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Chapter 1

Introduction

1.1 Background and Objective

Space probes require autonomous control to achieve their planetary explorations
because of communication lag caused from large distance between the Earth and
an asteroid or a planet. For example, the communication delay between a ground-
station and the Near Earth Asteroid(NEA), Itokawa, which is located around 300
million kilometers away, is about 40 minutes [1]. Thus, in a proximity opera-
tion to an asteroid, a satellite firstly estimates the position and attitude of the
satellite using several sensors, and then autonomously controls to a desired state
using actuators, e.g., reaction wheels(RWs), control momentum gyros(CMGs), and
thrusters. To this end, a large number of sensors and actuators are equipped on
the satellite considering some of them as backup. Hayabusa, the first spacecraft
achieved an asteroid sample return mission, had three RWs for attitude control and
12 chemical thrusters for both position and attitude control. These many actu-
ators enable to generate translational forces independent from rotational torques
and vice versa, and consequently it makes a control procedure much simple. If
malfunctions of some actuators occur, however, the state control of the satellite
becomes more complicated due to the coupling effect between the translation and
the rotation. In such practical situation, the position and attitude control with
the remained actuators is required to continue the mission. In other words, un-
deractuated controllers have the possibility to extend satellite mission lifetimes.
Furthermore, from the viewpoint of a satellite design, the control method may
be able to reduce the number of actuators equipped on the satellite even when
considering some of them as backup.

When a nonlinear system has less number of inputs than the number of state
variables, the system is called “underactuated” system. Since the number of inputs
are limited, such system often includes nonintegrable constraints, i.e. “nonholo-
nomic” constraints. It is known that control systems with nonholonomic con-
straints, called nonholonomic systems, have the possibility to control their state
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variables in spite of the less number of inputs. Brockett [2] provides a neces-
sary condition for symmetric affine systems, equivalently first-order nonholonomic
systems, to be controllable. The condition indicates that no continuous state
feedback can control the systems, and this negative result has motivated many
researchers to derive nonholonomic control laws not to violate the condition. To
avoid the Brockett’s condition, intensive studies have been conducted and con-
sequently discontinuous controllers and time-varying feedback ones are proposed
for symmetric affine systems [3-5]. The proposed methods can be applied to the
systems described with a canonical form, whereas control theories for asymmetric
affine systems have not been fully established.

This dissertation presents new control approaches for asymmetric affine sys-
tems, especially a satellite position and attitude control using a small number of
thrusters. The control systems in this paper form a “second-order” nonholonomic
system and have not only nonholonomic constraints due to a few thrusters, but
also input constraints, i.e. the constant magnitudes of thrusts in one direction.
These input constraints thus disable to apply studies proposed on the second-
order nonholonomic systems [6-8] to the systems in this dissertation, and even
the controllability of the systems is hard to be discussed as shown in the following
section. To tackle the problem, the control methods based on analytical solutions
are proposed. The proposed methods would contribute to autonomous control of
space probes in free-floating condition to continue the missions even when some
actuators have failed and be useful to design backup systems of actuator configura-
tions based on the underactuated controllers. Furthermore, the control method is
extended to a control of formation flying of a satellite, a key technology for future
space missions.

1.2 Literature Review

An attitude control of a satellite with less than three inputs is a nonholonomic
system due to the angular momentum conservation. Crouch [9] provides neces-
sary and sufficient conditions for an attitude control of an underactuated satellite
considering RWs or pairs of gas-jet thrusters as actuators. The paper claims the
pairs of gas-jet thrusters can control when the control torques are applied around
two principal axes of the satellite, whereas less than three RWs cannot control the
satellite attitude due to the angular momentum conservation of the RWs. The un-
controllability, however, indicates the satellite attitude is controllable if and only
if the total angular momentum is zero. Regardless of actuators, it is known that
there is no smooth feedback controller which asymptotically control a satellite atti-
tude to a target one [10]. Thus proposed underactuated controllers are designed to
be discontinuous or time-varying to avoid the uncontrollability condition. Yamada
and Yoshikawa [11] derive a discontinuous and periodic feedback controller using



a holonomy approach. Krishnan et al. [12] show a discontinuous procedure to con-
trol the attitude angles of a satellite sequentially. Morin and Samson [13] propose
a time-varying control law based on a technique for homogeneous systems. While
the proposed control laws are verified with numerical simulations in these works,
few studies report in-orbit experiment results of an underactuated control. Terui
et al. [14,15] show in-orbit experiment results for an attitude control of a satellite
with two reaction wheels. The experiment results demonstrate that the designed
controller essentially works well, but a limit cycle around the target point is arisen.
Horri and Palmer [16] also report successful attitude control results with two re-
action wheels, and on-orbit experiments are conducted for two control cases: the
attitude stabilization without the angular velocity measurements, and reference
angular rates tracking. These papers conducted the experiments of the underac-
tuated control with momentum exchange devices, whereas no in-orbit experiments
have been conducted using external torquers such as gas-jet thrusters.

In contrast to an underactuated attitude control of a satellite, few studies con-
sider simultaneous control of a satellite’s position and attitude. Terui [17] proposes
a position and attitude control method using sliding mode control. The satellite
attitude is controlled to coincide with the one of a tumbling satellite, and the ro-
bustness due to the sliding mode control is also discussed. Senda et al. [18] studies
a position and attitude control of a spacecraft in two-dimension experimentally by
using an air-table. Curti et al. [19] also propose a position and attitude controller
based on Lyapunov stability and show the experiment results for the verification
of the proposed method. These papers, however, assume that enough number
of actuators are equipped on a satellite so that arbitrary translational forces and
rotational torques are generated. Such assumption simplifies the control systems
and consequently some control techniques for nonlinear systems are applicable.

Thrust directions of a spacecraft are restricted when the spacecraft equips a
small number of thrusters or some thrusters have failed, and the controllability
of the system is hard to be discussed. Sussmann [20] shows a theorem on a suffi-
cient condition for local controllability of nonlinear systems. Then the Sussmann’s
theorem is further extended to controllability of systems with unilateral inputs by
Goodwine [21]. This theorem, however, supposes a system which includes both
bidirectional and unilateral control inputs. That is, the theorem is not applica-
ble to the systems that have only one-directional inputs. Thus the controllability
of such systems needs to be respectively discussed and proved for each system.
Lynch [22], for instance, proves the controllability of in-plane motion of a satellite
for two cases: a satellite with one thruster whose direction is variable, and another
with two fixed thrusters. The study shows the system is controllable even when
the magnitude of thruster forces are constant.

A position and attitude control of a satellite is required for not only a prox-
imity operation to an asteroid, but also formation flying. Formation flying is a
promising technology for near-future space missions using small satellite clusters.



Two or more small spacecrafts orbiting in a close orbit are controlled to adapt
their relative position and attitude to one another. The synchronization enables
the cluster to obtain high resolution images of Earth observation such as a Syn-
thetic Aperture Radar (SAR). For instance, TanDEM-X(TerraSAR-X Add-oN for
Digital Elevation Measurement), in which two satellites were launched on June
21, 2010 by the German Space Agency, demonstrates new techniques and appli-
cations using the formation flying [23]. In a formation flying control, equations of
motion of a “follower” satellite is described with linearized equations with respect
to a “leader” satellite. The relative motion of the follower in a near-circular orbit
is described with the Hill’s equations [24], and the one in an elliptical orbit is
written with the Tschauner-Hempel (TH) equations [25], respectively. Carter [26]
shows state transition matrices for TH equations without the singularity which
occurs when the eccentricity becomes zero, and the result is further modified and
simplified by Yamanaka and Ankersen [27].

Rendezvous maneuvers and formation reconfigurations are typical control tech-
niques required for formation flying missions. Autonomous rendezvous, for exam-
ple, is necessary when a satellite autonomously provides supplies to the Interna-
tional Space Station(ISS) or on-orbit repair missions. Carter [28] shows a fuel-
optimal rendezvous maneuver with bounded thrusts. Shibata and Ichikawa [29]
describe an optimal control method for both a circular and elliptical orbit based
on null controllability with vanishing energy. On the other hand, formation recon-
figuration is necessary to keep or change the relative distance between a leader and
a follower. Palmer [30] shows an analytical solution to relocate a follower satellite
to a desired relative orbit using the Fourier series. The method is extended to
discuss the reachability of a reconfiguration problem with bounded inputs [31] as
well as to derive an optimal reconfiguration method for a formation flying in an
elliptic orbit [32]. Xi and Li [33] also show an optimal reconfiguration controller
in an elliptic orbit, and both energy and fuel optimality are discussed based on a
homotopic approach.

This dissertation describes analytical approaches to a simultaneous control of
position and attitude using a small number of thrusters for a free-floating satellite
as well as for a formation flying of satellites. The use of a few thrusters as actuators
forms second-order nonholonomic systems under input constraints, and most of
results and theorems shown in the above papers are not directly applicable to
the systems in the current paper. Novel control methods are therefore proposed
based on analytical solutions and they enable calculations of proper input timings
and durations to steer the satellite to a desired state. The control technique for
a free-floating satellite is further extended to the one in formation flying. While
many works have addressed formation control without the consideration of attitude
change of a satellite, this dissertation explicitly takes into account the dynamics of
rotational motion, and it allows us to design a trajectory under practical attitude
constraints.



1.3 Dissertation Overview

This dissertation is organized as follows. Chapter 2 firstly discusses the mini-
mum necessary number of thrusters to control an attitude of an underactuated
satellite. The necessary number of thrusters and their configuration are shown
using Minkowski-Farkas theorem, which describes conditions that an equation has
positive solutions, because thrusters generate only positive forces due to their
mechanisms. Based on the discussion for the minimum necessary number and
the configuration of the thrusters, an attitude controller for the underactuated
satellite is derived which is applicable to any satellites regardless of the moment
of inertia ratios. Numerical simulation results verify the effectiveness of the pro-
posed controller and the relationship between the thruster configurations and the
necessary thruster forces. Chapter 3 deals with a position and attitude control of
a free-floating satellite using four thrusters which generate only constant inputs
in one direction. To this end, the analytical solutions of both translational and
rotational motion with constant inputs are derived to calculate the proper input
timings and durations. Based on the analytical solution the proposed control pro-
cedure consists of three steps which controls the state variables sequentially, and
is verified with a numerical simulation. Chapter 4 considers a position and atti-
tude control for formation flying in which a rendezvous problem and a formation
reconfiguration problem using a small number of thrusters are discussed. Both
problems assume that a follower satellite equips two thrusters for in-plane motion
control, and the less number of inputs similarly form an underactuated system in
the formation flying. In the rendezvous control, a relative motion of the satellite
is simplified with modal analysis. The modal analysis also shows the controllabil-
ity and the energy efficiency for the rendezvous maneuver with restricted inputs.
Also, an optimal formation reconfiguration of a satellite is studied under attitude
constraints with respect to an inertial frame. A tracking method for reference
inputs is firstly derived to control the satellite’s relative attitude and position with
a few thrusters. The optimal reference inputs are obtained using the Fourier series
and are designed to satisfy the attitude constraints in the inertial frame. Chapter
5 concludes this dissertation and further developments are addressed.



Chapter 2

Three Dimensional Attitude
Control of an Underactuated
Satellite with Thrusters

This chapter deals with a three-dimensional attitude control of an underactuated
satellite with a small number of thrusters. Though an attitude control with less
than three inputs have been studied by many researchers in recent decades [34-37],
these works control only angular rates or have assumptions on the moment of iner-
tia, e.g. an axisymmetric or near-axisymmetric inertia. This chapter thus derives
a novel attitude controller of an underactuated satellite which is effective for any
satellites regardless the moment of inertia. Also the minimum necessary number
of thrusters to control a satellite attitude is specified from the viewpoint of non-
holonomic control. Several studies claim four thrusters are necessary to control a
satellite attitude [38-41]. This chapter, however, provides new results for the nec-
essary number of thrusters considering the nonholonomic attitude control under
positive input constraints. The conditions to generate arbitrary control torques
around two principal axes are addressed because the controllability of an under-
actuated satellite’s attitude with two control torques is proved by Crouch [9], and
the derived condition shows the necessary number of thrusters and their config-
uration. Furthermore the graphical interpretation of the thruster configuration
provides proper one to require less thruster forces than the other allocations. Nu-
merical simulation results verify the effectiveness of the proposed controller and
discuss the relationship between the necessary thrust forces and the thruster con-
figurations.



2.1 Dynamic equations of motion

This chapter assumes a satellite’s body-fixed frame coincides with the principal
axes of inertia and expresses them as {xy, Y, 2, }. This assumption is introduced
to discuss the minimum necessary number of thrusters based on the result in [9]
and to derive a nonholonomic control law. The dynamic equation of motion of a
satellite with two control torques about ;- and vy, axes is expressed with the Euler
equation as

Joy = (Jy — J)wyw, + Ty, (2.1)
Jywy, = (J, = Jp)wew, + Ty, )
Jow, = (Jp— Jy)wewy, (2.3)

where w;, J; (j = x,v, ), and T}, (k = x,y) denote the satellite’s angular velocity,
the moment of inertia, and control torques, respectively. The dot on a parameter
means the time derivative of the parameter. Let the moment of inertia ratios be
denoted as

Jy —J,
x = 9 2.4
7aim 2:40)
J, —J;
Oy = (2.5)
Y
Jo — Jy
PRES . 2.6
o= 2 (26)

The moment inertia ratios simplify the equations of motion as follows.

W = ogwyw, + T,/ Js, 2.7)
Wy = oywew, +1,/Jy, (2.8)
W, = O,Wywy. 2.9)

Here, we assume that o, # 0, i.e. J, # J,, otherwise o, = 0 in Eq. (2.6) and
Eq. (2.9) becomes w, = 0. This indicates that the rotational motion around the
zp-axis is uncontrollable.

2.2 Necessary Number of Thrusters and Config-
uration

Let 7; € R3 and d; € R? denote the i-th thruster’s attachment position vector
and the normalized directional vector, respectively. The magnitudes of the thrust
forces are assumed to be continuously changeable from zero to a specified positive
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value. The control torque T; € R? generated by the i-th thruster can be expressed
as follows.

T, =r; xd,f;, (2.10)

where f;(> 0) is the magnitude of the thruster force. When the satellite equips n
thrusters, the total control torques generated by the thrusters are described as

f1
n A1y Q24 - Qpg f2

T=) T = |ay ay - an : (2.11)
i=1 A1, A2y -+ QApgy f

= [ a, a, --- a, } f (2.12)

= T = Af, (2.13)

where each column vector of the matrix A € R3**" is written as a; = r; x d;
(it=1,...,n).

2.2.1 Parallel Thruster Configuration

First a thruster configuration that all thrusters are oriented parallel to the satel-
lite’s zp-axis is considered for the sake of simplicity. These thrusters generate no
control torque about the z,-axis, and thus Eq. (2.13) is simplified as

dy by e a1}

T = ay, Gy, o dy, : (2.14)
0O 0 --- 0 :
J

= T=Af, (2.16)

Several studies [12,13,37,42,43] show that arbitrary magnitudes of control torques
around x;,- and y,-axes can control the satellite’s three-dimensional attitude. Thus,
to clarify the necessary number of thrusters, we discuss the condition that the
vector T is generated in arbitrary directions of the x;-y, plane with the thrusters.

Since every thruster force must be positive or zero, we use the Minkowski-
Farkas theorem. (For the proof of the theorem, see Broyden [44].) Note that this
dissertation describes a vector as positive when all of components are positive or
Zero.

Theorem 1 (Minkowski-Farkas) Given a matric B € R™*" and a vector u €
R™, the following conditions are equivalent.
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1. (Vb€ R™) b"B > 0" = b'u > 0.
2. (3g >0 ) Bg = u.

The second condition of the above theorem indicates that Eq. (2.16) has pos-
itive solutions f > 0, and the existence condition of the positive solutions is
equivalent to the following one.

(Vb e RV AT > 0" = b"'T > 0. (2.17)

For the sake of simplicity, we firstly consider the case when n = 2. The first
relation in Eq. (2.17) means that the angle between the vector b and each column
vector of A’ must be less than or equal to 90 degrees since the scalar products
between them should be positive or zero. Thus, the area in which the vector b
exists can be drawn by the shadowed area in Fig. 2.1. Similarly, the area of the
vector T satisfying the second relation of Eq. (2.17) can be shown with the shadow
in Fig. 2.2. For the torque vector T in arbitrary directions of the x,-y; plane, the

. N
s \f .\. 2
'l' I \.
3 A
N ..
4
I N
R : N,
9 : >
/ I
a; i

Figure 2.1: The existence region of the vector b.

third thruster is thus necessary and it must be oriented in a direction opposite to
the shadowed region in Fig. 2.2 as shown in Fig. 2.3. Then the combination of the
thrusters 1 and 3 can produce a torque vector T' in arbitrary directions between
the vectors a} and a}, and the combination of the thrusters 2 and 3 covers the
region between the vectors a, and a}. Thus, the three thrusters consequently can
generate control torques in arbitrary directions of the x,-y, plane and can control
the satellite’s three-dimensional attitude motion. Note that this thruster number
is less than the result shown by Sidi [38].

12



:Ubv

Figure 2.2: The existence region of the vector T

2.2.2 Arbitrary Thruster Configuration

This subsection extends the result for three thrusters in parallel configuration
to an arbitrary configuration. In the arbitrary thruster allocation, each thruster
generates control torques around all three axes as written in Eq. (2.13). From
the similar discussion of the previous subsection, the combination of the three
thrusters can generate control torques in any directions included in the triangular
pyramid formed with aq,as, and a3 as shown in Fig. 2.4. In the x,-y, plane,
however, the direction of the control torques is limited to an intersection between
the triangular pyramid and the -y, plane. This intersection is illustrated in a
hatched triangle in the figure. Note that the satellite’s center of mass is the origin
of this frame and is placed on a vertex of the triangular pyramid. Three thrusters
thus cannot generate arbitrary directional torques in the x;-y, plane.

The preceding discussion shows that at least four thrusters are necessary to
control the satellite’s three-dimensional attitude. Furthermore, the fourth thruster
must be placed in the opposite direction to a point inside the triangular pyramid
in Fig. 2.4. Then, these four thrusters give us four choices to select three thrusters
and consequently formulate one large triangular pyramid containing the origin
inside it as shown in Fig. 2.5. Thus, this four-thruster configuration can generate
control torques to arbitrary directions in the x;-y, plane. (From a different point
of view, these four thrusters can generate any directional control torque in three-
dimension, and therefore this result indicates the same result derived by Sidi [38].)

13



a’;/g third thruster

ZEbY

Figure 2.3: Third thruster allocation required for controllability.

2.3 Kinematic equations of motion

There are several sets of attitude parameters to describe kinematic equations of
a spacecraft. Although Euler angles, quaternion, and Rodrigues parameters are
most frequently used, this chapter uses the wz-parameters proposed by Tsiotras
and Longuski [45] to represent the satellite attitude. The attitude representation
with wz-parameters decouple the parameter z from the parameters w; and wo,
and the resulting equations are further simplified by combining the parameters w,
and wy into a complex form as w = wy + fwy, where ¢ is an imaginary number.
The kinematic equations with wz-parameters are obtained with two successive
rotations, whereas Euler angles take three rotations and quaternions and Rodrigues
parameters use one rotation. In the wz-parameters, an inertial frame is rotated
to coincide with the satellite-fixed frame through the following two rotations. The
first rotation is defined about the z,-axis, and the second one is about an axis in
the x,-y, plane and denoted by w; and w,. The kinematic equations of the satellite
can be expressed with the following two differential equations [45].

W= —iwaw o+ o, (2.18)

2 2
2 = w,+ %(@w — Ww), (2.19)

where angular velocities of the satellite are also written as a complex variable, i.e.,
W = wy + iwy, and * indicates its complex conjugation.

14



Tp- Yp plane

> b

Figure 2.4: The control torques formulated with three thrusters.

2.4 Control Law

As seen in the dynamic and kinematic equations, the attitude parameters and the
control torques are decoupled. That is, no input torques appear in the kinematic
equations. Thus, we consider the angular velocities around the x,- and y,-axes in
the kinematic equations as virtual inputs.

Substituting Eq. (2.18) into the relation

d
a|w|2 = 2Re(uww), (2.20)

we obtain
d 2 _
E|w| = (14 |w|*)Re(ww). (2.21)
Equation (2.19) corresponds to the following equation.
Z = Im(ww + w,). (2.22)

It should be noted that the real part of ww appears only in Eq. (2.21), whereas
the imaginary part of ww is only in Eq. (2.22). Thus, we design the virtual input
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Tp-Yb plane

> Yt

Figure 2.5: The control torque formulated with four thrusters

wy as the following form:

Bz — Aw, /o,
_Z—
w ’

Wy = —KW (2.23)
where k, p, and A are positive constant gains. In the controller, \w,/o, is the
additional term modified from the controller shown in [46] and behaves to change
the control gain depending on the moment of inertia ratio o,. That is, when the
satellite has a near-axisymmetric moment of inertia, the value of o, becomes small,
and consequently it makes the control gain large.

Using the virtual inputs, we can obtain the following equation.

DoP = w1+ [Pl (2.24)

2 = —pz+ 1+ M\ o,)w.,. (2.25)
The integrals of these equations are given as follows

1
lw]? = (2.26)

cert — 1’

z = e_“t{2(0)+/6“t(1+/\/az)wzdt}. (2.27)

16



Thus both w- and z-parameters exponentially converge to zero at the rate specified
by the control gains x and p. Furthermore, from the second term of the right-
hand side in Eq. (2.23), the z- parameter must converge to zero faster than the
w-parameter does. Thus, considering the degree of the w-parameter in Eq. (2.26),
we should design the gains as u > k/2.

The virtual inputs are realized using actual input torques through the dynamic
equations. To simplify the expression, we combine the control torques 7, and T,
in the following complex form

T =T, +iT), (2.28)

where T}, := T,/J, and T, := T,/J,. The error of the angular velocity is defined
as

e=w— Wwy. (2.29)

Then substituting Eq. (2.23) into Eq. (2.29) and differentiating it with respect to
time, we obtain the following equation.

€= Uzwywz + T; + i(Uy + wyw, + TZ:) + K (-’szw —+ g -+ gw2>

C [(Im(wo+w,) 2z /. W w o,
— — — W, —+ = . (2.30
—l—m{ - w2(zww+2+2w)} (2.30)
Thus, we design the following control law.

T=-Bw,w,) — kK <—iwzw + g + ng)

- )\ z z
—iC(w, z,w,w,) — « (w + kw + zu) , (2.31)
w
where
Bw,w,) = 0ywyw, + i0yw,wsy, (2.32)
plm(w + w,) — Awgwy, — pzr—Aw, /o, (. @ w
Clw, z,w,w,) = — + — <1wzw + =+ —w ) ,
w w2 2 2
(2.33)

and « is a positive control gain. Consequently, the angular rate error has the
following expression.

€= —ae. (2.34)

This indicates that the error parameter exponentially converges to zero at the
convergence rate determined by the control gain «. Thus, the control torques
shown in Eq. (2.31) can implement the designed virtual inputs.
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The thruster forces to generate the control torques shown in Eq. (2.31) can be
calculated through Eq. (2.16) as

f=A"T. (2.35)

Note that the matrix A’ is not full rank for any parallel thruster configuration.
Thus the inverse matrix of A’ should be calculated using a pseudo inverse matrix
A" to minimize the norm of f.

2.5 Numerical Simulations

This section shows some simulation results to demonstrate the validity of the
derived control law. From the above discussion, we deal with a satellite that
equips three thrusters oriented parallel to the satellite’s z,-axis.

Since each column vector of the matrix A" in Eq. (2.16) expresses the torques
when f; =1 (i = 1,2,3), a thruster configuration graph gives us a clue for better
thruster configurations. For example, a thruster configuration whose geometric
center coincides with the satellite’s mass center can equally distribute the load of
the control torques to each thruster. This feature is exploited to determine the
thrusters’ attachment positions in the following simulations. When the thrusters’
magnitude ranges are different, divide the distances from the mass center to the
thrusters by the maximum magnitudes. Then, that result helps us to find a better
thruster configuration to distribute the control torques.

Here we assume that three thrusters have the same magnitude range. Since
the regular triangle configuration should be efficient for three thrusters, we firstly
deal with the thruster configuration depicted in Fig. 2.6. In this configuration,
all distances from the mass center to the thrusters are equal, and the geometric
center of the triangle coincides with the mass center. The following matrix shows
the thruster configuration.

0.50 —1.00 0.50
A, = | 087 000 —087|. (2.36)
0.00 0.00 0.00

Table 2.1 summarizes the simulation parameters and the initial condition: the
satellite’s moment of inertia, the angular rate, the attitude angle, and the control
gains used in the simulations. The initial attitude angles are expressed with the
ZY X Euler angles for better understandings. Since the inertial frame can be set
arbitrarily, without loss of generality, the target state is defined as zero-attitude
angles in the simulations. Note that the controller in [46] cannot be applied to
the asymmetric moment of inertia case, and that Morin’s time-varying feedback
controller [13] suffers from a slow convergence rate.
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Table 2.1: Simulation parameters
Moment of inertia J,, J,, J,[kgm?]
Asymmetric case: 15.0, 10.0, 6.0
Near-axisymmetric case: 15.0,14.0,6.0
Initial angular rate w,(0),w,(0),w.(0)[rad/s| 1.0, 1.0, 1.0
Initial attitude angle ¢(0),6(0),(0)[deg] 0.0, 45.0, 45.0
Control gains «, K, tt, A 10.0, 0.2, 5.0, 2.0

“““““““ ’ Thruster 1 Thruster 1

G »Yb > UYb
Thrué'fér...zﬂn
""""" Thruster 3 Thruster 3
A 4
Ly
(a) (b)

Figure 2.6: Three-thruster configurations view from the positive z,-direction

The simulation results for the asymmetric moment of inertia in Table 2.1 are
shown in Figs. 2.7, 2.8, and 2.9. Figures 2.7 and 2.8 indicate the time profiles of
the angular velocities and the wz-parameters, respectively. Figure 2.9 is the time
profile of the Euler angles and is added for better understanding of the attitude
motion. For the near-axisymmetric case, the time profiles of the angular velocities,
the wz-parameters, and the Euler angle expressions are shown in Figs. 2.10,
2.11, and 2.12, respectively. The convergence of the three attitude parameters to
zero means that the satellite’s attitude has been controlled to the target attitude
successfully. Figure 2.13 describes the time profiles of the thruster forces for the
symmetric moment of inertia model, and it is shown that the required forces are
kept positive or zero during the attitude maneuver. These results indicate that the
proposed controller is valid and effective, because it is applicable for any satellites
regardless of its moment of inertia, and because the convergence rate is not slow
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for both moment of inertia cases.

Next, we examine the different thruster configuration depicted in Fig. 2.6b.
In this configuration, though the distances to the three thrusters are equal, the
geometric center of the triangle coincides with the mass center. The configuration
matrix is expressed as follows.

0.28 —1.00 0.28
Ay,=1096 0.0 —-0.96 |. (2.37)
0.00 0.00  0.00

Figure 2.14 shows the time profiles of the thruster forces for the symmetric mo-
ment of inertia case. Thus, comparing Fig. 2.13 with Fig. 2.14, it is verified
that the regular triangle configuration shown in Fig. 2.6a requires lower thruster
magnitudes than the ones for the thruster configuration shown in Fig. 2.6b. It
indicates that proper thruster configuration can reduce the required forces.
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2.6 Summary of Chapter 2

This chapter has discussed the minimum necessary number of thrusters required
for a satellite’s three-dimensional attitude control. Considering the satellite’s non-
holonomic constraint and applying the Minkowski-Farkas theorem, we have ana-
lytically shown that three thrusters placed in parallel to the satellite’s one principal
axis can control the satellite attitude motion. Furthermore, a nonholonomic con-
troller is obtained using the wz-parameters fore the attitude representation. The
controller is effective for any satellite regardless of its moment of inertia. Numer-
ical simulations have demonstrated the effectiveness of the proposed control law,
and the efficiency of a properly placed thruster configuration has been numerically
verified.
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Chapter 3

Position and Attitude Control of
an Underactuated Satellite with
Constant Inputs

This chapter discusses a position and attitude control of an underactuated satellite
which uses only on-off thruster mechanisms. Though several studies deal with a po-
sition and attitude control of a satellite, they assume enough number of actuators,
i.e. translational forces are independent from rotational torques and vice versa.
On the other hand, this chapter assumes only four on-off thrusters are equipped on
a satellite, and thus they cause a coupled motion between the translation and the
rotation. The control system becomes a second-order nonholonomic system with
input constraints, and the input constraints disable us to apply most of existing
control theories. The purpose of this chapter is to show that a satellite’s position
and attitude can be simultaneously controlled with a small number of thrusters.
First, considering the input constraints, we obtain a three-step control procedure
of a satellite attitude. The control procedure is then extended to the control of
the satellite’s translational and rotational motion in three-dimensions based on
analytic solutions. In section 3.7, the proposed control technique is applied to a
practical example of a lunar landing mission. For the lunar landing, a powered
descending phase is studied considering the satellite mass change due to the fuel
consumption of thrusters. In spite of the mass change of the satellite, the pro-
posed analytical solution can accurately approximate the position and attitude of
the satellite, and consequently enable the pinpoint landing. Numerical simulation
results demonstrate the validity of the proposed controller for both the free-floating
satellite and the lunar lander.

26



3.1 Equations of motion

This chapter considers the Cartesian coordinates {X,Y, Z} as an inertial refer-
ence system and denotes the principal axes of a satellite as {@y, yp, 25 }. The origin
of the body-fixed frame is placed to the satellite’s mass center.

3.1.1 Thruster Configuration

The minimum thruster configuration to control both position and attitude of a
satellite is difficult to be determined because of the nonholonomic and input con-
straints. As mentioned in Chapter 1 and Chapter 2, Sidi [38] claims that the
minimum number of thrusters to control a satellite’s attitude is four from a dis-
cussion on generating arbitrary control torques around three axes. The paper,
however, does not consider nonholonomic constraints of the satellite’s rotational
motion. The minimum number of thrusters thus has not been discussed consider-
ing the nonholonomic constraints, and a new result would be obtained. Also, some
theorems to prove controllability of nonlinear systems, e.g. Sussmann [20] or Good-
wine [21], are not applicable because of unilateral and constant inputs. This paper
therefore deals with a thruster configuration which can generate two independent
control torques around the principal axes. Although this thruster configuration
has not been analytically proved to be the minimum number of thrusters because
there is no control theories to discuss the controllability with constant inputs, we
predict this thruster configuration enables the position and attitude control of a
satellite from the viewpoint of nonholonomic attitude control shown in Chapter 2.

This chapter, for simplicity, places four thrusters to be parallel to the satellite’s
principal axis y; as shown in Fig. 3.1, and assumes that all thrusters generate the
same magnitude of constant force F. and have the same length of moment arm
about the x,- and z,-axes. Then, in spite of the constant and unilateral inputs,
this thruster allocation can generate a pure rotational torque, i.e. without the
influence about the other two axes, around the x;,- and z,-axes, respectively.

The thruster combinations below are employed to control the attitude of the
satellite:

Ty :fs=fi=F,fi=fa=0, (3.1)
I, :fi=fe=Fcfs3=/,1=0, (3.2)
Tr:fi=fi=F¢ fo=fs=0, (3.3)
T, fa=fs=F,fi=/f2=0, (3.4)
where 75" and T; (j = ,z) denote positive and negative directional control

torques around the x,- and z,-axes, respectively. Note that, the thrusters cannot
attenuate the translational velocity without an attitude change due to the unilat-
eral constraint on the thrust forces. Thus, both the satellite’s translational and
rotational motion must be controlled simultaneously.
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Figure 3.1: Thruster configuration.

3.1.2 Rotational Equations of Motion

The dynamics of an underactuated spacecraft with two control torques, are written
as

Wy = ogwyw, + 14/ Jy, (3.5)
Wy = OyWWy, 3.6)
W, = ouwpwy +1./J,, (3.7)

where wy, and Jy, (k = x,y, z) denote an angular velocity and the principal moment
of inertia, respectively, and oy, (k = z,y, z) are the moment of inertia ratios defined
in Egs. (2.4), (2.5), and (2.6). Similarly to Chapter 2, but for different axes, we
assume that o, # 0, i.e. J, # J,, otherwise Eq. (3.6) indicates that the rotational
velocity around the y,-axis becomes uncontrollable.

Let Rp; denote a direction cosine matrix (DCM) from the inertial frame to
the body-fixed frame. The relation between the DCM and the angular velocities
satisfies the following equation [47].

where QQ(w) expresses the skew-symmetric matrix which consists of the angular
velocity vector w, and is written as

0 Wy  —Wy
Qw)=| —w,. 0  w, |. (3.9)
wy —wy; 0



This chapter also represents the satellite attitude angles using the wz-parameters,
and the parameters make it possible to foresee a proper control procedure and con-
trol the satellite attitude to a desired target with fewer number of maneuvers as
shown in the later section.

The DCM using the wz-parameters is described as

1
Ry = ———
T+ w? 4 w2
(1+w? +w3)e —2wiwes (1 + w? — w3)s + 2wiwsc — 2w,
2wiwye — (1 — w? +w?y)s 2wiwes + (1 — w? + wy?)e 2w, ,
2wqc + 2wy s 2wses — 2wic 1-— w% — w%
(3.10)
where ¢ := cosz and s := sinz, respectively. The kinematic equations of the
satellite are again written as follows:
. Wy 2 2
Wy = wzw2+wyw1w2+7(l+w1 —ws3), (3.11)
w.
Wy = —wW,W1 + Wywiws + gy(l + wo? — w?), (3.12)
2= w, — Wy + wywy. (3.13)

3.1.3 Translational Equations of Motion

A satellite’s translational motion in an inertial frame is expressed with a DCM
from the inertial frame to the body-fixed frame. Since the DCM is an orthonormal
matrix, the DCM from the body-fixed frame to the inertial frame has the relation-
ship Ry, = R Thus, the translational equations in the Cartesian coordinate are
written as

mV = Ry F, (3.14)

where m, V', and F' denote the mass of the satellite, a translational velocity vector
in the inertial frame, and an external force vector in the body-fixed frame, respec-
tively. Also, the kinematic equations for the translational motion are described
as

X =V, (3.15)

where X indicates the satellite’s position vector in the inertial reference frame.
When the thrusters are allocated parallel to the y,-axis, the components of Eq.
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(3.14) are simplified as follows.
F

Vy = —2 (2 —(1——w?+wsinz), 3.16
mVy 1+w%+w%( wiwy cos z — ( wi + wj) sin z) (3.16)

- F,

Vy = —2——(2 i 1 —wi +w; 3.17
mVy 1+w%+w§( wiws sin z + (1 — wi 4+ w3) cos z) (3.17)

: 2F

V, = —Y —w,. 3.18
B RV b (3.18)

3.2 Attitude Control Method

Since the thruster forces are constrained to be constant, the constraints make it
difficult to design a feedback controller, and control theories for nonlinear systems
are not directly applicable to the system in this chapter. This section thus shows
a new attitude control method using the wz-parameters. Although quaternions or
Euler angles can be used for the satellite’s attitude control, we have shown that the
wz-parameters enable control of the satellite’s attitude with only three steps [48].

In the following discussion in this chapter, the satellite is assumed to have
no initial angular velocity because Kojima [49] shows that two constant torques
around two principal axes of a satellite can stabilize the satellite’s angular velocities
to zero based on the manifolds discussed by Livneh [50].

The attitude control method proposed in this chapter consists of three steps
as summarized in Table 3.1. Because the control inputs are constrained to be
constant, analytic solutions for a single spin motion are derived for each maneuver
and they provide proper input timings to control the attitude parameters to zero
sequentially. In maneuver 1, for instance, after wy is converged to zero, the next
step controls w; — 0 while ws is kept invariant, i.e. ws = 0. Each maneuver in
Table 3.1 is explained through the following discussion.

Table 3.1: Attitude control procedure.

Maneuvers Target state Input timing
1 (w1, 0, 2) wy,z:arbitrary g = QTi (At7)? + w At~
2 (0,0, z)z:arbitrary wig = tan (—%(At*)Q — WT;OAt*>
3 (0,0,0) 2a = =55 (A7) — w At

In maneuver 1, a positive control torque about the z,-axis is applied during a
finite time At™ to generate a single spin motion, where the superscript “4” denotes
a parameter when a positive directional torque is applied. Since the single spin
motion avoids the coupling effect of the angular velocity, the dynamic equations
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are described as follows:

Gy = Wy =0, (3.19)
T+

b, = = 3.20

w 7 (3.20)

Equation (3.20) is integrable and thus the analytic solution is obtained as

T+
w, = JZ t+ wh. (3.21)

The subscript “0” henceforth means the initial value when a single spin motion
is generated or attenuated for each maneuver. On the other hand, the kinematic
equations are expressed as follows:

w1 = WyWaq, (322)
'lj)g = —WyWwi, (323)
Po= w,. (3.24)

The norm of the w-parameter is defined as W, that is,
W? = w?+wi. (3.25)

Then, differentiating Eq. (3.25) with respect to time and using Eqs. (3.22) and
(3.23), we obtain

QWW = 2wy + 2w
= 0. (3.26)
This equation indicates that the norm of w; and ws is invariant in the duration.

Thus, they circulate in the w;-wy plane and their analytic solutions are described
as follows:

w; = Acoso, (3.27)
wy = Asino, (3.28)
where
A? = wi 4 wi, (3.29)
¢ = arctan (wy/wy). (3.30)

Equations (3.27) and (3.28), however, also mean that w; and wy cannot be con-
trolled to zero simultaneously, and we firstly control wy to zero.
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Because the motion of the parameter ws is expressed with the phase angle ¢,
and we = 0 is achieved for ¢ = 0, the phase angle is controlled to zero. The time
derivative of ¢ is obtained from Egs. (3.22), (3.23), and (3.77):

QIS . 1 w2w1 — wlwg
1 (wy/wy)? w?
= —Ww,. (3.31)

Then, the substitution of Eq. (3.20) into Eq. (3.31) yields

n

o(t) = L wiot + o . (3.32)
2J, ’

This analytic solution provides a desired input timing ¢, to control ¢ and w, to

zero at the same time. Since this chapter assumes |T.7| = |7, |, the input duration

At~ to despin the single spin motion is determined, i.e. At~ = At*. Thus, the

desired input timing to converge the angular rate and the attitude angle to zero is

specified as

-
ba= J (A7) + wAt. (3.33)

In maneuver 2, a control torque about the z;-axis is applied to generate a single
spin motion. Since w, = 0 is kept during this maneuver, the time derivative of w,,
z, and w, are expressed as

Wy = =0, (3.34)
i = %(Huﬁ). (3.35)

Equations (3.34) and (3.35) show that w; can be controlled independently, and
Eq. (3.35) is integrated as follows:

d -
DL gy
1+ wy 2
1 (T}
-~ Wt
= arctanw; = 4; t* + 736075 + arctan wy . (3.37)

Similarly, this analytical solution presents the input timing w4 which controls w,
to an arbitrary value.

Finally, the attitude parameter z is controlled using a torque about the z,-axis
in maneuver 3. Since w; = wy = 0, the equation around the z,-axis is written as

i =uw,. (3.38)
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It is obvious that Eq. (3.38) is integrable and z is controlled to a target value. Note
that the above discussion is for a case when a positive control torque is applied
to generate a single spin motion, and a similar discussion can be obtained for a
negative control torque.

3.3 Analytical Solution for Translational Motion

The analytic solutions of the satellite’s translational motion during maneuvers 2
and 3 are derived in this section. As discussed later, the translational motion in
three-dimension can be controlled in these maneuvers. When the attitude control
torques are applied in each maneuver, the corresponding translational equations
are described from Egs. (3.16), (3.17), and (3.18) as follows:

Maneuver 2

: 1—w? |
mVy = _Fyrw% sin z, (3.39)
. 1 —w?
mVy = yrw% Cos 2, (3.40)
. 2'11}1
Vy = F,—s. 3.41
mvz yl _|_w% ( )
Maneuvver 3
mVx = —F,sinz, (3.42)
mVy = F,cosz, (3.43)
mVy; = 0. (3.44)

In maneuver 3, the translational velocity along the Z-axis is uncontrollable. Thus
the satellite’s position along the Z-axis should be controlled to the target value
before maneuver 3 is applied. In the following discussion, first the analytic solu-
tions for maneuver 3 is found, and then the analytic solutions for maneuver 2 is
derived.

As shown in Eq. (3.38), the orientation angle for a single spin can be described
analytically for maneuver 3. Thus, the analytic solution of the translational equa-
tions is derived. Equations (3.42) and (3.43) are rewritten as follows:

. T+
mVx = —F,sin (ﬁ(Aﬁf + whAtt + zaL) , (3.45)
' T AfY2 4 ot Apt 4 ot
mVy = F, cos ﬁ(At ) FwpAT + 25 ) . (3.46)
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Equation (3.45) can be transformed as

. T+ 9
mVx = —F,sin (2; (AtT)” + wh AT + zJ)
1
= —F,sin (§ﬁ+(7'+)2 + B+) : (3.47)
where
T+
to= £ 3.48
Bt = =, (3.48)
2

+ + (wzo)
B = Z 00— 26+ 5 (349)
e Arr S (3.50)

= 5t :

Similarly Eq. (3.46) is simplified as
. 1
mVy = F, cos (§ﬁ+(7+)2 + B+> : (3.51)
Equations (3.47) and (3.51) cannot be integrated nor expressed with elementary
functions. Using Fresnel integrals, however, makes it possible to obtain the analytic

solutions for the translational motion. It is known that the normalized Fresnel
integrals are defined as

S(z) = /Oxsin<gt2>dt, (3.52)
Cz) = /Oxcos(%ﬂ)dt. (3.53)

Equations (3.47) and (3.51) are transformed as

. E 1 1

Vy = —-% {sin <§6+(T+)2) cos BY + cos <§ﬁ+(7+)2) sinB+}, (3.54)
m

’ Ly Lo 42 PP TRty S

Vy = —— cosiﬁ (t7)" cos B —Sln§ﬁ (T7)"sin BT |. (3.55)
m

Note that the replacement of by 7+ in Eq. (3.50) changes the integral interval from
(0 = AtT)) to (wl/BT — At +wly/BT). Fresnel integrals are used to integrate
Egs. (3.54) and (3.55), and consequently the analytic solutions are described as
follows:

F.
Vi = _Ey (Sfr cos BT + Cf sin B+) + Vxo, (3.56)

F
Vy = Ey (Sf sin BY — Cif cos BY) + Vy, (3.57)
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where

w

Attt 4220 1
St = / ™ sin (§B+(T+)2) drt

B+

- &(s( %(mm?}))-s(@ﬁ)) (3.58)

wT
+ ArTHEE Lot 432 +
cy = cos 55 (r7)" ) dr

B+

_ &{C( 5%<At++;_%)>_c<\/5;;%>}. (3.59)

Fresnel integrals are further integrated as:

NE
&+

B

€

/0 " S(a)de — rS() + ~ cos (%mﬁ), (3.60)
OxC(x)dx _ :L’C(a:)—%sin (%m?). (3.61)

Hence, the integrations of Eqs. (3.56) and (3.57) provide the analytic solutions for
the satellite’s position as follows:

__F | T B+Wj0
AX‘——ECOS.B+ {S;(AtJr)— B_""S( ?6+)At+}
- %SinB+ {C;(Aﬁ) —, /%C (,/%2-}) At+}

F
+ Ey (S5(0)cos BY + C5 (0) sin BY) + VxoAtt + X, (3.62)

Y = %COS BT {C’f(Atﬂ - ,/%C’ <\/ ﬁ%;—%) At+}
n
_ %SinB+ {52+(t) — /%S (M%%) At+}

N
m

(—=C5 (0)cos BT + 55 (0)sin BY) + VayoAtT + Yy (3.63)
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where

2
SS(ALT) = ﬁé oS (% (At+ + L;%E)) )

T wi Bt Wi
i (o) (F (s 58)) oo

2
O (A1) = —%sm (% (Aﬁ + ‘;:f) )

I wi o wk
— AT+ 22 ) O (= (AT + 222 ) | (3.65
(e 52 (Vw tae)) B9
In maneuver 2, the translational motion along the Z-axis should be controlled

to a target value. To utilize the analytic solution derived above, Eq. (3.41) is
transformed as

w1 1
E
VAR RVARRT
= F,sin(2arctanwy). (3.66)

mVZ:2

Thus, from Eq. (3.37), Eq. (3.66) can be rewritten as

. T+

mVy = F,sin (ﬁt2 + wiyt + 2arctan wfo) (3.67)
x

Because this equation has the same form as Eq. (3.45), it is clear that the equation

of motion along the Z-axis in maneuver 2 can be integrated using Fresnel integrals

in the same way. Note that though the Fresnel integrals are transcendental func-

tions, their calculations in practice can be conducted using approximate equations,

and the approximation yields C'(z) and S(z) to £3 x 107¢ for arbitrary value of
x [51].

3.4 Translational Velocity Control

This section shows a control method to drive the satellite’s translational velocity
and attitude angle to zero in maneuver 3. Since, as shown in Eq. (3.67), the
analytic solution in maneuver 2 becomes the same form as that of maneuver 3, the
control technique shown in the following discussion is applicable to both maneuvers
2 and 3.
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As seen in Eqgs. (3.56) and (3.57), the translational velocities are affected
by not only the satellite’s attitude angle, but also the angular velocity. For one
“on”-interval of thruster firing, the attitude angle at which the thrust force should
be applied is uniquely specified according to the angular velocity. That is, the
translational velocity and the attitude angle cannot be controlled to the target
state at the same time. However, for several on-intervals to despin the rotation,
the final translational velocity after the despin maneuver can be varied. In the
following, n on-intervals are applied for thruster firing satisfying the following
relation to despin the rotational motion:

ALt =) Al (3.68)
=1

where the superscript 7 is used to indicate a variable expressing the i-th on-
interaval.
Equations (3.56) and (3.57) are rewritten in matrix form as

R e | R R )

Vy ~m | sinB*  cos Bt —Cf Vy(0)

F.
=V = LRV + V(0). (3.60)

The matrix Rp in this equation takes a rotation matrix form and includes the
initial attitude angle z{, for each on-interval. Thus, using different firing timings can
change the time profile of translational velocity V. Equation (3.69) also indicates
that the direction of V' depicts a circle whose center is V'(0) in the Vx-V4 plane.
Furthermore, since the vector V; is changeable by changing the input interval At,
the velocity vector V' can be changed to any values in the inner area of the circle.
That is, it indicates the satellite’s velocity can be controlled arbitrarily.

After the n-th on-interval, the translational velocity of the satellite must be
zero. As mentioned above, the attitude angle of the n-th thruster firing 2§ is
uniquely determined according to the angular velocity wl, due to the constant
inputs. The angular rate w?, is specified by the (n — 1)-th W’ and the interval
At ! as W) = wliyt — BA"L. Thus, to vanish the translational velocity after the
n-th despin maneuver, the following conditions must be satisfied by two proper

variables At" " and z; "
Vg b+ AV 0 AT + AV (g7, AT =0, (3.70)
Vet AVET e AT 4 AV (Y, A = 0. (3.71)

The solutions satisfying the above two conditions can be obtained numerically,
because the analytic solutions of the translational velocities are described by using
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the Fresnel integrals. Note that Eqgs. (3.70) and (3.71) have solutions because
the initial velocities can be made relatively small before the (n — 1)-th maneuver
by using the discrete input intervals At (i = 1,...,n — 2). Thus, the satellite’s
translational velocities and attitude can be converged to zero simultaneously.

3.5 Position Control

From Egs. (3.42) and (3.43), when the spacecraft has a negative translational
velocity Vy < 0 with zero attitude angle, the satellite’s position and translational
velocity along the Y-axis can be easily controlled. It implies that the positive part
of the inertial axis Y can be used as an invariant manifold. That is, the trans-
lational motion of the satellite can be converged to the origin, once the satellite
reaches the manifold with the following states: (X =Vx =2 =V, =0, V) <0,
Y >0).

Figure 3.2 describes the position and attitude control procedure in maneuver
3. When the satellite has states (X > 0, Y > 0, Vx < 0, V) < 0), using
the drift motion of the satellite makes it possible to calculate the input timings
to control the attitude angles and the translational velocity in the X-direction.
Equation (3.62) then gives the position increments AX for such maneuvers. The
summation of those increments thus can specify the start position of the thrust
firings. Consequently, maneuvering the satellite to the manifold with the target
attitude angles can control and stop the satellite at the origin.

The proposed control procedure is described in Fig. 3.3 and is summarized as
follows.

Maneuver 1 : The angular rate w, and the attitude parameter wy are simultane-
ously controlled to zero with a single spin motion around z,-axis. The input
timing is uniquely determined with Eq. (3.33).

Maneuver 2 : After a single spin motion around x,-axis is generated, the satel-
lite’s translational velocity and position along the Z-axis are controlled to
zero with discrete thruster firings. The angular rate w, and the attitude pa-
rameter w; are simultaneously converged to a target state in the maneuver.
The thruster firing timings are specified with the analytic solutions obtained
from Eq. (3.67).

Maneuver 3 : The satellite state is firstly driven to a preferable state satisfying
(X >0,Y >0, Vx <0, Vyy <0) with a control of single rotation around
zp-axis. Through the drift motion, the satellite’s translational velocity and
position along the X-axis are controlled onto a manifold with discontinuous
inputs satisfying Eq. (3.70). The satellite then moves along the manifold
and stops at the origin of the inertial frame.
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Figure 3.2: Proposed control procedure with the invariant manifold in maneuver

3.

3.6 Numerical Simulations

Numerical simulation results demonstrate the validity of the proposed control al-
gorithm. The simulation parameters and the initial condition are summarized in
Tables 3.2 and 3.3, respectively. For better understanding, the initial attitude an-
gles are expressed with ZYX Euler angles. The numbers of thruster firings, n, to
despin a rotation are set as two and one in maneuvers 2 and 3, respectively. Al-
though for general cases despin maneuver is completed with multiple thrust firing,
the despin maneuver in this simulation has the solution to Eq. (3.70) with one
thruster firing. This is because the drift velocity vector and the attitude angle at
the beginning of the maneuver happen to be preferable for control.

Table 3.2: Simulation Parameters.

Satellite mass, m 500.0 [kg]
Thruster force, F. 100.0 [N]
Moment of inertia, (J,,J,,J.) 250.0, 300.0, 350.0 [kgm?]
Moment arm, a 1.0 [m]

Figures 3.4 and 3.5 describe the time histories of the angular velocities and the
attitude angles, respectively, and they show all parameters converge to zero. Since
the inertial frame is defined to be coincident with the target attitude and the every
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Figure 3.3: The proposed control procedure.

Table 3.3: Initial Conditions.

Angular rate, (W, wy, w;) 0.0, 0.0, 0.0 [rad/s]
ZYX Euler angles, (¢,0, V) 20.0, 30.0, 45.0 [deg]

Translational velocity, (Vx, Vy,Vz) 0.0, 0.0, 0.0 [m/s]
Position (X,Y, Z) -20.0, -20.0, -20.0 [m)]

state parameters become zero at the target, these figures mean that the satellite’s
attitude is controlled successfully. Figures 3.6 and 3.7 show the time histories of
the satellite’s translational velocities and positions. In maneuver 3, the satellite is
initially controlled to the invariant manifold defined by Vx = X = 0 . Then, the
satellite’s position and velocity along the Z-axis is converged to the origin. The
three-dimensional trajectory of the satellite and the thruster inputs for the control
procedure are shown in Figs. 3.8 and 3.9, respectively, and they show the satellite
is successfully controlled with constant thrusts in one direction.
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Figure 3.4: The time history of the angular velocity.
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Figure 3.5: The time history of the attitude angle.
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Figure 3.6: The time histories of the translational velocity.
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Figure 3.7: The time history of the position.
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Figure 3.8: Three-dimensional trajectory of the satellite.
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Figure 3.9: The time histories of the thruster inputs.
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3.7 Application to Practical Case

This section applies the proposed method to a practical situation considered in
a project of Japan Aerospace eXploration Agency (JAXA). In the project, the
satellite mass constantly changes due to the fuel consumption of thrusters, and
the control strategy must include the influence of the mass change. That is, the
satellite mass becomes a time-varying parameter depending on the control inputs.
Although the analytical solutions cannot be obtained even if Fresnel integrals are
applied, nevertheless, a similar control technique shown in the previous section can
derive the approximate analytic solution considering the satellite’s mass change to
achieve an accurate control of the satellite’s position and attitude. The accuracy
of the proposed approximate solution is numerically verified by applying it to a
condition considered in the project.

JAXA is planning to launch a lunar lander for smart landing demonstration at a
specified target point, which is called Smart Lander for Investigating Moon(SLIM)
project. In the powered descending phase of the mission, the lander firing its main
thruster is guided from the lunar transfer orbit to the region above the target
point (see Fig. 3.10). The sub-thrusters change the lander’s attitude and controls
its horizontal velocity to zero. Because the lander fires the main thruster for
most of the powered descending phase, the satellite’s mass changes due to the fuel
consumption. The mass change affects the satellite’s motion, and thus the control
strategy must consider the mass change for the accurate landing.

v

& < . p
. Y
O |
> ® <l
==
Target Point

Figure 3.10: Lunar landing mission.

3.7.1 Equations of Motion

In the powered descending phase of the mission, the satellite is controlled from a
lunar transfer orbit to a target point, and the satellite motion can be considered
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in two-dimensions. The equations of motion for the satellite model shown in Fig.
3.11 are written as:

m(t)X = (fi+ fa)cosacost) — (f1 — fo)sinasinp, (3.72)
m(t)Y = (fi+ fo)cosasing + (fy — fo)sinacosy) —m(t)g, (3.73)
Jo = B(fi = fo), (3.74)

where m, 9, and J are the mass of satellite, an attitude angle and the moment of
inertia, respectively. For simplicity, we assume that the two thrusters generate the
same magnitude of thrusts, i.e. f{ = for 0, fy = f or 0, and they are attached at
the angle of o to the satellite body. The distance g illustrated in Fig. 3.11 denotes
the moment arm of control torques generated by the thrusters. Note that the 3 is
defined as a negative value when the thruster f; generates a clockwise directional
control torque. Also, the satellite mass is assumed to change at a constant rate ¢
due to the fuel consumption.

m=—c. (3.75)

’
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Figure 3.11: Satellite model

3.7.2 Approximate Solution

Considering the constant magnitude of thruster force, we obtain an approximate
analytical solution. When the thruster f; is fired, Eqs. (3.74) and (3.75) are
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integrated as

b= it (3.76)
(CRES §—§f2 + ot + 1o, (3.77)
m = mgy— ct. (3.78)

As shown in Eqgs. (3.76) and (3.77), the satellite’s rotational motion is integrable.
Thus, Eq. (3.72) is rewritten as follows.

1

mg — ct

. {f COS (x COS (%tQ + Yot + wo) — fsinasin (%tQ + ot + %) } . (3.79)

X =

In this equation, since the denominator varies with time due to the mass change,
this equation cannot be integrated nor expressed with any elementary functions
of mathematics. Thus, this subsection derives the approximated expression for
the analytic solution of the translational motion utilizing Fresnel integrals and the
partial integration.

Since the two terms of the right-hand in Eq. (3.79) have similar form here, we
deal with only the first term. The first term can be transformed as

HJ;;O_S (Zt cos (%ﬂ + ot + ¢0)

fcosa

m
_ T p2.2 B)
mo—c(T—tl)COS(Q TEE)

_ feosa (COS (14272) cos B — sin (EA272> sin B} , (3.80)
mo — c{T —t1) 2 2

where A, B, and 7 are redefined as follows.

Bf

A =% (3.81)
12

B = ¢0—%, (3.82)

- %, (3.83)

Note that if 5 < 0, A is defined as,

_=Bf
A=y (3.85)
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Using the partial integration repeatedly, we can integrate Eq. (3.80) and describe
the approximate solution as:

tfcosac Bf
0 mo—ct 2J

t+t1
_ / fcosa (COS <EA272> cos B — sin (EA27'2> sin B) dr,
Mo —c(T— t1) 2 2

_[ feosa (COSBM 'BS<AT))]”“

N mO—C(T—tl) A t

t+t1
_/ fecosa 5 (cos B—C(AT) — sin B—S<AT)) dr,
no (mo—c(r—t)) A A

B fcosa C(AT) . _S(A)\]™
= [mo—c(T—tl) (cosB 1 —smB—A )]tl

Tl =i 20

t1

t+t1 2 T T
+/ { 2f¢ cosa 3 <cos B/ clar) dr — sin B/ S(Ar) dT) } dr,
o Lmo—c(r—t)) o A o A

)

_ WO[(( 1)"nle™ f cos a (

1
mog — C T—tl n+

t+t1
—smB// / S(Ar) d dr - d7'>] ,

where C(+) and S(-) are Fresnel integrals defined in Eqs. (3.53), (3.52), respectively.
Here, we define the degree n for Fresnel integrals to denote the number of partial
integrations. In realistic systems, the satellite mass is obviously much larger than
the total fuel consumption, i.e. mg > ct. Therefore we can consider that the
remained integral term becomes small enough to ignore as the degree n increases.

The approximated analytical solution of translational velocities are consequently

2242 ot + ¢0> dt

ceedr
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described as:

Vx =

é[ ( B2
] / dﬂ““

B [ —1)"nlc" f sin « (

O—C(T—tl n+1

t+t1
smB// / (A7) d dr- dT)]

+Vxo,

Vo =Y

Sl [
] i L

)'nlc™ fsin «
S = nﬂ(

mo—c
t+t1
—smB// / ATdd d)]
—gt+VYO

codr

- dr

codr

- dr

(3.86)

(3.87)

Equations. (3.86) and (3.87) can be further integrated, and the approximate so-
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lutions of the position are shown as:

. Z[ n'Cfcosa( /// At dedt
)
—Z( ”'Cfcoso‘t(co( B)Cy(At) — sin (B)S) (At )))
_Z[ Jnle f“jo‘<cosg/// A(t+1)) dedt - - dt
cof-foncapun )]

+Z ( nl fs ma, (cos (B)S1(Aty) + SinBCH(Ah)))

+VXOt + X, (3.88)

¢
Y = Z{ "nictfeo 1a<cosB// /S (t+t1))dedt - - dt
mo t

s fosesiyan )]

_Z ( LRI €080 (o (B)S) (Aty) + sim (B)C (At ”)

+§:{ ”'Cfsna( // / A(t+ty)) dedt - - - dt

B Z ((_1)n n':jlf Sinat (cos (B)C1(Aty) — sin (B)Sl(Atl)))

1
—59752 + Vyot + Yo, (3.89)
where C(-) and S;(-) are redefined as follows.
t
Cult) = / a4, (3.90)
o A
t
t
Si(t) = / S0 g (3.91)
o A
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3.7.3 Numerical Test and Discussion

This subsection shows a numerical test to verify the accuracy of the approximate
solution. Henceforth we use the satellite model shown in Fig. 3.12, which is based
on the lunar lander model of SLIM being planned in JAXA. The satellite equips
a main thruster to decelerate the translational velocity and sub-thrusters at the
mounting angle « = 7/2 to control the satellite’s attitude.

YA

>
X

Figure 3.12: Lunar lander model.

The accuracy of the approximate solution depends on the ratio between the
satellite mass and the fuel consumption. Thus, the numerical calculation is con-
ducted for two different cases. The parameters are summarized in Table 3.4.

Figures 3.13 and 3.14 show the relative error of the translational velocity be-
tween the exact solution and the approximate solution evaluated in Eqs. (3.86)
and (3.87). It is clear that the relative error becomes smaller as the degree of Fres-
nel integrals increases. However, because the partial integration for the Fresnel
integrals requires complex calculations, the approximate solutions for n = 0 and
n = 1 are used in the followings.

In the powered descending phase of the SLIM mission, the objective is to drive
the satellite into a region above the target point with zero-horizontal velocity. The
satellite’s attitude is simultaneously controlled to a target attitude angle. Since
the inertial frame can be defined arbitrarily, without loss of generality, we set the
target state as X = Vy = ¢ = 0, ¢ = 7/2 in this discussion.

Note that the lunar lander model has a negative moment arm, that is, the
thruster f; generates a negative directional control torque, and thus, Eq. (3.80) is

20



18

S -

> 16 =

R e n —

2 14

0]

>

= 12

g

‘g 10

§ 8

[

S 6 il

£ A

D) 4 WA

0]

z 2 V/\/\/\/V "

E MM‘”WNM ............
00 10 20 30 40 50 60 70 80 90 100

Time [s]

Figure 3.13: The relative error between the exact solution and the approximate
solution.

Table 3.4: Satellite’s parameters.

Mass m Casel: 120.0 [kg]
Case2: 200.0 [kg]
Moment of inertia .J 100 [kgm?]
Moment arm /3 -0.5 [m]
Thruster force F, f1, fo 500.0, 20.0, 20.0 [N]
Fuel consumption rate c 0.16 [kg/s]
rewritten as
feosa cOS ﬁt2 + ot + 1o
mo — ct 2J

fcosa

cos (—gAQTQ + B) ,

- mo —c (T —t1)

— Jeosa (cos <—EA272> cos B — sin <—ZA272> sin B) ;
mo —c (T —t,) 2 2

feosa ] (cos (gA27'2> cos B + sin (gA27'2> sin B) ) (3.92)

:mo—c(T—t1

where A is defined as shown in Eq. (3.85). The approximate solutions for n = 1
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Figure 3.14: Case2: The relative error between the exact solution and the approx-
imate solution.

are described as:

Vx = [ F (CO BC(AT) +Sian):|t+tl

mo — (T —t1) A "

_ ;(mo_;(FT 0 (Cos / CUT) s sin B / #m)}:tl
- _mo—C]ZT—tl) ( cos BT 4 )]

A
_ t+t
+ cf (— cos /S(AT dr + smB/ C(AT )]
_(mo — C (T — tl A A
+ Vxo, (3.93)
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F
Vv = [ (—COSB
mo —C(T—tl)

t1

_ :(mo—cc(]i—tl))Q (—COSB/%dT%—sinB/%dT)Ijh
=y (G ™)
+ :(mg—cc(];—tl))Z (cosB/C(jT)d +s B/S(j ) ir )rtl

3.7.4 Control Procedure

As a simple example, we consider a control maneuver consists of three steps illus-
trated in Fig. 3.15. First, the satellite is decelerated by the main thruster until
the translational velocity becomes to a specified one (Step 1). The satellite then
drifts to the position to start the attitude control maneuver (Step 2), and finally
the attitude angle and the translational velocity are simultaneously controlled to
the target state (Step 3).

The velocity and position time-profiles to drive the satellite to the target state
can be calculated in advance using the derived approximate solution through the
following procedure. Since the velocity change in Step 2 is zero, the final zero-
translational velocity can be achieved in the following condition.

Vxo + AVxy + AVxs =0, (3.95)

where AVx; and AVy3 mean the velocity changes in Step 1 and Step 3, respec-
tively. For simplicity, we assume that the satellite’s attitude keeps an attitude
angle ¢ in Step 1. Thus, the analytic solutions for Step 1 are written as

F
AVx, = CSS¢ log (mo — cAty) — logmo + Vxo, (3.96)

mo — cAt; = my, (3.97)

Fcos

where m(, denotes the satellite mass at the end of Step 1.

In Step 3, we consider a time-profile based on a bang-bang type thruster input
for the attitude control. Thus, the input time is uniquely determined and is written
as follows.

J (o — )

i

(3.98)
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where 9y and v; denote the initial and target attitude angle in Step 3. The velocity
change in Step 3 only depends on the initial angle in Step 3 and the target angle,
and is shown as

AVxs = m (cos %% + sin OS(AAAtS)) ﬂm};gAQ
i (e S ) ¢
+m (COS th(ATAt?’) + sin wtC(AAAt3>> — 7TA2(£;6€iS21/:At3)2'
(3.99)

Therefore using Eqgs. (3.96), (3.97), (3.98), (3.99), we can obtain the input time
in Step 1 which satisfies the condition shown in Eq. (3.95).

The satellite position is also controlled by using the drift motion in Step 2.
Using the approximate solution derived above, we can calculate the position change
of the maneuver in Step 3. That is, the start position for Step 3 is specified and
such maneuver can drive the satellite to the target position.

(1) (2 (3)
I S
.\ & <1— 2
Initial State . \
Drift Motion i
@
> <l

,ATarget State
/\O\

Figure 3.15: Control procedure for lunar landing mission.

3.7.5 Simulation Results

This section shows the simulation results of the control procedure for the lunar
landing. The initial condition of the numerical simulation is summarized in Table
3.5. For simplicity, the moon’s gravity acceleration is assumed to act in the Y
direction, and the vertical region above the target position is set to be free.
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Figure 3.16 shows the time history of the translational velocity along X-axis
calculated by using the approximate solution for n = 1. The figure means that
the satellite’s horizontal velocity is successfully controlled to zero. The satellite’s
position is simultaneously controlled to the region above the target position as
shown in Fig. 3.17. In the control maneuver the control thrusts described in Fig.
3.18 are applied. Figures 3.19 and 3.20 depict the time histories of the satellite’s
attitude and the angular rate, and they show the satellite’s state is controlled to
the target state.

Table 3.5: Initial condition.

Position X,Yy,  -388.0, 15.0[km]
Velocity Vo, Vyo  1500.0, 0.0[m/s]
Attitude angle ¢, 180.0 [deg]
Angular rate ¢ 0.0 [deg/s]

Mass my 200.0 [ke]
Step1 Step 2 Step 3
TSN SV SO S rl
IS R S S S S T\
00300 600

Time [s]
Figure 3.16: The time history of translational velocity.

Figures for the case n = 0 are omitted since the time-profiles are almost same as
those for n = 1. Although applying the approximate solution for n = 0 can drive
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Figure 3.17: The time history of the satellite’s position.
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Figure 3.18: The time histories of the control thrusts.
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Figure 3.19: The time history of the satellite’s attitude angle.

the satellite to the proximity target state, its error is larger than that of n =1 as
summarized in Table 3.6. Because the attitude control maneuver is conducted only
once and the input time is calculated Ats = 3.96]s| in this simulation, as shown in
Figure 3.14, the error is quite small even when we use the approximate solution
of n = 0. In other words, for the case when many attitude control maneuvers are
conducted, larger error is expected for the approximation of n = 0, and thus high
order approximation should be applied.

Table 3.6: Simulation Results.

Degree of Fresnel integrals Translational velocity Vx  Position X
n=>0 0.04 [m/s] 1.0 [m]
n=1 0.01 [m/s] 0.3 [m]
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3.8 Summary of Chapter 3

This chapter has dealt with a position and attitude control of an underactuated
satellite with a small number of on-off thrusters. Using the wz-parameters to
represent the satellite attitude, we have shown the attitude control procedure in
three maneuvers. In each maneuver, the translational motion has been controlled
simultaneously, and the proper input timings and durations have been obtained
with analytical solutions. Furthermore, the proposed control technique has been
applied to a practical case for a lunar landing mission. For the powered descend-
ing phase of the mission, a satellite’s mass change due to fuel consumption has
been considered using the partial integration of Fresnel integrals. This method
has enabled us to approximate the translational motion of the satellite with high
accuracy. Numerical simulation results have demonstrated the effectiveness of the
proposed control procedures for both the three-dimensional satellite and the lunar
lander.
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Chapter 4

Position and Attitude Control in
Formation Flying

Chapter 4 discusses a relative position and attitude control of a satellite in for-
mation flying. A translational motion of a follower satellite is affected with the
orbital motion of a leader satellite, and thus notably differs from the one discussed
in the previous chapter. Rendezvous and formation reconfiguration problems are
typical control methods required for formation flying missions and have been dis-
cussed in many studies in order to minimize the fuel or energy consumption. These
works, however, consider accelerations as control inputs, that is an attitude control
of a satellite has not been explicitly discussed in the formation flying maneuvers.
This chapter therefore deals with both a rendezvous and a reconfiguration problem
explicitly considering the attitude dynamics of a satellite. In section 4.1, a fuel-
efficient rendezvous approach in a circular orbit using constant thrusts is derived.
The control method effectively uses a drift motion for the energy efficiency, and
furthermore modal analysis analytically shows the necessary accelerations for two
cases of input directions: 1) along-track thrusts, 2) radial directional thrusts. In
section 4.2, an optimal reconfiguration method is shown under attitude constraints
with respect to an inertial frame. To control both translational and rotational mo-
tion, a tracking method for a reference input trajectory is firstly obtained based
on Lyapunov stability. The tracking method reduces the reconfiguration prob-
lem under the attitude constraints to the one under thrust directional constraints,
and thus the reference input is designed to satisfy an optimal condition and the
constraints on the inputs.

4.1 Fuel-Efficient Rendezvous Maneuver

This section deals with an orbital control of a follower satellite relative to a target
satellite in a circular orbit under a constraint of a few thrusters. The thrusters
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of the follower are fixed to its body and generate constant magnitude of forces
in unilateral directions. To generate control forces in required directions, the
follower attitude is also controlled using the thruster forces alone. Furthermore,
the attitude control of the follower is necessary to estimate the relative position
of the follower satellite from the time profile of line-of-sight (LOS). First, the
controllability with constant inputs in unilateral direction is examined based on
modal analysis. Then, the energy efficiency of the controllers is discussed according
to the directions of control forces. Finally, some numerical simulations show the
verification of the controller and compare the energy efficiency.

4.1.1 Equations of Motion
HIII’s equation

The equations of motion for formation flying in a circular orbit have been studied
based on the linearized equations, called the Hill’s equation or Clohessy-Wiltshire
equation [24]. The Hill’s equation describes a relative motion of a follower satellite
in a leader-fixed coordinate. In the leader-fixed frame, z-axis lies in the radial
direction from the Earth, z-axis is in the direction of the orbital momentum vector
of the leader, and y-axis completes a right-handed coordinate (Fig. 4.1). The
equation of motion of the follower satellite is written as [52]

o
((Ro+ 2)?+ 4%+ 22)

B—_

3 (RO + mpos) + u, (41)

where @05 := [ Ty z }T, R(= Ry + xp0s), Ry, pt, and u are a position vector

of the follower, an orbital radius of the follower, an orbital radius of the leader,

the gravitational constant of the Earth, and external accelerations, respectively.

Assuming that the orbital radius of the leader satellite is much larger than the

distance between the leader and follower, we obtain linearized equations as
In-plane motion

. 00 1 071[= 0 0

d vy | 0 0 O 1 Y n 0 0 { Uy }
LT 32 o 20 | | & 10 || (4.2)
ey 0 0 —20 0 ||4 0 1

= & = Ax + Bu,,.

Out-of-plane motion

BEER R S



where €2 is an orbital rate of the leader satellite and = := [x,y,4,9]T. These
equations indicate the decoupling between the in-plane and out-of-plane motion
of the follower satellite. Thus this chapter discusses the in-plane motion control
in the following sections, because the out-of-plane motion is simple harmonic and
the control procedure is shown in the previous study [53].

leader

Figure 4.1: Coordinate systems in formation flying.

The analytical solutions of the Hill’s equation with no external forces are ob-
tained as follows [52]:

4 —3c 0 s/Q 2(1—1¢)/Q
6(s—Qt 1 —2(1—-¢)/Q 4s/Q— 3t
z(t) = (3Qs ) 0 ( c )/ /25 o, (4.4)
—6Q(1—¢) 0O —2s -3 +4c

where the subscript “0” denotes initial states and ¢ := cosQt, s := sinQ2¢t. The
equations are further simplified as

z(t) = acos(Qt+ ®)+ 20, (4.5)
y(t) = —2asin(Q + @) — 3bt +d, (4.6)
©(t) = —Qasin(Qt + ), (4.7)
y(t) = —2Qacos (2t + P) — 3b, (4.8)
where
a = /(30 +200/Q)* + (/). (4.9)
b = QQ(L’O + yo, (410)
d = yo— 2o/ (4.11)
® := arctan ( Lo : ) : (4.12)
Q(3x0 + 290/)
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The parameters, a, b, d, and ® denote the size of the relative orbit, a drift velocity,
the distance of the center of the ellipse from the leader satellite, and an initial
phase, respectively. Since the position of the follower satellite is written as

2 2
(x—2b> +(y+?;bt—d) . 4.13)
a a

the relative motion becomes an elliptic orbit when 6 = 0 and furthermore, the
leader-centered ellipse when b = d = 0.

Rotational equation

The rotational equations of motion of the follower satellite with respect to the
leader-fixed frame are written as follows.

Jo+oJw="T, (4.14)

where * is a skew-symmetric matrix, that is

0 —w, wy
w=| w, 0 —wy |- (4.15)
—Wy Wy 0

The attitude kinematics in terms of ZYX Euler angles are written as

é cosf sin¢gsinf  cospsinf Wy 0
0 | =sech 0 cos¢cos) —singcost wy | =1 0 (4.16)
¥ 0 sin ¢ cos ¢ w, 0

The orbital rate €2 appears in the last term of the right-hand side in Eq. (4.16)
due to the rotating frame.

Thruster configuration

Despite the result in Chapter 2, the minimum thruster configuration to control a
satellite position and attitude with constant thrusts has not been specified because
the constraint on the magnitudes of thruster forces makes the mathematical dis-
cussion hard. However, the previous works [53,54] and the controller in Chapter 3
show that the satellite position and attitude can be controlled with four thrusters
placed to be parallel with respect to a principal axis of the satellite. Thus, this
chapter also assumes the follower satellite equips four thrusters parallel along x;-
axis as shown in Fig. 4.2. The thrusters generate the same magnitudes of constant
forces and have the same length of a moment arm about y,- and z,-axes.
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Figure 4.2: Thruster configuration.

The control thrusts generate both translational and rotational motion of the
follower and is written in the leader-fixed frame as

1
u = —Ribe, (417)
m

cosycosf —siny cos¢ 4 cosyPsinfsing  sinsin ¢ + cos P sin 6 cos ¢
siniy cosf  cosycosp+sinysinfsing  —cosysing 4 sinysinfcos¢ |
—sin 6 cos fsin ¢ cosf cos @
(4.18)

F, = [fi+fatfs+fi 0 0] (4.19)

The control torques generated by the thrusters are described as

T=[0 qunlfitfo—fs—fi) tGanlfi+fimfo—fs) ], (420

where a.,, 1S the moment arm of the thrusters.
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4.1.2 Modal Analysis

Modal variables

The system matrix, A, for the in-plane motion of the Hill’s equation has three
eigenvectors and eigenvalues although the order of A is four, and thus is defective.
The eigenvectors and eigenvalues are obtained as

0 —-1/(2Q2) —-1/(29Q)
[e1 e3 ey ] = é z//g _ZZ//(; , (4.21)
0 1 1
A= 0, (4.22)
Ay = —if, (4.23)
A= i (4.24)

where ¢ is an imaginary number. The following calculations form two real eigen-
vectors.

e; = Q(es—ey)/i

- (020 0], (4.25)
e, = Qes+ey)
— [-100 20]". (4.26)

A generalized eigenvector e, is obtained as follows.

(A — )\1[) €y = € . (427)
=e=[-2/32 a 0 1],
where « is an arbitrary value and henceforth the case when o = 0 is considered
for the sake of simplicity.

The variable transformation using the eigenvectors simplifies the interpretation
of relative orbit control [55]. Here, modal variables are defined as

¢ = [a & & &)
= Pz, (4.28)
where
P = E!
= (e e € eﬁl}_l. (4.29)
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The components of the modal variables are written as:

& o= y—2i/Q, (4.30)
& = —3(20z +9), (4.31)
& = i/, (4.32)
& = 3z+29/9. (4.33)

The modal variables &; and & mean the distance between the leader and the center
of the relative elliptic orbit and the drift velocity, respectively, whereas, &5 and &4
denote oscillatory mode. In fact, the initial values of & and &, are equivalent to the
parameters d and —3b defined in Eqs.(4.11) and (4.10). The Euclidean norm of &3
and &, has the same form as the parameter a shown in Eq. (4.9). The differential
equations of the modal variables are described as follows:

£ =PAP ¢ + PBu

01 0 0 —2/Q 0

. {00 0 O 0 -3 (4.34)
“€=100 0 l|¢T| 10 o |®
00 —Q 0 0 2/Q
or equivalently,

& o= &—2u/9 (4.35)
& = —3uy, (4.36)
& = —Q& + 2u,/Q. (4.38)

Controllability and Energy Efficiency

The state equations of the modal variables are useful to consider the controllability
and the energy efficiency even when control inputs are constrained to be constant
in one direction. Moreover, only positive control forces are assumed in this section
because the control thrusts are applied with a few number of thrusters. Thus,
the controllability and the fuel consumption in terms of the modal variables are
considered for two cases of input directions: 1) positive along-track thrusts and 2)
positive radial thrusts.

Firstly, the controllability and the energy efficiency with positive along-track
thrusts, ie. w = [0 wu,]" (u, > 0), are examined. The modal equations show
that a positive along-track input can control all modal variables to zero only when
initial states satisfy some conditions. Equation (4.36) indicates the initial value of
& must be positive because it monotonically decreases with positive acceleration.
Equation (4.35) then means the time derivative of & becomes positive, and thus
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the initial value of &;, i.e. & o, should be negative. On the other hand, there are
no restrictions for the initial states of &3 and &, because of their oscillatory motion.
Thus the necessary acceleration to steer all variables to zero is uniquely determined
by the initial value of &. Equation (4.36) is integrated and the analytic solution
provides the minimum necessary acceleration as

Uy = uy At = —(& — &20)/3, (4.39)

where At is an input time.

Secondly, the relative motion control with positive radial thrusts is considered.
For a single input w,(> 0), Eq. (4.36) shows the variable & is uncontrollable,
whereas the other modal variables can be controlled. The drift velocity & thus
must be controlled beforehand to a target state. The fuel consumption is uniquely
determined according to the initial value of &; for the positive input. The analytical
solution of Eq. (4.35) descrbies the required acceleration as

Ugpd = —Q(fl — 5170)/2 + n§270At/2. (440)

The relative orbit control with along-track thrusts is therefore more energy
efficient than that with radial thrusts, because the necessary acceleration in the
along-track direction is only u,q. On the other hand, the relative motion control
with radial thrusts requires not only u,q, but also u,q in total due to the uncon-
trollability of &. Thus, the following discussion extends the control method shown
in [53] by using a drift velocity generated with along-track thrusts, and compares
the fuel consumptions.

4.1.3 Conrol Method

This subsection firstly derives analytical solutions of translational and rotational
motion of a satellite in z-y plane. The analytical solutions provide input timings
which drive the satellite to a target state. Based on the analytic solutions, two
control procedures are shown to compare the energy efficiency.

Analytical solution of modal variables

The satellite angular velocity monotonically increases or decreases because of con-
stant inputs, and this section uses the angular rate as an independent variable
instead of time. The time derivative of an arbitrary parameter 3, for instance, is
transformed as follows.

. dp
b= w
~dB dw,
o dw, dt
=08 = A8, (4.41)



where the prime denotes the derivative with respect to the angular rate and ~ :=
J./T,. The analytical solution for the attitude angle is obtained as

Vo= (. - Q)
= Y= ( f 30) — 7w, — ws0) + Yo (4.42)
This analytical solution includes no terms of time due to the integration along the
angular velocity.
The analytical solutions of the modal equations are also obtained with inte-

grations along the angular rate. The equation of the variable &, for instance, is
rewritten as:

SQ = —3u
= —3Fb sin ”Lﬁ
=& = —3yFysiny
= —3vF,sin [%(wg —w?)) — Yw, — wso) + ¢0]
— _3yF,sin [%wQ Qs + go] : (4.43)
where
g() = —zw -+ 'YszO + ¢0 (444>

2 20

In a similar way to Chapter 3, the analytic solution of Eq. (4.43) can be ob-
tained with Fresnel integrals, although it cannot be integrated with fundamental
functions. Using the Fresnel integrals, we derive the analytic solution as:

&= 02 ymreosx[s ({2 - 2) -5 ({2 (a-9)]
_ B%WSinX {c (\/Z(wz _ Q)) _C (\/g(wzo _ Q))} . (4.45)

£:= (o~ %92. (4.46)

where

The analytic solutions for the other modal variables can be obtained in the same
way.

Rendezvous Maneuver

The relative motion control shown in the paper [53] is reviewed using the modal
variables. In the paper, the satellite attitude is controlled so that the thrusters are
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aligned to the radial direction, and then the orbit is changed without an attitude
change. As discussed in the above subsection, the radial directional inputs can
drive the follower to the leader only when &y = 0. Thus the control maneuver to
vanish a drift velocity is required, i.e. & — 0, in advance. After the maneuver, the
orbital motion of the follower becomes elliptical orbit and the thruster direction is
oriented to the radial direction as shown in Fig. 4.3.

AL

Camera

LOS

Yo

€

Y« Thrusters

Figure 4.3: Initial relative orbit

When &9 = 0 and no along-track inputs are applied, Egs. (4.35) and (4.36)
indicate that a positive radial thrust monotonically decreases &; , and the distance
from the leader can be controlled to zero. Also, to control &3 and &4, introduce a
Lyapunov function candidate described as

1
L=(E+6) (447)
The time derivative of Eq. (4.47) is written as follows.
: u
L =& -2, 4.48
& (4.48)

Thus the radial directional thrusts u,(> 0) applied when & < 0 make the time
derivative of the Lyapunov function negative, and consequently drive the variables
&3 and &4 to zero. Note that the maximum LOS angle varies as the parameters
L and &, decrease. The control inputs are thus applied so that the center of the
relative orbit gradually approach the origin and the LOS angle keep a smaller angle
than the field-of-view of the camera.
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The control procedure with radial thrusts is improved by using a drift motion.
As shown in the previous subsection, the control input along track direction is
more fuel-efficient than the one in radial direction to control the relative motion of
follower. The difference of the energy efficiency is due to the drift velocity. Since
the drift motion steers the follower to the leader with no external forces, the less
energy is required for the rendezvous.

The control procedure using the drift velocity consists of the following steps:
(also see Fig. 4.4)

1. Attitude control and a drift velocity generation.
2. Attitude control to track the leader satellite.

3. Attenuation of the drift velocity.

4. Final maneuver without the attitude change.

In the first step, the follower changes the attitude and generates a drift velocity.
For example, a negative drift velocity approaching the leader is necessary for the
initial state shown in Fig. 4.3. The drift velocity is generated with positive along-
track acceleration as described in Eq. (4.36) and is analytically calculated with Eq.
(4.45). Then, the follower attitude is controlled to track the leader with a camera.
After the approach with the drift motion, the drift velocity can be attenuated also
using the analytical solution shown in Eq. (4.45). Finally, the follower satellite
approaches the target satellite without attitude change.

4.1.4 Numerical Simulation

Numerical simulation results demonstrate the effectiveness of the proposed control
method and the comparison of the fuel consumptions. The simulation parameters
and initial condition are summarized in Table 4.1 and 4.2, respectively. The field-
of-view of the camera and the orbital rate are assumed to be £45.0[deg] and
0.001[rad/s|, equivalently |Ry| = 7359.5km].

Figures 4.5 and 4.6 show the time histories of the follower position and the LOS
angle for the maneuver with radial thrusts. These figures describe the follower
satellite approaches the leader satellite keeping the LOS within the field of view
of the camera. In total, the thrusters are fired 62.5[s| as shown in Fig. 4.7 and
the energy consumption in this maneuver, (f; + fo + f3 + f1)At/m, is equal to
—Q(&1a — 10)/2 = 5.0[m/s].

Figure 4.8 shows the time history of the relative position of the follower and
the follower is successfully controlled to the leader using the drift motion. Figures
4.9 and 4.10 show the time histories of the LOS angle and the attitude angle of the
follower in the leader-fixed frame, respectively. The follower attitude is changed
to generate the drift velocity and then is controlled to the leader satellite keeping

70



Figure 4.4: Rendezvous maneuver using a drift motion.

Table 4.1: Simulation parameters

Mass m [kg] 500.0
Thruster force f;(i = 1,2,3,4)[N] 10.0
Moment arm a[m] 0.5
Moment of inertia J,, J,, J, [kgm?] 300.0, 250.0, 200.0
Field of view of a camera [deg] +45.0
Orbital rate Q[rad/s] 0.001

the LOS angle less than the field of view of the camera. This maneuver fires the
thrusters for 2.4 [m/s] as described in Fig. 4.11 and is more fuel-efficient than the
result using only the radial thrusts.
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Table 4.2: Initial condition

Position xq, yo, 2o [m] -1000.0, 10000.0, 0.0
Translational velocity vy, vyo, V.0[m/s] 0.0, 2.0, 0.0
Attitude angle ¢y, 0o, Yp[rad] 0.0, 0.0, 0.0
Angular rate wyg, wyo, w0 [rad/s] 0.0, 0.0, 0.001

Modal variables §1,07 52,0, 5370, 54’0 100000, 00, 00, 1000.0

Figure 4.5:
change.
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Figure 4.6: The time history of LOS angle for the maneuver without attitude
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Figure 4.11: The time histories of control thrusts for the proposed maneuver.
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4.1.5 Summary of Section 4.1

This section has dealt with a fuel-efficient rendezvous maneuver of a follower satel-
lite with a small number of thrusters. The modal analysis and its variable transfor-
mation have provided the interpretation of controllability with positive constant
inputs in one direction: an along-track thrust can control all modal variables,
whereas a radial directional thrust requires a preliminary control maneuver to
vanish a drift term in advance. The difference of the energy consumption and the
proper input timings have been derived in terms of the modal variables, and conse-
quently a fuel-efficient maneuver using a drift motion has been shown. Numerical
simulation results compared the energy efficiency and verified the effectiveness of
the control procedure.

4.2 Optimal Formation Reconfiguration Under
Attitude Constraints

An optimal reconfiguration control by the use of a small number of thrusters is
addressed under attitude constraints. The satellite attitude angle during the in-
plane reconfiguration maneuver is restricted within a certain bound from a speci-
fied direction in an inertial frame. Such constraint arises from some requirements:
electric power generation with fixed solar array panels, observation or communica-
tion with ground-based stations. In a similar assumption to the previous section,
the satellite is assumed to have a few number thrusters; for in-plane formation
maneuver the number of thrusters is set to two, whereas the magnitudes of the
thruster forces are variable. The purpose of this section is to derive an optimal
controller to reconfigure the formation between two satellites with a few number
of thrusters considering the attitude constraints. To this end, a control method to
track reference inputs is firstly derived, and then the reference input design and
the condition to satisfy the attitude constraint are discussed. Numerical simula-
tion results show that the designed reconfiguration method is effective for keeping
the satellite attitude angle within a specified bound.

4.2.1 Modal Equation

This section redefines state variables and modal variables to make consistent with
the proposed method discussed later. The state variables for in-plane motion are

redefined as x = [ Qv = Qu vy ]T. The resulting analytical solution of the Hill’s
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equation with no external forces is obtained as follows.

4—3c s 0 2(1—¢)
() 3s c 0 2s .
4 6(s —Qt) —2(1—c¢) 1 4s—3t |7°
—6(1 —¢) —2s 0 —3+4c
= x,(t) = O(t)xo, (4.49)

where xj,(t) and ®(t) denote a homogeneous solution and the state transition
matrix, respectively. The modal variables are modified and redefined as

& = —3Qx — 2y, (4.50)
& = %, (4.51)
& = 2&— Qy, (4.52)
& = 20%c + Q. (4.53)

Note that the above modal variables are shuffled from the one defined in Eq.
(4.28), and the variables &; and & denote an oscillatory mode, whereas &3 and &,
mean the distance between the leader and the center of relative orbit and a drift
velocity, respectively. The state transition matrix is also transformed with the
modal variables as follows [31].

cos(Qt) sin(2t) 0 0

| —sin(Qt) cos(Q) 0 0
=1 0 1 30t (4:54)

0 0 0 1

4.2.2 Rotational Equation and Thruster Configuration

The rotational equation of a follower in z-y plane is expressed with a single spin
motion as,

Vo= w,—Q, (4.55)

where T, and J, are external torque and the moment of inertia around z,-axis,
respectively.

In this section, the follower satellite is assumed to equip two thrusters to control
the position and attitude and, without loss of generality, the x;-axis in body-fixed
frame corresponds with the thrust direction as shown in Fig. 4.12. The thrusters
can generate variable magnitudes of thrust forces whose directions are restricted
in positive direction due to thruster mechanisms. Thus the in-plane forces shown
in Eq. (4.2) are written as follows.

wy — %R(w)Fb, (4.57)
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where F, = [fi + fo 0]T(f1, fo > 0) is redefined as the in-plane forces in the
body-fixed frame, and R(-) denotes a two-dimensional rotational matrix, that is,

| cosy  siny
R(y) = { —sinty  cos } ' (4.58)

The control torques, on the other hand, is written as

Tz = flaarml + f2aarm2a (459)

where a,m1 and aame are the moment arms of the thrusters which take a negative
value when the thrusters generate a clockwise directional control torque. Conse-
quently the following relation is used to distribute the required control acceleration
and torque into two thrusters.

4L LT[R e

f2 Tz

Although the inverse matrix in the right-hand side of Eq. (4.60) becomes singular
when the thrusters generate control torques in the same direction, the condition
indicates that the system becomes uncontrollable.

Aarml  Aarm?2

Aarml

Yb

Aarm?2

»
f2

Figure 4.12: Thruster configuration.
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4.2.3 Control Method

As shown in Fig. 4.13, we assume that the attitude constraint of the follower is
less than a specified angle 1oung from X-axis in the inertial coordinates and the
desired attitude angle, e.g. a normal vector of a solar array panel or an antenna, is
expressed with gt in the body-fixed frame. The attitude constraint is written
as

|9(t) + 77Z)(t) + 77Z}offset| < wboundy (461)

where 6(t) is a true anomaly of the leader satellite. In the reconfiguration maneu-
ver, the size of the relative orbit is controlled to a desired one, and thus the reconfig-
uration problem in terms of the modal variables is described as (&1, £2,0, €3.05 §40) —

(fld? £2d7 63,07 5470)'

woffset

Y Inertial coordinates

Figure 4.13: Attitude constraints in inertial frame

Reference Input Tracking

A control method to track reference accelerations is firstly derived. Since the
follower equips a few thrusters, the satellite’s attitude must be controlled so that
the thrust direction is oriented along the reference acceleration vector. To this
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end, the following Lyapunov function candidate is considered.
1 9 1 . L
L= 5(#’ —a)” + 5(1/1 —a)”, (4.62)

where )4 := arctan (u,q(t)/u.q(t)) represents the angle of the reference acceleration
vector. The time derivative of Eq. (4.62) is calculated as

L= (=)@ —tba+ v~ )
= (¥ —va)(T%/J: — tba+ ¥ —a). (4.63)

Thus, the following controller is proposed.

Tz/Jz :lgd_w—i_wd_Kw(@_d}d)? (464>

where K, is a positive constant gain. Substituting the control input into Eq.
(4.63), we obtain the time derivative of the Lyapunov function as

L= —Ky(i) — ) < 0. (4.65)

The control torque shown in Eq. (4.64) thus drives the follower attitude to track
the reference acceleration. This indicates that the reconfiguration problem under
the attitude constraint is equivalent to the one under the directional constraint
of the reference acceleration. Note that the reference inputs, uzq and wu,q , must
be at least two times differentiable due to the term ty. If the reference inputs,
for instance, include a feedback term of a velocity &, the term 12}(1 requires the
time derivative of an acceleration % for the feedback. Such term is difficult to
estimate and thus the reference tracking method disables an application of a full-
state feedback.

Optimal Reconfiguration Controller

The optimal controller for the reference inputs under the directional constraint
is discussed based on the method shown in [30]. The advantages of using the
controller in [30] are: 1) the optimal input is infinitely differentiable because of
the function of time; 2) the condition to satisfy the attitude constraint can be
obtained from an analogy with an elliptical equation. The control method in [30]
is here briefly followed.

The optimal controller is designed to minimize the energy consumption regard-
ing accelerations as control inputs. The cost function is defined for a reconfigura-
tion maneuver with a fixed time ¢; as

ty
J:/ (u? 4 ul)dt. (4.66)
0
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The control inputs are expressed with the Fourier series.

Uy = axO + Z (@gp cos (N€ft) + by sin (n€2ft)) (4.67)
Uy = % + Z (ayn cos (n€2st) + by, sin (n€2yt)) (4.68)
n=1

where Qy = 27/t and ajo, a;,, and bj, ( j = x,y ) are the Fourier coefficients. The
cost function is rewritten in terms of the Fourier coefficients using the Parseval’s
theorem as follows.

J = t2f< "”°+Z m+bfm)) —( y0+z a2, + b2, ) (4.69)

Thus the optimal control problem is equivalent to finding the Fourier coefficients
which minimize the cost function, and the Fourier coefficients are related to the
boundary condition and the Lagrange multipliers.

The analytical solution of Hill’s equation with control inputs are described as

x(tr) = @ulty) +xp(ty)
= dxg+ x,(ty), (4.70)

where x,(t7) means a particular solution. The particular solution term is further
rewritten as a matrix form:

2 —200][£L
0o o0 201

)= 30, 0 4 3|1, (4.71)
3 4 00|

= xp@f) = BpI7

where

L = / uy (7 (4.72)

O

1[4
I; = / uy (7) cos [ty — 7)]dT — 5/ u(7)sin [Q(ty — 7)]dT, (4.73)
0 0
1[4
L= [ s, - nldr+ g / wa(7) cos [Q(ty — 7T, (4.74)
0 0

L = 0 / (7 )TdT—g /0 7 (r)dr (4.75)
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The integral terms describe the constraints between a desired state and the homo-
geneous solution as

I
P = Bl - o)
I
3 0 0 1 Q(l(”(tj)f)—xf(z(tif))
_ 3/2 0 0 1 w'tf —xp iy
= Lo 12 0 o] Quy)-mey |- ¢
26 —2/3 13 6] | ilty) — inlty)

The constraints of the boundary states are transformed with the modal variables
and rewritten as follows.

I = “HE - &) (4.77)

The permutation of the components of I yields I} = [Igz Iy Ies  Ieo]' and
this constraint is further transformed to form a new constraint vector K as

,3

cos2 sin 0 0
— sm B cos % 0 0 y
K = 0 0 _% 1 Ig, (4.78)
0 0 0 1

where K = [ K3sin(3/2) Kysin(8/2) Ks K }T and § = Qty. The trans-
formed constraint K provides the simple relationship with the Lagrange multi-
pliers as shown in [30]. The optimal inputs for a fixed time reconfiguration are
described as follows.

2 A
ug(t) = §T1 + 5 sin (2t — ©), (4.79)
u,(t) = To— T + Acos (Qt — O), (4.80)

where Ty, T1, A, and © are constants described with the Lagrange multipliers.

Conditions on Attitude Constraints

The conditions to satisfy the attitude constraint are obtained from an analogy
between an elliptical equation and the optimal controller. The optimal controller
shown in Egs. (4.79) and (4.80) have similar forms to a general elliptical equation,
that is,

(v —c)? 1 (ybz_ Cy)2

ellipse

= 1. (4.81)

2
aellipse
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This analogy means that the time history of the optimal input is similarly de-
scribed as an ellipse when no divergence terms appear. Thus, the input trajectory
is predicted to be an ellipse when 77 = 0 and furthermore an origin-centered ellipse
when Ty = T7 = 0. Since the leader satellite is orbiting in a circular orbit, the de-
sired attitude angle represented in the leader-fixed frame monotonically decreases
at the rate of 2. The analogy is therefore useful to design the input trajectory
satisfying the attitude constraint.

The conditions to make an input trajectory an ellipse, i.e. T} = 0 is obtained
with the relation between an initial state and a target state. Since the boundary
states of &5 and &, are &30 = &3 (tr) and &40 = & (ty), the integral constraints are
simplified to Ky = K5 = 0 from Eqgs. (4.77) and (4.78). Also, the cost function
is further minimized when 6 = /2 [31]. These boundary states indicate that the
condition, 77 = 0, is satisfied when K, = 0. Thus, using Eqgs. (4.77) and (4.78),
we obtain the boundary constraint as follows.

g
(&u(ty) = &nlty)) tan o + (&a(ty) — Eanlty)) = 0. (4.82)
The modal variables are here rewritten with polar coordinates as
§&1f = afcosvy, (4.83)
fgf = ay sin Vs (4.84)

where the notation (tf) is dropped off for the sake of simplicity and instead the
subscript “f” denotes the state when ¢ = t;. Similarly, using the state transition
matrix of the modal variables in Eq. (4.54), we obtain

& = apcosycos [+ agsinygsin [, (4.85)
S, = —agcosygsin [+ ag sinyg cos 5. (4.86)

Substitution of Eqs. (4.83), (4.84), (4.85), and (4.86) into Eq. (4.82) yields

ar {tan (g) cosyy + sin’yf} — ag {sin (70 — B) + tan (g) cos (o — 5)} = 0.

(4.87)

Since the parameters ag and ay are nonzero and determined by the initial and the
final states, the following conditions are obtained:

tan g cos vy +sinyy = 0, (4.88)

sin (o — B) + tan § cos (y0 — B) = 0. (4.89)
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These equations hold when the following boundary states are satisfied for the
reconfiguration maneuver with a fixed time g(= Qty).

Yo g

— = = 4.
S tan 5 (4.90)
- (4.91)
2.%‘]0 2

The initial and the final states satisfying Eqgs. (4.90) and (4.91) therefore make
Ty = 0, and the optimal input trajectory becomes an ellipse.

4.2.4 Numerical Simulation

Numerical simulation demonstrates the effectiveness of a reconfiguration maneuver
under the attitude constraints. The satellite mass, the moment of inertia, and
the moment arm of thrusters are set as m = 200.0[kg], J. = 60.0(kgm?], and
(B1,B2) = (0.5, —0.5)[m]. The leader satellite is assumed to be orbiting in a circular
orbit at 6.313 x 10~4[rad/s]. The follower is controlled to the target orbit from the
initial semimajor axis 4000[m] to the target one 2000[m]. The parameters for the
attitude constraint are considered as ofiset = 0[deg] and Ypouna = 45[deg].

Figure 4.14 describes the reconfiguration trajectory of the follower satellite and
shows the follower is successfully controlled to the target orbit. Figures 4.15 and
4.16 show the time histories of the attitude angle with respect to the inertial frame
and the trajectory of inputs, respectively. The input trajectory describes an ellipse
and thus the attitude angle of the follower is kept less than the specified bound
during the maneuver.
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Figure 4.14: Reconfiguration trajectory of the follower.
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Figure 4.15: The time history of the attitude angle in inertial frame
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Figure 4.16: The input trajectory
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4.2.5 Summary of Section 4.2

This section has dealt with an optimal reconfiguration problem in a circular orbit
using a few number of thrusters under attitude constraints. Firstly, the attitude
tracking method to follow a reference orbit has been derived based on Lyapunov
stability. The tracking controller has reduced the reconfiguration problem under
the attitude constraint to the one under the thrust directional constraint. Thus,
using the analogy between the optimal controller with the Fourier series and an
elliptical equation, we show the conditions to keep the attitude angle less than a
specified bound. Numerical simulation demonstrates the verification of the pro-
posed method.
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Chapter 5

Conclusions

This dissertation has discussed a position and attitude control of a satellite using
a small number of thrusters. By the use of less number of inputs than state
variables enables control of a satellite even when some actuators have failed, and
consequently such controller contributes to extend mission lifetime of the satellite.
The difficulties of an underactuated system with thrusters stem from not only
less inputs than the number of state variables, but also input constraints due to
thruster mechanisms. That is, thruster forces must be positive and in practice,
the magnitude of the thrusts are constant. To tackle this challenging problems,
this dissertation has proposed control procedures based on analytical solutions for
a free-floating satellite in three-dimension as well as a formation flying control of
a satellite.

Chapter 2 has dealt with a three dimensional attitude control of an underac-
tuated satellite using thrusters. The minimum necessary number of thrusters has
been discussed based on the controllability of nonholonomic systems and unilat-
eral constraints. The results have shown that three thrusters allocated parallel
to a satellite body or four thrusters for nonparallel configuration are necessary to
control the satellite attitude. This necessary number of thrusters is less than the
one shown in previous works due to the consideration of nonholonomic control.
Also, the graphical method for the thruster configuration has provided a proper
thruster configuration to use less thruster forces. Based on the thruster configura-
tion, a nonholonomic controller has been derived which is applicable to satellites
regardless of the moment of inertia ratios. Numerical simulations verified the pro-
posed control law and compared the necessary thrusts for the attitude control with
different thruster configurations.

In Chapter 3, a position and attitude control procedure for a free-floating satel-
lite with four thrusters has been derived. In addition to the unilateral constraints
on control thrusts, the magnitudes of the thruster forces have been assumed to be
constant. To deal with these input constraints, analytical solutions using Fresnel
integrals have been obtained, and the analytical solutions have allowed us to de-
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termine proper input timings and durations. Furthermore, the proposed control
technique with Fresnel integrals have been extended to discuss a practical problem
for a lunar landing mission. It has been shown that the proposed method can
be applied to approximate the satellite motion with high accuracy even when the
mass change of a satellite is considered.

Chapter 4 has discussed a position and attitude control for formation flying of
a satellite. In this chapter, the attitude control of the satellite has been explicitly
considered as well as the position control with a few thrusters, and it has enabled
us to design a controller to track a leader satellite with a camera and to satisfy
attitude constraints during a maneuver. For a rendezvous-docking problem, we
have shown a fuel-efficient maneuver actively changing a satellite attitude. The
attitude change is useful not only to track a leader satellite with an optical sensor,
but also to generate a drift velocity. Since the drift motion steers the follower to the
leader without external forces, the control maneuver requires less thruster forces
than the one without the drift motion. Also, an optimal reconfiguration method
under attitude constraints has been proposed based on an input tracking method.
The tracking controller have indicated the attitude constraint in an inertial frame
is equivalently considered as input directional constraints in the leader-fixed frame,
and thus an optimal input trajectory has been designed to satisfy the constraints
during the maneuver.

The underactuated controllers in this paper have been obtained for a free-
floating spacecraft as well as a satellite in formation flying. Though the control
methods based on analytical solutions allow us to design desired trajectories and
control inputs in advance, the open-loop controllers may suffer from some dis-
turbances and uncertainties, e.g. solar radiation pressure, perturbations due to
the Earth’s oblateness, and modeling errors. In practice, missions and controllers
need to handle with those disturbances, and the proposed methods and studies
would provide basic solutions to incorporate the real circumstances. One of the
further developments thus are considered to make a feedback and robust controller
to accommodate the disturbances. Also the proposed method for formation flying
would be extended to one in an elliptical orbit under disturbances.
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