SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Analysis and Optimization of Future Generation
Wireless Networks Based on Dynamic Game Theory

B, R

https://doi.org/10.15017/1398386

HARIER : UK, 2013, X (I%) , FEEL
N— 30

WEFIRER : 2XT7 71 ILAKFE



A Thesis submitted for the degree of Doctor of Philosophy

Analysis and Optimization of
Future Generation Wireless Networks

Based on Dynamic Game Theory

Dong Hao

April 2013

Graduate School of Information Science and Electrical B&giing

Kyushu University



Contents

Acknowledgements Vi
Abstract viii
1 Introduction 1
1.1 Background and Motivation . . . . . . . . ... e e 1
1.2 Basic Concepts in Noncooperative Dynamic Game Theory. . . . . . . . ... ... ... 3
1.2.1 OverviewonGameTheory . . . . . . . . . . . . e e 3
1.2.2 DynamicGame Theory . . . . . . . . . . i i e e e e 4
1.2.3 Agents’ Information StructureinLong-Run . . . . .. ... ... ... ...... 5
1.2.4 Horizonin Long-Run Relationship . . . . . .. .. ... ... ........... 6
1.2.5 Optimality in Decision Making . . . . . . . . . . . . e e 7
1.3 Repeated Game . . . . . . . . . . e e e e 9
1.3.1 Repeated Game with Perfect Monitoring . . . . . . . .. . ... .. .. .... 11
1.3.2 Repeated Game with Imperfect Private Monitoring . ...... . . ... ....... 16
1.4 Differential Game . . . . . . . .. e e 25
1.4.1 Single Agent Optimal Control Problem . . . . .. ... ... ... .. ...... 25
1.4.2 Multi-agent Diferential Game . . . . . . . . . . . . .. e
1.5 Game Theory as New Paradigm for Cognitive Radio Network . .. . . . . ... ... ... 35
1.5.1 Cognitive Radio Networks and Research Challenges . . ... .. .. ... ... 35
1.5.2 Hfectiveness of Game Theory in CR Networks . . . . . . < 1°)
1.6 Game Theoretical Frameworks for Each Layer in CognRaeio Network .......... 40
1.6.1 Application Layer: Market-Driven Spectrum Manageine . . . . . . ... .. ... 40
1.6.2 Physical Layer: Secure SpectrumSensing . . . . . . . . . .. e 41
1.6.3 Media Access Control Layer: Cooperative Commurecati . . . . . .. ... .... 42
1.6.4 Data Link Layer: Anti-Sybil Attack with Game Framewor. . . . . ... ... ... 44
2 Differential Game Approach for Spectrum Management 46
2.1 Introduction . . . . . . L e e 46
2.2 Related Works . . . . . . . e a7
2.2.1 Game TheoryforSpectrumTrading . . . .. .. . . .. . ... ciiiii v v 47
2.2.2 Application of Diferential Games . . . . . . . . . . .. ...
2.3 Real-Time Spectrum Pricing Scenario . . . . . . . . . . . . ciiiii o 49
2.4 QoS-Free Pricing Model for Static Networks . . . . . . . . . ... ... ... .. ..., 49
241 SecondaryUserFlow . . . . . . . . . . . . . . e 50
2.4.2 Primary User's Objective Function . . . . . . . . . . . . . .« ... 51
2.5 Solution for Optimal Spectrum Pricing . . . . . . . . . . . . ... .. . 52
2.5.1 Nash Equilibrium Condition for QoS-Free Pricing . . . ... ... ... ... .. 52
2.5.2 Nash Equilibrium Condition for QoS-Aware Pricing . . . . . ... ... ... .. 53
2.5.3 Nash Solution of Two-Dimensional Strategy . . . . . . ... . .. .. ... .. 55
2.6 Example and Numerical lllustration . . . . . .. .. .. .. . ... ... .. .. ... 56
2.6.1 Example of 2-PU QoS-Free Pricing . . . . . . . . . . ... .. ..o 56
2.6.2 ParameterSetting . . . . . . . . .. e e 57
2.6.3 Numerical lllustration . . . . . . . . . . . . .. e 57
3 Differential Game Approach for Efficient Spectrum Sensing 60

3.1 Introduction . . . . . . e e e e e e e e e e 60



Contents ii

3.1.1 Challenging ISsues . . . . . . . . . . e e e 60
3.1.2 MainContributions . . . . . . . .. e 61
3.2 SystemModel . . . . ... e e e 62
3.21 Attack Scenario . . . . ... e 62
3.2.2 One-shot PUE Attack Game Model . . . . ... .. ... ... ... ... .... 62
3.3 Equilibrium for Single Stage Anti-PUEAGame . . . . . . . ... ... ... ....... 63
3.3.1 agentsand Strategies . . . . . . . .. e e e e 63
3.3.2 Game OutComes . . . . . . . . . e e e 64
3.3.3 PureChannelsUsability . . .. ... ... ... .. . . ... . . uae..... 64
3.3.4 PureAttack Bect . . . . . .. 65
3.3.5 Min-Max Objective . . . . . . . . . . e 65
3.4 GamesSolution . . . . .. e 66
3.4.1 Hamiltonian and Solution Set . . . . . . ... ... e 66
3.4.2 Marginal Constrains . . . . . . . . .. e e e e 68
3.4.3 Critical Switching Times . . . . . . . . . . . . . . e e 70
3.5 Egquilibrium of PUE Attack Game . . . . . . . . . . . . . . e 71
3.5.1 Case 1. Secondary User Dominates on Poufesiéncy . . . .. ... ... ... .. 72
3.5.2 Case 2: SU’s Powelffitiency is RelativelyHigh . . . . . ... ... ... ...... 73
3.5.3 Case 3. Attacker's PowefiEiency is Relatively High . . . . .. . ... ... .. .. 73
3.5.4 Case 4: PUE Attacker Dominates on PowiclEency . . . . .. .. .. ... .... 73
3.6 Experimentand Numerical Results . . . . . . . . . . . .. . .. 75
4 Repeated Game Approach for Cooperative Communication 77
4.1 Introduction . . . . . . . . e e 77
4.1.1 Challenging ISSUES . . . . . . . . . e e e e 77
4.1.2 OurWorks . . . . . . e 78
4.2 SystemModel . . . .. e e e 80
4.2.1 Colluding Attack Scenario . . . . . . . . . ... . e 80
4.2.2 Hazardness of Collusion . . . . . . . . . .. . ... 81
4.2.3 Sub-Route Oriented PunishmentandReward . . . . . ... ........... 83
4.2.4 Colluding Attack Game Model . . . . . . . . . ... .. .. .. .. e 85
4.3 Static Analysis . . . . . . e e e e 85
4.3.1 CournotGame . . . . . . .. e 85
4.3.2 NashAttack Strategy . . . . . . . . . . . e e 86
4.3.3 Colluding Attack Strategy . . . . . . . . . .. e e 87
4.4 Dynamic AnalysisS . . . . . . . . e e e e 88
441 Faithofthe Attackers . . . . . . . . . . . . e 88
4.4.2 Repeated Attack Strategies . . . . . . . . . e e 89
4.4.3 Repeated Attack Equilibriums . . . . . . .. 90
4.5 Simulation and Numerical Analysis . . . . . . . . . . . . e 92
4.5.1 Simulation Design and Parameters Setting . . . . . . . . ... ... ... .... 93
4.5.2 Numerical Analysis . . . . . . . . . e e e 94
4.6 Detection and Defending Policies . . . . . . . . . . . . . 97
4.6.1 Defending Policy for One-Shot Attack . . . . . .. .. .. .. .. ... ...... 98
4.6.2 Defending Policy for Multi-Round Attack . . . . . . ... ... . ... ....... 99
4.7 DISSCUSSION . . . . . o i e e e 100
4.7.1 Impact of Attackers’ Distribution on Security Policy . . . . . . .. ... ... ... 100

4.7.2 Energy Consumption and Computational Complexity ...... . . . .. .. .. ... 101
4.7.3 NoisyChannel . . . . . . . . . . . . . . . . e e 102




Contents

5 Imperfect Monitoring Repeated Game for Agents under Noise
5.1 Resilient Finite State Equilibrium . . . . . . . .. ... oo

5.2 \VerifyingRFSE . . . . ..

5.3 Multi-agent Repeated Game with Private Monitoring . ...... . . . . .. ... ... ...
5.3.1 Pay@ Matrix and Signal for Three agent Prisoner’s Dilemma
5.3.2 Potential Joint State . . . . . ... e
5.3.3 Constructing the Transition Matrix for Reduce Joiat& . . . .. .. .. ... ...

5.3.4 Alpha Vector . . .

5.3.5 One-shot Extension on Extreme Points of BeliefDaisi . . . . . . . . . ... ...

5.4 Experiment and Analysis

6 Concluding Remarks

103
103
105
106
106
107
108
109
110
113

116




List of Figures

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

2.1
2.2
2.3

3.1

3.2

3.3

4.1
4.2

Stage game of prisoners dilemma. . . . . . . ... e 9
Two stage repeated prisoner'sdilemma. . . . .. .. .. .. ... 0o 10
Two stage repeated prisoner’'s dilemmainthetreediagra. . . . . . . . ... ... .. .. 10
Grim trigger strategy as a finite state automaton. . . . ... .. .. .. ... ... ..., 11
Nash equilibrium and subgame perfect equilibrium. . ...... . . . .. .. ... ... ... 12
Backward induction for a two stage repeated prisonédeésnna. . . . . . ... ... L. L. 13
Paydfs and subgame perfect equilibrium range for prisonerswi@. . . . . . ... .. .. 15
Grim trigger under private monitoring. . . . . . . . . . . e e e e 20
Transition probabilities for eachjointst®&® . . . . . .. .. .. .. ... ... ....... 20
Joint state automaton and transition probabilities . .... . . . .. .. ... .. .00 21
1-MP under private monitoring . . . . . . . . .. . e e e e e e 21
Joint automaton for 1-MP under private monitoring . ...... . . .. .. .. ... ... 22
Initial correlation device. . . . . . . . . L e e 23
Cognitive radio System CONCePtS. . . . . . . . . o e e e e e 36
Cognitive cycle. . . . . . . . e e e 37
QoS-free spectrum trading in a staticnetwork. . . . . . ...... ... o oo 50
Trajectory of Nash pricing strategy, withfléirent SU losing function cdicients. . . . . . . . 58
Trajectory of Nash pricing strategy, withfldirent unit spectrum QoScost. . . . . .. ... .. 58

Trajectory and Performance of the Nash Equilibrium ipgnstrategy, when SU’s powefte
ciencyishigh. . . . . . . . e e e 75
Trajectory and Performance of the Nash Equilibrium isgnstrategy, when attacker has high
attack €ficiency. . . . . . . . L e e e 75

Performance of Nash equilibrium sensing strategy, Wheh attack repeats large number of

0 11 1 o £ 76
Collusion on selective forwardingin MWNs. . . . . . . ... ... .. .. ........ 81
Leaders in the malicious sub-route. . . . . . . . . . . . . e e 81



List of Figures v

4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Utility to three kinds of strategies according tofaidletors. . . . . . . ... ... ... .... 94
Critical point of faith factor. . . . . . . . . . . . . . .. . . e 95
Impact of risk factor on utility dierence. . . . . ... .. .. .. ... .. .o L. 96
Efect of malicious agents’ number. . . . . . . . ... L L e 97
Scenarios for dierent distributions of maliciousagents . . . . ... ... ... ...... 100
Example of belief divisions . . . . . . . . . . . . e 104
Paydf matrix for three agent prisoner's dilemma . . . . .. ... ... . ... ..... 106
Belief divisions and extreme points for three agent GT ..... . . . .. .. ... ... ... 111
Example of one-shot extension on GT . . . . . . . . . . . . . i i 112
Global RFSEfor GTinthreeagentPD . . . . . . . . . . . . . . .. . i oo 113
Global RFSE for 1-MP inthreeagentPD . . . . . . . . . .. . .. . 0. .. 114

Global RFSE for 1-MP in three agent PD (fromabove) . . . ...... . ... ... ..... 114




List of Tables

11
1.2
1.3
1.4
15
1.6

21

4.1

5.1
5.2
5.3

The position of dynamic gametheory . . . . . . . . . . . . i e 4

Joint signal distribution for joint actiom{,a;) =(C,C) . . . . . . . . . . ... ... ... .. 18
Joint signal distribution for joint actiom{,a,) =(D,D) . ... ... .. .. ... ...... 18
Joint signal distribution for joint actiom{,a;) =(C,D) . . . . . . . . . . . .. ... ... .. 18
Joint signal distribution for joint actiom{,a;) =(D,C) . . ... .. ... ... ... .... 18
Paydf matrix for stage prisoner'sdilemma . . . . . .. .. .. .. ... .. ... ... 20

Solutions for optimal spectrum pricing problems . . . .. ... ... ... . L. 46
Symbols for selective forwardinggame. . . . . . . . ... . o o 83

Joint signal distribution for three agent prisonerleima . . . . .. .. .. ... ... ... 107
Transition matrix for reduced joint states: fiveagents ... . . . . .. .. ... ... .... 109

Transition matrix for reduced joint states: threeagent. . . . . . . ... ... ... .... 109



Acknowledgements

It would not have been possible to write this doctoral thesthout the help and support of the kind people
around me, to only some of whom it is possible to give pardicatention here.

I would like to acknowledge the China Scholarship CouncB(} for awarding me the state scholarship,
which covered all my living stipend in Japan during my Ph.irse. Due to this scholarship, | could fully
devote myself to my research.

| am heartily indebted to my supervisor Prof. Makoto Yokoo ffits support of my research and Ph.D
study. | am constantly encouraged by his patience, diligemotivation, enthusiasm, and immense knowledge.
Without his supervise and help, this work would not be pdssilHis guidance and teaching will always
influence me during my academic life.

| would like to thank the rest of my thesis committee: Profi’itini Takeuchi and Prof. Hiroshi Furukawa
for giving me precious suggestions and insightful commenitmprove the dissertation. Further, | want to show
my deep gratitude to Prof. Atsushi lwasaki for his invalgainistructions and inspiring discussions with me. |
gratefully acknowledge Prof. Yuko Sakurai for her condimgcsuggestions and help during | was studying in
Yokoo Laboratory. My sincere appreciation is extended toTadashi Araragi for being my external advisor
and giving a lot of perspicacious comments about my rese&@esides, | would like to thank my collaborator
Xiaojuan Liao for her helpful comments and discussions. Uild@lso like to thank Dr. Fagen Li for providing
me with the valuable research knowledge and advice.

| would like to express my sincere appreciation to the membéryokoo Laboratory: Mrs Mitsuko Ka-
neuchi, Mrs Akiko Ooe, Mrs Kaori Okimoto. They have been alsvgiving me kind help. It is my great honor
to cowork with Dr. Tenda Okimoto, Dr. Taiki Todo, Suguru Ue&gi Luo and Yongjoon Joe. Thank you for
all your comments and discussions. | am grateful to my cgilea and friends at Kyushu University: Rong
Huang, Yichao Xu, Chengming Li and Leyuan Liu. | am very fodte to have met up, discussed and worked
with you during my Ph.D course. Thank you for all your supmortresearch and living.

Words fail me to express my appreciation to my wife Ting-Timgho has dedicated love and persistent
confidence in me. It is her tolerance, understanding andueagement that allow me to finish this journey.

Last but not the least, | would like to acknowledge the saaifind support of my parents and family. They

are always standing by me throughout my life. Their uncomwl#tl love is always my source of strength.



Abstract

The future generation wireless network, also known as tivgniadio network, provides high bandwidth to
wireless users through heterogeneous wireless systentyaathic spectrum access techniques. In the future
generation wireless networks, the users belongftemint authorities and havefidirent objectives, complete
cooperation between the users cannot be guaranteed. IFruotles the users in the future generation wireless
networks need to observe the dynamic network environmehadapt their operation parameters based on their
knowledge of the environment as well as other users. Eqdipp#h more powerful hardware and software,
the uses are capable of carrying out complex computaticaljngdewith signal processing and making their
decisions to adjust their communication parameters. Taesusn even evolve their knowledge about network
environment and other users according téadent types of information, which is a learning process.réfuee,

the users in the future generation wireless networks cangveed as intelligent network agents.

In the future generation wireless networks, the intelligagents observe the network environment and in-
formation from other agents, and they frequently interaith wach other. For example, the agents cooperate
or compete with one another for spectrum sensing, manageandrsharing. They also need to communicate
with each other for data transferring, routing as well asiggcissues. During a long period, one agent can
manage its observation and learn from the observed InfasmatAfterwards it can make its own decision
to adjust their own behavior and parameter settings aaugridi its knowledge, in order to have an optimal
response to the network environment and other agents. Fdeling, analysis and optimization for the fu-
ture generation wireless networks, a study on the relatipraf these intelligent agent is of great importance.
Many new paradigm has emerged in such research field and anetnomethodologies has been introduced
and studied. Among those methodologies, game theory isabthe most powerful tools to deal with this
problem.

Game theory is a mathematical tool that analyzes the sicdtggractions among multiple decision makers.
It studies the mathematical models of conflict and coopamnaietween intelligent rational agents. The impor-
tance of studying future generation wireless networks iame theoretic framework falls into the following
aspects. First, by modeling the relationship among netwaetligent agents as games framework, the agents’
behavior can be captured and analyzed in a formalized gantst, therefore the rich theoretical and math-
ematical results in game theory can be utilized. Secondgedhsory equips us with various optimality criteria

for the network resource allocation problem. To be spedHie optimization of multi-agent resource allocation
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in future generation networks is generally a multi-objptbptimization problem, which is veryftlicult to an-
alyze and solve. Game theory enables us to measure thesagptithality and system’s equilibrium under
various game settings. Third, non-cooperative game thespecially zero-sum game enables us to derive
efficient distributed approaches for modeling the attack+urfescenario of network security problems.

Although there have been many works in future generatiorless networks that make use of game theory,
very few of them concentrate on the long-run relationshiphef network agents. In the real world network,
the relationship of the intelligent agents may last verygltime, even can be viewed as infinite. The agents’
optimal strategies thus mayfi#r a lot from the single-shot case. This means with time wgrthe agents are
more likely to change their behaviors for their best interesn the long term interaction among the agents,
when one agent takes action, he needs to study what the ghbatsahave done in the past, he also need
to consider what his action will impact on the future actidritee other agents. The network analysis and
optimization thus becomes mordfiitiult.

Dynamic game theory including repeated game aridintial game is naturally invented mathematical
methodology for investigating the agents’ relationshiphi& long term. In this thesis, we explore the theory of
dynamic games and introduce it into the field of future geti@mawireless networks. Several key challenging
issues in each layer of the future generation wireless rr&snie modeled in the form of dynamic games, the
long-run relationships of intelligent agents are analyzest optimal solutions and proposals are presented.
The contributions in this thesis covers the following peshé of the future generation wireless networks: (1)
In the application layer, we analyze the real-time spectprioing problem using a éierential game and
economic based model. The Nash equilibrium condition ferdpectrum pricing strategies are derived. Our
scheme can be used to provide the competitive primary uséigeal-time optimal spectrum pricing policy.
(2) Inthe network layer, we utilize repeated game to modepcket forwarding scenario and propose a multi-
agent oriented cooperative communication scheme. Theaoie perfect equilibrium is derived to find the
preference of various kinds of selective forwarders. Bagethe analysis result, a novel security policies for
the agents are proposed. (3) In the physical layer, thesictien between the secondary user and the primary
user emulation attacker in a multi-channel cognitive ratitwork is modeled as a constant surffatential
game. The optimal strategies for both the secondary usethendttacker are proposed based on the Nash
equilibrium. The sensing (attacking) capacity and powerst@ins are revealed to have direct impact on the
agents’ optimal defence (attack) actions. Based on thdign|uhe secondary use can achieve the optimal

usability of the cognitive radio channels when they are amtfng diferent kinds of PUE attackers.




Chapter 1

Introduction

1.1 Background and Motivation

The continuous evolution of communication networks dcadlif emphasizes the need of cognitive radio net-
work (or future generation wireless network) [1] paradighe can fundamentally increase the wireless system
performance. A key problem in the future generation wirelestworks is to design an systematical analysis
and network architecture and to develop network controésws. In this context, especially, analyzing the
relationship including conflict, competition and coopenatbetween the intelligent network agents has been
viewed as one of the crucial problem for the researchersdititéde the development of future generation
wireless networks. Taking into consideration of the copfltompetition and cooperation between the intel-
ligent agents, the decision making [2] problem emerges. deugsion making of the intelligent agents in the
future generation wireless networks has been recentlsiigated in a multi-agent system way, instead of just
relaying on inflexible and invariant network protocols.

Generally speaking, there are several reasons that requimoduced paradigms from multi-agent system
[3] and microeconomic [4] research into the filed of wirelestwork communication optimization. First of
all, the traditional communication network optimizati@mainly built on single-objective control protocols,
single administration, and is under the assumption thau#iees are unselfish. In the coming future gener-
ation wireless networks, the communication network is b@Enog more and more large-scale, however, with
lack of access to centralized information at the same tintes fature makes the network nodes tends to be
more and more distributed. When we design network optinciradlgorithms, these algorithms are required
to be distributed and robust against the dynamic network@mwents which are potentially caused by the
dynamic changes of network disturbance. Secondly, thediganeration networks are not designed by a sin-
gle administrative domain. Instead, these networks aregedeas interconnections of multiple autonomous
administrative domains. The users are heterogeneous aralithno central party that can enforce the users
(agents) to do anything following the protocol. This issugmty falls into the selfish incentives for the intel-
ligent users. It is thus essential for the researchers tlyzm¢he incentives and actions of the network agents,

in order to facilitate the cooperation or coordination ie thetwork. Thirdly, due to the rapid development



1.1 Background and Motivation 2

of mobile computing, the computation capability of the Wéss agents are drastically improved which means
these agents becomes more intelligent. The intelligenitagee possible to carry out algorithmic processing,
and even capable to learn from the environment and mairtgiowin beliefs. All these features above well
correspond to the discipline of multi-agent system.

Science the future generation wireless networks behae#igantly as a multi-agent system, choosing op-
timally among diferent actions is a key aspect of such systems. Game theode§&}ibes multi-person
decision scenarios to address situations in which the mgaof a person’s decision depends not just on how
they choose among several options, but also on the choicds Inyghe people they are interacting with. Game
theory provides ideal frameworks for designinjaent and robust distributed algorithms. In the sense of fu-
ture generation networks, it can be used to provides a richf $godels and solution technologies for network
decision making. Game theory is one of the key techniqudascdrabe applied for spectrum trading in cogni-
tive radio networks. In the traditional wireless netwotke inodes lack of computational capacity. However,
in recent years, the rapid devolvement of mobile computaiptiology enables the nodes in the future gener-
ation networks with high ability of computation. Thus thedes become typically intelligent agents who are
capable of rational behavior. This kind of future generati@tworks will rely on autonomous and distributed
architectures and frameworks to improve tlfieceency and flexibility of mobile applications, and game tlyeo
provides the ideal framework for designinffieient and robust distributed algorithms. When game theory
is originally applied into economic problems, a major theimr assumption of it is that all decision makers
should be rational. When introducing game theory into otlisciplines, this assumption is the major limi-
tation for application. However, the wireless nodes in tleifle generation wireless networks have become
computational-capable agents who can make rational desisiThey are individuals, as well as devices or
software, acting on their behalf.are individuals, as wslldavices or software, acting on their behalf. The
network policies and protocols have to be decentralizeslabte for the distributed and self-behaving agents.
Thus, at a certain sense, for the future generation wirelesgorks which evolves with those autonomous and
intelligent agents, game theory is a rather proper dfettve tool for modeling the scenario, analysis the data
and process and find the optimal solutions and optimal scheme

In the past decade, there have been significant amount ofintooklucing game theory into the field of net-
work modeling, analysis and optimization. Besides comaiole number of research papers, there have been
published several technical books also. The boBkrhe Theory in Wireless and Communication Networks:

Theory, Models, and Applicatioh§5] covers the key results and tools of game theory, and celmgnsively
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summarized various real-world technologies. This boo# #lisstrates wide range of techniques for modeling,
designing and analyzing communication networks using gdmery. Another book Network Security: A
Decision and Game Theoretic Approddii] focus on security issues in the computer networks. #sgnts

a theoretical foundation for making resource allocationiglens that balance available capabilities and per-
ceived security risks. This book opened a novel researegtiin which connects network security and game
theory. The authors in the boolCbgnitive Radio Networking and Security: A Game-Theoretaw’ [8]
concentrates on the newly developed cognitive radio nétsvorhe authors inside this book comprehensively
discussed many aspects of cognitive radio network whereeghgory can be implemented. It covers in de-
tail the core aspects of cognitive radio, including coofiera situational awareness, learning, and security

mechanisms and strategies in the sense of game theory.

1.2 Basic Concepts in Noncooperative Dynamic Game Theory

1.2.1 Overview on Game Theory

Although the notions of interaction such as “conflict”, “cpatition” and “cooperation” are as old as human
society, the scientific approach for them has just startédeny long ago. Game theory is a mathematical tool
that analyzes the strategic interactions among multiptesaien makers. The first text book of game theory
can be traced back to the year of 194Fhéory of Games and Economic Behaviatich is written by J.
von Neumann and O. Morgenstern. Then game theory was dextlextensively in the 1950s when John
Forbes Nash defined that for any games at least one mixedggtriiash equilibrium must exists. The Nash
equilibrium concept is more general than the criterion pegal by J. von Neumann and O. Morgenstern, since
it is applicable not only to zero-sum games. Furthermoréénl950s, many other important concept in game
theory have been proposed, including extensive form garari® repeated game [9]. Then the concepts
Bayesian games and refined Nash equilibrium was defined ih%6@s. Later, in 1970s, evolutionary game
theory was explicitly introduced into the filed of biology efe the concept of correlated equilibrium was
invented. Game theory has been widely recognized as an tampdool in many research fields including
economics, evolutionary biology, politics and militaryetity. More importantly for the computer science,
game theory has been successfully utilized in artificialligence and computing algorithm design.

Game theory can be categorized into noncooperative gameoaperative game. A noncooperative game is

one in which agents make decisions independently. Thudewabents could cooperate, any cooperation must
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be self-enforcing. on the other hand, cooperative gameifl@]game where groups of agents (“coalitions”)
may enforce cooperative behavior, hence the game is a ciimpdtetween coalitions of agents, rather than

between individual agents. The game history we mentionedeais mainly about noncooperative game theory.

1.2.2 Dynamic Game Theory

In the beginning of game theory, the researchers are maimgearning about the static game, that the games
are played only once. A static game is also called one-shmega which agents move simultaneously and
only once. A game is called “dynamic” if at least one agentli@aged t use a strategy with the information
structures [11]. The game in which the agents act only onderadependently of each other is called static
game. If at least one agent is allowed to use a strategy thahde on previous actions, the game is then called
“dynamic game”. In a dynamic game, unlike the one-shotestimes, agents have at least some information

about the strategies chosen on others and thus may corttihgérplay on past moves.

Table 1.1: The position of dynamic game theory

Single agent Multiple agents
Static in the one-shot | Mathematical programming Static game theory
Dynamic in the long-run Dynamic programming Dynamic game theory

Formally, we say the game is dynamic if the decision takenrbggent at instarttmay depend on the state
of the system (the environment), which in turn depends orddwision taken also by the competing agents
at previous time instants. A game is said to be non-cooperathen each agent pursues its own interests. If
same stage game is played in every period, only link betwegndgs is strategy. Focus is on history-dependent
strategies in which strategy is conditioned on what ageidatsndthe past. stage game varies from period to

period.

Definition 1 A noncooperative dynamic game is defined as a t(@plé\, g), where
¢ N is the set of N agents indexed by variable i.
e A =A; x---x Ay, Where Ais the set of actions of agents .
e a=(a,...,ay) is the action profile after all the agents chose their actions

e g € A is an action of agent i.

a= (a1,...,ay) is an action profile after all the agents chose their actions.

g=(01,...,9n) is a profile of utilities, wherejg= A — R is utility function for agent i.
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The description of dynamic game takes into account the reongint that agents should be able to select
strategies that are based on information structure beirgaled during the historical play of the game.

It is worth noting that, an agent’s strategy is not essdptihe same as an action from its action set. A strat-
egy is equivalently to a set of decision rules, that definesatttions to be taken by an agent in each situation.
It can depend on the state of the system. The strategy cartdrendi@stic which is callegbure strategyit can
also be probabilistic which is called mixed strategy. Thaedistrategy is a probability distribution over the

agent’s action set.

1.2.3 Agents’ Information Structure in Long-Run

In a dynamic game, an agent's strategy decision making dispen the information structure of the game.
When investigating theffect of information structure on the play of the game, we fixstne a one-shot game
which is an classical example called “prisoners’ dilemma@he prisoner can choose confess (C) or defect
(D). Suppose the first agent decides to choose his actiondindt subsequently the second agent makes his
choice. In a game under this information structure, whersdmmnd agent makes his decision, he knows the
first agent’s action. Therefore, the second agent’s detdgpends on what the first agent has done. When we
extend this one-shot game into dynamic game played at tvgestave can usé; to denote the first agent’s
action andA; t denote the second agent’s action. In this case, the intamatructure in this game can be
denoted as the sequence that:

Al A AL - Ay

There is another case that the second agent cannot obseraetitn of the first agent. In other words, the
second agent has to make a decision without knowing whatr8t@fjent has actually done. Like the first case,

if we extend this one-shot game into a multi round dynamicegdire information structure will be:

(A1, A2) = (A, Ag) — -+

The first two cases for the information structure have beemegaof perfect monitoring, in the sense that the
agents can observe each other’s action perfectly. Althaudghe second game, at the same stage, the agents
cannot observe what each other have chosen, at the nexitséaggents can perfectly monitor what the rival
has done in the last stage. Consider again the prisonegmdih, but assume an agent can only observe the

outcome of the joint action, but can not observe whethenitd has exactly chosen which action. In addition,
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the outcome of the joint action is a random function of thaliévactions. A good outcome will appear with
probability p when both agents cooperate, with probabititif one of them defect while one cooperate, and
with probability r if both of them defect. Ang > q > r > 0. This is a game of imperfect public monitoring,
in the sense that the agents cannot perfectly observe s raction. However, they can observe a signal
w € {g, b} which is an output appears with certain probability. Thedyootput signab will appear with higher
probability when both agent cooperate. Here we pall r as the probability of a signal under an actual action
profile a. The the imperfect public monitoring games presented hdtdoNowing the information structure
as:

(AL A) »w— (ALA) D w— -+

If at the end of each stage game, each agent learns only tliedea@alue of a private signal, the game is
called the repeated game with private monitoring. In a reggegame with private monitoring, assume at the
end of each period each agerdbserves nothing else other than a private signabout the behavior of its
rival. And a joint signal profile occurs with a probability(w1, w»|a) wherea is the true joint action profile. In

a repeated game with imperfect private monitoring, thermgttion structure is shown as follows:

(A1, A2) = (w1, w2) = (A1, A2) = (w1, w32) — -+

1.2.4 Horizon in Long-Run Relationship

Since the scope of this thesis is focusing on the applicatiddynamic game” in the wireless networks, it is
intuitively essential to discuss how long time such “dyneihmeans. In game theory, the game’s horizon is
generally put into two categories: infinite game and finitenga However, a common question about infinite
game may rise: how long can be called infinite?

For delay tolerant networks [12] and Ad-Hoc networks [18prid-term communication is a very common
case. In delay tolerant networks, the agents in such nesrayekpotentially with high frequency of connecting
to new links. While in Ad-Hoc network, the agents are of highhitity and frequently change their geograph-
ical position, thus the relationship between two agentssséntially last for a very long term. In such kind of
networks, if we model the interactions between agents asta fiame.

Nevertheless, If the wireless networks are not frequentbita, in the sense that, the agents are tend to hold
a stable communication with their neighbors, the relatigmbetween the agents can be enough long. In such

a case, the dynamic game played by the network agents casabedras infinite. One example for agents who
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hold such relationship can be the interaction betweéferdint access points or base stations.

There is another case, that although the relationship leebtbes agents can’'t go so far as to forever, the inter-
action between the network agentsisrt termor, evenyreal time Such a frequently taken game approaches
the horizon or the end only very slowly, then the agents ithnglaames may ignore the existence of the horizon

entirely. The decision making in this case may be bettenuo@mrtby a game with an infinite horizon.

1.2.5 Optimality in Decision Making

In a dynamic non-cooperative game, the optimal strateghdsstrategy (rather than a simple action) that
maximizes the utility functiorg for a given environment where single agent operates [14].

Pareto éiciency [15] is a state of economic allocation of resourcesthiith it is impossible to make any one
further better & without making at least one individual worsg.dGiven an initial allocation of goods among a
set of individuals, a change to #fdirent allocation that makes at least one individual befterithout making
any other individual worsefbis called a Pareto improvement. An allocation is defined astBaficient or
Pareto optimal when no further Pareto improvements can logenfagiven strategy profile s is said to Pareto-
dominate the strategy profig if, for any agent, such thag; (s) > g; (s') and if this inequality is strict for at
least one of the agents. From another way, we say a stratefilewis Pareto-optimal if there does not exist
any other strategy profilg such that Pareto-dominatss Pareto-optimality defines an unambiguous way to
establish that a given strategy is globally dominating.

Minimax (minmax) [2] is a decision rule for minimizing the ggble loss for a worst case (maximum l0ss)
scenario. Alternatively, it can be thought of as maximizthg minimum gain (maximin). The minimax
theorem states that, for every two-agent, zero-sum ganfefinitely many strategies, there exists a vallie
and a mixed strategy for each agent, such that given agesirategy, the best patfgossible for agent 1 i,
and given agent 1's strategy, the best gapossible for agent 2 isV. Formally, for any agent i, it is defined
as argsrllszflx&rir;isrl_i g (s, s.j). Itis worth noting that, in zero-sum games, the minimax sotuis the same as the
Nash equilibrium.

The Nash equilibrium [5] is a solution concept of a non-caafiee game involving two or more agents, in
which each agent is assumed to know the equilibrium stregegjithe other agents, and no agent has anything to
gain by changing only his own strategy unilaterally. If eaglent has chosen a strategy and no agent can benefit
by changing strategies while the other agents keep theaksamged, then the current set of strategy choices

and the corresponding pa¥® constitute a Nash equilibrium. Formally, a strategy peafiE (sp,..., Sn) is
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a Nash equilibrium if for all agents s is his best response to all the others’ joint strategy prafijewhich
means that)i (s, i) = g (g’, &i) for all other strategies. Different as Pareto-optimality, a Nash equilibrium
defines optimality from a single agents point of view, witepect to the states of all the other agents. The term
'equilibrium’ here is justified in the sense that an equilibn outcome is a consistent prediction. That is to say,
the agents should be all assumed rational, and all of thewkiathers are rational. No one wants to choose
other strategies than Nash equilibrium strategy. If all digents predict that a particular Nash equilibrium
outcome will be reached, none of them can do bettern thanstigdis own Nash equilibrium strategy.

When we are discussing the optimality in a dynamic game wiaphesents the relationship of agents in the
long-run, the rational agents can determine in advance glede contingent plan over its action space taking
into consideration of the environment during the entire garBuch a complete plan is the agents strategy
that specifies what particular action it should take in atyasion in any stage of the whole game, in order to

optimize its long-term overall benefit.
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1.3 Repeated Game

In a dynamic game, if a same stage game repeats many times;alléd repeated game [9]. In a repeated
game, one agent’s current action will have direct impact®thie rival's future choice. Thus when one agent
make his decision at one time, he need to consider about tim'acimpact. This is sometimes called the
agent’s reputation. Thus in the repeated games, the ageytdehnave very dierently than if the game is
played just one shot. For example, borrowing a loan from & bepeatedly should be quitfierent with only
borrow one time.

Consider the single stage prisoner’s dilemma, which is toepeated. The game’s pdyonatrix is as the
following table. Here valu® is one agent’s paybwhen he cooperate and his rival also cooperate. \Alise
his paydf if both agents defect. Valug is one agent’'s paybwhen he cooperates but his rival defects. On the
contrary,S is the payd when one agent defects but his rival cooperates. The rukése value should be in

the following order.T > R> P > S.

Agent B

C D

C (R, R) (S, T)

Agent A

D (T, S) (P, P)

Figure 1.1: Stage game of prisoner’s dilemma.

Since this game is repeated and actions on each stage wiliigcted by the history. The agent’s strategy
is a mapping form the game history to his action or his actidisdribution. Thus the structure will become

large very quickly. The following figure shows the repeatadg’s rapid grow of complexity.
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C D C D
Cl@2 |13 Cl@2 |13
3,-1) | (0,0) D|@G.-1) | (0,0

Stage 2 C D / Stage 2

C| 22)] (13

(3,-1)| (0,0)

Stage 1
C D 9 C D
2,2) | (-1,3) C| 22 | (1.3
3,-1) | (0,0) D|@3,-1) | (0,0)
Stage 2 Stage 2

Figure 1.2: Two stage repeated prisoner’s dilemma.

Agent 1
C D
& Thgenis TN
D C D
Agent 1 Agent 1 Agent 1 Agent 1
C/\D C/ \D C/ \D C D
@ Agent2 @ @ Agent 2@ C@Agent 2@ > @ Agent2 @

2R R+S R+T R+P S+R © P+R P+S T+P 2P
2R R+T R+S R+P T+R e P+R P+T P+S 2P

Figure 1.3: Two stage repeated prisoner’s dilemma in tteedi@gram.

A finite repeated game is in which the game is played a knownbeurof times. In a finite repeated game,
following the approach of backward induction, we can findsbhbgame perfect equilibrium (SPE) in the two

stage prisoner’s dilemma. When the game is indefinitelyatgukand there is no know end, we call such games
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infinite repeated games. After each time the stage gameyisglhere is some probability < 1 that it will
be played again and probability-15 that play will stop. This parametéris called discount factor since the

expected payd discounts the payts in later rounds, because the game is less likely to ladttheti.

1.3.1 Repeated Game with Perfect Monitoring

In a repeated game, if each agent perfect observes what #ti@ther agents take, it is called a repeated game

with perfect monitoring. This is the most basic subclassptated games.

Nash Equilibrium and Subgame Perfect Equilibrium

In the repeated game with perfect monitoring, an agentgegdy can be described as a finite state automaton
(FSA). In each state of such an FSA, the agent’s have one(og)ractions. The agent may transit from one
state to another after he observes all agents’ joint acfltrere may be infinitely many FSAs can be investi-
gated as a game’s strategy, we can use a classical “grinettiggfor example. A “trigger strategy” essentially
threatens other agents with a worse punishment, actioryfdeviate from an implicitly agreed action profile.
Furthermore, a non-forgiving trigger strategy (which i8azhgrim trigger strategy) would involve this punish-
ment forever after a single deviation. For example, the drigger strategy can be illustrated as the following

automaton.

*/
CC
CC R *

action=C action=D

Figure 1.4: Grim trigger strategy as a finite state automaton

In this automaton, the agent’s strategy has two state® faateward is denoted aR", in which the agent
will choose actiorg; = C. The state for punishment is denoted BS in which the agent will choose action
g = D. The agent will be cooperating if he observes the joint aci€, otherwise, if any of the two agents
defects, this agent will transit to punishment.

One strategy profile=(sy, ... s) is a Nash equilibrium of the repeated game if the strategyofi@gent is

a optimal response to other agents. Usually, the Nash brquit can be found by using min-max rule.
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A strategy profile is a subgame perfect equilibrium (SPE) iépresents a Nash equilibrium of every sub-
game of the original game. Note that SPE require the stragiegfile s must constitute a Nash equilibrium for

every df-path history. SPE can be found by using backward induction.

Agent 1

AgentA 6 2
6

4
AgentB 2 2

Figure 1.5: Nash equilibrium and subgame perfect equilitri

From the above game in the tree diagram, we can learn fferatice between Nash equilibrium and SPE.
The blue line is Nash strategy profile while the red lines i€ 3®ategy profile. The flierence between
these two strategy profiles is that if agents follow the retthpthe di-equilibrium path also constitute a Nash

equilibrium. Thus the SPE is a refined subset of Nash equuititor

Backward Induction

Backward induction is a technique where agents work back ffee end through the sequence of decisions that
could lead to that outcome to assist them with the decisiaking process. As we introduced before, backward
induction is one major method to solve the dynamic programymroblem. It proceeds by first considering the
last time a decision might be made and choosing what to doyisiuation at that time. Using this information,
one can then determine what to do at the second-to-last tirdeaision. This process continues backwards
until one has determined the best action for every possitilaten (i.e. for every possible information set) at
every point in time.

In the following figure, we show have to use backward inductmfind optimal strategy for the two-stage

prisoner’s dilemma. The red lines are the optimal actiomsee from backward induction.
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Agent 1
C D
& Agents TN
C D C D
Agent 1 Agent 1 Agent 1 Agent 1
c/\D C/ \D C/ \D C D
@ Agent2 @ <@ Agent 2@ C@ Agent 2@ > @ Agent2 @

Figure 1.6: Backward induction for a two stage repeatedpgss dilemma.

We can see that, for this two stage prisoner’s dilemma, eftbat is the SPE. Moreover, if the prisoner’s
dilemma repeats many but finite times, What is the subganfegierutcome? Similar as this two stage case,
if we start from the leaf nodes and work backwards: in lashdyunothing the agent ddfacts future, so agent
will play the dominant strategy for stage game which is def&nce the last round is determined as defect
already, nothing you do in next-to-last rounffemts future, so you play dominant strategy for stage game
which is again defect. Work your way back time after time, lfindhe only subgame perfect equilibrium is
“all-defect”. Thus, generally speaking, in a subgame pedguilibrium for a finitely repeated game where the
stage game has a unique N.E, the moves in the last stage armuhetd for each agent’s strategy. Given that
the moves in the last stage don’t depend on anything thatdmegpbefore, the Nash equilibrium in previous
stage is uniquely determined to be the stage game equitbriu

The following is an real-world example for backward indoati in a chess match, for example, an agent
creates a hypothetical ending, assuming himself as theayiand moves back through a series of maneuvers
to see how that ending could be reached. The strategy of tiee agent will be important to factor in, as the
chess agent can think about how her opponent may behave. d¥issmwill influence the outcome, and the
ability to predict them will allow her to maneuver him into eroer.

There is a major flaws with the backward induction processe bBéckward induction is often based on

predictions about the behavior of others and if these aregyrthe end result may beftirent. To use this
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technique #ectively, it is necessary to have as much information asilplesabout all of the factors that might
influence decisions at each step, in order to predict acgyratn a more realistic game where the agents’

observation is not perfect, such backward induction mageauaccuracy.

General Model of Repeated Games with Perfect Monitoring

e Let G be a normal form game with action spaée, A;... A,, the payd function for each stage is

gi: A— R,whereA; x Ay X ... X An.

G (o0, 0) is ainfinitely repeated version of garfie wheres is the discount factor.

A history of the game until stagds the record of all the joint actions during stage 0 to stag#, which

SHU={(20, ., a0), (e, &)

A strategy is mapping from history to the actidn H' — A;.

The utility of agentiis u; (s, s.i) = (1 - 6) § slg(a;, a )
t=0

This summation is well defined because the discount fattar 1. The term(1 - ¢) is introduced as a

normalization, to measure stage pfiyand repeated game utility in the same units.

Folk Theorem

“If a paygf profile r is both feasible and enforceable, then r is the gaiyosome Nash equilibrium of the
infinitely repeated game with average rewatds.

The folk theorem states that any feasible gywofile that strictly dominates the minmax profile can be
realized as a Nash equilibrium pdigrofile, with suficiently large discount factor. In other words, any
cooperative outcome is possible. For an infinitely repegtate, any Nash equilibrium pafanust weakly
dominate the minmax pagfoprofile of the constituent stage game. This is because a aghigving less than
his minmax payff always has incentive to deviate by simply playing his minmsiaategy at every history. The
folk theorem is a partial converse of this: A pédlyprofile is said to be feasible if it lies in the convex hull of
the set of possible pafioprofiles of the stage game.

For example, in the Prisoner’s Dilemma, both agents codipgra not a Nash equilibrium. The only Nash
equilibrium is both agents defecting, which is also a mutaadimax profile. The folk theorem says that, in

the infinitely repeated version of the game, provided agamsiiiciently patient, there is a Nash equilibrium
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such that both agents cooperate on the equilibrium path.fdlleev figure shows in the repeated prisoner’s
dilemma, where SPE exists if we chodBe- 2,R=1,P =0,S = —1. In this figure, the pay® profile (Q 0) is
the paydts for mutual punishment, and,() is the profile for mutual cooperate. The green range is evtrer

paydts can substitute subgame perfect Nash equilibrium basedrtaircdiscount factors.

A
Cooperate-Cooperate
m 2 Payoffs
E II
[<9) ’
&
w 1 Defect-Defect
= -~ Payoffs
3
g O
-
-1 0 | 2
Payoff of agent A

Figure 1.7: Payfis and subgame perfect equilibrium range for prisoner'srdiba.

One-shot Deviation Principle

If a stage game repeats many times even infinite, the numhaossible strategies can be particularly large
number, even infinitely many, thus checking whether a gjyapofile constitutes a SPE can be hard. Fortu-
nately, the one-shot deviation principle allow us to onlynpare the target strategy with a small set of other
strategies [16].

A one-shot deviation from a strate@yis a strategys “such that there exists some unique histiorpf the

game, such that

§ (h) # s (M)
A backward induction can be used to show that, if there exigtsofitable deviation for a finite number of
periods, there also exists a profitable one-shot devia@urthe other hand, if there exists a profitable deviation

for a finite number of periods, it is also possible there is same-shot deviation not profitable. Therefore, the

one-shot deviation principle can be utilized to check whlethgiven strategy constitute a SPE. It is proved that
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a necessary and icient condition fors= (s, ... s,) to be a SPE in the infinitely repeated game is that there
exists no profitable one-shot deviation after any histeriyl 6].

We can use the one-shot deviation principle to check whetherFSA can constitute an SPE. In the grim
trigger strategy, if we use the payonatrix as in Figure 1.7, the normalized p#lyfor any subgame starting

from a cooperative joint actio@C is calculated as

(l—é)x[l+6+62+~-]:(l—é)xrlé:1

As a deviation, if one agent deviates Byonly once and then goes back to grim trigger which means He wil

chooseD afterwards, its normalized paffavill become
Q-6)x[2+0+0+--]=(1-6)%x2

Here if the discound is larger than%, the cooperation will be dominant and agent has no incettiv® one-
shot deviation. In other words, cooperation is best regptmsooperation. If the game is starting from mutual

punishmenDD, the agent’s normalized paffavill be
1-6)x[0+0+0+--]=0
If the agent deviate to other acti@) it normalized payff becomes
1-6)x[-2+0+0+--]=-2(1-9)

No matter what value the discount is, this deviation will @else dominating. Since the above arguments are

true in every subgame, so the grim trigger is a subgame pededibrium for the repeated prisoner’s dilemma.

1.3.2 Repeated Game with Imperfect Private Monitoring

In a repeated game, if agents cannot perfectly observe lilee agents’ actions, but can only observe imperfect
and private signals about the actions, such a game is thategpgame with imperfect private monitoring. The
study of this class of game is still in its infancy. Relativdittle is known about the structure of equilibria
in these games. One example of such game is the competitipricing. Assume there are two sellers in

the market, each of which negotiate with the customers atimuproduct’s price secretely. Thus for one




1.3 Repeated Game 17

seller(agent), the rival’s actual price is hidden. Whas thjjent observes is only a private signal such as his
private selling quantity which is the outcome of both his guwite and the rival’'s price. The repeated game
with imperfect private monitoring is based on such scesardthough this class of games admits a wide range

of applications, it is quite complicate to deal with and thkative researches are far from mature.

Difficulty of Repeated Games with Private Monitoring

The reason why private monitoring isflicult to analyze mainly falls into the following two aspect&)
Unlike the public monitoring and perfect monitoring gam#® agents in the repeated game with private
monitoring cannot choose its action according to the comynaloserved events. Although the joint FSA can
be constructed, the important thing is the agents will neuee about which joint state he is in. In this case, we
cannot use a joint FSA to represent a joint strategy profiladich games, because after one agent’s deviation,
other agents will not know his private history is changed.isTheans it is dficult to utilize the one-shot
deviation principle here. Then such a game is not easy to bstrtmted in a recursive form. (2) In each
stage of the game, the future action plans are never comnmamd&dge (not like public monitoring and perfect
monitoring case), the agents need to do very complex stalishference. To determine the best strategy in
each stage, the agents must guess what other agents ard@dimgAs a result, one agents should calculate

the history of other agents by Bayes’ rule in each stage, wtaém be increasingly very complex.

General Model of Repeated Games with Private Monitoring
A repeated game with private monitoring is defined as:
e TheNagents =1,...,N.

e Agenti’s action at each stages; € A;. The joint action profile then isa = (a1,...,an) € A =

A1 X -+ X An.

e Agenti’s private signal isvj € Qj. w = (w1,...,wN) € Q = Q1 X---xQy is the joint signal of all agents,
d(wla) is the joint signal distribution given an action profdeandg; (wjla) is the marginal distribution

of omegagiven the action profila.

e Agenti’s realized stage payis only determined by his own action and signal and dengtéd, w;).

The expected stage pdyis:
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gi(a)= ng (&, wi) q(wla). (1.1)
e Then the normalized repeated game ghig

(1-06) §0 stui(a(t)). (1.2)
t=

Signal Distributions

In this game, it is assume that no agent can infer which aatiere taken for sure, to this end, we assume
that eachw; occurs with a positive probability. Then the joint signdldas a certain probability distribution.
For any joint actiora, consider the probability for both agent receiving corighal asp, the probability for
only one agent receiving correct signalggsand the probability for neither agent receives correataigsr.
Usually, the values follows ordgy > q > r andp + 2q + r = 1. The following tables are an example for the

joint signal distribution under joint actior©(C) and joint action D, D).

Table 1.2: Joint signal distribution for joint actioa(ay) = (C,C)
w2=0 | w2= b

w1 =49 p q
w1=b q r

Table 1.3: Joint signal distribution for joint actioa(ay) = (D, D)
w2=0 | wz= b
w1=49 r q
w1=Db q P

Table 1.4: Joint signal distribution for joint actioa(ay) = (C, D)
w2=0 | w2= b
w1=9 q r
w1=Db p q

Table 1.5: Joint signal distribution for joint actioa(ay) = (D, C)
w2=0 | w2= b
w1=49 q p
w1=Db r q
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Path Automaton and Joint FSA

Unlike the perfect monitoring case, in the repeated gamie grivate monitoring, a private history for agent-

is the record its past actions and observed signals:

= ().t
where e H! = (A x Q) .

The strategy is the a mapping from any history to the acsiartd; — A;, whereH; = tL>JO Hit.

Although the private monitoring game model is quiffelient from the perfect mo;litoring case, we can still
use an FSA to present the agents’ path of play. However, vwehees the state transition is the private signal
but not the common observed joint action. Following the ddim in , an agenf's path automaton can be

specified as quadrupld; = (@i, o, fi,Ti).
e A set of state®;.

The initial states; € ©;.

Action choice for each statg : ® — A;. The action can be mixed or pure.

Action choice for each statk : ® — A;. The action can be both mixed or pure. In this thesis, without

loss of generality, we assume a pure action is taken in eatd st

The state transitiofi; : @; X Q; — A®;. If the current state ig, (t), after observing private signaj} the

agent will transit to new staig** with probability T (6126}, w!) .

At each state, the state transition for out going follows sgrobability distribution. And the state transition
in the private monitoring game is trigger by private sigiaif not the joint action. A path automaton without
the given initial state is called 'pre-automaton’ which endtedm, = (@, fi, T;).

It is worth noting that, in the path automaton defined abomegdch state, only action in equilibrium is
played. This means for any other action which not includethis state in this automaton, is not considered.
Therefore, such approach concentrates on the path sestddere, we distinguish terms strategy an plan and
as follows: a strategy is a complete contingent action pldmch specifies the intended path of play as well as
what the agent should do after deviating from the intendekl. pa contrast, a plan only describes the intended

path of play. In this thesis, we concentrate on the plan bwtomwall the strategies.
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Table 1.6: Payfd matrix for stage prisoner’s dilemma

a=C a=D
a=C 1,1 -y,1+ X
aa=D|1+x-y 0,0

Assume the pay® matrix for a stage game prisoner’s dilemma is in 1.6. If westder grim trigger in the

repeated game with private monitoring, the preautomatdirbwillustrated as the following figure.

o [R-2~(P] a.b

Reward Punishment
(Cooperate) (Defect)

Figure 1.8: Grim trigger under private monitoring.

For the profile of pre-FSAs = (M, ..., m,), where eachm; = (@;, fi, T;), we define the joint pre-FSA as
(O, f,T), where® = [[ien O, T 1 © — [ien A, such thatf (0) = (f1(61), ..., fa(60), T : O X [Tien Qi — O,
such thatT (6, w) = (T1(01, w1), ..., Tn(6h, wn)). Following this grim trigger preautomaton, consideritng
state transition probabilities in the previous tables, w&e calculate the state transition distribution in each

joint state as the following four figures.

RP

RR

o]
+
=

PR

PP

p+g+r=1

Qe

Keo)
+
=

Figure 1.9: Transition probabilities for each joint stRie
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Combine these above fore transitions together, we finaliylgejoint state with transition probabilities. In
the last chapter of this thesis, the game a analyzed basdwdransition matrix which are derived by using

such kind of joint automatons.

Figure 1.10: Joint state automaton and transition proiiaisil

Assume the stage game is PD, where- 0.5,y = 1. Each agent acts based on a pre-FSA in Fig.1.11,
which we call 1-period Mutual Punishment (1-MP). It has twates, i.e.R (reward with actionC) and P
(punishment with actio). Thus, if a agent starts frol, she keeps on cooperating as long as she observes
g. If she observeb, she moves t® and starts punishment, but after she obsebyaste returns t&. Also, we
assume a nearly perfect monitoring case. Here, let us définearrect signal when the opponent chodSes
(or D) is g (or b). Then, both agents observe correct signals with prolalplione agent observes a correct
signal, while the other agent observes a wrong signal witbability g, and both agents observe wrong signals

with probability s, wherep + 29 + s = 1 andp is much larger thaw or s. And the joint state automaton for

b
g(_ LR, P )9

N

Reward b Punishment
(Cooperate) (Defect)

1-MP is illustrated in Fig. 1.12

Figure 1.11: 1-MP under private monitoring
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Figure 1.12: Joint automaton for 1-MP under private momtpr

Belief Update

Assume agents exceipact according tan_;. A belief ofi over the current states of other agents is represented
asbhi € A(]];+ ©j). Let @ denote the profile of states of all agents, #ddenote the profile of states of all
agents except Also, let @, 6_;) denote the profile of states of all agents, where the statesaf; and the
profile of states of all agents excéps 6_;. Forb;, we denote the probability that the states of other agests ar
0_; ash;(0-;). If two agents act according to 1-MRB, is represented as a vector of two elemebit€R), b;(P)).
xila, wi, bi] denotes the posterior belief fowhere the current belief ig, the current action ig; and obtained

observation isvj. The posterior belief is get by using the Bayes'’ rule as fado

, P2 (w0
x &, wi,bi] (0) = mg—“"d
QZ_ riwi ¢ 10-.a)bi(0-) (1.3)
" YR HE)hE)

where

ri (wi, 0102, a) = 3 T1T5 (16}, ) a (i, w-ila, £ (0-)). (1.4)

w-j J#l
ri here is defined as the distribution of current signabigind the next state & ; given the current state and
action is(6_i, g).
State and Belief based Payoff Functions

Let V2, wheref = (6;, 0_;), be agent’s paydf associated withry, 6;), when the states of other agents @rg

Based on the joint pre-FSA, we can obtafhby solving a system of linear equations defined as followsrah
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0 =T(O,w).

V=g(f@)+s > v -owl ) (1.5)
we]_[jeN QJ
Assume agents excepact based omn_j. We denote the expected pdlyof agenti, wherei acts according
to an FSAM; when her subjective belief of other agents’ states,igsV (by). In particular, V™" (by) can

be represented as

Ze_iEI—[jii Q) V(gi’e_i)bi (O—i)' (16)
Note thatv™*)(by) is linear in beliefo.

Finite State Equilibrium and Finite Plan Equilibrium

Denote a profile of all finite path preautomaton of theagents asn = (m,...,my). We say a profile of
preautomaton compatible if for ever agenthere exists some staiee ®; and some belie; € A (®;) such
that(m;, 6;) is his optimal plan given his subjective bellgf

According to the definition in [17], a finite state equilibmuis a (correlated) sequential equilibrium of a
repeated game with private monitoring, where agents’ Hehaw the equilibrium path is given by finite path
preautomatan, = (@, fi, T;), i = 1,..., N and a joint probability distribution of the initial states A (®).

The valuer is the probability distribution over the states in the pteaata, which is called the initial
correlation device. For example, assume the two agent gathgrivate monitoring, the initial distribution of

the joint state follows the distribution in the following €ice.

AgentB

R P
R 0.6 0.1
P 0.1 0.2

Figure 1.13: Initial correlation device.

If the two agents are following this correlation devicehen if one agent is suggested in staf¢hen he can
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calculate his rival will be suggested in st&evith probability% = %’, and in statd® with probability%.

It must be emphasized that in{, my) and r constitutes an FSE, it means that as long as agentsB act
according tam, andr, agent-A's best response is also to act accordingitandr. Here, we do not restrict the
possible strategy space of agent-A at all, i.e., even if Bg§eamses a very sophisticated strategy, which might
require an infinite number of states, her expected utilityncd be improved.

A finite-plan equilibrium is a a special case of an FSE, it ipaalated sequential equilibrium of a repeated
game with private monitoring, such that the number of plamamd df equilibrium paths is finite. When the
total number of plans, which are both on arfiitbhe equilibrium paths, is finite, we can represent thesesplan
as a pre-FSA, where each plan is associated with one stdte pr¢-FSA. Thus, it is clear that any FPE is also

an FSE, but not vice versa, since an FSE might have infinitelgynat equilibrium plans.
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1.4 Differential Game

The term “Diferential Games” is the extension of dynamic game theorydatntinuous-time case [11]. It
is introduced by Isaacs [18]. In a originalfidirential game there are two agents: a pursuer and an evader.
These two agents have conflicting goals. The pursuer'sttarde catch the evader, while the evader’s tried to
prevent this capture. R. Isaacs modeled ttigetential game by first defining a state variables which remtes
the position of the two agents,ffirential equations describing the motion for the rivalsehe describes a
target set for either a pursuer or an evader. The pursuegsttset includes points in the state space where the
distance between the pursuer and the evader is small. Oriiteary, the evader’s target set should contain
the points where the distance between them are large. Eacih iaghe game tries to drive the state variables
of the game into his own target set by controlling key vagahkhich is called controls.

The study of diferential games has implications for real-life air combat, drtificial intelligence as well
as for economics decision making. flérential game is a discipline that is entwined with optinmiteol and
game theory. There are two important features fikdential games that makes it particular. First, there i a se
of variables that is used to characterize the state of thersyat any time instance during the play. Second, the

evolution of the state variables is described by a setféédintial equations.

1.4.1 Single Agent Optimal Control Problem

Optimal control deals with the problem of finding a controlipp for a given system such that a certain
optimality criterion is achieved [19]. A control problemcindes a cogteward functional. An optimal con-
trol is a set of diterential equations describing the paths of the controbbes that minimizenaximize the
cosfreward functional.

Let us assume an example for optimal control. One drive wadtite his vehicle through an mount road.
The drive’s action at each time instant is which speed he sd®to drive the vehicle, denoted@). The
driver’s objectivel is to minimize the travel time. Assume there is an state fgia(t) describing the distance
to the destination at time The variable is related to both the road condition and tleedmf the drive. For
such a system, there is also a constrain: the energy is dpated vehicle’s speed should also be limited for

safety reason. The time-varying objective function is acfiom with the driver’s speed and the road’s shape.
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We can define the objective function as follows:

J= ft;f LIx(),a), ] dt (1.7)

where £ is the driver’s instant paybat timet. a(t) is the instant speed and(t) is the state that describing

the distance to the destination at titnd hus the formulation of optimal control problem is as falk

a(t) =y (x®,n
() = 20 = F (x(1).a(1) (1.8)

3@ = [ LIxO.a@).1dt+ [x(to) . to x(tr) . ]

Herea(:) is a function of system’s dynamic(t). And the objective of this optimal control problem is:

max (3= [} L1t x(0. a1t + 0 1) 71}

a(e).x(ts

st x()=F[Lx(),a)].

(1.9)

Bellman Equation

Solving an optimal control problem, one need to deal withftilowing three sub-problems: the dynamic
programming, the maximum principle, and the boundary vatoblem. Solving the optimal control problem is
to find an optimal policy, which has the property that, whatefe initial state and decision are, the remaining
decisions must constitute an optimal policy with regardhe state resulting from the decision in the firs
step. Dynamic programming is a method for solving complebfams by breaking them down into simpler
subproblems. The idea behind dynamic programming is qunipls. In general, to solve a given problem, we
need to solve dierent parts of the problem (subproblems), then combinedhgi@ens of the subproblems to
reach an overall solution. Often, many of these subprobkemseally the same. The dynamic programming
approach seeks to solve each subproblem only once, thusimgdilhe number of computations: once the
solution to a given subproblem has been computed, it isdtmrenemoized: the next time the same solution is
needed, it is simply looked up. This approach is especiagful when the number of repeating subproblems
grows exponentially as a function of the size of the inpute Bellman equation writes the value of a decision
problem at a certain point in time in terms of the piytom some initial choices and the value of the remaining

decision problem that results from those initial choicesisToreaks a dynamic optimization problem into
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simpler subproblems. For example, for a system, from ititia¢ to to final timet;, if the instant action ig(t)

and the system state dynamicxs), the utility function isV(xg), instant pay€ is
V (x0) = ma?x§ BF (x.a), Vt=0,12... . (1.10)
t=0

Then by following a dynamic programming approach, the fpilecof optimality, the optimal control problem

can break into optimal sub-problems:

ax wlﬂt‘lF(xt,a{)]}, Vt=12... . (1.11)

maX{F (X0,30) +B| M
a {ao}2; t=

We can see that, the whole optimal control problem from tinze 0 to « is divided into two parts of sub-
problems. One can then first solve the insider optimizatigopsoblem, then get the optimal control policy
for the entire problem. Futhermore, if we keep on dividing ihto smaller subproblem, the original optimal

control problem can be rewritten as a recursive value fanaiich that:

V (Xo) = ma?X{F (X0, @) +BV (x1)} - (1.12)

To solve such Bellman equation, existing technics can bd.usgne possible solution is to use backward
induction. Backward induction is the process of reasoniagkivards in time, from the end of a problem or
situation, to determine a sequence of optimal actions.otgeds by first considering the last time a decision
might be made and choosing what to do in any situation at thme. t Using this information, one can then
determine what to do at the second-to-last time of decisiins process continues backwards until one has
determined the best action for every possible situatiorvertyepoint in time. The backward induction can be
done either analytically in a few special cases, or numigyioa a computer. The second technical to solve the
Bellamn equation is to calculate the first order conditiossoaiated with it, and then use the envelope theorem

to obtain a system of flierential equations which is possible to be solved.

Hamilton-Jacobi-Bellman (HJB) equation

Following the dynamic programming approach, the optimati problem can be reformed into an Hamilton-

max {3= [ £ILx(©),a0lc
Jacobi-Bellman (HJB) equation. Recall that the formalrpticontrol system is described agé*)-x(T)

st x(t) = F[t,x(t),a(t)]
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Define the optimal value function at any timhasV as:

V(t, x(t), T)— max ﬁ L[s x(9),a(9]ds+ @[x(T),T]
(1.13)

s t. x(s):F[s,x(s),a(s)].

For any short enough time periad > 0, the above equation can be written as:

V(Lx(1).T)= max {f*“z[s,x(s),a(s)]dSJrftIAtL[s,x(s),a(s)]+c1>[x(T),T]}
a(e)x(M)
se[t,T] . (1.14)

s.t. x(9)=F[sx(g),a(s)], x(t) given

The control functiora(-) should also be optimal in the subperisd [t + At, T], thus the above equation can

be rewritten as:

_ t+At
Vit x(),T)= oo, Se[mAt] ft L[s x(s),a(9)]ds+ Sé[rtr:i:(ﬂ {f+At£[s, x(s),a(9)] + @ [x(T), T]}
F[s x(s),a(s)], x(t) given se[t,t+ At]

st X(s) =
F[s x(s),a(s)], x(t+At) given set+AtT].

Using the definition of value functio¥, the above function can be rewritten as:

V(tx(t).T)= max {f*“z[s,x(s),a(s)]ds+V(t+At,x(t+At))}

a(e),se[t.t+At] (1.15)

st x(s)=F[sx(9,a(s)], x(t) given

This recursive value functiov consists of two parts: The optimal value in the initial pdri@nd the continuing
optimal value. Due to the state equation, the continuingragtvalue are fiected by the optimal control during
the initial period. Consider the right hand of the above &quawhich consists of two parts. According to

Taylor’s theorem, the value function in the above equatiam loe rewritten as:

dV (t, x(t))

V(t+ ALX(+AD) =V (EX(0) +

- At+o(t).

V) _ VD), VEXD) x
where == = =5 + S50 28, Then,

V (t+ AL X (t+ AL) =V (t, X (D) + 0 (At) + [ LD ;. NEOE (¢ x(1), a ()| At - (1.16)
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For the first part in the original equation, also followingdis theorem, we have

M Lis x(9),a(9lds= [ L[5 x(9),a(I]ds+LIt x (1), a®)] At+o(At)

(1.17)
=L[t, x(t),a(t)] At+o (At).
Substituting 1.16 and 1.17 back into 1.15, we have:
V(tx(®),T)=  max {f”“x:[s, X(9),a(9)]ds+V (t + At, x(t + At))} -
a(e),se[t,t+At]
nax (L1t x(®).a®] At+V (& x (1), T) + [ 2L VEOIE (& x (1), a(t)| At + o (1)) (1.18)
a(e),x
seftt+At]
s.t. X(s) =F[sx(9),a(9)], x(t) given
After reduction, 1.18 becomes:
V(t,x(t),T)= (r?af¥) {.L [t,x(t),a(t)] + dV(th(t)) 6V(t X(t)) F(tx(t),a) + O(At)}
a(e),x
seft t+At] (1.19)
s t. X(s) =F[s x(9),a(s)], x(t) given
SinceAt — 0, equation 1.19 can be reduced to:
G max{ [t.x (1) a(®)] + 2EDF ¢ x(1). a(0)
Letting a represent the value aft) at time point st, then we get the HIB equation as:
- SO = max{ L[t x(t). a] + PO (& x (). a)} (120

we call the part inside the brace as “Hamiltonian functiowhich is labeled as[x, a,t]. Thus the HIB

equation can be written ag“<) — m(%xﬂ[x(t) ,a(t),t).
al
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Pontryagin’s Maximum Principle

Assume the optimal control exists, such thaft) = arg maxH [x* (t),a(t),t], then the above HIB equation
acA

becomes:
oV (x 1)
ot

+H[X(1),a (1),t] =0

Derivate HJB equation with respect to state variatgt,

OH g(aV(x,t))zo

ax " dt ox
Let 2 = 240 denote the 'co-state variable’, we have: —244xX.2)
Finally, the Hamilton function is:
Hx Aat]=1-F(xa)+L[xat] (1.21)

Note that this function depends only on derivatiydut not onV itself. 1 is important, because the optinsl

is a function of variablel.

Optimal Control as Boundary Value Problem

The optimal control is reduced into a boundary value problEor the optimal control problem, &(t) is an
optimal control policy, and = (t) is the corresponding state trajectory, there exists aate-$unctiond such

that:
a* (t) = argmaxH [X* (1), a(t),t]

acA
x (1) = 20 = F (x,a)

/l(t) — %(t) — _OH )(;*x,a*,t )

which is subjected ta (T) = @%1 (usually,2(T) = 0) andx (0) = Xp. This above dferential equation set

is possible to be solved, and then the optimal control palay be found.

1.4.2 Multi-agent Differential Game

Differential games are related closely with optimal controbjmms. In the last subsection, we discussed about
optimal control, that the single agent needs to decide itengp policy for single control(t). By contrast,

differential game theory generalizes single agent one comtrioéd controls and two criteria, one for each
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agent. Each agent attempts to control the state of the sysiean to achieve his goal; the system responds to
the inputs of both agents.

As a game, as we recordedffdrential game is a noncooperative dynamic game, playeditintmus time.
As a control problem, dlierential game extend the single-agent optimal control thiagent case. Thus it uses
tools, methods and models of both control theory and ganueythe

Similar as optimal control, in ¢fierential game, there is also a system dynax(i}; describing the state of
the system while time is going on. If dynamic system is simgiate vector can be one dimension; If dynamic
system is complicate, the state vector has several dimeasio game is hard to analyze. And like any game,
the agents has actions, for agéenét timet, its action is denoted ag(t). The system state is determined by
differential equations, and all agents can influence the rateasfge of the state vector through the choice of

their current actions:

X(t) = f(t,x(®),ur(t), Uz (t),...,un (1), X(0)= Xo. (1.22)

agenti's utility is:

3= [T e F X0, w0, u (D). . uy O) dt (1.23)
Similarly as the optimal controF; represents the instant pdyéor agentt.

Information Structure about Dynamic State

For agent to play the fierential game, the available information for the systertestarequired. There are
three cases of available information for &efential game: First, open-loop information, which meagyens
only have common knowledge of state vectot at 0. Strategy is conditioned only on current tirheln
other words, the agents have minimal amount of informatidreir strategies is fixed at the start of the game.
What particular action to take at specific instance depemdis an the instant time t. agents only consider
about time. Second case is feedback information, that atttiagents are assumed to know the values of state
variables at timé — €, wheree is positive and arbitrarily small. This means, till tihghe history of the game

is summarized in the value oft). Third case is close-loop information, that at tiljeagents have perfect
information about the past and present. agents have accssvalue of the state variable from time 0 to time

t, namely{x(s),0 < s< t}.
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Multiple Agents’ Value Functions

Denote in atwo agent zero-sunfidirential game, the agents actions@(e andv;(t), respectively. The system
state with time varying is

x(t) = F(x(®),u(®),v(t)

X(to) = %o

And since we consider zero-sum game, we define the uniquky fiihction for the systems as

T
J(to, X0, U, V) = ft L[x@®),u),v(),t]dt+ o (x(T))

Agent A controls variablel and wants to maximizé, while agent B controls variabkeand wants to minimize
J. Using this system utility function and following the similapproach in the single agent optimal control
problem, we can define two value functions for these two ageaspectively. For agent A, because it want to

maximize the value o8, we denote
VT (xt) = mvin muax J (to, X0, U, V)

We call this the “upper value function” of theftrential game. Likewise, agent B’s value function is
V™ (xt) = md';lxmvin J (to, X0, U, V)

which is called “lower value function”. Using these two valtunctions, the dynamic programming for a
differential game can be introduced.
Because there are two value functions in such a game sydtene, will be two HJB equations. For upper

value functionv*, the HJB equation is

+

oV* (x 1)
ot

F(xuvt)+ L[xuV, t]}

. {av
= min max
v u oX

while for the lower value functioV~ it is

oV~ (x 1)

. L\
5 = mlj';lxmvln {WF(X, u v, t)+ L[x u,v,t]}
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The two Hamiltonian functions are defined based on the ahowdtIB equations:
H* (x, 1) = mvin max {AF (x,u,v,t) + L[X u,v,t]}
H™(x,A) = muaxmvin {AF (X, u,v,t) + L[x u,Vv,t]}

Hamilton-Jacobi-lsaac-Bellman (HJIB) Equation

The solution of the dferential game is where the Issacs’ condition holds. In thglsiagent optimal control,
the HJB equation is a key intermediate process for findingr@dtsolution. In conventional flierential game
problems, it is considered as a basic problem to find ap@tpGlasses of strategies which enable us to
characteriz&/*, V™ and to identify:V* with V~ under min-max (Isaacs) condition. If the strategies forbin
agents can satisfy the Isaacs condition, the strategiemiaraax solutions which are optimal and equivalent
to the Nash equilibrium.

The Isaacs’ condition is satisfied when two agents Hamiétofiinction equalstH* (x, 1) = H™ (X, 2), which

is
mvin ml?x {(AF + L} = mfxmvin{AF + L}. (1.24)
When the Isaacs’ condition is satisfied, we say tliedential game has a vald such that
V (%, 1) = J (to, Xg, U*, V) = muax J (to, X0, U, V) = mvin J (tg, Xo, U*, V). (1.25)

Obviously,u* = u(x, 4,v) andv* = v(x, 4, u) are optimal for two agents, and al&d, v¥) is the saddle point.
In this case, agent A will chooa& because he is afraid agent B will chooge while agent B will choses*

because he is afraid agent A will choase

Pontryagins Maximum Principle for Differential Games

Assume Issacs condition holds, thus we can design optinmitale asu* (x, 4, V) andv* (x, 4, u). Similarly as

in the optimal control problem, define the co-state varialdes:

1 (t) — OV (xt) _ 6V‘(>gt)' (1.26)

ox - ox
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Then derivate HIB equation with respect to state varizft)e

o OH (X', A", u", V")
ot X ’
associated with Hamiltonian functid (x, 4, u,v,) = AF (X, u,v,t) + £[X, u, v, 1].

Finally, do the optimization work, ué?@(xéﬁ—’m = 0 to ge a diferential equation ofi* with variablesu* and
A% use%\’f’“—"’) = 0 to get a function of*, with variablesv* andA*. Then the saddle poirft*, v*) can be
derived.

In the mathematical optimization method of dynamic prograng, backward induction is one of the main
methods for solving the Bellman equation. In game theorgkWward induction is a method used to compute
subgame perfect equilibria in sequential games. The orffgrdince is that optimization involves just one
decision maker, who chooses what to do at each point of tirhereas game theory analyzes how the decisions

of several agents interact. That is, by anticipating whatléist agent will do in each situation, it is possible to

determine what the second-to-last agent will do, and so on.
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1.5 Game Theory as New Paradigm for Cognitive Radio Network

1.5.1 Cognitive Radio Networks and Research Challenges

The traditional wireless networks are characterized byedfispectrum assignment policy. Those traditional
spectrum assignment policy forces spectrum to behave likeganented disk. However, up to now, the band-
width is expensive and good frequencies are already takdarbg authorities such as telecom companies
and TV broadcasting companies. Those traditional specshamnng approaches based on a fully cooperative,
static, and centralized network environment are no longgli@able. According to the investigation from FCC,
a large portion of the assigned spectrum is used sporadimatl geographical variations in the utilization of
assigned spectrum ranges from 15% to 85% with a high variantene. The limited available spectrum
and the inéficiency in the spectrum usage necessitate a new commumigadiadigm to exploit the existing
wireless spectrum opportunistically.

Therefore, unlicensed wireless channels is getting lessvader, on the other hand, the existing licensed
wireless channels are ndfieiently utilized. (e.g. Some TV companies are not busy inedudy morning, but
other unlicensed wireless users still cannot use thesechaanels). To tackle this problem scientists worked
on a new generation wireless network: cognitive radio, Wisca transceiver designed to use the best wireless
channels in its vicinity. This new networking paradigm iereed to as Next Generation (XG) Networks as
well as Dynamic Spectrum Access (DSA) and cognitive radimvagks. Such a radio automatically detects
available channels in wireless spectrum, then accordicigiynges its transmission or reception parameters to
allow more concurrent wireless communications in a giveecBpm band at one location. This process is
a form of dynamic spectrum management. As definition, a t¢vgniadio is also called a software defined
radio. A cognitive radio agent monitors its own performagoatinuously, in addition to sensing the radio’s
output. it then uses this information to determine the rdidéquency environment, channel conditions, link
performance, etc., and adjusts the radio’s settings tdgedtie required quality of service to user requirements.

The following figure shows the high level concepts in cogaitiadio networks [20].
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Figure 1.14: Cognitive radio system concepts.

The steps of the cognitive cycle [1] are as follows: (1) Speuntsensing: A cognitive radio monitors the
available spectrum bands, captures their information,thed detects the spectrum holes. (2) Spectrum anal-
ysis: The characteristics of the spectrum holes that aectit through spectrum sensing are estimated. (3)
Spectrum decision: A cognitive radio determines the dat the transmission mode, and the bandwidth of
the transmission. Then, the appropriate spectrum band&echaccording to the spectrum characteristics and
user requirements. Once the operating spectrum band isrdeésl, the communication can be performed over
this spectrum band. However, since the radio environmean@s over time and space, the cognitive radio

should keep track of the changes of the radio environment.
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Figure 1.15: Cognitive cycle.

The basic advantaged of cognitive radio network is that #tvorks agents are equipped with cognitive
radio to sense the channels are busy (used by primary useo}.oPrimary Users (PUs): licensed to use large
portion of channels. PU some times busy, sometimes freg. (BY companies.) Secondary Users (SUs):
Sense the channels. If a channel is not busily used by PU, Btteogporarily use this channel. (e.g. Personal
PCs.) The traditional network agents can not jump betwegerdnt channels. But in cognitive radio network,
agents can do this! This drastically improves the chanfigliency by detecting the free channels.

Being a cutting edge of communication and multi-agent systessearch, cognitive radio covers a large range
of research topics. The research challenges remain nus)aramely, intelligence distribution and implemen-
tation, delayprotocol overhead, cross-layer design, security, sera@gayithms, and flexible hardware design.
In the past decade, there has emerged a huge amount of jgubtdigiitles and the interdisciplinary research of

the cognitive radio. Basically, the challenge topics mafall into the following disciplines.

Decision Making

As cognitive radio network is driven by a decision making fhist relevant research challenge is where and
how the decision (e.g., the decision on spectrum avaitgbtitrategy for selecting channel for sensing or
access, or how to optimize radio performance) should bentaKee first issue is directly related to whether the

cognitive process should be implemented in a centralizelistnibuted fashion. This aspect is more critical not
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only for cognitive networks, where intelligence is moreelikto be distributed, but also for cognitive radios, as
decision making could be influenced by collaboration beiwidem and also with other devices. The second
issue is the choice of the decision algorithms which shoaldustomized to fulfill the cognitive radio network

requirements.

Learning Process

Research in machine learning has grown dramatically rcevith significant amount of progress. One of the
important aspects of the learning mechanisms is whethdedneing performed is supervised or unsupervised.
In the context of a cognitive radio networks, either techeignay be applied. The first challenge of learning
is to avoid wrong choices before a feasible decision, eapigdh autonomous or unsupervised learning pro-
cess. The second issue is to concretely define learningggacdhe context of cognitive radio networks, its

objectives and contributions.

Security

The challenges of employing cognitive radio networks ideluhat of ensuring secure devices operations.
Security in this context includes enforcement of rules.decgment for static systems is already a challenge due
to the amount of resources necessary to authorize equipthemequirement of obtaining proof that violations
have occurred, and the determination of the violator idiesti As the systems become more dynamic, there
is an increase in the number of potential interaction thatlead to a violation. Additionally, this leads to a
decrease of the time and special scales of these interacath of these changes will amplify the enforcement

challenges.

Sensing

Following challenge is about spectrum sensing, espeamlthe accuracy on spectrum occupancy decision,
sensing time, and malicious adversary, taking into accthenfundamental limits of spectrum sensing algo-
rithms due to noise uncertainty multi-path fading and shadg. In order to solve hidden PU problem and
mitigate the impact of these issues, cooperative spectemsirgy has been shown to be dfeetive method to
improve the detection performance by exploiting spatieédity in the observations of spatially located cog-
nitive radios. Challenges of cooperative sensing incluiicing cooperation overhead, developifigcent

information sharing algorithms. The coordination alduritfor cooperation should be robust to changes and
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failures in the network, and introduce a minimum amount déyle

1.5.2 Effectiveness of Game Theory in CR Networks

Game theory has been recognized as an important tool inisgydyodeling, and analyzing the cognitive
interaction process. In a cognitive radio network, useesitelligent and have the ability to observe, learn,
and act to optimize their performance. If they belong tibedent authorities and pursuefdrent goals, e.g.,
compete for an open unlicensed band, fully cooperative\hetsacannot be taken for granted. Instead, users
will only cooperate with others if cooperation can bringrtheore benefit. Moreover, the surrounding radio
environment keeps changing, due to the unreliable and basadature of wireless channels, user mobility
and dynamic topology, and ff&c variations. In traditional spectrum sharing, even a setahge in the radio
environment will trigger the network controller to re-allde the spectrum resources, which results in a lot of
communication overhead. To tackle the above challengese glacory has naturally become an important tool
that is ideal and essential in studying, modeling, and aadythe cognitive interaction process, and designing
efficient, self-enforcing, distributed and scalable spectalraring schemes. For instance, the cooperative
spectrum sensing is usually using cautionary game theatggmn the algorithm; noncooperative game theory
is always used for spectrum decision making; The attackroef security scenario can be well quantified
modeled as a zero-sum game. For the learning about envirdrand competitor, game theory is also a very
powerful tool, especially, the imperfect monitoring gamges us a light to deal with the learning and optimal

decision making in the noisy communication environments.
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1.6 Game Theoretical Frameworks for Each Layer in Cognitive Ra  dio

Network

1.6.1 Application Layer: Market-Driven Spectrum Manageme  nt

Spectrum management is the process of regulating the usaliof frequencies to promotdheient use and
gain a net social benefit. The term radio spectrum typicahers to the full frequency range from 3kHz
to 300GHz that may be used for wireless communication. &sng demand for services such as mobile
telephones and many others has required changes in thegptip of spectrum management. Demand for
wireless broadband has soared due to technological inbayauch as 3G and 4G mobile services, and the
rapid expansion of wireless internet services. Since tl34,.9spectrum was assigned through administrative
licensing. Limited by technology, signal interference wase considered as a major problem of spectrum use.
Therefore, exclusive licensing was established to prdieenhsees’ signals. This former practice of discrete
bands licensed to groups of similar services is giving waynany countries, to a "spectrum auction” model
that is intended to speed technological innovation andavgthe #iciency of spectrum use.

Cognitive radio is an innovative technology that enabléslligent radios to sense and learn from their spec-
trum environments [21]. Itis a key technology leading usdgtrgeneration networks (xG) [1]. Cognitive radio
networks dfer us various techniques solving the conflict between lidn#igectrum resources and the increas-
ing demand for wireless services [22]. There are two kindsi@fmbers of cognitive radio networks: Primary
users (PUs) and secondary users (SUs). The PUs have lidengéize a large portion of the spectrum, while
the SUs are equipped with intelligent radios and can oppustically access the legacy spectrum when the
PUs are temporarily free [23].

The PUs’ spectrum licences are issued by a spectrum manageageilator in one country or one region
(e.g., the FCC in the USA, CRTC in Canada, and Ofcom in the ZR).[The PUs can hold spectrum licences
for long durations (e.g., several years or even decadesgn\fiey are not using the full space of their spectrum,
spectrum holes may exist [1]. PUs who own spectrum holesalatiheir spectrum access opportunities to SUs
and thereby generate economic revenues [24]. In this stresspectrum itself becomes a kindfaéquently
traded goodgoing from spectrum abundant PUs (i.e., spectrum sellerspectrum demanding SUs (i.e.,
spectrum buyers). This spectrum selling and buying scemsrieferred to amarket-driven spectrum trading

[25, 26], which is one of the most commonly utilized framelsofor dynamic spectrum access (DSA) [1, 23].
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Spectrum trading can “recycle” the PUs’ abundant spectratashand be utilized by the spectrum-stringent
SUs, and can generate extra profit for the PUs. Thus, spedttagtimg schemes are of great use to guarantee
efficiency in spectrum resource allocation [3-5]. One of thdlehging issues in spectrum trading is how to
choose an optimal spectrum price for the PUs. Not a few primka/have studied this issue [6-12]. However,
these studies have been limited to a discrete time priciagas®. Since the key feature of real world spectrum
trading is itsshort termor, even,real timg the PUs need to change their price decisions while as time pr
gresses. Therefore, to propose a more accurate and masticegdectrum pricing scheme, we should utilize
novel mathematical solutions, which can guarantee read-tptimal decision making. Furthermore, many of
the previous studies only analyzed the spectrum pricdf,it3et omitted the fact that the PUs’ QoS settings
have a direct impact on their optimal price. Therefore, teiglea real-time optimal pricing policy, we should

also take the QoS into consideration.

1.6.2 Physical Layer: Secure Spectrum Sensing

Cognitive radio [27] is an innovative and promising teclogyl that enables the intelligent radios to sense and
learn from their spectrum environments. The cognitiveaamditworks ders various technologies to solve the
conflict between the limited spectrum resources and theasing demand for wireless services. It is a key
technology that leading us to the next generation netwox®3 [28]. There are two kinds of users in cognitive
radio networks: primary user and secondary user. The pyinrsegrs are those who are licensed to access the
spectrum channels, while the secondary user can oppdrtatiis access if they sense that the current channel
is free.

However, same as other new technologies, the current odgsain cognitive radio networks have not
enough focus on the security issues [29]. Most of the previgarks on spectrum sensing and sharing ap-
proaches are based on assumptions that the cognitive radis are behaving in a cooperative or a selfish
way [28][29][30][31]. When malicious attackers exist irethetwork, the legitimate secondary users will face
a hostile environment and consequently, their strategiesdnsing and using the spectrum channels need to
be changed. Therefore, for the cognitive radio network manahow to provide a secure spectrum sensing
scheme is of great value. One severe attack to cognitive ragtivork is theprimary user emulation (PUE)
attackwhich is originally proposed in [30][31][32]. In primary esemulation attack, the malicious attacker
sends jamming signals which have the same characteristieasggnals from the primary users. On sensing

the primary-user-like signals, the legitimate secondagrsi (SU) can not distinguish them from the signals
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sent by the primary users (PU), which leads to a false alarma £esult, these secondary users will quit the
spectrum channel which is considered as busy but actusdlgkatd by the jamming signal from attacker.

To detect PUE attacks, Ruiliang Chetal propose a proactive detection scheme [30][31]. In their@ggh,
the attacker is identified by comparing the received sigoalgr with primary user’'s signal power. Their
approach is based on the assumption that the attackersgrirssion power is considerably less than the primary
users. Followed by Chen’s work, several other approaches een studied for proactive detection of PUE
attacks. Most of these proactive approaches provide gtiaditanalysis of countermeasures, but neglect the
fact that the cognitive attackers have the capability tategically adjust their attacking strategy. When they
change attack strategies, the situation will inevitablgdme more complicated and severer. Therefore, beside
the proactive approaches, researchers also investigapa#isive approaches which can be used to strategically
defend against the PUE attacks [28][33][34][35]. Beibeing/and K. J. Ray Liu propose a stochastic game
based spectrum sensing and reserving scheme [28]. Min{pnkearning scheme is used for the secondary
user to find their best strategies. Husheng Li and Zhu Hangsep passive anti-PUE approach [33][34].
In their approach, the attacker (secondary user) stratfgimms (senses) a subset of spectrum channels.
The secondary user’s strategies is the probability for simgpa certain set of channels to sense. The Nash
equilibrium [36] defense strategy is derived. However, where channels exists in the spectrum space and
the communication lasts a long time, this scheme will facegh lsomputation complexity. Thomaet.al
introduce the Bayesian game to analyze the emulation aB&gk In their work, the policy maker can adjust
the utilities and control the occurrence of emulation &isazased on radio’s belief. But this work assumes the

attacker has less power than primary user.

1.6.3 Media Access Control Layer: Cooperative Communicati on

The Wireless Networks (e.g., WMNs, WSNs and MANETS) [37] andnerable to various insider attacks
[38, 39]. With these insider attacks, the adversary comgesone or more member nodes, and changes them
into insider attackers. These malicious insider attaciars access to the publprivate keys, therefore they
can bypass the cryptographic system, and launch the attaxrksinside of the network. Traditional secure
routing protocols such as SAODV [40], Ariadne [41], and Enidg42] only focus on preventing the attacks
from unauthorized outsider nodes, but the attacks by tHdén:iodes may pose severe threats and may be
difficult to defend by only using cryptographic measures [38E iflsider attacks include selective forwarding

attacks, sybil attacks, sinkhole attacks, etc. [39]. Amalidhe insider attacks, those violating the routing
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stage, play a significant role. In this paper, we investigla¢eselective forwardingttack, which is a kind of
denial of service attack, launched in the routing stagehibdttack, the malicious insider attacker drops subset
of data-packets that it received. If the attacker dropsyepacket it received, it is known dgack holeattack
[43, 44, 45, 13, 46]. If the attacker selectively drops danpackets, it is callegrey holeattack [38, 13] which

is more intelligent and harder to detect.

The notionselective forwarding attacks first proposed by C. Karlof [47]. So far, most of the predou
researches about selective forwarding attacks only fonusmmgle malicious node detection and are under the
assumption that the malicious insider nodes do not colluile ®@ach other [38, 48, 49, 43, 44, 45, 13, 46].
D.M. Shila et al. propose an upstream neighbor and dowmstresghbor joint monitoring scheme to observe
the packet dropping behavior of the insider nodes, andndisish the attackers from normal nodes taking
into consideration of the channel quality [38]. W. Yu and .KLiu utilize the central limit theoremto find
the threshold for maximum tolerable false positive rate distinguish the malicious selective dropping from
the normal packet loss [48]. B. Xiao et al. propose a chediktgmased detection scheme to reveal the grey
hole attackers [45]. S. Ramaswamy et al. present a trusgtimeds based algorithm to prevent the black hole
attacks [44]. P. Agarwal et al. construct a backbone netveonksisting of super power nodes which are
responsible for checking the misbehavior of all the insidedes [13]. C.W. Yu et al. propose a distributed
monitoring and information sharing scheme to detect blaale modes [46]. In all of these anti-selective
forwarding schemes, thtmllusionbetween multiple attackers is not investigated. Moreaverst of them just
assume that the selective forwarding attack is launchegiduwdlly, and attackers do not collude with each
other. Articles aboutWorm Holeattack, such as [50, 51], have investigated the colluditacktscenario, in
which the two wormhole attackers use out-band channels-bamd channels to falsify a misbehaving route
to bring harm to the wireless network. However, these worky concentrate on wormhole attackers and
unauthorized nodes, but do not consider the scenario reutigective forwarding insiders whose attack is not
easy to be distinguished from normal loss rate. Therefbiis,df great importance to analyze the collusion
of the selective forwarding attackers, and accordinglypse an fective intrusion detection policy and anti-
collusion schemes.

The entities in the wireless networks naturally pursue tiintipe their own objectives [52]. Not only the
legitimate user but also the malicious attackers want toimiag their utility. Game theory [36] provides
a rich set of mathematical tools and models for analyzingtiratiteria optimization problems based on the

information structure. There are growing interests in giglame theory to solve the cooperation, incentive,
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optimization and attack-defence analysis problems [52m&theory has recently become notably prevalent in
wireless network security such as intrusion detectioresyst(IDS) [7, 39] and cooperation models [38, 48, 53,
49]. W. Yu et al. design a packet forwarding game [48], and ehedch two nodes in the network as a pair of
opponents, which is inspired by the classic prisoner'switea game [36]. D.M. Shila et al proposes a stochastic
game model played between arbitrary source node and intgaiteenode [54]. N. Zhang et al. construct a
reputation establishment algorithm based on game thendyanalyze the strategies of the defenders in the
face of naivgsmart attackers [53]. T.B Reddy divided the network intcesalclusters, in each of which, there
is an IDS node defending attackers. As the cluster head[Di8dries to maintain the normal functionality of
the network by preventing the attacks while the attackesttd disturb the network. Zero-sum game plays

between IDS node and intruders.

1.6.4 Data Link Layer: Anti-Sybil Attack with Game Framewor  k

The Sybil attack [55], firstly proposed in P2P network, meams malicious node falsifies multiple identities
to cheat others. Recently, with the rapid development ofutineless ad hoc network, the Sybil attack presents
itself in this newly booming network and results in great aofs on legitimate communications. As the pre-
liminary step for further attacks, Sybil identities canagtgically choose to either misbehave or stay honest
for advanced attacks. Moreover, some special featuresrefess ad hoc networks, e.g., multi-hop routing,
autonomous entities, and limited energy, degrade and esabld traditional defenses against Sybil attacks.

Researchers have devoted gre#re to fighting against Sybil attacks [56] . A traditional waf/detecting
misbehavior is observation. Since Sybil identities forggdne malicious node always flock together, location-
based detection methods were presented. In addition, pheéateon mechanism was employed to capture
the misbehavior in wireless ad hoc networks [57]. Generaghgvious works assume that member nodes
voluntarily share their local observations, however, solgce-starved networks, cooperative detection cannot
always be achieved. Moreover, malicious nodes may propdgéde information to disturb the detection
system. Zhou et al. [58] employed fixed infrastructure todront the observation, but it is unfeasible in fully
self-organized environment.

Resource test is a common method to detect Sybil nodes Themmonmal resource test includes computa-
tion, storage, communication and radio resource test. Marently, psychometric tests and color tests were
proposed to identify Sybil groups, based on the fact thafl Sgéntities forged by one user share the same

personal psychometric nature. However, these intendedimes tests have sidéfects on wireless ad hoc net-
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works due to the limited resource on each node. If nodes sfpenthuch resource on testing, the performance
of normal communications would béfacted. Game theory is a promising discipline for networlusgc It
provides rich mathematical tools for resolving multi-eria optimization problems among rational entities, in
which each agent chooses an optimal action based on theecsymgculation of other agents optimal actions.
Margolin et al. [59] proposed a signaling game model to enBigbil nodes into confessing. In this work, only
Sybil nodes play the game, and only the low-profit Sybil nadeilling to play the game at the beginning stage.
Later, Pal et al. [60] made an improvement by presenting al ®gtection Game, in which all participants
are motivated to reveal Sybil identities. However, in thésoer, an administrator is required to provide some
amount of budget. In a distributed environment full of awmrous entities, deploying such an administrator
is infeasible. Danezis [61] gave some general attributeabkeoNash equilibrium on honest users, but lack the

discussion on the behavior of Syhils.




Chapter 2

Differential Game Approach for Spectrum Man-

agement

2.1 Introduction

In cognitive radio networks, among the primary users (PUWs) the secondary users (SUs), market-driven
spectrum trading can be formed. In spectrum trading, thed@dgpete against one another by adjusting their
spectrum pricing and quality setting strategies so as tacitthe SU customers and optimize revenue. Most
of the existing game-based approaches for spectrum piizEiig been limited to a discrete time case and lack
analysis of spectrum quality. However, one key feature e€spm trading is its short term or, even, real time,
since the PUs’ spectrum availability, quality, and pricefkehanging over time. Therefore, a spectrum pricing
policy should be dynamically optimal in continuous time.

By utilizing differential game theory, we address the real-time optimalngyiproblem for PUs. To our
best knowledge, this is the first study of real-time spectpuiming. We first propose a multiple PU spectrum
trading game model in which the PUs compete with each othteymp on spectrum price, but also on quality of
service (QoS). Then, based on this game model, we analyzgptimeal pricing strategy for the QoS-free static
networks in which the PUs’ number and QoS requirement arstaat After that, we extend the analysis to
QoS-aware dynamic networks in which the SUs’ number and BJS level keep changing over time. Finally,
Nash equilibriums are derived for both of these two scesagitd an optimal pricing and QoS setting policy
is formulated. Using case study, we illustrate an optimalipg policy for a QoS-free 2-PU spectrum trading

market and investigate the trajectory and evolution ofdhe® PUs’ optimal prices.

Table 2.1: Solutions for optimal spectrum pricing problems

Single primary user pricind Multiple primary users pricing
One-shot spectrum trading Single-agent optimization Basic game
Repeated spectrum trading Dynamic programming Repeated game
Time-varying spectrum trading Optimal control Differential game

In this part, we keep our concentration on the real-time tspecpricing problem for any future generation
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networks using cognitive radio (e.g., 802.22 networks) Qlir contribution falls into the following three cat-
egories: 1. First, an economic-based model is construotewestigate the multiple PUs’ competition. Since
the PUs hold spectrum licences for long durations, the numibieUs can be seen as constant and the compe-
tition in spectrum trading is much like a multi-agent oligbpmarket [23]. To capture the competitive feature
in spectrum trading, we borrow knowledge from microecoreanand model the multiple PUs’ relationship as
an oligopoly competition. 2. Furthermore, we not only ifigete the optimal spectrum price, but also analyze
the relationship between spectrum pricing and QoS setfi8yj [By improving the QoS, a PU will increase
the cost for itself. However, on the contrary, it can attracire SUs so as to improve revenue. We analyze
the impact of QoS on the PUs’ optimal pricing policy and alsalg the optimal QoS setting strategy for the
PUs. 3. Finally, a dferential game-based solution is proposed to address théeprmf real-time spectrum
pricing. In cognitive radio networks, the optimal sengprging time should be 6 ms for every 100 ms of frame
duration [62]. Therefore, spectrum trading can be viewed tise-continuous process with a huge number
of repetitions. This requires the PUs to make every specptang decision in real time. To this end, we
utilize the time-continuous fferential game [63, 64] to construct a real-time spectrudirigpmodel. Nash

equilibrium is derived, which provides the PUs with a reale optimal spectrum pricing policy.

2.2 Related Works

2.2.1 Game Theory for Spectrum Trading

The games can be zero-sum and non-zero sum games. In a eemgaswe, the sum of the agents’ utility is
identical to zero. Thus the zero-sum games naturally do ot dor any cooperation between the agents
because, in the two-agent zero-sum game, what one agestigains a loss to the other palyer. however, in
other non-zero sum games, In the literature, many kinds mkegaehave been utilized for spectrum trading de-
sign, including one-shot games, repeated games, andicoa#émes. However, to the best of our knowledge,
real-time pricing has not yet been discussed.

D. Niyato et al., in [24], considered a repeated game-bapedtsim pricing scheme. However, when
the game’s repetition reaches a large number or even becorfivgse, the computation complexity of the
repeated game will increase exponentially. Jia and Zhan§5], assumed that the spectrum buyers’ arrival
rate is determined by the quadratic utility function andntievestigated the price and capacity competition

for the duopoly spectrum market of two PUs. However, in thgnitive radio network, the SU flow should
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be influenced by the unit spectrum price and the PUs shoutdcalssider the quality of service. Kim, Choi
and Shin [66] analyzed the competition between wirelesgiceiproviders (WSPs) by introducing a two-
stage extensive form game in which the agents perform a geaoee in the first stage and play the quality
competition afterwards. However, in real-world networltse price should be decided simultaneously with
the quality decision. Thus, the agents may have no chandesteree a signal of price in advance and decide
the quality afterwards. Wu et al. studied the dynamic bedravdf both PUs and SUs using an evolutionary
game [26]. In their model, the SU chooses whether to coopenad the PU chooses whether to allocate the
sub-slot to SUs. By using their protocol, the dynamics cagwéo the evolutionary stable stratedfi@ently.
M. Zekri et al., in [67], presented a vertical handover decisnechanism that enables network selection using
the Nash and Stackelberg stage game. In their work, basdteangut of network capacities and prices, the
NashStackelberg equilibrium is obtained and utilized for amalg user revenue and the VHO blocking rate.
All of the above works utilized discrete-time game modeladdress spectrum trading and pricing schemes.
However, since spectrum trading repeats very frequentlyspectrum pricing decisions are made in real time,

investigating spectrum pricing and QoS setting policy Miite-continuous solutions is necessary.

2.2.2 Application of Differential Games

Differential games originated in the early 1950s. Tlifedkntial game can be utilized to analyze time-varying
multiple agent optimization systems. In the beginning, dpelication of the dferential game was mostly
developed as a zero-sum pursuit and evasion game for miptablems. Starr and Ho, in [63], investigated
the Nash equilibrium in multi-agent nonzero-sunfieliential games, which is well-known as the maximum
principle. M. Rangaswamy and B.E. Wolfgang described thatism condition of diterential games in [68].
Differential games have been widely studied for managementcsc[€4], investment, and advertising [69].
Differential games natively have a strong relationship witimegdtcontrol theory [70], and have been success-
fully applied in many disciplines, including not only ecanizs, but also automata theory and environmental
science. In particular, cooperativefférential games represent one of the cutting edges of fundahgame
theory research.

Differential games provide us with a rich set of analytical fraom&s for real-time decision making systems
[63]. Many diferential game models can be well solved by using existingnigoes. Dfferential games
are of great academic value and have attracted much resiecbst. However, so far, they have rarely

been introduced into computer science and communicatitwonks. In the cognitive radio spectrum trading
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market, since spectrum pricing is required to be dynamicraatitime, it is promising to utilize dierential

games to solve spectrum pricing problems.

2.3 Real-Time Spectrum Pricing Scenario

Consider in a cognitive radio network which provides timesidon multiple access (TDMA), the spectrum
range is divided into multiple channels. There are multiplgs, each of which has licence to a large portion
of spectrum channels. The secondary users (SUs) do noticaneé to the spectrum channels, but sense the
spectrum environment, search for the free channels, buggbetrum access opportunities from the primary
user who is not using some portion of its licensed spectrume.SEcondary users does ndtelientiate between
the multiple primary users if they charge the identical ymite and provide same quality of the spectrum
services.

The primary user = 1, ..., N is non-cooperative in the sense that it pursues the optihpzefit for itself.
Each of theN primary users wants to sell a part of its licensed spectrunthe secondary users. And the
spectrum management will repeats during time petiedO, T]. At each time instancg the action of the-th
primary user is the price that it can charge for each unitefhectrum, which is denoted pqt). Besides the
spectrum price competition, to attract the secondary usis spectrum service, the primary user also needs
to improve its channel service quality (QoS) for its secopdesers. Let;(t) denote the primary user'sfert
for improving the QoS. If the secondary user are not satisfiglithe spectrum price or QoS (e.g. throughput,
losing rate, or packet error), it will give up using the cmtrprimary user’s spectrum and switch to some other

primary user.

2.4 QoS-Free Pricing Model for Static Networks

Consider that, in a cognitive radio network, PiUs 1, ..., N are non-cooperative. Each of them competes with
other PUs in a spectrum trading market and pursues that neation of its own economic revenue during
time periodt € [0, T]. In this section, we first study a relatively simpler caseQ@8S-free and static network in
which all of the PUs have the identical quality of service §)and the number of SUs does not change over

time. In Figure 2.1, we illustrate the QoS-free spectrurgipg problem for a static network with two PUs.
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Figure 2.1: QoS-free spectrum trading in a static network.

2.4.1 Secondary User Flow

In the static network, the total spectrum demand is conséemt the QoS from all of the PUs are identical. At
each time instanck each PU-has a spectrum selling quantiBy(t), and will choose its strategic priga(t).

After all PUs have chosen their prices, tRéPUs’ price profile will be formed:

P = (P15 Pir-. s PN).- (2.1)

This price profile is common knowledge, which means that dos Brice can be observed by all the SUs and
all its rival PUs. Observing PWs price pi(t), there will be a portion of SUs who can not bear such a price,
leave PUH and switch to buy another PU’s spectrum. RecordiBW&U losing rate ag;(t). Thus, for all the
other PUs except the summation of their lost spectrum selling quantitylisi(t) = i Sj(t) - x;(t).

Then for PUE, its spectrum selling quantity at time instarteedt (dt is an extrerr:gllilj;;mall amount of time)

is denoted a$;(t + dt), which consists of two parts:

R =x(t) - Si(t) - dt

Spectrum selling quantity reduction because some SUs taeao PUF's price, thus, they leave PUs spec-

trum range.
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7 =yi(t) - Loi(t) - dt

Spectrum selling quantity increment induced by other PWstamer SUs switching to PU-Herey; is a
reallocation function which indicates the portion of all the SUs who leave theevpyus PUs and switch to
PU4. In the QoS-free static network, we assume that, the SUs edn@|PUi- will be equally distributed to
other PUs, which indicateg = 1/(N - 1).

Therefore, PU=s spectrum selling quantity is:

Si(t+dt) =R+ 71

N (2.2)
=Si)-[1-x O] -dt+ g5 J_lej#i S (1) - xj (t) - dt,
which indicates:
. 1 N
Si=-Si-xO+ - 112] Sj (0 - X (t). (2.3)

Here,S; is the diferentiation ofS; with respect to time. It is called “the dynamic of PU's spectrum selling
guantity.” The meaning of this formula is obvious: On thé kefnd, it is the instant changing of Ald-spectrum
selling quantity; on the right hand, it is the summation dfirsg quantity’s instant degradation due to R-
price, and instant increment due to the other PUs’ losses.

2.4.2 Primary User’s Objective Function

According to dynamic Function 2.3, we defined P&Jeverall utility functions as follows:

.
n;’:f (pi(t) =) SiHdt, i=1,..,N. (2.4)
0

M =A(Si(T), i=1..N (2.5)

wherel‘l;j is the integral profit that primary usémained within the whole duration of the spectrum trading
process andll? is the additional profit gained at the end of the spectrumiricad

PU4’s objective is to maximize its overall utility which is them ofl‘[§j andIT?. Thus, the spectrum trading
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with N PUs can be modeled as the following optimization problem:

Mp?x{Ji =119 + 113}

(2.6)
= Max{3, = [ () - &) Si(dt+ A (S (T}

. n
with constraintsS; = -Si(t)- x () + ;- Y Sj(t) - xj(t) and 0< S; (0) < 1, wheret € [0, T]andi = 1,...,N.
j=1j#i
Following these optimization constraints, we define themNeguilibrium solution for the QoS-free spectrum-

pricing as follows:

Definition 2 In the spectrum pricing game, let denote the pricing strategy for each primary user ixi

1,...,N,and J[p1,.--,Pi>-- ., Pn] be its utility function. A Nash equilibrium solutiorf s defined as:

Ji [p’i, N p’,‘\,] > J [p’i, N p’,‘\,],

where p#pf, i=1,...,N.

The Nash equilibrium implies that, in the time-varying pe trading game, no primary user can increase
its own utility by unilaterally deviating from the Nash etjoiium price if all the other primary users hold their

Nash equilibrium prices. We will study the solution to thiagth equilibrium price in section 2.5.

2.5 Solution for Optimal Spectrum Pricing

In the previous sections, we constructed models for both-fpeSstatic networks and QoS-aware dynamic
networks. We proposed the objective functions and the Nakhien condition for the competitive PUs. In

this section, we will study optimal pricing and QoS settirigies for the PUs.

2.5.1 Nash Equilibrium Condition for QoS-Free Pricing

We first analyze the Nash equilibrium constrains for the @e8-static network. Following the regulation in

the optimal control theory [70], the Hamiltonian for theprimary user QoS-free pricing game is defined as:

N n
Hi=(pi—c)Si+ Z/li (k) l(nTll) Z SiXj = SkX|» (2.7)
= L

j=1,j#k
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wherei, j,k = 1, ..., N. This Hamiltonian consists of two partép; — ¢;) S; is from PUi’s utility functions in
Formula 2.4 and 2.5; the residual part is from the sellingntjpadynamic in Formula 2.34; (k) is called the
‘costate variable,” which indicates the spectrum sellingrtity of PUk in the eyes of PU: Note thata; (k) is
of the same dimension &k. In differential game solutions [63, 68], the costate varial(k) is provided for
finding the maximum and minimum of a function subject to craists.

The value of the Hamiltonian is constrained by all of the Ppt#te strategies. Thus, the optimal price for
PU4 is what maximizes the Hamiltonian. We record the constsdiot PU4i’s optimal price as the following

theorem:

Theorem 1 For the multiple primary user spectrum pricing game in thatistsecondary user network, the

conditions of the Nash pricing solution are constrained by:

Max H S [N I TR

= H; {Si*,[p’i,..-,DT,---p?‘u]’/li’t}'

(2.8)

In the Nash equilibrium, for each primary users’ Hamiltomitunction H, the following formula set holds:

N
- _aHi _ 1 o
Ai = _(9Sk = =Xk N1 j:1§j¢k/ll () -4 K|, (2.9)

where i j,k = 1,...,N. Note that; (T) = Vg A = 0O indicates that neither agent will look beyond the time

horizon.

Proof 1 (Proof of Theorem 1) Similar proof for Theorem 1 was given by Rangaswamy and Afudfin [68].

2.5.2 Nash Equilibrium Condition for QoS-Aware Pricing

Now we begin to construct the Hamiltonian of the QoS-awareimy problem for the QoS-aware dynamic

networks:
Hi {Si, [b1, ..., bn] s [(P1, b1), ... (PN, BN 5 At
= 3 [Si,bi,(p.b)t]+ X A -SiM) + X &9 by,
k=1 k=1
foralli = 1,...,N. In this Hamiltonian, the state variables fall into two emiges: Selling quantitys; and

cumulative QoS level sethf, ..., by]. In the action profile[(p1, b1), ..., (p1, b1)], each PUts action is two-
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dimensional.j; is the co-state adjoint variable, afgdis also a co-state variable, which has the same dimension

ash;. After introducing Formula 2.4 into this Hamiltonian, wenoget the final format as follows:

Hi = (pi — ci (bi(1)) Si - ci (bi(t))

N Y (2.11)
+ 32 4-SiM)+ Y &Y by,
k=1 k=1

According to its structure, the spectrum trading game falis the category of a nonzero-sunftdrential
game NZSDQ@. In this N-agentNZSDG the objective of each agent RUs to find the optimal action set
such that:a = (p;’, bt ), which results ina7 (S, b; ). Based on the fundamental analysis in [68], we ascertain
that the condition of thé&l-agent spectrum pricing game’s Nash equilibrium can bertext by the following

theorem:
Theorem 2 For the two-dimensional and multiple primary user spectrading game, the conditions of the
Nash equilibrium solution are constrained by:

MaxHi{S7, b3, .. by, U] [3 88 1t (2.12)

= Hi{Sr. bbby [ag e a o ag | At

In the Nash equilibrium, for each primary user’s Hamiltonitunction H, the following formula set holds:

dbj IS apj S

. N , .
A=-VsHi- Y (%.Lburﬁ %)
J=Lj#

(2.13)

N

(I o oHi dbj oM 0P

& =-VpHi- X |75 75 *3p 75 )°
j=Lj#i A :

where i j,k=1,..., N are the indexes of the primary users, ahT) = Vg A = Ofi(k) (T) = VA =0. These

indicate that neither agent will look beyond the time hanizBurthermore,

S/(t) = —%(OS! 1) + %) [Sc— S{®)] + 25w S{(to) =0, (2.14)

bi () = by (t), bi (0) = bY. (2.15)

Note thatVs H; and Vs b; denote the partial derivation of function; kvith respect to variables jSand b;,
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respectively.

Proof 2 (Proof of Theorem 2) Theorem 2 can be proved similarly to Theorem 1.

2.5.3 Nash Solution of Two-Dimensional Strategy

The QoS-free spectrum trading is a special case of QoS-apatrum trading. Thus, we focus our concern
on the solution to the latter. Following the condition of tNash solution fromrheorem2, we can derive
the Nash equilibrium for both the QoS-free pricing in stagtworks and the QoS-aware pricing in dynamic

networks. To find the solution to Formula 2.12, we use the¥dhhg method:

oH; _
T = 0

for te[0, T] andi=1,2,...,N. (2.16)
aHi — 0

ab

Corollary 1 The Nash equilibrium solution for the two-dimensional &gy a = (pi, bj) must satisfy the

following conditions:

Si+ Vo [-%Si +¥i (St - S) + 28 - 4 =0, (2.17)
iy p - M (grea_ &
b= F - (BI Zlq) : (2.18)

where § is PU-i's instant selling quantity. §t) and b (t) are the Nash equilibrium pricing strategy and QoS

setting strategy for PU-i at time instance t.

Proof 3 (Proof of Corollary 1) Substituting Formula 2.11 into 2.16, we can get+8% - i = 0. Then,

introducing Formula 2.3 into this equation, Formula 2.1/dae derived.

These two-dimensional optimal strategies are the NasHileduin for PU4. Their meaning is as follows:

Nash equilibrium for unit spectrum price

The significance of the aboveftérential Equation 2.17 is: Under the Nash equilibrium, tlegmal spectrum
selling quantity increment by increasing the price is idgitto the marginal selling quantity decrement caused

by losing secondary users due to the price increase.
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Nash equilibrium for QoS setting

From Equation 2.18 we can see that, given any specific costifunfor improving the channel QoS, the
Nash equilibrium is also a policy trajectory for the PU-iar to the Nash equilibrium pricing policy, the
equilibrium for the QoS decision also implies that, at tregp, the PU-i's marginal cost for improving its QoS
is equal to its marginal benefit brought by the secondary natber increment due to its improved channel

quality.

2.6 Example and Numerical lllustration

2.6.1 Example of 2-PU QoS-Free Pricing

Based on the analytical Nash equilibrium results in thedastion, to provide an intuitive understanding, we
will consider a small size example where two PUs compete anlgpectrum price. We will then illustrate the

numerical result.

Proposition 1 Given any initial price {3 the SU losing ratio function;xand the unit spectrum cost, ¢he
optimal pricing strategy trajectory for a 2-PU QoS-free @irig game, is indicated by the following real-time

price changing rate.

_tm)
¢ (pi)

pi(t) € () (o = &) = % () = x(py)] (2.19)

whereO<t<T,i,j=12i# jand((p) = %

Proof 4 (Proof of Proposition 1) Setting the first order of the Hamiltonian with respect to¢batrol variable

price p and making the resufg% = 0, yields the following equations:

0X1 _ 0%z _
s [11(2) - (D] = -1, o [12(2) - 22(1)] = 1. (2.20)

0X1

For analytic simplicity, recordt (p;) = o1

Making partial derivation to both sides of the formulas 2@

_ U(ppy

with respect to time t, we geft; (2) — 1 (1) = %( 1 ) = 2o

) . Following the co-state equation in Formula

2.9, we have:

12 =%[U @ -1 @], 1@ =x[1@d)-1Q)]. (2.21)
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Making the diference between the two formulas in 2.21, we have:

1) =11 = [ @) - u@][x+x] . (2.22)

Then, substituting Formulas 2.20 into Formulas 2.22 yi¢gfesNash equilibrium price changing policy shown
in Formula 2.19.

2.6.2 Parameter Setting

For numerical illustration, in Equation 2.19, we need to mkefihe cost functiort; and the SU losing rate
xi. Recall that we already discusseds a function. To reduce the computation complexity and gean
intuitive illustration, hereg; is chosen from some real numbers. Besides, for the SU loateg it should be
a decimal with a value located within interval, iJ. Therefore, we choose thmwer lawfunction, which is
commonly used in economics, to genergtasx; = 1 — oszz, andx; =1 —,Bpgz. Following Equation 2.19,
we ascertain that the arithmetic solution of mutual-optipraces (Nash equilibrium) is:

b, = ap;t - Seip® + 38PLP;° 2.23)

P, = Bpyt — 3Copy? + apopy?
Solving this diterential equation set and choosingfelient parameters, we generate Figure 2.2 and Figure 2.3.

The spectrum trading game’s duration is set att< 200.

2.6.3 Numerical lllustration

In Figure 2.2, we set an identical cost for two PUs and set thdaSing function’s coéicients diferently.

In both Figure 2.2-A and Figure 2.2-B, the two agents’ Naghildmium price increased quickly at first and
then slowed down. This indicates that: Under the same ueittem cost, the PUs will increase their prices
quickly in the early period and then the competition stabgi and the equilibrium prices no longer change
dramatically. Furthermore, when thefférence between the two dteients becomes large, the two agents’
equilibrium price trajectory will separate. andg can be seen as the ‘loyalty’ of PU$-current SU customers.
We can see tha in Figure 2.2-B is larger than in Figure 2.2-A, which indesithat, in Figure 2.2-B, PU-
2's SU customers are more loyal and not sensitive to PU-2Zstspm price increase; thus, PU-2's optimal

spectrum price in Figure.2.2-B is higher than in Figure &2.2-
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(A) p2=pl=1, ¢ =c =1, a=1, B=3 (B) p2=pd=1,c,=c,=1, a=1, p=8
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Figure 2.2: Trajectory of Nash pricing strategy, witlffeient SU losing function cdicients.

(A) p2=p=1; ¢=1, c,=1.15; a=1, p=1 (B) p3=p=1; ¢,=1, ¢,=1.55; a=1, p=1 (©) pY=p)=1; c,=1, ¢,=1.85; a=1, B=1
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Figure 2.3: Trajectory of Nash pricing strategy, witlffeirent unit spectrum QoS cost.

In Figure 2.3, we assume that the two PUs share the same Sig lasiction (witha = B). However,
we set diterent unit spectrum QoS costs for PU-1 and PU-2. We comparedghilibrium price trajectories’
movements under three kinds of QoS coffialiences: Nearly the same costs (vath= 1, ¢, = 1.15); relatively
different costs (witlt; = 1, ¢, = 1.55); and far diferent costs (witlt; = 1, ¢, = 1.85). From Figure 2.3-A, we
observe that PU-2, who has a slightly higher QoS cost, wiledewer spectrum price than PU-1 each time.
This phenomenon is natural, since, in the spectrum tradimgpetition, in order to get better revenue, the
higher cost PU needs to cut its spectrum price to attract Aoieand consequently increase its own spectrum
selling quantity to overcome its high-cost disadvantagéh\&/ relatively larger cost, such a PU needs to cut
more for its price. This is illustrated by Figure 2.3-B, wlehec, = 1.55 PU-2 sets a more lower price,
compared with Figure 2.3-A. However, the high cost PU camhetys ‘save its own life’ by reducing its
price. In Figure 2.3-C, we can see that, if PU-Zfsts from an ‘unfair high cost’ (witlt; = 1, ¢, = 1.85), it
can no longer save itself by reducing price and will immesliatiie out of the competitive spectrum trading
market. We see that, after timeblthe strong PU-1 occupies the high-costating PU-2 and dominates the

whole spectrum trading market.
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It is important to stress that, in this example, we set theipgigame’s repetition number at 200. However,
since the final Nash equilibrium is derived from solving a dixgfferential equation set, it is very convenient
for this algorithm to find numerical results by using othargkr iteration numbers. In contrast, most of the
previous spectrum pricing schemes assumed that the ppcowpss does not repeat too many times, since in
traditional repeated games, it is typically infeasible xbaustively search for the Nash equilibrium when the
games’ repetition increase to large numbers. Comparedthétiexisting work, the computational complexity
of the novel diferential game-based pricing scheme will be significantjuoed and the dierential game
approach corresponds well to real world spectrum tradinghiich the PUs need to adjust pricing strategies in

real time.




Chapter 3

Differential Game Approach for Efficient Spec-

trum Sensing

3.1 Introduction

In cognitive radio networks, primary user emulation (PUE3ek is a denial-of-service (DoS) attack on sec-
ondary users. It means that a malicious attacker sends pyrinsar-like signals to jam certain spectrum chan-
nels during the spectrum sensing period. Sensing the attackgnal, the legitimate secondary user will regard
these channels are used by the primary users, and give upthsise attacked channels. In this paper, the in-
teraction between the PUE attacker and the secondary usswdsled as a constant-suntfdrential game
which is calledPUE attak game The secondary user’s objective is to find the optimal sgnsirategy so as

to maximize its overall channel usability, while the attaick objective is to minimize the secondary user's
overall channel usability. The Nash equilibrium solutidrttes PUE attack game is deprived, and the optimal
anti-PUE attack strategy is obtained. Numerical resultaalestrate the trajectories of the secondary user’s
optimal channel sensing strategies over time, and alsostiwt: by following the dferential game solution,

the secondary user can always optimize its channel usabitien confronting PUE attacks.

3.1.1 Challenging Issues

Most of the previous works on security issues in cognitivdioanetworks only provide qualitative analysis
about countermeasure, but they neglect that the cognitieeka&rs (secondary users) have the capability to
adjust their attacking (sensing) strategies, and thedoten will thus inevitably become more complicated.
A natural question to be asked is as follows: how to find thenwgit defending strategy for the legitimate
secondary users to defend against the PUE attack, in thecmiinues spectrum space?

Furthermore, In the previous passive approaches agairista®tdck such as [28][33][34][35], the authors
mostly assume that attack-defence scenario is in diséneéehiorizon, and also the PUE attack does not repeat
a large number of times. However, in the real case, the iat&tween each two sensing times is a very short

instant [62][71][72]. For example, in [62], the author curdes that the optimal sensing time should be 6ms for
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very 100ms frame duration. To prevent the secondary user $teccessfully sensing and using the spectrum,
the PUE attacker will also launch attack with a very high éreocy. The attack-defense interaction can thus
be viewed as a time-continues game with a large number ofitiepe In view of the above, the previous
passive anti-PUE attack approaches may becomeficisnt if the attacker keeps launching PUE attack over
time. Therefore, it is of great importance to construct ahmatatic model with feasible and simple solutions
to analyze the time-continues repeated PUE attack, andeddwe secondary user’s optimal sensing strategies

afterwards.

3.1.2 Main Contributions

According to the previous works and the challenging issoespbjective is to design a good model to analyze
the interaction between the attacker and the secondary aisérconsequently, derive the optimal defence
strategy for the secondary user. The main contributionsaremarized as:

(1) By introducinggame theory36][7], we construct a model to describe the real attadiefalee scenario. In
this model, the attacker’s strategy is the portion (ratfa)samaximum attack capacity, and the secondary user’s
strategy is the portion of its maximum sense capacity. Bothattacker and the secondary user strategically
and dynamically adjust their attack and sense actions owvet t

(2) We formalize and quantify the gain and loss of both the semgndser and the attacker, by introducing
the notionpure channel usabilitandpure attack gect These two metrics are inspired by the notialirect
and indirect economicfgect These notions comprehensively reflect the overall chamsegdbility and overall
attack dfect of the secondary user and the attacker, respectively.

(3) Differential gamg73][74][75][76] approach andptimal control theonf76][75] are applied to analyze
the time continuous PUE attack. fBrential games are originally introduced in the fields ofitzdipm [74]
and then applied in aircraft or vehicle pursuit-elationrer@s [74]. The advantage of utilizingftiérential
game model to analyze the PUE attack is that it provides argkaealyze framework, which is in accordance
with the complex real attack scenario, and can be well saliftbut large amount of computation.

(4) Based on the dlierential attack game model, we derived the Nash equilibtaking into consideration
of the attacker and secondary user's sensing capacitgkatipacity, power constrains. Based on the game
theoretic analysis, we indicate the optimal atfdefense strategy for both the attacker and the defender.

(5) The experiments and numerical results show: by utilizing fash equilibrium strategies which are

derived from diterential game model, the secondary user can maximize thditysaf the cognitive channels
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and minimize the loss due to PUE attacks..

3.2 System Model

We consider in a cognitive radio network, the spectrum rasglvided in to multiple channels. The primary
users (PUs) licensed to all channels; the SU can detect ethetitain portion of the channels are used by PU,
and utilize the free channel opportunistically. Also sugpthere is a primary user emulation attacker, who
sends primary-user-like signals into subset of channetbéat and scare away the SU and reduce the cognitive
radio channel usability. Note that if multiple attackerpaar, they may collude with each other and make the

attack-defence scenario more complicate. For simplisityassume there is only a single attacker.

3.2.1 Attack Scenario

We consider there ar secondary users, arld PUE attackers. And there ake different channels in the
network. At the same time, the secondary users can not sktise ehannels. On the other hand, the attackers
can not jam all the channels. The attacker tries to send pyimmser like signals in the channelwhich is
used by the secondary user. And the secondary user triesdpeefrom the attacker’'s jamming signal. In a
word, the interaction between the attacker and the secpnsars can be viewed as a two agent game. In the
network, the loss of the secondary user is just the gain oattaeker, therefore, we model this game as two

agent zero-sum game.

3.2.2 One-shot PUE Attack Game Model

We first consider the single round PUE attack. In this atteankeg, the agents are the PUE attackers and the
secondary users. We defiebe the set of channels that are jammed by the attackei@hrdL. We define
be the set of channels that are sensed by the secondary SBee the attackers can not attack all the channel
at the same time, and the secondary users can not sensedibtieels at the same time, we define the attacker
will attacker the set of chann€gl®| with probability u(®), and the secondary user will sense the set of channels
Q with probability v(Q).

The probability for a certain channiels sensed by the secondary useng§3), while the probability for this

channeil is not attacked by the attackers is Li(®). Therefore, the total probability that chaniné sensed by
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the secondary users, and not attacked by the attacker iedefin
(1-u() - v(©)

Taking into consideration the probability for the primarseu to appear tin the channels p;, the overall

probability that channdlcan be well utilized by the secondary user is derived as:

pir (1 - u(Q)) (\(©))

Note thatL is the total number of all the channels. Then taking into meration of the probability above,

we can define the utility for the secondary users as:

L
Us(oa,o0) = ) pi (1 - u(@)) - (©)
i=1

3.3 Equilibrium for Single Stage Anti-PUEA Game

The game is between the secondary users and the PUE attadkenrsvestigate the Nash equilibrium point in
which any unilaterally deviate will cause the utility dease for one agent. The Nash equilibrium point is the
stable point of the single stage PUE attack game.

In game theory, for the zero-sum two agent game, the Nashiequn can be solved by using the min-max
rule. The min-max rule, in the field of network security, ig tthefender first look the maximum damages that
an attacker can cause, and then tries to minimum this maxiadammages. For the attacker, it first look the

maximum utility that the secondary user can reach, and thaimmze this possible maximum utility.

3.3.1 agents and Strategies

At time instancd, there are totall)< (t) channels not used by the PU. Based on the prior works [6R}{Z], the
value ofK(t) is according to a Poisson process with a paramet&he SU can at most sendkéchannels each
time. Note thaiM < K since the SU’s sensing capacity is limited. We define theegyeof the SU as a portion
of M channels, which is denoted af) € [ﬁ,l]. The left boundary isﬁ because for communication, SU
should at least sense one channel at one time. On the corthUE attacker can at most attd¢ichannels

at timet. And the attacker’s strategy at tinhés a portion ofN channels to attack, denoted %) € [0, 1]. The
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left boundary is 0, since the attacker has the capacity tinddts attack strategy, and it can either attack or not

at anytime.

3.3.2 Game Outcomes

For each time instance, the SU senbksu(t) channels from totall)k non-primary-user channels. Therefore,
each channel will be sensed with a probabiﬁf{ﬁg@. On the contrary, the attacker choo$ésv(t) channels to
attack. Then at timg each channel will be attacked with probabilh%%@.

There are totally four possible outcomes of the interadtietween the secondary user and the attacker:
e The channels are sensed and attacked.
e The channels are sensed and not attacked.
e The channels are not sensed but attacked.
e The channels are not sensed and not attacked.

At a certain time instanck the total number of available channels, which are sensedeb8U but not attacked

by the attacker, is denoted as:

o _ M-u(t) N-v(t)
Xs= —~ - (1- =) K
s="x K) 3.1)
= M- u(t) - MY - u(t) - v(t)
On the other hand, the number of channels which are suctlgsstiacked (Sensed and Attacked), is denoted

as:

<

UM | N-v®) | K

K

Xq =

K (3.2)
= Mu) - ()

3.3.3 Pure Channels Usability

The secondary user has two aspects of objectives: Firsisites to maximize the number of channels that
successfully utilized (which means channels that are sehgehe secondary user, but not attacked by the
attacker at the same time); Secondly, it also need to mieirtiiz number of channels that are successfully

attacked (which means channels that are sensed by the segaser, and also attacked by the attacker at the
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same time). At time instandgthe pure usability of channels for the secondary user iseefas:
Xs = Xa. (3.3

Consider a whole communication period of the cognitive satktwork [Q T], the total pure usability of
channels for the secondary userf&g (Xs — Xa)dt. On the other hand, the secondary user’s total power con-
sumption is defined asu - fOT M - u(t)dt, whereyu is the unit power consumption for sensing one channel.

Therefore, during the whole period,[D], the overall utility for the secondary user is give by:
T T
Ja= [ D@t [ M-uet (3.4)

3.3.4 Pure Attack Effect

In contrast to the secondary user, the attacker also hasdpexts of objectives: First, it wishes to maximize
the total number of channels that successfully attackechri#ty, the attacker also wishes to minimize its total

power consumption for attacking the channels. The purelat@ect from the attacker is:
Xa — Xs (3.5)

The total attack #ect over time period [OT] is denoted astT (Xxa — X5)dt. And the attacker’s total power
consumption for attacking isﬁ-fOT N - v(t)dt wherey is the unit power consumption for attacking one channel.

The overall utility for the attacker is defined:
T T
Ja= [ DO - xldt-u- [ N-wod (3.6)

3.3.5 Min-Max Obijective

Both the secondary user (SU) and the attacker have their byeatove during the interaction(fighting) with
each other. We call the fighting as a PUE attack game [36][@}ethat in the PUE attack game, the antagonism
between the SU and the attacker can be viewed as stratggicpllvalent to a zero-sum game [36][7]. We

combine the SU and the attacker’s utility functions, andfpoward the objective function for the PUE attack
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game as:

3= fy D) — xa(®] dt

. . (3.7)
—u- Jy M-u)dt+e- [ N-v(t)dt

This is a function which the secondary user seeks to maximidke the attacker wishes to minimize. During
the cognitive radio networks’s communication durationT[) the PUE attack game is thus formulated as the
following differential gamegormat:

)
min_ max fo [(Xe(t) — Xa(t)) — MuUt) + wNV(D)|dt (3.8)

which is subject to the state equations:

Xs= M- u(t) — ¥N - u(t) - v(t)
%o = MN . u(t) - v(t) (3.9)
Xs(t) = 0, Xa(t) =0

3.4 Game Solution

3.4.1 Hamiltonian and Solution Set

In the diferential game, the Nash equilibrium is also the saddletpdmfind the equilibrium of the PUE attack
game, we utilize the approachesdptimal control theory The first step of these approaches is to define the
Hamiltonian function[73][74][76]. In our PUE attack game, taking into considara of the payd functions,

the Hamiltonian is defined as:

H = (Xs(t) = Xa(t)) =g - M- u(t) + ¢ - N - (1)
+ s (M- u(t) - MY - u(t) - (b)) (3.10)

+a (MY - u(t) - V(b))
which will be maximized over the secondary user’s strategy[0, 1], and minimized over the attacker’s strat-

egyV € [0,1]. The necessary condition for the Hamiltonian with respeal(t) andv(t) is provided byPon-

tryagin’s Principle[76], which requires that the pair of optimal strategié#t) andv*(t) is the saddle point
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solution for the diferential game, that is:

H(u(t), v* (t); Xs, Xa; s, Aa)
< HUA (1), VA (1); Xs, Xa; As, Aa) (3.11)

< H(u*(t), v(t); Xs, Xa; As, Aa)

for all u(t) € [ 1], (t) € [0.1] andt € [0, T]. Here A5 and., are the co-state varibales, which satisfies the

associated co-state equations:

ds=-M -1 1(T)=0;
S OXs S( ) (312)

/.la = _% =1 A(T)=0;

The reason that whys(T) = 0 andA,(T) = 0 is that neither the secondary user nor the attacker will
look beyond the horizon. From the two deferential equatansve, it is clear thals(t) and A, (t) are linear

functions of timet. By utilizing the boundary conditionss (T) = 0 andA, (T) = 0, we get the formulations:
A =T -t ) =t-T; st [t,T] (3.13)

To find the solution for maximizing the Hamiltoniat in (3.8) overu(t) and minimizing it oven(t), H can

be re-formatted as the following layout:

H = (Xs(t) — Xa(t)) + ¢ - N - v(t) + ss(t) x u(t) (3.14)

where

M-N
Ss(t) = —p- M + AsM — (15 — As) -

(D) (3.15)

It can be also re-formatted as:

H = (xs(t) = Xa(t)) — - M - u(t) + A5 - M - u(t) (3.16)

+S5(t) x v(t)
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where
S0 = 0N+ (la 19 - ru(t) (3.17)

We call s¢(t) and s,(t) the switching functionsin optimal control theory, the switching function desessthow
to determine the output value aft) based on the input value oft), and oppositely how to determine the
output value of/(t) based on the input value gft). On the basis of the above Hamiltonian and the switching

functions, we establish the solution set as the followireptem:

Theorem 3 In the PUE attack game, let thgtyiand \(t) denote the strategy of the secondary user and the

attacker over time t, respectively. Subjected to the Hamigin H, the optimal value for(t) and \(t) are given

by:
L if ss(t) <O
u=arg max =41 if ss(t)>0 (3.18)
[#.1] if s =0
1 if sa(t) <0
V= arg max= 0 if sa(t)>0 (3.19)

[0,1] if sa(t) = O

Proof 5 (Proof of Theorem 3) The optimal values for (t) and \t) are subject to the saddle point solution
describes as min-max theorem 3.11. Following 3.14, to magithe value of the Hamiltonian H, it is required
that: if sg(t) < O, the value @(t) should be minimunc,g}—l; If s¢(t) > 0, u*(t) should be maximuri; If s¢(t) = 0,
u*(t) can be any value if0, 1]. By the similar method, following the second format of H ib63the value of

v(t) can be derived.

3.4.2 Marginal Constrains

Given the result of the abovEheoremil, the remaining analysis is devoted to the determinatichexdricital
switching timeswhich is constrained by the Hamiltonian and the switchingcfions. To find the solution to
the optimal strategies, the analysis of the PUE attack gdmoeld start at the end rather than the beginning,

which is related to the marginal constrains [73][74][76hefefore we first consider what happens at the end
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of the PUE attack game.

Corollary 2 At the end of the PUE attack game, the optimal strategy foistmndary user is to sense the
spectrum with the minimum capacity (i.e. with strategfTy = 1/M), while the optimal strategy for the PUE

attacker is to stop attacking (i.e. with strategy V) = 0).

Proof 6 (Proof of Corollary 2) According to the formulations in 3.12, the valueigfand 1, at the marginal
time T are given by:

A(T)=0;  2a(T) = 0.

Pluggings(T) and A,5(T) into formulations 3.15 and 3.17, we can get:
SS(T)=-u-M<0; s(T)=¢-N>0

In accordance witiTheoreml, the optimal strategies for the secondary user and thekdtaare G(T) = 1/M

and V(T) = 0 respectively.

At the end of the PUE attack game, to maximize its own utitig secondary user will sense with minimum
capacity while the attacker will not attack anymore. Thesmilt corresponds with the reality. Since neither
the secondary user nor the attacker looks beyond the hor&oine end of the game (i.e. the end of the

communication), the secondary user should almost stoingesgectrums, and the attack is also finished.
Remark 1 By continuity, in some left neighborhood of the marginaktiim the following conditions still hold:
ss(t) <0
si(t) >0
and during this final period, {T) = 1/M and V(T) = 0 are always valid. Referring to the expression gt)s
and g(t) in 3.15 and 3.17, we have:

(1-3-v)-(T-t)<pu when(te<t<T) (3.20)

%-u‘(T—t)«// when(t. <t<T)
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Then letp = ZTM -uandqg = ZTN -v, the strategies of the secondary user and the attacker ateatonstrained

by the switching function set, can be re-written as:

a0 Q=g (T -t) <pu
U*(t)=K2'—|5|(t)= 1 if A-q))(T-t)>u

&1 it @-a®) (T -1) =u

and
1 if p) - (T-1) <o
0 if p)-(T-t)>¢

[0.1] if p®)-(T-)=¢

K-qt)
2N

V() =

3.4.3 Critical Switching Times

Now we begin to analyze the switching time of the PUE attaagk@aThe switching times for the secondary
user (attacker) indicate optimal time for it to switch froensing (attack) to non-sensing. Then we find the
optimal solution for both the secondary user and the atta8l@call thatsg(t) ands,(t) are called the switching
functions for the secondary user and the attacker, respécti Therefore, there may exist two switching
functions in this PUE attack game. Define the first tisé) < O is violated ag = c5 which is thecritical
switching time(in retrograde time) for the secondary user; and define teetfine s;(t) > 0 is violated as

t = c3 which is thecritical switching timefor the attacker.

Corollary 3 During the very beginning of the PUE attack game, the optispaictrum sensing strategy for the

secondary user is (i) = % while the optimal attack strategy for the attacker (8§« (1 - %) . %

Proof 7 (Proof of Corollary 3) At the beginning (initial period) of the PUE attack game, tbaft) and \t)
are inner. i.e. (t) must be in interva(ﬁ, 1), and \(t) must be in interva(0, 1). Moreover, within this period,
neither g(t) nor s4(t) changes its sign. Therefore, accordingtheoreml, it is required that t(t) should
make theHamiltonianindependent of (%) and v (t) should make thélamiltonianindependent of (). For this

purpose, setgft) and s(t) equal to zero, and get the following formulation set:

(1-FvO)T -0 =4
2 ut)- (T-t=y (3.21)

when (t<csand t< cy)
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After reduction, we get

v(t) = (1- £5)- 2%

u(t) = % (3.22)

st. t<csand t<cy
Thus Corollary3 is proved.

Corollary 4 The time that secondary user switches to minimum sensinacitaps denoted assc= T — u

while the time that the attacker stop attacking is denoted,as T — %

Proof 8 (Proof of Corollary 4) By introducing the constrain conditiongtye (0, 1) into formulation3.22, we

have:

u K
0<(1 T_t) <1 (3.23)

Thus the critical switching time for the secondary user isgkated as:

il (1o M) K }_ _
cs_lnf{t.(l T_t) 2l =T-u (3.24)

Similarly, by introducing the constrain condition&tue (ﬁ 1) into formulation (3.22), we have:

1 v K

M < m <1 (3.25)

And the critical switching time for the PUE attacker is cdbted as:

il K _r_ K
Ca_mf{t'ZM-(T—t)>1}_T oM (3.26)

Thus the second item in Corollary 4 is proved.

3.5 Equilibrium of PUE Attack Game

Secondary user and attacker’s powfficeency, and the sensing (attack) capacity have direct itnpacheir

strategies and the trajectory of the PUE attack game. Irstlbsection, we will analyze the equilibrium of the
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game, taking into consideration of the secondary user'sattagdker's powerfficiencyu andy, as well as the

secondary user’s spectrum sensing capaditgnd the attacker’s attack capacity

3.5.1 Case 1: Secondary User Dominates on Power Efficiency

When% < % it indicates that the secondary user’s channel sendiimency is high and does not require
much power consumption for sensing each channel. This maybdo the reason that the secondary user is
equipped with high quality cognitive radio which is poweegerving (also maybe due to the attacker only has
low quality signal processing infrastructure). In thiseathe critical switching timess < ¢, which indicates

that the secondary user will always switch to the lowestisgnsapacityu = ﬁ later than the attacker.

LemmalIf § < KZ2N | there exist two critical switching time in the PUE attacknga The attacker will
switch to the minimum attack capacity before the secondsey switches to minimum sensing capacity. The

Nash equilibrium for this case is illustrated as:

UK Ky
arom T t<T-3y
u) =4 1 if T-S4 <t<T-p
1
= ifT-u<t
M : (3.27)
(1-4&5) % ift<T-5%
V(t)=41 0 |fT—%<t<T—,u
0 if T-u<t
. K ne o Ss(cs) <0
Proof 9 (Proof of Lemma 1) Inthlscase,ng—,u>ca:T—W. At time G, we hav ,
Ss(Cs) =0

1
u(ct) =

u(cs) € (&-1]
sa(cs) > 0, which means the attacker’s switching functiggt)sdoes not change sign at time &Ve then exam

which indicate . Consequently, according to formulation 3.17 we can ggfct$ > 0 and

what happens at time,cAt time G, sa(c;) > 0 and g(c3) < 0. According to formulation 3.15, we can derive:

s(ch) = 5 [w- 2] > 0and s(c3) = K& - [y - 25| > 0. These results indicate that at timg, c
the attacker first reduce its attack probability zera On the other hand, the secondary use will keep sensing
with maximum capacity until time,cThen at time g it reduces its spectrum sensing probability to minimum
value ﬁ The two agents’ strategy switching do not change the sighmefopponent’s switching function.

Furthermore, following the result i€orollary 3, theLemmal is proved.
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3.5.2 Case 2: SU’s Power Efficiency is Relatively High

When®528 < L < . it indicates the secondary user’s spectrum sendiigjency is not very good, and the

attack éficiency of the attacker is not very low.

Lemma 2 If ¥228 < L < 2 there is no equilibrium for the PUE attack game.

Proof 10 (Proof of Lemma 2) Inthiscase,g=T —u>ca=T — — . According to Corollary 2, at timeg
we have gcf) < 0and ycf) = m. At time ¢, we have gc;) > 0and ucg) = 0. Consequently, following
formula (3.17), we can get&}) = ¢-N+2@¢-T) - XH. L > 0and s(c5) =¢-N+2¢-T)- X -1> 0. The
value of g(ct) and s(cf) are bothpositive This indicates the attacker does not switch at timeTherefore,
we need to go backwards with time, and exam further what hregogeattacker’s critical switching time,cAt
time ¢, su(t) experiences a switch, such thag(s;) > 0 and s(c;) < 0. According toTheoreml, the strategy
of the attacker has a jump frontaf) = 0to Wc;) = 1. Consequently, we havey(e;) = K24 [y - 255 < 0,
which indicates the secondary user’s switching functioangjes its sign at time,c This contradicts with the
original result that g(c) < 0. The argument above lead to the conclusion tha‘if‘,aﬂ < % < % there is no

equilibrium strategy for the game.

3.5.3 Case 3: Attacker’s Power Efficiency is Relatively High

When% > KL

7 2M’ it indicates the secondary user’s spectrum sensing daesabtoo much power, and the

attack éficiency of the attacker is also not very high.

Lemma3 If § > £ > K the PUE attack game have no Nash equilibrium.

I

Proof 11 (Proof of Lemma 3) Lemma 3 can be easily proved by using the same method for Lémma

3.5.4 Case 4: PUE Attacker Dominates on Power Efficiency

Opposite to case 1, 5 > % it indicates that the secondary user’s channel sendligescy is very low, or

the attacker’s attackfigciency is extremely high.

Lemma 4 If % > % there exist only one critical switching time in the PUE akggame. The secondary user

and the attacker will switch to the minimum sensing and &ttegcapacity at the same time. The PUE attack
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game has a Nash equilibrium, which is given by:

l .
(1-#5) 5 ift<T-u

0 if t>T - p2M

Proof 12 (Proof of Lemma 4) If % > % (which is equivalentto F u < T - %), wecangetg=T —u <
Ca=T- % In Remark 1, we already derived that, during the final perithee two switching functions
_ o _ Sa(c3) >0 .
sy(t) < 0 and g(t) > 0. Proceeding backwards in time, at timg eve hav , Which indicates
Sa(c3) <0
v(c3) =0 : . - .
. Therefore, according to formula (3.15), by using the samdlpproach for proving Lemma 1, we
v(cg) =1
can establish gc;) < 0 and s(c;) < 0. This means that at (and after) timg, ¢he value of (@) is always

positive. Consequently, the secondary user switchesrégegy before time £ In the same way as above,
we derive that the secondary user’s switching timetlee attacker’s switching function does not change sign.
Therefore, the PUE attack game may have two switching tinméshvare calculated by following Corollary
4. However, the attacker’s switching time is constrainedhgyboundary t< T — u (from formulation 22 in
Corollary 2). In this case, both the secondary user and thecier need to switch to the minimum capacity at

time t= T — u. Then the Nash equilibrium strategy can be derived follgiWiheorem 1 and Corollary 3.

It is worth noting that, at time, = T — y, the switching of the secondary user’s stratep) will change
the value ofs,(t). However, due to the value af ¢ andM, N, this switching ofu(cs) is not enough to change
the sign ofsy(t), but only creates a discontinuity on its trajectory. Sarli}, at timec, = T — % the switching
of v(cy) will change the slope of,(t), but will not change its sign.

In the four cases above, we have analyzed all the possiblgisihs in the PUE attack game. In conclusion

of the analysis, we put forward the following theorem:

Theorem 4 In the PUE attack game. If one agent (secondary user or atfdadominates in the powelfie
ciency, the Nash equilibrium exists; otherwise, the Nashliegum does not necessarily exist. Furthermore,
if the secondary user’'s channel sensirficeency is hight, the optimal strategy for the secondary usd¢o
switch to minimum capacity after the attacker; If the atextkattacking giciency is high enough, the optimal

strategy for the secondary user is to switch at the same tiitinethae attacker.
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(a) Optimal Sensing (Attacking) Strategy (b) Number of Channels Available and Channels Attacked () Channel Usability

—O— Channel usabilty by Differential Game approach|
—E— Channel usability by Random Hopping
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Figure 3.1: Trajectory and Performance of the Nash Equulibrsensing strategy, when SU’s powdi@ency
is high.

(a) Optimal Sensing (Attacking) Strategy (b) Number of Channels Available and Channels Attacked () Channel Usability

—©~ Channel usabilty by Diferential Game approach|

—©~ Opiimal sensing strategy of the SU: u*()
—E— Optimal attacking strategy PUE attacker: v*()
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Figure 3.2: Trajectory and Performance of the Nash Equulibrsensing strategy, when attacker has high
attack dficiency.

Proof 13 (Proof of Theorem 4) Theorem 2 can be prove by using the four Lemmas above.

3.6 Experiment and Numerical Results

In this section, we use numerical simulation to validate gbeeformance of the proposedfldirential game
analytical model. In the experiment, the spectrum is dived + 24 different channels. The secondary user’s
maximal channel sensing capacity is set tawe- 8 channels while the attacker's maximal attack capacity is
set to beN = 8 channels. The unit power consumptignandy are set to suite various cases.

Figure.l illustrates the trajectory of the optimal sensitigcking strategies, as well as the performance
of the diferential game solution. For demonstration, we set the latigpeats 25 times. Figure.1(a) shows
the trajectory of the optimal strategies for both the atacknd secondary user. We can observe that if the
secondary user dominates on powgiceency, the attacker will always stop attacking earlierisTib revealed
in Lemma 1. Figure.1(b) illustrate both the number of aldé@achannels and attacked channels at each time
instance. We can observe the number of available chanredugity increases over time. Figure.1(c) is the
trajectory of the pure channel usability over time. In thigife, we compare the performance of oudfatential

game solution with random hopping between channels. Frentréfectory and the overall channel usability
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Figure 3.3. Performance of Nash equilibrium sensing sisatesthen PUE attack repeats large number of
rounds.

during the 25 times PUE attack, we can see offedintial game approach significantly improved the usgbilit
of the cognitive radio channels.

Without loss of generality, in Figure.2, we illustrates {performance of the dierential game approach
when the attacker has high attadk@ency. From Figure.2(b), we can see that, although thelattas high
attacking capacity, by following the fliérential game approach, the secondary user can gradueibaise the
number of available channels. Furthermore, in Figure,2{® overall channel usability is not as good as
when the SU dominates in poweffieiency due to the attacker’s powefieiency is much more better than
in Figure.1. However, our flierential game approach still has much better performararerimdom hopping
between dterent channels.

From Figure.1 and Figure.2, we investigate the case whePRtHe attack repeats not too many times (25
rounds), we can see that ouffdrential game solution can bring the SU with better chansability comparing
with random hopping. As well, when the attack repeats hugeb®su of times, following our dierential game
approach, the Nash equilibrium can also be easily derivedour best knowledge, this can not be realized
by using any of the previous discrete-time anti-PUE appgresac Figure.3 shows that, when the PUE attack
repeats many times (from 100 times to 1000 times), if onlysdsgondary user sticks to ouridirential game
solution, it can optimize its long-term overall channel hibty, and reduce the damage from the PUE attack
to the minimum. By following the Nash equilibrium strateggrated by our diferential game, the channel

usability can be significantly improved.




Chapter 4

Repeated Game Approach for Cooperative Com-

munication

4.1 Introduction

In Multihop Wireless Networks (MWNS), the selective forndarg attack is a special case of denial of service
attack. In this attack, the malicious wireless nodes ontwéod a subset of the received packets, but drop the
others. This attack becomes more severe if multiple attackeast and collude together to disrupt the normal
functioning of the secure protocols. By colluding, eaclagter can even only drop a little packets, but the
overall loss of the path will be high. However, most priore@shes on selective forwarding attacks assume
the attackers do not collude with each other. Furthermdme ptevious works also lack of comprehensive
security analysis. In this paper, by utilizing the game thdo approach, we analyze the collusion in selective
forwarding attacks. We first put forward a sub-route oridmganish and reward scheme, and proposeatti-
attacker repeated colluding gam&hen by static and dynamic analysis of this colluding &tgame, we find
the sub-game equilibriums which indicate the attackertihugd attack strategies. Based on the analysis result,
we establish a security policies for multihop wireless rogis, to threaten and detect the malicious insider

nodes which collude with each other to launch the selectimedrding attacks.

4.1.1 Challenging Issues

According to the related works, the challenging issues @fésearches on selective forwarding attacks mainly
fall into the following categories:

According to the related works, the challenging issues efrtsearches on selective forwarding attacks
mainly fall into the following aspects:

First, since the selective forwarding attack is launchennfinside of the network, the insider attackers
bypass the public key and private key system [39]. Therefoesides using cryptographic methods as the
first line of defence, it is necessary to propose non-crypialgic solutions as a second line of defense [38].

Among those non-cryptographic solutions, game theory & ainthe dfective mathematical tools to solve
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the attacker-defender interaction problems. However, toomtroduce the traditional game theory into the
practical selective forwarding attack scenario, is a emgjing topic.

Second, the traditional detection mechanisms againsttaseldorwarding attacks only focus on single at-
tacker detection. However, some smart attackers may @lMith each other to launch selective forward-
ing attack. These smart attackers are autonomous entifibey are not only malicious but alsational
[77, 53, 49, 36, 7], which means they can intelligently atphe packet drop quantities, without being de-
tected. When these rational attackers collude with eackroffach of them only drops a few packets which
are not easy to detect (this malicious drop is eveéhadilt to distinguish from normal packet loss due to chan-
nel problems [38]). However, the total drop quantity frone tittacker group still remains very high, which
seriously &ect the QoS [38, 39] of the multihop wireless network.

At last, most of the previous works on selective forwarditigek lack the security analysis. To detect
and defend the collusion in selective forwarding attackss essential to analyze the attack strategies and
preferences of the attackers [7]. A security analysis dasglits name is a method that the defender first
looks at the maximal damage that an attacker can cause fecdisglefence, and then searches for the proper
security decisions [78]. To prevent and detect the sekedtismvarding attacks, we need to construct a clear and
specific mathematical model for the real attack scenario p@mform comprehensive analysis of the collusion

between the attackers.

4.1.2 Our Works

In the prior works, the researchers seldom discuss whahefilpen if multiple attackers exist and collude with
each other on selective forwarding. According to the schproposed in work [38], in the multihop wireless
network, if errors are static or if the errors are consideredverage, the network manager can detect any loss
rate above the threshold which is derived from the MAC layadlision rate. This scheme works well when
some malicious nodes are distributed in the multihop waleetwork and do not collude with each other.
Even if there are many malicious nodes in one route deploylmiring a sequenceGood Node—Bad Node—
Good Node—Bad Notlethe check packet in this scheme can be used to detect thesnalao are launching
various kinds of attacks.

However, the scheme in work [38] does not take into consiagrahat some smart malicious node may
collude with each other. If two malicious nodes sandwiclg#timate node between them, these two malicious

nodes can give false record data in the check packet togetheémmake a false accusation on the legitimate
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middle node. In this case, the innocent middle node will beighed for the packet losing which is caused by
the attackers while the colluding attackers can escapeliiging detected. Especially, when some attackers are
deployed next to each other like a sequené®dd Node—Bad Node—Bad Node—Good Naated collude
with each other, all these attackers are hard to be detegtéusscheme. Furthermore, in [38], the authors
proposed the threshold for normal loss to distinguish tteektfrom normal packet loss, however, in real world,
different nodes may faceftirent MAC layer collision levels. Therefore, the threshiwldy vary for diferent
nodes, which will make the false negative rate increasingrs@/still, each attacker may drop only a small
quantity of packet which does not exceed the threshold, heryvthe total packet loss on the whole sub-route
still remains very high.

In this paper, to detect and defence against the colluditaglars, a sub-route oriented rewanthish
scheme is proposed, taking into account of the strategigsuglities of the colluding attackers which form
a malicious group and launch selective forwarding attatksur scheme, the punishment to each colluding
attacker is strongly related to the overall performanceha malicious group. Those insider nodes which
participated in the colluding attack will be severely pingid. This sub-route oriented punish scheme can be
utilized to threatenthe insider attackers not to collude with each other. Besitle sub-route oriented re-
wardpunishment scheme, a repeated game approach [79] is ditfirea comprehensive security analysis.
By extending the classical Cournot model [36], we design Hiratiacker repeated colluding game. Through
staticanddynamicanalysis of this game, we derive the sub-game equilibriamd,show the attackers’ optimal
attack strategies, which arefidirent from the single attacker case. Numerical analysiwshioe relationship
between attackers’ strategies and corresponding WwiliBased on the game theoretic analysis results, thresh-
olds are derived for threatening and detecting the malicittackers. Then security policies are established
to reveal the colluding attackers. The security policié® taoth one-shot attack and repeated attack into con-
sideration. Moreover, two kinds offtierent colluding attackers, the smart attacker and naiaelksts, can be
distinguished by the security policies. This security gie can be used to design a more intelligent and accu-
rate anomaly intrusion detection system for the multihopeless networks. By using the sub-route oriented
and game based defence scheme, even if the malicious nadesated near each other, collude together and
give false data, they will still be punished by the defendingchanism. Numerical results show the relation-
ship between attackers’ strategies and utilities whiclecethe their preference. The impact of IDS’s setting
on attackers’ preference is also illustrated. The resutturfanalysis can be implemented to design more in-

telligent and fective IDS systems. Each attacker in the colluding attadk drops a few packet, therefore
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the traditional detection schemes are vulnerable to tlectiilusion of multiple attackers. However, by utiliz-
ing the result of our work, the misbehavior of the colludirttaekers can be revealed, and consequently, the

malicious colluding attack group can be detected.

4.2 System Model

In this section, we first describe the scenario of the calusn selective forwarding attacks. Then, we propose
the sub-route oriented reward and punish scheme. Aftentleaput forward the attacker’s utility function and
construct the colluding attack game model. We assume theorieis in Promiscuous Modand the packet
drop can be monitored by the IDS systems [39]. By ultilizing tipstream and downstream joint monitoring
[38], the packet loss rate at each insider node (which maytduralicious attack or normal loss) can be
obtained. For reading convenience, the main mathemayioahals used in this paper are summarized in Table

1.

4.2.1 Colluding Attack Scenario

Consider in a multihop wireless network, through physiegitaring or software bugs, the outside adversary
may hijack into the network, compromise several insideresod, Vo, ..., VN, and tune them to behave mali-
ciously. These compromised insider nodes thus becomeeinatthckers which can even collude together to
disrupt the normal functioning of the secure protocols. @ding to the reactive routing protocols such as
AODV and DSR [37, 39], when a source no8avishes to discover a route to transmit its data packets to the
destination nodd®, it will first broadcast its Bure Request message [37, 39]. On receiving this message,
the insider attacker (e.g., nodg) will not check its routing table but just immediately regsia false Rute
RepLy message claiming that it has an existing route to the déistimaodeD. Since the attacker does not
check its routing table, its falseoRre RepLy message will reach the source node ahead of otherdRReprLY
messages from legitimate nodes [38]. Moreover, the attagkean also manipulate i9st. Seq[47] field in

its routing table to cheat the source ndsl¢hat it has the best route . After receiving the Rute RepLy
from v1, nodeS will think that the route discovery phase is complete, ambig all Pute RerLy messages
from other nodes including the legitimate nodes [39]. Cqusetly, the attackew; has preempted the route
betweers andD, and includes the other insider attackers.., vy into this route. All these attackers constitute
a malicious sub-route ThenS starts to transmit its data packets through this malicialsrsute replied by

vi. When the first attacker; receives the data packets, it drops subset of them, andridsvilae remaining
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Figure 4.1: Collusion on selective forwarding in MWNSs.

packets to another attacker. Similarly asvy, attacker, drops another part of the data packets and forward

the remaining packets to attackey This kind of selective forwarding will be repeated by evatiackerv;.

And the last attackevy will forward the final remaining part of the packets to thetoegion nodeD, or to a

legitimate node which truly has a route @ Consequently, the packet receive ratidatvill decrease, and

the network performance will drop dramatically. The cailtusof this N-attacker selective forwarding attack

is illustrated in figure 4.1.

4.2.2 Hazardness of Collusion

It is worth discussing that why collusion bring damage torkévork, and how collusion disrupt the normal

functioning of the secure protocols. This is because thieidiolg attackers can intelligently and cooperative

adjust their drop quantity (attack capacity), and disraptritormal functioning of the secure protocols.

Destination

a) vl intercepts RREQ message and becomes the leading attacker.

Destination

b) v3 intercepts RREQ message and becomes the leading attacker.

o (] Fel o o o
(] /" Destination

Sender

c) \‘5 intercepts RREQ message and becomes the leading attacker.

Figure 4.2: Leaders in the malicious sub-route.

Since the multiple attackers form a malicious group (malisi sub-route), one attacker can negotiate with
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others about its own drop quantity (attack capacity). Invtloest case, if all the attackers selflessly reduce its
own drop quantity to a value which is low enough, the existiegection mechanism can not distinguish the
malicious drop from th@ormal losscaused by access collision or bad channel quality [37, 38jvaver, the
total loss rate in the whole route still remains very hightHis case, the normal functioning of the traditional
secure protocols will be disrupt by the colluding attackbescause it will not be suspicious of each low-loss-
rate attacker.

In prior work [38], the authors investigated tm®rmal lossevents such as medium access collision or
bad channel quality. They considered the channel statud®eaood or bad. And the collision parameters
under diferent channel status are analyzed. Based on these an#igsigievelop a channel aware detection
algorithm that can be used to identify the selective forwaganisbehavior from the normal channel losses. If
one node loss packet higher than the derived thresholdl|l ibavclassified as malicious. The detection rate of
this work will be creditable. However, when we consider laél hode in a route or sub-route, things should be
changed. Considering multiple nodes in a route, it is n@tyikhat all these nodes face the channel problems
at a same time, since the collision has direct relationshtp the real-time tréic (e.g. ALOHA or DTN
systems) [80, 12, 39]. This means it is not likely all the rodhare an identical upper-bound of the normal
loss rate. If the network’s average MAC layer collision riatligh, but the collision rates at some attackers are
low, the malicious dropping will be considered as normaslasd the false positive rate will be high [53, 78].
Some nodes may maliciously drop very little packets oncedsd't sifer a collision or jamming. This is an
intentional packet dropping which should be classified techkt however the traditional secure protocol will
be invalid to identify such attackers.

Worse still, each smart attacker on the malicious sub-rmag only drops a small quantity of packets, and
this quantity is less than the threshold value derived imtii@ security protocols. In this case, such attackers
can not be discovered by using the traditional secure rgyinotocols, while the total loss quantity in the
malicious sub-route is still very high. Even in a speciatgimstance that all the network members share an
identical upper threshold of normal loss, each attackerenayrol its intentional drop rate below this threshold.
However, the total drop quantity from all the attackers ghhi Such an deceitful dropping will decrease the
QoS while the attackers will not expose themselves.

Moreover, since the attackers form a malicious group, aliegrto the reactive routing protocols [37, 39],
each of them is possible to be the leading attacker (suchadswapwhich sends back the falseoRe RepLy

message to the send8r That means, when any other sender wants to send packets,aber attacker is
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possible tanterceptthe Route Request and inject the malicious sub-route into the path betweencgonode
S and destination nodB. If the malicious group is in the center of the multihop wasd network, is will take
its geographic advantage [37, 39] to bring damage to the evhetwork. We illustrate this in the following

figure 4.2.

Table 4.1: Symbols for selective forwarding game.

Symbol Definition

pd

Number of selective forwarding attackers.

Thei-th attacker.

Drop quantity by attackei

Utility function for attackeri in one stage of communication.
Total drop quantity byN attackers.

Paydt for dropping one unit packet.

lllegal reward to attacker (upper bound of unit-utility).
Strength of punishment (attacker’'s Risk Factor).

Factor of battery cost for processing and forwarding packet
Nash attack strategy (drop quantity) by attadker
Colluding attack strategy (drop quantity) by attacker
Stage utility under Nash equilibrium for attacker

Stage utility under Collusion for attackir

Sender stops sending packet-dh round.

Probability that a sender stops sending packetstiatround.
Attacker’s faith (discount factor).

nash i's overall utility if all attackers adopt Nash strategy.

: i's overall utility if all attackers adopt Colluding strateg
violate 5 gyerall utility if it deviates from Collusion.

i's optimal drop quantity when it deviates from Collusion.
i's optimal stage utility when it deviates from Collusion.
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4.2.3 Sub-Route Oriented Punishment and Reward

In the N-attacker malicious sub-route, by utilizing the upstrean downstream observation scheme proposed
by D.M. Shila et al.[38], we can obtain how many packets eacider node loses. Every time an insider
attackeri drops one data packet, it will fier oneunit punishmenfrom the IDSReputation systems. This
punishment can be reputation decreasing or virtual mopetamalty [7, 39]. Lep denote the severeness of the
punishment from the IDReputation system to the colluding attackers. Thaan be seen as thRisk Factor

in the view of the colluding attackers. This risk facis set by the security manager of the wireless network
to threaten the attackers not to drop too many packets. &gatdicates severer punishment to the colluding

attackers. This risk factg# can be adjusted depending offfdient wireless applications. For example, in the
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military applications which need high security guaranjgenay be set at a greater value; while in civilian
applications8 may be set at a relatively smaller value. We record the attrekegy of an individual attacker

i ass which indicates the number of packets it drops. The totgb dnaantity by theN-attacker malicious sub-
route is recorded as = Zi'\ll 5. Then the unit punishment is definedRgii(w) = 8-w@, which is an increasing
function ofw. This unit punishment function indicates significantlytthahile the total drop quantity from
the malicious sub-route increases, the punishment to éagle attacker for its dropping every unit packet will
also become more severe. This increasing unit punishmerbeased to threaten the malicious attackers not
to drop too many data packets and not to collude with each.othe

For every packetoss on node, the reputation system will punish nodérom two aspect:(1) Porg(S) is
called theordinary punishmentwhich is caused by the single node drop quantity at nod2) Pey; = Bw is
called theextra punishmeiiivery attacker will also sufer an caused by the total packet loss in the sub route.
We define this extra punishment as: whgres a weight metric that can be adjusted by network manager.
Every time when one attacker attackeirops one packet, it will also gaitiegal rewards from two aspects:
(1) Energy reward recorded afqne indicating the energy that one attacker saves by not fatwgrone unit
packet;(2) Adversary reward recorded afaqv, Which means one attacker’s illegal gain from the adversary
of the network who has compromised these inside attackarsorimal cases, thB,qy can be the monetary
reward which indicates that the network’s adversary engptbgse insider attackers, and if the insider attacker
drops packets, it will gain money from the adversary.

Besides the packet dropping, each time an insider attackemafds a packet, it will also have reward and
loss. The loss for forwarding the packet is due to the bafenyer consumption. On the other side, after
the insider attacker forwards packets for other nodes, éteark will reward it in the form of reputation or
resource allocation [37, 48, 81]. To quantify the loss ameard for forwarding packets, we assume within one
stage of communication between the source Me@md the destination node, the total number of packets
thatS sends out i, and each insider attacker drops certain subset of theketsatience, the insider attacker
i receivesc — Z‘j;ll sj packets from attacker— 1. Attackeri then dropss packets, and forwards the remaining
K- |J—:11 Sj — S packets to attacker+ 1. Therefore, the battery energy consumption for attackemprocess

ij‘:ll sj — ). On the other hand, the reward to

and forward the packets, can be calculated by a funcfior 3,
attackeri for its forwarding packets can be calculated by anothertfang(x — Zij‘:ll Sj —S). Itis worth noting
that, the value of)(-) should be greater than the valueogf because in order to stimulate the insider nodes to

forward data packets, the reward from the network should & itthan the energy consumption [37, 48, 81, 7].




4.3 Static Analysis 85

For simplicity, letc(-) andg(-) both be linear function of argumes, then we integrate this two functions as

f(s) = ck - X\ sj— 8) + 9k — X121 5 — 5). And f(s) is also a linear function of.

4.2.4 Colluding Attack Game Model

Given single node’s drop quantity, the malicious sub-route’s total drop quantity, the punishment for
dropping one unit packdé?,i((z), and the illegal rewardRene andRyqy, We can get the unit-utility for attacker
i when it drops one packef2 = p1Rene + p2Radv — Punit(@) Whereps, po are weighting factors. Taking into
consideration that the attackdotally dropss packets, the total payitfor dropping these packets is denoted
ass x Q. On the other hand, besides packet dropping, attactaally forwardsx — Z‘j;ll Sj — S packets.
Therefore, the total paybfor forwarding these packets is denotedyés— |J—:11 Sj—S)—Ck— |J—:11 Sj —S),
whereg(:) andc(-) are defined in subsection 4.2.3. We consider during eagle stacommunication between

the source and destination nodes, the total number of paoked to send i& Then the attackats utility in

one stage of communication is:

i = S[p1Rene+ p2Radv — Punit(@)]
i [ (4.2)
+0k—- X Sj—8)— Clk— X Sj—8)
=1 j=1

4.3 Static Analysis

In section 4.2, we have proposed tReattacker colluding attack game model. To obtain the attticktegies
and preference of the attackers, we need to find the equitib[B6, 7] of this colluding attack game. In this
section, we will analyze the equilibrium ene-shotolluding attack game. Since the analysis only concerstrate
on the attack during one stage of communication, it is theadled static analysis In this static analysis, the
Nash attack strateggs well as theColluding attack strategwre derived to indicate the strategy space of the

attackers.

4.3.1 Cournot Game

The Cournot game is originally an economic model used toritessan industry structure in which companies
competgcooperate on the amount of output they will produce, whidy tihecide independently of each other.

In Cournot game, price is a decreasing function of total wugd the two companies. By introducing the
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Cournot game knowledge, we can study the interaction betwadtiple rational attackers. the Cournot game
can help us to find the stable strategy for each attacker,hwkicalled Nash equilibrium in game theory. In
this section, analysis the single stage colluding attackegdase on our game model which is extended from

the traditional Cournot Game

4.3.2 Nash Attack Strategy

We first consider a situation where the attackers do not dellith each other. In this case, according to
the theory of pure strategy static game [36], Mash equilibriumattack strategy is the stable point for the
attacker’s drop quantity. If all the attackers choose Naglilibrium drop quantity, no attacker has the incentive
to unilaterally change its strategy. In the colluding dttgame, lets denote the drop quantity by attackevith

the corresponding utility function;, and lets_; denote the vector of drop quantities of all the other attecke
excepti. The Nash equilibrium is a vectogy( s*;) such thatr{ (s, s*;) = meime(s,-,Sji) Vi =1,...,N. This
Nash equilibrium €', s*,) is the stable status of the colluding attack gar?ﬁasin whighuwmlaterally deviation
from strategys' by the attacker will incur utility decrease to itself. Note thal denotes the network system’s
tolerable packet loss quantity on a single node, gng s'. The utility are chosen by a particular attacker

with attack quantitys asx;, and the particular attack quantities by all other attaxkes_; with corresponding

utilities 7_;. Assuming the Nash equilibrium of this game is:

ﬂi(ﬁk,sii)Zﬂi(S,Sfi) (4.2)

To achieve this assumed equilibrium, for any attadker 1,2,...,n, and anys € Sj, the following con-
dition must be satisfied:seg]azx(s’i, SO T S,). To achieve this assumed equilibrium, for any attacker
i=12,..n and anys € Sj, the following condition must be satisfiegzesrirva(q, Sy vees Sy evns S,)- Itis worth
noting that, according to game theory, this Nash equilibrattack strategy is the stable point of this colluding
attack game. However, it is not necessarily the optimatesgsafor the agents (attackers) [36, 7]. To derive this

Nash equilibrium drop quantity, we need to find the solutimithie followingoptimization problem

H-a-pRy+S+..+5)-£=0
= -B(S +25%+..+5)-£=0

(4.3)

gisz:a—ﬂ(si+sg+...+25|\|)—g:0
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Making partial derivation of each of thedéquadratic functiong; with respect to the corresponding drop

strategys yields the Nash equilibrium drop quantity:

S =n1 5 (4.4)

and the corresponding Nash Equilibrium utility for eaclacker:

«_ 1 (a—8)?
i T (N+1Z B (4.5)

Note that in our attack game model, sineg8 ande are the same for every attacker, the Nash equilibrium
attack strategys' as well as the Nash equilibrium utility; are identical to every attacker In other word,

all the attackers drop the same Nash equilibrium quantitgt,raceive the same Nash equilibrium utility. The
significance of the Nash attack strategjyis that it illustrates the stable point of the drop quantdydttackers

if they are selfish ando not colludewith each other. Any attacker’s unilateral deviation frdristNash attack

strategy will result in its own utility decrease.

4.3.3 Colluding Attack Strategy

The Nash equilibrium is not the best case for the maliciolsreute because attackers do not collude with
each other. On the contrary, if the attackers fully colludéhweach other, what is the optimal drop quantity
each of them will adopt? To solve this problem, we need todmssider the simplest case: what is the optimal
drop quantitySif there is only one attacker (the number of attackérs 1). According to the Cournot game
[36], if multiple attackers collude with each other, theioyl strategy for them is that the quant&ys divided
equally among these attackers. Therefore, we first conthdér if there is only one attacker in the sub-route,
its optimal drop quantity i$ with the corresponding maximum utility. The value ofS should satisfy an
optimization problem: mgx = Sa — 8S) — £ x S}, which is equivalent to the first-order partialfdirential
equation:g% = a — 285- ¢ = 0. Thus, in the single attacker scenario, the optimal dramtjty is'S = "—2"8‘9
with the utility 7 = % Recall that the reason why we introduce this mediig to derive the optimal attack
strategy when multiple attackers exist. In the real casaqnlif one attacker existg should be limited under
the upper boundr which is smaller thal%. In other words, if only one attacker exists, this singlacker

should not drop too many packets.

If multiple attackers collude with each other, tB®llusion statusof this N-attacker selective forwarding
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attack game is that thed¢ attackers equally divide the quantify= %£. Consequently, the optimal drop

quantity for each of these attackers is: v
S=x (4.6)
with the corresponding utility:
7= O (4.7)

Comparing the utility functions (4) and (7), we can see thepdjuantitys < s, but the corresponding
utility 7; > #. This indicates that if the attackers collude with each otaéhough the individual drop
guantity decreases, the utility is higher than if they docustude.

However, according to the basic knowledge in static gameryhén the one-shot selective forwarding at-
tack game, since all the attackers are rational, everykatgast intends to drop more packets to unilaterally
maximize its own utility. Therefore, the best strategy facle attacker is to choose the Nash equilibrium drop
quantity which is stable and safe, but not to collude witheotittackers [36]. That is to say, in the one-shot
selective forwarding attack game, due to the rationalitthefattackers, the collusion can not be realized. The

best strategy for each of them is to choose Nash equilibritop duantitys”.

4.4 Dynamic Analysis

In Section 4.3, we reveal that the collusion cannot be rehahéhe one-shot attack. In the real network sce-
nario, since the communication between the source and gimaton node repeats, tiattacker selective
forwarding attack also repeats. And in each stage of comeation, the attack repeats once. In this sec-
tion, we extend the one-shot static attack game into mailtikd dynamic attack game, and find theé-game

equilibrium [36] which indicates the preference of the attackers.

4.4.1 Faith of the Attackers

In a multi-round attack, attackers may havéatent utility functions in dierent time periods due to the
limitation of battery power and malicious group’s life. Tvestigate how many packets an attacker prefers to

drop at certain time instant, we introduce a notfttacker’s Faith
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To obtain its optimal utility, each attacker will change di®p quantity in each stage of the repeated attack
game. The key problem is to investigate when the attackémpvafer to change its strategy and what strategy
it will switch to. For this purpose, we first introduce the ioot called Attacker’s Faithwhich indicates how
long the attacker believes the repeated attack will latacker’s Faithis denoted by a real numbéthat lies
in the interval [Q1). It captures the fact that an attacker generally valuegptbsent utility more highly than
those in the future. If the attacker has higher faith, it wilue more on its future utility. In the extreme case
whené — 1, the attacker treats the present and the future utilitigsly. The attacker’s faith can be reflected
by the residual battery power, or the total quantity of datd the source node need to send to the destination
node.

(1) if 6 — 1, the attacker will strongly believe that the attack willlegeated for many stages (even infinite
times). This may be due to the reason that the communicaétween the source and destination nodes needs
to be repeated many times. In this case, each attacker wialyalchoose the colluding attack strategytrying
to maximize the long-term overall utility in the future.

(2)if 6§ — 0, it means the attacker has no strong faith on future, fomgik@, due to lack of power, or for
the reason that the communication between the source atidades nodes is almost finished. In this case,
attackern does not have hope on the future, it will violate from the wdithg attack strategy, and fearlessly drop

a large amount of packets to maximize its current utility.

4.4.2 Repeated Attack Strategies

Consider anN-attacker multi-round attack, in which an attackeras faiths. Supposep; is the expected
probability for the source nodeto stop sending its data packets atitkta stage of communication. Therefore,
the selective forwarding attack will also be repeatsthges. If the attackergever colludewith each other and
always chooséNash attack strategy; sthen at a certain stagg the expected stage-utility for an arbitrary
attackeri is 61'71;* (Note that according to the result in section 4.3, this vaduielentical for each attackey.

And afterr stages, the expecteerall utility will for an attackern will be:

A= 7% 4 5. (1 - po)r; + 6% (1 - p1)(1 - p2)m;
+o..+0 (1= py)...(1- po)nf (4.8)
roo j
=i+ 3 [0 a [T (- po)]
j=1 k=1

If all the attackers always obey tloelluding strategys, at a certain stagg attackeli’s stage-utility will be
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817, After r stages, comparing with the overall Nash utility functiof, @tackeri’s expected overall utility

for colluding is:

A= 7 +6 - (L- p)i +62 - (1- p)(L - P)

o 8 (L= PO (L= PO (4.9)
7+ 31007 11 (1 po]
j=1 k=1

4.4.3 Repeated Attack Equilibriums

In the multi-round repeated attack, the attackers will fogwore on the long-term overall utility. From function
(8) and function (9), it can be observed thdt > @ Obviously, the colluding attack strateGyyields
higher utilities. As long as an attacker’s faith# O, it will first choose the colluding strategy. Consider
an attackei with relatively low faith on its future utility, at a certaistaget, to maximize its own utility, this
attacker will violate from’s and unilaterally increase its drop quantity to a greatenevéfienoted ag’*), which
brings it with higher recent utility. Due to this violatiofrom staget + 1, every attacker needs to switch to the
Nash drop quantity’ to protect its own utility. As a result, the multi-round reped attack consists of three

phases:

e Colluding PhaseEvery attacker drops§ = ﬁ . % packets.

¢ Violating Phase Violator dropsgﬁ packets, others drog packets.

» Protecting PhaseAll of the attackers switch t§' = 37 - 452 .

It is critical to investigate that: at which stagean attacker intends to violate from collusion? And what is
its best strategy when it violates? To this end, we assunge-ta theviolating phase At staget, attacker
i does not collude with other attackers, it unilaterally desits drop quantity frong to a greater valuq‘*.

Since at-th stage, all the other attackers are still keeping theudoily attack strategy, the violator’'s dominant

strategyﬁ‘ should be the solution to this optimization problem:

max{|a- g+ 3. 5)| - ox(x- 25 - ¢} 4.10)
s>0 j#i j=1
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solving this maximization problem by using First-ordertigdifferential equation, we can get the value of

q’* which indicates the optimal drop quantity when the attackeolates from collusion

a—e— Elq
S =% (4.11)

N+1 a-¢

=N 3

and the corresponding utility at this violating stage is:

2 a—& 2
ﬂf _ (N,\+121) ) (168) (4.12)
Consequently, attack&s expected overall utility will be:
iolat t=1 j R t r j
e =mi+ Lol -m [[(A-p)+ 6 -a [11-pd + X H(l Px) (4.13)
j=1 k=1 =1 J:t+l k=1

The above utility function consists of three parts, whicHidates the three phases in the multi-round re-
peated attack game:

(a). The colluding phase (before stagein which theN attackers coIIude with each other, and each at-

tacker’s utility for the entire colluding attack phase idicated byr; + Z [6) -7 H (1-pl
J_

(b). The violating phase (stadg®-in which the attacker unilaterally violates from the colluding strategy to
t
7 T1(2 = py)
k=1

maximize its long-term overall utility. The utility of thishase for the violator is!

(c). The final protecting phase (after stayein which all the attackers switch to the stable Nash eguiim
i
> [ol -t P 11 (- pl.
' k=1

strategy to protect themselves, and each of them receigagithy 3,
j= t+1

From utility functions (8), (9) and (13), we can see that: 4oyt < r, if the expected overall utility for
colluding is greater than that for violating (i.e:f,)bey > n}"o'ate), the colluding strategy will be the optimal

attack strategy. In other words, if the following inequalii satisfied,

]j (1-py)=>o- ﬂ}#k]i[l(l— P) + (4.14)

M—‘

I
-
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attackeri will always choose the colluding attack strategy Otherwise, it will change to a greater drop
quantityﬁ‘ at staget: And all the attackers will switch to protecting drop quans' since stage + 1. These
results are the attackers’ preference inkhattacker multi-round repeated attack.

The inequation (14) is the final result of the selective fadirrg attack game, which shows the attackers’
attack preference. The inequation (14) indicates sigmifigavhen the attackers are prone to collude with each
other, as well as how many packets each of them is willing apdit each step of the repeated attack. At
a certain stage, if the variables (e.gt, r, 4, @, B, € and py) satisfy the above inequation (14), the attackers
are more willing to collude with each other. Otherwise, toxitmaze their overall utilities, the attackers will
not collude, just behave rationally and selfishly, to follthe violating strategy which is indicated by function
(13). If the inequation (14) is satisfied, we say that$hb-game equilibriunms reached [36]. The sub-game
equilibrium of this multi-round selective forwarding atkagame is subject to the utility functions (8), (9) and
(13). The sub-game equilibrium indicates the stable (smest optimal) status of the selective forwarding
attack game. It can be used to help the security manager ohtitehop wireless network to reveal that: at
which step, which attack strategy the attackers prefer®. thn the next section, we will use the experimental
method to observe this selective forwarding attack game. willealso investigate the impact of flerent

variables on the result of this attack game.

4.5 Simulation and Numerical Analysis

In the previous sections, the colluding attack game is aedlythrough theoretical approaches. Given each
node’s drop quantity, we can calculate the expected utifitthe nodes. For the malicious sub-route, we ob-
tained the formula and constrains which can be used to prsiequilibrium drop quantity for each attacker,
and the expected damage that the network mé#eswhen the attackers rationally choose their equilibrium
drop quantity. Notice that the equilibrium drop quantitytie mutual optimal attack strategy when tNe
attackers collude with each other.

However, in theN-attacker multi-round repeated attack, since the gamdisairvariables (e.g.t, r, N, &,
a, B, € and py) are undetermined, it is complex to intuitively observe fiib-game equilibrium. Hence, in
this section, to analyze the behavior of the multiple atagkand find out how they they may collude with
each other, we design an simulation, and utilrameter estimatiomand statistic method$o observe the
multi-round repeated attack game. We will first investighterelationship between the attacker’s faith and its

expected overall utility. Then based on thé@ient expected utilities to colluding and violating affelient
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stages of game, we derive the value of Nash equilibrium ofctieding attack game, and learn that under

what conditions the collusion happens.

4.5.1 Simulation Design and Parameters Setting

Since this work concentrates on the analysis of the collubiehavior of the attackers in the selective for-
warding attacks, in our experiments, we assume a convesiEnnetwork which contain totally 300 wireless
nodes. Furthermore, we focus on an objective route linkiegsburceS and destinatiorD, which consists of
50 wireless nodes. To simulate the attackers, we assumeaoingf phis route is the malicious sub-route which
containsN < 50 insider attackers. It worth noting that, these 50 insattackers may be next to each other,
and they may also be sandwiched between other good nodeset\ifee gotal number of packets that need to
be forwarded from the source no8eto the destination nodB is x = 1000. And the pre-set tolerable packet
loss for each insider node 8 = « x 2% = 20. The value o&' can be easily changed to simulatéfelient
wireless networks that requireftérent QoS or have fierent security constrains.

For the equation (2), we simply set the upper bound of theutility asa = 10, set the risk factor g&= 1
ande = 1. These values are just sample values. However, they caasbg ehanged to adapt to the real-world
utility and risks if a specific network environments are @msActually, when setting these 3 values, there are
no specific constrains except that the risk factor shoul@éé®than the upper-bound of the unit-utility. But it is
worth noting that, if good nodes are sandwiched betweenallenbdes, such that the nodes located likedd
Node—Bad Node—Good Node—Bad Nptieget a relatively low false positive rate, the networkmager
should properly define the value of, according to the othgbaées in function 2.

Besides, the repetition has direct impact on the attactegyaf the insider attackers, as well as direct impact
on the performance of the wireless network. Therefore,df great significance to decide how many times the
selective forwarding attack will be repeated, which is dedas factor. In different real-world application
scenarios, the value efmay vary depending on how many packets totally the source Baaeeds to send
to the destination nodB. Thus our experiment should be designed more close to satitie® Following
the experimental and statistical methodologies [82], wesierr as a formalized expectation which obeys
the Poisson distribution In network communications, Poisson distribution is comipaised to evaluate the
guantity of data that one agent receives within a certaifogefTherefore, based on theffidirent application

scenarios, we can definkas themathematical variancef r. A is the one input data of the experiment.
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Following the rule of Poisson distribution, the probalilibr the attack to repeattimes is calculated as:

Poissoifr) = &4 (4.15)

r

with mathematical expectatioh. For demonstration, we first set the expected attack repetsi = 30
rounds. Based on, we generate an 80-elements arf{0}. Every element € R{80} is a possible number of
attack’s repetition subject to the Poisson distributiothwmathematical varianceé Here number 80 is the size
of the Poisson distribution sample space, and it can be t@segreater number when a more precise analysis
is required. For each we generate a probability distributidh= [p1, p2, ...pt, ..., Pr] Wherep; is the expected
probability for sendefs to stop sending its data packets at thh stage. Finally, following functions (8), (9)
and (13), we get the statistical results ;ﬁqif‘s“,zr?beyandn}”o'a‘e, respectively. On obtaining the number of these
three metrics, following the inequation (14), the sub-gameilibrium can be derived. An example algorithm

for calculating the value ofi”aShis illustrated in the Appendix.

4.5.2 Numerical Analysis

The final result of this game is subject to the expected répetioundr, the faith factors, the risk factoig,

the number of the attackeh$, as well as the variablesande.
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Figure 4.3: Utility to three kinds of strategies accordinddith factors.

We fist focus on the analysis of the impact of metd@ndpg. Figure 4.3 shows the utility of three strategies
subject to diferent faith factors. If all the rational attackers never collude with each otred always choose
Nash attack strategyg’, the overall utility of each attacker is illustrated by thméjcylinderzri”aSh. If all

the attackers always choose the colluding attack stragetiyoughout the repeated attack game, the overall




4.5 Simulation and Numerical Analysis 95

utility for each attacker will beri"beywhich is illustrated by the red cylinder. If the attackerstficollude with
each other, and at some stghe rational attackerdeviate the collusion, then all the attackers switch to the
Nash attack strategy afterwards. Then the corresponding overall utility of eiteri will be 7@ which is
illustrated by the green cylinder.

From figure 4.3, it is observed that, the overall utility foadth strat(—:‘gyri”aSh is always less than utility
for colluding strategyriOloey and utility for violating strategyr/'®®. This indicates that although the Nash
equilibrium attack strategy is the stable point in the ohetsattack game, it is never the optimal strategy for
the attackers in the multi-round repeated attack game. Eamepare the red cylinder with the green cylinder,
we can find that: when attacker’s faith is less thabb0x)°'®* is always greater tham?bey_ This indicates

the attacker prefers to deviate from collusion if it does not have enougithf While the attacker’s faith

increasing, the colluding strategy gradually becomesugti

x107*

10

0.4 0.45 0.5 0.55 0.6 0.65
Attacker’s Faith o

Figure 4.4: Critical point of faith factor.

However, from figure 4.3, we cannot find the precise valué,drom which colluding with each other

will bring the attackers the maximum utilities. Thus, wectgte the dierence betweemio'oeyandyr}"o'ate by

following: #%'S = ni"bey— mola and observe at which point (critical point) the vahf€® begins to be positive.
From figure 4.4, we find theritical point of § is 0.605. Note that the attackers will always collude with each
others when they have enough faitk [0.605 1].

Recall that in the sub-route oriented rewanthishment schemg,is therisk factorwhich can be utilized by
the network security manager to threaten the insider nodesorcollude with each other to launch selective
forwarding attack. Larges indicates that the punishment to packet dropping is sevBreutilizing the sub-

route oriented rewafdunishment and adjusting the valuggpthe network security manager can exefietent
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Figure 4.5: Impact of risk factor on utility fference.

levels of threat on the insider nodes who may collude wittheztber. On the other side, the attackers will
also change their attack strategies when they are configtiie diterent risk factors. Figure 4.5 illustrates the
impact of the diferent risk factors on the attackers’ utilities (attacktsiyées).

In figure 4.5, according to the function (2), we adjust thacker’s Risk Factgs between interval [19]. It
is observed that, iB < 5 ands < 0.5, violating from colludsion will bring higher utility forhe attacker; if
B < 5ands > 0.5, always colluding will bring higher utility; but when& 8 < a = 10, the diference between
7°PeY andVi©'ate hecomes very unconspicuous. In this case, since colluditignat bring the attackers with
a remarkable utility increase, the attackers will not préfecollude with each other. From this we can see,
a largerRisk Factorg has a direct impact on the attackers’ attack strategiesthier avords, by adjusting the
PunishmenandRewardfactors of the ID@Reputation systems, we can successfully threaten the&attanot
to collude with each other. If collusion of the attackers<sinet take place, the detection of the single attacker
will be much easier.

The number of attackeis also has a significant influence on each attacker’s attaategly. We consider the
scenarios that there are 10%, 20%, 30% and 40% attackems inuhihop wireless network, and analyze what
is the minimum value of the attackers’ faith that leads téusibn. In figure 4.6, each increasing line indicates
the diferences between the valuen8PeY andrV°a€ when attackers’ faitl varies. The intersection of the five

lines is the critical value of. It can be observed that, as the number of attackers in&etms minimumy
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which is required for collusion also increases. The sigaift® of this phenomena is that: when more attackers
appear, the collusion becomes moréidult. Moreover, we can see that, for any valuesgreater than the
critical value,zriOloey is always greater tham'°©@®, |t indicates that if the attacker has enough faith, cotigdi

will always be the optimal attack strategy.
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Figure 4.6: Hect of malicious agents’ number.

4.6 Detection and Defending Policies

In the previous sections, we first propose the sub-routeiatdereward and punishment scheme to threaten the
insider nodes not to collude with each other. Then based isrstib-route oriented reward and punishment,
we formalize the interaction between the multiple selecfiwwarding attackers, and construct the colluding
attack game model. Static and dynamic analysis of the a&tacktrategies are given and the attackers’ optimal
drop quantities are derived. The experiment and numerigyais indicate that: at which stage, what kind of
attack strategies the attackers prefer to adopt.

In the real case, each node of the multihop wireless netwak Inave normal packet loss due to channel
collisions, bandwidth limitation, or noises [37, 38, 47 ].3Recall that the stage utility for an attackers
illustrated in the function (2), and the tolerable threshol the packet loss quantity asaglenode is denoted
ass'. The value ofs’ should be assigned according to the real-time channeltguBlievious work like [38]

has already discussed how to calculate the valug oHowever, the smart attacker in the malicious sub-route
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may intelligently limit its drop quantity less thasl, and permanently drop small amount of packet without
being identified as the malicious attacker. Worse still attackers may even collude with each other to reduce
the single node drop quantity to a very small value, whiletthtel drop quantity of the malicious sub-route is
still very high. By using the traditional detection mectsms, this kind of smart and colluding attackers will be
mistakenly viewed as legitimate, although the overall tigtgout of the network is dramatically decreased. In
order to overcome this problem, in this section, we utiline @nalysis results, and define the security policies

for the security manager of the multihop wireless networks.

4.6.1 Defending Policy for One-Shot Attack

We first consider the simplest case in which the communigdiEtween the sender node and the destination
node only happens once, which means it is a one-shot sedotiwarding attack. According to the analysis
in section 4.3, in the one-shot selective forwarding attgaie, the stable status of the game is that all the
attackers choose the same Nash equilibrium drop quastityThus, the security policies for thene-shot
attack can be summarized as the following items:

(1) Those insider nodes which lose packets less giahould be considered as legitimate members. The
packet loss on these nodes can be seen as normal loss amulablil

(2) Those insider nodes which lose packets with quasstishould be considered amart attackersBecause
choosing this Nash equilibrium packet drop quantity, a $m@acker can maximize its own utility, regardless
of the packet loss quantities of the other insiders. Theeefthis kind of smart attackers should at least be
categorized asuspicious

(3) Those insider nodes which lose packets more tfashould be considered amive attackers This
kind of attackers do not consider much about the decreadeenfdwn utility, but just fearlessly drop many
packets. In the single-shot case, this kind of naive attackdl bring more damage to the network than the
smart attackers. Therefore, they should be categorizetbisiousand severely punished.

(4) If the detection system discovers that a string of insidetesdose packets, and each of them lose the
same Nash drop quantigy, this phenomena indicates that this string of nodes formleimas sub-route, and
each node in this sub-route intelligently chooses the Ngsiiilerium drop quantity which can guarantee the
stable utility. The security manager should isolate thesarsinsiders which form this malicious sub-route.
It is worth noting, from the network security manager’s paifiview, the risk factop should be set properly,

and ensures’ < s'. This inequalitys’ < s' describes that the optimal drop quantity of a single sméatker
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should be at least not greater than the normal loss quantity.

4.6.2 Defending Policy for Multi-Round Attack

The one-shot attack is the simplest case. When the comntiamidaetween the sender and the destination
nodes continues, the selective forwarding attack repaatsthe attack strategies of the attackers also evolve.
Therefore, to identify the attackers in a multi-round repdaattack scenario, the security policy should also
change.

As we illustrated in section 4.4, in the multi-round repéatdtack, if the attackers never collude with each
other, at each step of attack, the optimal drop quantity émheof them iss". And the overall utility for each
attacker is:ri”aSh, If the attackers fully collude with each other, the optidabp quantity at a single attacker
will decrease t& which is more inconspicuous and is mordidult to detect; If one smart attack’s power is
running out, at some stagdt will deviate from§ and switch to a larger drop quantity. After that, each attack
will protect itself and return to Nash equilibrium drop gtigns'. In view of the above statements, the security
policies formulti-roundrepeated attack is as the following items:

(1) Those insider nodes which lose packets less Bxéameach round of communication, should be consid-
ered as legitimate members. The packet loss on those nodé® ceen as normal loss and are tolerable.

(2) Those insider nodes which lose packets with quaigighould be considered aslluding smart attack-
ers The colluding attackers are the most harmful to the myttivreless network, for the reason that they are
not only malicious, but also smart. They collude with eadieoto cause damage to the network, and reduce
the single node drop quantity to escape from detection. efbie, if a string of nodes drop packets, and each
of them dropsS, this string should be viewed as malicious sub-route. Alemon this malicious sub-route
should be classified as smart colluding attackers, andigzbfeom the network immediately.

(3) Those insider nodes which lose packets with quadiiy most steps of communication, but suddenly
lose more tharg' at one subsequent step, should be consideréalxapower smart colluding attackerd his
kind of attacker first colludes with other attackers, but wite power is running out, it suddenly increases its
drop quantity. A low-power smart colluding attacker is nedifed of punishment, for the reason that it is dying
itself. For this kind of attackers, the security managemushaot only give them the current punishment, but
also record their identities (such as IP addresses or MACeadds) on a blacklist. In the future, if any new
node applies for accessing the network, the security marsmgelld check whether its ID is on the blacklist.

This policy can be used to defend against those attackerswelmb to come back to network again after
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charging their batterieg4) Those insider nodes which lose packets with quargitghould be considered as

a) All the malicious nodes are deployed next to each other b) Good nodes are sandwiched between the malicious nodes

Figure 4.7: Scenarios forfiierent distributions of malicious agents

selfish smart attackersThis kind of attackers are not only malicious but also delfiBhey launch attack, but
they only want to protect their own utility, and do not cokudith each other.

(5) Those insider nodes which lose packets more tifiashould be considered asive attackers Simi-
lar as the policy for the one-shot attacker, this kind of aaatackers should be isolated from the network

immediately.

4.7 Disscussion

4.7.1 Impact of Attackers’ Distribution on Security Policy

In this subsection, we discuss how the distribution of &te can have flierent attack #ect, and analyze the
effectiveness of proposed schemes and policies when theyrdrerpof various distributions of the attackers.
Consider two kinds of distributions. One scenario is thatrtialicious nodes are deployed next to each other,
which is illustrated in figure 4.7-a; the other scenario & tipod nodes are sandwiched between the bad nodes,
such that: Good Node—Bad Node—Good Node—Bad Nadeich is illustrated in figure 4.7-b.

If the scenario is the first one, solving the optimizationkpeon as function 2 in subsection 2.4 is relatively
simple. Because all the variablgsare coming from the attackers. And since each rational iakcnode
v, may want to increase the value of its own drop quarsifythus following our equilibrium analysis in the
previous sections, the behavior preference of this stringttackers can be successfully obtained, and the

neighbored attackers can be punished, and also identiftath inave no bad impact on the good nodes.
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If the scenario is the second one, the good nodes (m.gand nz) who are is sandwiched between the
malicious node, may have very small valuesaf while their neighbor malicious nodes have high value of
5. According to function 2 in subsection 2.4, if we want the lraatles severely punished and the good
node rewarded, it is strongly required that the network sgcmanager should choose a appropriate value
for the punishment factgs, which ensures the quadratic utility curve is an increasumgtion of 5 within
some specified interval. B is properly chosen, the detection will be accurate and difignpolicy will be
optimal, and the good nodes can receive reasonable rew@tsrwise, the wrong may lead to too severe
punishment, the sandwiched innocent good nodes are alsthbfgo® siffer unfair loss. It is worth noting that,
these innocent good nodes have small valug,dherefore this kind ofalse positive unfairnessill not be too
severe and will be controllable.

If in one route, the malicious nodes are the minority while §ood nodes are majority, even if the good
nodes are sandwiched between the bad ones, these good tlou# wiffer palpable false positive unfairness
because such false positive unfairness can be fully digé&ibto all the nodes along this route. On the contrary,
if in one route, there are much more malicious nodes than godds, unfortunately, these scarce good nodes
will suffer serious unfairness. This indeed seems cruel to thessesgpand node, but it is still beneficial. Since
if one route contains too much attackers, these sandwiatedesgood nodes will be easily infected, thus it is
better to also isolate them.

Besides, for those good nodes which are in the route bet8eand D, but are outside of the malicious
sub-route (e.g.ng andns), even the attacker and good nodes are sandwiched betweleroter, they will
not receive false positive unfairness. This is because mguke upstream and downstream joint monitor-
ing scheme in [38], it can be observed that there is no padettbetween these nodes and the source (or

destination). Thus the identified malicious sub-route ndlt contain these kind gharginal good nodes

4.7.2 Energy Consumption and Computational Complexity

The proposed security scheme against collusion in segefdiwarding attack is based on the reactive routing
protocols such as AODV, DSR. On the perspective of the nadeticious nodes and good nodes), we assume
they only runWatchdog and follow the traditional routing and forwarding protésgobut do not carry out
complex computation to predict other nodes’ preferences dirergy consumption for packet forwarding will
be the same as it in the traditional protocols; the energguwmption for running promiscuous mode monitoring

mechanismWatchdog will also be the same as traditional protocols. Thus in goppsal, t power-stringent
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nodes do not need to consume extra energy.

The security decision and security policy are made by thevorlt security manager, which is usually as-
sumed to be a control center which does not lack of powerh&ltbomplex analysis is carried on by the security
manager. Since the selective forwarding attack game iseateg game, thus the computational complexity
needs to be discussed. For the repeated game, if we assuotestrged signal (observed drop quantity) does
not contain noise, the computation will be much simpler. ldog, in the real world, because of the detection
mechanism cannot achieve the 100% detection rate, thergbmes®me noises. When the noise is involved in
the security manager’s policy making, the analyzed gamarbean imperfect and private monitoring game.
Then the computational complexity for the optimal secupityicy making will become much higher. Actually,
the solution to the imperfect private monitoring games ilbat open problem [83], therefore, it is required

that the packet forwarding monitoring and recording schehwaild be robust and accurate to reduce the noise.

4.7.3 Noisy Channel

Regarding the noise, in the prior work [38], authors takde account MAC layer collisions to derive the
normal losses in real-time; moreover, they also focus oelesis models to achieve the loss rate of the link.
The detection thresholds are then calculated accordingetoss rate caused by the collisions and link errors.
Although the normal loss rate can be modeled and analyzegsrin a wireless network are still susceptible to
errors in monitoring each others’ behavior. That is to sag, @ the unexpected changes of the channel environ-
ment, a given agent may erroneously reach the conclusiomtivéher agent is behaving selfisthaliciously
[84]. Such error observation will induce high false postiate and false negative rate, which decrease the
effectiveness of the defence mechanism. For the game theoed lbasthods to be practical they must in-
corporate realistic constraints of the underlying netwsyktems [52]. For this sake, in the future works, we
need to relax the assumption of perfect monitoring by nodesdevelop a game theoretic model in which
nodes monitor other nodes’ actions as a signal that is pyldiivately observable. Such signal should reflect
a probability distribution over all the possible actionsofaland forward) of nodes. Besides, for setting a value
for detection, the threshold of the signals should be dynaltyi changing over time. Since large amount of
data trdfic causes high error rate and large noise value, thiewty in detecting an malicious dropping will
increase with the tfic intensity. To this end, existing researches in game theach as schemes in [85], can

be investigated to help design a more practical defendingharésm.




Chapter 5

Imperfect Monitoring Repeated Game for Agents

under Noise

5.1 Resilient Finite State Equilibrium

Definition 1 (Belief Division) A belief division Bof agent i is a setBil,...,B:(‘}, such thatvB! € B;, Bl c

A(TTj# ©j).

For two belief divisionsB; and B;, we denoteB; C B if VI, Bl ¢ B! holds. Similarly, for profiles of belief
divisions B and B, we denoteB C B if Vi, B C B; holds.

We sayB; is closed for a givenmn, iff VBl € Bj, Vb € Bl,Va € A,Yw € Q3B € Bj, such that
xilai, wi,bi] € B/ holds. Also, we sayB is closed ff eachB; is closed.

Furthermore, we sal; is covering ifUBgeBi B! = A([T;+ ©j) holds. Also, we sayB is covering if eachB;
is covering. If a belief division is covering, it is closed.

We can define a strategy of ageriy the pair of an FSAMG, 6;) and a closed belief divisioB;. Here, a
plan on the equilibrium path is described g, (6;). Also, a plan & the equilibrium path is given as follows.
Assumeh} € Hit = 0 x (A x Q)is a private history, which includestaequilibrium behaviors. Let us assume
b; is her subjective belief aftehf. Then, the plan for agemnafter historyhit is given as iy, ei'), such thab; B!.

Let us define several notations and concepts to introducesiéidgde Finite State Equilibrium (RFSE).

The joint probability distribution of the initial states afjents is given as Fromr, we can obtain the joint
probability distribution of the states of agents at tinised on the joint pre-FSA. We denote this distribution

asr(t).
Definition 2 (Invariant Distribution) We saylim_,, r(t) is an invariant distribution of the joint pre-FSA.

Under several reasonable conditions, an invariant digtdb is uniquely determined. For simplicity, in the
rest of this paper, we assume the joint pre-FSA has an unityaeiant distribution, which is denoted &3.
r can be obtained by solving a system of linear equations.

Now, we introduce conditions an B, andm.
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Figure 5.1: Example of belief divisions

Definition 3 (Consistency) We say r andB are consistentff Vi € N, VB| € Bj, r_i(/¢!) € B! holds.

Here,r_i(-lei') is agenti’s belief on the states of other agents, when she is suggestsdrt fromei'. In the

previous examplea,_i(-|R) = (6/7,1/7) andr_j(:|P) = (1/3, 2/3).

Definition 4 (Compatibility) m and B are compatible,ff Vi € N,VB| € B;, ¥b; € B!, (m;,6!) is the optimal

continuation plan given i's subjective beligf b

Now, we are ready to define a resilient FSE.

Definition 5 (Resilient Finite State Equilibrium (RFSE)) We say a profile of pre-FSAg, a joint probabil-
ity distribution of the initial states r, and a profile of cled belief divisiondB constitute a resilient finite state
equilibrium i (i) they constitute a finite state equilibrium, (i and r are consistent, and (iijn and B are

compatible.
From the above definition, the following lemma holds.

Lemma 5 Assumen, r, and B constitute a RFSE. Then, for each agent i, and for any privétory ﬁ €

H! := @ x (A x Q)), there exist#! € ©;, such that i's optimal continuation plan afte} is given aym; !).

Proof 14 Let us denote the posterior belief of agent i after privastdry ﬁ as k. SinceB and r are consistent
and B is closed, there exist|B: Bj, such that pe B! holds. Sincen and B are compatible(m, 6!) is an

optimal continuation plan given i's subjective beligf b

From the definition, a RFSE is an FSE. Also, from Lemma 5, ilBarcthat a RFSE is also an FPE. Furthermore,

let us assume a strategy profile and a correlated deviceitb@sin FPE. Then, for each agenthe number
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of plans on and b the equilibrium paths is finite. Thus, we can represent tpéses as a pre-FSA. Therefore,
if there exists an FPE, there always exists an equivalenERFS

Now, let us define a special class of a RFSE.

Definition 6 (Global RFSE) We saym, r, and B constitute a global resilient finite state equilibriugfithey

constitute a RFSE an# is covering.

5.2 Verifying RFSE

Then, we are going to examine the procedure for checkinghenegfivenm, r, and B constitute a RFSE.
The concept of one-shot extension[17] (also known as a Ipaggarator in the POMDP literature) is conve-

nient to prove the optimality of an FSA.

Definition 7 (One-shot Extension) A one-shot extension of a set of agent i's FMis= {(m, 6) | 6; € B},
which is denoted a&;, Mi(+)), is defined as follows: (1) it starts with a state where actipr A is played,

and (2) afterw; is observed, an FSA iM;, denoted by Mwi), is played.
We denote the set of all one-shot extensiond/tfas M;. Note thatM; has a finite number=( A - K.

Definition 8 (Target Belief Division) The target belief divisios; for agent i is a belief division, where each

Bl is chosen so thatb; € Bl, the following condition holds:
| ’ ~
V™D () > v (), vM! e A, (5.1)

We denote the profile of target belief divisionsBs B; can be obtained by solving a system of linear inequal-
ities. Then, eacré! can be represented as a (convex) polytope. In Fig. 5.1, we §hdn Fig.1.11 when

p = 0.95qg = 0.024, ands = 0.9 (note that the figure is not in exact scale for readabilifyone-shot exten-
sion, which choose€ and moves tdR for both observations (denoted as the blue line), outpe$ar™-R (b;)
around (10), and another one-shot extension, which cho@sasd moves td for both observations (denoted

as the red line), outperform&™-P)(b) around (Q1).

Theorem 5 A profile of pre-FSAsn and a profile of closed belief divisiod are compatibleff B ¢ B holds.

Proof 15 For “if” part, an optimal policy can be obtained by the polidieration algorithm [86], in which

an initial pre-FSA is improved by adding new states and siyipy it, until no improvement is obtained.
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Condition 5.1 means that,jroannot be improved by adding any additional state, as lonigdmlief is always
within B,. Therefore VB! € B;, Vb € B!, (m;, #!) is an optimal continuation plan given i's belief. bThus,m
and B are compatible.

For “only if” part, if B ¢ B holds, there exists at least one agentli, &1d € B!, such tha(m;, ¢) is not

optimal. Thusyn and B cannot be compatible.

Each B! is represented as a polytope. Thus, if e&bhs also represented as a polytope, to check whether
B! c B!, it is sufice to check whethds; € B! holds for each extreme poibf of B!. Thus, for givenm, B, and
r, checking whether they constitute a RFSE is relatively e@ssuming each belief division is represented as a
polytope, and the number of extreme points of each polytsp®i too large.

Verifying whetherm can constitute a global RFSE is much easier than verifyingr8mR i.e., it is sffice
to check whetheB and B are identical. The complexity of this procedure dependshemumber of extreme
points in eacrﬁ:. In the worst case, the number can®"), wherek = maxcn ki. In this part, we mainly

work on how to find the equilibrium for multi-agent repeatehge with private monitoring.

5.3 Multi-agent Repeated Game with Private Monitoring

5.3.1 Payoff Matrix and Signal for Three agent Prisoner's Di  lemma

Consider a potential game like three agent prisoner’s dilaras follows:

Agent-C chooses action C

Agent B

C D
Cl| (1,1,1) (1,18, -1)
D|(18,-1,-1| (0,0, -1)

Agent A

Agent-C chooses action D
Agent B

C D
Cl(1,-1,18 | (-1,0,0)
D| (o0,-1,0) (0,0,0)

Agent A

Figure 5.2: Payfd matrix for three agent prisoner’s dilemma

In this game, one agent will receive good signal if the otiaer &gent both cooperate, otherwise, this agent
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will receive bad signal. We assume in each reduce joint,stagecorrect joint signal appears with a high

probability p, any wrong signal appears with probabilégythus signal distribution for each state is:

Table 5.1: Joint signal distribution for three agent prextgrdilemma

Reduced Joint State  Correct joint signal  Totally wrongtjeignal Other wrong signal

RRR ggga(p) bbb(r) (e)
RRP bbg(p) ggb(r) (e)
RPP bbb(p) g9g(r) (e)
PRR gbb(p) bgg(r) (e)
PRP bbb(p) g9g(r) (e)
PPP bbb(p) ggg(r) (e)

5.3.2 Potential Joint State

Consider the For thdl-agent repeated prisoner’s usikgtate pre-automaton, the number of nodes in the full
joint FSA iskN. SuchN-agent game can be similar to a Potential Game [87]. A gamaidsts be a potential
game if the incentive of all agents to change their strategybe expressed using a single global function called
the potential function. Thus, for agenthis stage payd only depends on how many his opponents defect, but
not depend on which of them defect. In other words, all thetjetates with same number of defectors are
identical to agent-

We can represent all the identical joint states as one “Batelvint State”. For example, in a 4-agent PD,
for agent-A, if only one of his opponent defects, the threetjstates can b&RRR RRPR or RPRR In a
potential game, such three states can be same since thethkas@me character that only one agent defects.
These three joint state can be counted as one “PotentidlSiaite”, which is represented BRRRP Similarly,
if two opponents defects, there are three joint state whachbe represented by one potential joint SRIRPP
The joint automaton containing only potential states itecathe reduced joint automaton.

What is the number of potential joint states in the reducedraaton? Assume 2-state pre-automaton@).
Nodes’ number in the full joint state should bB 2Assume agernits state fixed aR. when one opponent
defects, there ar€n - 1)! identical states, which can be represented as one PotdoitilState; when — 2

opponent defect, there aﬁ(ﬁnn — 1) identical states, which can be represented as anothentiRotloint State.
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Thus the number of all Potential Joint States is:

2" -2x(CL, +..+CT3)+2x(n-2)
:2“—2x(2n—1—2)+2n—4
=2n

5.3.3 Constructing the Transition Matrix for Reduce Joint S tate

The number of essential joint state is 2n, which indicates ttie transition matrix isi x 2N. Then we can
do the following analysis:

(1) For anyN-agent prisoner’s dilemma using grim trigger(GT), fix my osmte aR. Let RP‘R(™1%)
denote the current joint state. Here the fiksineans that my own state R P* means among miN — 1
opponentsyx of them are in state P. Similarliy — 1 - x of my opponents are in state R. Note that @ < N-1.

(2) Following the same way, I®PRM™1-Y) denote the next joint state.

(3) In GT with signalsh/g, there are two signals(@andg) for state transitiorP — P in preautomaton, and
one signalg) for R —» R. Moreover, one signadj for R — P, and no signal foP — R.

(4) Let’s define an operator

0 ify<x
f= y

X x 11X jfy > x

(5) If x>y, the total transition probability from current state to hstate is 0.

(6) If x =y, there arexagents in stat® andn — 1 — x agents in stat®, thus the transition probability from
current state to next state isx e, or p + (f — 1) x e, wheref = 2Xx 117X,

(7) If x <y, this means: some of my opponent changed their states froonFRANnd the number of such
opponents iy — x. But the next joint state is an “essential joint state”, vihiEreduced from multiple “original
joint state”. Recall that in the current joint state- 1 — x of my opponents are in stae Starting from
current joint stateRP*R™1-XY, how many “original joint state” can the automaton trane® tThe answer
should be a combinatorial numbe€) ] .. What's more important, all these “original joint state”risw
represented by one essential joint SRR'RM™ 1Y), So in this case, the total probability from current state So
in this case, the total probability from current st’ER™1% to next stattRPPR™1 M isCY7  x f x eor
D+ (C?]':’l(_x x f - l) x e, wheref = 2Xx 11X,

(7) Whethem appears in the above transition probabilities, dependbenurrent joint state and the current
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signal.
The following joint state transition matrix for a five agerd Rising GT can be a case study to verify the

above analysis. In the above transition matrix, in the fichtimn are the name of current states and in the first

Table 5.2: Transition matrix for reduced joint states: figerts

RRRRR | RRRRP RRRPP RRPPP RPPPP PRRRR PRRRP PRRPP PRPPP PPPPP
RRRRR » Cixe Cixe Cixe Cix 1%e c)xe Cixe C}xe Cixe Cixe
RRRRP 0 Cyx2e | Cix2e | C}x2e C3 % 2e 0 C) x 2e C} x2e C}x2e p+(C3x2—1e
RRRPP 0 0 ) x2% | C}x2% | C}x2% 0 0 c) x 2%e C} x 2% p+(C?x2%—1e
RRPPP 0 0 0 ) x2% | Cf x2% 0 0 0 C x 2% p+(Clx2%—1)e
RPPPP 0 0 0 0 C x 2% 0 0 0 0 p+(Cx2*—1e
PRRRR 0 0 0 0 0 2XC)xe 2XCixe 2XCExe 2xCixe p+@2xC{—1e
PRRRP 0 0 0 0 0 0 2XC) % 2e 2% Cx2e 2% CEx2e p+(2xC3x2-1e
PRRPP 0 0 0 0 0 0 0 2xCYx2% | 2xC}x2% p+(2xC;x2%-1e
PRPPP 0 0 0 0 0 0 0 0 2% C) x 2% p+(@2xCix2°—1e
PPPPP 0 0 0 0 0 0 0 0 0 p+@xCHx2*—1e

row are the next state. For example, from current SRR&Pto next statd(RRPPR the probability ii:g X 2e,

hereC3 is calculated following th€ "} explained in the previous page. Here 3, x = 1, thusC’ ;= C2.

The number 2 is calculated following f explained in the poerd page, which ig = 21 x 13171 = 2,

5.3.4 Alpha Vector

Without loss of generality, we use the three agent priserdifémma to find the reduced joint state transitions

matrix as follows: Using this transition matrix and the pfiyoatrix, we can calculate one agent's pfiymnder

Table 5.3: Transition matrix for reduced joint states: ¢hagents

RRR RRP RPP PRR PRP PPP
RRR p 4e 4e 2e 8e 8e
RRP 0 3e 6e % 6e lletp
RPP 0 0 9e 0 0 17e+p
PRR 0 0 0 3e 12e lletp
PRP (%] (%] (%] 0 9e 17etp
PPP 0 0 0 0 9e 26e+p

a certain joint state profile. Denotg, ¢_; as the agenits paydf under joint state profileg(, 8_;) wheref_; is

all the other agents’ joint state. In our ca8e; can beRR RPor PP. Then the following system of equations
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can be constructed.

VRRR=1 + §(p-VRRR+ 2e. VRRP4 @. VRPP o VPRR 0. VPRP 4 @ VPPP)
VRRP= _1+ 6(0- VRRR4 2. VRRP. 0. VRPP4 0. VPRRY 26. VPRP (p 1 g) - VPPP)
VRPP= _1+ §(0- VRRR4 0. VRRP 4. VRPP4 0. VPRRL 0. VPRP (p + 3¢) - VPPP)
VPRR= 18+ 6(0- VRRR+ 0. VRRP 0. VRPP 2e. VPRR 4 4e. VPRP L (p + @) - VPPP)
VPRP=0 + §(0-VRRR1 0. VRRPL 0. VRPP4 0. VPRRY 45 VPRP 4 (p + ) - VPPP)
VPPP=0 +6(0: VRRR4 0. VRRPL 0. VRPP4 0. VPRRL 0. VPRP (p 4 75) - VPPP)

Solving this system of linear equations, we can get two vectme isVR = (V) = (VRRR VRPR VRPP) and the
other one isvP = (V) = (VPRR VPPR vPPPy "\We call these two vectors the alpha vector. Recall thatagest
has belief which is a probability distribution over the atlagents’ joint states. Specifically, in a three agent
prisoner’s dilemma using GT, belief is a vectpr= (bil, bi2, bi3), wherebi1 is agent-i's belief on other agents are

in stateRR, bi2 is agent-i's belief on other agents are in sigfe bi3 is agent-i's belief on other agents are in

statePP. Then let us denote the belief based pégo
VR (bl) — bilvRRR+ biZVRRP+ bi3VRPP

and

VP (by) = bVPRR 4 p2VPRP . 1p3\/PPP

5.3.5 One-shot Extension on Extreme Points of Belief Divisi on

In three-agent prisoner’s dilemma with GT and sigrigls, there are six one-shot extensions: which@RR
CRP,CPP, DRR DRP, DPP. Under these six flierent one-shot extensions, check all their rewards on these
five extreme points. The belief based pfigdor preautomaton before one-shot extension are recorsled a
VR () and VP (by), which can be easily calculated from alpha vectors and fbedietor. Reward for each

one-shot extension path automaton is recorded“&& VCRP VCPP yDRR \/DRP aqd\/PPP respectively.

Finding extreme points

Each belief division is the intersection area of number df flgaces and one hyperplane. And such a belief

division is a convex hull. The extreme points of the convell ban be computed by solving linear equation
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RR
€;
Bl
e, e
/7 N\
e, €3
RP PP

Figure 5.3: Belief divisions and extreme points for threerddsT

set, or using existing software cddlib [88]. For example,tfoee agent GT, in the belief divisions there are
five extreme points.

e* ande® can be obtained by solving linear equation sets

VR x (bRR bRP, bPP) = VP x (bRR bRP, bPP)

97.
b =1
6_c(RRRRPP}

bPP =0

VR y (bRR b-RP, b|PP) — VP % (biRR’ biRP’ bIPP)

[

b =1
0_ie{RRRRPP}

bRP = 0

One-shot Extension Rewards for N-agents

The consecution of one-shot extension path automatonl@iolg [16]. ForN-agent case, Lar3zZ be one
agenti's expected pay® when he plays one-shot extended automd#i#ri2. In this extended automaton
Ma&az  taking action ai, agentwill start from z if he observes signal; start fromz if observes signab.
For example, for preautomaton GTzf= Randz = P, the one-shot extension is illustrated as the following

figure.
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Extension Action

g TR-2~(P] )g,b

Reward Punishment
(Cooperate) (Defect)

Figure 5.4: Example of one-shot extension on GT

Under belief vectob, VaZ7Z s a linear function ob:

22 (05 0 AW o7} 212,01 | a2t 0? it 2,0m
VARE (BB = B B [ AR (e
1 2 m

big“, big‘i s big“] is the m-dimensional belief vector, eagh is the “potential joint state” of all agents except
agenti. And there arem of such joint states.

To compute this above expected pfywe need to know eaclfiz 20, Using the alpha vectors we already

. .71 1
derived above, we can denot&? 204 as:

VZ (xcq (1,0, ... 0)) Pr(glas, fii (6%))

A2 =g(a, fisi(6%))+0
(& fia (02) + V2 (xep (1,0, ... ) Pr(bla, fiui (64))

Finally, V2 (xcg (1.0, ...0)) andVZ (xcp (1. 0. ..., 0)) can be solved from alpha vectors and the belief vectors
on extreme points.

For example, in three-agent example, if considering om-sRtension action ag, = C, and one-shot
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Figure 5.5: Global RFSE for GT in three agent PD

extension automatoBRP, the abova/*RP-i with 6_; € {RR RR PP}, can be the following equations:

VCRPRR— ¢(C,C,C) + 6

VERPRP _ 4(C,C, D) + 6

VERRPP = g(C,D,D) + 6

5.4 Experiment and Analysis

We implemented the models above, and computed the GlobdERitShe following games: (1) Three agent
PD using preautomaton GT, 1-MP and 2-MP. (2) Two agent PD thitte actions using GT, 1-MP and 2-MP.
We found that for three agent PD using GT, the RFSE exists angelrange of parameter settings. In the

following figure, we set the correct signal appears with ptility p, and all the wrong signals appear with

VR(xcg(1,0,0)) - Pr(gicCO)

| +VP (xcp(1,0,0)) - Pr(bCCO)
[ VR (3c4(0.1,0)) - Pr(gicCD)
| +VP (xcb (0.1, 0)) - Pr(blCCD)

VR(xc4(0.0.1)) - Pr(giCDD)
+VP (xcp (0,0, 1)) - Pr(bICDD)

the same relatively lower probabiligy We can see from the figure, when agent has strong beliefithatals

will cooperate (at extreme poil in figure 5.3), and his signal accuracy idfaiently high, if agent does

not care too much about tomorrow, he will still choose GT [ie tead region). In this case, if he cares about

tomorrow very much, he may try to always cooperate. Whenesiigrtoo noisy f is too low, the lower blank

region), even an appropriate delta cannot make GT optimabart e4 ande5. When agent never cares about
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Figure 5.6: Global RFSE for 1-MP in three agent PD
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Figure 5.7: Global RFSE for 1-MP in three agent PD (from apove

tomorrow (delta is too low, the left blank region), even ampna&ccurate signal cannot make GT optimal. This
seems to be same as what happens in the traditional perfectonag repeated games. At last, if the signal
correctness is very high the situation is tend to be closestéept monitoring case. Then if the discount is
suficiently high, the agents care very much about tomorrow, 8wes he observes a bad signal, he may still
stay in cooperate but not launch the trigger. We also chetkedRFSE existence for 1-MP. The following
figure shows where the global RFSE exists, undéedint discount delta, correct joint signal probabiliy
and totally wrong joint signal probability. All the blue nodes in the space are where the combinatigm of
andé constitute global seminality for 1-MP. We can see that, wifiendiscount is reasonably high and signal
correctnes® is very high, as well asis in a proper interval, 1-MP can constitute Global RFSEtfammore,
we check the situation when we look the seminal points froovalof thez-axis, (thes-axis). It can be seen

as the statistic for only parametgpsaandr, when all thes < 1 are considered. We can see that, there are more
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blue points wherp is higher. This means that: whemis higher, it's easier for 1-MP to be RFSE. However,
althoughp should be high, the correlation of all agents’ signal shdnddn a good intervalr(should not be too
high or too small.). Ifr is too high, joint signal is likely to be error; howeverrifs too small, agents’ signals

are not well correlated.




Chapter 6

Concluding Remarks

In the past decade, the rapid evolution of theoretical rebeand practical implementation of communication
networks leads us to future generation networks. In thedugeneration network the network environment is
more distributed and more flexible. The network users agdligp¢nt and have the ability to observe, learn, and
act to the environment and other users. The users thus baoomgelike an intelligent agents. For modeling,
analysis and optimization for the future generation nekapa study on the relationship of these intelligent
agent is of great importance. Many new paradigm has emeayesi€h research field. And game theory is is
one of the powerful tools to deal with this problem. In thiedts, we dedicate to introduce the dynamic game
theory knowledge into this future generation networks. Véénmy focus on the long-term relationships of the
intelligent agents in the network, in each layer, one tylpateallenging topic is studied in a game theoretic
way. We tried to comprehensively analyze the presentedligaroland find novel andfgective solutions to
those problems.

In chapter two, we analyze the real-time spectrum priciraiplem using a dierential game and economic
model. We start by introducing the pricing problem for spact trading. We then discuss the pricing model for
the relatively simpler static network in which the numbesetondary users does not change with the passage
of time. In such a static network, the price is the single digi@nal strategy for the primary users. After that,
we extend the analysis to the more realistic dynamic netwankler which the number of secondary users is
changing and the secondary users are QoS-aware. The Ndkbrieop conditions are derived for both cases
and can be used to provide the competitive primary users ne@ihtime optimal spectrum pricing policy. In
the future, we will do more concrete work on numerical expemnt and implementation.

In chapter three, we utilized zero-suntfdrential game to investigate the secure spectrum sensaigsag
PUE attack. The interaction between the secondary userh@nBWE attacker in a multi-channel cognitive
radio network is modeled as a constant suffiedential game. The optimal strategies for both the secgndar
user and the attacker are proposed based on the Nash eqmilifithe sensing (attacking) capacity and power
constrains are revealed to have direct impact on the optiefeihce (attack) actions. Based on the solution in
this paper, the secondary use can achieve the optimal igatbithe cognitive radio channels when they are

confronting ditferent kinds of PUE attackers.
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In chapter four, we construed a repeated game frameworkdatdoperative communication and malicious
node detection. We concentrate on analyzing the collusionulti-attacker selective forwarding attacks by us-
ing game theoretical approaches. Based on the attack azemarfirst propose a sub-route oriented punish and
reward scheme. Then by extending the original Cournot maedgelconstruct am-attacker multi-round col-
luding attack game model. After that, the colluding attec&malyzed by one-shot static game and multi-round
dynamic game, respectively. The sub-game equilibriumdarized to find the preference of the attackers.
Numerical and graphical results are shown to illustrateatteckers’ preference and the impact of various key
metrics. Finally, based on the analysis, the security @ditor the wireless multi-hop network are proposed.
By utilizing the result of this work, the collusion in selagt forwarding attacks can be detected. To the best
of our knowledge, this kind of detection cannot be realizgdubing the previous detection schemes. In the
future, we need to investigate the performance of our prpower diferent network sizes and mobilities.

In chapter five, we investigated the equilibria in infinitepeated games with imperfect private monitoring,
which has been considered as a hard open problem. We pregmtealure that checks, in a finite number of
steps, whether a given candidate can constitute a RFPEg tsgmethod, we confirm RFPEs exist for several
representative games in a variety of parameter settingseiAzr, the current work concentrate on the global
belief division which is the largest one. The future workséhéhree aspects: The first one is to investigate
how to calculate the precise and shrunken belief divisianst@h games. Second, we need to investigate
what happens in larger scale games, especially when thearwhbgent grows large. Third, we need to well
combine the framework with the real world network scenagspecially how to deal with the fluctuation of
noise in the wireless networks.

Our works in this thesis are applications of game theory éfilled of distributed networks. Although there
have been a significant increasing number of research papetsresearches still have wide research prospects
and many promising topics. There has been many applicatiosisch topics in decentralized network control
including sensor networks, mobile ad hoc networks, lamggesdata networks, transportation networks and
delay tolerant networks. The future challenges mainlgfalto the following aspects: (1) To understand when
local competition can yieldsfigcient outcomes. (2) Dynamics of agents’ long-term intéoast over large-
scale networks. (3) The assumption perfect observationigintrmot hold, we must investigate more about
accuracy of the information in the dynamic networks. (4) Hovehoose the weight of the linear function to
balance the gain and the cost still remains a problem. Whigans, it is still an on-going research of how to

defining a proper paybfunction for the intelligent agents in the wireless netvgork




Bibliography

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Mé& generatiofdynamic spectrum ac-
cesgcognitive radio wireless networks: a survegbmputer Networksvol. 50, no. 13, pp. 2127-2159,

2006.

[2] S. Russell and P. NorvidArtificial intelligence: a modern approachPrentice Hall series in artificial

intelligence, Pearson Educatj@nentice Hall, 2010.
[3] M. Wooldridge,An Introduction to MultiAgent Systemd/iley, 2009.
[4] N. Mankiw, MicroeconomicsNo. v. 1, Dryden Press, 1998.
[5] D. Fundenberg and J. Tirol§ame TheoryMit Press, 1991.

[6] Y. Zhang and M. GuizaniGame Theory for Wireless Communications and NetworkiMyeless Net-

works and Mobile Communications Series, Taylor & Francisur;, 2011.

[7] T. Alpcan and T. Basal\etwork security: A decision and game-theoretic approacambridge Univer-

sity Press, 2010.

[8] K. Liu and B. Wang,Cognitive Radio Networking and Security: A Game-Theordigw. Cambridge

books online, Cambridge University Press, 2010.
[9] G. Mailath and L. SamuelsoRepeated Games and Reputati@xford University Press, 2006.

[10] H. Books,Articles on Cooperative Games, Including: Shapley ValumgBining, Cooperative Game,

Stable Marriage Problem, Nash Bargaining Game, Core (Eaoiee) Hephaestus Books, 2011.

[11] T.Basar and G. Olsddiynamic Noncooperative Game TheoBlassics in applied mathematics, Society
for Industrial and Applied Mathematics (SIAM, 3600 Marketegt, Floor 6, Philadelphia, PA 19104),
1999.

[12] K. Fall, “A delay-tolerant network architecture for alenged internets,” ifProceedings of the 2003
conference on Applications, technologies, architectusesl protocols for computer communications

pp. 27-34, ACM, 2003.



Bibliography 119

[13] P. Agrawal, R. Ghosh, and S. K. Das, “Cooperative blact gray hole attacks in mobile ad hoc net-
works,” in Proceedings of the 2nd international conference on Ubaystinformation management and

communicationpp. 310-314, ACM, 2008.
[14] M. Farina, G. F. Trecate, and F. Supélec, “Decentealiand distributed control,”

[15] V. K. Mathur, “How well do we know pareto optimality?Journal of Economic Educatiompp. 172-178,
1991.

[16] “The principle of optimality,”http : //www.uncedy normanp71lpartd.pdf.

[17] M. Kandori and I. Obara, “Towards a belief-based theafryepeated games with private monitoring: An

application of pomdp,http: //mkandoriweh fc2.com 2010.

[18] R.Isaacsbifferential Games: A Mathematical Theory with Application®\elfare and Pursuit, Control

and Optimization John Wiley and Sons, 1965.

[19] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, aRdBertsekad)ynamic programming and optimal

control, vol. 1. Athena Scientific Belmont, 1995.

[20] V. T. Nguyen, F. Villain, and Y. L. Guillou, “Cognitiveadio rf. overview and challengesyLSI Design
vol. 2012, p. 1, 2012.

[21] J. Mitola Il and G. Q. Maguire Jr, “Cognitive radio: miak software radios more personakérsonal

Communications, IEEEvol. 6, no. 4, pp. 13-18, 1999.

[22] “Spectrum supply and demand - space oddity,”

http : //www.ingeniaorg.uk/ingenig/articlesaspxXlndex= 78.

[23] Z.Jiand K. R. Liu, “Cognitive radios for dynamic spaatn access-dynamic spectrum sharing: A game

theoretical overview,Communications Magazine, |IEE#ol. 45, no. 5, pp. 88-94, 2007.

[24] D. Niyato, E. Hossain, and Z. Han, “Dynamics of multigeller and multiple-buyer spectrum trading in
cognitive radio networks: A game-theoretic modeling apphg’ Mobile Computing, IEEE Transactions

on, vol. 8, no. 8, pp. 1009-1022, 2009.

[25] H. Jin, G. Sun, X. Wang, and Q. Zhang, “Spectrum tradindpimsurance in cognitive radio networks,”
in INFOCOM, 2012 Proceedings IEERp. 2041-2049, IEEE, 2012.




Bibliography 120

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Z. Wu, P. Cheng, X. Wang, X. Gan, H. Yu, and H. Wang, “Caapige spectrum allocation for cog-
nitive radio network: An evolutionary approach,” @ommunications (ICC), 2011 IEEE International

Conference onpp. 1-5, IEEE, 2011.

J. Mitola, “Cognitive radio: an integrated agent atebture for software defined radid?h.D. disserta-

tion, KTH Royal Institute of Technolog000.

B. Wang and K. Liu, “Advances in cognitive radio netwsrkA survey,” Selected Topics in Signal Pro-

cessing, IEEE Journal ofol. 5, no. 1, pp. 5-23, 2011.

K. Bian and J.-M. J. Park, “Security vulnerabilitiesi@®e 802.22," irProceedings of the 4th Annual Inter-
national Conference on Wireless Internet 9, ICST (Institute for Computer Sciences, Social-Infatics

and Telecommunications Engineering), 2008.

R. Chen, J.-M. Park, and J. H. Reed, “Defense againstasgi user emulation attacks in cognitive radio

networks,”Selected Areas in Communications, IEEE Journahah 26, no. 1, pp. 25-37, 2008.

R. Chen, J.-M. Park, and K. Bian, “Robust distribute@&pum sensing in cognitive radio networks,”
in INFOCOM 2008. The 27th Conference on Computer Communieati&EE pp. 1876-1884, IEEE,
2008.

Z.Jin, S. Anand, and K. Subbalakshmi, “Detecting pmynaser emulation attacks in dynamic spectrum
access networks,” ifommunications, 2009. ICC’09. IEEE International Confere on pp. 1-5, IEEE,
20009.

H. Li and Z. Han, “Dogfight in spectrum: Combating primarser emulation attacks in cognitive radio
systems, part i: Known channel statistic8Yireless Communications, IEEE Transactions wal. 9,

no. 11, pp. 3566-3577, 2010.

H. Li and Z. Han, “Dogfight in spectrum: Jamming and gataming in multichannel cognitive radio
systems,” inGlobal Telecommunications Conference, 2009. GLOBECOM2[EEE, pp. 1-6, IEEE,
20009.

R. W. Thomas, R. S. Komali, B. J. Borghetti, and P. Mahgr& bayesian game analysis of emula-
tion attacks in dynamic spectrum access networksRémv Frontiers in Dynamic Spectrum, 2010 IEEE

Symposium agrpp. 1-11, IEEE, 2010.




Bibliography 121

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. GibbonsGame theory for applied economis®rinceton University Press, 1992.
I. Akyildiz and X. Wang,Wireless mesh networkgol. 3. Wiley, 2009.

D. M. Shila, Y. Cheng, and T. Anjali, “Mitigating selaeé forwarding attacks with a channel-aware
approach in wmns,Wireless Communications, IEEE Transactions wal. 9, no. 5, pp. 1661-1675,

2010.
F. Anjum and P. MouchtarisSecurity for wireless ad hoc networkd/iley-Interscience, 2007.

M. G. Zapata and N. Asokan, “Securing ad hoc routing grols,” in Proceedings of the 1st ACM work-
shop on Wireless securjtpp. 1-10, ACM, 2002.

Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A seewn-demand routing protocol for ad hoc

networks,”Wireless Networksyol. 11, no. 1-2, pp. 21-38, 2005.

D. Benetti, M. Merro, and L. Vigano, “Model checking addnetwork routing protocols: Aran vs.
endaira,” inSoftware Engineering and Formal Methods (SEFM), 2010 8EBHternational Conference
on, pp. 191-202, IEEE, 2010.

S. Marti, T. J. Giuli, K. Lai, M. Bakeret al,, “Mitigating routing misbehavior in mobile ad hoc netwoyks
in International Conference on Mobile Computing and NetwagkiProceedings of the 6 th annual in-

ternational conference on Mobile computing and networkirg. 6, pp. 255265, 2000.

S. Ramaswamy, H. Fu, M. Sreekantaradhya, J. Dixon, andyigard, “Prevention of cooperative black
hole attack in wireless ad hoc networks,”Iimternational Conference on Wireless Networksl. 2003,

2003.

B. Xiao, B. Yu, and C. Gao, “Chemas: Identify suspectemih selective forwarding attackddurnal of

Parallel and Distributed Computingrol. 67, no. 11, pp. 1218-1230, 2007.

C. W. Yu, T.-K. Wu, R. H. Cheng, and S. C. Chang, “A distiied and cooperative black hole node
detection and elimination mechanism for ad hoc networks Einerging Technologies in Knowledge

Discovery and Data Miningpp. 538-549, Springer, 2007.

C. Karlof and D. Wagner, “Secure routing in wireless s@mnetworks: Attacks and countermeasures,”

Ad hoc networksvol. 1, no. 2, pp. 293-315, 2003.




Bibliography 122

[48] W. Yu and K. R. Liu, “Game theoretic analysis of coop&mtstimulation and security in autonomous

mobile ad hoc networksMobile Computing, IEEE Transactions ,ovol. 6, no. 5, pp. 507-521, 2007.

[49] E. A. Panaousis and C. Politis, “A game theoretic apginoi@r securing aodv in emergency mobile ad
hoc networks,” inLocal Computer Networks, 2009. LCN 2009. IEEE 34th Confayem pp. 985-992,
IEEE, 2009.

[50] L. Hu and D. Evans, “Using directional antennas to préwsormhole attacks,” ifNetwork and Dis-

tributed System Security Symposium (NDS3h Diego, 2004.

[51] X. Su and R. V. Boppana, “Mitigation of colluding routalgification attacks by insider nodes in mobile

ad hoc networks,Wireless Communications and Mobile Computivgl. 9, no. 8, pp. 1141-1157, 2009.

[52] L. Buttyan, J.-P. Hubaux, L. Li, X.-Y. Li, T. Roughgamdeand A. Leon-Garcia, “Guest editorial non-
cooperative behavior in networkingselected Areas in Communications, IEEE Journahah 25, no. 6,

pp. 1065-1068, 2007.

[53] N. Zhang, W. Yu, X. Fu, and S. K. Das, “Maintaining defend reputation in anomaly detection against
insider attacks,’Systems, Man, and Cybernetics, Part B: Cybernetics, |IEEBSEctions onvol. 40,
no. 3, pp. 597-611, 2010.

[54] D. M. Shila and T. Anjali, “A game theoretic approach t@ag hole attacks in wireless mesh networks,”

in Military Communications Conference, 2008. MILCOM 200&E K- pp. 1-7, IEEE, 2008.
[55] J. R. Douceur, “The sybil attack,” iReer-to-peer Systemgp. 251-260, Springer, 2002.

[56] B. N. Levine, C. Shields, and N. B. Margolin, “A survey sblutions to the sybil attackUniversity of

Massachusetts Amherst, Amherst, ,NB06.

[57] S. Soltanali, S. Pirahesh, S. Niksefat, and M. Saba®, éfficient scheme to motivate cooperation in
mobile ad hoc networks,” ilNetworking and Services, 2007. ICNS. Third Internationahférence on

pp. 98-98, IEEE, 2007.

[58] T. Zhou, R. R. Choudhury, P. Ning, and K. Chakrabarty2dBptsybil attacks detection in vehicular ad
hoc networks,'Selected Areas in Communications, IEEE Journghah 29, no. 3, pp. 582-594, 2011.

[59] N. B. Margolin and B. N. Levine, “Informant: Detectingtsils using incentives,” ifFinancial Cryptog-

raphy and Data Securitypp. 192—-207, Springer, 2007.




Bibliography 123

[60] A. K. Pal, D. Nath, and S. Chakreborty, “A discriminataewarding mechanism for sybil detection with
applications to tor,;Word Academy of Science, Engineering and Technphogy 63, no. 6, pp. 29-36,
2010.

[61] G. Danezis and S. Sdfmer, “On network formation,(sybil attacks and reputatigatems),” InDIMACS

Workshop on Information Security Economipp. 18-19, 2006.

[62] Y. Pei, Y.-C. Liang, K. Teh, and K. Li, “How much time is eded for wideband spectrum sensing?,”

Wireless Communications, IEEE Transactionswmwi. 8, no. 11, pp. 5466-5471, 2009.

[63] A. Friedman, “Chapter 22 fferential games,” vol. 2 aflandbook of Game Theory with Economic Ap-
plications pp. 781 — 799, Elsevier, 1994.

[64] G. Feichtinger and S. Jorgensen, fierential game models in management sciengéarfbpean Journal

of Operational Researgivol. 14, no. 2, pp. 137-155, 1983.

[65] J. Jia and Q. Zhang, “Competitions and dynamics of dlyoporeless service providers in dynamic
spectrum market,” ifProceedings of the 9th ACM international symposium on Madil hoc networking

and computingpp. 313-322, ACM, 2008.

[66] H. Kim, J. Choi, and K. G. Shin, “Wi-fi 2.0: Price and guglicompetitions of duopoly cognitive radio
wireless service providers with time-varying spectrumilatity,” in INFOCOM, 2011 Proceedings

IEEE, pp. 2453-2461, |IEEE, 2011.

[67] M. Zekri, M. Hadji, B. Jouaber, and D. Zeghlache, “A nasthckelberg approach for network pricing,
revenue maximization and vertical handover decision ntgkin Local Computer Networks (LCN), 2011

IEEE 36th Conference ompp. 622—629, IEEE, 2011.

[68] R. Mukundan and W. Elsner, “Linear feedback strategieson-zero-sum dierential games,Interna-

tional Journal of Systems Sciene®l. 6, no. 6, pp. 513-532, 1975.

[69] S. K. Mukhopadhyay and P. Kouvelis, “Aftierential game theoretic model for duopolistic competition

on design quality,Operations Researg¢hvol. 45, no. 6, pp. 886—893, 1997.

[70] S. P. Sethi and G. L. Thompso®jptimal control theory: applications to management sceeaad eco-

nomics vol. 101. Kluwer Academic Publishers Boston, 2000.




Bibliography 124

[71] Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sewsfor multi-channel opportunistic access:
Structure, optimality, and performanc#Yireless Communications, IEEE Transactions\ai. 7, no. 12,

pp. 5431-5440, 2008.

[72] W.-Y. Lee and I. F. Akyildiz, “Optimal spectrum sensifrgmework for cognitive radio networks\Vire-
less Communications, IEEE Transactions eal. 7, no. 10, pp. 3845-3857, 2008.

[73] A. Bressan and F. S. Priuli, “Infinite horizon noncogg@re diferential games,Journal of Djferential

Equationsvol. 227, no. 1, pp. 230-257, 2006.

[74] K. Lancaster, “The dynamic ifigciency of capitalism, The Journal of Political Economypp. 1092—
1109, 1973.

[75] D.W. Yeung and L. A. Petrosyaf,ooperative stochastic gitrential gamesvol. 42. Springer New York,
2006.

[76] D. Yeung, “On diferential games with a feedback nash equilibriudeiirnal of optimization theory and

applications vol. 82, no. 1, pp. 181-188, 1994.

[77] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, andRRRao, “Cooperation in wireless ad hoc networks,”
in INFOCOM 2003. Twenty-Second Annual Joint Conference offk& Computer and Communica-
tions. IEEE Societies/ol. 2, pp. 808-817, IEEE, 2003.

[78] D. Gollmann, “From access control to trust managemamd, back—a petition,” ifrust Management VvV

pp. 1-8, Springer, 2011.

[79] G. J. Mailath and L. Samuelson, “Repeated games andatgmus: long-run relationshipsQUP Cata-
logue 2011.

[80] M. Schwartz and N. Abramson, “The alohanet-surfing fareless data [history of communications],”

Communications Magazine, IEE®%0l. 47, no. 12, pp. 21-25, 2009.

[81] H.Kwon, H. Lee, and J. M. Ci, “Cooperative strategy by stackelberg games under energgtr@int in
multi-hop relay networks,” irGlobal Telecommunications Conference, 2009. GLOBECON 2EEE,
pp. 1-6, IEEE, 2009.

[82] M. H. DeGroot, M. J. Schervish, X. Fang, L. Lu, and D. Birobability and statisticsvol. 2. Addison-
Wesley Reading, MA, 1986.




Bibliography 125

[83]

[84]

[85]

[86]

[87]

[88]

J. C. Ely, J. Horner, and W. Olszewski, “Belief-freeudipria in repeated gamesiZconometricavol. 73,
no. 2, pp. 377-415, 2005.

M. Felegyhazi and J.-P. Hubaux, “Game theory in wirelastworks: A tutorial,” tech. rep., Technical

Report LCA-REPORT-2006-002, EPFL, 2006.

Y. J. Joe, A. lwasaki, M. Kandori, I. Obara, and M. Yokdautomated equilibrium analysis of repeated
games with private monitoring: a pomdp approachPmceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volymp.3305-1306, International Foundation for

Autonomous Agents and Multiagent Systems, 2012.

E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dyiwa programming for partially observable
stochastic games,” iRroceedings of the National Conference on Artificial Ingghce pp. 709-715,

Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Pre999, 2004.

D. Monderer and L. S. Shapley, “Potential gamé&&imes and economic behavigol. 14, no. 1, pp. 124—
143, 1996.

“cddlib,” http: //wwwinf.ethzch/persona) fukudakcdd_home




