This work is partly supported by KAKENHI(25730006).

[^1]: MI2010-24 Toshimitsu TAKAESU
 A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

