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Abstract

The future generation wireless network, also known as cognitive radio network, provides high bandwidth to

wireless users through heterogeneous wireless systems anddynamic spectrum access techniques. In the future

generation wireless networks, the users belong to different authorities and have different objectives, complete

cooperation between the users cannot be guaranteed. Furthermore, the users in the future generation wireless

networks need to observe the dynamic network environment and adapt their operation parameters based on their

knowledge of the environment as well as other users. Equipped with more powerful hardware and software,

the uses are capable of carrying out complex computation, dealing with signal processing and making their

decisions to adjust their communication parameters. The users can even evolve their knowledge about network

environment and other users according to different types of information, which is a learning process. Therefore,

the users in the future generation wireless networks can be viewed as intelligent network agents.

In the future generation wireless networks, the intelligent agents observe the network environment and in-

formation from other agents, and they frequently interact with each other. For example, the agents cooperate

or compete with one another for spectrum sensing, management and sharing. They also need to communicate

with each other for data transferring, routing as well as security issues. During a long period, one agent can

manage its observation and learn from the observed Information. Afterwards it can make its own decision

to adjust their own behavior and parameter settings according to its knowledge, in order to have an optimal

response to the network environment and other agents. For modeling, analysis and optimization for the fu-

ture generation wireless networks, a study on the relationship of these intelligent agent is of great importance.

Many new paradigm has emerged in such research field and a lot of new methodologies has been introduced

and studied. Among those methodologies, game theory is is one of the most powerful tools to deal with this

problem.

Game theory is a mathematical tool that analyzes the strategic interactions among multiple decision makers.

It studies the mathematical models of conflict and cooperation between intelligent rational agents. The impor-

tance of studying future generation wireless networks in a game theoretic framework falls into the following

aspects. First, by modeling the relationship among networkintelligent agents as games framework, the agents’

behavior can be captured and analyzed in a formalized game structure, therefore the rich theoretical and math-

ematical results in game theory can be utilized. Second, game theory equips us with various optimality criteria

for the network resource allocation problem. To be specific,the optimization of multi-agent resource allocation



Abstract ix

in future generation networks is generally a multi-objective optimization problem, which is very difficult to an-

alyze and solve. Game theory enables us to measure the agent’s optimality and system’s equilibrium under

various game settings. Third, non-cooperative game theory, especially zero-sum game enables us to derive

efficient distributed approaches for modeling the attack-defence scenario of network security problems.

Although there have been many works in future generation wireless networks that make use of game theory,

very few of them concentrate on the long-run relationship ofthe network agents. In the real world network,

the relationship of the intelligent agents may last very long time, even can be viewed as infinite. The agents’

optimal strategies thus may differ a lot from the single-shot case. This means with time varying, the agents are

more likely to change their behaviors for their best interests. In the long term interaction among the agents,

when one agent takes action, he needs to study what the other agents have done in the past, he also need

to consider what his action will impact on the future action of the other agents. The network analysis and

optimization thus becomes more difficult.

Dynamic game theory including repeated game and differential game is naturally invented mathematical

methodology for investigating the agents’ relationship inthe long term. In this thesis, we explore the theory of

dynamic games and introduce it into the field of future generation wireless networks. Several key challenging

issues in each layer of the future generation wireless networks is modeled in the form of dynamic games, the

long-run relationships of intelligent agents are analyzed, and optimal solutions and proposals are presented.

The contributions in this thesis covers the following problems of the future generation wireless networks: (1)

In the application layer, we analyze the real-time spectrumpricing problem using a differential game and

economic based model. The Nash equilibrium condition for the spectrum pricing strategies are derived. Our

scheme can be used to provide the competitive primary users with real-time optimal spectrum pricing policy.

(2) In the network layer, we utilize repeated game to model the packet forwarding scenario and propose a multi-

agent oriented cooperative communication scheme. The sub-game perfect equilibrium is derived to find the

preference of various kinds of selective forwarders. Basedon the analysis result, a novel security policies for

the agents are proposed. (3) In the physical layer, the interaction between the secondary user and the primary

user emulation attacker in a multi-channel cognitive radionetwork is modeled as a constant sum differential

game. The optimal strategies for both the secondary user andthe attacker are proposed based on the Nash

equilibrium. The sensing (attacking) capacity and power constrains are revealed to have direct impact on the

agents’ optimal defence (attack) actions. Based on the solution, the secondary use can achieve the optimal

usability of the cognitive radio channels when they are confronting different kinds of PUE attackers.



Chapter 1

Introduction

1.1 Background and Motivation

The continuous evolution of communication networks drastically emphasizes the need of cognitive radio net-

work (or future generation wireless network) [1] paradigmsthat can fundamentally increase the wireless system

performance. A key problem in the future generation wireless networks is to design an systematical analysis

and network architecture and to develop network control schemes. In this context, especially, analyzing the

relationship including conflict, competition and cooperation between the intelligent network agents has been

viewed as one of the crucial problem for the researchers to facilitate the development of future generation

wireless networks. Taking into consideration of the conflict, competition and cooperation between the intel-

ligent agents, the decision making [2] problem emerges. Thedecision making of the intelligent agents in the

future generation wireless networks has been recently investigated in a multi-agent system way, instead of just

relaying on inflexible and invariant network protocols.

Generally speaking, there are several reasons that requireto introduced paradigms from multi-agent system

[3] and microeconomic [4] research into the filed of wirelessnetwork communication optimization. First of

all, the traditional communication network optimization is mainly built on single-objective control protocols,

single administration, and is under the assumption that theusers are unselfish. In the coming future gener-

ation wireless networks, the communication network is becoming more and more large-scale, however, with

lack of access to centralized information at the same time. This nature makes the network nodes tends to be

more and more distributed. When we design network optimization algorithms, these algorithms are required

to be distributed and robust against the dynamic network environments which are potentially caused by the

dynamic changes of network disturbance. Secondly, the future generation networks are not designed by a sin-

gle administrative domain. Instead, these networks are emerged as interconnections of multiple autonomous

administrative domains. The users are heterogeneous and there is no central party that can enforce the users

(agents) to do anything following the protocol. This issue mainly falls into the selfish incentives for the intel-

ligent users. It is thus essential for the researchers to analyze the incentives and actions of the network agents,

in order to facilitate the cooperation or coordination in the network. Thirdly, due to the rapid development
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of mobile computing, the computation capability of the wireless agents are drastically improved which means

these agents becomes more intelligent. The intelligent agents are possible to carry out algorithmic processing,

and even capable to learn from the environment and maintain its own beliefs. All these features above well

correspond to the discipline of multi-agent system.

Science the future generation wireless networks behave intelligently as a multi-agent system, choosing op-

timally among different actions is a key aspect of such systems. Game theory [5]describes multi-person

decision scenarios to address situations in which the outcome of a person’s decision depends not just on how

they choose among several options, but also on the choices made by the people they are interacting with. Game

theory provides ideal frameworks for designing efficient and robust distributed algorithms. In the sense of fu-

ture generation networks, it can be used to provides a rich set of models and solution technologies for network

decision making. Game theory is one of the key techniques that can be applied for spectrum trading in cogni-

tive radio networks. In the traditional wireless network, the nodes lack of computational capacity. However,

in recent years, the rapid devolvement of mobile computing technology enables the nodes in the future gener-

ation networks with high ability of computation. Thus the nodes become typically intelligent agents who are

capable of rational behavior. This kind of future generation networks will rely on autonomous and distributed

architectures and frameworks to improve the efficiency and flexibility of mobile applications, and game theory

provides the ideal framework for designing efficient and robust distributed algorithms. When game theory

is originally applied into economic problems, a major theoretic assumption of it is that all decision makers

should be rational. When introducing game theory into otherdisciplines, this assumption is the major limi-

tation for application. However, the wireless nodes in the future generation wireless networks have become

computational-capable agents who can make rational decisions. They are individuals, as well as devices or

software, acting on their behalf.are individuals, as well as devices or software, acting on their behalf. The

network policies and protocols have to be decentralized, scalable for the distributed and self-behaving agents.

Thus, at a certain sense, for the future generation wirelessnetworks which evolves with those autonomous and

intelligent agents, game theory is a rather proper and effective tool for modeling the scenario, analysis the data

and process and find the optimal solutions and optimal scheme.

In the past decade, there have been significant amount of workintroducing game theory into the field of net-

work modeling, analysis and optimization. Besides considerable number of research papers, there have been

published several technical books also. The book “Game Theory in Wireless and Communication Networks:

Theory, Models, and Applications” [6] covers the key results and tools of game theory, and comprehensively
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summarized various real-world technologies. This book also illustrates wide range of techniques for modeling,

designing and analyzing communication networks using gametheory. Another book “Network Security: A

Decision and Game Theoretic Approach” [7] focus on security issues in the computer networks. It presents

a theoretical foundation for making resource allocation decisions that balance available capabilities and per-

ceived security risks. This book opened a novel research direction which connects network security and game

theory. The authors in the book “Cognitive Radio Networking and Security: A Game-TheoreticView” [8]

concentrates on the newly developed cognitive radio networks. The authors inside this book comprehensively

discussed many aspects of cognitive radio network where game theory can be implemented. It covers in de-

tail the core aspects of cognitive radio, including cooperation, situational awareness, learning, and security

mechanisms and strategies in the sense of game theory.

1.2 Basic Concepts in Noncooperative Dynamic Game Theory

1.2.1 Overview on Game Theory

Although the notions of interaction such as “conflict”, “competition” and “cooperation” are as old as human

society, the scientific approach for them has just started not very long ago. Game theory is a mathematical tool

that analyzes the strategic interactions among multiple decision makers. The first text book of game theory

can be traced back to the year of 1944, “Theory of Games and Economic Behavior” which is written by J.

von Neumann and O. Morgenstern. Then game theory was developed extensively in the 1950s when John

Forbes Nash defined that for any games at least one mixed strategy Nash equilibrium must exists. The Nash

equilibrium concept is more general than the criterion proposed by J. von Neumann and O. Morgenstern, since

it is applicable not only to zero-sum games. Furthermore, inthe 1950s, many other important concept in game

theory have been proposed, including extensive form game [5] and repeated game [9]. Then the concepts

Bayesian games and refined Nash equilibrium was defined in the1960s. Later, in 1970s, evolutionary game

theory was explicitly introduced into the filed of biology where the concept of correlated equilibrium was

invented. Game theory has been widely recognized as an important tool in many research fields including

economics, evolutionary biology, politics and military theory. More importantly for the computer science,

game theory has been successfully utilized in artificial intelligence and computing algorithm design.

Game theory can be categorized into noncooperative game andcooperative game. A noncooperative game is

one in which agents make decisions independently. Thus, while agents could cooperate, any cooperation must
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be self-enforcing. on the other hand, cooperative game [10]is a game where groups of agents (“coalitions”)

may enforce cooperative behavior, hence the game is a competition between coalitions of agents, rather than

between individual agents. The game history we mentioned above is mainly about noncooperative game theory.

1.2.2 Dynamic Game Theory

In the beginning of game theory, the researchers are mainly concerning about the static game, that the games

are played only once. A static game is also called one-shot game in which agents move simultaneously and

only once. A game is called “dynamic” if at least one agent is allowed t use a strategy with the information

structures [11]. The game in which the agents act only once and independently of each other is called static

game. If at least one agent is allowed to use a strategy that depends on previous actions, the game is then called

“dynamic game”. In a dynamic game, unlike the one-shot static games, agents have at least some information

about the strategies chosen on others and thus may contingent their play on past moves.

Table 1.1: The position of dynamic game theory

Single agent Multiple agents
Static in the one-shot Mathematical programming Static game theory
Dynamic in the long-run Dynamic programming Dynamic game theory

Formally, we say the game is dynamic if the decision taken by an agent at instantt may depend on the state

of the system (the environment), which in turn depends on thedecision taken also by the competing agents

at previous time instants. A game is said to be non-cooperative when each agent pursues its own interests. If

same stage game is played in every period, only link between periods is strategy. Focus is on history-dependent

strategies in which strategy is conditioned on what agents did in the past. stage game varies from period to

period.

Definition 1 A noncooperative dynamic game is defined as a tuple(N,A, g), where

• N is the set of N agents indexed by variable i.

• A = A1 × · · · × AN, where Ai is the set of actions of agents i.

• a = (a1, . . . , aN) is the action profile after all the agents chose their actions.

• ai ∈ Ai is an action of agent i.

• a = (a1, . . . , aN) is an action profile after all the agents chose their actions.

• g = (g1, . . . , gN) is a profile of utilities, where gi = A 7→ R is utility function for agent i.
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The description of dynamic game takes into account the requirement that agents should be able to select

strategies that are based on information structure being revealed during the historical play of the game.

It is worth noting that, an agent’s strategy is not essentially the same as an action from its action set. A strat-

egy is equivalently to a set of decision rules, that defines the actions to be taken by an agent in each situation.

It can depend on the state of the system. The strategy can be deterministic which is calledpure strategy, it can

also be probabilistic which is called mixed strategy. The mixed strategy is a probability distribution over the

agent’s action set.

1.2.3 Agents’ Information Structure in Long-Run

In a dynamic game, an agent’s strategy decision making depends on the information structure of the game.

When investigating the effect of information structure on the play of the game, we first exam a one-shot game

which is an classical example called “prisoners’ dilemma”.The prisoner can choose confess (C) or defect

(D). Suppose the first agent decides to choose his action first, and subsequently the second agent makes his

choice. In a game under this information structure, when thesecond agent makes his decision, he knows the

first agent’s action. Therefore, the second agent’s decision depends on what the first agent has done. When we

extend this one-shot game into dynamic game played at two stages, we can useA1 to denote the first agent’s

action andA2 t denote the second agent’s action. In this case, the information structure in this game can be

denoted as the sequence that:

A1→ A2→ A1→ A2 · · ·

There is another case that the second agent cannot observe the action of the first agent. In other words, the

second agent has to make a decision without knowing what the first agent has actually done. Like the first case,

if we extend this one-shot game into a multi round dynamic game, the information structure will be:

(A1,A2)→ (A1,A2)→ · · ·

The first two cases for the information structure have been games of perfect monitoring, in the sense that the

agents can observe each other’s action perfectly. Althoughin the second game, at the same stage, the agents

cannot observe what each other have chosen, at the next stagethe agents can perfectly monitor what the rival

has done in the last stage. Consider again the prisoner’s dilemma, but assume an agent can only observe the

outcome of the joint action, but can not observe whether its rival has exactly chosen which action. In addition,
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the outcome of the joint action is a random function of the rival’s actions. A good outcome will appear with

probability p when both agents cooperate, with probabilityq if one of them defect while one cooperate, and

with probability r if both of them defect. Andp > q > r > 0. This is a game of imperfect public monitoring,

in the sense that the agents cannot perfectly observe the rival’s action. However, they can observe a signal

ω ∈ {g, b} which is an output appears with certain probability. The good output signalg will appear with higher

probability when both agent cooperate. Here we callp, q, r as the probability of a signal under an actual action

profile a. The the imperfect public monitoring games presented here will following the information structure

as:

(A1,A2)→ ω→ (A1,A2)→ ω→ · · ·

If at the end of each stage game, each agent learns only the realized value of a private signal, the game is

called the repeated game with private monitoring. In a repeated game with private monitoring, assume at the

end of each period each agenti observes nothing else other than a private signalωi about the behavior of its

rival. And a joint signal profile occurs with a probabilityπ (ω1, ω2|a) wherea is the true joint action profile. In

a repeated game with imperfect private monitoring, the information structure is shown as follows:

(A1,A2)→ (ω1, ω2)→ (A1,A2)→ (ω1, ω2)→ · · ·

1.2.4 Horizon in Long-Run Relationship

Since the scope of this thesis is focusing on the applicationof “dynamic game” in the wireless networks, it is

intuitively essential to discuss how long time such “dynamic” means. In game theory, the game’s horizon is

generally put into two categories: infinite game and finite game. However, a common question about infinite

game may rise: how long can be called infinite?

For delay tolerant networks [12] and Ad-Hoc networks [13], short-term communication is a very common

case. In delay tolerant networks, the agents in such networks are potentially with high frequency of connecting

to new links. While in Ad-Hoc network, the agents are of high mobility and frequently change their geograph-

ical position, thus the relationship between two agents notessentially last for a very long term. In such kind of

networks, if we model the interactions between agents as a finite game.

Nevertheless, If the wireless networks are not frequently mobile, in the sense that, the agents are tend to hold

a stable communication with their neighbors, the relationship between the agents can be enough long. In such

a case, the dynamic game played by the network agents can be treated as infinite. One example for agents who



1.2 Basic Concepts in Noncooperative Dynamic Game Theory 7

hold such relationship can be the interaction between different access points or base stations.

There is another case, that although the relationship between the agents can’t go so far as to forever, the inter-

action between the network agents isshort termor, even,real time. Such a frequently taken game approaches

the horizon or the end only very slowly, then the agents in such games may ignore the existence of the horizon

entirely. The decision making in this case may be better couturier by a game with an infinite horizon.

1.2.5 Optimality in Decision Making

In a dynamic non-cooperative game, the optimal strategy is the strategy (rather than a simple action) that

maximizes the utility functiong for a given environment where single agent operates [14].

Pareto efficiency [15] is a state of economic allocation of resources inwhich it is impossible to make any one

further better off without making at least one individual worse off. Given an initial allocation of goods among a

set of individuals, a change to a different allocation that makes at least one individual better off without making

any other individual worse off is called a Pareto improvement. An allocation is defined as Pareto efficient or

Pareto optimal when no further Pareto improvements can be made. A given strategy profile s is said to Pareto-

dominate the strategy profiles′ if, for any agenti, such thatgi (s) > gi (s′) and if this inequality is strict for at

least one of the agents. From another way, we say a strategy profile s is Pareto-optimal if there does not exist

any other strategy profiles′ such that Pareto-dominatess. Pareto-optimality defines an unambiguous way to

establish that a given strategy is globally dominating.

Minimax (minmax) [2] is a decision rule for minimizing the possible loss for a worst case (maximum loss)

scenario. Alternatively, it can be thought of as maximizingthe minimum gain (maximin). The minimax

theorem states that, for every two-agent, zero-sum game with finitely many strategies, there exists a valueV

and a mixed strategy for each agent, such that given agent 2’sstrategy, the best payoff possible for agent 1 isV,

and given agent 1’s strategy, the best payoff possible for agent 2 is−V. Formally, for any agent i, it is defined

as arg max
si∈Si

min
s−i∈S−i

gi (si , s−i). It is worth noting that, in zero-sum games, the minimax solution is the same as the

Nash equilibrium.

The Nash equilibrium [5] is a solution concept of a non-cooperative game involving two or more agents, in

which each agent is assumed to know the equilibrium strategies of the other agents, and no agent has anything to

gain by changing only his own strategy unilaterally. If eachagent has chosen a strategy and no agent can benefit

by changing strategies while the other agents keep theirs unchanged, then the current set of strategy choices

and the corresponding payoffs constitute a Nash equilibrium. Formally, a strategy profile s = (s1, . . . , sN) is
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a Nash equilibrium if for all agentsi, si is his best response to all the others’ joint strategy profiles−i, which

means thatgi (si , s−i) > gi

(
s′i , s−i

)
for all other strategiess′i . Different as Pareto-optimality, a Nash equilibrium

defines optimality from a single agents point of view, with respect to the states of all the other agents. The term

’equilibrium’ here is justified in the sense that an equilibrium outcome is a consistent prediction. That is to say,

the agents should be all assumed rational, and all of them knows others are rational. No one wants to choose

other strategies than Nash equilibrium strategy. If all theagents predict that a particular Nash equilibrium

outcome will be reached, none of them can do bettern than choosing his own Nash equilibrium strategy.

When we are discussing the optimality in a dynamic game whichrepresents the relationship of agents in the

long-run, the rational agents can determine in advance a complete, contingent plan over its action space taking

into consideration of the environment during the entire game. Such a complete plan is the agents strategy

that specifies what particular action it should take in any situation in any stage of the whole game, in order to

optimize its long-term overall benefit.



1.3 Repeated Game 9

1.3 Repeated Game

In a dynamic game, if a same stage game repeats many times, it is called repeated game [9]. In a repeated

game, one agent’s current action will have direct impact on its the rival’s future choice. Thus when one agent

make his decision at one time, he need to consider about his action’s impact. This is sometimes called the

agent’s reputation. Thus in the repeated games, the agents may behave very differently than if the game is

played just one shot. For example, borrowing a loan from a bank repeatedly should be quit different with only

borrow one time.

Consider the single stage prisoner’s dilemma, which is to berepeated. The game’s payoff matrix is as the

following table. Here valueR is one agent’s payoff when he cooperate and his rival also cooperate. ValueP is

his payoff if both agents defect. ValueS is one agent’s payoff when he cooperates but his rival defects. On the

contrary,S is the payoff when one agent defects but his rival cooperates. The rule forthese value should be in

the following order:T > R> P > S.

(A gentA
A g e n t B

Figure 1.1: Stage game of prisoner’s dilemma.

Since this game is repeated and actions on each stage will be impacted by the history. The agent’s strategy

is a mapping form the game history to his action or his actions’ distribution. Thus the structure will become

large very quickly. The following figure shows the repeated game’s rapid grow of complexity.
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Figure 1.2: Two stage repeated prisoner’s dilemma.

e t c …
Figure 1.3: Two stage repeated prisoner’s dilemma in the tree diagram.

A finite repeated game is in which the game is played a known number of times. In a finite repeated game,

following the approach of backward induction, we can find thesubgame perfect equilibrium (SPE) in the two

stage prisoner’s dilemma. When the game is indefinitely repeated and there is no know end, we call such games
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infinite repeated games. After each time the stage game is played there is some probabilityδ < 1 that it will

be played again and probability 1− δ that play will stop. This parameterδ is called discount factor since the

expected payoff discounts the payoffs in later rounds, because the game is less likely to last until then.

1.3.1 Repeated Game with Perfect Monitoring

In a repeated game, if each agent perfect observes what action the other agents take, it is called a repeated game

with perfect monitoring. This is the most basic subclass of repeated games.

Nash Equilibrium and Subgame Perfect Equilibrium

In the repeated game with perfect monitoring, an agent’s strategy can be described as a finite state automaton

(FSA). In each state of such an FSA, the agent’s have one(or more) actions. The agent may transit from one

state to another after he observes all agents’ joint action.There may be infinitely many FSAs can be investi-

gated as a game’s strategy, we can use a classical “grim trigger” to for example. A “trigger strategy” essentially

threatens other agents with a worse punishment, action if they deviate from an implicitly agreed action profile.

Furthermore, a non-forgiving trigger strategy (which is called grim trigger strategy) would involve this punish-

ment forever after a single deviation. For example, the grim-trigger strategy can be illustrated as the following

automaton.

Figure 1.4: Grim trigger strategy as a finite state automaton.

In this automaton, the agent’s strategy has two states: state for reward is denoted as ’R’, in which the agent

will choose actionai = C. The state for punishment is denoted as ’P’, in which the agent will choose action

ai = D. The agent will be cooperating if he observes the joint action CC, otherwise, if any of the two agents

defects, this agent will transit to punishment.

One strategy profiles= (s1, . . . sn) is a Nash equilibrium of the repeated game if the strategy of each agent is

a optimal response to other agents. Usually, the Nash equilibrium can be found by using min-max rule.



1.3 Repeated Game 12

A strategy profile is a subgame perfect equilibrium (SPE) if it represents a Nash equilibrium of every sub-

game of the original game. Note that SPE require the strategyprofile smust constitute a Nash equilibrium for

every off-path history. SPE can be found by using backward induction.

Figure 1.5: Nash equilibrium and subgame perfect equilibrium.

From the above game in the tree diagram, we can learn the difference between Nash equilibrium and SPE.

The blue line is Nash strategy profile while the red lines is SPE strategy profile. The difference between

these two strategy profiles is that if agents follow the red path, the off-equilibrium path also constitute a Nash

equilibrium. Thus the SPE is a refined subset of Nash equilibrium.

Backward Induction

Backward induction is a technique where agents work back from the end through the sequence of decisions that

could lead to that outcome to assist them with the decision-making process. As we introduced before, backward

induction is one major method to solve the dynamic programming problem. It proceeds by first considering the

last time a decision might be made and choosing what to do in any situation at that time. Using this information,

one can then determine what to do at the second-to-last time of decision. This process continues backwards

until one has determined the best action for every possible situation (i.e. for every possible information set) at

every point in time.

In the following figure, we show have to use backward induction to find optimal strategy for the two-stage

prisoner’s dilemma. The red lines are the optimal actions derived from backward induction.
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Figure 1.6: Backward induction for a two stage repeated prisoner’s dilemma.

We can see that, for this two stage prisoner’s dilemma, all-defect is the SPE. Moreover, if the prisoner’s

dilemma repeats many but finite times, What is the subgame perfect outcome? Similar as this two stage case,

if we start from the leaf nodes and work backwards: in last round, nothing the agent do affects future, so agent

will play the dominant strategy for stage game which is defect. Since the last round is determined as defect

already, nothing you do in next-to-last round affects future, so you play dominant strategy for stage game

which is again defect. Work your way back time after time, finally, the only subgame perfect equilibrium is

“all-defect”. Thus, generally speaking, in a subgame perfect equilibrium for a finitely repeated game where the

stage game has a unique N.E, the moves in the last stage are determined for each agent’s strategy. Given that

the moves in the last stage don’t depend on anything that happened before, the Nash equilibrium in previous

stage is uniquely determined to be the stage game equilibrium.

The following is an real-world example for backward induction: in a chess match, for example, an agent

creates a hypothetical ending, assuming himself as the winner, and moves back through a series of maneuvers

to see how that ending could be reached. The strategy of the other agent will be important to factor in, as the

chess agent can think about how her opponent may behave. His moves will influence the outcome, and the

ability to predict them will allow her to maneuver him into a corner.

There is a major flaws with the backward induction process. The backward induction is often based on

predictions about the behavior of others and if these are wrong, the end result may be different. To use this
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technique effectively, it is necessary to have as much information as possible about all of the factors that might

influence decisions at each step, in order to predict accurately. In a more realistic game where the agents’

observation is not perfect, such backward induction may cause inaccuracy.

General Model of Repeated Games with Perfect Monitoring

• Let G be a normal form game with action spaceA1,A2 . . .An, the payoff function for each stage is

gi : A→ R, whereA1 × A2 × . . . × An.

• G (∞, δ) is a infinitely repeated version of gameG, whereδ is the discount factor.

• A history of the game until staget is the record of all the joint actions during stage 0 to staget−1, which

is Ht =
{(

a0
1, . . . , a

0
n

)
, . . . ,

(
at−1

1 , . . . , at−1
n

)}
.

• A strategy is mapping from history to the actionst
i : Ht → Ai .

• The utility of agent-i is ui (si , s−i) = (1− δ)
∞∑

t=0
δtg (ai , a−i)

This summation is well defined because the discount factorδ ≤ 1. The term(1− δ) is introduced as a

normalization, to measure stage payoff and repeated game utility in the same units.

Folk Theorem

“ If a payoff profile r is both feasible and enforceable, then r is the payoff in some Nash equilibrium of the

infinitely repeated game with average rewards.”

The folk theorem states that any feasible payoff profile that strictly dominates the minmax profile can be

realized as a Nash equilibrium payoff profile, with sufficiently large discount factor. In other words, any

cooperative outcome is possible. For an infinitely repeatedgame, any Nash equilibrium payoff must weakly

dominate the minmax payoff profile of the constituent stage game. This is because a agentachieving less than

his minmax payoff always has incentive to deviate by simply playing his minmaxstrategy at every history. The

folk theorem is a partial converse of this: A payoff profile is said to be feasible if it lies in the convex hull of

the set of possible payoff profiles of the stage game.

For example, in the Prisoner’s Dilemma, both agents cooperating is not a Nash equilibrium. The only Nash

equilibrium is both agents defecting, which is also a mutualminmax profile. The folk theorem says that, in

the infinitely repeated version of the game, provided agentsare sufficiently patient, there is a Nash equilibrium
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such that both agents cooperate on the equilibrium path. Thefollow figure shows in the repeated prisoner’s

dilemma, where SPE exists if we chooseT = 2,R= 1,P = 0,S = −1. In this figure, the payoff profile (0, 0) is

the payoffs for mutual punishment, and (1, 1) is the profile for mutual cooperate. The green range is where the

payoffs can substitute subgame perfect Nash equilibrium based on certain discount factors.

Figure 1.7: Payoffs and subgame perfect equilibrium range for prisoner’s dilemma.

One-shot Deviation Principle

If a stage game repeats many times even infinite, the number ofpossible strategies can be particularly large

number, even infinitely many, thus checking whether a strategy profile constitutes a SPE can be hard. Fortu-

nately, the one-shot deviation principle allow us to only compare the target strategy with a small set of other

strategies [16].

A one-shot deviation from a strategysi is a strategy ˆsi such that there exists some unique historyht of the

game, such that

ŝi

(
h̄t

)
, si

(
h̄t

)

A backward induction can be used to show that, if there existsa profitable deviation for a finite number of

periods, there also exists a profitable one-shot deviation.On the other hand, if there exists a profitable deviation

for a finite number of periods, it is also possible there is some one-shot deviation not profitable. Therefore, the

one-shot deviation principle can be utilized to check whether a given strategy constitute a SPE. It is proved that
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a necessary and sufficient condition fors= (s1, . . . sn) to be a SPE in the infinitely repeated game is that there

exists no profitable one-shot deviation after any historyht [16].

We can use the one-shot deviation principle to check whetherone FSA can constitute an SPE. In the grim

trigger strategy, if we use the payoff matrix as in Figure 1.7, the normalized payoff for any subgame starting

from a cooperative joint actionCC is calculated as

(1− δ) ×
[
1+ δ + δ2 + · · ·

]
= (1− δ) ×

1
1− δ

= 1

As a deviation, if one agent deviates byD only once and then goes back to grim trigger which means he will

chooseD afterwards, its normalized payoff will become

(1− δ) × [2 + 0+ 0+ · · ·] = (1− δ) × 2

Here if the discountδ is larger than1
2, the cooperation will be dominant and agent has no incentiveto do one-

shot deviation. In other words, cooperation is best response to cooperation. If the game is starting from mutual

punishmentDD, the agent’s normalized payoff will be

(1− δ) × [0 + 0+ 0+ · · ·] = 0

If the agent deviate to other actionC, it normalized payoff becomes

(1− δ) × [−2+ 0+ 0+ · · ·] = −2(1− δ)

No matter what value the discount is, this deviation will never be dominating. Since the above arguments are

true in every subgame, so the grim trigger is a subgame perfect equilibrium for the repeated prisoner’s dilemma.

1.3.2 Repeated Game with Imperfect Private Monitoring

In a repeated game, if agents cannot perfectly observe the other agents’ actions, but can only observe imperfect

and private signals about the actions, such a game is the repeated game with imperfect private monitoring. The

study of this class of game is still in its infancy. Relatively little is known about the structure of equilibria

in these games. One example of such game is the competition inpricing. Assume there are two sellers in

the market, each of which negotiate with the customers aboutthe product’s price secretely. Thus for one
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seller(agent), the rival’s actual price is hidden. What this agent observes is only a private signal such as his

private selling quantity which is the outcome of both his ownprice and the rival’s price. The repeated game

with imperfect private monitoring is based on such scenarios. Although this class of games admits a wide range

of applications, it is quite complicate to deal with and the relative researches are far from mature.

Difficulty of Repeated Games with Private Monitoring

The reason why private monitoring is difficult to analyze mainly falls into the following two aspects:(1)

Unlike the public monitoring and perfect monitoring games,the agents in the repeated game with private

monitoring cannot choose its action according to the commonly observed events. Although the joint FSA can

be constructed, the important thing is the agents will neversure about which joint state he is in. In this case, we

cannot use a joint FSA to represent a joint strategy profile for such games, because after one agent’s deviation,

other agents will not know his private history is changed. This means it is difficult to utilize the one-shot

deviation principle here. Then such a game is not easy to be constructed in a recursive form. (2) In each

stage of the game, the future action plans are never common knowledge (not like public monitoring and perfect

monitoring case), the agents need to do very complex statistical inference. To determine the best strategy in

each stage, the agents must guess what other agents are goingto do. As a result, one agents should calculate

the history of other agents by Bayes’ rule in each stage, which can be increasingly very complex.

General Model of Repeated Games with Private Monitoring

A repeated game with private monitoring is defined as:

• TheN agentsi = 1, . . . ,N.

• Agent-i’s action at each stage:ai ∈ Ai . The joint action profile then is:a = (a1, . . . , aN) ∈ A =

A1 × · · · × AN.

• Agent-i’s private signal isωi ∈ Ωi. ω = (ω1, . . . , ωN) ∈ Ω = Ω1×· · ·×ΩN is the joint signal of all agents,

q (ω|a) is the joint signal distribution given an action profilea, andqi (ωi |a) is the marginal distribution

of omegai given the action profilea.

• Agent-i’s realized stage payoff is only determined by his own action and signal and denotedπi (ai , ωi).

The expected stage payoff is:
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gi (a) =
∑
ω∈Ω

πi (ai , ωi) q (ω|a). (1.1)

• Then the normalized repeated game payoff is

(1− δ)
∞∑

t=0
δtui(a(t)). (1.2)

Signal Distributions

In this game, it is assume that no agent can infer which actionwere taken for sure, to this end, we assume

that eachωi occurs with a positive probability. Then the joint signal follows a certain probability distribution.

For any joint actiona, consider the probability for both agent receiving correctsignal asp, the probability for

only one agent receiving correct signal asq, and the probability for neither agent receives correct signal asr.

Usually, the values follows orderp > q > r and p + 2q + r = 1. The following tables are an example for the

joint signal distribution under joint action (C,C) and joint action (D,D).

Table 1.2: Joint signal distribution for joint action (a1, a2) = (C,C)
ω2 = g ω2 = b

ω1 = g p q
ω1 = b q r

Table 1.3: Joint signal distribution for joint action (a1, a2) = (D,D)
ω2 = g ω2 = b

ω1 = g r q
ω1 = b q p

Table 1.4: Joint signal distribution for joint action (a1, a2) = (C,D)
ω2 = g ω2 = b

ω1 = g q r
ω1 = b p q

Table 1.5: Joint signal distribution for joint action (a1, a2) = (D,C)
ω2 = g ω2 = b

ω1 = g q p
ω1 = b r q
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Path Automaton and Joint FSA

Unlike the perfect monitoring case, in the repeated game with private monitoring, a private history for agent-i

is the record its past actions and observed signals:

ht
i =

((
a0

i , ω
0
i

)
, . . . ,

(
at−1

i , ωt−1
i

))

where hti ∈ Ht
i := (Ai ×Ωi)t

.

The strategy is the a mapping from any history to the action:si : Hi → Ai, whereHi = ∪
t≥0

Ht
i .

Although the private monitoring game model is quit different from the perfect monitoring case, we can still

use an FSA to present the agents’ path of play. However, what causes the state transition is the private signal

but not the common observed joint action. Following the definition in , an agent-i’s path automaton can be

specified as quadrupleMi =

(
Θi ,

⌣

θ i , fi ,Ti

)
.

• A set of statesΘi.

• The initial state
⌣

θ i ∈ Θi.

• Action choice for each statefi : Θi → Ai. The action can be mixed or pure.

• Action choice for each statefi : Θi → Ai . The action can be both mixed or pure. In this thesis, without

loss of generality, we assume a pure action is taken in each state.

• The state transitionTi : Θi ×Ωi → ∆Θi . If the current state isθi (t), after observing private signalωt
i the

agent will transit to new stateθt+1
i with probabilityT

(
θt+1

i |θ
t
i , ω

t
i

)
.

At each state, the state transition for out going follows some probability distribution. And the state transition

in the private monitoring game is trigger by private signal,but not the joint action. A path automaton without

the given initial state is called ’pre-automaton’ which is denotedmi = (Θi , fi ,Ti).

It is worth noting that, in the path automaton defined above, in each state, only action in equilibrium is

played. This means for any other action which not included inthis state in this automaton, is not considered.

Therefore, such approach concentrates on the path strategies. Here, we distinguish terms strategy an plan and

as follows: a strategy is a complete contingent action plan,which specifies the intended path of play as well as

what the agent should do after deviating from the intended path. In contrast, a plan only describes the intended

path of play. In this thesis, we concentrate on the plan but now on all the strategies.
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Table 1.6: Payoff matrix for stage prisoner’s dilemma
a2 = C a2 = D

a1 = C 1, 1 −y, 1+ x
a1 = D 1+ x,−y 0, 0

Assume the payoff matrix for a stage game prisoner’s dilemma is in 1.6. If we consider grim trigger in the

repeated game with private monitoring, the preautomaton will be illustrated as the following figure.

Figure 1.8: Grim trigger under private monitoring.

For the profile of pre-FSAsm = (m1, . . . ,mn), where eachmi = (Θi , fi ,Ti), we define the joint pre-FSA as

(Θ, f ,T), whereΘ =
∏

i∈NΘi , f : Θ→
∏

i∈N Ai, such thatf (θ) = ( f1(θ1), . . . , fn(θn)), T : Θ×
∏

i∈NΩi → Θ,

such thatT(θ,ω) = (T1(θ1, ω1), . . . ,Tn(θn, ωn)). Following this grim trigger preautomaton, consideringthe

state transition probabilities in the previous tables, we can calculate the state transition distribution in each

joint state as the following four figures.

Figure 1.9: Transition probabilities for each joint stateRR
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Combine these above fore transitions together, we finally get the joint state with transition probabilities. In

the last chapter of this thesis, the game a analyzed based on the transition matrix which are derived by using

such kind of joint automatons. R PP RR R P P p + q + r = 1p q rqq + r p + q
q + r p + q

Figure 1.10: Joint state automaton and transition probabilities

Assume the stage game is PD, wherex = 0.5, y = 1. Each agent acts based on a pre-FSA in Fig.1.11,

which we call 1-period Mutual Punishment (1-MP). It has two states, i.e.,R (reward with actionC) and P

(punishment with actionD). Thus, if a agent starts fromR, she keeps on cooperating as long as she observes

g. If she observesb, she moves toP and starts punishment, but after she observesb, she returns toR. Also, we

assume a nearly perfect monitoring case. Here, let us define the correct signal when the opponent choosesC

(or D) is g (or b). Then, both agents observe correct signals with probability p, one agent observes a correct

signal, while the other agent observes a wrong signal with probability q, and both agents observe wrong signals

with probability s, wherep + 2q + s = 1 andp is much larger thanq or s. And the joint state automaton for

1-MP is illustrated in Fig. 1.12

Figure 1.11: 1-MP under private monitoring
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Figure 1.12: Joint automaton for 1-MP under private monitoring

Belief Update

Assume agents excepti act according tom−i . A belief of i over the current states of other agents is represented

asbi ∈ ∆(
∏

j,i Θ j). Let θ denote the profile of states of all agents, andθ−i denote the profile of states of all

agents excepti. Also, let (θi ,θ−i) denote the profile of states of all agents, where the state ofi is θi and the

profile of states of all agents excepti is θ−i . Forbi , we denote the probability that the states of other agents are

θ−i asbi(θ−i). If two agents act according to 1-MP,bi is represented as a vector of two elements (bi(R), bi(P)).

χi [ai , ωi , bi ] denotes the posterior belief fori where the current belief isbi , the current action isai and obtained

observation isωi. The posterior belief is get by using the Bayes’ rule as follows

χ [ai , ωi , bi ]
(
θ′
−i

)
=

Prbi ,ai (ωi ,θ
′
−i)

Prbi ,ai (ωi )

=

∑
θ−i

r i(ωi ,θ
′
−i |θ−i ,ai)bi (θ−i )

∑
θ−i

qi (ωi |ai , f−i (θ−i ))bi (θ−i )

, (1.3)

where

r i

(
ωi , θ

′
−i |θ−i , ai

)
=

∑
ω−i

∏
j,i

T∗j
(
θ′j |θ j , ω j

)
q (ωi , ω−i |ai , f−i (θ−i)). (1.4)

r i here is defined as the distribution of current signal isωi and the next state isθ′
−i given the current state and

action is(θ−i , ai).

State and Belief based Payoff Functions

Let vθ, whereθ = (θi ,θ−i), be agenti’s payoff associated with (mi , θi), when the states of other agents areθ−i .

Based on the joint pre-FSA, we can obtainvθ by solving a system of linear equations defined as follows, where
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θ
′ = T(θ,ω).

vθ = gi( f (θ)) + δ
∑

ω∈
∏

j∈N Ω j

vθ
′

· o(ω | f (θ)) . (1.5)

Assume agents excepti act based onm−i. We denote the expected payoff of agenti, wherei acts according

to an FSAMi when her subjective belief of other agents’ states isbi , asVMi
i (bi). In particular,V(mi ,θi )

i (bi) can

be represented as

∑
θ−i∈

∏
j,i Θ j

v(θi ,θ−i )bi(θ−i ). (1.6)

Note thatV(mi ,θi )
i (bi ) is linear in beliefbi .

Finite State Equilibrium and Finite Plan Equilibrium

Denote a profile of all finite path preautomaton of theN agents asm = (m1, . . . ,mN). We say a profile of

preautomaton compatible if for ever agent-i, there exists some stateθi ∈ Θi and some beliefbi ∈ ∆ (Θi) such

that(mi , θi) is his optimal plan given his subjective beliefbi .

According to the definition in [17], a finite state equilibrium is a (correlated) sequential equilibrium of a

repeated game with private monitoring, where agents’ behavior on the equilibrium path is given by finite path

preautomatami = (Θi , fi ,Ti) , i = 1, . . . ,N and a joint probability distribution of the initial statesr ∈ ∆ (Θ).

The valuer is the probability distribution over the states in the preautomata, which is called the initial

correlation device. For example, assume the two agent game with private monitoring, the initial distribution of

the joint state follows the distribution in the following figure.

A gentA A g e n t B
Figure 1.13: Initial correlation device.

If the two agents are following this correlation devicer, then if one agent is suggested in stateR, then he can
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calculate his rival will be suggested in stateR with probability 0.6
0.6+0.1 =

6
7, and in stateP with probability 1

7.

It must be emphasized that if (m1,m2) and r constitutes an FSE, it means that as long as agent-B acts

according tom2 andr, agent-A’s best response is also to act according tom1 andr. Here, we do not restrict the

possible strategy space of agent-A at all, i.e., even if agent-A uses a very sophisticated strategy, which might

require an infinite number of states, her expected utility cannot be improved.

A finite-plan equilibrium is a a special case of an FSE, it is a correlated sequential equilibrium of a repeated

game with private monitoring, such that the number of plans on and off equilibrium paths is finite. When the

total number of plans, which are both on and off the equilibrium paths, is finite, we can represent these plans

as a pre-FSA, where each plan is associated with one state in the pre-FSA. Thus, it is clear that any FPE is also

an FSE, but not vice versa, since an FSE might have infinitely many off equilibrium plans.
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1.4 Differential Game

The term “Differential Games” is the extension of dynamic game theory to the continuous-time case [11]. It

is introduced by Isaacs [18]. In a original differential game there are two agents: a pursuer and an evader.

These two agents have conflicting goals. The pursuer’s target is to catch the evader, while the evader’s tried to

prevent this capture. R. Isaacs modeled the differential game by first defining a state variables which represent

the position of the two agents, differential equations describing the motion for the rivals. Then he describes a

target set for either a pursuer or an evader. The pursuer’s target set includes points in the state space where the

distance between the pursuer and the evader is small. On the contrary, the evader’s target set should contain

the points where the distance between them are large. Each agent in the game tries to drive the state variables

of the game into his own target set by controlling key variables which is called controls.

The study of differential games has implications for real-life air combat, for artificial intelligence as well

as for economics decision making. Differential game is a discipline that is entwined with optimal control and

game theory. There are two important features of differential games that makes it particular. First, there is a set

of variables that is used to characterize the state of the system at any time instance during the play. Second, the

evolution of the state variables is described by a set of differential equations.

1.4.1 Single Agent Optimal Control Problem

Optimal control deals with the problem of finding a control policy for a given system such that a certain

optimality criterion is achieved [19]. A control problem includes a cost/reward functional. An optimal con-

trol is a set of differential equations describing the paths of the control variables that minimize/maximize the

cost/reward functional.

Let us assume an example for optimal control. One drive want to drive his vehicle through an mount road.

The drive’s action at each time instant is which speed he chooses to drive the vehicle, denoted asa (t). The

driver’s objectiveJ is to minimize the travel time. Assume there is an state variable x (t) describing the distance

to the destination at timet. The variable is related to both the road condition and the speed of the drive. For

such a system, there is also a constrain: the energy is limited, and vehicle’s speed should also be limited for

safety reason. The time-varying objective function is a function with the driver’s speed and the road’s shape.
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We can define the objective function as follows:

J =
∫ t f

t0
L [x (t) , a (t) , t] dt. (1.7)

whereL is the driver’s instant payoff at timet. a (t) is the instant speed andx (t) is the state that describing

the distance to the destination at timet. Thus the formulation of optimal control problem is as follows:



a (t) = γ (x (t) , t)

ẋ (t) = dx(t)
dt = F (x (t) , a (t))

J (a) =
∫ t f

t0
L [x (t) , a (t) , t] dt + Φ

[
x (t0) , t0, x

(
t f

)
, t f

]
.

(1.8)

Herea (·) is a function of system’s dynamicx (t). And the objective of this optimal control problem is:

max
a(•),x(t f )

{
J =

∫ T

0 L [t, x (t) , a (t)]dt + Φ [x (T) ,T]
}

s. t. ẋ (t) = F [t, x (t) , a (t)] .

(1.9)

Bellman Equation

Solving an optimal control problem, one need to deal with thefollowing three sub-problems: the dynamic

programming, the maximum principle, and the boundary valueproblem. Solving the optimal control problem is

to find an optimal policy, which has the property that, whatever the initial state and decision are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from the decision in the firs

step. Dynamic programming is a method for solving complex problems by breaking them down into simpler

subproblems. The idea behind dynamic programming is quite simple. In general, to solve a given problem, we

need to solve different parts of the problem (subproblems), then combine the solutions of the subproblems to

reach an overall solution. Often, many of these subproblemsare really the same. The dynamic programming

approach seeks to solve each subproblem only once, thus reducing the number of computations: once the

solution to a given subproblem has been computed, it is stored or memoized: the next time the same solution is

needed, it is simply looked up. This approach is especially useful when the number of repeating subproblems

grows exponentially as a function of the size of the input. The Bellman equation writes the value of a decision

problem at a certain point in time in terms of the payoff from some initial choices and the value of the remaining

decision problem that results from those initial choices. This breaks a dynamic optimization problem into
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simpler subproblems. For example, for a system, from intialtime t0 to final timet f , if the instant action isa(t)

and the system state dynamic isx(t), the utility function isV(x0), instant payoff is

V (x0) = max
a0

∞∑
t=0
βtF (xt, at), ∀t = 0, 1, 2, . . . . (1.10)

Then by following a dynamic programming approach, the principle of optimality, the optimal control problem

can break into optimal sub-problems:

max
a0

{
F (x0, a0) + β

[
max
{a0}

∞
t=1

∞∑
t=1
βt−1F (xt, at)

]}
, ∀t = 1, 2, . . . . (1.11)

We can see that, the whole optimal control problem from timet = 0 to∞ is divided into two parts of sub-

problems. One can then first solve the insider optimization subproblem, then get the optimal control policy

for the entire problem. Futhermore, if we keep on dividing this into smaller subproblem, the original optimal

control problem can be rewritten as a recursive value function such that:

V (x0)=max
a0
{F (x0, a0)+βV (x1)} . (1.12)

To solve such Bellman equation, existing technics can be used. One possible solution is to use backward

induction. Backward induction is the process of reasoning backwards in time, from the end of a problem or

situation, to determine a sequence of optimal actions. It proceeds by first considering the last time a decision

might be made and choosing what to do in any situation at that time. Using this information, one can then

determine what to do at the second-to-last time of decision.This process continues backwards until one has

determined the best action for every possible situation at every point in time. The backward induction can be

done either analytically in a few special cases, or numerically on a computer. The second technical to solve the

Bellamn equation is to calculate the first order conditions associated with it, and then use the envelope theorem

to obtain a system of differential equations which is possible to be solved.

Hamilton-Jacobi-Bellman (HJB) equation

Following the dynamic programming approach, the optimal control problem can be reformed into an Hamilton-

Jacobi-Bellman (HJB) equation. Recall that the formal optimal control system is described as:
max

a(•),x(T)

{
J =

∫ T

0 L [t, x (t) , a (t)]dt

s. t. ẋ (t) = F [t, x (t) , a (t)]
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Define the optimal value function at any timet asV as:

V (t, x (t) ,T)= max
a(•),x(T)

∫ T

t
L [s, x (s) , a (s)]ds+ Φ [x (T) ,T]

s. t. ẋ (s) = F [s, x (s) , a (s)] .
(1.13)

For any short enough time period∆t > 0, the above equation can be written as:

V (t, x (t) ,T)= max
a(•),x(T)
s∈[t,T]

{∫ t+∆t

t
L [s, x (s) , a (s)]ds+

∫ T

t+∆t
L [s, x (s) , a (s)] + Φ [x (T) ,T]

}

s. t. ẋ (s) = F [s, x (s) , a (s)] , x (t) given.

. (1.14)

The control functiona (·) should also be optimal in the subperiods ∈ [t + ∆t,T], thus the above equation can

be rewritten as:

V (t, x (t) ,T)= max
a(•),s∈[t,t+∆t]



∫ t+∆t

t
L [s, x (s) , a (s)]ds+ max

a(•),x(T)
s∈[t+∆t,T]

{∫ T

t+∆t
L [s, x (s) , a (s)] + Φ [x (T) ,T]

}


s. t. ẋ (s) =



F [s, x (s) , a (s)] , x (t) given, s∈ [t, t + ∆t]

F [s, x (s) , a (s)] , x (t + ∆t) given, s∈ [t + ∆t,T] .

Using the definition of value functionV, the above function can be rewritten as:

V (t, x (t) ,T)= max
a(•),s∈[t,t+∆t]

{∫ t+∆t

t
L [s, x (s) , a (s)]ds+ V (t + ∆t, x (t + ∆t))

}

s. t. ẋ (s) = F [s, x (s) , a (s)] , x (t) given.
(1.15)

This recursive value functionV consists of two parts: The optimal value in the initial period t and the continuing

optimal value. Due to the state equation, the continuing optimal value are affected by the optimal control during

the initial period. Consider the right hand of the above equation, which consists of two parts. According to

Taylor’s theorem, the value function in the above equation can be rewritten as:

V (t + ∆t, x (t + ∆t)) = V (t, x (t)) +
dV (t, x (t))

dt
· ∆t+o(t) .

wheredV(t,x(t))
dt =

∂V(t,x(t))
∂t +

∂V(t,x(t))
∂x

∂x
∂t . Then,

V (t + ∆t, x (t + ∆t)) = V (t, x (t)) + o (∆t) +
[

dV(t,x(t))
dt +

∂V(t,x(t))
∂x F (t, x (t) , a (t))

]
∆t . (1.16)
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For the first part in the original equation, also following Tylor’s theorem, we have

∫ t+∆t

t
L [s, x (s) , a (s)]ds=

∫ t

t
L [s, x (s) , a (s)]ds+L [t, x (t) , a (t)] ∆t+o(∆t)

=L [t, x (t) , a (t)] ∆t+o(∆t) .
(1.17)

Substituting 1.16 and 1.17 back into 1.15, we have:

V (t, x (t) ,T)= max
a(•),s∈[t,t+∆t]

{∫ t+∆t

t
L [s, x (s) , a (s)]ds+ V (t + ∆t, x (t + ∆t))

}
=

max
a(•),x(T)
s∈[t,t+∆t]

{
L [t, x (t) , a (t)] ∆t + V (t, x (t) ,T) +

[
dV(t,x(t))

dt +
∂V(t,x(t))

∂x F (t, x (t) , a (t))
]
∆t + o(t)

}

s. t. ẋ (s) = F [s, x (s) , a (s)] , x (t) given.

(1.18)

After reduction, 1.18 becomes:

V (t, x (t) ,T)= max
a(•),x(T)
s∈[t,t+∆t]

{
L [t, x (t) , a (t)] + dV(t,x(t))

dt +
∂V(t,x(t))

∂x F (t, x (t) , a (t)) + o(∆t)
∆t

}

s. t. ẋ (s) = F [s, x (s) , a (s)] , x (t) given.

(1.19)

Since∆t → 0 , equation 1.19 can be reduced to:

−dV(t,x(t))
dt
=max

a(t)

{
L [t, x (t) , a (t)] + ∂V(t,x(t))

∂x F (t, x (t) , a (t))
}

Letting a represent the value ofa(t) at time point s=t, then we get the HJB equation as:

−dV(t,x(t))
dt
=max

a

{
L [t, x (t) , a] + ∂V(t,x(t))

∂x F (t, x (t) , a)
}

. (1.20)

we call the part inside the brace as “Hamiltonian function”,which is labeled asH [x, a, t]. Thus the HJB

equation can be written as−∂V(x,t)
∂t = max

a(t)
H [x (t) , a (t) , t].
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Pontryagin’s Maximum Principle

Assume the optimal control exists, such thata∗ (t) = arg max
a∈A

H [x∗ (t) , a (t) , t], then the above HJB equation

becomes:
∂V (x, t)
∂t

+H
[
x∗ (t) , a∗ (t) , t

]
= 0

Derivate HJB equation with respect to state variablex(t),

∂H

∂x
+

d
dt

(
∂V (x, t)
∂x

)
= 0

Let λ = ∂V(x,t)
∂x denote the ’co-state variable’, we haveλ̇ = −∂H(λ,x∗,a∗)

∂x

Finally, the Hamilton function is:

H [x, λ, a, t] = λ · F (x, a) +L [x, a, t] (1.21)

Note that this function depends only on derivativeλ, but not onV itself. λ is important, because the optimala∗

is a function of variableλ.

Optimal Control as Boundary Value Problem

The optimal control is reduced into a boundary value problem. For the optimal control problem, ifa∗(t) is an

optimal control policy, andx ∗ (t) is the corresponding state trajectory, there exists a co-state functionλ such

that: 

a∗ (t) = arg max
a∈A

H [x∗ (t) , a (t) , t]

ẋ∗ (t) = dx(t)
dt = F (x∗, a∗)

λ̇ (t) = dλ(t)
dt = −

∂H [x∗,a∗,t]
∂x .

which is subjected toλ (T) = ∂L[x,a,T]
∂x (usually,λ (T) = 0 ) andx (0) = x0. This above differential equation set

is possible to be solved, and then the optimal control policycan be found.

1.4.2 Multi-agent Differential Game

Differential games are related closely with optimal control problems. In the last subsection, we discussed about

optimal control, that the single agent needs to decide its optimal policy for single controla(t). By contrast,

differential game theory generalizes single agent one control to two controls and two criteria, one for each
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agent. Each agent attempts to control the state of the systemso as to achieve his goal; the system responds to

the inputs of both agents.

As a game, as we recorded, differential game is a noncooperative dynamic game, played in continuous time.

As a control problem, differential game extend the single-agent optimal control to multiagent case. Thus it uses

tools, methods and models of both control theory and game theory.

Similar as optimal control, in differential game, there is also a system dynamicx(t), describing the state of

the system while time is going on. If dynamic system is simple, state vector can be one dimension; If dynamic

system is complicate, the state vector has several dimension and game is hard to analyze. And like any game,

the agents has actions, for agent-i, at timet, its action is denoted asui(t). The system state is determined by

differential equations, and all agents can influence the rate of change of the state vector through the choice of

their current actions:

ẋ (t) = f (t, x (t) , u1 (t) , u2 (t) , . . . , uN (t)) , x (0) = x0. (1.22)

agent-i’s utility is:

Ji =
∫ T

0 e−r i tFi (t, x (t) , u1 (t) , u2 (t) , . . . , uN (t)) dt (1.23)

Similarly as the optimal control,Fi represents the instant payoff for agent-i.

Information Structure about Dynamic State

For agent to play the differential game, the available information for the system state is required. There are

three cases of available information for a differential game: First, open-loop information, which means agents

only have common knowledge of state vector att = 0. Strategy is conditioned only on current timet. In

other words, the agents have minimal amount of information.Their strategies is fixed at the start of the game.

What particular action to take at specific instance depends only on the instant time t. agents only consider

about time. Second case is feedback information, that at time t, agents are assumed to know the values of state

variables at timet − ǫ, whereǫ is positive and arbitrarily small. This means, till timet, the history of the game

is summarized in the value ofx(t). Third case is close-loop information, that at timet, agents have perfect

information about the past and present. agents have access to the value of the state variable from time 0 to time

t, namely{x (s) , 0 ≤ s≤ t}.
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Multiple Agents’ Value Functions

Denote in a two agent zero-sum differential game, the agents actions areui(t) andvi(t), respectively. The system

state with time varying is 

ẋ (t) = F (x (t) , u (t) , v (t))

x (t0) = x0

And since we consider zero-sum game, we define the unique utility function for the systems as

J (t0, x0, u, v) =
∫ T

t0
L [x (t) , u (t) , v (t) , t] dt + Φ (x (T))

Agent A controls variableu and wants to maximizeJ, while agent B controls variablev and wants to minimize

J. Using this system utility function and following the similar approach in the single agent optimal control

problem, we can define two value functions for these two agents, respectively. For agent A, because it want to

maximize the value ofJ, we denote

V+ (x, t) = min
v

max
u

J (t0, x0, u, v)

We call this the “upper value function” of the differential game. Likewise, agent B’s value function is

V− (x, t) = max
u

min
v

J (t0, x0, u, v)

which is called “lower value function”. Using these two value functions, the dynamic programming for a

differential game can be introduced.

Because there are two value functions in such a game system, there will be two HJB equations. For upper

value functionV+, the HJB equation is

∂V+ (x, t)
∂t

= min
v

max
u

{
∂V+

∂x
F (x, u, v, t) +L [x, u, v, t]

}

while for the lower value functionV− it is

∂V− (x, t)
∂t

= max
u

min
v

{
∂V−

∂x
F (x, u, v, t) +L [x, u, v, t]

}
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The two Hamiltonian functions are defined based on the above two HJB equations:

H+ (x, λ) = min
v

max
u
{λF (x, u, v, t) +L [x, u, v, t]}

H− (x, λ) = max
u

min
v
{λF (x, u, v, t) +L [x, u, v, t]}

Hamilton-Jacobi-Isaac-Bellman (HJIB) Equation

The solution of the differential game is where the Issacs’ condition holds. In the single agent optimal control,

the HJB equation is a key intermediate process for finding optimal solution. In conventional differential game

problems, it is considered as a basic problem to find appropriate classes of strategies which enable us to

characterizeV+, V− and to identifyV+ with V− under min-max (Isaacs) condition. If the strategies for theboth

agents can satisfy the Isaacs condition, the strategies areminmax solutions which are optimal and equivalent

to the Nash equilibrium.

The Isaacs’ condition is satisfied when two agents Hamiltonian function equals:H+ (x, λ) = H− (x, λ), which

is

min
v

max
u
{λF +L} = max

u
min

v
{λF +L} . (1.24)

When the Isaacs’ condition is satisfied, we say the differential game has a valueV, such that

V (x, t) = J (t0, x0, u∗, v∗) = max
u

J (t0, x0, u, v∗) = min
v

J (t0, x0, u∗, v) . (1.25)

Obviously,u∗ = u (x, λ, v) andv∗ = v (x, λ, u) are optimal for two agents, and also(u∗, v∗) is the saddle point.

In this case, agent A will chooseu∗ because he is afraid agent B will choosev∗; while agent B will chosev∗

because he is afraid agent A will chooseu∗.

Pontryagins Maximum Principle for Differential Games

Assume Issacs condition holds, thus we can design optimal controls asu∗ (x, λ, v) andv∗ (x, λ, u). Similarly as

in the optimal control problem, define the co-state variableλ as:

λ∗ (t) = ∂V+(x,t)
∂x =

∂V−(x,t)
∂x . (1.26)
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Then derivate HJB equation with respect to state variablex(t):

∂λ∗

∂t
=
∂H (x∗, λ∗, u∗, v∗)

∂x
,

associated with Hamiltonian functionH (x, λ, u, v,) = λF (x, u, v, t) +L [x, u, v, t].

Finally, do the optimization work, use∂H(x,λ,u,v̄)
∂u = 0 to ge a differential equation ofu∗ with variablesu∗ and

λ∗; use ∂−H(x,λ,ū,v)
∂v = 0 to get a function ofv∗, with variablesv∗ andλ∗. Then the saddle point(u∗, v∗) can be

derived.

In the mathematical optimization method of dynamic programming, backward induction is one of the main

methods for solving the Bellman equation. In game theory, backward induction is a method used to compute

subgame perfect equilibria in sequential games. The only difference is that optimization involves just one

decision maker, who chooses what to do at each point of time, whereas game theory analyzes how the decisions

of several agents interact. That is, by anticipating what the last agent will do in each situation, it is possible to

determine what the second-to-last agent will do, and so on.
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1.5 Game Theory as New Paradigm for Cognitive Radio Network

1.5.1 Cognitive Radio Networks and Research Challenges

The traditional wireless networks are characterized by a fixed spectrum assignment policy. Those traditional

spectrum assignment policy forces spectrum to behave like afragmented disk. However, up to now, the band-

width is expensive and good frequencies are already taken bylarge authorities such as telecom companies

and TV broadcasting companies. Those traditional spectrumsharing approaches based on a fully cooperative,

static, and centralized network environment are no longer applicable. According to the investigation from FCC,

a large portion of the assigned spectrum is used sporadically and geographical variations in the utilization of

assigned spectrum ranges from 15% to 85% with a high variancein time. The limited available spectrum

and the inefficiency in the spectrum usage necessitate a new communication paradigm to exploit the existing

wireless spectrum opportunistically.

Therefore, unlicensed wireless channels is getting less. However, on the other hand, the existing licensed

wireless channels are not efficiently utilized. (e.g. Some TV companies are not busy in theearly morning, but

other unlicensed wireless users still cannot use these freechannels). To tackle this problem scientists worked

on a new generation wireless network: cognitive radio, which is a transceiver designed to use the best wireless

channels in its vicinity. This new networking paradigm is referred to as Next Generation (xG) Networks as

well as Dynamic Spectrum Access (DSA) and cognitive radio networks. Such a radio automatically detects

available channels in wireless spectrum, then accordinglychanges its transmission or reception parameters to

allow more concurrent wireless communications in a given spectrum band at one location. This process is

a form of dynamic spectrum management. As definition, a cognitive radio is also called a software defined

radio. A cognitive radio agent monitors its own performancecontinuously, in addition to sensing the radio’s

output. it then uses this information to determine the radiofrequency environment, channel conditions, link

performance, etc., and adjusts the radio’s settings to provide the required quality of service to user requirements.

The following figure shows the high level concepts in cognitive radio networks [20].
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Figure 1.14: Cognitive radio system concepts.

The steps of the cognitive cycle [1] are as follows: (1) Spectrum sensing: A cognitive radio monitors the

available spectrum bands, captures their information, andthen detects the spectrum holes. (2) Spectrum anal-

ysis: The characteristics of the spectrum holes that are detected through spectrum sensing are estimated. (3)

Spectrum decision: A cognitive radio determines the data rate, the transmission mode, and the bandwidth of

the transmission. Then, the appropriate spectrum band is chosen according to the spectrum characteristics and

user requirements. Once the operating spectrum band is determined, the communication can be performed over

this spectrum band. However, since the radio environment changes over time and space, the cognitive radio

should keep track of the changes of the radio environment.
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Figure 1.15: Cognitive cycle.

The basic advantaged of cognitive radio network is that the networks agents are equipped with cognitive

radio to sense the channels are busy (used by primary user) ornot. Primary Users (PUs): licensed to use large

portion of channels. PU some times busy, sometimes free. (e.g. TV companies.) Secondary Users (SUs):

Sense the channels. If a channel is not busily used by PU, SU can temporarily use this channel. (e.g. Personal

PCs.) The traditional network agents can not jump between different channels. But in cognitive radio network,

agents can do this! This drastically improves the channel efficiency by detecting the free channels.

Being a cutting edge of communication and multi-agent system research, cognitive radio covers a large range

of research topics. The research challenges remain numerous, namely, intelligence distribution and implemen-

tation, delay/protocol overhead, cross-layer design, security, sensingalgorithms, and flexible hardware design.

In the past decade, there has emerged a huge amount of published articles and the interdisciplinary research of

the cognitive radio. Basically, the challenge topics mainly fall into the following disciplines.

Decision Making

As cognitive radio network is driven by a decision making, the first relevant research challenge is where and

how the decision (e.g., the decision on spectrum availability, strategy for selecting channel for sensing or

access, or how to optimize radio performance) should be taken. The first issue is directly related to whether the

cognitive process should be implemented in a centralized ordistributed fashion. This aspect is more critical not
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only for cognitive networks, where intelligence is more likely to be distributed, but also for cognitive radios, as

decision making could be influenced by collaboration between them and also with other devices. The second

issue is the choice of the decision algorithms which should be customized to fulfill the cognitive radio network

requirements.

Learning Process

Research in machine learning has grown dramatically recently, with significant amount of progress. One of the

important aspects of the learning mechanisms is whether thelearning performed is supervised or unsupervised.

In the context of a cognitive radio networks, either technique may be applied. The first challenge of learning

is to avoid wrong choices before a feasible decision, especially in autonomous or unsupervised learning pro-

cess. The second issue is to concretely define learning process in the context of cognitive radio networks, its

objectives and contributions.

Security

The challenges of employing cognitive radio networks include that of ensuring secure devices operations.

Security in this context includes enforcement of rules. Enforcement for static systems is already a challenge due

to the amount of resources necessary to authorize equipment, the requirement of obtaining proof that violations

have occurred, and the determination of the violator identities. As the systems become more dynamic, there

is an increase in the number of potential interaction that can lead to a violation. Additionally, this leads to a

decrease of the time and special scales of these interactions. Both of these changes will amplify the enforcement

challenges.

Sensing

Following challenge is about spectrum sensing, especiallyon the accuracy on spectrum occupancy decision,

sensing time, and malicious adversary, taking into accountthe fundamental limits of spectrum sensing algo-

rithms due to noise uncertainty multi-path fading and shadowing. In order to solve hidden PU problem and

mitigate the impact of these issues, cooperative spectrum sensing has been shown to be an effective method to

improve the detection performance by exploiting spatial diversity in the observations of spatially located cog-

nitive radios. Challenges of cooperative sensing include reducing cooperation overhead, developing efficient

information sharing algorithms. The coordination algorithm for cooperation should be robust to changes and
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failures in the network, and introduce a minimum amount of delay.

1.5.2 Effectiveness of Game Theory in CR Networks

Game theory has been recognized as an important tool in studying, modeling, and analyzing the cognitive

interaction process. In a cognitive radio network, users are intelligent and have the ability to observe, learn,

and act to optimize their performance. If they belong to different authorities and pursue different goals, e.g.,

compete for an open unlicensed band, fully cooperative behaviors cannot be taken for granted. Instead, users

will only cooperate with others if cooperation can bring them more benefit. Moreover, the surrounding radio

environment keeps changing, due to the unreliable and broadcast nature of wireless channels, user mobility

and dynamic topology, and traffic variations. In traditional spectrum sharing, even a smallchange in the radio

environment will trigger the network controller to re-allocate the spectrum resources, which results in a lot of

communication overhead. To tackle the above challenges, game theory has naturally become an important tool

that is ideal and essential in studying, modeling, and analyzing the cognitive interaction process, and designing

efficient, self-enforcing, distributed and scalable spectrumsharing schemes. For instance, the cooperative

spectrum sensing is usually using cautionary game theory todesign the algorithm; noncooperative game theory

is always used for spectrum decision making; The attack-defence security scenario can be well quantified

modeled as a zero-sum game. For the learning about environment and competitor, game theory is also a very

powerful tool, especially, the imperfect monitoring gamesgive us a light to deal with the learning and optimal

decision making in the noisy communication environments.
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1.6 Game Theoretical Frameworks for Each Layer in Cognitive Ra dio

Network

1.6.1 Application Layer: Market-Driven Spectrum Manageme nt

Spectrum management is the process of regulating the use of radio frequencies to promote efficient use and

gain a net social benefit. The term radio spectrum typically refers to the full frequency range from 3kHz

to 300GHz that may be used for wireless communication. Increasing demand for services such as mobile

telephones and many others has required changes in the philosophy of spectrum management. Demand for

wireless broadband has soared due to technological innovation, such as 3G and 4G mobile services, and the

rapid expansion of wireless internet services. Since the 1930s, spectrum was assigned through administrative

licensing. Limited by technology, signal interference wasonce considered as a major problem of spectrum use.

Therefore, exclusive licensing was established to protectlicensees’ signals. This former practice of discrete

bands licensed to groups of similar services is giving way, in many countries, to a ”spectrum auction” model

that is intended to speed technological innovation and improve the efficiency of spectrum use.

Cognitive radio is an innovative technology that enables intelligent radios to sense and learn from their spec-

trum environments [21]. It is a key technology leading us to next generation networks (xG) [1]. Cognitive radio

networks offer us various techniques solving the conflict between limited spectrum resources and the increas-

ing demand for wireless services [22]. There are two kinds ofmembers of cognitive radio networks: Primary

users (PUs) and secondary users (SUs). The PUs have licensesto utilize a large portion of the spectrum, while

the SUs are equipped with intelligent radios and can opportunistically access the legacy spectrum when the

PUs are temporarily free [23].

The PUs’ spectrum licences are issued by a spectrum management regulator in one country or one region

(e.g., the FCC in the USA, CRTC in Canada, and Ofcom in the UK) [22]. The PUs can hold spectrum licences

for long durations (e.g., several years or even decades). When they are not using the full space of their spectrum,

spectrum holes may exist [1]. PUs who own spectrum holes can sell their spectrum access opportunities to SUs

and thereby generate economic revenues [24]. In this sense,the spectrum itself becomes a kind offrequently

traded goodgoing from spectrum abundant PUs (i.e., spectrum sellers) to spectrum demanding SUs (i.e.,

spectrum buyers). This spectrum selling and buying scenario is referred to asmarket-driven spectrum trading

[25, 26], which is one of the most commonly utilized frameworks for dynamic spectrum access (DSA) [1, 23].
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Spectrum trading can “recycle” the PUs’ abundant spectrum holes and be utilized by the spectrum-stringent

SUs, and can generate extra profit for the PUs. Thus, spectrumtrading schemes are of great use to guarantee

efficiency in spectrum resource allocation [3-5]. One of the challenging issues in spectrum trading is how to

choose an optimal spectrum price for the PUs. Not a few prior works have studied this issue [6-12]. However,

these studies have been limited to a discrete time pricing scenario. Since the key feature of real world spectrum

trading is itsshort termor, even,real time, the PUs need to change their price decisions while as time pro-

gresses. Therefore, to propose a more accurate and more realistic spectrum pricing scheme, we should utilize

novel mathematical solutions, which can guarantee real-time optimal decision making. Furthermore, many of

the previous studies only analyzed the spectrum price itself, but omitted the fact that the PUs’ QoS settings

have a direct impact on their optimal price. Therefore, to design a real-time optimal pricing policy, we should

also take the QoS into consideration.

1.6.2 Physical Layer: Secure Spectrum Sensing

Cognitive radio [27] is an innovative and promising technology that enables the intelligent radios to sense and

learn from their spectrum environments. The cognitive radio networks offers various technologies to solve the

conflict between the limited spectrum resources and the increasing demand for wireless services. It is a key

technology that leading us to the next generation networks (xG) [28]. There are two kinds of users in cognitive

radio networks: primary user and secondary user. The primary users are those who are licensed to access the

spectrum channels, while the secondary user can opportunistically access if they sense that the current channel

is free.

However, same as other new technologies, the current researches in cognitive radio networks have not

enough focus on the security issues [29]. Most of the previous works on spectrum sensing and sharing ap-

proaches are based on assumptions that the cognitive radio users are behaving in a cooperative or a selfish

way [28][29][30][31]. When malicious attackers exist in the network, the legitimate secondary users will face

a hostile environment and consequently, their strategies for sensing and using the spectrum channels need to

be changed. Therefore, for the cognitive radio network manager, how to provide a secure spectrum sensing

scheme is of great value. One severe attack to cognitive radio network is theprimary user emulation (PUE)

attackwhich is originally proposed in [30][31][32]. In primary user emulation attack, the malicious attacker

sends jamming signals which have the same characteristic asthe signals from the primary users. On sensing

the primary-user-like signals, the legitimate secondary users (SU) can not distinguish them from the signals
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sent by the primary users (PU), which leads to a false alarm. As a result, these secondary users will quit the

spectrum channel which is considered as busy but actually attacked by the jamming signal from attacker.

To detect PUE attacks, Ruiliang Chenet.alpropose a proactive detection scheme [30][31]. In their approach,

the attacker is identified by comparing the received signal power with primary user’s signal power. Their

approach is based on the assumption that the attacker’s transmission power is considerably less than the primary

users. Followed by Chen’s work, several other approaches have been studied for proactive detection of PUE

attacks. Most of these proactive approaches provide qualitative analysis of countermeasures, but neglect the

fact that the cognitive attackers have the capability to strategically adjust their attacking strategy. When they

change attack strategies, the situation will inevitably become more complicated and severer. Therefore, beside

the proactive approaches, researchers also investigate the passive approaches which can be used to strategically

defend against the PUE attacks [28][33][34][35]. Beibei Wang and K. J. Ray Liu propose a stochastic game

based spectrum sensing and reserving scheme [28]. Minimax-Q learning scheme is used for the secondary

user to find their best strategies. Husheng Li and Zhu Han propose a passive anti-PUE approach [33][34].

In their approach, the attacker (secondary user) strategically jams (senses) a subset of spectrum channels.

The secondary user’s strategies is the probability for choosing a certain set of channels to sense. The Nash

equilibrium [36] defense strategy is derived. However, when more channels exists in the spectrum space and

the communication lasts a long time, this scheme will face a high computation complexity. Thomaset.al

introduce the Bayesian game to analyze the emulation attack[35]. In their work, the policy maker can adjust

the utilities and control the occurrence of emulation attacks based on radio’s belief. But this work assumes the

attacker has less power than primary user.

1.6.3 Media Access Control Layer: Cooperative Communicati on

The Wireless Networks (e.g., WMNs, WSNs and MANETs) [37] arevulnerable to various insider attacks

[38, 39]. With these insider attacks, the adversary compromises one or more member nodes, and changes them

into insider attackers. These malicious insider attackersgain access to the public/private keys, therefore they

can bypass the cryptographic system, and launch the attacksfrom inside of the network. Traditional secure

routing protocols such as SAODV [40], Ariadne [41], and EndairA [42] only focus on preventing the attacks

from unauthorized outsider nodes, but the attacks by the insider nodes may pose severe threats and may be

difficult to defend by only using cryptographic measures [38]. The insider attacks include selective forwarding

attacks, sybil attacks, sinkhole attacks, etc. [39]. Amongall the insider attacks, those violating the routing
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stage, play a significant role. In this paper, we investigatetheselective forwardingattack, which is a kind of

denial of service attack, launched in the routing stage. In this attack, the malicious insider attacker drops subset

of data-packets that it received. If the attacker drops every packet it received, it is known asblack holeattack

[43, 44, 45, 13, 46]. If the attacker selectively drops certain packets, it is calledgrey holeattack [38, 13] which

is more intelligent and harder to detect.

The notionselective forwarding attackis first proposed by C. Karlof [47]. So far, most of the previous

researches about selective forwarding attacks only focus on single malicious node detection and are under the

assumption that the malicious insider nodes do not collude with each other [38, 48, 49, 43, 44, 45, 13, 46].

D.M. Shila et al. propose an upstream neighbor and downstream neighbor joint monitoring scheme to observe

the packet dropping behavior of the insider nodes, and distinguish the attackers from normal nodes taking

into consideration of the channel quality [38]. W. Yu and K.J. Liu utilize the central limit theoremto find

the threshold for maximum tolerable false positive rate, and distinguish the malicious selective dropping from

the normal packet loss [48]. B. Xiao et al. propose a check-point based detection scheme to reveal the grey

hole attackers [45]. S. Ramaswamy et al. present a trustworthiness based algorithm to prevent the black hole

attacks [44]. P. Agarwal et al. construct a backbone networkconsisting of super power nodes which are

responsible for checking the misbehavior of all the insidernodes [13]. C.W. Yu et al. propose a distributed

monitoring and information sharing scheme to detect black hole nodes [46]. In all of these anti-selective

forwarding schemes, thecollusionbetween multiple attackers is not investigated. Moreover,most of them just

assume that the selective forwarding attack is launched individually, and attackers do not collude with each

other. Articles aboutWorm Holeattack, such as [50, 51], have investigated the colluding attack scenario, in

which the two wormhole attackers use out-band channels or in-band channels to falsify a misbehaving route

to bring harm to the wireless network. However, these works only concentrate on wormhole attackers and

unauthorized nodes, but do not consider the scenario multiple selective forwarding insiders whose attack is not

easy to be distinguished from normal loss rate. Therefore, it is of great importance to analyze the collusion

of the selective forwarding attackers, and accordingly propose an effective intrusion detection policy and anti-

collusion schemes.

The entities in the wireless networks naturally pursue to optimize their own objectives [52]. Not only the

legitimate user but also the malicious attackers want to maximize their utility. Game theory [36] provides

a rich set of mathematical tools and models for analyzing multi-criteria optimization problems based on the

information structure. There are growing interests in using game theory to solve the cooperation, incentive,
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optimization and attack-defence analysis problems [52]. Game theory has recently become notably prevalent in

wireless network security such as intrusion detection systems (IDS) [7, 39] and cooperation models [38, 48, 53,

49]. W. Yu et al. design a packet forwarding game [48], and model each two nodes in the network as a pair of

opponents, which is inspired by the classic prisoner’s dilemma game [36]. D.M. Shila et al proposes a stochastic

game model played between arbitrary source node and intermediate node [54]. N. Zhang et al. construct a

reputation establishment algorithm based on game theory, and analyze the strategies of the defenders in the

face of naive/smart attackers [53]. T.B Reddy divided the network into several clusters, in each of which, there

is an IDS node defending attackers. As the cluster head, the IDS tries to maintain the normal functionality of

the network by preventing the attacks while the attacker tries to disturb the network. Zero-sum game plays

between IDS node and intruders.

1.6.4 Data Link Layer: Anti-Sybil Attack with Game Framewor k

The Sybil attack [55] , firstly proposed in P2P network, meansone malicious node falsifies multiple identities

to cheat others. Recently, with the rapid development of thewireless ad hoc network, the Sybil attack presents

itself in this newly booming network and results in great impacts on legitimate communications. As the pre-

liminary step for further attacks, Sybil identities can strategically choose to either misbehave or stay honest

for advanced attacks. Moreover, some special features of wireless ad hoc networks, e.g., multi-hop routing,

autonomous entities, and limited energy, degrade and even disable traditional defenses against Sybil attacks.

Researchers have devoted great effort to fighting against Sybil attacks [56] . A traditional wayof detecting

misbehavior is observation. Since Sybil identities forgedby one malicious node always flock together, location-

based detection methods were presented. In addition, the reputation mechanism was employed to capture

the misbehavior in wireless ad hoc networks [57]. Generally, previous works assume that member nodes

voluntarily share their local observations, however, in resource-starved networks, cooperative detection cannot

always be achieved. Moreover, malicious nodes may propagate false information to disturb the detection

system. Zhou et al. [58] employed fixed infrastructure to conduct the observation, but it is unfeasible in fully

self-organized environment.

Resource test is a common method to detect Sybil nodes The conventional resource test includes computa-

tion, storage, communication and radio resource test. Morerecently, psychometric tests and color tests were

proposed to identify Sybil groups, based on the fact that Sybil identities forged by one user share the same

personal psychometric nature. However, these intended resource tests have side effects on wireless ad hoc net-
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works due to the limited resource on each node. If nodes spendtoo much resource on testing, the performance

of normal communications would be affected. Game theory is a promising discipline for network security. It

provides rich mathematical tools for resolving multi-criteria optimization problems among rational entities, in

which each agent chooses an optimal action based on the counters peculation of other agents optimal actions.

Margolin et al. [59] proposed a signaling game model to entice Sybil nodes into confessing. In this work, only

Sybil nodes play the game, and only the low-profit Sybil node is willing to play the game at the beginning stage.

Later, Pal et al. [60] made an improvement by presenting a Sybil Detection Game, in which all participants

are motivated to reveal Sybil identities. However, in this paper, an administrator is required to provide some

amount of budget. In a distributed environment full of autonomous entities, deploying such an administrator

is infeasible. Danezis [61] gave some general attributes ofthe Nash equilibrium on honest users, but lack the

discussion on the behavior of Sybils.



Chapter 2

Differential Game Approach for Spectrum Man-

agement

2.1 Introduction

In cognitive radio networks, among the primary users (PUs) and the secondary users (SUs), market-driven

spectrum trading can be formed. In spectrum trading, the PUscompete against one another by adjusting their

spectrum pricing and quality setting strategies so as to attract the SU customers and optimize revenue. Most

of the existing game-based approaches for spectrum pricinghave been limited to a discrete time case and lack

analysis of spectrum quality. However, one key feature of spectrum trading is its short term or, even, real time,

since the PUs’ spectrum availability, quality, and price keep changing over time. Therefore, a spectrum pricing

policy should be dynamically optimal in continuous time.

By utilizing differential game theory, we address the real-time optimal pricing problem for PUs. To our

best knowledge, this is the first study of real-time spectrumpricing. We first propose a multiple PU spectrum

trading game model in which the PUs compete with each other not only on spectrum price, but also on quality of

service (QoS). Then, based on this game model, we analyze theoptimal pricing strategy for the QoS-free static

networks in which the PUs’ number and QoS requirement are constant. After that, we extend the analysis to

QoS-aware dynamic networks in which the SUs’ number and PUs’QoS level keep changing over time. Finally,

Nash equilibriums are derived for both of these two scenarios and an optimal pricing and QoS setting policy

is formulated. Using case study, we illustrate an optimal pricing policy for a QoS-free 2-PU spectrum trading

market and investigate the trajectory and evolution of these two PUs’ optimal prices.

Table 2.1: Solutions for optimal spectrum pricing problems

Single primary user pricing Multiple primary users pricing
One-shot spectrum trading Single-agent optimization Basic game
Repeated spectrum trading Dynamic programming Repeated game
Time-varying spectrum trading Optimal control Differential game

In this part, we keep our concentration on the real-time spectrum pricing problem for any future generation
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networks using cognitive radio (e.g., 802.22 networks) [1]. Our contribution falls into the following three cat-

egories: 1. First, an economic-based model is constructed to investigate the multiple PUs’ competition. Since

the PUs hold spectrum licences for long durations, the number of PUs can be seen as constant and the compe-

tition in spectrum trading is much like a multi-agent oligopoly market [23]. To capture the competitive feature

in spectrum trading, we borrow knowledge from microeconomics, and model the multiple PUs’ relationship as

an oligopoly competition. 2. Furthermore, we not only investigate the optimal spectrum price, but also analyze

the relationship between spectrum pricing and QoS setting [23]. By improving the QoS, a PU will increase

the cost for itself. However, on the contrary, it can attractmore SUs so as to improve revenue. We analyze

the impact of QoS on the PUs’ optimal pricing policy and also study the optimal QoS setting strategy for the

PUs. 3. Finally, a differential game-based solution is proposed to address the problem of real-time spectrum

pricing. In cognitive radio networks, the optimal sensing/pricing time should be 6 ms for every 100 ms of frame

duration [62]. Therefore, spectrum trading can be viewed asa time-continuous process with a huge number

of repetitions. This requires the PUs to make every spectrumpricing decision in real time. To this end, we

utilize the time-continuous differential game [63, 64] to construct a real-time spectrum trading model. Nash

equilibrium is derived, which provides the PUs with a real-time optimal spectrum pricing policy.

2.2 Related Works

2.2.1 Game Theory for Spectrum Trading

The games can be zero-sum and non-zero sum games. In a zero-sum game, the sum of the agents’ utility is

identical to zero. Thus the zero-sum games naturally do not allow for any cooperation between the agents

because, in the two-agent zero-sum game, what one agent gains incurs a loss to the other palyer. however, in

other non-zero sum games, In the literature, many kinds of games have been utilized for spectrum trading de-

sign, including one-shot games, repeated games, and coalition games. However, to the best of our knowledge,

real-time pricing has not yet been discussed.

D. Niyato et al., in [24], considered a repeated game-based spectrum pricing scheme. However, when

the game’s repetition reaches a large number or even becomesinfinite, the computation complexity of the

repeated game will increase exponentially. Jia and Zhang, in [65], assumed that the spectrum buyers’ arrival

rate is determined by the quadratic utility function and then investigated the price and capacity competition

for the duopoly spectrum market of two PUs. However, in the cognitive radio network, the SU flow should
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be influenced by the unit spectrum price and the PUs should also consider the quality of service. Kim, Choi

and Shin [66] analyzed the competition between wireless service providers (WSPs) by introducing a two-

stage extensive form game in which the agents perform a pricegame in the first stage and play the quality

competition afterwards. However, in real-world networks,the price should be decided simultaneously with

the quality decision. Thus, the agents may have no chance to observe a signal of price in advance and decide

the quality afterwards. Wu et al. studied the dynamic behaviors of both PUs and SUs using an evolutionary

game [26]. In their model, the SU chooses whether to cooperate and the PU chooses whether to allocate the

sub-slot to SUs. By using their protocol, the dynamics converge to the evolutionary stable strategy efficiently.

M. Zekri et al., in [67], presented a vertical handover decision mechanism that enables network selection using

the Nash and Stackelberg stage game. In their work, based on the input of network capacities and prices, the

Nash/Stackelberg equilibrium is obtained and utilized for analyzing user revenue and the VHO blocking rate.

All of the above works utilized discrete-time game models toaddress spectrum trading and pricing schemes.

However, since spectrum trading repeats very frequently and spectrum pricing decisions are made in real time,

investigating spectrum pricing and QoS setting policy withtime-continuous solutions is necessary.

2.2.2 Application of Differential Games

Differential games originated in the early 1950s. The differential game can be utilized to analyze time-varying

multiple agent optimization systems. In the beginning, theapplication of the differential game was mostly

developed as a zero-sum pursuit and evasion game for military problems. Starr and Ho, in [63], investigated

the Nash equilibrium in multi-agent nonzero-sum differential games, which is well-known as the maximum

principle. M. Rangaswamy and B.E. Wolfgang described the solution condition of differential games in [68].

Differential games have been widely studied for management science [64], investment, and advertising [69].

Differential games natively have a strong relationship with optimal control theory [70], and have been success-

fully applied in many disciplines, including not only economics, but also automata theory and environmental

science. In particular, cooperative differential games represent one of the cutting edges of fundamental game

theory research.

Differential games provide us with a rich set of analytical frameworks for real-time decision making systems

[63]. Many differential game models can be well solved by using existing techniques. Differential games

are of great academic value and have attracted much researchinterest. However, so far, they have rarely

been introduced into computer science and communication networks. In the cognitive radio spectrum trading
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market, since spectrum pricing is required to be dynamic andreal-time, it is promising to utilize differential

games to solve spectrum pricing problems.

2.3 Real-Time Spectrum Pricing Scenario

Consider in a cognitive radio network which provides time-division multiple access (TDMA), the spectrum

range is divided into multiple channels. There are multiplePUs, each of which has licence to a large portion

of spectrum channels. The secondary users (SUs) do not have licence to the spectrum channels, but sense the

spectrum environment, search for the free channels, buy thespectrum access opportunities from the primary

user who is not using some portion of its licensed spectrum. The secondary users does not differentiate between

the multiple primary users if they charge the identical unitprice and provide same quality of the spectrum

services.

The primary useri = 1, ...,N is non-cooperative in the sense that it pursues the optimized profit for itself.

Each of theN primary users wants to sell a part of its licensed spectrums to the secondary users. And the

spectrum management will repeats during time periodt ∈ [0,T]. At each time instancet, the action of thei-th

primary user is the price that it can charge for each unit of the spectrum, which is denoted aspi (t). Besides the

spectrum price competition, to attract the secondary user to its spectrum service, the primary user also needs

to improve its channel service quality (QoS) for its secondary users. Letbi(t) denote the primary user’s effort

for improving the QoS. If the secondary user are not satisfiedwith the spectrum price or QoS (e.g. throughput,

losing rate, or packet error), it will give up using the current primary user’s spectrum and switch to some other

primary user.

2.4 QoS-Free Pricing Model for Static Networks

Consider that, in a cognitive radio network, PUsi = 1, ...,N are non-cooperative. Each of them competes with

other PUs in a spectrum trading market and pursues that maximization of its own economic revenue during

time periodt ∈ [0,T]. In this section, we first study a relatively simpler case: AQoS-free and static network in

which all of the PUs have the identical quality of service (QoS) and the number of SUs does not change over

time. In Figure 2.1, we illustrate the QoS-free spectrum pricing problem for a static network with two PUs.
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Figure 2.1: QoS-free spectrum trading in a static network.

2.4.1 Secondary User Flow

In the static network, the total spectrum demand is constant, and the QoS from all of the PUs are identical. At

each time instancet, each PU-i has a spectrum selling quantitySi(t), and will choose its strategic pricepi(t).

After all PUs have chosen their prices, theN PUs’ price profile will be formed:p = (p1, . . . , pi , . . . , pN) . (2.1)

This price profile is common knowledge, which means that one PU’s price can be observed by all the SUs and

all its rival PUs. Observing PU-i’s price pi(t), there will be a portion of SUs who can not bear such a price,

leave PU-i, and switch to buy another PU’s spectrum. Record PU-i’s SU losing rate asxi(t). Thus, for all the

other PUs excepti, the summation of their lost spectrum selling quantity is:L−i(t) =
n∑

j=1, j,i

S j(t) · x j(t).

Then for PU-i, its spectrum selling quantity at time instancet + dt (dt is an extremely small amount of time)

is denoted asSi(t + dt), which consists of two parts:

R = xi(t) · Si(t) · dt

Spectrum selling quantity reduction because some SUs cannot bear PU-i’s price, thus, they leave PU-i’s spec-

trum range.
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I = yi(t) · L−i(t) · dt

Spectrum selling quantity increment induced by other PUs’ customer SUs switching to PU-i. Hereyi is a

reallocation function, which indicates the portion of all the SUs who leave their previous PUs and switch to

PU-i. In the QoS-free static network, we assume that, the SUs who leave PU-i will be equally distributed to

other PUs, which indicatesy j = 1/(N − 1).

Therefore, PU-i’s spectrum selling quantity is:

Si (t + dt) = R + I

= Si (t) · [1 − xi (t)] · dt + 1
N−1 ·

N∑
j=1, j,i

S j (t) · x j (t) · dt,
(2.2)

which indicates:

Ṡi = −Si (t) · xi (t) +
1

N − 1
·

N∑

j=1, j,i

S j (t) · x j (t). (2.3)

Here,Ṡi is the differentiation ofSi with respect to timet. It is called “the dynamic of PU-i’s spectrum selling

quantity.” The meaning of this formula is obvious: On the left hand, it is the instant changing of PU-i’s spectrum

selling quantity; on the right hand, it is the summation of selling quantity’s instant degradation due to PU-i’s

price, and instant increment due to the other PUs’ losses.

2.4.2 Primary User’s Objective Function

According to dynamic Function 2.3, we defined PU-i’s overall utility functions as follows:

Πd
i =

∫ T

0
(pi(t) − ci) Si(t)dt, i = 1, ...,N. (2.4)

Πa
i = Λ (Si (T)) , i = 1, ...,N. (2.5)

whereΠd
i is the integral profit that primary useri gained within the whole duration of the spectrum trading

process andΠa
i is the additional profit gained at the end of the spectrum trading.

PU-i’s objective is to maximize its overall utility which is the sum ofΠd
i andΠa

i . Thus, the spectrum trading
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with N PUs can be modeled as the following optimization problem:

Max
pi

{
Ji = Π

d
i + Π

a
i

}

= Max
pi

{
Ji =

∫ T

0
(pi(t) − ci) Si(t)dt + Λ (Si (T))

}
,

(2.6)

with constraintsṠi = −Si(t) · xi(t)+ 1
N−1 ·

n∑
j=1, j,i

S j(t) · x j(t) and 0≤ Si (0) ≤ 1, wheret ∈ [0,T] and i = 1, ...,N.

Following these optimization constraints, we define the Nash equilibrium solution for the QoS-free spectrum-

pricing as follows:

Definition 2 In the spectrum pricing game, let pi denote the pricing strategy for each primary user i, i=

1, . . . ,N, and Ji
[
p1, . . . , pi , . . . , pN

]
be its utility function. A Nash equilibrium solution p∗i is defined as:

Ji

[
p∗1, ..., p

∗
i , ..., p

∗
N

]
≥ Ji

[
p∗1, ..., pi , ..., p

∗
N

]
,

where pi , p∗i , i = 1, . . . ,N.

The Nash equilibrium implies that, in the time-varying spectrum trading game, no primary user can increase

its own utility by unilaterally deviating from the Nash equilibrium price if all the other primary users hold their

Nash equilibrium prices. We will study the solution to this Nash equilibrium price in section 2.5.

2.5 Solution for Optimal Spectrum Pricing

In the previous sections, we constructed models for both QoS-free static networks and QoS-aware dynamic

networks. We proposed the objective functions and the Nash solution condition for the competitive PUs. In

this section, we will study optimal pricing and QoS setting policies for the PUs.

2.5.1 Nash Equilibrium Condition for QoS-Free Pricing

We first analyze the Nash equilibrium constrains for the QoS-free static network. Following the regulation in

the optimal control theory [70], the Hamiltonian for theN-primary user QoS-free pricing game is defined as:

Hi = (pi − ci) Si +

N∑

k=1

λi (k)



(
1

n− 1

) n∑

j=1, j,k

S j x j − Skxk

, (2.7)
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wherei, j, k = 1, ...,N. This Hamiltonian consists of two parts:(pi − ci) Si is from PU-i’s utility functions in

Formula 2.4 and 2.5; the residual part is from the selling quantity dynamic in Formula 2.3.λi (k) is called the

‘costate variable,’ which indicates the spectrum selling quantity of PU-k in the eyes of PU-i. Note thatλi (k) is

of the same dimension asSk. In differential game solutions [63, 68], the costate variableλi(k) is provided for

finding the maximum and minimum of a function subject to constraints.

The value of the Hamiltonian is constrained by all of the PUs’price strategies. Thus, the optimal price for

PU-i is what maximizes the Hamiltonian. We record the constraints for PU-i’s optimal price as the following

theorem:

Theorem 1 For the multiple primary user spectrum pricing game in the static secondary user network, the

conditions of the Nash pricing solution are constrained by:

Max
pi

Hi

{
S∗i ,

[
p∗1, . . . , pi , . . . p

∗
N

]
, λi , t

}

= Hi

{
S∗i ,

[
p∗1, . . . , p

∗
i , . . . p

∗
N

]
, λi , t

}
.

(2.8)

In the Nash equilibrium, for each primary users’ Hamiltonian function Hi , the following formula set holds:

λ̇i = −
∂Hi

∂Sk
= −xk


1

n− 1

N∑

j=1, j,k

λi ( j) − λi (k)

 , (2.9)

where i, j, k = 1, ...,N. Note thatλi (T) = ∇SiΛ = 0 indicates that neither agent will look beyond the time

horizon.

Proof 1 (Proof of Theorem 1) Similar proof for Theorem 1 was given by Rangaswamy and Wolfgang in [68].

2.5.2 Nash Equilibrium Condition for QoS-Aware Pricing

Now we begin to construct the Hamiltonian of the QoS-aware pricing problem for the QoS-aware dynamic

networks:

Hi
{
Si , [b1, ...,bN] ,

[
(p1, b1), ..., (pN, bN)

]
, λi , t

}

= Ji
[
Si ,bi , (pi , bi), t

]
+

N∑
k=1

λi · Ṡi (t) +
N∑

k=1
ξ

(k)
i · ḃk ,

(2.10)

for all i = 1, ...,N. In this Hamiltonian, the state variables fall into two categories: Selling quantitySi and

cumulative QoS level set [b1, ...,bN]. In the action profile
[
(p1, b1), ..., (p1, b1)

]
, each PU-i’s action is two-
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dimensional.λi is the co-state adjoint variable, andξk is also a co-state variable, which has the same dimension

asbi . After introducing Formula 2.4 into this Hamiltonian, we can get the final format as follows:

Hi = (pi − 
̄i (bi(t))) Si − ci (bi(t))

+
N∑

k=1
λi · Ṡi (t) +

N∑
k=1

ξ
(k)
i · ḃk .

(2.11)

According to its structure, the spectrum trading game fallsinto the category of a nonzero-sum differential

game (NZSDG). In this N-agentNZSDG, the objective of each agent PU-i is to find the optimal action set

such that:a∗i =
(
p∗i , b

∗
i

)
, which results ina∗i (

S∗i ,b∗i ). Based on the fundamental analysis in [68], we ascertain

that the condition of theN-agent spectrum pricing game’s Nash equilibrium can be described by the following

theorem:

Theorem 2 For the two-dimensional and multiple primary user spectrumtrading game, the conditions of the

Nash equilibrium solution are constrained by:

Max
pi ,bi

Hi

{
S∗i ,

[b∗1, ...,bi, ...,b∗N]
,
[
a∗1, ..., ai , ..., a

∗
N

]
, λi , t

}

= Hi

{
S∗i ,

[b∗1, ...,b∗i , ...,b∗N]
,
[
a∗1, ..., a

∗
i , ..., a

∗
N

]
, λi , t

}
.

(2.12)

In the Nash equilibrium, for each primary user’s Hamiltonian function Hi , the following formula set holds:



λ̇i = −∇Si Hi −
N∑

j=1, j,i

(
∂Hi
∂bj
·
∂bj

∂Si
+

∂Hi
∂pj
·
∂pj

∂Si

)

ξ̇
(k)
i = −∇bkHi −

N∑
j=1, j,i

(
∂Hi
∂bj
·
∂bj

∂Si
+

∂Hi
∂pj
·
∂pj

∂Si

)
,

(2.13)

where i, j, k = 1, . . . ,N are the indexes of the primary users, andλi (T) = ∇SiΛ = 0 ξ(k)
i (T) = ∇biΛ = 0. These

indicate that neither agent will look beyond the time horizon. Furthermore,

Ṡ∗i (t) = −xi(t)S
∗
i (t) + yi(t)

[
St − S∗i (t)

]
+ zi(t)Ṡt, S∗i (t0) = 0, (2.14)ḃi (t) = bi (t) , bi (0) = b0

i . (2.15)

Note that∇Si Hi and∇Sibi denote the partial derivation of function Hi with respect to variables Si andbi ,
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respectively.

Proof 2 (Proof of Theorem 2) Theorem 2 can be proved similarly to Theorem 1.

2.5.3 Nash Solution of Two-Dimensional Strategy

The QoS-free spectrum trading is a special case of QoS-awarespectrum trading. Thus, we focus our concern

on the solution to the latter. Following the condition of theNash solution fromTheorem2, we can derive

the Nash equilibrium for both the QoS-free pricing in staticnetworks and the QoS-aware pricing in dynamic

networks. To find the solution to Formula 2.12, we use the following method:



∂Hi
∂pi
= 0

∂Hi
∂bi
= 0

for t ∈ [0,T] and i = 1, 2, ...,N. (2.16)

Corollary 1 The Nash equilibrium solution for the two-dimensional strategy ai = (pi , bi) must satisfy the

following conditions:

Si + ∇p∗i (t)

[
−xiSi + yi (St − Si) + zi Ṡt

]
· λi = 0 , (2.17)

b∗i (t) = F −
Mi

ki
·

(
Breq

i −
ξi

2ki

)
, (2.18)

where Si is PU-i’s instant selling quantity. p∗i (t) and b∗i (t) are the Nash equilibrium pricing strategy and QoS

setting strategy for PU-i at time instance t.

Proof 3 (Proof of Corollary 1) Substituting Formula 2.11 into 2.16, we can get Si +
∂Ṡi
∂pi
· λi = 0. Then,

introducing Formula 2.3 into this equation, Formula 2.17 can be derived.

These two-dimensional optimal strategies are the Nash equilibrium for PU-i. Their meaning is as follows:

Nash equilibrium for unit spectrum price

The significance of the above differential Equation 2.17 is: Under the Nash equilibrium, the marginal spectrum

selling quantity increment by increasing the price is identical to the marginal selling quantity decrement caused

by losing secondary users due to the price increase.
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Nash equilibrium for QoS setting

From Equation 2.18 we can see that, given any specific cost function for improving the channel QoS, the

Nash equilibrium is also a policy trajectory for the PU-i. Similar to the Nash equilibrium pricing policy, the

equilibrium for the QoS decision also implies that, at this point, the PU-i’s marginal cost for improving its QoS

is equal to its marginal benefit brought by the secondary usernumber increment due to its improved channel

quality.

2.6 Example and Numerical Illustration

2.6.1 Example of 2-PU QoS-Free Pricing

Based on the analytical Nash equilibrium results in the lastsection, to provide an intuitive understanding, we

will consider a small size example where two PUs compete onlyon spectrum price. We will then illustrate the

numerical result.

Proposition 1 Given any initial price p0i , the SU losing ratio function xi, and the unit spectrum cost ci , the

optimal pricing strategy trajectory for a 2-PU QoS-free pricing game, is indicated by the following real-time

price changing rate.

ṗi(t) =
ℓ (pi)
ℓ′ (pi)

·
[
ℓ (pi) (pi − ci) − xi (pi) − x j(p j)

]
, (2.19)

where0 < t < T, i, j = 1, 2, i , j and ℓ (pi) =
∂xi
∂pi

.

Proof 4 (Proof of Proposition 1) Setting the first order of the Hamiltonian with respect to thecontrol variable

price pi and making the result∂Hi
∂pi
= 0, yields the following equations:

∂x1

∂p1
· [λ1 (2) − λ1 (1)] = −1,

∂x2

∂p2
· [λ2 (2) − λ2 (1)] = 1 . (2.20)

For analytic simplicity, recordℓ (p1) = ∂x1
∂p1

. Making partial derivation to both sides of the formulas in 2.20

with respect to time t, we get:̇λ1 (2) − λ̇1 (1) = ∂
∂t

(
1

ℓ(p1)

)
=

ℓ′(p1)p′1
ℓ2(p1) . Following the co-state equation in Formula

2.9, we have:

λ̇1 (2) = x2 [λ1 (2) − λ1 (1)] , λ̇1 (1) = x1 [λ1 (1) − λ1 (2)] . (2.21)
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Making the difference between the two formulas in 2.21, we have:

λ̇1 (2) − λ̇1 (1) = [λ1 (1) − λ1 (2)] [ x1 + x2] . (2.22)

Then, substituting Formulas 2.20 into Formulas 2.22 yieldsthe Nash equilibrium price changing policy shown

in Formula 2.19.

2.6.2 Parameter Setting

For numerical illustration, in Equation 2.19, we need to define the cost functionci and the SU losing rate

xi . Recall that we already discussedci is a function. To reduce the computation complexity and provide an

intuitive illustration, here,ci is chosen from some real numbers. Besides, for the SU losing rate, it should be

a decimal with a value located within interval [0, 1]. Therefore, we choose thepower lawfunction, which is

commonly used in economics, to generatexi asx1 = 1− αp−2
1 , andx2 = 1− βp−2

2 . Following Equation 2.19,

we ascertain that the arithmetic solution of mutual-optimal prices (Nash equilibrium) is:



ṗ1 = αp−1
1 −

2
3c1p−2

1 +
1
3βp1p−2

2

ṗ2 = βp−1
2 −

2
3c2p−2

2 +
1
3αp2p−2

1 .

(2.23)

Solving this differential equation set and choosing different parameters, we generate Figure 2.2 and Figure 2.3.

The spectrum trading game’s duration is set at 0< t < 200.

2.6.3 Numerical Illustration

In Figure 2.2, we set an identical cost for two PUs and set the SU losing function’s coefficients differently.

In both Figure 2.2-A and Figure 2.2-B, the two agents’ Nash equilibrium price increased quickly at first and

then slowed down. This indicates that: Under the same unit spectrum cost, the PUs will increase their prices

quickly in the early period and then the competition stabilizes and the equilibrium prices no longer change

dramatically. Furthermore, when the difference between the two coefficients becomes large, the two agents’

equilibrium price trajectory will separate.α andβ can be seen as the ‘loyalty’ of PU-i’s current SU customers.

We can see thatβ in Figure 2.2-B is larger than in Figure 2.2-A, which indicates that, in Figure 2.2-B, PU-

2’s SU customers are more loyal and not sensitive to PU-2’s spectrum price increase; thus, PU-2’s optimal

spectrum price in Figure.2.2-B is higher than in Figure 2.2-A.
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Figure 2.2: Trajectory of Nash pricing strategy, with different SU losing function coefficients.
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Figure 2.3: Trajectory of Nash pricing strategy, with different unit spectrum QoS cost.

In Figure 2.3, we assume that the two PUs share the same SU losing function (withα = β). However,

we set different unit spectrum QoS costs for PU-1 and PU-2. We compare the equilibrium price trajectories’

movements under three kinds of QoS cost differences: Nearly the same costs (withc1 = 1, c2 = 1.15); relatively

different costs (withc1 = 1, c2 = 1.55); and far different costs (withc1 = 1, c2 = 1.85). From Figure 2.3-A, we

observe that PU-2, who has a slightly higher QoS cost, will set a lower spectrum price than PU-1 each time.

This phenomenon is natural, since, in the spectrum trading competition, in order to get better revenue, the

higher cost PU needs to cut its spectrum price to attract moreSUs and consequently increase its own spectrum

selling quantity to overcome its high-cost disadvantage. With a relatively larger cost, such a PU needs to cut

more for its price. This is illustrated by Figure 2.3-B, where thec2 = 1.55 PU-2 sets a more lower price,

compared with Figure 2.3-A. However, the high cost PU cannotalways ‘save its own life’ by reducing its

price. In Figure 2.3-C, we can see that, if PU-2 suffers from an ‘unfair high cost’ (withc1 = 1, c2 = 1.85), it

can no longer save itself by reducing price and will immediately die out of the competitive spectrum trading

market. We see that, after time 1.5, the strong PU-1 occupies the high-cost-suffering PU-2 and dominates the

whole spectrum trading market.



2.6 Example and Numerical Illustration 59

It is important to stress that, in this example, we set the pricing game’s repetition number at 200. However,

since the final Nash equilibrium is derived from solving a fixed differential equation set, it is very convenient

for this algorithm to find numerical results by using other, larger iteration numbers. In contrast, most of the

previous spectrum pricing schemes assumed that the pricingprocess does not repeat too many times, since in

traditional repeated games, it is typically infeasible to exhaustively search for the Nash equilibrium when the

games’ repetition increase to large numbers. Compared withthe existing work, the computational complexity

of the novel differential game-based pricing scheme will be significantly reduced and the differential game

approach corresponds well to real world spectrum trading inwhich the PUs need to adjust pricing strategies in

real time.



Chapter 3

Differential Game Approach for Efficient Spec-

trum Sensing

3.1 Introduction

In cognitive radio networks, primary user emulation (PUE) attack is a denial-of-service (DoS) attack on sec-

ondary users. It means that a malicious attacker sends primary-user-like signals to jam certain spectrum chan-

nels during the spectrum sensing period. Sensing the attacker’s signal, the legitimate secondary user will regard

these channels are used by the primary users, and give up using these attacked channels. In this paper, the in-

teraction between the PUE attacker and the secondary user ismodeled as a constant-sum differential game

which is calledPUE attak game. The secondary user’s objective is to find the optimal sensing strategy so as

to maximize its overall channel usability, while the attacker’s objective is to minimize the secondary user’s

overall channel usability. The Nash equilibrium solution of this PUE attack game is deprived, and the optimal

anti-PUE attack strategy is obtained. Numerical results demonstrate the trajectories of the secondary user’s

optimal channel sensing strategies over time, and also shows that: by following the differential game solution,

the secondary user can always optimize its channel usability when confronting PUE attacks.

3.1.1 Challenging Issues

Most of the previous works on security issues in cognitive radio networks only provide qualitative analysis

about countermeasure, but they neglect that the cognitive attackers (secondary users) have the capability to

adjust their attacking (sensing) strategies, and the interaction will thus inevitably become more complicated.

A natural question to be asked is as follows: how to find the optimal defending strategy for the legitimate

secondary users to defend against the PUE attack, in the time-continues spectrum space?

Furthermore, In the previous passive approaches against PUE attack such as [28][33][34][35], the authors

mostly assume that attack-defence scenario is in discrete time horizon, and also the PUE attack does not repeat

a large number of times. However, in the real case, the interval between each two sensing times is a very short

instant [62][71][72]. For example, in [62], the author concludes that the optimal sensing time should be 6ms for
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very 100ms frame duration. To prevent the secondary user from successfully sensing and using the spectrum,

the PUE attacker will also launch attack with a very high frequency. The attack-defense interaction can thus

be viewed as a time-continues game with a large number of repetition. In view of the above, the previous

passive anti-PUE attack approaches may become insufficient if the attacker keeps launching PUE attack over

time. Therefore, it is of great importance to construct a mathematic model with feasible and simple solutions

to analyze the time-continues repeated PUE attack, and derive the secondary user’s optimal sensing strategies

afterwards.

3.1.2 Main Contributions

According to the previous works and the challenging issues,our objective is to design a good model to analyze

the interaction between the attacker and the secondary user, and consequently, derive the optimal defence

strategy for the secondary user. The main contributions aresummarized as:

(1) By introducinggame theory[36][7], we construct a model to describe the real attack-defence scenario. In

this model, the attacker’s strategy is the portion (ratio) of its maximum attack capacity, and the secondary user’s

strategy is the portion of its maximum sense capacity. Both the attacker and the secondary user strategically

and dynamically adjust their attack and sense actions over time.

(2) We formalize and quantify the gain and loss of both the secondary user and the attacker, by introducing

the notionpure channel usabilityandpure attack effect. These two metrics are inspired by the notionsdirect

and indirect economic effect. These notions comprehensively reflect the overall channelusability and overall

attack effect of the secondary user and the attacker, respectively.

(3) Differential game[73][74][75][76] approach andoptimal control theory[76][75] are applied to analyze

the time continuous PUE attack. Differential games are originally introduced in the fields of capitalism [74]

and then applied in aircraft or vehicle pursuit-elation scenarios [74]. The advantage of utilizing differential

game model to analyze the PUE attack is that it provides a general analyze framework, which is in accordance

with the complex real attack scenario, and can be well solvedwithout large amount of computation.

(4) Based on the differential attack game model, we derived the Nash equilibriumtaking into consideration

of the attacker and secondary user’s sensing capacity, attack capacity, power constrains. Based on the game

theoretic analysis, we indicate the optimal attack/defense strategy for both the attacker and the defender.

(5) The experiments and numerical results show: by utilizing the Nash equilibrium strategies which are

derived from differential game model, the secondary user can maximize the usability of the cognitive channels
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and minimize the loss due to PUE attacks..

3.2 System Model

We consider in a cognitive radio network, the spectrum rangeis divided in to multiple channels. The primary

users (PUs) licensed to all channels; the SU can detect whether certain portion of the channels are used by PU,

and utilize the free channel opportunistically. Also suppose there is a primary user emulation attacker, who

sends primary-user-like signals into subset of channels tocheat and scare away the SU and reduce the cognitive

radio channel usability. Note that if multiple attackers appear, they may collude with each other and make the

attack-defence scenario more complicate. For simplicity,we assume there is only a single attacker.

3.2.1 Attack Scenario

We consider there areN secondary users, andM PUE attackers. And there areK different channels in the

network. At the same time, the secondary users can not sense all the channels. On the other hand, the attackers

can not jam all the channels. The attacker tries to send primary user like signals in the channeli which is

used by the secondary user. And the secondary user tries to escape from the attacker’s jamming signal. In a

word, the interaction between the attacker and the secondary users can be viewed as a two agent game. In the

network, the loss of the secondary user is just the gain of theattacker, therefore, we model this game as two

agent zero-sum game.

3.2.2 One-shot PUE Attack Game Model

We first consider the single round PUE attack. In this attack game, the agents are the PUE attackers and the

secondary users. We defineΘ be the set of channels that are jammed by the attacker, and|Θ| ≤ L. We defineΩ

be the set of channels that are sensed by the secondary users.Since the attackers can not attack all the channel

at the same time, and the secondary users can not sense all thechannels at the same time, we define the attacker

will attacker the set of channels|Θ| with probabilityu(Θ), and the secondary user will sense the set of channels

Ω with probabilityv(Ω).

The probability for a certain channeli is sensed by the secondary users isv(Ω), while the probability for this

channeli is not attacked by the attackers is 1− u(Θ). Therefore, the total probability that channeli is sensed by
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the secondary users, and not attacked by the attacker is defined as:

(1− u(Ω)) · v(Θ)

Taking into consideration the probability for the primary user to appear tin the channeli is pi , the overall

probability that channeli can be well utilized by the secondary user is derived as:

piI (1− u(Ω)) (v(Θ))

Note thatL is the total number of all the channels. Then taking into consideration of the probability above,

we can define the utility for the secondary users as:

Us(σA, σD) =
L∑

i=1

piI (1− u(Ω)) · v(Θ)

3.3 Equilibrium for Single Stage Anti-PUEA Game

The game is between the secondary users and the PUE attackers. We investigate the Nash equilibrium point in

which any unilaterally deviate will cause the utility decrease for one agent. The Nash equilibrium point is the

stable point of the single stage PUE attack game.

In game theory, for the zero-sum two agent game, the Nash equilibrium can be solved by using the min-max

rule. The min-max rule, in the field of network security, is the defender first look the maximum damages that

an attacker can cause, and then tries to minimum this maximumdamages. For the attacker, it first look the

maximum utility that the secondary user can reach, and then minimize this possible maximum utility.

3.3.1 agents and Strategies

At time instancet, there are totallyK(t) channels not used by the PU. Based on the prior works [62][71][72], the

value ofK(t) is according to a Poisson process with a parameterλ. The SU can at most senseM channels each

time. Note thatM < K since the SU’s sensing capacity is limited. We define the strategy of the SU as a portion

of M channels, which is denoted asu(t) ∈ [ 1
M , 1]. The left boundary is1

M because for communication, SU

should at least sense one channel at one time. On the contrary, the PUE attacker can at most attackN channels

at timet. And the attacker’s strategy at timet is a portion ofN channels to attack, denoted byv(t) ∈ [0, 1]. The



3.3 Equilibrium for Single Stage Anti-PUEA Game 64

left boundary is 0, since the attacker has the capacity to decide its attack strategy, and it can either attack or not

at anytime.

3.3.2 Game Outcomes

For each time instance, the SU sensesM · u(t) channels from totallyK non-primary-user channels. Therefore,

each channel will be sensed with a probabilityM·u(t)
K . On the contrary, the attacker choosesN · v(t) channels to

attack. Then at timet, each channel will be attacked with probabilityN·v(t)
K .

There are totally four possible outcomes of the interactionbetween the secondary user and the attacker:

• The channels are sensed and attacked.

• The channels are sensed and not attacked.

• The channels are not sensed but attacked.

• The channels are not sensed and not attacked.

At a certain time instancet, the total number of available channels, which are sensed bythe SU but not attacked

by the attacker, is denoted as:

ẋs =
M·u(t)

K · (1− N·v(t)
K ) · K

= M · u(t) − MN
K · u(t) · v(t)

(3.1)

On the other hand, the number of channels which are successfully attacked (Sensed and Attacked), is denoted

as:

ẋa =
M·u(t)

K ·
N·v(t)

K · K

= MN
K · u(t) · v(t)

(3.2)

3.3.3 Pure Channels Usability

The secondary user has two aspects of objectives: First, it wishes to maximize the number of channels that

successfully utilized (which means channels that are sensed by the secondary user, but not attacked by the

attacker at the same time); Secondly, it also need to minimize the number of channels that are successfully

attacked (which means channels that are sensed by the secondary user, and also attacked by the attacker at the
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same time). At time instancet, the pure usability of channels for the secondary user is defined as:

xs− xa. (3.3)

Consider a whole communication period of the cognitive radio network [0,T], the total pure usability of

channels for the secondary user is
∫ T

0 (xs− xa)dt. On the other hand, the secondary user’s total power con-

sumption is defined as:µ ·
∫ T

0 M · u(t)dt, whereµ is the unit power consumption for sensing one channel.

Therefore, during the whole period [0,T], the overall utility for the secondary user is give by:

Js =

∫ T

0
[xs(t) − xa(t)] dt − µ ·

∫ T

0
M · u(t)dt (3.4)

3.3.4 Pure Attack Effect

In contrast to the secondary user, the attacker also has two aspects of objectives: First, it wishes to maximize

the total number of channels that successfully attacked. Secondly, the attacker also wishes to minimize its total

power consumption for attacking the channels. The pure attack effect from the attacker is:

xa − xs (3.5)

The total attack effect over time period [0,T] is denoted as
∫ T

0
(xa − xs)dt. And the attacker’s total power

consumption for attacking is:ψ ·
∫ T

0 N · v(t)dt whereψ is the unit power consumption for attacking one channel.

The overall utility for the attacker is defined:

Ja =

∫ T

0
[xa(t) − xs(t)] dt − ψ ·

∫ T

0
N · v(t)dt (3.6)

3.3.5 Min-Max Objective

Both the secondary user (SU) and the attacker have their own objective during the interaction(fighting) with

each other. We call the fighting as a PUE attack game [36][7]. Note that in the PUE attack game, the antagonism

between the SU and the attacker can be viewed as strategically equivalent to a zero-sum game [36][7]. We

combine the SU and the attacker’s utility functions, and putforward the objective function for the PUE attack
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game as:

J =
∫ T

0 [xs(t) − xa(t)] dt

−µ ·
∫ T

0 M · u(t)dt + ϕ ·
∫ T

0 N · v(t)dt
(3.7)

This is a function which the secondary user seeks to maximizewhile the attacker wishes to minimize. During

the cognitive radio networks’s communication duration [0,T], the PUE attack game is thus formulated as the

following differential gameformat:

min
v∈[0,1]

max
u∈[0,1]

∫ T

0

[
(xs(t) − xa(t)) − µMu(t) + ψNv(t)

]
dt (3.8)

which is subject to the state equations:



ẋs = M · u(t) − MN
K · u(t) · v(t)

ẋa =
MN
K · u(t) · v(t)

xs(t) ≥ 0, xa(t) ≥ 0

(3.9)

3.4 Game Solution

3.4.1 Hamiltonian and Solution Set

In the differential game, the Nash equilibrium is also the saddle-point. To find the equilibrium of the PUE attack

game, we utilize the approaches inoptimal control theory. The first step of these approaches is to define the

Hamiltonian function[73][74][76]. In our PUE attack game, taking into consideration of the payoff functions,

the Hamiltonian is defined as:

H = (xs(t) − xa(t)) − µ · M · u(t) + ψ · N · v(t)

+ λs

(
M · u(t) − MN

K · u(t) · v(t)
)

+λa

(
MN
K · u(t) · v(t)

)
(3.10)

which will be maximized over the secondary user’s strategyu ∈ [0, 1], and minimized over the attacker’s strat-

egy v ∈ [0, 1]. The necessary condition for the Hamiltonian with respect to u(t) andv(t) is provided byPon-

tryagin’s Principle [76], which requires that the pair of optimal strategiesu∗(t) andv∗(t) is the saddle point
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solution for the differential game, that is:

H(u(t), v∗(t); xs, xa; λs, λa)

≤ H(u∗(t), v∗(t); xs, xa; λs, λa)

≤ H(u∗(t), v(t); xs, xa; λs, λa)

(3.11)

for all u(t) ∈
[

1
M , 1

]
, v(t) ∈ [0, 1] andt ∈ [0,T]. Hereλs andλa are the co-state varibales, which satisfies the

associated co-state equations:

λ̇s = −
∂H
∂xs
= −1, λs(T) = 0;

λ̇a = −
∂H
∂xa
= 1, λa(T) = 0;

(3.12)

The reason that whyλs (T) = 0 andλa (T) = 0 is that neither the secondary user nor the attacker will

look beyond the horizon. From the two deferential equationsabove, it is clear thatλs (t) andλa (t) are linear

functions of timet. By utilizing the boundary conditionsλs (T) = 0 andλa (T) = 0, we get the formulations:

λs(t) = T − t; λa(t) = t − T; s.t. [t,T] (3.13)

To find the solution for maximizing the HamiltonianH in (3.8) overu(t) and minimizing it overv(t), H can

be re-formatted as the following layout:

H = (xs(t) − xa(t)) + ψ · N · v(t) + ss(t) × u(t) (3.14)

where

ss(t) = −µ · M + λsM − (λa − λs) ·
M · N

K
· v(t) (3.15)

It can be also re-formatted as:

H = (xs(t) − xa(t)) − µ · M · u(t) + λs · M · u(t)

+sa(t) × v(t)
(3.16)
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where

sa(t) = ψ · N + (λa − λs) ·
MN
K

u(t) (3.17)

We callss(t) andsa(t) theswitching functions. In optimal control theory, the switching function describes how

to determine the output value ofu(t) based on the input value ofv(t), and oppositely how to determine the

output value ofv(t) based on the input value ofv(t). On the basis of the above Hamiltonian and the switching

functions, we establish the solution set as the following theorem:

Theorem 3 In the PUE attack game, let the u(t) and v(t) denote the strategy of the secondary user and the

attacker over time t, respectively. Subjected to the Hamiltonian H, the optimal value for u(t) and v(t) are given

by:

u∗ = arg max
u∈[1/M,1]

=



1
M i f ss(t) < 0

1 i f ss(t) > 0
[

1
M , 1

]
i f ss(t) = 0

(3.18)

v∗ = arg max
v∈[0,1]

=



1 i f sa(t) < 0

0 i f sa(t) > 0

[0, 1] i f sa(t) = 0

(3.19)

Proof 5 (Proof of Theorem 3) The optimal values for u(t) and v(t) are subject to the saddle point solution

describes as min-max theorem 3.11. Following 3.14, to maximize the value of the Hamiltonian H, it is required

that: if ss(t) ≤ 0, the value u∗(t) should be minimum1
M ; If ss(t) > 0, u∗(t) should be maximum1; If ss(t) = 0,

u∗(t) can be any value in[0, 1]. By the similar method, following the second format of H in 3.16, the value of

v(t) can be derived.

3.4.2 Marginal Constrains

Given the result of the aboveTheorem1, the remaining analysis is devoted to the determination ofthecricital

switching timeswhich is constrained by the Hamiltonian and the switching functions. To find the solution to

the optimal strategies, the analysis of the PUE attack game should start at the end rather than the beginning,

which is related to the marginal constrains [73][74][76]. Therefore we first consider what happens at the end
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of the PUE attack game.

Corollary 2 At the end of the PUE attack game, the optimal strategy for thesecondary user is to sense the

spectrum with the minimum capacity (i.e. with strategy u∗(T) = 1/M), while the optimal strategy for the PUE

attacker is to stop attacking (i.e. with strategy v∗(T) = 0).

Proof 6 (Proof of Corollary 2) According to the formulations in 3.12, the value ofλs andλa at the marginal

time T are given by:

λs(T) = 0; λa(T) = 0.

Pluggingλs(T) andλa(T) into formulations 3.15 and 3.17, we can get:

ss(T) = −µ · M < 0; sa(T) = ψ · N > 0

In accordance withTheorem1, the optimal strategies for the secondary user and the attacker are u∗(T) = 1/M

and v∗(T) = 0 respectively.

At the end of the PUE attack game, to maximize its own utility,the secondary user will sense with minimum

capacity while the attacker will not attack anymore. These result corresponds with the reality. Since neither

the secondary user nor the attacker looks beyond the horizon, at the end of the game (i.e. the end of the

communication), the secondary user should almost stop sensing spectrums, and the attack is also finished.

Remark 1 By continuity, in some left neighborhood of the marginal time T, the following conditions still hold:



ss(t) < 0

sa(t) > 0

and during this final period, u∗(T) = 1/M and v∗(T) = 0 are always valid. Referring to the expression of ss(t)

and sa(t) in 3.15 and 3.17, we have:



(
1− 2N

K · v
)
· (T − t) < µ when(tc ≤ t ≤ T)

2M
K · u · (T − t) < ψ when(tc ≤ t ≤ T)

(3.20)
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Then letp = 2M
K ·u andq = 2N

K ·v, the strategies of the secondary user and the attacker whichare constrained

by the switching function set, can be re-written as:

u∗(t) =
K · p(t)

2M
=



1
M i f (1− q(t)) (T − t) < µ

1 i f (1− q(t)) (T − t) > µ
[

1
M , 1

]
i f (1− q(t)) (T − t) = µ

and

v∗(t) =
K · q(t)

2N
=



1 i f p(t) · (T − t) < ϕ

0 i f p(t) · (T − t) > ϕ

[0, 1] i f p(t) · (T − t) = ϕ

3.4.3 Critical Switching Times

Now we begin to analyze the switching time of the PUE attack game. The switching times for the secondary

user (attacker) indicate optimal time for it to switch from sensing (attack) to non-sensing. Then we find the

optimal solution for both the secondary user and the attacker. Recall thatss(t) andsa(t) are called the switching

functions for the secondary user and the attacker, respectively. Therefore, there may exist two switching

functions in this PUE attack game. Define the first timess(t) < 0 is violated ast = cs which is thecritical

switching time(in retrograde time) for the secondary user; and define the first time sa(t) > 0 is violated as

t = ca which is thecritical switching timefor the attacker.

Corollary 3 During the very beginning of the PUE attack game, the optimalspectrum sensing strategy for the

secondary user is u(t) = ψ·K
2(T−t)·M , while the optimal attack strategy for the attacker is v(t) =

(
1− µ

T−t

)
· K

2N .

Proof 7 (Proof of Corollary 3) At the beginning (initial period) of the PUE attack game, both u(t) and v(t)

are inner. i.e. u(t) must be in interval
(

1
M , 1

)
, and v(t) must be in interval(0, 1). Moreover, within this period,

neither ss(t) nor ss(t) changes its sign. Therefore, according toTheorem1, it is required that u∗(t) should

make theHamiltonianindependent of v(t) and v∗(t) should make theHamiltonianindependent of u(t). For this

purpose, set ss(t) and sa(t) equal to zero, and get the following formulation set:



(
1− 2N

K · v(t)
)
(T − t) = µ

2M
K · u(t) · (T − t) = ψ

when (t < cs and t< ca)

(3.21)
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After reduction, we get



v(t) =
(
1− µ

T−t

)
· K

2N

u (t) = ψ·K
2(T−t)·M

s.t. t < cs and t< ca

(3.22)

Thus Corollary3 is proved.

Corollary 4 The time that secondary user switches to minimum sensing capacity is denoted as cs = T − µ

while the time that the attacker stop attacking is denoted asca = T − ψ·K
2 .

Proof 8 (Proof of Corollary 4) By introducing the constrain conditions v(t) ∈ (0, 1) into formulation3.22, we

have:

0 <
(
1−

µ

T − t

)
·

K
2N

< 1 (3.23)

Thus the critical switching time for the secondary user is calculated as:

cs = inf
{
t :

(
1−

µ

T − t

)
·

K
2N
≥ 1

}
= T − µ (3.24)

Similarly, by introducing the constrain conditions u(t) ∈
(

1
M , 1

)
into formulation (3.22), we have:

1
M

<
ψ · K

2M · (T − t)
< 1 (3.25)

And the critical switching time for the PUE attacker is calculated as:

ca = inf

{
t :

ψ · K
2M · (T − t)

> 1

}
= T −

ψ · K
2M

(3.26)

Thus the second item in Corollary 4 is proved.

3.5 Equilibrium of PUE Attack Game

Secondary user and attacker’s power efficiency, and the sensing (attack) capacity have direct impact on their

strategies and the trajectory of the PUE attack game. In thissubsection, we will analyze the equilibrium of the



3.5 Equilibrium of PUE Attack Game 72

game, taking into consideration of the secondary user’s andattacker’s power efficiencyµ andψ, as well as the

secondary user’s spectrum sensing capacityM and the attacker’s attack capacityN.

3.5.1 Case 1: Secondary User Dominates on Power Efficiency

When µ

ψ
< K−2N

2M , it indicates that the secondary user’s channel sensing efficiency is high and does not require

much power consumption for sensing each channel. This may bedue to the reason that the secondary user is

equipped with high quality cognitive radio which is power preserving (also maybe due to the attacker only has

low quality signal processing infrastructure). In this case, the critical switching timescs < ca, which indicates

that the secondary user will always switch to the lowest sensing capacityu = 1
M later than the attacker.

Lemma 1 If µ

ψ
< K−2N

2M , there exist two critical switching time in the PUE attack game. The attacker will

switch to the minimum attack capacity before the secondary user switches to minimum sensing capacity. The

Nash equilibrium for this case is illustrated as:

u(t) =



ψ·K
2(T−t)·M i f t < T − K·ψ

2M

1 i f T − K·ψ
2M < t < T − µ

1
M i f T − µ < t

v(t) =



(
1− µ

T−t

)
· K

2N i f t < T − K·ψ
2M

0 i f T − K·ψ
2M < t < T − µ

0 i f T − µ < t

(3.27)

Proof 9 (Proof of Lemma 1) In this case, cs = T − µ > ca = T − K·ψ
2M . At time cs, we have



ss(c+s ) < 0

ss(c−s ) ≥ 0
,

which indicates



u
(
c+s

)
= 1

M

u
(
c−s

)
∈

(
1
M , 1

] . Consequently, according to formulation 3.17 we can get: sa(c+s ) > 0 and

sa(c−s ) > 0, which means the attacker’s switching function sa(t) does not change sign at time cs. We then exam

what happens at time ca. At time ca, sa(c+a ) > 0 and sa(c−a ) < 0. According to formulation 3.15, we can derive:

ss(c+a ) = K
2 ·

[
ψ −

2·µ·M
K

]
> 0 and ss(c−a ) = K−2N

2 ·
[
ψ −

2·µ·M
K−2N

]
> 0. These results indicate that at time ca,

the attacker first reduce its attack probability tozero. On the other hand, the secondary use will keep sensing

with maximum capacity until time cs. Then at time cs, it reduces its spectrum sensing probability to minimum

value 1
M . The two agents’ strategy switching do not change the sign ofthe opponent’s switching function.

Furthermore, following the result inCorollary3, theLemma1 is proved.
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3.5.2 Case 2: SU’s Power Efficiency is Relatively High

When K−2N
2M <

µ

ψ
< K

2M , it indicates the secondary user’s spectrum sensing efficiency is not very good, and the

attack efficiency of the attacker is not very low.

Lemma 2 If K−2N
2M <

µ

ψ
< K

2M , there is no equilibrium for the PUE attack game.

Proof 10 (Proof of Lemma 2) In this case, cs = T − µ > ca = T − K·ψ
2M . According to Corollary 2, at time c+s ,

we have ss(c+s ) < 0 and u(c+s ) = 1
M . At time c−s , we have ss(c−s ) > 0 and u(c+s ) = 0. Consequently, following

formula (3.17), we can get sa(c+s ) = ψ ·N+2(t−T) · M·N
K ·

1
M > 0 and sa(c−s ) = ψ ·N+2(t−T) · M·N

K ·1 > 0. The

value of sa(c+s ) and sa(c+s ) are bothpositive. This indicates the attacker does not switch at time cs. Therefore,

we need to go backwards with time, and exam further what happens at attacker’s critical switching time ca. At

time c+a , sa(t) experiences a switch, such that: sa(c+a ) > 0 and sa(c−a ) < 0. According toTheorem1, the strategy

of the attacker has a jump from v(c+a ) = 0 to v(c−a ) = 1. Consequently, we have: ss(c−a ) = K−2N
2

[
ψ −

2µ·M
K−2N

]
< 0,

which indicates the secondary user’s switching function changes its sign at time ca. This contradicts with the

original result that ss(c+s ) < 0. The argument above lead to the conclusion that, ifK−2N
2M <

µ

ψ
< K

2M , there is no

equilibrium strategy for the game.

3.5.3 Case 3: Attacker’s Power Efficiency is Relatively High

When K
2 >

µ

ψ
> K

2M , it indicates the secondary user’s spectrum sensing does not cost too much power, and the

attack efficiency of the attacker is also not very high.

Lemma 3 If K
2 >

µ

ψ
> K

2M , the PUE attack game have no Nash equilibrium.

Proof 11 (Proof of Lemma 3) Lemma 3 can be easily proved by using the same method for Lemma2.

3.5.4 Case 4: PUE Attacker Dominates on Power Efficiency

Opposite to case 1, ifµ
ψ
> K

2 , it indicates that the secondary user’s channel sensing efficiency is very low, or

the attacker’s attack efficiency is extremely high.

Lemma 4 If µ

ψ
> K

2 , there exist only one critical switching time in the PUE attack game. The secondary user

and the attacker will switch to the minimum sensing and attacking capacity at the same time. The PUE attack
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game has a Nash equilibrium, which is given by:

u(t) =



ψ·K
2(T−t)·M i f t < T − µ

1
M i f t > T − µ

v(t) =



(
1− µ

T−t

)
K

2N i f t < T − µ

0 i f t > T − µ2M

(3.28)

Proof 12 (Proof of Lemma 4) If µ

ψ
> K

2 (which is equivalent to T− µ < T − ψ·K
2 ), we can get cs = T − µ <

ca = T − K·ψ
2M . In Remark 1, we already derived that, during the final period, the two switching functions

ss(t) < 0 and sa(t) > 0. Proceeding backwards in time, at time ca, we have



sa(c+a ) > 0

sa(c−a ) < 0
, which indicates



v(c+a ) = 0

v(c−a ) = 1
. Therefore, according to formula (3.15), by using the similar approach for proving Lemma 1, we

can establish ss(c+a ) < 0 and ss(c−a ) < 0. This means that at (and after) time ca, the value of u(t) is always

positive. Consequently, the secondary user switches its strategy before time ca. In the same way as above,

we derive that the secondary user’s switching time cs, the attacker’s switching function does not change sign.

Therefore, the PUE attack game may have two switching times which are calculated by following Corollary

4. However, the attacker’s switching time is constrained bythe boundary t< T − µ (from formulation 22 in

Corollary 2). In this case, both the secondary user and the attacker need to switch to the minimum capacity at

time t= T − µ. Then the Nash equilibrium strategy can be derived following Theorem 1 and Corollary 3.

It is worth noting that, at timecu = T − µ, the switching of the secondary user’s strategyu(cs) will change

the value ofsa(t). However, due to the value ofµ, ψ andM, N, this switching ofu(cs) is not enough to change

the sign ofsa(t), but only creates a discontinuity on its trajectory. Similarly, at timeca = T − ψK
2 , the switching

of v(ca) will change the slope ofsu(t), but will not change its sign.

In the four cases above, we have analyzed all the possible situations in the PUE attack game. In conclusion

of the analysis, we put forward the following theorem:

Theorem 4 In the PUE attack game. If one agent (secondary user or attacker) dominates in the power effi-

ciency, the Nash equilibrium exists; otherwise, the Nash equilibrium does not necessarily exist. Furthermore,

if the secondary user’s channel sensing efficiency is hight, the optimal strategy for the secondary useris to

switch to minimum capacity after the attacker; If the attacker’s attacking efficiency is high enough, the optimal

strategy for the secondary user is to switch at the same time with the attacker.
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(c) Channel Usability
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Figure 3.1: Trajectory and Performance of the Nash Equilibrium sensing strategy, when SU’s power efficiency
is high.
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Figure 3.2: Trajectory and Performance of the Nash Equilibrium sensing strategy, when attacker has high
attack efficiency.

Proof 13 (Proof of Theorem 4) Theorem 2 can be prove by using the four Lemmas above.

3.6 Experiment and Numerical Results

In this section, we use numerical simulation to validate theperformance of the proposed differential game

analytical model. In the experiment, the spectrum is dived into= 24 different channels. The secondary user’s

maximal channel sensing capacity is set to beM = 8 channels while the attacker’s maximal attack capacity is

set to beN = 8 channels. The unit power consumptionsµ andψ are set to suite various cases.

Figure.1 illustrates the trajectory of the optimal sensing/attacking strategies, as well as the performance

of the differential game solution. For demonstration, we set the attack repeats 25 times. Figure.1(a) shows

the trajectory of the optimal strategies for both the attacker and secondary user. We can observe that if the

secondary user dominates on power efficiency, the attacker will always stop attacking earlier. This is revealed

in Lemma 1. Figure.1(b) illustrate both the number of available channels and attacked channels at each time

instance. We can observe the number of available channels gradually increases over time. Figure.1(c) is the

trajectory of the pure channel usability over time. In this figure, we compare the performance of our differential

game solution with random hopping between channels. From the trajectory and the overall channel usability
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Figure 3.3: Performance of Nash equilibrium sensing strategy, when PUE attack repeats large number of
rounds.

during the 25 times PUE attack, we can see our differential game approach significantly improved the usability

of the cognitive radio channels.

Without loss of generality, in Figure.2, we illustrates theperformance of the differential game approach

when the attacker has high attack efficiency. From Figure.2(b), we can see that, although the attack has high

attacking capacity, by following the differential game approach, the secondary user can gradually increase the

number of available channels. Furthermore, in Figure.2(c), the overall channel usability is not as good as

when the SU dominates in power efficiency due to the attacker’s power efficiency is much more better than

in Figure.1. However, our differential game approach still has much better performance than random hopping

between different channels.

From Figure.1 and Figure.2, we investigate the case when thePUE attack repeats not too many times (25

rounds), we can see that our differential game solution can bring the SU with better channel usability comparing

with random hopping. As well, when the attack repeats huge number of times, following our differential game

approach, the Nash equilibrium can also be easily derived. To our best knowledge, this can not be realized

by using any of the previous discrete-time anti-PUE approaches. Figure.3 shows that, when the PUE attack

repeats many times (from 100 times to 1000 times), if only thesecondary user sticks to our differential game

solution, it can optimize its long-term overall channel usability, and reduce the damage from the PUE attack

to the minimum. By following the Nash equilibrium strategy derived by our differential game, the channel

usability can be significantly improved.



Chapter 4

Repeated Game Approach for Cooperative Com-

munication

4.1 Introduction

In Multihop Wireless Networks (MWNs), the selective forwarding attack is a special case of denial of service

attack. In this attack, the malicious wireless nodes only forward a subset of the received packets, but drop the

others. This attack becomes more severe if multiple attackers exist and collude together to disrupt the normal

functioning of the secure protocols. By colluding, each attacker can even only drop a little packets, but the

overall loss of the path will be high. However, most prior researches on selective forwarding attacks assume

the attackers do not collude with each other. Furthermore, the previous works also lack of comprehensive

security analysis. In this paper, by utilizing the game theoretic approach, we analyze the collusion in selective

forwarding attacks. We first put forward a sub-route oriented punish and reward scheme, and propose anmulti-

attacker repeated colluding game. Then by static and dynamic analysis of this colluding attack game, we find

the sub-game equilibriums which indicate the attackers’ optimal attack strategies. Based on the analysis result,

we establish a security policies for multihop wireless networks, to threaten and detect the malicious insider

nodes which collude with each other to launch the selective forwarding attacks.

4.1.1 Challenging Issues

According to the related works, the challenging issues of the researches on selective forwarding attacks mainly

fall into the following categories:

According to the related works, the challenging issues of the researches on selective forwarding attacks

mainly fall into the following aspects:

First, since the selective forwarding attack is launched from inside of the network, the insider attackers

bypass the public key and private key system [39]. Therefore, besides using cryptographic methods as the

first line of defence, it is necessary to propose non-cryptographic solutions as a second line of defense [38].

Among those non-cryptographic solutions, game theory is one of the effective mathematical tools to solve
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the attacker-defender interaction problems. However, howto introduce the traditional game theory into the

practical selective forwarding attack scenario, is a challenging topic.

Second, the traditional detection mechanisms against selective forwarding attacks only focus on single at-

tacker detection. However, some smart attackers may collude with each other to launch selective forward-

ing attack. These smart attackers are autonomous entities.They are not only malicious but alsorational

[77, 53, 49, 36, 7], which means they can intelligently adjust the packet drop quantities, without being de-

tected. When these rational attackers collude with each other, each of them only drops a few packets which

are not easy to detect (this malicious drop is even difficult to distinguish from normal packet loss due to chan-

nel problems [38]). However, the total drop quantity from the attacker group still remains very high, which

seriously affect the QoS [38, 39] of the multihop wireless network.

At last, most of the previous works on selective forwarding attack lack the security analysis. To detect

and defend the collusion in selective forwarding attacks, it is essential to analyze the attack strategies and

preferences of the attackers [7]. A security analysis deserving its name is a method that the defender first

looks at the maximal damage that an attacker can cause for a specific defence, and then searches for the proper

security decisions [78]. To prevent and detect the selective forwarding attacks, we need to construct a clear and

specific mathematical model for the real attack scenario, and perform comprehensive analysis of the collusion

between the attackers.

4.1.2 Our Works

In the prior works, the researchers seldom discuss what willhappen if multiple attackers exist and collude with

each other on selective forwarding. According to the schemeproposed in work [38], in the multihop wireless

network, if errors are static or if the errors are consideredas average, the network manager can detect any loss

rate above the threshold which is derived from the MAC layer collision rate. This scheme works well when

some malicious nodes are distributed in the multihop wireless network and do not collude with each other.

Even if there are many malicious nodes in one route deployed following a sequence “Good Node—Bad Node—

Good Node—Bad Node”, the check packet in this scheme can be used to detect the nodes who are launching

various kinds of attacks.

However, the scheme in work [38] does not take into consideration that some smart malicious node may

collude with each other. If two malicious nodes sandwich a legitimate node between them, these two malicious

nodes can give false record data in the check packet together, and make a false accusation on the legitimate
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middle node. In this case, the innocent middle node will be punished for the packet losing which is caused by

the attackers while the colluding attackers can escape frombeing detected. Especially, when some attackers are

deployed next to each other like a sequence “Good Node—Bad Node—Bad Node—Good Node”, and collude

with each other, all these attackers are hard to be detected by this scheme. Furthermore, in [38], the authors

proposed the threshold for normal loss to distinguish the attack from normal packet loss, however, in real world,

different nodes may face different MAC layer collision levels. Therefore, the thresholdmay vary for different

nodes, which will make the false negative rate increasing. Worse still, each attacker may drop only a small

quantity of packet which does not exceed the threshold, however, the total packet loss on the whole sub-route

still remains very high.

In this paper, to detect and defence against the colluding attackers, a sub-route oriented reward/punish

scheme is proposed, taking into account of the strategies and utilities of the colluding attackers which form

a malicious group and launch selective forwarding attacks.In our scheme, the punishment to each colluding

attacker is strongly related to the overall performance of this malicious group. Those insider nodes which

participated in the colluding attack will be severely punished. This sub-route oriented punish scheme can be

utilized to threatenthe insider attackers not to collude with each other. Besides the sub-route oriented re-

ward/punishment scheme, a repeated game approach [79] is utilized for a comprehensive security analysis.

By extending the classical Cournot model [36], we design a multi-attacker repeated colluding game. Through

staticanddynamicanalysis of this game, we derive the sub-game equilibriums,and show the attackers’ optimal

attack strategies, which are different from the single attacker case. Numerical analysis shows the relationship

between attackers’ strategies and corresponding utilities. Based on the game theoretic analysis results, thresh-

olds are derived for threatening and detecting the malicious attackers. Then security policies are established

to reveal the colluding attackers. The security policies take both one-shot attack and repeated attack into con-

sideration. Moreover, two kinds of different colluding attackers, the smart attacker and naive attackers, can be

distinguished by the security policies. This security policies can be used to design a more intelligent and accu-

rate anomaly intrusion detection system for the multihop wireless networks. By using the sub-route oriented

and game based defence scheme, even if the malicious nodes are located near each other, collude together and

give false data, they will still be punished by the defendingmechanism. Numerical results show the relation-

ship between attackers’ strategies and utilities which reflect the their preference. The impact of IDS’s setting

on attackers’ preference is also illustrated. The result ofour analysis can be implemented to design more in-

telligent and effective IDS systems. Each attacker in the colluding attack only drops a few packet, therefore
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the traditional detection schemes are vulnerable to the this collusion of multiple attackers. However, by utiliz-

ing the result of our work, the misbehavior of the colluding attackers can be revealed, and consequently, the

malicious colluding attack group can be detected.

4.2 System Model

In this section, we first describe the scenario of the collusion in selective forwarding attacks. Then, we propose

the sub-route oriented reward and punish scheme. After that, we put forward the attacker’s utility function and

construct the colluding attack game model. We assume the network is in Promiscuous Modeand the packet

drop can be monitored by the IDS systems [39]. By utilizing the upstream and downstream joint monitoring

[38], the packet loss rate at each insider node (which may dueto malicious attack or normal loss) can be

obtained. For reading convenience, the main mathematical symbols used in this paper are summarized in Table

1.

4.2.1 Colluding Attack Scenario

Consider in a multihop wireless network, through physical capturing or software bugs, the outside adversary

may hijack into the network, compromise several insider nodesv1, v2, ..., vN, and tune them to behave mali-

ciously. These compromised insider nodes thus become insider attackers which can even collude together to

disrupt the normal functioning of the secure protocols. According to the reactive routing protocols such as

AODV and DSR [37, 39], when a source nodeS wishes to discover a route to transmit its data packets to the

destination nodeD, it will first broadcast its R R message [37, 39]. On receiving this message,

the insider attacker (e.g., nodev1) will not check its routing table but just immediately replies a false R

R message claiming that it has an existing route to the destination nodeD. Since the attacker does not

check its routing table, its false R R message will reach the source node ahead of other R R

messages from legitimate nodes [38]. Moreover, the attacker vi can also manipulate itsDst Seq[47] field in

its routing table to cheat the source nodeS that it has the best route toD. After receiving the R R

from v1, nodeS will think that the route discovery phase is complete, and ignore all R R messages

from other nodes including the legitimate nodes [39]. Consequently, the attackerv1 has preempted the route

betweenS andD, and includes the other insider attackersv2, ..., vN into this route. All these attackers constitute

a malicious sub-route. ThenS starts to transmit its data packets through this malicious sub-route replied by

v1. When the first attackerv1 receives the data packets, it drops subset of them, and forwards the remaining
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Figure 4.1: Collusion on selective forwarding in MWNs.

packets to another attackerv2. Similarly asv1, attackerv2 drops another part of the data packets and forward

the remaining packets to attackerv3. This kind of selective forwarding will be repeated by everyattackervi .

And the last attackervN will forward the final remaining part of the packets to the destination nodeD, or to a

legitimate node which truly has a route toD. Consequently, the packet receive ratio atD will decrease, and

the network performance will drop dramatically. The collusion of this N-attacker selective forwarding attack

is illustrated in figure 4.1.

4.2.2 Hazardness of Collusion

It is worth discussing that why collusion bring damage to thenetwork, and how collusion disrupt the normal

functioning of the secure protocols. This is because the colluding attackers can intelligently and cooperative

adjust their drop quantity (attack capacity), and disrupt the normal functioning of the secure protocols.S e n d e r
D e s t i n a t i o n1v2v 3v 4v5va ) i n t e r c e p t s R R E Q m e s s a g e a n d b e c o m e s t h e l e a d i n g a t t a c k e r .1v

S e n d e r
D e s t i n a t i o n1v2v 3v4v5vb ) i n t e r c e p t s R R E Q m e s s a g e a n d b e c o m e s t h e l e a d i n g a t t a c k e r .3v S e n d e r

D e s t i n a t i o n1v2v 3v 4v5vc ) i n t e r c e p t s R R E Q m e s s a g e a n d b e c o m e s t h e l e a d i n g a t t a c k e r .5v
Figure 4.2: Leaders in the malicious sub-route.

Since the multiple attackers form a malicious group (malicious sub-route), one attacker can negotiate with
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others about its own drop quantity (attack capacity). In theworst case, if all the attackers selflessly reduce its

own drop quantity to a value which is low enough, the existingdetection mechanism can not distinguish the

malicious drop from thenormal losscaused by access collision or bad channel quality [37, 38]. However, the

total loss rate in the whole route still remains very high. Inthis case, the normal functioning of the traditional

secure protocols will be disrupt by the colluding attackers, because it will not be suspicious of each low-loss-

rate attacker.

In prior work [38], the authors investigated thenormal lossevents such as medium access collision or

bad channel quality. They considered the channel status canbe good or bad. And the collision parameters

under different channel status are analyzed. Based on these analysis,they develop a channel aware detection

algorithm that can be used to identify the selective forwarding misbehavior from the normal channel losses. If

one node loss packet higher than the derived threshold, it will be classified as malicious. The detection rate of

this work will be creditable. However, when we consider all the node in a route or sub-route, things should be

changed. Considering multiple nodes in a route, it is not likely that all these nodes face the channel problems

at a same time, since the collision has direct relationship with the real-time traffic (e.g. ALOHA or DTN

systems) [80, 12, 39]. This means it is not likely all the nodes share an identical upper-bound of the normal

loss rate. If the network’s average MAC layer collision rateis high, but the collision rates at some attackers are

low, the malicious dropping will be considered as normal loss and the false positive rate will be high [53, 78].

Some nodes may maliciously drop very little packets once it doesn’t suffer a collision or jamming. This is an

intentional packet dropping which should be classified as attack, however the traditional secure protocol will

be invalid to identify such attackers.

Worse still, each smart attacker on the malicious sub-routemay only drops a small quantity of packets, and

this quantity is less than the threshold value derived in theprior security protocols. In this case, such attackers

can not be discovered by using the traditional secure routing protocols, while the total loss quantity in the

malicious sub-route is still very high. Even in a special circumstance that all the network members share an

identical upper threshold of normal loss, each attacker maycontrol its intentional drop rate below this threshold.

However, the total drop quantity from all the attackers is high. Such an deceitful dropping will decrease the

QoS while the attackers will not expose themselves.

Moreover, since the attackers form a malicious group, according to the reactive routing protocols [37, 39],

each of them is possible to be the leading attacker (such as nodev1) which sends back the false R R

message to the senderS. That means, when any other sender wants to send packets, some other attacker is
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possible tointerceptthe R R and inject the malicious sub-route into the path between source node

S and destination nodeD. If the malicious group is in the center of the multihop wireless network, is will take

its geographic advantage [37, 39] to bring damage to the whole network. We illustrate this in the following

figure 4.2.

Table 4.1: Symbols for selective forwarding game.

Symbol Definition

N Number of selective forwarding attackers.
i The i-th attacker.
si Drop quantity by attackeri.
πi Utility function for attackeri in one stage of communication.
̟ Total drop quantity byN attackers.
Ω Payoff for dropping one unit packet.
α Illegal reward to attacker (upper bound of unit-utility).
β Strength of punishment (attacker’s Risk Factor).
ε Factor of battery cost for processing and forwarding packets.
s∗i Nash attack strategy (drop quantity) by attackeri.
s̃i Colluding attack strategy (drop quantity) by attackeri.
π∗i Stage utility under Nash equilibrium for attackeri.
π̃i Stage utility under Collusion for attackeri.
r Sender stops sending packet atr-th round.
pr Probability that a sender stops sending packets atr-th round.
δ Attacker’s faith (discount factor).
πnash

i i’s overall utility if all attackers adopt Nash strategy.
π

obey
i i’s overall utility if all attackers adopt Colluding strategy.
πviolate

i i’s overall utility if it deviates from Collusion.
s#
i i’s optimal drop quantity when it deviates from Collusion.
π#

i i’s optimal stage utility when it deviates from Collusion.

4.2.3 Sub-Route Oriented Punishment and Reward

In theN-attacker malicious sub-route, by utilizing the upstream and downstream observation scheme proposed

by D.M. Shila et al.[38], we can obtain how many packets each insider node loses. Every time an insider

attackeri drops one data packet, it will suffer oneunit punishmentfrom the IDS/Reputation systems. This

punishment can be reputation decreasing or virtual monetary penalty [7, 39]. Letβ denote the severeness of the

punishment from the IDS/Reputation system to the colluding attackers. Thusβ can be seen as theRisk Factor

in the view of the colluding attackers. This risk factorβ is set by the security manager of the wireless network

to threaten the attackers not to drop too many packets. Greaterβ indicates severer punishment to the colluding

attackers. This risk factorβ can be adjusted depending on different wireless applications. For example, in the
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military applications which need high security guarantee,β may be set at a greater value; while in civilian

applications,β may be set at a relatively smaller value. We record the attackstrategy of an individual attacker

i assi which indicates the number of packets it drops. The total drop quantity by theN-attacker malicious sub-

route is recorded as̟ =
∑N

i=1 si. Then the unit punishment is defined asPunit(̟) = β·̟, which is an increasing

function of̟. This unit punishment function indicates significantly that: while the total drop quantity from

the malicious sub-route increases, the punishment to each single attacker for its dropping every unit packet will

also become more severe. This increasing unit punishment can be used to threaten the malicious attackers not

to drop too many data packets and not to collude with each other.

For every packetloss on nodei, the reputation system will punish nodei from two aspect:(1) Pord(si) is

called theordinary punishment, which is caused by the single node drop quantity at nodei. (2) Pext = β̟ is

called theextra punishmentEvery attackeri will also suffer an caused by the total packet loss in the sub route.

We define this extra punishment as: whereβ is a weight metric that can be adjusted by network manager.

Every time when one attacker attackeri drops one packet, it will also gainillegal rewards from two aspects:

(1) Energy reward: recorded asRene, indicating the energy that one attacker saves by not forwarding one unit

packet;(2) Adversary reward: recorded asRadv, which means one attacker’s illegal gain from the adversary

of the network who has compromised these inside attackers. In normal cases, theRadv can be the monetary

reward which indicates that the network’s adversary employs these insider attackers, and if the insider attacker

drops packets, it will gain money from the adversary.

Besides the packet dropping, each time an insider attacker forwards a packet, it will also have reward and

loss. The loss for forwarding the packet is due to the batterypower consumption. On the other side, after

the insider attacker forwards packets for other nodes, the network will reward it in the form of reputation or

resource allocation [37, 48, 81]. To quantify the loss and reward for forwarding packets, we assume within one

stage of communication between the source nodeS and the destination nodeD, the total number of packets

thatS sends out isκ, and each insider attacker drops certain subset of these packets. Hence, the insider attacker

i receivesκ −
∑i−1

j=1 sj packets from attackeri − 1. Attackeri then dropssi packets, and forwards the remaining

κ −
∑i−1

j=1 sj − si packets to attackeri + 1. Therefore, the battery energy consumption for attackeri to process

and forward the packets, can be calculated by a functionc(κ −
∑i−1

j=1 sj − si). On the other hand, the reward to

attackeri for its forwarding packets can be calculated by another function g(κ−
∑i−1

j=1 sj − si). It is worth noting

that, the value ofg(·) should be greater than the value ofc(·) because in order to stimulate the insider nodes to

forward data packets, the reward from the network should be more than the energy consumption [37, 48, 81, 7].
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For simplicity, letc(·) andg(·) both be linear function of argumentsi, then we integrate this two functions as

f (si) = c(κ −
∑i−1

j=1 sj − si) + g(κ −
∑i−1

j=1 sj − si). And f (si) is also a linear function ofsi.

4.2.4 Colluding Attack Game Model

Given single node’s drop quantitysi, the malicious sub-route’s total drop quantity̟, the punishment for

dropping one unit packetPunit(̟), and the illegal rewardsReneandRadv, we can get the unit-utility for attacker

i when it drops one packet:Ω = ρ1Rene+ ρ2Radv− Punit(̟) whereρ1, ρ2 are weighting factors. Taking into

consideration that the attackeri totally dropssi packets, the total payoff for dropping thesesi packets is denoted

as si × Ω. On the other hand, besides packet dropping, attackeri totally forwardsκ −
∑i−1

j=1 sj − si packets.

Therefore, the total payoff for forwarding these packets is denoted asg(κ −
∑i−1

j=1 sj − si) − c(κ −
∑i−1

j=1 sj − si),

whereg(·) andc(·) are defined in subsection 4.2.3. We consider during each stage of communication between

the source and destination nodes, the total number of packets need to send isκ. Then the attackeri’s utility in

one stage of communication is:

πi = si[ρ1Rene+ ρ2Radv− Punit(̟)]

+ g(κ −
i∑

j=1
sj − si) − c(κ −

i∑
j=1

sj − si)
(4.1)

4.3 Static Analysis

In section 4.2, we have proposed theN-attacker colluding attack game model. To obtain the attackstrategies

and preference of the attackers, we need to find the equilibrium [36, 7] of this colluding attack game. In this

section, we will analyze the equilibrium inone-shotcolluding attack game. Since the analysis only concentrates

on the attack during one stage of communication, it is the so-calledstatic analysis. In this static analysis, the

Nash attack strategyas well as theColluding attack strategyare derived to indicate the strategy space of the

attackers.

4.3.1 Cournot Game

The Cournot game is originally an economic model used to describe an industry structure in which companies

compete/cooperate on the amount of output they will produce, which they decide independently of each other.

In Cournot game, price is a decreasing function of total output of the two companies. By introducing the
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Cournot game knowledge, we can study the interaction between multiple rational attackers. the Cournot game

can help us to find the stable strategy for each attacker, which is called Nash equilibrium in game theory. In

this section, analysis the single stage colluding attack game, base on our game model which is extended from

the traditional Cournot Game

4.3.2 Nash Attack Strategy

We first consider a situation where the attackers do not collude with each other. In this case, according to

the theory of pure strategy static game [36], theNash equilibriumattack strategy is the stable point for the

attacker’s drop quantity. If all the attackers choose Nash equilibrium drop quantity, no attacker has the incentive

to unilaterally change its strategy. In the colluding attack game, letsi denote the drop quantity by attackeri with

the corresponding utility functionπi, and lets−i denote the vector of drop quantities of all the other attackers

excepti. The Nash equilibrium is a vector (s∗i , s
∗
−i) such thatπ∗i (s

∗
i , s
∗
−i) = maxπi

si≤sT
(si , s∗−i) ∀i = 1, ...,N. This

Nash equilibrium (s∗i , s
∗
−i) is the stable status of the colluding attack game in which any unilaterally deviation

from strategys∗i by the attackeri will incur utility decrease to itself. Note thatsT denotes the network system’s

tolerable packet loss quantity on a single node, ands∗i ≤ sT. The utility are chosen by a particular attackeri

with attack quantitysi asπi, and the particular attack quantities by all other attackers iss−i with corresponding

utilities π−i. Assuming the Nash equilibrium of this game is:

πi(s∗i , s
∗
−i) ≥ πi(si , s∗−i) (4.2)

To achieve this assumed equilibrium, for any attackeri = 1, 2, ..., n, and anysi ∈ Si , the following con-

dition must be satisfied: max
si∈Si

πi(s∗1, s
∗
2, ..., si, ..., s

∗
n). To achieve this assumed equilibrium, for any attacker

i = 1, 2, ..., n, and anysi ∈ Si , the following condition must be satisfied: max
si∈Si

πi(s∗1, s
∗
2, ..., si , ..., s

∗
n). It is worth

noting that, according to game theory, this Nash equilibrium attack strategy is the stable point of this colluding

attack game. However, it is not necessarily the optimal strategy for the agents (attackers) [36, 7]. To derive this

Nash equilibrium drop quantity, we need to find the solution to the followingoptimization problem:



∂π1
∂s1
= α − β(2s1 + s∗2 + ... + s∗N) − ε = 0

∂π2
∂s2
= α − β(s∗1 + 2s2 + ... + s∗N) − ε = 0

...

∂πN
∂sN
= α − β(s∗1 + s∗2 + ... + 2sN) − ε = 0

(4.3)
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Making partial derivation of each of theseN quadratic functionsπi with respect to the corresponding drop

strategysi yields the Nash equilibrium drop quantity:

s∗i =
1

N+1 ·
α−ε
β

(4.4)

and the corresponding Nash Equilibrium utility for each attacker:

π∗i =
1

(N+1)2
·

(α−ε)2

β
(4.5)

Note that in our attack game model, sinceα, β andε are the same for every attacker, the Nash equilibrium

attack strategys∗i as well as the Nash equilibrium utilityπ∗i are identical to every attackeri. In other word,

all the attackers drop the same Nash equilibrium quantity, and receive the same Nash equilibrium utility. The

significance of the Nash attack strategys∗i is that it illustrates the stable point of the drop quantity for attackers

if they are selfish anddo not colludewith each other. Any attacker’s unilateral deviation from this Nash attack

strategy will result in its own utility decrease.

4.3.3 Colluding Attack Strategy

The Nash equilibrium is not the best case for the malicious sub-route because attackers do not collude with

each other. On the contrary, if the attackers fully collude with each other, what is the optimal drop quantity

each of them will adopt? To solve this problem, we need to firstconsider the simplest case: what is the optimal

drop quantitỹs if there is only one attacker (the number of attackersN = 1). According to the Cournot game

[36], if multiple attackers collude with each other, the optimal strategy for them is that the quantitỹs is divided

equally among these attackers. Therefore, we first considerthat: if there is only one attacker in the sub-route,

its optimal drop quantity is̃s with the corresponding maximum utilitỹπ. The value of̃s should satisfy an

optimization problem: max{̃π = s̃(α − βs̃) − ε × s̃}, which is equivalent to the first-order partial differential

equation: ∂π̃
∂s̃ = α − 2βs̃− ε = 0. Thus, in the single attacker scenario, the optimal drop quantity is s̃ = α−ε

2β ,

with the utility π̃ = (α−ε)2

4β . Recall that the reason why we introduce this metrics̃ is to derive the optimal attack

strategy when multiple attackers exist. In the real case, ifonly one attacker exists,̃s should be limited under

the upper boundsT which is smaller thanα−ε2β . In other words, if only one attacker exists, this single attacker

should not drop too many packets.

If multiple attackers collude with each other, theCollusion statusof this N-attacker selective forwarding
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attack game is that theseN attackers equally divide the quantitỹs = α−ε
2β . Consequently, the optimal drop

quantity for each of these attackers is:

s̃i =
1
N ·

α−ε
2β

(4.6)

with the corresponding utility:

π̃i =
1

4N ·
(α−ε)2

β
(4.7)

Comparing the utility functions (4) and (7), we can see the drop quantity s̃i < s∗i , but the corresponding

utility π̃i > π∗i . This indicates that if the attackers collude with each other, although the individual drop

quantity decreases, the utility is higher than if they do notcollude.

However, according to the basic knowledge in static game theory, in the one-shot selective forwarding at-

tack game, since all the attackers are rational, every attacker just intends to drop more packets to unilaterally

maximize its own utility. Therefore, the best strategy for each attacker is to choose the Nash equilibrium drop

quantity which is stable and safe, but not to collude with other attackers [36]. That is to say, in the one-shot

selective forwarding attack game, due to the rationality ofthe attackers, the collusion can not be realized. The

best strategy for each of them is to choose Nash equilibrium drop quantitys∗i .

4.4 Dynamic Analysis

In Section 4.3, we reveal that the collusion cannot be reached in the one-shot attack. In the real network sce-

nario, since the communication between the source and the destination node repeats, theN-attacker selective

forwarding attack also repeats. And in each stage of communication, the attack repeats once. In this sec-

tion, we extend the one-shot static attack game into multi-round dynamic attack game, and find thesub-game

equilibrium [36] which indicates the preference of the attackers.

4.4.1 Faith of the Attackers

In a multi-round attack, attackers may have different utility functions in different time periods due to the

limitation of battery power and malicious group’s life. To investigate how many packets an attacker prefers to

drop at certain time instant, we introduce a notionAttacker’s Faith.
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To obtain its optimal utility, each attacker will change itsdrop quantity in each stage of the repeated attack

game. The key problem is to investigate when the attacker will prefer to change its strategy and what strategy

it will switch to. For this purpose, we first introduce the notion calledAttacker’s Faithwhich indicates how

long the attacker believes the repeated attack will last.Attacker’s Faithis denoted by a real numberδ that lies

in the interval [0, 1). It captures the fact that an attacker generally values the present utility more highly than

those in the future. If the attacker has higher faith, it willvalue more on its future utility. In the extreme case

whenδ→ 1, the attacker treats the present and the future utilities equally. The attacker’s faith can be reflected

by the residual battery power, or the total quantity of data that the source node need to send to the destination

node.

(1) if δ→ 1, the attacker will strongly believe that the attack will berepeated for many stages (even infinite

times). This may be due to the reason that the communication between the source and destination nodes needs

to be repeated many times. In this case, each attacker will always choose the colluding attack strategys̃i, trying

to maximize the long-term overall utility in the future.

(2) if δ → 0, it means the attacker has no strong faith on future, for example, due to lack of power, or for

the reason that the communication between the source and destination nodes is almost finished. In this case,

attackeri does not have hope on the future, it will violate from the colluding attack strategy, and fearlessly drop

a large amount of packets to maximize its current utility.

4.4.2 Repeated Attack Strategies

Consider anN-attacker multi-round attack, in which an attackeri has faithδ. Supposepr is the expected

probability for the source nodeS to stop sending its data packets at ther-th stage of communication. Therefore,

the selective forwarding attack will also be repeatedt stages. If the attackersnever colludewith each other and

always chooseNash attack strategy s∗i , then at a certain stagej, the expected stage-utility for an arbitrary

attackeri is δ jπ∗i (Note that according to the result in section 4.3, this valueis identical for each attackeri).

And afterr stages, the expectedoverall utility will for an attackeri will be:

πnash
i = π∗i + δ · (1− p1)π∗i + δ

2 · (1− p1)(1− p2)π∗i

+... + δr · (1− p1)...(1− pr)π∗i

= π∗i +
r∑

j=1
[δ j · π∗i

j∏
k=1

(1− pk)]

(4.8)

If all the attackers always obey thecolluding strategỹsi , at a certain stagej, attackeri’s stage-utility will be
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δ j π̃i. After r stages, comparing with the overall Nash utility function (8), attackeri’s expected overall utility

for colluding is:

π
obey
i = π̃i + δ · (1− p1)π̃i + δ

2 · (1− p1)(1− p2)π̃i

+... + δr · (1− p1)...(1− pr )π̃i

= π̃i +
r∑

j=1
[δ j · π̃i

j∏
k=1

(1− pk)]

(4.9)

4.4.3 Repeated Attack Equilibriums

In the multi-round repeated attack, the attackers will focus more on the long-term overall utility. From function

(8) and function (9), it can be observed thatπ
obey
i > πnash

i . Obviously, the colluding attack strategỹsi yields

higher utilities. As long as an attacker’s faithδ , 0, it will first choose the colluding strategỹsi . Consider

an attackeri with relatively low faith on its future utility, at a certainstaget, to maximize its own utility, this

attackeri will violate from s̃i and unilaterally increase its drop quantity to a greater value (denoted ass#
i ), which

brings it with higher recent utility. Due to this violation,from staget + 1, every attacker needs to switch to the

Nash drop quantitys∗i to protect its own utility. As a result, the multi-round repeated attack consists of three

phases:

• Colluding Phase: Every attacker drops̃si =
1

2N ·
α−ε
β

packets.

• Violating Phase: Violator dropss#
i packets, others drop̃si packets.

• Protecting Phase: All of the attackers switch tos∗i =
1

N+1 ·
α−ε
β

.

It is critical to investigate that: at which staget, an attacker intends to violate from collusion? And what is

its best strategy when it violates? To this end, we assume stage-t is theviolating phase. At stage-t, attacker

i does not collude with other attackers, it unilaterally changes its drop quantity from̃si to a greater values#
i .

Since att-th stage, all the other attackers are still keeping the colluding attack strategy, the violator’s dominant

strategys#
i should be the solution to this optimization problem:

max
s#
i ≥0

{
s#
i

[
α − β(s#

i +
∑
j,i

s̃j)

]
− ε ×

(
κ −

i−1∑
j=1

s̃j − s#
i

)}
(4.10)
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solving this maximization problem by using First-order partial differential equation, we can get the value of

s#
i , which indicates the optimal drop quantity when the attacker i violates from collusion:

s#
i =

α−ε−
∑
j,i

s̃j

2β

= N+1
4N ·

α−ε
β

(4.11)

and the corresponding utility at this violating stage is:

π#
i =

(N+1)2

N2 ·
(α−ε)2

16β
(4.12)

Consequently, attackeri’s expected overall utility will be:

πviolate
i = π̃i +

t−1∑
j=1
δ j · πi

j∏
k=1

(1− pk) + δt · π#
i

t∏
k=1

(1− pk) +
r∑

j=t+1
δ j · π∗i

j∏
k=1

(1− pk) (4.13)

The above utility function consists of three parts, which indicates the three phases in the multi-round re-

peated attack game:

(a). The colluding phase (before stage-t), in which theN attackers collude with each other, and each at-

tacker’s utility for the entire colluding attack phase is indicated bỹπi +
t−1∑
j=1

[δ j · π̃i

j∏
k=1

(1− pk)].

(b). The violating phase (stage-t), in which the attackeri unilaterally violates from the colluding strategy to

maximize its long-term overall utility. The utility of thisphase for the violator isδt · π#
i

t∏
k=1

(1− pk).

(c). The final protecting phase (after stage-t), in which all the attackers switch to the stable Nash equilibrium

strategy to protect themselves, and each of them receives the utility
r∑

j=t+1
[δ j · π∗i

j∏
k=1

(1− pk)].

From utility functions (8), (9) and (13), we can see that: forany t ≤ r, if the expected overall utility for

colluding is greater than that for violating (i.e.,πobey
i ≥ πviolate

i ), the colluding strategy will be the optimal

attack strategy. In other words, if the following inequality is satisfied,

r∑
j=t
δ j · π̃i

j∏
k=1

(1− pk) ≥ δt · π#
i

t∏
k=1

(1− pk) +
r∑

j=t+1
δ j · π∗i

j∏
k=1

(1− pk) (4.14)
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attackeri will always choose the colluding attack strategys̃i . Otherwise, it will change to a greater drop

quantitys#
i at stage-t. And all the attackers will switch to protecting drop quantity s∗i since staget + 1. These

results are the attackers’ preference in theN-attacker multi-round repeated attack.

The inequation (14) is the final result of the selective forwarding attack game, which shows the attackers’

attack preference. The inequation (14) indicates significantly when the attackers are prone to collude with each

other, as well as how many packets each of them is willing to drop at each step of the repeated attack. At

a certain staget, if the variables (e.g.,t, r, δ, α, β, ε and pk) satisfy the above inequation (14), the attackers

are more willing to collude with each other. Otherwise, to maximize their overall utilities, the attackers will

not collude, just behave rationally and selfishly, to followthe violating strategy which is indicated by function

(13). If the inequation (14) is satisfied, we say that thesub-game equilibriumis reached [36]. The sub-game

equilibrium of this multi-round selective forwarding attack game is subject to the utility functions (8), (9) and

(13). The sub-game equilibrium indicates the stable (sometimes optimal) status of the selective forwarding

attack game. It can be used to help the security manager of themulti-hop wireless network to reveal that: at

which step, which attack strategy the attackers prefer to take. In the next section, we will use the experimental

method to observe this selective forwarding attack game. Wewill also investigate the impact of different

variables on the result of this attack game.

4.5 Simulation and Numerical Analysis

In the previous sections, the colluding attack game is analyzed through theoretical approaches. Given each

node’s drop quantity, we can calculate the expected utilityof the nodes. For the malicious sub-route, we ob-

tained the formula and constrains which can be used to predict the equilibrium drop quantity for each attacker,

and the expected damage that the network may suffer when the attackers rationally choose their equilibrium

drop quantity. Notice that the equilibrium drop quantity isthe mutual optimal attack strategy when theN

attackers collude with each other.

However, in theN-attacker multi-round repeated attack, since the game’s critical variables (e.g.,t, r, N, δ,

α, β, ε and pk) are undetermined, it is complex to intuitively observe thesub-game equilibrium. Hence, in

this section, to analyze the behavior of the multiple attackers, and find out how they they may collude with

each other, we design an simulation, and utilizeparameter estimationand statistic methodsto observe the

multi-round repeated attack game. We will first investigatethe relationship between the attacker’s faith and its

expected overall utility. Then based on the different expected utilities to colluding and violating at different
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stages of game, we derive the value of Nash equilibrium of thecolluding attack game, and learn that under

what conditions the collusion happens.

4.5.1 Simulation Design and Parameters Setting

Since this work concentrates on the analysis of the collusion behavior of the attackers in the selective for-

warding attacks, in our experiments, we assume a convenientsize network which contain totally 300 wireless

nodes. Furthermore, we focus on an objective route linking the sourceS and destinationD, which consists of

50 wireless nodes. To simulate the attackers, we assume one part of this route is the malicious sub-route which

containsN < 50 insider attackers. It worth noting that, these 50 insiderattackers may be next to each other,

and they may also be sandwiched between other good nodes. We set the total number of packets that need to

be forwarded from the source nodeS to the destination nodeD is κ = 1000. And the pre-set tolerable packet

loss for each insider node issT = κ × 2% = 20. The value ofsT can be easily changed to simulate different

wireless networks that require different QoS or have different security constrains.

For the equation (2), we simply set the upper bound of the unit-utility asα = 10, set the risk factor asβ = 1

andε = 1. These values are just sample values. However, they can be easily changed to adapt to the real-world

utility and risks if a specific network environments are chosen. Actually, when setting these 3 values, there are

no specific constrains except that the risk factor should be less than the upper-bound of the unit-utility. But it is

worth noting that, if good nodes are sandwiched between the bad nodes, such that the nodes located like ”Good

Node—Bad Node—Good Node—Bad Node”, to get a relatively low false positive rate, the network manager

should properly define the value of, according to the other varibales in function 2.

Besides, the repetition has direct impact on the attack strategy of the insider attackers, as well as direct impact

on the performance of the wireless network. Therefore, it isof great significance to decide how many times the

selective forwarding attack will be repeated, which is denoted as factorr. In different real-world application

scenarios, the value ofr may vary depending on how many packets totally the source node S needs to send

to the destination nodeD. Thus our experiment should be designed more close to such realities. Following

the experimental and statistical methodologies [82], we considerr as a formalized expectation which obeys

thePoisson distribution. In network communications, Poisson distribution is commonly used to evaluate the

quantity of data that one agent receives within a certain period. Therefore, based on the different application

scenarios, we can defineλ as themathematical varianceof r. λ is the one input data of the experiment.
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Following the rule of Poisson distribution, the probability for the attack to repeatr times is calculated as:

Poisson(r) = e−λλr

r !
(4.15)

with mathematical expectationλ. For demonstration, we first set the expected attack repetition asλ = 30

rounds. Based onλ, we generate an 80-elements arrayR{80}. Every elementr ∈ R{80} is a possible number of

attack’s repetition subject to the Poisson distribution with mathematical varianceλ. Here number 80 is the size

of the Poisson distribution sample space, and it can be resetto a greater number when a more precise analysis

is required. For eachr, we generate a probability distributionP = [p1, p2, ...pt, ..., pr ] wherept is the expected

probability for senderS to stop sending its data packets at thet-th stage. Finally, following functions (8), (9)

and (13), we get the statistical results forπnash
i ,πobey

i andπviolate
i , respectively. On obtaining the number of these

three metrics, following the inequation (14), the sub-gameequilibrium can be derived. An example algorithm

for calculating the value ofπnash
i is illustrated in the Appendix.

4.5.2 Numerical Analysis

The final result of this game is subject to the expected repetition roundr, the faith factorδ, the risk factorβ,

the number of the attackersN, as well as the variablesα andε.
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Figure 4.3: Utility to three kinds of strategies according to faith factors.

We fist focus on the analysis of the impact of metricsδ andβ. Figure 4.3 shows the utility of three strategies

subject to different faith factorsδ. If all the rational attackers never collude with each otherand always choose

Nash attack strategys∗i , the overall utility of each attacker is illustrated by the blue cylinderπnash
i . If all

the attackers always choose the colluding attack strategys̃i throughout the repeated attack game, the overall
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utility for each attacker will beπobey
i which is illustrated by the red cylinder. If the attackers first collude with

each other, and at some stept, the rational attackeri deviate the collusion, then all the attackers switch to the

Nash attack strategys∗i afterwards. Then the corresponding overall utility of attacker i will be πviolate
i which is

illustrated by the green cylinder.

From figure 4.3, it is observed that, the overall utility for Nash strategyπnash
i is always less than utility

for colluding strategyπobey
i and utility for violating strategyπviolate

i . This indicates that although the Nash

equilibrium attack strategy is the stable point in the one-shot attack game, it is never the optimal strategy for

the attackers in the multi-round repeated attack game. If wecompare the red cylinder with the green cylinder,

we can find that: when attacker’s faith is less than 0.55, πviolate
i is always greater thanπobey

i . This indicates

the attackeri prefers to deviate from collusion if it does not have enough faith. While the attacker’s faith

increasing, the colluding strategy gradually becomes optimal.
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However, from figure 4.3, we cannot find the precise value ofδ, from which colluding with each other

will bring the attackers the maximum utilities. Thus, we calculate the difference betweenπobey
i andπviolate

i by

following: πdis
i = π

obey
i − πviolate

i , and observe at which point (critical point) the valueπdis
i begins to be positive.

From figure 4.4, we find thecritical point of δ is 0.605. Note that the attackers will always collude with each

others when they have enough faithδ ∈ [0.605, 1].

Recall that in the sub-route oriented reward/punishment scheme,β is therisk factorwhich can be utilized by

the network security manager to threaten the insider nodes not to collude with each other to launch selective

forwarding attack. Largerβ indicates that the punishment to packet dropping is severer. By utilizing the sub-

route oriented reward/punishment and adjusting the value ofβ, the network security manager can exert different
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levels of threat on the insider nodes who may collude with each other. On the other side, the attackers will

also change their attack strategies when they are confronting the different risk factors. Figure 4.5 illustrates the

impact of the different risk factors on the attackers’ utilities (attack strategies).

In figure 4.5, according to the function (2), we adjust the attacker’s Risk Factorβ between interval [1, 9]. It

is observed that, ifβ < 5 andδ < 0.5, violating from colludsion will bring higher utility for the attacker; if

β < 5 andδ > 0.5, always colluding will bring higher utility; but when 5< β < α = 10, the difference between

πobey andπviolate becomes very unconspicuous. In this case, since colluding will not bring the attackers with

a remarkable utility increase, the attackers will not prefer to collude with each other. From this we can see,

a largerRisk Factorβ has a direct impact on the attackers’ attack strategies. In other words, by adjusting the

PunishmentandRewardfactors of the IDS/Reputation systems, we can successfully threaten the attackers not

to collude with each other. If collusion of the attackers does not take place, the detection of the single attacker

will be much easier.

The number of attackersN also has a significant influence on each attacker’s attack strategy. We consider the

scenarios that there are 10%, 20%, 30% and 40% attackers in the multihop wireless network, and analyze what

is the minimum value of the attackers’ faith that leads to collusion. In figure 4.6, each increasing line indicates

the differences between the value ofπobeyandπviolate when attackers’ faithδ varies. The intersection of the five

lines is the critical value ofδ. It can be observed that, as the number of attackers increases, the minimumδ
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which is required for collusion also increases. The significance of this phenomena is that: when more attackers

appear, the collusion becomes more difficult. Moreover, we can see that, for any value ofδ greater than the

critical value,πobey
i is always greater thanπviolate

i . It indicates that if the attacker has enough faith, colluding

will always be the optimal attack strategy.
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Figure 4.6: Effect of malicious agents’ number.

4.6 Detection and Defending Policies

In the previous sections, we first propose the sub-route oriented reward and punishment scheme to threaten the

insider nodes not to collude with each other. Then based on this sub-route oriented reward and punishment,

we formalize the interaction between the multiple selective forwarding attackers, and construct the colluding

attack game model. Static and dynamic analysis of the attackers’ strategies are given and the attackers’ optimal

drop quantities are derived. The experiment and numerical analysis indicate that: at which stage, what kind of

attack strategies the attackers prefer to adopt.

In the real case, each node of the multihop wireless network may have normal packet loss due to channel

collisions, bandwidth limitation, or noises [37, 38, 47, 39]. Recall that the stage utility for an attackeri is

illustrated in the function (2), and the tolerable threshold for the packet loss quantity at asinglenode is denoted

assT . The value ofsT should be assigned according to the real-time channel quality. Previous work like [38]

has already discussed how to calculate the value ofsT . However, the smart attacker in the malicious sub-route
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may intelligently limit its drop quantity less thansT , and permanently drop small amount of packet without

being identified as the malicious attacker. Worse still, theattackers may even collude with each other to reduce

the single node drop quantity to a very small value, while thetotal drop quantity of the malicious sub-route is

still very high. By using the traditional detection mechanisms, this kind of smart and colluding attackers will be

mistakenly viewed as legitimate, although the overall throughput of the network is dramatically decreased. In

order to overcome this problem, in this section, we utilize our analysis results, and define the security policies

for the security manager of the multihop wireless networks.

4.6.1 Defending Policy for One-Shot Attack

We first consider the simplest case in which the communication between the sender node and the destination

node only happens once, which means it is a one-shot selective forwarding attack. According to the analysis

in section 4.3, in the one-shot selective forwarding attackgame, the stable status of the game is that all the

attackers choose the same Nash equilibrium drop quantitys∗i . Thus, the security policies for theone-shot

attack can be summarized as the following items:

(1) Those insider nodes which lose packets less thans∗i should be considered as legitimate members. The

packet loss on these nodes can be seen as normal loss and is tolerable.

(2)Those insider nodes which lose packets with quantitys∗i should be considered assmart attackers. Because

choosing this Nash equilibrium packet drop quantity, a smart attacker can maximize its own utility, regardless

of the packet loss quantities of the other insiders. Therefore, this kind of smart attackers should at least be

categorized assuspicious.

(3) Those insider nodes which lose packets more thans∗i should be considered asnaive attackers. This

kind of attackers do not consider much about the decrease of their own utility, but just fearlessly drop many

packets. In the single-shot case, this kind of naive attackers will bring more damage to the network than the

smart attackers. Therefore, they should be categorized asmaliciousand severely punished.

(4) If the detection system discovers that a string of insider nodes lose packets, and each of them lose the

same Nash drop quantitys∗i , this phenomena indicates that this string of nodes form a malicious sub-route, and

each node in this sub-route intelligently chooses the Nash equilibrium drop quantity which can guarantee the

stable utility. The security manager should isolate these smart insiders which form this malicious sub-route.

It is worth noting, from the network security manager’s point of view, the risk factorβ should be set properly,

and ensures∗i ≤ sT . This inequalitys∗i ≤ sT describes that the optimal drop quantity of a single smart attacker
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should be at least not greater than the normal loss quantity.

4.6.2 Defending Policy for Multi-Round Attack

The one-shot attack is the simplest case. When the communication between the sender and the destination

nodes continues, the selective forwarding attack repeats,and the attack strategies of the attackers also evolve.

Therefore, to identify the attackers in a multi-round repeated attack scenario, the security policy should also

change.

As we illustrated in section 4.4, in the multi-round repeated attack, if the attackers never collude with each

other, at each step of attack, the optimal drop quantity for each of them iss∗i . And the overall utility for each

attacker isπnash
i ; If the attackers fully collude with each other, the optimaldrop quantity at a single attacker

will decrease tõsi which is more inconspicuous and is more difficult to detect; If one smart attack’s power is

running out, at some staget, it will deviate from s̃i and switch to a larger drop quantity. After that, each attacker

will protect itself and return to Nash equilibrium drop quantity s∗i . In view of the above statements, the security

policies formulti-roundrepeated attack is as the following items:

(1) Those insider nodes which lose packets less thans̃i in each round of communication, should be consid-

ered as legitimate members. The packet loss on those nodes can be seen as normal loss and are tolerable.

(2) Those insider nodes which lose packets with quantitys̃i should be considered ascolluding smart attack-

ers. The colluding attackers are the most harmful to the multihop wireless network, for the reason that they are

not only malicious, but also smart. They collude with each other to cause damage to the network, and reduce

the single node drop quantity to escape from detection. Therefore, if a string of nodes drop packets, and each

of them drops̃si , this string should be viewed as malicious sub-route. All nodes on this malicious sub-route

should be classified as smart colluding attackers, and isolated from the network immediately.

(3) Those insider nodes which lose packets with quantitys̃i in most steps of communication, but suddenly

lose more thans∗i at one subsequent step, should be considered aslow-power smart colluding attackers. This

kind of attacker first colludes with other attackers, but when its power is running out, it suddenly increases its

drop quantity. A low-power smart colluding attacker is not feared of punishment, for the reason that it is dying

itself. For this kind of attackers, the security manager should not only give them the current punishment, but

also record their identities (such as IP addresses or MAC addresses) on a blacklist. In the future, if any new

node applies for accessing the network, the security manager should check whether its ID is on the blacklist.

This policy can be used to defend against those attackers whowant to come back to network again after
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Figure 4.7: Scenarios for different distributions of malicious agents

selfish smart attackers. This kind of attackers are not only malicious but also selfish. They launch attack, but

they only want to protect their own utility, and do not collude with each other.

(5) Those insider nodes which lose packets more thans∗i should be considered asnaive attackers. Simi-

lar as the policy for the one-shot attacker, this kind of naive attackers should be isolated from the network

immediately.

4.7 Disscussion

4.7.1 Impact of Attackers’ Distribution on Security Policy

In this subsection, we discuss how the distribution of attackers can have different attack effect, and analyze the

effectiveness of proposed schemes and policies when they are confront of various distributions of the attackers.

Consider two kinds of distributions. One scenario is that the malicious nodes are deployed next to each other,

which is illustrated in figure 4.7-a; the other scenario is that good nodes are sandwiched between the bad nodes,

such that: “Good Node—Bad Node—Good Node—Bad Node”, which is illustrated in figure 4.7-b.

If the scenario is the first one, solving the optimization problem as function 2 in subsection 2.4 is relatively

simple. Because all the variablessi are coming from the attackers. And since each rational malicious node

vi may want to increase the value of its own drop quantitysi, thus following our equilibrium analysis in the

previous sections, the behavior preference of this string of attackers can be successfully obtained, and the

neighbored attackers can be punished, and also identified, while have no bad impact on the good nodes.
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If the scenario is the second one, the good nodes (e.g.n2 and n3) who are is sandwiched between the

malicious node, may have very small value ofsi , while their neighbor malicious nodes have high value of

si . According to function 2 in subsection 2.4, if we want the badnodes severely punished and the good

node rewarded, it is strongly required that the network security manager should choose a appropriate value

for the punishment factorβ, which ensures the quadratic utility curve is an increasingfunction of si within

some specified interval. Ifβ is properly chosen, the detection will be accurate and defending policy will be

optimal, and the good nodes can receive reasonable rewards.Otherwise, the wrongβ may lead to too severe

punishment, the sandwiched innocent good nodes are also possible to suffer unfair loss. It is worth noting that,

these innocent good nodes have small value ofsi , therefore this kind offalse positive unfairnesswill not be too

severe and will be controllable.

If in one route, the malicious nodes are the minority while the good nodes are majority, even if the good

nodes are sandwiched between the bad ones, these good node will not sufferpalpable false positive unfairness,

because such false positive unfairness can be fully distributed to all the nodes along this route. On the contrary,

if in one route, there are much more malicious nodes than goodnodes, unfortunately, these scarce good nodes

will suffer serious unfairness. This indeed seems cruel to these scarce good node, but it is still beneficial. Since

if one route contains too much attackers, these sandwiched scarce good nodes will be easily infected, thus it is

better to also isolate them.

Besides, for those good nodes which are in the route betweenS and D, but are outside of the malicious

sub-route (e.g.n4 andn5), even the attacker and good nodes are sandwiched between each other, they will

not receive false positive unfairness. This is because by using the upstream and downstream joint monitor-

ing scheme in [38], it can be observed that there is no packet lost between these nodes and the source (or

destination). Thus the identified malicious sub-route willnot contain these kind ofmarginal good nodes.

4.7.2 Energy Consumption and Computational Complexity

The proposed security scheme against collusion in selective forwarding attack is based on the reactive routing

protocols such as AODV, DSR. On the perspective of the nodes (malicious nodes and good nodes), we assume

they only runWatchdog, and follow the traditional routing and forwarding protocols, but do not carry out

complex computation to predict other nodes’ preference. The energy consumption for packet forwarding will

be the same as it in the traditional protocols; the energy consumption for running promiscuous mode monitoring

mechanismWatchdog, will also be the same as traditional protocols. Thus in our proposal, t power-stringent
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nodes do not need to consume extra energy.

The security decision and security policy are made by the network security manager, which is usually as-

sumed to be a control center which does not lack of power. All the complex analysis is carried on by the security

manager. Since the selective forwarding attack game is a repeated game, thus the computational complexity

needs to be discussed. For the repeated game, if we assume theobserved signal (observed drop quantity) does

not contain noise, the computation will be much simpler. However, in the real world, because of the detection

mechanism cannot achieve the 100% detection rate, there must be some noises. When the noise is involved in

the security manager’s policy making, the analyzed game became an imperfect and private monitoring game.

Then the computational complexity for the optimal securitypolicy making will become much higher. Actually,

the solution to the imperfect private monitoring games is still an open problem [83], therefore, it is required

that the packet forwarding monitoring and recording schemeshould be robust and accurate to reduce the noise.

4.7.3 Noisy Channel

Regarding the noise, in the prior work [38], authors takes into account MAC layer collisions to derive the

normal losses in real-time; moreover, they also focus on wireless models to achieve the loss rate of the link.

The detection thresholds are then calculated according to the loss rate caused by the collisions and link errors.

Although the normal loss rate can be modeled and analyzed, nodes in a wireless network are still susceptible to

errors in monitoring each others’ behavior. That is to say, due to the unexpected changes of the channel environ-

ment, a given agent may erroneously reach the conclusion that another agent is behaving selfishly/maliciously

[84]. Such error observation will induce high false positive rate and false negative rate, which decrease the

effectiveness of the defence mechanism. For the game theory based methods to be practical they must in-

corporate realistic constraints of the underlying networksystems [52]. For this sake, in the future works, we

need to relax the assumption of perfect monitoring by nodes and develop a game theoretic model in which

nodes monitor other nodes’ actions as a signal that is publicly/privately observable. Such signal should reflect

a probability distribution over all the possible actions (drop and forward) of nodes. Besides, for setting a value

for detection, the threshold of the signals should be dynamically changing over time. Since large amount of

data traffic causes high error rate and large noise value, the difficulty in detecting an malicious dropping will

increase with the traffic intensity. To this end, existing researches in game theory, such as schemes in [85], can

be investigated to help design a more practical defending mechanism.



Chapter 5

Imperfect Monitoring Repeated Game for Agents

under Noise

5.1 Resilient Finite State Equilibrium

Definition 1 (Belief Division) A belief division Bi of agent i is a set{B1
i , . . . , B

ki
i }, such that∀Bl

i ∈ Bi , Bl
i ⊆

∆(
∏

j,i Θ j).

For two belief divisionsBi and B́i, we denoteBi ⊆ B́i if ∀l, Bl
i ⊆ B́l

i holds. Similarly, for profiles of belief

divisionsB andB́, we denoteB ⊆ B́ if ∀i, Bi ⊆ B́i holds.

We sayBi is closed for a givenm, iff ∀Bl
i ∈ Bi,∀bi ∈ Bl

i ,∀ai ∈ Ai ,∀ωi ∈ Ωi ,∃Bl′
i ∈ Bi, such that

χi [ai , ωi , bi ] ∈ Bl′
i holds. Also, we sayB is closed iff eachBi is closed.

Furthermore, we sayBi is covering if
⋃

Bl
i∈Bi

Bl
i = ∆(

∏
j,i Θ j) holds. Also, we sayB is covering iff eachBi

is covering. If a belief division is covering, it is closed.

We can define a strategy of agenti by the pair of an FSA (mi , θi) and a closed belief divisionBi. Here, a

plan on the equilibrium path is described by (mi , θi). Also, a plan off the equilibrium path is given as follows.

Assumeht
i ∈ Ht

i := Θi × (Ai ×Ωi)t is a private history, which includes off equilibrium behaviors. Let us assume

bi is her subjective belief afterht
i . Then, the plan for agenti after historyht

i is given as (mi , θ
l
i), such thatbi ∈ Bl

i.

Let us define several notations and concepts to introduce a Resilient Finite State Equilibrium (RFSE).

The joint probability distribution of the initial states ofagents is given asr. Fromr, we can obtain the joint

probability distribution of the states of agents at timet based on the joint pre-FSA. We denote this distribution

asr(t).

Definition 2 (Invariant Distribution) We saylimt→∞ r(t) is an invariant distribution of the joint pre-FSA.

Under several reasonable conditions, an invariant distribution is uniquely determined. For simplicity, in the

rest of this paper, we assume the joint pre-FSA has an unique invariant distribution, which is denoted asr∞.

r∞ can be obtained by solving a system of linear equations.

Now, we introduce conditions onr, B, andm.
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Figure 5.1: Example of belief divisions

Definition 3 (Consistency) We say r andB are consistent iff ∀i ∈ N,∀Bl
i ∈ Bi, r−i(·|θl

i ) ∈ Bl
i holds.

Here, r−i(·|θl
i ) is agenti’s belief on the states of other agents, when she is suggestedto start fromθl

i . In the

previous example,r−i(·|R) = (6/7, 1/7) andr−i (·|P) = (1/3, 2/3).

Definition 4 (Compatibility) m andB are compatible, iff ∀i ∈ N,∀Bl
i ∈ Bi,∀bi ∈ Bl

i, (mi , θ
l
i) is the optimal

continuation plan given i’s subjective belief bi .

Now, we are ready to define a resilient FSE.

Definition 5 (Resilient Finite State Equilibrium (RFSE)) We say a profile of pre-FSAsm, a joint probabil-

ity distribution of the initial states r, and a profile of closed belief divisionsB constitute a resilient finite state

equilibrium iff (i) they constitute a finite state equilibrium, (ii)B and r are consistent, and (iii)m andB are

compatible.

From the above definition, the following lemma holds.

Lemma 5 Assumem, r, andB constitute a RFSE. Then, for each agent i, and for any privatehistory ht
i ∈

Ht
i := Θi × (Ai ×Ωi)t, there existsθl

i ∈ Θi, such that i’s optimal continuation plan after ht
i is given as(mi , θ

l
i ).

Proof 14 Let us denote the posterior belief of agent i after private history ht
i as bi . SinceB and r are consistent

and Bi is closed, there exist Bli ∈ Bi, such that bi ∈ Bl
i holds. Sincem and B are compatible,(mi , θ

l
i ) is an

optimal continuation plan given i’s subjective belief bi .

From the definition, a RFSE is an FSE. Also, from Lemma 5, it is clear that a RFSE is also an FPE. Furthermore,

let us assume a strategy profile and a correlated device constitute an FPE. Then, for each agenti, the number
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of plans on and off the equilibrium paths is finite. Thus, we can represent theseplans as a pre-FSA. Therefore,

if there exists an FPE, there always exists an equivalent RFSE.

Now, let us define a special class of a RFSE.

Definition 6 (Global RFSE) We saym, r, andB constitute a global resilient finite state equilibrium iff they

constitute a RFSE andB is covering.

5.2 Verifying RFSE

Then, we are going to examine the procedure for checking whether givenm, r, andB constitute a RFSE.

The concept of one-shot extension[17] (also known as a backup operator in the POMDP literature) is conve-

nient to prove the optimality of an FSA.

Definition 7 (One-shot Extension)A one-shot extension of a set of agent i’s FSAsMi = {(mi , θi) | θi ∈ Θi},

which is denoted as(ai ,Mi(·)), is defined as follows: (1) it starts with a state where actionai ∈ Ai is played,

and (2) afterωi is observed, an FSA inMi , denoted by Mi(ωi), is played.

We denote the set of all one-shot extensions ofMi asM̃i . Note thatM̃i has a finite number (= |Ai | · k
|Ωi |

i ).

Definition 8 (Target Belief Division) The target belief division̂Bi for agent i is a belief division, where each

B̂l
i is chosen so that∀bi ∈ B̂l

i, the following condition holds:

V
(mi ,θ

l
i )

i (bi) ≥ V
M′i
i (bi ),∀M′i ∈ M̃i . (5.1)

We denote the profile of target belief divisions asB̂. B̂i can be obtained by solving a system of linear inequal-

ities. Then, eacĥBl
i can be represented as a (convex) polytope. In Fig. 5.1, we show B̂1 in Fig.1.11 when

p = 0.95, q = 0.024, andδ = 0.9 (note that the figure is not in exact scale for readability).A one-shot exten-

sion, which choosesC and moves toR for both observations (denoted as the blue line), outperformsV(m1,R)(bi)

around (1, 0), and another one-shot extension, which choosesD and moves toP for both observations (denoted

as the red line), outperformsV(m1,P)(bi) around (0, 1).

Theorem 5 A profile of pre-FSAsm and a profile of closed belief divisionsB are compatible iffB ⊆ B̂ holds.

Proof 15 For “if” part, an optimal policy can be obtained by the policyiteration algorithm [86], in which

an initial pre-FSA is improved by adding new states and simplifying it, until no improvement is obtained.
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Condition 5.1 means that, mi cannot be improved by adding any additional state, as long asi’s belief is always

within Bi. Therefore,∀Bl
i ∈ Bi ,∀bi ∈ Bl

i, (mi , θ
l
i ) is an optimal continuation plan given i’s belief bi . Thus,m

andB are compatible.

For “only if” part, if B * B̂ holds, there exists at least one agent i, Bl
i, and bi ∈ Bl

i, such that(mi , θ
l
i ) is not

optimal. Thus,m andB cannot be compatible.

Each B̂l
i is represented as a polytope. Thus, if eachBl

i is also represented as a polytope, to check whether

Bl
i ⊆ B̂l

i, it is suffice to check whetherbi ∈ B̂l
i holds for each extreme pointbi of Bl

i. Thus, for givenm, B, and

r, checking whether they constitute a RFSE is relatively easy, assuming each belief division is represented as a

polytope, and the number of extreme points of each polytope is not too large.

Verifying whetherm can constitute a global RFSE is much easier than verifying a RFSE, i.e., it is suffice

to check whetherB andB̂ are identical. The complexity of this procedure depends on the number of extreme

points in eachB
l
i . In the worst case, the number can beO(kn), wherek = maxi∈N ki . In this part, we mainly

work on how to find the equilibrium for multi-agent repeated game with private monitoring.

5.3 Multi-agent Repeated Game with Private Monitoring

5.3.1 Payoff Matrix and Signal for Three agent Prisoner’s Di lemma

Consider a potential game like three agent prisoner’s dilemma as follows:1 , 1 , 1 I 1 , 1 . 8 , I 11 . 8 , I 1 , I 1 0 , 0 , I 1A gentA A g e n t B
X 1 , X 1 , 1 . 8 X 1 , 0 , 00 , I 1 , 0 0 , 0 , 0A gentA A g e n t B

Figure 5.2: Payoff matrix for three agent prisoner’s dilemma

In this game, one agent will receive good signal if the other two agent both cooperate, otherwise, this agent
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will receive bad signal. We assume in each reduce joint state, the correct joint signal appears with a high

probability p, any wrong signal appears with probabilitye, thus signal distribution for each state is:

Table 5.1: Joint signal distribution for three agent prisoner’s dilemma

Reduced Joint State Correct joint signal Totally wrong joint signal Other wrong signal

RRR ggg(p) bbb(r) (e)
RRP bbg(p) ggb(r) (e)
RPP bbb(p) ggg(r) (e)
PRR gbb(p) bgg(r) (e)
PRP bbb(p) ggg(r) (e)
PPP bbb(p) ggg(r) (e)

5.3.2 Potential Joint State

Consider the For theN-agent repeated prisoner’s usingk state pre-automaton, the number of nodes in the full

joint FSA iskN. SuchN-agent game can be similar to a Potential Game [87]. A game is said to be a potential

game if the incentive of all agents to change their strategy can be expressed using a single global function called

the potential function. Thus, for agent-i, his stage payoff only depends on how many his opponents defect, but

not depend on which of them defect. In other words, all the joint states with same number of defectors are

identical to agent-i.

We can represent all the identical joint states as one “Potential Joint State”. For example, in a 4-agent PD,

for agent-A, if only one of his opponent defects, the three joint states can beRRRP, RRPR, or RPRR. In a

potential game, such three states can be same since they havethe same character that only one agent defects.

These three joint state can be counted as one “Potential Joint State”, which is represented byRRRP. Similarly,

if two opponents defects, there are three joint state which can be represented by one potential joint stateRRPP.

The joint automaton containing only potential states is called the reduced joint automaton.

What is the number of potential joint states in the reduced automaton? Assume 2-state pre-automaton(k = 2).

Nodes’ number in the full joint state should be 2n. Assume agent-i’s state fixed asR. when one opponent

defects, there areC(n− 1)1 identical states, which can be represented as one PotentialJoint State; whenn− 2

opponent defect, there areC(
nn− 1) identical states, which can be represented as another Potential Joint State.
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Thus the number of all Potential Joint States is:

2n − 2×
(
C1

n−1 + ... +Cn−2
n−1

)
+ 2× (n− 2)

= 2n − 2×
(
2n−1 − 2

)
+ 2n− 4

= 2n

5.3.3 Constructing the Transition Matrix for Reduce Joint S tate

The number of essential joint state is 2n, which indicates that the transition matrix is 2N × 2N. Then we can

do the following analysis:

(1) For anyN-agent prisoner’s dilemma using grim trigger(GT), fix my ownstate asR. Let RPxR(n−1−x)

denote the current joint state. Here the firstR means that my own state isR. Px means among myN − 1

opponents,x of them are in state P. Similarly,N−1− x of my opponents are in state R. Note that 0≤ x ≤ N−1.

(2) Following the same way, letRPyR(n−1−y) denote the next joint state.

(3) In GT with signalsb/g, there are two signals(b andg) for state transitionP → P in preautomaton, and

one signal(g) for R→ R. Moreover, one signal(b) for R→ P, and no signal forP→ R.

(4) Let’s define an operator

f =



0 i f y < x

2x × 1n−1−x i f y ≥ x

(5) If x > y, the total transition probability from current state to next state is 0.

(6) If x = y, there arex agents in stateP andn− 1− x agents in stateR, thus the transition probability from

current state to next state isf × e, or p+ ( f − 1) × e, where f = 2x × 1n−1−x.

(7) If x < y, this means: some of my opponent changed their states from R to P. And the number of such

opponents isy− x. But the next joint state is an “essential joint state”, which is reduced from multiple “original

joint state”. Recall that in the current joint state,n − 1 − x of my opponents are in stateR. Starting from

current joint stateRPxR(n−1−x), how many “original joint state” can the automaton transit to? The answer

should be a combinatorial number:Cy−x
n−1−x. What’s more important, all these ”original joint state” isnow

represented by one essential joint stateRPyR(n−1−y). So in this case, the total probability from current state So

in this case, the total probability from current stateRPxR(n−1−x) to next stateRPyR(n−1−y) is Cy−x
n−1−x × f × e or

p+
(
Cy−x

n−1−x × f − 1
)
× e, where f = 2x × 1n−1−x.

(7) Whetherp appears in the above transition probabilities, depends on the current joint state and the current
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signal.

The following joint state transition matrix for a five agent PD using GT can be a case study to verify the

above analysis. In the above transition matrix, in the first column are the name of current states and in the first

Table 5.2: Transition matrix for reduced joint states: five agentsR R R R R R R R R P R R R P P R R P P P R P P P P P R R R R P R R R P P R R P P P R P P P P P P P PR R R R RR R R R PR R R P PR R P P PR P P P PP R R R RP R R R PP R R P PP R P P PP P P P P
row are the next state. For example, from current stateRRRPto next stateRRPPP, the probability isC2

3 × 2e,

hereC2
3 is calculated following theCy−x

n−1−x explained in the previous page. Herey = 3, x = 1, thusCy−x
n−1−x = C2

3.

The number 2 is calculated following f explained in the previous page, which isf = 21 × 13−1−1 = 2.

5.3.4 Alpha Vector

Without loss of generality, we use the three agent prisoner’s dilemma to find the reduced joint state transitions

matrix as follows: Using this transition matrix and the payoffmatrix, we can calculate one agent’s payoff under

Table 5.3: Transition matrix for reduced joint states: three agents P P Pp 4 e 4 e 2 e 8 e 8 e0 3 e 6 e 0 6 e 1 1 e + p0 0 9 e 0 0 1 7 e + p0 0 0 3 e 1 2 e 1 1 e + p0 0 0 0 9 e 1 7 e + p0 0 0 0 9 e 2 6 e + p
a certain joint state profile. DenoteVθi ,θ−i as the agent-i’s payoff under joint state profile (θi ,θ−i) whereθ

−i is

all the other agents’ joint state. In our case,θ
−i can beRR, RPor PP. Then the following system of equations
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can be constructed.

VRRR= 1 + δ
(
p · VRRR+ 2e · VRRP+ e · VRPP+ e · VPRR+ 2e · VPRP+ e · VPPP

)

VRRP= −1+ δ
(
0 · VRRR+ 2e · VRRP+ 2e · VRPP+ 0 · VPRR+ 2e · VPRP+ (p+ e) · VPPP

)

VRPP= −1+ δ
(
0 · VRRR+ 0 · VRRP+ 4e · VRPP+ 0 · VPRR+ 0 · VPRP+ (p+ 3e) · VPPP

)

VPRR= 1.8+ δ
(
0 · VRRR+ 0 · VRRP+ 0 · VRPP+ 2e · VPRR+ 4e · VPRP+ (p+ e) · VPPP

)

VPRP= 0 + δ
(
0 · VRRR+ 0 · VRRP+ 0 · VRPP+ 0 · VPRR+ 4ε · VPRP+ (p+ 3e) · VPPP

)

VPPP= 0 + δ
(
0 · VRRR+ 0 · VRRP+ 0 · VRPP+ 0 · VPRR+ 0 · VPRP+ (p+ 7ε) · VPPP

)

Solving this system of linear equations, we can get two vectors, one isVR = (V) = (VRRR,VRPR,VRPP) and the

other one isVP = (V) = (VPRR,VPPR,VPPP). We call these two vectors the alpha vector. Recall that oneagent

has belief which is a probability distribution over the other agents’ joint states. Specifically, in a three agent

prisoner’s dilemma using GT, belief is a vectorbi = (b1
i , b

2
i , b

3
i ), whereb1

i is agent-i’s belief on other agents are

in stateRR, b2
i is agent-i’s belief on other agents are in stateRP; b3

i is agent-i’s belief on other agents are in

statePP. Then let us denote the belief based payoffs

VR (bi) = b1
i VRRR+ b2

i VRRP+ b3
i VRPP

and

VP (bi) = b1
i VPRR+ b2

i VPRP+ b3
i VPPP

5.3.5 One-shot Extension on Extreme Points of Belief Divisi on

In three-agent prisoner’s dilemma with GT and signalsg/b, there are six one-shot extensions: which areCRR,

CRP, CPP, DRR, DRP, DPP. Under these six different one-shot extensions, check all their rewards on these

five extreme points. The belief based payoffs for preautomaton before one-shot extension are recorded as

VR (bi) and VP (bi), which can be easily calculated from alpha vectors and belief vector. Reward for each

one-shot extension path automaton is recorded asVCRR, VCRP, VCPP, VDRR, VDRP andVDPP, respectively.

Finding extreme points

Each belief division is the intersection area of number of half spaces and one hyperplane. And such a belief

division is a convex hull. The extreme points of the convex hull can be computed by solving linear equation
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Figure 5.3: Belief divisions and extreme points for three agent GT

set, or using existing software cddlib [88]. For example, for three agent GT, in the belief divisions there are

five extreme points.

e4 ande5 can be obtained by solving linear equation sets



VR×
(
bRR

i , bRP
i , bPP

i

)
= VP ×

(
bRR

i , bRP
i , bPP

i

)

∑
θ
−i∈{RR,RP,PP}

bθ−i
i = 1

bPP
i = 0



VR×
(
bRR

i , bRP
i , bPP

i

)
= VP ×

(
bRR

i , bRP
i , bPP

i

)

∑
θ−i∈{RR,RP,PP}

bθ−i
i = 1

bRP
i = 0

One-shot Extension Rewards for N-agents

The consecution of one-shot extension path automaton is following [16]. ForN-agent case, LetVaiz1z2
be one

agent-i’s expected payoff when he plays one-shot extended automatonMaiz1z2. In this extended automaton

Maiz1z2, taking action ai, agent-i will start from z1 if he observes signalg; start fromz1 if observes signalb.

For example, for preautomaton GT, ifz1 = R andz2 = P, the one-shot extension is illustrated as the following

figure.
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Figure 5.4: Example of one-shot extension on GT

Under belief vectorb, Vaiz1z2
is a linear function ofb:

Vaiz1z2
(
b
θ1
−i

i , b
θ2
−i

i , ..., b
θm
−i

i

)
=

[
b
θ1
−i

i , b
θ2
−i

i , ..., b
θm
−i

i

]
×

[
vaiz1z2,θ1

−i , vaiz1z2,θ2
−i , ..., vaiz1z2,θm

−i

]

[
b
θ1
−i

i , b
θ2
−i

i , ..., b
θm
−i

i

]
is the m-dimensional belief vector, eachθm

−i is the “potential joint state” of all agents except

agent-i. And there aremof such joint states.

To compute this above expected payoff, we need to know eachvaiz1z2,θ1
−i . Using the alpha vectors we already

derived above, we can denotevaiz1z2,θ1
−i as:

vaiz1z2,θ1
−i = g

(
ai , f j,i

(
θ1
−i

))
+ δ


Vz1 (

xCg (1, 0, ..., 0)
)
Pr

(
g|ai , f j,i

(
θ1
−i

))

+ Vz2
(xCb (1, 0, ..., 0)) Pr

(
b|ai , f j,i

(
θ1
−i

))



Finally, Vz1 (
xCg (1, 0, ..., 0)

)
andVz2

(xCb (1, 0, ..., 0)) can be solved from alpha vectors and the belief vectors

on extreme points.

For example, in three-agent example, if considering one-shot extension action asai = C, and one-shot
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Figure 5.5: Global RFSE for GT in three agent PD

extension automatonCRP, the abovevCRP,θ
−i , with θ−i ∈ {RR,RP,PP}, can be the following equations:

vCRP,RR= g (C,C,C) + δ


VR

(
xCg (1, 0, 0)

)
· Pr(g|CCC)

+VP (xCb (1, 0, 0)) · Pr(b|CCC)



vCRP,RP= g (C,C,D) + δ


VR

(
xCg (0, 1, 0)

)
· Pr(g|CCD)

+VP (xCb (0, 1, 0)) · Pr(b|CCD)



vCRP,PP = g (C,D,D) + δ


VR

(
xCg (0, 0, 1)

)
· Pr(g|CDD)

+VP (xCb (0, 0, 1)) · Pr(b|CDD)



5.4 Experiment and Analysis

We implemented the models above, and computed the Global RFSE for the following games: (1) Three agent

PD using preautomaton GT, 1-MP and 2-MP. (2) Two agent PD withthree actions using GT, 1-MP and 2-MP.

We found that for three agent PD using GT, the RFSE exists in a large range of parameter settings. In the

following figure, we set the correct signal appears with probability p, and all the wrong signals appear with

the same relatively lower probabilitye. We can see from the figure, when agent has strong belief that his rivals

will cooperate (at extreme pointe1 in figure 5.3), and his signal accuracy is sufficiently high, if agent does

not care too much about tomorrow, he will still choose GT (in the read region). In this case, if he cares about

tomorrow very much, he may try to always cooperate. When signal is too noisy (p is too low, the lower blank

region), even an appropriate delta cannot make GT optimal onpoint e4 ande5. When agent never cares about
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Figure 5.6: Global RFSE for 1-MP in three agent PD

Figure 5.7: Global RFSE for 1-MP in three agent PD (from above)

tomorrow (delta is too low, the left blank region), even an very accurate signal cannot make GT optimal. This

seems to be same as what happens in the traditional perfect monitoring repeated games. At last, if the signal

correctness is very high the situation is tend to be close to perfect monitoring case. Then if the discount is

sufficiently high, the agents care very much about tomorrow, thuseven he observes a bad signal, he may still

stay in cooperate but not launch the trigger. We also checkedthe RFSE existence for 1-MP. The following

figure shows where the global RFSE exists, under different discount delta, correct joint signal probabilityp

and totally wrong joint signal probabilityr. All the blue nodes in the space are where the combination ofp, r

andδ constitute global seminality for 1-MP. We can see that, whenthe discount is reasonably high and signal

correctnessp is very high, as well asr is in a proper interval, 1-MP can constitute Global RFSE. Furthermore,

we check the situation when we look the seminal points from above of thez-axis, (theδ-axis). It can be seen

as the statistic for only parametersp andr, when all theδ < 1 are considered. We can see that, there are more
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blue points whenp is higher. This means that: whenp is higher, it’s easier for 1-MP to be RFSE. However,

althoughp should be high, the correlation of all agents’ signal shouldbe in a good interval (r should not be too

high or too small.). Ifr is too high, joint signal is likely to be error; however, ifr is too small, agents’ signals

are not well correlated.



Chapter 6

Concluding Remarks

In the past decade, the rapid evolution of theoretical research and practical implementation of communication

networks leads us to future generation networks. In the future generation network the network environment is

more distributed and more flexible. The network users are intelligent and have the ability to observe, learn, and

act to the environment and other users. The users thus becomemore like an intelligent agents. For modeling,

analysis and optimization for the future generation networks, a study on the relationship of these intelligent

agent is of great importance. Many new paradigm has emerged for such research field. And game theory is is

one of the powerful tools to deal with this problem. In this thesis, we dedicate to introduce the dynamic game

theory knowledge into this future generation networks. We mainly focus on the long-term relationships of the

intelligent agents in the network, in each layer, one typical challenging topic is studied in a game theoretic

way. We tried to comprehensively analyze the presented problem and find novel and effective solutions to

those problems.

In chapter two, we analyze the real-time spectrum pricing problem using a differential game and economic

model. We start by introducing the pricing problem for spectrum trading. We then discuss the pricing model for

the relatively simpler static network in which the number ofsecondary users does not change with the passage

of time. In such a static network, the price is the single dimensional strategy for the primary users. After that,

we extend the analysis to the more realistic dynamic network, under which the number of secondary users is

changing and the secondary users are QoS-aware. The Nash equilibrium conditions are derived for both cases

and can be used to provide the competitive primary users withreal-time optimal spectrum pricing policy. In

the future, we will do more concrete work on numerical experiment and implementation.

In chapter three, we utilized zero-sum differential game to investigate the secure spectrum sensing against

PUE attack. The interaction between the secondary user and the PUE attacker in a multi-channel cognitive

radio network is modeled as a constant sum differential game. The optimal strategies for both the secondary

user and the attacker are proposed based on the Nash equilibrium. The sensing (attacking) capacity and power

constrains are revealed to have direct impact on the optimaldefence (attack) actions. Based on the solution in

this paper, the secondary use can achieve the optimal usability of the cognitive radio channels when they are

confronting different kinds of PUE attackers.
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In chapter four, we construed a repeated game framework for the cooperative communication and malicious

node detection. We concentrate on analyzing the collusion in multi-attacker selective forwarding attacks by us-

ing game theoretical approaches. Based on the attack scenario, we first propose a sub-route oriented punish and

reward scheme. Then by extending the original Cournot model, we construct anN-attacker multi-round col-

luding attack game model. After that, the colluding attack is analyzed by one-shot static game and multi-round

dynamic game, respectively. The sub-game equilibriums arederived to find the preference of the attackers.

Numerical and graphical results are shown to illustrate theattackers’ preference and the impact of various key

metrics. Finally, based on the analysis, the security policies for the wireless multi-hop network are proposed.

By utilizing the result of this work, the collusion in selective forwarding attacks can be detected. To the best

of our knowledge, this kind of detection cannot be realized by using the previous detection schemes. In the

future, we need to investigate the performance of our proposal under different network sizes and mobilities.

In chapter five, we investigated the equilibria in infinitelyrepeated games with imperfect private monitoring,

which has been considered as a hard open problem. We present aprocedure that checks, in a finite number of

steps, whether a given candidate can constitute a RFPE. Using this method, we confirm RFPEs exist for several

representative games in a variety of parameter settings. However, the current work concentrate on the global

belief division which is the largest one. The future works have three aspects: The first one is to investigate

how to calculate the precise and shrunken belief division for such games. Second, we need to investigate

what happens in larger scale games, especially when the number of agent grows large. Third, we need to well

combine the framework with the real world network scenario,especially how to deal with the fluctuation of

noise in the wireless networks.

Our works in this thesis are applications of game theory in the filed of distributed networks. Although there

have been a significant increasing number of research papers, such researches still have wide research prospects

and many promising topics. There has been many applicationsof such topics in decentralized network control

including sensor networks, mobile ad hoc networks, large-scale data networks, transportation networks and

delay tolerant networks. The future challenges mainly falls into the following aspects: (1) To understand when

local competition can yields efficient outcomes. (2) Dynamics of agents’ long-term interactions over large-

scale networks. (3) The assumption perfect observation in might not hold, we must investigate more about

accuracy of the information in the dynamic networks. (4) Howto choose the weight of the linear function to

balance the gain and the cost still remains a problem. Which means, it is still an on-going research of how to

defining a proper payoff function for the intelligent agents in the wireless networks.
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