The Fault－Tolerant Facility Location Problem with Submodular Penalties

Kamiyama，Naoyuki
Institute of Mathematics for Industry，Kyushu University
https：／／hdl．handle．net／2324／1398518

出版情報：MI Preprint Series．2013－15，2013－12－08．Faculty of Mathematics，Kyushu University バージョン：
権利関係：

MI Preprint Series

Mathematics for Industry Kyushu University

The Fault-Tolerant Facility Location Problem with Submodular Penalties

Naoyuki Kamiyama

MI 2013-15

(Received December 8, 2013)

Institute of Mathematics for Industry
Graduate School of Mathematics
Kyushu University
Fukuoka, JAPAN

The Fault-Tolerant Facility Location Problem with Submodular Penalties

Naoyuki Kamiyama*
Institute of Mathematics for Industry, Kyushu University
kamiyama@imi.kyushu-u.ac.jp

Abstract

In this paper, we consider the fault-tolerant facility location problem with submodular penalties that is a common generalization of the fault-tolerant facility location problem and the facility location problem with submodular penalties. For this problem, we present a combinatorial $3 \cdot H_{R}$-approximation algorithm, where R is the maximum connectivity requirement and H_{R} is the R-th harmonic number. Our algorithm is a common generalization of the algorithm for the the fault-tolerant facility location problem presented by Jain and Vazirani (2003) and that for the facility location problem with submodular penalties presented by Du, Lu and Xu (2012).

1 Introduction

The facility location problem is one of the most important problems in combinatorial optimization. Unfortunately, this problem is NP-hard, and thus most of the research has been focusing on designing approximation algorithms with good performance. So far, the best approximation ratio for the facility location problem is 1.488 due to $\mathrm{Li}[8]$.

Many variants of the facility location problem have appeared. The fault-tolerant facility location problem is one of variants of the facility location problem. In this problem, each client has a connectivity requirement and we have to connect each client to as many open facilities as its connectivity requirement. This problem was introduced by Jain and Vazirani [7], and several approximation algorithms were presented $[7,5,11,1]$. So far, the best approximation ratio for the fault-tolerant facility location problem is 1.725 due to Byrka, Srinivasan and Swamy [1].

The facility location problem with submodular penalties is another variant of the facility location problem. In this problem, not all clients are connected to open facilities and unconnected clients incur a penalty cost determined by a monotone submodular function on the client set. This problem was introduced by Hayrapetyan, Swamy and Tardos [6], and several approximation algorithms were presented $[6,2,3,9]$. So far, the best approximation ratio for the facility location problem with submodular penalties is 2 due to Li, Du, Xiu and Xu [9].

In this paper, we consider the fault-tolerant facility location problem with submodular penalties that is a common generalization of the above two variants of the facility location problem. For this problem, we present a combinatorial $3 \cdot H_{R}$-approximation algorithm, where R is the maximum connectivity requirement and H_{R} is the R-th harmonic number. Our algorithm is a common generalization of the algorithm for the the fault-tolerant facility location problem presented by Jain and Vazirani [7] and that for the facility location problem with submodular penalties presented by Du, Lu and $\mathrm{Xu}[3]$.

[^0]Organization. In Section 2, we give a formal definition of the fault-tolerant facility location problem with submodular penalties. In Section 3, we present an algorithm for the fault-tolerant facility location problem with submodular penalties. In Section 4, we analyze an approximation ratio of our algorithm. Section 5 concludes this paper.

Notation. We denote by $\mathbb{R}, \mathbb{R}_{+}$and \mathbb{Z}_{+}the sets of real numbers, non-negative real numbers and non-negative integers, respectively.

Assume that we are given a set U. For each subset X of U, we define a characteristic vector χ_{X} in $\{0,1\}^{U}$ by

$$
\chi_{X}(u):= \begin{cases}1 & \text { if } u \in X \\ 0 & \text { if } u \in U \backslash X\end{cases}
$$

Let d_{1}, d_{2} be vectors in \mathbb{R}^{U}. Define a vector $d_{1} \pm d_{2}$ in \mathbb{R}^{U} by

$$
\left(d_{1} \pm d_{2}\right)(u):=d_{1}(u) \pm d_{2}(u)
$$

In addition, we write $d_{1} \geq d_{2}$, if $d_{1}(u) \geq d_{2}(u)$ for every element u in U.

2 Problem Formulation

The fault-tolerant facility location problem with submodular penalties is defined as follows. We are given a finite set F of facilities and a finite set D of clients. For each facility i in F, an opening cost f_{i} in \mathbb{R}_{+}is given. For each client j in D, a connectivity requirement r_{j} in \mathbb{Z}_{+}is given. We assume that $r_{j} \leq|F|$ for every client j in D. For each facility i in F and each client j in D, a connecting cost $c_{i, j}$ in \mathbb{R}_{+}is given. We assume that connecting costs satisfy the triangle inequality, i.e.,

$$
c_{i, j}+c_{i, j^{\prime}}+c_{i^{\prime}, j^{\prime}} \geq c_{i^{\prime}, j}
$$

for every facilities i, i^{\prime} in F and every clients j, j^{\prime} in D. In addition, we are given a penalty function $h: \mathbb{R}_{+}^{D} \rightarrow \mathbb{R}_{+}$, which is the Lovász extension of a non-negative monotone submodular function $\rho: 2^{D} \rightarrow \mathbb{R}_{+}$with $\rho(\emptyset)=0$. We will give formal definitions of a submodular function and its Lovász extension later.

An assignment is a triple (X, d, φ) of a subset X of F, functions $d: D \rightarrow \mathbb{Z}_{+}$and $\varphi: D \rightarrow 2^{F}$. An assignment is said to be feasible, if

$$
\forall j \in D: \varphi(j) \subseteq X \text { and }|\varphi(j)|+d(j)=r_{j}
$$

The cost $\xi(X, d, \varphi)$ of an assignment (X, d, φ) is defined by

$$
\xi(X, d, \varphi):=\sum_{i \in X} f_{i}+\sum_{j \in D} \sum_{i \in \varphi(j)} c_{i, j}+h(d)
$$

The goal of the fault-tolerant facility location problem with submodular penalties is to find a feasible assignment with minimum cost.

Here we give formal definitions of a submodular function and its Lovász extension. A function $\rho: 2^{D} \rightarrow \mathbb{R}_{+}$is said to be submodular, if

$$
\begin{equation*}
\forall X, Y \subseteq D: \rho(X)+\rho(Y) \geq \rho(X \cup Y)+\rho(X \cap Y) \tag{1}
\end{equation*}
$$

It is well known that (1) is equivalent to

$$
\begin{equation*}
\forall X, Y \subseteq D \text { s.t. } X \subseteq Y, \forall j \in D \backslash Y: \rho(X \cup\{j\})-\rho(X) \geq \rho(Y \cup\{j\})-\rho(Y) \tag{2}
\end{equation*}
$$

A submodular function $\rho: 2^{D} \rightarrow \mathbb{R}_{+}$is said to be monotone, if

$$
\forall X, Y \subseteq D \text { s.t. } X \subseteq Y: \rho(X) \leq \rho(Y)
$$

The Lovász extension $h: \mathbb{R}_{+}^{D} \rightarrow \mathbb{R}_{+}$of a submodular function $\rho: 2^{D} \rightarrow \mathbb{R}_{+}$is defined as follows. Assume that we are given a vector d in \mathbb{R}_{+}^{D}. We denote by $\hat{d}_{1}>\hat{d}_{2}>\cdots>\hat{d}_{k}$ the distinct values of its components and define

$$
\begin{equation*}
U_{l}:=\left\{j \in D \mid d(j) \geq \hat{d}_{l}\right\} \tag{3}
\end{equation*}
$$

for each $l=1,2, \ldots, k$. We define $h(d)$ by

$$
h(d):=\sum_{l=1}^{k-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\hat{d}_{k} \cdot \rho\left(U_{k}\right)
$$

It is not difficult to see that $\rho(X)=h\left(\chi_{X}\right)$ for every subset X of D. This implies that the faulttolerant facility location problem with submodular penalties is a generalization of the facility location problem with submodular penalties.

Here we give properties of the function h that will be used in the sequel. It is known [4] that $h(d)$ is equal to the optimal value of the following linear programming (4).

$$
\begin{array}{ll}
\max & \sum_{j \in D} d(j) \cdot p_{j} \\
\text { s.t. } & \sum_{j \in X} p_{j} \leq \rho(X) \quad(X \subseteq D) \tag{4}\\
& p_{j} \in \mathbb{R} \quad(j \in D)
\end{array}
$$

In addition, it follows from the monotonicity of ρ that h is also "monotone".
Lemma 1. For every vectors d, d^{\prime} in \mathbb{Z}_{+}^{D} with $d \geq d^{\prime}$, we have $h(d) \geq h\left(d^{\prime}\right)$.
Proof. We prove this lemma by induction on

$$
\|d\|:=\sum_{j \in D} d(j)
$$

If $\|d\|=0$, then $h(d) \geq h\left(d^{\prime}\right)$ clearly holds for every vector d^{\prime} in \mathbb{Z}_{+}^{D} with $d \geq d^{\prime}$. Assuming that this lemma holds for every vector d in \mathbb{Z}_{+}^{D} with $\|d\|=\Delta$, we consider the case of $\|d\|=\Delta+1$. If we can prove that

$$
\forall j \in D \text { s.t. } d(j)>0: h(d) \geq h\left(d-\chi_{\{j\}}\right)
$$

then this lemma follows from the induction hypothesis. Let us fix a client j in D with $d(j)>0$. We denote by $\hat{d}_{1}>\hat{d}_{2}>\cdots>\hat{d}_{k}$ the distinct values of the components of d and define U_{l} by (3) for each $l=1,2, \ldots, k$. Assume that $d(j)=\hat{d}_{s}$. We have

$$
\begin{aligned}
h\left(d-\chi_{\{j\}}\right):= & \sum_{l=1}^{s-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{s} \backslash\{j\}\right)+\left(\hat{d}_{s}-\hat{d}_{s+1}-1\right) \rho\left(U_{s}\right) \\
& +\sum_{l=s+1}^{k-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\hat{d}_{k} \cdot \rho\left(U_{k}\right)
\end{aligned}
$$

Hence, we have

$$
h(d)-h\left(d-\chi_{\{j\}}\right)=\rho\left(U_{s}\right)-\rho\left(U_{s} \backslash\{j\}\right) \geq 0
$$

where the inequality follows from the monotonicity of ρ. This completes the proof.

3 Algorithm

In this section, we explain our algorithm for the fault-tolerant facility location problem with submodular penalties. For this, we first define a subproblem $\mathrm{S}(H, K, \sigma)$ for each subset H of F, each subset K of D and each function $\sigma: K \rightarrow 2^{H}$ as follows. Intuitively, in $\mathrm{S}(H, K, \sigma)$, facilities in H are already open, and each client j of K is not allowed to be connected to facilities in $\sigma(j)$. Under this constraint, this subproblem asks for opening facilities in $F \backslash H$ and connecting each client j in K_{t} to a newly opened facility or a facility in $H \backslash \sigma(j)$. Notice that in this problem, a connectivity requirement of each client in K is equal to one.

A feasible solution of $\mathrm{S}(H, K, \sigma)$ is a triple (Y, P, ψ) of a subset Y of $F \backslash H$, a subset P of K and a function $\psi: K \backslash P \rightarrow F$ such that

$$
\forall j \in K \backslash P: \psi(j) \in(H \cup Y) \backslash \sigma(j)
$$

The cost $\xi_{\mathrm{s}}(Y, P, \psi)$ of a feasible solution (Y, P, ψ) of $\mathrm{S}(H, K, \sigma)$ is defined by

$$
\xi_{\mathrm{s}}(Y, P, \psi):=\sum_{i \in Y} f_{i}+\sum_{j \in K \backslash P} c_{\psi(j), j}+\rho(P) .
$$

The goal of $\mathrm{S}(H, K, \sigma)$ is to find a feasible solution with minimum cost.
Now we are ready to present our algorithm for the fault-tolerant facility location problem with submodular penalties, called FTFLwSP. Define

$$
R:=\max \left\{r_{j} \mid j \in D\right\}
$$

The algorithm FTFLwSP is described as follows.
Step 1: Set $t:=R, X_{t+1}:=\emptyset, d_{t+1}(j):=0$ and $\varphi_{t+1}(j):=\emptyset$ for each client j in D.
Step 2: If $t \geq 1$, do the following (2-a) to (2-d).
(2-a) Set $H_{t}:=X_{t+1}, K_{t}:=\left\{j \in D \mid r_{j} \geq t\right\}$ and $\sigma_{t}(j):=\varphi_{t+1}(j)$ for each client j in K_{t}.
(2-b) Find a feasible solution $\left(Y_{t}, P_{t}, \psi_{t}\right)$ of $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$.
(2-c) Set $X_{t}:=X_{t+1} \cup Y_{t}, d_{t}:=d_{t+1}+\chi_{P_{t}}$, and

$$
\varphi_{t}(j):= \begin{cases}\varphi_{t+1}(j) \cup\left\{\psi_{t}(j)\right\} & \text { if } j \in K_{t} \backslash P_{t} \\ \varphi_{t+1}(j) & \text { if } j \in\left(D \backslash K_{t}\right) \cup P_{t}\end{cases}
$$

(2-d) Update $t:=t-1$ and go to Step 2.
Step 3: Output $\left(X_{1}, d_{1}, \varphi_{1}\right)$.
In Step 2 of the t-th iteration, we connect a client j in D with $r_{j} \geq t$ to some open facility or increase its penalty by one. Hence, the ouput ($X_{1}, d_{1}, \varphi_{1}$) is clearly a feasible assignment. Notice that an approximation ratio of the algorithm FTFLwSP depends on the quality of (Y_{t}, P_{t}, ψ_{t}) in Step (2-b). In addition, if we can find (Y_{t}, P_{t}, ψ_{t}) in polynomial time, then the algorithm FTFLwSP is also a polynomial-time algorithm. We will discuss these points in the next section.

4 Analysis

In this section, we analyze an approximation ratio of the algorithm FTFLwSP. An IP formulation of the fault-tolerant facility location problem with submodular penalties is described as follows.

$$
\begin{array}{ll}
\min & \sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i, j} x_{i, j}+h(d) \\
\text { s.t. } & \sum_{i \in F} x_{i, j}+d(j) \geq r_{j} \quad(j \in D) \\
& x_{i, j} \leq y_{i} \quad(i \in F, j \in D) \tag{5}\\
& x_{i, j} \in\{0,1\} \quad(i \in F, j \in D) \\
& y_{i} \in\{0,1\} \quad(i \in F) \\
& d \in \mathbb{Z}_{+}^{D} .
\end{array}
$$

Notice that it follows from Lemma 1 that there exists an optimal solution of (5) such that the first constraint holds with equality for every client j in D. Denote by OPT the optimal value of (5), i.e., the fault-tolerant facility location problem with submodular penalties.

Here we consider an LP relaxation of (5). The dual problem of (4) is described as follows.

$$
\begin{array}{ll}
\min & \sum_{X \subseteq D} \rho(X) \cdot q_{X} \\
\text { s.t. } & \sum_{X \subseteq D: j \in X} q_{X}=d(j) \quad(j \in D) \tag{6}\\
& q_{X} \geq 0 \quad(X \subseteq D) .
\end{array}
$$

It follows from (6) that an LP relaxation of (5) can be described as follows.

$$
\begin{array}{ll}
\min & \sum_{i \in F} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in D} c_{i, j} x_{i, j}+\sum_{X \subseteq D} \rho(X) \cdot q_{X} \\
\text { s.t. } & \sum_{i \in F} x_{i, j}+\sum_{X \subseteq D: j \in X} q_{X} \geq r_{j} \quad(j \in D) \\
& x_{i, j} \leq y_{i} \quad(i \in F, j \in D) \tag{7}\\
& x_{i, j} \geq 0 \quad(i \in F, j \in D) \\
& 0 \leq y_{i} \leq 1 \quad(i \in F) \\
& q_{X} \geq 0 \quad(X \subseteq D) .
\end{array}
$$

Denote by OPT $_{\text {LP }}$ the optimal value of (7). Notice that OPT $_{\text {LP }} \leq$ OPT holds. The dual problem of (7) is described as follows.

$$
\begin{array}{ll}
\max & \sum_{j \in D} r_{j} \alpha_{j}-\sum_{i \in F} z_{i} \\
\text { s.t. } & \alpha_{j}-\beta_{i, j} \leq c_{i, j} \quad(i \in F, j \in D) \\
& \sum_{j \in D} \beta_{i, j} \leq f_{i}+z_{i} \quad(i \in F) \\
& \sum_{j \in X} \alpha_{j} \leq \rho(X) \quad(X \subseteq D) \tag{8}\\
& \alpha_{j} \geq 0 \quad(j \in D) \\
& \beta_{i, j} \geq 0 \quad(i \in F, j \in D) \\
& z_{i} \geq 0 \quad(i \in F) .
\end{array}
$$

Next we consider an IP formulation of $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$. Define a new function $\rho_{K_{t}}: 2^{K_{t}} \rightarrow \mathbb{R}_{+}$by $\rho_{K_{t}}(X):=\rho(X)$ for each subset X of K_{t}. It is clear that $\rho_{K_{t}}$ is submodular. Let $h_{K_{t}}: \mathbb{R}_{+}^{K_{t}} \rightarrow \mathbb{R}_{+}$ be the Lovász extension of $\rho_{K_{t}}$. An IP formulation of $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$ is described as follows.

$$
\begin{array}{ll}
\min & \sum_{i \in F \backslash H_{t}} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in K_{t}} c_{i, j} x_{i, j}+h_{K_{t}}(d) \\
\text { s.t. } & \sum_{i \in F \backslash \sigma_{t}(j)} x_{i, j}+d(j) \geq 1 \quad\left(j \in K_{t}\right) \\
& x_{i, j} \leq y_{i} \quad\left(i \in F \backslash H_{t}, j \in K_{t}\right) \tag{9}\\
& x_{i, j} \in\{0,1\} \quad\left(i \in F, j \in K_{t}\right) \\
& y_{i} \in\{0,1\} \quad\left(i \in F \backslash H_{t}\right) \\
& d \in\{0,1\}^{K_{t}} .
\end{array}
$$

Similarly to (7), an LP relaxation of (9) is described as follows.

$$
\begin{array}{ll}
\min & \sum_{i \in F \backslash H_{t}} f_{i} y_{i}+\sum_{i \in F} \sum_{j \in K_{t}} c_{i, j} x_{i, j}+\sum_{X \subseteq K_{t}} \rho_{K_{t}}(X) \cdot q_{X} \\
\text { s.t. } & \sum_{i \in F \backslash \sigma_{t}(j)} x_{i, j}+\sum_{X \subseteq K_{t}: j \in X} q_{X} \geq 1 \quad\left(j \in K_{t}\right) \\
& x_{i, j} \leq y_{i} \quad\left(i \in F \backslash H_{t}, j \in K_{t}\right) \tag{10}\\
& x_{i, j} \geq 0 \quad\left(i \in F, j \in K_{t}\right) \\
& y_{i} \geq 0 \quad\left(i \in F \backslash H_{t}\right) \\
& q_{X} \geq 0 \quad\left(X \subseteq K_{t}\right)
\end{array}
$$

Denote by $\mathrm{OPT}_{\text {SLP }}(t)$ the optimal value of (10). The dual problem of (10) is described as follows.

$$
\begin{array}{ll}
\max & \sum_{i \in K_{t}} \alpha_{i} \\
\text { s.t. } & \alpha_{j}-\beta_{i, j} \leq c_{i, j} \quad\left(j \in K_{t}, i \in F \backslash H_{t}\right) \\
& \alpha_{j} \leq c_{i, j} \quad\left(j \in K_{t}, i \in H_{t} \backslash \sigma_{t}(j)\right) \\
& \sum_{j \in K_{t}} \beta_{i, j} \leq f_{i} \quad\left(i \in F \backslash H_{t}\right) \tag{11}\\
& \sum_{j \in X} \alpha_{j} \leq \rho_{K_{t}}(X) \quad\left(X \subseteq K_{t}\right) \\
& \alpha_{j} \geq 0 \quad\left(j \in K_{t}\right) \\
& \beta_{i, j} \geq 0 \quad\left(i \in F \backslash H_{t}, j \in K_{t}\right) .
\end{array}
$$

From now on, we analyze an approximation ratio of the algorithm FTFLwSP.
Lemma 2. For every $t=1,2, \ldots, R$, we can find a feasible solution $\left(Y_{t}, P_{t}, \psi_{t}\right)$ of $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$ such that

$$
\xi_{\mathrm{S}}\left(Y_{t}, P_{t}, \psi_{t}\right) \leq 3 \cdot \mathrm{OPT}_{\mathrm{SLP}}(t)
$$

in polynomial time.
We will give the proof of Lemma 2 in the next subsection.
Lemma 3. For every $t=1,2, \ldots, R$, we have

$$
\mathrm{OPT}_{\mathrm{SLP}}(t) \leq \frac{1}{t} \cdot \mathrm{OPT}_{\mathrm{LP}}
$$

Proof. It follow from the strong duality theorem that there exists a feasible solution

$$
\alpha_{j}\left(j \in K_{t}\right), \quad \beta_{i, j}\left(i \in F \backslash H_{t}, j \in K_{t}\right)
$$

of (11) with

$$
\sum_{j \in K_{t}} \alpha_{j}=\mathrm{OPT}_{\mathrm{SLP}}(t)
$$

To prove the theorem, we construct a feasible solution

$$
\hat{\alpha}_{j}(j \in D), \quad \hat{\beta}_{i, j}(i \in F, j \in D), \quad \hat{z}_{i}(i \in F)
$$

of (8) with

$$
\sum_{j \in D} r_{j} \hat{\alpha}_{j}-\sum_{i \in F} \hat{z}_{i} \geq t \cdot \mathrm{OPT}_{\mathrm{SLP}}(t)
$$

It follows from the weak duality theorem that

$$
\sum_{j \in D} r_{j} \hat{\alpha}_{j}-\sum_{i \in F} \hat{z}_{i} \leq \mathrm{OP}_{\mathrm{LP}}
$$

which completes the proof.
We first define $\hat{\alpha}_{j}$ for each client j in D by

$$
\hat{\alpha}_{j}:= \begin{cases}\alpha_{j} & \text { if } j \in K_{t} \\ 0 & \text { if } j \in D \backslash K_{t}\end{cases}
$$

Next we define $\hat{\beta}_{i, j}$ for each facility i in F and each client j in D by

$$
\hat{\beta}_{i, j}:= \begin{cases}\beta_{i, j} & \text { if } j \in K_{t} \text { and } i \in F \backslash H_{t} \\ 0 & \text { if } j \in K_{t} \text { and } i \in H_{t} \backslash \sigma_{t}(j) \\ \alpha_{j} & \text { if } j \in K_{t} \text { and } i \in \sigma_{t}(j) \\ 0 & \text { if } j \in D \backslash K_{t} \text { and } i \in F\end{cases}
$$

Finally, we define \hat{z}_{i} for each facility i in F by

$$
\hat{z}_{i}:= \begin{cases}\sum_{j \in K_{t}: i \in \sigma_{t}(j)} \alpha_{j} & \text { if } i \in H_{t} \\ 0 & \text { if } i \in F \backslash H_{t}\end{cases}
$$

Here we prove that $\hat{\alpha}_{i}, \hat{\beta}_{i, j}$ and \hat{z}_{i} are a feasible solution of (8). We first consider the first constraint. For each client j in K_{t} and each facility i in $F \backslash H_{t}$,

$$
\hat{\alpha}_{j}-\hat{\beta}_{i, j}=\alpha_{j}-\beta_{i, j} \leq c_{i, j}
$$

For each client j in K_{t} and each facility i in $H_{t} \backslash \sigma_{t}(j)$,

$$
\hat{\alpha}_{j}-\hat{\beta}_{i, j}=\alpha_{j}-0=\alpha_{j} \leq c_{i, j}
$$

For each client j in K_{t} and each facility i in $\sigma_{t}(j)$,

$$
\hat{\alpha}_{j}-\hat{\beta}_{i, j}=\alpha_{j}-\alpha_{j}=0 \leq c_{i, j}
$$

For each client j in $D \backslash K_{t}$ and each facility i in F,

$$
\hat{\alpha}_{j}-\hat{\beta}_{i, j}=0-0=0 \leq c_{i, j} .
$$

Next we consider the second constraint. For each facility i in H_{t},

$$
\sum_{j \in D} \hat{\beta}_{i, j}=\sum_{j \in K_{t}} \hat{\beta}_{i, j}=\sum_{j \in K_{t}: i \in \sigma_{t}(j)} \alpha_{j}=\hat{z}_{i} \leq f_{i}+\hat{z}_{i} .
$$

For each facility i in $F \backslash H_{t}$,

$$
\sum_{j \in D} \hat{\beta}_{i, j}=\sum_{j \in K_{t}} \beta_{i, j} \leq f_{i} \leq f_{i}+\hat{z}_{i} .
$$

Finally, we consider the third constraint. For each subset X of K_{t}.

$$
\sum_{j \in X} \hat{\alpha}_{j}=\sum_{j \in X} \alpha_{j} \leq \rho_{K_{t}}(X)=\rho(X) .
$$

For each subset X of D with $X \backslash K_{t} \neq \emptyset$.

$$
\sum_{j \in X} \hat{\alpha}_{j}=\sum_{j \in X \cap K_{t}} \alpha_{j} \leq \rho_{K_{t}}\left(X \cap K_{t}\right)=\rho\left(X \cap K_{t}\right) \leq \rho(X),
$$

where the last inequality follows from the monotonicity of ρ.
Next we consider the objective value.

$$
\begin{aligned}
\sum_{j \in D} r_{j} \hat{\alpha}_{j}-\sum_{i \in F} \hat{z}_{i} & =\sum_{j \in K_{t}} r_{j} \alpha_{j}-\sum_{i \in H_{t}} \sum_{j \in K_{t}: i \in \sigma_{t}(j)} \alpha_{j} \\
& =\sum_{j \in K_{t}} r_{j} \alpha_{j}-\sum_{j \in K_{t}} \sum_{i \in \sigma_{t}(j)} \alpha_{j} \\
& =\sum_{j \in K_{t}} r_{j} \alpha_{j}-\sum_{j \in K_{t}}\left|\sigma_{t}(j)\right| \alpha_{j} \\
& =\sum_{j \in K_{t}}\left(r_{j}-\left|\varphi_{t+1}(j)\right|\right) \alpha_{j} \quad\left(\text { by } \sigma_{t}(j)=\varphi_{t+1}(j)\right) \\
& \geq \sum_{j \in K_{t}}\left(r_{j}-\left(r_{j}-t\right)\right) \alpha_{j} \quad\left(\text { by }\left|\varphi_{t+1}(j)\right| \leq r_{j}-t\right) \\
& =\sum_{j \in K_{t}} t \cdot \alpha_{j} \\
& =t \cdot \mathrm{OPT}_{\mathbf{S L P}}(t) .
\end{aligned}
$$

This completes the proof.
Lemma 4. For every vector d in \mathbb{Z}_{+}^{D} and every subset X of D, we have

$$
\begin{equation*}
h\left(d+\chi_{X}\right)-h(d) \leq h\left(\chi_{X}\right)=\rho(X) . \tag{12}
\end{equation*}
$$

Proof. If $d(j)=0$ for every client j in D, then (12) clearly holds. Assume that there exists a client j in D with $d(j)>0$. To prove (12), it suffices to prove that there exists a client j^{*} in D such that $d\left(j^{*}\right)>0$ and

$$
\begin{equation*}
h\left(d+\chi_{X}\right)-h(d) \leq h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right), \tag{13}
\end{equation*}
$$

where the vector d^{*} in \mathbb{R}_{+}^{D} is define by $d^{*}:=d-\chi_{\left\{j^{*}\right\}}$.
We denote by $\hat{d}_{1}>\hat{d}_{2}>\cdots>\hat{d}_{k}$ the distinct values of the components of d and define

$$
\begin{aligned}
U_{l} & :=\left\{j \in D \mid d(j) \geq \hat{d}_{l}\right\} \\
X_{l} & :=\left\{j \in X \mid d(j)=\hat{d}_{l}\right\} \\
\bar{X}_{l} & :=\left\{j \in D \backslash X \mid d(j)=\hat{d}_{l}\right\} \\
U_{l}^{+} & :=U_{l-1} \cup X_{l}
\end{aligned}
$$

for each $l=1,2, \ldots, k$, where define $U_{0}:=\emptyset$. Define j^{*} in D by

$$
j^{*}:= \begin{cases}\text { a client in } \bar{X}_{k} & \text { if } \hat{d}_{k} \neq 0 \text { and } \bar{X}_{k} \neq \emptyset \\ \text { a client in } X_{k} & \text { if } \hat{d}_{k} \neq 0 \text { and } \bar{X}_{k}=\emptyset \\ \text { a client in } \bar{X}_{k-1} & \text { if } \hat{d}_{k}=0 \text { and } \bar{X}_{k-1} \neq \emptyset \\ \text { a client in } X_{k-1} & \text { if } \hat{d}_{k}=0 \text { and } \bar{X}_{k-1}=\emptyset\end{cases}
$$

First we calculate the left-hand side of (13). Since

$$
\begin{aligned}
h(d) & =\sum_{l=1}^{k-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\hat{d}_{k} \cdot \rho\left(U_{k}\right) \\
h\left(d+\chi_{X}\right) & =\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)+\hat{d}_{k} \cdot \rho\left(U_{k}\right)
\end{aligned}
$$

we have

$$
h\left(d+\chi_{X}\right)-h(d)=\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)
$$

Next we consider the right-hand side of (13). Assume that $\hat{d}_{k} \neq 0$ and $\bar{X}_{k} \neq \emptyset$. In this case,

$$
\begin{aligned}
h\left(d^{*}\right)= & \sum_{l=1}^{k-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{k} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k}-1\right) \cdot \rho\left(U_{k}\right) \\
h\left(d^{*}+\chi_{X}\right)= & \sum_{l=1}^{k-1}\left(\rho\left(U_{i}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{l}\right)\right) \\
& +\rho\left(U_{k}^{+}\right)+\rho\left(U_{k} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k}-1\right) \cdot \rho\left(U_{k}\right) .
\end{aligned}
$$

Hence, we have

$$
h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right)=\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)
$$

which implies that (13) holds.
Assume that $\hat{d}_{k} \neq 0$ and $\bar{X}_{k}=\emptyset$. In this case,

$$
\begin{aligned}
h\left(d^{*}\right) & =\sum_{l=1}^{k-1}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{k} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k}-1\right) \cdot \rho\left(U_{k}\right) \\
h\left(d^{*}+\chi_{X}\right) & =\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{i}\right)\right)+\rho\left(U_{k}^{+} \backslash\left\{j^{*}\right\}\right)+\hat{d}_{k} \cdot \rho\left(U_{k}^{+}\right)
\end{aligned}
$$

Hence, since $U_{k}=U_{k}^{+}$, we have

$$
h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right)=\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)
$$

which implies that (13) holds.
Assume that $\hat{d}_{k}=0$ and $\bar{X}_{k-1} \neq \emptyset$. We first consider the case of $\hat{d}_{k-1}>1$. In this case,

$$
\begin{aligned}
h\left(d^{*}\right)= & \sum_{l=1}^{k-2}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{k-1} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k-1}-1\right) \cdot \rho\left(U_{k-1}\right) \\
h\left(d^{*}+\chi_{X}\right)= & \sum_{l=1}^{k-2}\left(\rho\left(U_{l}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{l}\right)\right) \\
& +\rho\left(U_{k-1}^{+}\right)+\rho\left(U_{k-1} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k-1}-2\right) \cdot \rho\left(U_{k-1}\right)+\rho\left(U_{k}^{+}\right) .
\end{aligned}
$$

Hence, we have

$$
h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right)=\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)
$$

which implies that (13) holds. If $\hat{d}_{k-1}=1$, then we have

$$
\begin{aligned}
h\left(d^{*}\right) & =\sum_{l=1}^{k-2}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{k-1} \backslash\left\{j^{*}\right\}\right) \\
h\left(d^{*}+\chi_{X}\right) & =\sum_{l=1}^{k-2}\left(\rho\left(U_{l}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{l}\right)\right)+\rho\left(U_{k-1}^{+}\right)+\rho\left(U_{k}^{+} \backslash\left\{j^{*}\right\}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right) & =\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k-1}\right)+\rho\left(U_{k}^{+} \backslash\left\{j^{*}\right\}\right)-\rho\left(U_{k-1} \backslash\left\{j^{*}\right\}\right) \\
& \geq \sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right)
\end{aligned}
$$

where the inequality follows from (2) and $U_{k-1} \subseteq U_{k}^{+}$. This implies that (13) holds.
Assume that $\hat{d}_{k}=0$ and $\bar{X}_{k-1}=\emptyset$. In this case,

$$
\begin{aligned}
h\left(d^{*}\right)= & \sum_{l=1}^{k-2}\left(\hat{d}_{l}-\hat{d}_{l+1}\right) \rho\left(U_{l}\right)+\rho\left(U_{k-1} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k-1}-1\right) \cdot \rho\left(U_{k-1}\right) \\
h\left(d^{*}+\chi_{X}\right)= & \sum_{l=1}^{k-2}\left(\rho\left(U_{l}^{+}\right)+\left(\hat{d}_{l}-\hat{d}_{l+1}-1\right) \rho\left(U_{l}\right)\right) \\
& +\rho\left(U_{k-1}^{+} \backslash\left\{j^{*}\right\}\right)+\left(\hat{d}_{k-1}-1\right) \rho\left(U_{k-1}^{+}\right)+\rho\left(U_{k}^{+}\right) .
\end{aligned}
$$

Hence, since $U_{k-1}=U_{k-1}^{+}$, we have

$$
\begin{aligned}
h\left(d^{*}+\chi_{X}\right)-h\left(d^{*}\right) & =\sum_{l=1}^{k-2}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right) \\
& =\sum_{l=1}^{k-1}\left(\rho\left(U_{l}^{+}\right)-\rho\left(U_{l}\right)\right)+\rho\left(U_{k}^{+}\right) .
\end{aligned}
$$

This completes the proof.
Now we are ready to prove the main result of this paper.
Theorem 5. We have

$$
\xi\left(X_{1}, d_{1}, \varphi_{1}\right) \leq 3 \cdot H_{R} \cdot \mathrm{OPT}
$$

where $H_{R}:=1+\frac{1}{2}+\cdots+\frac{1}{R}$.
Proof. It follows from Lemma 4 that

$$
\begin{equation*}
\forall t=1, \ldots, R: \xi\left(X_{t}, d_{t}, \varphi_{t}\right)-\xi\left(X_{t+1}, d_{t+1}, \varphi_{t+1}\right) \leq \xi_{\mathrm{S}}\left(Y_{t}, P_{t}, \psi_{t}\right) \tag{14}
\end{equation*}
$$

Thus, it follows from (14) that

$$
\begin{equation*}
\xi\left(X_{1}, d_{1}, \varphi_{1}\right) \leq \sum_{t=1}^{R} \xi_{\mathrm{S}}\left(Y_{t}, P_{t}, \psi_{t}\right) \tag{15}
\end{equation*}
$$

Hence, it follows from (15) and Lemmas 3, 4 that

$$
\xi\left(X_{1}, d_{1}, \varphi_{1}\right) \leq \sum_{t=1}^{R} 3 \cdot \mathrm{OPT}_{\mathrm{SLP}}(t) \leq 3 \cdot H_{R} \cdot \mathrm{OPT}_{\mathrm{LP}} \leq 3 \cdot H_{R} \cdot \mathrm{OPT}
$$

This completes the proof.

4.1 Proof of Lemma 2

In this subsection, we prove Lemma 2. Our algorithm for $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$ is essentially the same as the algorithm proposed by Du, Lu and $\mathrm{Xu}[3]$ except the following differences.

- The opening cost of a facility in H_{t} is zero.
- The connection cost between a client j in K_{t} and a facility i in $\sigma_{t}(j)$ is infinite.

For completeness, we reproduce the algorithm of Du, Lu and $\mathrm{Xu}[3]$ in our setting. Define a modified opening cost \hat{f}_{i} for each facility i in F by

$$
\hat{f}_{i}:= \begin{cases}f_{i} & \text { if } i \in F \backslash H_{t} \\ 0 & \text { if } i \in H_{t}\end{cases}
$$

Define a modified connecting cost $\hat{c}_{i, j}$ for each facility i in F and each client j in K_{t} by

$$
\hat{c}_{i, j}:= \begin{cases}c_{i, j} & \text { if } i \in F \backslash \sigma(j) \\ \infty & \text { if } i \in \sigma(j)\end{cases}
$$

Notice that connecting costs do not necessarily satisfy the triangle inequality.
Our algorithm consists of two phases. In the first phase, we use a concept of time δ. The algorithm starts at $\delta=0$. Initially, we set $\alpha_{j}:=0$ for each client j in K_{t} and $\beta_{i, j}:=0$ for each facility j in $F \backslash H_{t}$ and each client j in K_{t}. Facilities i in F with $\hat{f}_{i}>0$ are closed, and facilities i in F with $\hat{f}_{i}=0$ are open. Every client in K_{t} is unfrozen. Let P be the set of penalized client, and set $P:=\emptyset$.

The algorithm increases α_{j} for all unfrozen clients j in K_{t} uniformly at the unit rate δ, and declares the pair (i, j) of a facility i in F and a client j in K_{t} tight, if $\alpha_{j}=\hat{c}_{i, j}$. Once the pair (i, j) is tight, it increases $\beta_{i, j}$ at the same rate as α_{j} so that $\alpha_{j}-\beta_{i, j}=\hat{c}_{i, j}$ is satisfied. The algorithm keeps increasing δ until there exists no unfrozen client. As δ increases, the following events may occur.

Event 1. If

$$
\sum_{j \in K_{t}} \beta_{i, j}=\hat{f}_{i}
$$

for a closed facility i in F, then i is temporarily open. In addition, the algorithm freezes unfrozen clients j in K_{t} with $\beta_{i, j}>0$ and we call i the witness for j.

Event 2. If $\alpha_{j}=\hat{c}_{i, j}$ for an open/temporarily open facility i and an unfrozen client j, then the algorithm freezes j and we call i the witness for j.

Event 3. If

$$
\sum_{j \in X} \alpha_{j}=\rho_{K_{t}}(X)
$$

for a subset X of K_{t}, then the algorithm freezes unfrozen clients in X and adds all elements in X to P.

If several events occur simultaneously, the algorithm executes them in an arbitrary order.
Next we explain the second phase. Denote by T the set of temporarily open facilities in F. Facilities i, i^{\prime} in F are said to be dependent, if there exists a client j in K_{t} such that $\beta_{i, j}>0$ and $\beta_{i^{\prime}, j}>0$. In this phase, we first choose a maximal independent subset T^{\prime} of T, and facilities in T^{\prime} are open. Then, the algorithm outputs $\left(Y_{t}, P_{t}, \psi_{t}\right)$ defined as follows.

- Define Y_{t} as the set of open facilities in $F \backslash H_{t}$.
- Define $P_{t}:=P$.
- For each client j in $K_{t} \backslash P_{t}$, define $\psi_{t}(j)$ as an open facility i in F minimizing $\hat{c}_{i, j}$.

In the same as the proof of Lemma 3.1 of [3], we can prove that this algorithm can be implemented in polynomial time. Furthermore, since the pair (i, j) of a client j in K_{t} and a facility i in $\sigma_{t}(j)$ never be tight, $\left(Y_{t}, P_{t}, \psi_{t}\right)$ is a feasible solution of $\mathrm{S}\left(H_{t}, K_{t}, \sigma_{t}\right)$.

From now on, we analyze an approximation ratio of the algorithm. In the same as Lemma 3.2 of [3], we can prove that during the algorithm's execution, we have

$$
\sum_{j \in P} \alpha_{j}=\rho_{K_{t}}(P)
$$

It follows from this observation that

$$
\begin{equation*}
\alpha_{j}\left(j \in K_{t}\right), \quad \beta_{i, j}\left(i \in H_{t} \backslash K_{t}, j \in K_{t}\right) \tag{16}
\end{equation*}
$$

obtained in the first phase is a feasible solution of (11), which implies

$$
\sum_{j \in K_{t}} \alpha_{j} \leq \mathrm{OPT}_{\mathrm{SLP}}(t)
$$

We denote by $F_{\text {op }}$ the set of open facilities in F. For each client j in $K_{t} \backslash P_{t}$, we denote by w (j) the witness for j. For each open facility j in F, we denote by N_{i} the set of clients j in K_{t} with $\beta_{i, j}>0$. Notice that $N_{i} \cap N_{i^{\prime}}$ is empty for every distinct facilities i, i^{\prime} in $F_{\text {op }}$. Define

$$
\begin{aligned}
D_{\mathrm{po}} & :=\left\{j \in K_{t} \backslash P_{t} \mid \exists i \in F_{\mathrm{op}}: j \in N_{i}\right\} \\
D_{1} & :=\left\{j \in K_{t} \backslash\left(P_{t} \cup D_{\mathrm{po}}\right) \mid \mathrm{w}(j) \in F_{\mathrm{op}}\right\} \\
D_{2} & :=K_{t} \backslash\left(P_{t} \cup D_{\mathrm{po}} \cup D_{1}\right)
\end{aligned}
$$

Now we prove

$$
\begin{equation*}
\sum_{j \in K_{t} \backslash P_{t}} c_{\psi_{t}(j), j}=\sum_{j \in K_{t} \backslash P_{t}} \hat{c}_{\psi_{t}(j), j} \leq \sum_{i \in F_{\text {op }}} \sum_{j \in N_{i} \backslash P_{t}} \hat{c}_{i, j}+\sum_{j \in D_{1}} \alpha_{j}+\sum_{j \in D_{2}} 3 \cdot \alpha_{j} \tag{17}
\end{equation*}
$$

The first inequality follows from the fact that no client j in K_{t} is not connected to facilities in $\sigma(j)$. For proving the second inequality, we consider the following three cases.

Case 1. We first consider the connecting costs for clients in D_{po}. For each client j in D_{po}, we denote by $\mathrm{p}(j)$ the unique facility i in $F_{\text {op }}$ with $j \in N_{i}$. We have

$$
\sum_{j \in D_{\mathrm{po}}} \hat{c}_{\psi_{t}(j), j} \leq \sum_{j \in D_{\mathrm{po}}} \hat{c}_{\mathrm{p}(j), j} \leq \sum_{i \in F_{\mathrm{op}}} \sum_{j \in N_{i}} \hat{c}_{i, j} .
$$

Case 2. Next we consider the connecting cost for a client j in D_{1}. Since $w(j)$ is open and j is not in D_{po}, we have $\beta_{\mathrm{w}(j), j}=0$. This implies that the event 2 occurred when the algorithm froze j, i.e., $\alpha_{j}=\hat{c}_{\mathrm{w}(j), j}$. Thus, since $\mathrm{w}(j)$ is open, we have

$$
\sum_{j \in D_{1}} \hat{c}_{\psi_{t}(j), j} \leq \sum_{j \in D_{1}} \hat{c}_{\mathrm{w}(j), j}=\sum_{j \in D_{1}} \alpha_{j} .
$$

Case 3. Here we consider the connecting cost for a client j in D_{2}. Define $i:=\mathrm{w}(j)$. In this case, there exist an open facility i^{\prime} in F and a client j^{\prime} in K_{t} such that $\beta_{i, j^{\prime}}>0$ and $\beta_{i^{\prime}, j^{\prime}}>0$. Since $\beta_{i, j^{\prime}}$ and $\beta_{i^{\prime}, j^{\prime}}$ are positive, i and i^{\prime} are not in H_{t}. This implies that the triangle inequality holds for $\hat{c}_{i, j}, \hat{c}_{i^{\prime}, j}, \hat{c}_{i, j^{\prime}}$ and $\hat{c}_{i^{\prime}, j^{\prime}}$. Let t_{i} and $t_{i^{\prime}}$ be the times at which i and i^{\prime} are temporarily open, respectively. In addition, the following facts immediately follow.

- Since i is the witness for j, we have $\alpha_{j} \geq t_{i}$ and $\alpha_{j} \geq \hat{c}_{i, j}$.
- Since the pairs $\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j^{\prime}\right)$ are tight, we have $\alpha_{j^{\prime}} \geq \hat{c}_{i, j^{\prime}}$ and $\alpha_{j^{\prime}} \geq \hat{c}_{i^{\prime}, j^{\prime}}$.
- Since j^{\prime} is frozen earlier than the time $\min \left\{t_{i}, t_{i^{\prime}}\right\}$, we have $\alpha_{j^{\prime}} \leq \min \left\{t_{i}, t_{i^{\prime}}\right\}$.

It follows from these facts and the triangle inequality that

$$
\hat{c}_{\psi_{t}(j), j} \leq \hat{c}_{i^{\prime}, j} \leq \hat{c}_{i, j}+\hat{c}_{i, j^{\prime}}+\hat{c}_{i^{\prime}, j^{\prime}} \leq 2 \alpha_{j^{\prime}}+\alpha_{j} \leq 3 \alpha_{j} .
$$

Hence, we have

$$
\sum_{j \in D_{2}} \hat{c}_{\psi_{t}(j), j} \leq \sum_{j \in D_{2}} 3 \cdot \alpha_{j}
$$

which completes the proof of (17).
Since $N_{i} \cap N_{i^{\prime}}$ is empty for every distinct facilities i, i^{\prime} in F_{op}, we have

$$
\sum_{i \in Y_{t}} f_{i}=\sum_{i \in F_{\mathrm{op}}} \sum_{j \in N_{i}} \beta_{i, j}
$$

In addition, we have

$$
\begin{aligned}
\sum_{i \in F_{\text {op }}} \sum_{j \in N_{i}} \beta_{i, j}+\sum_{i \in F_{\text {op }}} \sum_{j \in N_{i} \backslash P_{t}} \hat{c}_{i, j} & \leq \sum_{i \in F_{\text {op }}} \sum_{j \in N_{i}}\left(\beta_{i, j}+\hat{c}_{i, j}\right) \\
& \leq \sum_{j \in D_{\mathrm{po}}} \alpha_{j}+\sum_{j \in P_{t}} \alpha_{j}
\end{aligned}
$$

It follows from these observations and (17) that

$$
\begin{aligned}
\sum_{i \in Y_{t}} f_{i}+\sum_{j \in K_{t} \backslash P_{t}} c_{\psi_{t}(j), j}+\rho_{K_{t}}\left(P_{t}\right) & \leq \sum_{j \in D_{\mathrm{po}}} \alpha_{j}+\sum_{j \in D_{1}} \alpha_{j}+\sum_{j \in D_{2}} 3 \cdot \alpha_{j}+\sum_{j \in P_{t}} 2 \cdot \alpha_{j} \\
& \leq 3 \sum_{j \in K_{t}} \alpha_{j} \\
& \leq 3 \cdot \mathrm{OPT}_{\mathrm{SLP}}(t)
\end{aligned}
$$

This completes the proof.

5 Conclusion

In this paper, we introduced the fault-tolerant facility location problem with submodular penalties, and presented a combinatorial $3 \cdot H_{R}$-approximation algorithm, where R is the maximum connectivity requirement. One direction of future work is to improve an approximation ratio. To discern whether we can extend a constant approximation algorithm for the fault-tolerant facility location problem to our problem is interesting. Another direction is to generalize a penalty function. In discrete convex analysis, it is known that the Lovász extensions of submodular functions coincide with polyhedral L-convex functions that are positively homogenous (see [10] for discrete convex analysis). Thus, it is interesting to consider the problem in which the Lovász extension is replaced by a more general discrete convex function.

References

[1] J. Byrka, A. Srinivasan, and C. Swamy. Fault-tolerant facility location: A randomized dependent LP-rounding algorithm. In Proceedings of the 14 th Conference on Integer Programming and Combinatorial Optimization, volume 6080 of Lecture Notes in Computer Science, pages 244-257, 2010.
[2] F. A. Chudak and K. Nagano. Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 79-88, 2007.
[3] D. Du, R. Lu, and D. Xu. A primal-dual approximation algorithm for the facility location problem with submodular penalties. Algorithmica, 63(1-2):191-200, 2012.
[4] J. Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani, N. Sauer, and J. Schönheim, editors, Combinatorial Structures and their Applications, pages 69-87. Gordon and Breach, 1970.
[5] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation algorithm for the fault-tolerant facility location problem. Journal of Algorithms, 48(2):429-440, 2003.
[6] A. Hayrapetyan, C. Swamy, and É. Tardos. Network design for information networks. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 933-942, 2005.
[7] K. Jain and V. V. Vazirani. An approximation algorithm for the fault tolerant metric facility location problem. Algorithmica, 38(3):433-439, 2003.
[8] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and Computation, 222:45-58, 2013.
[9] Y. Li, D. Du, N. Xiu, and D. Xu. Improved approximation algorithms for the facility location problems with linear/submodular penalty. In Proceedings of the 19th Annual International Computing and Combinatorics Conference, volume 7936 of Lecture Notes in Computer Science, pages 292-303, 2013.
[10] K. Murota. Discrete Convex Analysis, volume 10 of SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, 2003.
[11] C. Swamy and D. B. Shmoys. Fault-tolerant facility location. ACM Transactions on Algorithms, 4(4), 2008.

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings
MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations
MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

[^1]
MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing
MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization
MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks
MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun's differential equations, eigenstates degeneration, and Rabi's model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible NavierStokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA \& Sadanori KONISHI Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space
MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties

[^0]: *This work is partly supported by KAKENHI(24106005).

[^1]: MI2010-24 Toshimitsu TAKAESU
 A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

