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Abstract

We consider the nuclear effective field theory including pions using a
power counting determined by a Wilsonian renormalization group analysis
in the two nucleon sector in the S waves. Our power counting is very close
to the one proposed by Kaplan, Savage, and Wise (KSW) and indepen-
dently by van Kolck, but emphasizes the separation of the pion exchange
into its long distance part (L-OPE) and its short distance part (S-OPE). In
order to implement the idea of the separation in practicable calculations, we
adopt a hybrid regularization. In the hybrid regularization, the diagrams
including only nucleons and/or S-OPEs are regularized by the power diver-
gence subtraction (PDS) which is a kind of dimensional regularization, and
the diagrams containing L-OPEs are regularized by introducing a Gaussian
damping factor(GDF) each of them. We calculate nucleon-nucleon scattering
phase shifts up to and including next-to-next-to-leading order (NNLO), fit
them to Nijmegen partial wave analysis data, and show that the calculation
of the phase shifts converge. We discuss naturalness of the values of the
coupling constants of the contact interactions that are obtained by fitting.
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Chapter 1

Introduction

The fundamental theory of all strong interactions is Quantum Chromody-
namics(QCD), which is an SU(3) gauge theory of quarks and gluons. Because
of chiral symmetry breaking and color confinement, QCD at low energies is
very difficult to solve. Properties of hadrons, observed bound states of quarks
and gluons, are calculated by large scale lattice simulations using fastest su-
per computers, but it is still beyond the reach to calculate the hadronic
scattering accurately.

Historically, the nuclear physics is based on accurately determined poten-
tial models which describes nucleon-nucleon scattering at low energies. There
are several precise potentials in the energy scales in which pions contribute
to nucleon-nucleon scatterings, for example, CD-Bonn [1,2], Argonne V18 [3],
and Nijmegen [4] etc..

Although there are precise analyses of hadronic phenomena with potential
models, it is impossible to improve the description in a systematic way in
the sense that the size of the errors cannot be evaluated theoretically. The
effective field theory (EFT) description of nucleon systems emerges as an
alternative which allows such an error estimate [5]. Once symmetries and
degrees of freedom are decided, an unique Lagrangian can be constructed.
It is however necessary to decide power counting to calculate the magnitude
of interactions, because there are an infinite number of interactions in a low
energy EFT.

The EFT description of low energy hadronic interactions incorporate the
chiral symmetry which is one of the most important features of QCD at low
energies. The interactions between nucleons and pions are determined so
as to respect the symmetry. The link to QCD through chiral symmetry is
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missing in the potential model approach, and makes the EFT description
special.

Application of EFT to physics involving more than one nucleon was first
considered by Weinberg in his seminal articles [6, 7], the EFT for nuclear
physics is called nuclear effective field theory(NEFT). NEFT has chiral sym-
metry. In a low-energy effective field theory, only a relevant degrees of free-
dom are considered. In the NEFT, we consider nucleons, and, for higher
energies, pions as explicit degrees of freedom

Weinberg proposed a power counting based on naive dimensional analysis
in constructing the effective potential, and use it in the Lippmann-Schwinger
equation [5–7]. The applications of NEFT with the Weinberg’s power count-
ing have achieved a great success, but there is a problem in renormalization.
Namely, higher order operators are needed to renormalize cutoff dependence
which arises from loop diagrams. It implies that there is inconsistency in the
Weinberg’s power counting scheme.

To solve the inconsistency problem in Weinberg power counting scheme,
Kaplan, Savage and Wise [8,9] (and independently van Kolck [10]) proposed
a new power counting scheme, called the KSW power counting. In the KSW
power counting, only a contact operator that doesn’t include derivatives, is a
relevant operator. Other contact operators and pion exchange are treated as
irrelevant. With the KSW power counting, there doesn’t exist inconsistency
problem.

It turned out, however, that the KSW power counting is not without
defeats. Fleming, Mehen, and Stewart [11] analyzed nucleon-nucleon scat-
tering including pions up to NNLO in the NEFT based on the KSW power
counting. They found that in the 1S0 channel convergent result is obtained,
but in the 3S1 channel, the KSW expansion does not converge at the NNLO.
It is because the tensor force in the 3S1 channel is too singular in the high
energy region.

A power counting is the counting the powers of Λ0 which is the scale of the
theory. To know the power of Λ0 we need to analyze renormalization group
equation and determined anomalous dimensions of operators in the vicin-
ity of a fixed point. To find anomalous dimensions in NEFT including pi-
ons, Harada, Kubo, and Yamamoto [12] analyzed Wilsonian renormalization
group equation(RGE). They showed that in the S waves of nucleon-nucleon
scattering, there is only one relevant operator and other operators are ir-
relevant. Note that, although in this aspect it is very similar to the KSW
power counting, the treatment of pion contribution is different from that of
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the KSW scheme. A part of the contributions from short-range exchange of
pions is included in the relevant operator.

Our approach is very similar to that by Beane, Kaplan, and Vuorinen
[13](BKV) in the respect that a separation scale is introduced. There are
however important differences: (i) We use the same regularization both for
the 1S0 and 3S1 channels, though BKV introduce the separation scale only
for the 3S1 channel. (ii) We use a GDF to regularize the pion potential,
while BKV use a Pauli-Villars type regulator, which we find insufficient to
render several diagrams convergent. (iii) We interpret the separation scale
as an analog of the floating cutoff in the Wilsonian RG analysis so that it
does not exceed the physical cutoff Λ0 ∼ 400 MeV above which the effective
field theory description does not hold, while BKV consider a rather large
value in the range 600 MeV ≤ λ ≤ 1000 MeV, although it is considered as a
low-momentum scale of O(Q). (iv) We interpret the ”renormalization scale”
µ appeared in the PDS as the separation scale too so that we relate µ to λ
through the relation µ = λ/

√
π. (v) In our formulation, the separation scale

λ is smaller than or equal to the physical cutoff Λ0, but otherwise arbitrary.
On the other hand, BKV tune the value of λ to optimize the perturbation
expansion.

In this thesis, we provide a systematic way of understanding of nucleon-
nucleon scattering including pions, by calculating the scattering phase shifts
employing a hybrid regularization which enables us to divide pion contri-
butions into two parts, S-OPE and L-OPE, in accordance with the power
counting which is determined by the Wilsonian RGE.

Finally, we obtain cutoff independent phase shifts of the S waves in
nucleon-nucleon scattering and naturalness of coupling constants is realized
as results of fitting. It is a very important thing because it implies that there
is inconsistency in power counting if naturalness is not kept.

This thesis is organized as follows. In Chapter 2, we give a brief intro-
duction to EFT and power counting. In Chapter 3, we explain the basic idea
of power counting for nucleon systems and renormalization and show the
examples of power countings, the Weinberg power counting and the KSW
power counting. In Chapter 4, we give a review of the NEFT and analysis of
nucleon-nucleon scattering in NEFT in 1S0 channel and

3S1 channel by Flem-
ing et al. [11, 14] and explain why the KSW power counting breaks down.
In Chapter 5, we explain how to determine power counting on the basis of
the Wilsonian RGE analysis in NEFT in cases without and with pions and
show that the power counting determined by RGE analysis is very similar
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to the KSW power counting but different in pion contribution. In Chapter
6, the results of our research are explained. First of all we explain how to
divide pion contributions into S-OPE and L-OPE parts. Next, we expand
the phase shifts order by order. Finally, we show our result of the 1S0 and
3S1 phase shift for nucleon-nucleon scattering. In Chapter 7, we summarize
the thesis. In Appendix A, we explain how to calculate some of integrals and
collect useful formulae. In Appendix B, we give a Wilsonian RG analysis for
the P waves.

6



Chapter 2

Effective field theory

In this chapter we explain some of the basic ideas in effective field theory.

2.1 General ideas

The method of EFT seems to be the most powerful alternative to the poten-
tial model to understand long distance physics, which is based on a familiar
idea that long distance physics is insensitive to the details of short distance
physics. We can construct a theory which is valid only up to certain physical
energy scale. This energy scale is called a physical cutoff of EFT. By giving
up the range of applicability, we are able to describe what happens at low
energy without knowing high energy physics.

2.2 Lagrangian

To construct an EFT Lagrangian, we must decide the relevant degrees of
freedom and the symmetry of the system at the energy scale of interest. It
does not matter how the heavier particles interact at higher energies than
we are interested, as long as the relevant degrees of freedom are identified.
Once we decide the relevant degrees of freedom and the symmetry, the EFT
Lagrangian contains all the operators, in general an infinite number of oper-
ators, allowed by the symmetry. We must not drop any operators without
any reason.
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2.3 Power counting and naturalness

Because an EFT Lagrangian has an infinite number of operators in general,
there are infinite kinds of divergences. But it is not a problem because there
are corresponding operators to absorb the divergences. In order for EFT to
be useful, we must order the operators by the magnitude of contributions.
The ordering is called power counting.

The basic idea of power counting is the order of magnitude estimate based
on dimensional analysis. The EFT expansion is effective when the hierarchy
relation of scales is given by p � Λ0 where p is the typcal energy scale of
the process which we consider and Λ0 is the cutoff scale of the EFT. In this
case, p/Λ0 is a good expansion parameter.

If we don’t know anything about the parameters of EFT, we usually
consider the power counting based on naturalness assumptions. If a coupling
constant G has mass dimension d then dimensionless coupling constant g
may be defined as g = G/Λd

0. Naturalness means that the dimensionless
coupling g should be of order one.

From the assumption of naturalness, we can obtain useful expansion. An
operator like Gdp

d may be expressed using the dimensionless coupling as
Gdp

d = gdp
d/Λd

0. Because we consider an expansion based on naturalness,
if we include all the operators of dimension d, then errors of the calculation
are expected to be smaller than O

(
Qd/Λd

0

)
, where Q is a typical magnitude

of the momentum p. We can improve the accuracy of the predictions to
the desired order by taking into account contributions of appropriate higher
dimensional operators.
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Chapter 3

Power counting and
Renormalization for NEFT

In this chapter we explain two types of power countings, which are called
Weinberg power counting and the KSW power counting. The power counting
scheme is a necessary ingredient for an EFT to know the order of diagrams.

3.1 Weinberg power counting

The power counting for nucleon-nucleon system was first proposed by Wein-
berg [6, 7].

First of all, we distinguish scattering amplitude into two types of dia-
grams, reducible diagrams and irreducible diagrams. Two-nucleon reducible
diagrams are defined to contain pure two nucleon states in the intermediate
states and the rest of the diagrams are defined as irreducible diagrams, be-
cause nucleon propagator S(q) = i/(q0 − q2/2M) scales like 1/Q if q0 scales
like m or external three-momentum, while S(q) ∼ M/Q2 if q0 scales like an
external kinetic energy. Similarly, in loops

∫
dq0 can scale like Q or Q2/M

depending on which type of pole is picked up, where Q is the typical momen-
tum of the process of interest and M is the mass of nucleon. Then one can
solve the Lippmann-Schwinger equation with the sum of irreducible diagrams
as effective potential.
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3.2 Inconsistency in Weinberg power count-

ing

Although the Weinberg power counting scheme has achieved great success as
in Ref. [15], there are problems. To see them, let us consider the contribution
shown in Fig.3.1. When it is calculated using dimensional regularization, it
gives,

−1

ε

g2Am
2
π

128π2f 2
C2

0 , (3.1)

where ε is a parameter defined by ε = (4−D)/2, with D being the dimension
of spacetime. This diagram contribute to LO amplitude but the counter term
that is required to absorb the divergence is m2

πD2. In the Weinberg power
counting scheme, such an operator is of higher order term.

To solve the problem, a new power counting scheme has proposed by
Kaplan, Savage, and Wise [8, 9], known as KSW power counting.

Figure 3.1: The diagram that causes the inconsistency problem in Weinberg
power counting that described in the text. Solid lines are nucleon propagator
and dotted line is pion propagator.

3.3 KSW power counting

To explain KSW power counting, let consider the calculation for the dia-
gram shown in Fig.3.2, which appear in the calculations of nucleon-nucleon
scattering, including only nucleon. One must evaluate the integral In:
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Figure 3.2: The LO amplitude in the pionless theory. Solid lines are nucleon
propagator. In this section, we consider pionless diagrams. A black bulb is
the sum of all bubble diagrams.

In =− i
(µ
2

)4−D
∫

dDq

(2π)D
q2n i

E − q0 − q2

2M
+ iε

i

E + q0 − q2

2M
+ iε

=−M(ME)n(−ME − iε)
D−3
2 Γ

(
3−D

2

) (µ
2

)4−D

(4π)
D−1
2

, (3.2)

where D is the spacetime dimension which is eventually set to 4, and E is the
total energy of the system. The parameter µ of mass dimension is introduced
to make the dimension of In n+2 irrespective to D. In does not have a pole
at D = 4, but it has a pole at D = 3, corresponding to the power(linear in
the case of n = 0) divergence of the original integral at D = 4. It is the
power divergence subtraction (PDS) regularization to subtract the poles at
D = 3 as well as poles at D = 4. The counter term is

δIn = −M(ME)nµ

4π(D − 3)
, (3.3)

and subtracted integral IPDS
n is defined as

IPDS
n = lim

D→4
(In + δIn) = −(ME)n

(
M

4π

)
(µ+ ip). (3.4)

To obtain scattering amplitude at LO, one needs to sum all bubble diagrams
in Fig.3.2:

iALO =
−iC0

1 + MC0

4π
(µ+ ip)

. (3.5)
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One can get renormalization group equations by requiring that the physical
scattering amplitude is independent of µ:

µ
∂

∂µ
iALO = 0. (3.6)

It is only possible when the coupling constant C0 depends on µ according to
the following renormalization group equation:

µ
∂

∂µ
C0 =

Mµ

4π
C2

0 . (3.7)

Solving this equation, we obtain

C0(µ) =
4π

M

1

−µ+ 1
a

. (3.8)

When a is natural size(∼ Λ), naive dimensional counting can be adopted to
know the magnitude of coupling constants. In this case, it is convenient to
take µ = 0.

In case of a ≤ 1 and µ → 0, the coupling constants are very large;
C2n ∼ (4πan+1)/(MΛn). This difficulty can be avoided to take µ nonzero
value in which case the coefficients may not be large; C2n ∼ 4π/(MΛnµn+1).
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Chapter 4

Nuclear Effective Field Theory

In this chapter we will show brief review about nuclear effective field the-
ory(NEFT) and phase shift analysis based on the EFT shown in the litera-
ture. NEFT is low energy effective theory of nucleons based on symmetries
of QCD and the freedoms of this theory is nucleons and pions.

4.1 Formalism

In this thesis, we will follow the notation in [14,16,17].
The Lagrangian for a nucleon system including pions is

L =
f 2
π

8
Tr
(
∂µΣ∂µΣ

†)+ f 2
πω

8
Tr
(
mqΣ +mqΣ

†)+N †
(
i ~D0 +

D2

2M

)
N

+
igA
2

N †σi

(
ξ∂iξ

† − ξ†∂iξ
)
− C

(s)
0 O(s)

0 +
C

(s)
2

8
O(s)

2 −D
(s)
2 ωTr(mξ)O(s)

0

− C
(s)
4

64
O(s)

4 +
E

(s)
4

8
ωTr(mξ)O(s)

2 − D
(s)
4

2
ω2
{
Tr2(mξ) + 2Tr

[
(mξ)2

]}
O(s)

0

− C
(SD)
2 O(SD)

2 + · · · . (4.1)

Here gA = 1.25 is the nucleon axial-vector coupling, and fπ = 131 MeV is
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the pion-decay constant.

Σ =ξ2 = exp

(
2i

Π

fπ

)
,

where, Π =

(
π0
√
2

π+

π− − π0
√
2

)
, (4.2)

in which π0,± are pion fields. The chiral covariant derivative is Dµ = ∂µ +
1
2

(
ξ∂iξ

† + ξ†∂iξ
)
andmξ = 1

2

(
ξmqξ

† + ξ†mqξ
)
andmq = diag (mu,md) is the

quark mass matrix, ωTr(mξ) = m2
π = (137MeV)2. The theory has a global

(chiral) symmetry, SU(2)L × SU(2)R which is spontaneously broken to the
vector subgroup SU(2)V . Σ(x) → LΣ(x)R†. The nucleon field transforms as

N(x) → U(x)N(x), (4.3)

where U(x) is defined as

ξ(x) → Lξ(x)U(x)† = U(x)ξ(x)R†. (4.4)

Two nucleon operators for 1S0 and 3S1 waves which appear in eq.(4.1)
are defined as,

O(s)
0 =

(
NTP

(s)
i N

)† (
NTP

(s)
i N

)
,

O(s)
2 =

(
NTP

(s)
i N

)† (
NTP

(s)
i ∇2N

)
+ h.c,

O(s)
4 =

(
NTP

(s)
i N

)† (
NTP

(s)
i ∇4N

)
+ h.c+2

(
NTP

(s)
i ∇2N

)† (
NTP

(s)
i ∇2N

)
,

O(s)
4 =

(
NTP

(3S1)
i N

)† (
NTP

(3D1)
i N

)
+ h.c. (4.5)

where P
(s)
i are the projection matrices with s specifying partial wave;

P
(1S0)
i =

(iσ2)(iτ2τi)

2
√
2

,

P
(1S0)
i =

(iσ2σi)(iτ2)

2
√
2

. (4.6)
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4.2 Amplitudes obtained by Fleming et al.

First of all, we show the result for the 1S0 channel obtained by Fleming
et.al [11]. In this paper, LO, NLO, and NNLO amplitudes are written A−1,
A0, and A1 respectively:

A−1 = −4π

M

1

γ + ip
,

A0 = −A2
−1(ζ1 p

2 + ζ2m
2
π) (4.7)

+
g2A
2f 2

A2
−1

(Mmπ

4π

)2[(γ2 − p2)

4p2
ln
(
1 +

4p2

m2
π

)
− γ

p
tan−1

(
2p

mπ

)]
,

A1 =
A2

0

A−1

−A2
−1

(
ζ3 m

2
π + ζ4 p

2 + ζ5
p4

m2
π

)
+A0

Mg2A
8πf 2

m2
π

p

[
γ

2p
ln
(
1 +

4p2

m2
π

)
−tan−1

( 2p

mπ

)]
+

MA2
−1

4π

(Mg2A
8πf 2

)2m4
π

4p3

{
2(γ2 − p2) ImLi2

( −mπ

mπ − 2ip

)
−4γ p ReLi2

( −mπ

mπ − 2ip

)
− γ p π2

3
− (γ2 + p2)

[
ImLi2

( mπ + 2ip

−mπ + 2ip

)
+

γ

4p
ln2
(
1 +

4p2

m2
π

)
− tan−1

( 2p

mπ

)
ln
(
1 +

4p2

m2
π

)]}
.
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where,

γ =
4π

MC0

+ µ , ζ1 =

[
C2

(C0)2

]
,

ζ2 =

[
D2

(C0)2
− g2A

4f 2

(M
4π

)2
ln
( µ2

m2
π

)]
+

1

m2
π

[
C

(0)
0

(C0)2
+

g2A
2f 2

(M
4π

)2
(γ2−µ2)

]
,

ζ3 = − g2A
2f2

Mmπ

4π

[
C2

(C0)2

]
+

1

m2
π

[
C

(1)
0

(C0)2
− (C

(0)
0 )2

(C0)3
−
(

g2A
2f2

)2(
M

4π

)3

(µ3 − γ3)

]

− 2γ

m2
π

Mg2A
8πf 2

[
C

(0)
0

(C0)2
+

g2A
2f2

(
M

4π

)2

(−µ2 + γ2)

]
− 2

Mγ

4π

(Mg2A
8πf 2

)2(
ln 2− 3

2

)
+m2

π

{
D4

(C0)2
− D2

2

(C0)3

}
+

[
D

(−1)
2

(C0)2
− 2D2C

(0)
0

(C0)3
− g2A

f2

Mγ

4π

D2

(C0)2

]
+ ζrad3 ,

ζ4 =

[
C

(−1)
2

(C0)2
− 2C2 C

(0)
0

(C0)3
− g2A

f 2

Mγ

4π

C2

(C0)2

]
+m2

π

{
E4

(C0)2
− 2C2D2

(C0)3

}
, (4.8)

ζ5 = m2
π

{
C4

(C0)2
− (C2)

2

(C0)3

}
.

The parameters ζ1 ∼ ζ5 are dimensionless constants. Because of renormal-
ization equation, quantities in square and curly brackets are separately µ
independent.

To fit the phase shift to partial wave analysis data, they used the so-called
good fit conditions. For the leading order operator C0, it is

−1

a
+

r0
2
(p∗)2 − ip∗ = 0 . (4.9)

This decide determines γ = −7.88MeV. For NLO, the condition is

ζ2 =
γ2

m2
π

ζ1 −
M

4π

g2AM

8πf 2
log

(
1 +

2γ

mπ

)
, (4.10)

At NNLO, ζ5 = 0 and the ranges p = 7 ∼ 80 MeV and p = 7 ∼ 200MeV
were used for the fitting at NLO and NNLO respectively, with low momentum
weighted more heavily.

NLO : ζ1 = 0.216; ζ2 = 0.0318;

NNLO : ζ1 = 0.0777; ζ2 = 0.0313; ζ3 = 0.1831; ζ4 = 0.245.

(4.11)
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Note that the value of ζ1 changes significantly from NLO to NNLO.

p(MeV)
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δ(
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g)

0
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δ(
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g)

-50

0

50

0 100 200 300 400

Figure 4.1: Fit to the 1S0 phase shift δ from Ref. [11]. The solid line is the
Nijmegen fit [18] to the data. In a), the long dashed, short dashed, and
dotted lines are the LO, NLO, and NNLO results respectively. In b) we show
two other NNLO fits with a different choice of parameters.

The solid line is the Nijmegen phase shift analysis in each graph. The
coupling constants given above are in Fig.4.1(a). At the LO fit, the error
is about 48%, at the NLO, the error is 17%, and at the NNLO, the error is
less than 1%. The KSW expansion gives improvement at this channel. In
Fig4.1(b), the phase shift is fitted in constraints that the value of ζ1 is close
to its NLO value and ζ4 ≤ ζ1.

Let us move on the 3S1 channel. In this channel, there is a mixing with
the 3D1 channel.

The phase shift is expanded perturbatively.

δ̄0 = δ̄
(0)
0 + δ̄

(1)
0 + δ̄

(2)
0 + · · · . (4.12)

The phase shift at each order is given by

δ̄
(0)
0 =

1

2i
ln

(
1 +

ipM

2π
ASS

−1

)
, δ̄

(1)
0 =

pM

4π

ASS
0

1 + ipM
2π

ASS
−1

,

δ̄
(2)
0 =

pM

4π

ASS
1

1 + ipM
2π

ASS
−1

− i

(
pM

4π

)2
( ASS

0

1 + ipM
2π

ASS
−1

)2

+
(ASD

0 )2

1 + ipM
2π

ASS
−1

 .

(4.13)
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where the S-D mixing amplitude becomes ,

ASD
0 =

√
2
Mg2A
8πf 2

ASS
−1

{
− 3m3

π

4p2
+
(m2

π

2p
+

3m4
π

8p3

)
tan−1

( 2p

mπ

)
+

3γm2
π

4p2
− γ

2

−
(γm2

π

4p2
+

3γm4
π

16p4

)
ln
(
1 +

4p2

m2
π

)}
. (4.14)

18



ASS
−1 =− 4π

M

1

γ + ip
,

ASS
0 =−

[
ASS

−1

]2
(ζ1p

2 + ζ2m
2
π)

+
[
ASS

−1

]2 g2A
2f 2

(Mmπ

4π

)2[(γ2 − p2)

4p2
log
(
1 +

4p2

m2
π

)
− γ

p
tan−1

(
2p

mπ

)]
,

ASS
1 =

[ASS
0 ]2

ASS
−1

+
ipM

4π

[
ASD

0

]2
+ASS

0

Mg2A
8πf 2

m2
π

p

[
γ

2p
log
(
1 +

4p2

m2
π

)
− tan−1

( 2p

mπ

)]
−
[
ASS

−1

]2(
ζ3m

2
π + ζ4p

2 + ζ5
p4

m2
π

)
+
[
ASS

−1

]2M
4π

(Mg2A
8πf 2

)2[−6γ2m3
π + 9γm4

π − 3m5
π

4p2

+ log 2
(9γm6

π

4p4
+

3γm4
π

2p2
− 9m7

π

4p4
− 3m5

π

p2

)
+
(
6p2 + 6m2

π −
3m4

π

4p2
− 9m6

π

8p4

)[p2 − γ2

p
tan−1

( p

mπ

)
− γ log

(
1 +

p2

m2
π

)]
−
(3m5

π

p3
+

9m7
π

4p5

)[
γ tan−1

( p

mπ

)
− (γ2 − p2)

4p
log
(
1 +

p2

m2
π

)]
+
(9m7

π

8p5
+

3m5
π

2p3
− 9γm6

π

8p5
− 3γm4

π

4p3
+

γm2
π

p

)
×
[
γ tan−1

( 2p

mπ

)
+

p

2
log
(
1 +

4p2

m2
π

)]
+
(9m8

π

32p7
+

3m6
π

4p5
+

3m4
π

4p3

){
2(γ2 − p2)ImLi2

( −mπ

mπ − 2ip

)
− 4γpReLi2

( −mπ

mπ−2ip

)
− γpπ2

3
− (γ2 + p2)

[
ImLI2

( mπ+2ip

−mπ+2ip

)
+

γ

4p
log2

(
1 +

4p2

m2
π

)
− tan−1

( 2p

mπ

)
log
(
1 +

4p2

m2
π

)]}

+ γ
(9m8

π

32p6
+
3m6

π

4p4
+

m4
π

2p2

)[
tan−1

( 2p

mπ

)
− γ

2p
log
(
1 +

4p2

m2
π

)]2 ]
.

(4.15)
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We have introduced the notations:

γ =
4π

MC0

+ µ, ζ1 =

[
C2

(C0)2

]
,

ζ2 =

[
D2

(C0)2
− g2A

4f 2

(M
4π

)2
log
( µ2

m2
π

)]
+

1

m2
π

[
C

(0)
0

(C0)2
+

g2A
2f2

(M
4π

)2
(γ2 − µ2)

]
,

ζ3 =− g2A
2f2

Mmπ

4π

[
C2

(C0)2

]
− 1

m2
π

M

4π

(Mg2A
8πf 2

)2(
γ3 − 6mπγ

2 − 7

2
m2

πγ + 4m3
π

)
+

1

m2
π

[
C

(1)
0

(C0)2
− (C

(0)
0 )2

(C0)3
− g2A

f2

Mγ

4π

C
(0)
0

(C0)2
− M

4π

(Mg2A
8πf 2

)2(
4µγ2 − 6γµ2 +

4

3
µ3
)]

+m2
π

{
D4

(C0)2
− (D2)

2

(C0)3

}
+

[
D

(−1)
2

(C0)2
− 2D2C

(0)
0

(C0)3
− g2A

f 2

Mγ

4π

D2

(C0)2
− 5

Mγ

4π

(Mg2A
8πf 2

)2
ln
( µ2

m2
π

)]
+ ζrad3 ,

ζ4 =

[
C

(−1)
2

(C0)2
− 2C2C

(0)
0

(C0)3
− 6

Mγ

4π

(Mg2A
8πf 2

)2
ln
( µ2

m2
π

)]
+m2

π

{
E4

(C0)2
− 2C2D2

(C0)3

}
,

− g2A
f2

Mγ

4π

[
C2

(C0)2

]
− M

4π

(Mg2A
8πf 2

)2(
− 3γ + 6mπ),

ζ5 =m2
π

{
C4

(C0)2
− (C2)

2

(C0)3

}
. (4.16)

By fitting to the data, they obtained the following values for these pa-
rameters,

NLO : ζ1 = 0.327; ζ2 = −0.0936; (4.17)

NNLO : ζ1 = 0.432; ζ2 = −0.0818; ζ3 = 0.165; ζ4 = 0.399.

At LO, the phase shift has no free parameters. At NLO there is one free
parameter ξ1, and the fit to the data is very good. However, at NNLO the fit
of the phase shift to the data becomes worse at the momentum region more
than p ' 50 MeV.

In the 3S1 channel, the term expressed below appear in the scattering

20



p(MeV)

3S1

δ 0(
de

g)
−

0

50

100

150

0 100 200 300

Figure 4.2: The 3S1 phase shift for NN scattering from Ref [11]. The solid
line is the Nijmegen multi-energy fit [18], the long dashed line is the LO
effective field theory result, the short dashed line is the NLO result, and the
dotted line is the NNLO result. The dash-dotted line shows the result of
including the parameter ζ5 which is higher order in the power counting.
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amplitude,

ASS
1 ' 6 [ASS

−1]
2 M

4π

(
Mg2A
8πf 2

)2

p3 tan−1

(
p

mπ

)
. (4.18)

For the momentum region p � mπ, this term grows linearly with p. This
is the source of the failure of the KSW power counting at NNLO in the 3S1

channel. It is considered that such a term comes from the singularity of the
tensor force near the origin, r = 0 in the coordinate space.
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Chapter 5

Wilsonian renormalization
group analysis

In this chapter we review Wilsonian renormalization group analysis in the
NEFT.

5.1 Scaling dimensions

Let us consider the interaction Lagrangian L = ΣGiOi where Gi is coupling
constant and Oi is corresponding operator. It is useful to consider the RG
equations written in terms of dimensionless coupling constants defined as,

Gi(Λ) ≡
gi(Λ)

Λdi−D
, (5.1)

where Λ is the floating cutoff, D is the dimension of spacetime, and di is the
canonical dimension of the operator Oi. The RG equation of coupling gi may
be written as

dgi
dt

= βi(g), t ≡ log

(
Λ0

Λ

)
. (5.2)

We are interested in the behavior of the coupling constants near the fixed
point, so we substitute gi = g∗i + δgi to the RG equation, where g∗i is value of
the coupling constant on the fixed point, β(g∗) = 0, and δgi is small deviation
from fixed point,

d

dt
δgi =

∂βi

∂gj

∣∣∣∣∣
∗

g

≡ Aij(g
∗)δgj. (5.3)
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By diagonalizing Aij, we get

dui

dt
= νiui, (5.4)

where ν ′
is are the eigenvalues and u′

is are the corresponding eigenvectors.
This RG equation may be integrated as,

ui(Λ) = ui(Λ0)

(
Λ

Λ0

)−νi

. (5.5)

The coupling are called irrelevant, marginal, and relevant when νi < 0, νi = 0,
and νi > 0 respectively.

Suppose that coupling constant gi(Λ) is written as

gi(Λ) ∼ g∗i + Σkcik

(
Λ

Λ0

)−νk

, (5.6)

so dimensionful coupling constant becomes

Gi(Λ) ∼
g∗i

Λdi−D
+ Σkcik

Λνk
0

Λdi−D+νk
. (5.7)

Counting powers of Λ0 is the correct power counting.

5.2 Renormalization group equations

The Wilsonian RGEs for NEFT including pions are obtained in [19]
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dx

dt
= −x−

[
x2 + 2xy + y2 + 2xz + 2yz + z2

]
−2(x+ y + z)γ − γ2, (5.8)

dy

dt
= −3y −

[
1

2
x2 + 2xy +

3

2
y2 + yz − 1

2
z2

]
−(x+ 2y)γ − 1

2
γ2, (5.9)

dz

dt
= −3z +

[
1

2
x2 + xy +

1

2
y2 − xz − yz − 3

2
z2

]
+(x+ y − z)γ +

1

2
γ2, (5.10)

du

dt
= −3u− 2(x+ y + z)(u− γ)− 2uγ + 2γ2, (5.11)

and for γ,
dγ

dt
= −γ. (5.12)

Here, we have introduced of dimensionless coupling constants,

x ≡ MΛ

2π2
C

(S)
0 , y ≡ MΛ3

2π2
4C

(S)
2 , z ≡ Λ3

2π2
B(S), u ≡ MΛ3

2π2
D

(S)
2 , u′ ≡ MΛ3

2π2
D

(T )
2 .

(5.13)
The nontrivial fixed point of the above RGEs relevant to the real two-nucleon
system is found to be,

(x?, y?, z?, u?, γ?) =

(
−1,−1

2
,
1

2
, 0, 0

)
, (5.14)

which is identified with that found in the pionless NEFT given in Ref. [20].
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The eigenvalues and corresponding eigenvectors are,

ν1 = +1 : u1 =


1
1
−1
0
0

 , ν2 = −1 : u2 =


0
−1
1
0
0

 ,

ν3 = −2 : u3 =


2
−1
−2
0
0

 , ν4 = −1 : u4 =


0
0
0
1
0

 .

(5.15)

This is only one operator with positive eigenvalue which corresponds to a rel-
evant operator explained in the previous section. All the other operators are
irrelevant. This aspect is very similar to KSW power counting in which only
the contact interaction without derivatives is a relevant operator, and other
operators are irrelevant, but pion contributions are different. In the KSW
power counting, pion contributions are perturbative but the Wilsonian RGEs
analysis implies that short-distance contributions of pions are included into
contact interactions. Furthermore one of the contact interaction is relevant,
so a part of short-distance pion contributions have to be treated as relevant.
The long-distance contributions of pions are irrelevant so one can treat them
as perturbations.
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Chapter 6

Computation of phase shifts of
nucleon-nucleon scattering

In this chapter, we show the computation of nucleon-nucleon scattering phase
shifts in NEFT based on the power counting found in [19].

6.1 Hybrid regularization

From the Wilsonian RG analysis described in the previous chapter, we think
that it is necessary to make a decomposition of pion exchange contributions
into its short-distance part and long-distance part. We first notice that the
pion exchange can be written as

k2

k2 +m2
π

→ 1− m2
π

k2 +m2
π

. (6.1)

The first term may be viewed as the short-distance part, while the second
term, which has a milder short-distance behavior, may be viewed as the long-
distance part. It however still has a large contribution for short-distance, we
therefore introduce a Gaussian damping factor, e−k2/λ2

, which suppresses the
short-distance contributions,

− m2
π

k2 +m2
π

→ − m2
π

k2 +m2
π

e−
k2

λ2 , (6.2)

where λ is the cutoff scale, which is an analog of the floating cutoff in the
Wilsonian RG analysis. All diagrams including pions are calculated with this
damping factor.
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Of course, another dumping factor may be used. For example a Lorentzian
damping factor such as,

m2
π

k2 +m2
π

→ m2
π

k2 +m2
π

(
λ2

k2 + λ2

)n

, (6.3)

may be used, as Beane, Kaplan, and Vourinen [13] did, where n is a positive
integer. It would be good if the n = 1 case regularizes all the diagrams but
it turns out that the convergence of multi-loop diagrams requires n ≥ 2.
On the other hand the same GDF can be used for all the diagrams, so we
adopted the GDF regularization.

A very nontrivial point with the GDF regularization of the pion exchange
is that the pion exchange coupling constant should be defined independent
of the cutoff, so that an extra factor e−m2

π/λ
2
is necessary. Including the

coupling constant, the pion exchange may be written as

−i
g2A
2f2

e−
m2

π
λ2 . (6.4)

It turns out that this definition of the coupling constant has several favor-
able features: (i) The coupling constant defined by the residue of the Yukawa
pole is independent of the separation scale λ. (ii) The results of loop integrals
including pion propagators with GDFs contain the factor em

2
π/λ

2
, which pro-

duces (disastrous) non-local contributions to higher orders when expanded
in powers of m2

π/λ
2. This extra factor cancels all such terms. (iii) One might

wonder why this factor is necessary even for the S-OPE (the first term).
It actually cancels the NNLO contribution of the tree L-OPE. Note that
e−m2

π/λ
2
[1− (m2

π/ (k
2 +m2

π))] converges faster than [1− (m2
π/ (k

2 +m2
π))] to

k2/ (k2 +m2
π) as (k

2,m2
π) /λ

2 → 0.

6.2 Perturbative expansion of phase shifts

The phase shift δ is related to the scattering amplitude as,

S − 1 = e2iδ − 1 = i

(
pM

2π

)
A. (6.5)

At low energies, it is convenient to consider p cot δ, as the effective range
expansion teaches us.
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In 1S0 channel, p cot δ may be written as,

p cot δ = ip+
4π

MA
. (6.6)

We divide scattering amplitude each of order, ALO,ANLO,ANNLO, the leading
order(LO), the next to the leading order(NLO), and the next to next to
the leading order(NNLO) amplitudes respectively. The magnitudes of these
amplitudes are expected to satisfy ALO > ANLO > ANNLO, so we can expand
phase shift perturbatively,

δLO =
1

2i
log

(
1 +

ipM

2π
ALO

)
,

δNLO =
pM

4π

ANLO

1 + ipM
2π

ALO

,

δNNLO =
pM

4π

ANNLO

1 + ipM
2π

ALO

− i

(
pM

4π

)2
(

ANLO

1 + ipM
2π

ALO

)2

, (6.7)

where δLO, δNLO, δNNLO, are the LO, the NLO, and the NNLO phase shifts,
respectively.

In the case of 3S1 channel, there is a mixing with the 3D1 channel, so that
the S matrix becomes a 2× 2 matrix,

S = 1+
iMp

2π

(
ASS ASD

ASD ADD

)
=

(
e2iδ̄(0) cos 2ε̄1 ieiδ̄(0)+iδ̄(2) sin 2ε̄1

ieiδ̄(0)+iδ̄(2) sin 2ε̄1 e2iδ̄(2) cos 2ε̄1

)
.

(6.8)

Expanding the phase shift perturbatively, we obtain,

δLO =
1

2i
log

(
1 +

ipM

2π
ALO

)
,

δNLO =
pM

4π

ANLO

1 + ipM
2π

ALO

,

δNNLO =
pM

4π

A(SS)
NNLO

1 + ipM
2π

A(SS)
LO

−i

(
pM

4π

)2

( A(SS)
NLO

1 + ipM
2π

A(SS)
LO

)2

+

(
A(SD)

NLO

)2
1 + ipM

2π
A(SS)

LO

 .

(6.9)
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6.3 Spin singlet

In the literature, the expansion with the KSW power counting converges very
well up to NNLO [11]. We can check that the hybrid regularization works
effectively by analyzing the 1S0 channel.

The diagrams are drawn in Fig.6.1.

(a) (b) (c)

here,

NLO

LO

Figure 6.1: The LO and the NLO diagrams are shown above. First diagram
is the LO diagram, which include only relevant operator with the coupling
constant C0. In the NLO, diagram (a) includes pion contributions. Two
additional contact interactions appear in diagram (b) and (c).

6.3.1 LO analysis

The LO amplitude is given by

ALO = − C0

1 + C0M
4π

(µ+ ip)
. (6.10)

It is same as that in Ref. [11]
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6.3.2 NLO amplitude

The NLO amplitude is given by,

ANLO =− A2
LO

C2
0

C2p
2 − A2

LO

C2
0

D2m
2
π +

g2

2f 2

m2
π

4p2
log

(
1 +

4p2

m2
π

)
+m2

π

g2

f 2
0

MALO

4π
Z1 +m2

π

g2

2f2
0

(
MALO

4π

)2

Z2,

(6.11)

where Zis are written below,

Z1 =
i

2p
log

(
1− 2ip

mπ

)
− 2√

πλ
− ip

λ2
+O(λ−2),

Z2 =−
[
log

(
mπ − 2ip

λ

)
+

γE
2

]
− 4ip√

πλ
+

m2
π + 4p2

2λ2
+O(λ−2),

Z3 =
λ√
π
−mπ +

m2
π√
πλ

+O(λ−2). (6.12)

The dependence on λ first appears at this order in the second term of Z1.

6.3.3 NLO renormalization equations

We require that amplitudes are independent of the cutoff scale at each order:

µ
∂

∂µ
ALO = 0, λ

∂

∂λ
ALO = 0, (6.13)

µ
∂

∂µ
(ALO +ANLO) = 0, λ

∂

∂λ
(ALO +ANLO) = 0. (6.14)

From eq.(6.13), the RGEs for C0 with respect to λ and µ are obtained as,

µ
∂

∂µ
C0 =

Mµ

4π
C2

0 , λ
∂

∂λ
C0 = 0. (6.15)

At the NLO, the RGE for the coupling constant C0 is not different from
that of the LO. The RGEs for the other coupling constants, C2 and D2, with
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respect to µ are,

µ
∂

∂µ
C2 =

Mµ

2π
C0C2, (6.16)

µ
∂

∂µ
D2 =

Mµ

2π
C0D2. (6.17)

We obtain the derivatives of Zis with respect to λ as follows:

λ
∂

∂λ
Z1 =

2√
πλ

+
2ip

λ2
,

λ
∂

∂λ
Z2 =1 +

4ip√
πλ

− m2
π + 4p2

λ2
,

λ
∂

∂λ
Z3 =

λ√
π
− m2

π√
πλ

, (6.18)

so that the RGEs for C2 and D2 with respect to λ are,

λ
∂

∂λ
C2 =0, (6.19)

λ
∂

∂λ
D2 =

g2

2f 2

(
M

4π

)2

C2
0 −

Mg2

8πf 2
C0

(
1 +

MC0

4π
µ

)
4√
πλ

. (6.20)

6.3.4 NNLO

Diagrams that contribute to the NNLO amplitude are shown in Fig.6.2.
In Figs.(a)∼(c), the diagrams containing a two-pion exchange are shown.
We call the contribution of each diagram B1, B2, and B3 respectively. In
Figs.6.2(d)∼(f) the diagrams containing two one-pion exchanges are shown.
We call the sum of the contributions of these diagrams B4. In Fig.6.2(g), the
diagrams containing a D2 and containing a one-pion exchange are shown.
We call the sum of the contributions of these diagrams B5. In Fig.6.2(h), the
diagrams containing C2 vertex and a one-pion exchange are shown. We call
the sum of the contributions of these diagrams B6. The diagrams shown in
Fig.6.2(i)∼(n) contain only nucleons. We call the sum of the contributions of
these diagrams B7. Including Fig.6.2(o) is equivalent to renormalize g2A/f

2

as explained above. The NNLO amplitude is given as the sum of all Bi’s,

ANNLO =
8∑

i=1

Bi. (6.21)
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (k)(j)

(l) (m) (n)

(o) here,

Figure 6.2: The NNLO diagrams are shown. Solid lines represent nucle-
ons, and dashed lines pion exchanges.The coupling constants of the contact
interaction is shown at each vertex.
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We obtained the analytic expressions for Bi’s to O (m/λ) or O (p/λ)

B1 =
M

4π

(
g2

2f 2

)2
m4

π

4p3

×
[
i

4
log2

(
1 +

4p2

m2
π

)
+ ImLi2

(
imπp− 2p2

m2
π

)
+ ImLi2

(
2p2 − imπp

m2
π + 4p2

)]
,

B2 =− 2ALO

(
Mg2

8πf 2

)2
m4

π

4p2

[
3

2
log2

(
1− 2ip

mπ

)
+ 2Li2

(
−mπ − 2ip

mπ

)
+Li2

(
−mπ + 2ip

mπ − 2ip

)
+

π2

4
+

4ip√
πλ

log

(
1− 2ip

mπ

)]
,

B3 =iALO
2M

4π

(
Mg2

8πf 2

)2
m4

π

p

{
Li2

(
− mπ

mπ − 2ip

)
+

π2

12

+
4ip√
πλ

[
−γ

2
− log

(mπ

λ

)
− log

(
1− 2ip

mπ

)
+
(√

2− sinh−1(1)
)]}

,

B4 =m4
πALO

(
Mg2

8πf 2

)2(
Z1 +

MALO

4π
Z2

)2

,

B5 =− 2m4
πALO

2Mg2

8πf 2

D2

C2
0

(
Z1 +

MALO

4π
Z2

)
,

B6 =− 2p2m2
πALO

2Mg2

8πf 2

C2

C2
0

(
Z1 +

MALO

4π
Z2

)
−m2

πALO
2Mg2

8πf 2

C2

C2
0

Z3,

B7 =−ALO
2D4

C2
0

m4
π −ALO

2E4

C2
0

p2m2
π −ALO

2C4

C2
0

p4,

−ALO
3M

4π
(ip+ µ)

(D2m
2
π + C2p

2)
2

C3
0

B8 =
ALO

C2
0

2m2
π

λ2

g2

2f 2
. (6.22)

Note that the scattering amplitude for the 3S1 channel is the same as the
amplitude given above except for B1, B2, B3 and the contribution from the
S-D mixing amplitudes.
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6.3.5 NNLO renormalization equations

We require that scattering amplitude is independent of the cutoff scale;

µ
∂

∂µ
(ALO +ANLO +ANNLO) = 0, λ

∂

∂λ
(ALO +ANLO +ANNLO) = 0

(6.23)

The RGEs for C0, C2 and D2 with respect to µ are the same as those
obtained at NLO. The RGEs for C4, E4 and D4 with respect to µ are given
by

µ
∂

∂µ
C4 =

Mµ

2π
C0C4 +

Mµ

4π
C2

2 ,

µ
∂

∂µ
E4 =

Mµ

2π
C0E4 +

Mµ

2π
C2D2,

µ
∂

∂µ
D4 =

Mµ

2π
C0D4 +

Mµ

4π
D2

2. (6.24)

The RGEs for C0,C2 with respect to λ are also the same as those obtained
at NLO, while the RGEs for D2,C4, E4 and D4 with respect to λ are

λ
∂

∂λ
D2 =

g2

2f2

(
M

4π

)2

C2
0 −

Mg2

8πf 2
C0

(
1 +

MC0

4π
µ

)(
4√
πλ

− 4µ

λ2

)
− g2

f2

(
M

4π

)2
µ2

λ2
C2

0 −
Mg2

8πf 2

λ√
π
C2,

λ
∂

∂λ
C4 =0,

λ
∂

∂λ
E4 =

g2

f 2

(
M

4π

)2

C0C2 −
Mg2

8πf 2

4C2√
πλ

(
1 + 2

MC0

4π
µ

)
− g2

2f 2

(
M

4π

)2
C2

0

λ2
,

λ
∂

∂λ
D4 =

g2

f 2

(
M

4π

)2

C0D2 +
M

4π

(
Mg2

8πf 2

)2
4C2

0√
πλ

(√
2− sinh−1(1)

)
− Mg2

8πf 2

4√
πλ

(
1 + 2

MC0

4π
µ

)
D2 −

g2

2f 2

(
M

4π

)2
C2

0

λ2
+

Mg2

8πf 2

C2√
πλ

.

(6.25)

Note that, the second term of RGE of D2 vanishes in the case of µ =
λ/

√
π.
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6.3.6 Phase shift fitting for 1S0
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Figure 6.3: Our result of the 1S0 phase shift for NN scattering. Solid line is
the Nijmegen data for np scattering.The dashed, dotted, and dashed-dotted
lines are the LO, the NLO, and the NNLO results respectively.

The results for 1S0 phase shifts are shown in Fig.6.3. The fitted values of
the dimensionless coupling constants are given below:

LO : Ĉ0 = −0.963; (6.26)

NLO : Ĉ0 = −0.957; Ĉ2 = 0.744; D̂2 = 0.639; (6.27)

NNLO : Ĉ0 = −0.957; Ĉ2 = 0.454; D̂2 = 0.676; (6.28)

Ĉ4 = −0.273; Ê4 = 0.166; D̂4 = 0.695..

Here dimensionless couplings are defined as,

Ĉ0 =
Mµ

4π
C0, Ĉ2 =

Mµ3

4π
C2, D̂2 =

Mµ3

4π
D2,

Ĉ4 =
Mµ5

4π
C4, Ê4 =

Mµ5

4π
E4, D̂4 =

Mµ5

4π
D4. (6.29)

Note that the sizes of all dimensionless couplings are natural. Note also
that the values do not change very much as higher order contributions are
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included. These facts are important because it implies that the power count-
ing is consistent. Because the power counting tells us that NLO couplings
are smaller than the LO coupling, it is clear that there are inconsistency if
NLO couplings are bigger than LO coupling. Furthermore it is needed for
a systematic calculation that the variation of coupling constants that arise
when we consider the higher order has to be small.
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6.4 Spin triplet

In this section, we show the calculation of the 3S1 phase shifts. Because
the tensor type contributions are included in this channel, we need to know
corresponding S-OPE.

6.4.1 Calculation of amplitudes

The LO and NLO amplitudes are the same as in case of singlet so they can
be written as in eqs.(6.10) and (6.11) respectively. The scalar part of the
NNLO contributions is the same as in the 3S1 channel.

Tensor contributions are included in the diagrams Fig.6.2(a)∼(c). The
sum of their contributions is written as

Atensor
NNLO =6M

(
g2A
2f2

)2

(Box1 + Box2)

+ 24ALO

(
Mg2A
2f2

)2

BT
2 + 12A2

LOM

(
Mg2A
2f 2

)2

BT
3 , (6.30)

where Box1, Box2, B
T
2 , and BT

3 are given in eqs(A.66), (A.67), (A.38), and
(A.39) respectively.

6.5 Phase shift fitting for 3S1

We show the calculation of the scattering phase shifts by using the fitted
values of the coupling constants for the 3S1 channel. There is a problem that
the calculated phase shift is not real, so we fit the real part of phase shift.

The coupling constants obtained by fitting the calculated phase shift to
the data are,

LO : Ĉ0 = −1.19; (6.31)

NLO : Ĉ0 = −1.26; Ĉ2 = 1.71; D̂2 = 0.891; (6.32)

NNLO : Ĉ0 = −1.50; Ĉ2 = 3.13; D̂2 = 0.195; (6.33)

Ĉ4 = −26.6; Ê4 = −1.25; D̂4 = 23.9; .

The sizes of two of coupling constants are not natural. It may be because
of existence of imaginary part in phase shift. This problem comes from the
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Figure 6.4: Our result for the 3S1 phase shift for NN scattering. Solid line is
the Nijmegen data for np scattering.The dashed, dotted, and dashed-dotted
lines are the LO, the NLO, and the NNLO results respectively.

fact that we are still not able to consistently extract the S-OPE part in
our calculation. This reflects the large change of the coupling constant C̃0.
Our present calculation however implies that the separation of the S-OPE
from L-OPE works at least in the real part, as shown in Fig.(6.4), where the
breakdown shown by Fleming et al. does not arise. In the NNLO calculation
by Fleming et al., there is a linearly rising contribution p tan−1(2p/mπ)
for large p which comes from the tensor part of the two-pion-exchange box
diagram in the 3S1 channel. The term is also present in our calculation. but
we have an additional term so that only the combination p tan−1(2p/mπ)−
4p2/(

√
πλ)) appears. This additional term suppresses the linear increase for

large p.
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Chapter 7

Summary

In this thesis, we analyze the nucleon-nucleon scattering in the S-waves at
low energies based on the power counting which is determined by a Wilsonian
RGE analysis [19]. We show that the phase shift of the 3S1 channel converges
at NNLO to the contrary to the previous calculation done by Fleming et al.
with the KSW power counting [8,9], despite the fact that our power counting
is very similar to the KSW power counting.

The difference between the analysis by Fleming et al. and ours lies in
treatment of pion contributions. In their calculations, pion contribution are
perturbative. In our analysis, on the other hand, pion contributions are
divided into two parts, S-OPE and L-OPE. A part of S-OPE is treated as
non-perturbative while the L-OPE is perturbative.

The separation of pion contributions into S-OPE and L-OPE is done by
introducing a separation scale. We employ a hybrid regularization: diagrams
without pion exchanges are regularized with PDS, while diagrams containing
pion exchanges are regularized with a Gaussian damping factor. The scales
µ in PDS and λ in the regularization with GDF play essentially the same
role of the separation scale.

In the 1S0 channel, we got similar results to those obtained by Fleming
et al. [11]. We obtain the result that all the coupling constants has natural
size. At this channel, we success in calculation of phase shift.

In the 3S1 channel, our calculation has an unitarity problem: the phase
shift has relatively large imaginary part which can not be explained by nu-
merical error. This probably reflects that our procedure of extracting the
S-OPE for the tensor part is not sufficient. We however expect that the ab-
sence of the linearly rising contribution in the real part is a general feature

40



in the hybrid regularization.
By introducing two schemes to integrate loop diagrams, we can derives

convergent expansion for the phase shift in the 3S1 channel relatively simply.
We can get natural size of values of coupling constants and they do not

change very much when higher order terms are included. It is very important.
If the power counting is correct, our ordering of the contributions is correct,
that is, the higher order terms one includes the smaller the effects one gets.
If the power counting is not correct, the best fitted values of the coupling
constants for wrongly ordered operators would be very small or very large to
compensate the wrong ordering. In addition, when higher order contributions
are added, they change drastically because they do not need to compensate
any more. Our results about the best fitted values of coupling constants
implies that our power counting is actually correct.

We have not yet obtained the RGEs for the 3S1 channel. It is very
important to obtain them and solve them to check the consistency of the
approach. It is left as a future work.
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Appendix A

Integral formulae

A.1 Integral of box diagram

In this subsection, I explain a series of the most complicated integrals. These
are appear in the box diagram.

First of all, we consider the integral,∫
d (cos θ)

∫
d3k

(2π)3
1

(k2 + 2k · p) (k2 +m2
π)
(
(k− q)2 +m2

π

)
=

1

8πp3

×
[
i

4
log2

(
1 +

4p2

m2
π

)
+ Im Li2

(
2p2 − ipmπ

m2
π + 4p2

)
+ Im Li2

(
−2p2 + ipmπ

m2
π

)]
.

(A.1)

Here,

q =p′ − p,

p2 = p′2 = p2, p · p′ = p2 cos θ,

q2 = 2p2(1− cos θ), p · q = −p2(1− cos θ). (A.2)

We define

I (cos θ) =

∫
d3k

(2π)3
1

(k2 + 2k · p) (k2 +m2
π)
(
(k− q)2 +m2

π

) , (A.3)
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a = |p+ qx| ,
α =(p+ qx)2 − p2 ,

β =q2x(1− x) +m2
π . (A.4)

They satisfy the following relations,

α+ β =m2
π ,

a2 − α =p2 . (A.5)

So I(cos θ) may be calculated as

I(cos θ) =

∫ 1

0

dx

∫
d3k

(2π)3
1

(k2 + 2k · p) (k2 − 2k · px+ q2x+m2
π)

=

∫ 1

0

dx

∫
d3k

(2π)3
1[

(k+ p+ qx)2 − p2
]
[k2 + q2x(1− x) +m2

π]
2

=

∫ 1

0

dx

∫
d3k

(2π)3
1

(k2 + 2ak cos θk + α) (k2 + β2)2

=
1

4π2

∫ 1

0

dx

∫ ∞

0

dk

∫ 1

−1

d (cos θk)
k2

(k2 + 2ak cos θk + α) (k2 + β2)2

=
1

8π2

∫ 1

0

dx

∫ ∞

0

dk
k

a (k2 + β2)2
log

(
k2 + 2ak + α

k2 − 2ak + α

)
=− 1

16π2

∫ 1

0

dx
1

a

∫ ∞

0

dk

[
d

dk

(
1

k2 + β2

)]
log

(
k2 + 2ak + α

k2 − 2ak + α

)
=

1

8π2

∫ 1

0

dx
1

a

∫ ∞

0

dk
1

k2 + β2

(
k + a

k2 + 2ak + α
− k − a

k2 − 2ak + α

)
=− 1

4π2

∫ 1

0

dx
1

a

∫ ∞

0

dk
k2 − α

(k2 + β2) (k2 + 2ak + α) (k2 − 2ak + α)

=− 1

8π2

∫ 1

0

dx
1

a

∫ ∞

−∞
dk

k2 − α

(k2 + β2) (k2 + 2ak + α) (k2 − 2ak + α)
.

(A.6)
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The integrand has six poles in the complex k plane,

± i
√

β ,

λ1 = a+ p+ iε ,

λ2 = a− p− iε ,

λ3 = −a+ p+ iε ,

λ4 = −a− p− iε . (A.7)

Among them, i
√
β, λ1, λ3 are in the upper half plane. We perform the k-

integral using the residue theorem and write I (cos θ), I1 (cos θ), I2 (cos θ):
I(cos θ) = I1(cos θ) + I2(cos θ).

I1 (cos θ) = − i

4π

∫ 1

0

dx

[
λ2
1 − α

(λ2
1 + β) (λ1 − λ2) (λ1 − λ3) (λ1 − λ4)

+
λ2
3 − α

(λ2
3 + β) (λ3 − λ1) (λ3 − λ2) (λ3 − λ4)

]
= − i

4π

∫ 1

0

dx
1

4a

[
1

(a+ p)2 + β
− 1

(a− p)2 + β

]
=

ip

4π

∫ 1

0

dx
1[

(a+ p)2 + β
] [
((a− p)2 + β

]
=

ip

4π

∫ 1

0

dx
1

(a2 + p2 + β)2 − 4a2p2

=
ip

4π

∫ 1

0

dx
1

(m2
π + 2p2)2 − 4 [p2 − q2x(1− x)] p2

=
ip

4π

∫ 1

0

dx
1

m2
π (m

2
π + 4p2) + 4p2q2x(1− x)

=
i

16πpq2

∫ 1

0

dx
1

b+ x(1− x)

=
i

16πpq2

[
1√

1 + 4b
log

∣∣∣∣−2x+ 1−
√
1 + 4b

−2x+ 1 +
√
1 + 4b

∣∣∣∣]1
0

=
i

8πpq2
√
1 + 4b

log

√
1 + 4b+ 1√
1 + 4b− 1

=
i

16πp3(1− cos θ)
√
1 + 4b

log

√
1 + 4b+ 1√
1 + 4b− 1

. (A.8)
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where b and c are introduced as

b =
m2

π (m
2
π + 4p2)

4p2q2
=

c

4 (1− cos θ)
, (A.9)

c =
m2

π (m
2
π + 4p2)

2p4
. (A.10)

By making a change of variable

t =
1√

1 + 4b
=

1√
1 + c

1−cos θ

, (A.11)

we have ∫ 1

−1

d (cos θ) I1(cos θ) =
i

8πp3

∫ 1
1+ c

2

0

dt
1

1− t2
log

(
1 + t

1− t

)
=

i

32πp3
log2

(
1 +

4p2

m2
π

)
. (A.12)
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Next we calculate I2(cos θ)

I2 (cos θ) =
1

8π

∫ 1

0

dx
α+ β√

β(α− β + 2iα
√
β)(α− β − 2iα

√
β)

=
1

8π

∫ 1

0

dx
α+ β√

β (m2
π + 4p2β)

=
1

8π

∫ 1

0

m2
π√

q2x(1− x) +m2
π [m

4
π + 4p2(q2x(1− x) +m2

π)]

=
m2

π

8πq

∫ 1/f

−1/f

1√
1− y2 [m4

π + 4p2q2f2(1− y2)]

=
m2

π

8πp2q3f 2

∫ 1/f

0

1√
1− y2 (g2 − y2)

=
1

4πq
√

p2(q2 + 4m2
π) +m4

π

(
π

2
− arctan

2
√

p2(q2 + 4m2
π) +m4

π

mq

)
=

1

4πpq2
√
1 + 4b

arctan
mπ

2p
√
1 + 4b

=
1

8πp3(1− cos θ)
√
1 + 4b

Im ln

(
1 + i

mπ

2p
√
1 + 4b

)
, (A.13)

where we introduce x, f , and g as

x =
fy + 1

2
,

f =

√
q2 + 4m2

π

q
=

√
1 +

4m2
π

q2
=

√
1 +

2m2
π

p2(1− cos θ)
,

g =

√
1 +

m2
π

p2q2f 2
=

√
1 +

m2
π

p2(q2 + 4m2
π)
. (A.14)
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Integrating I2(cos θ) over cos θ, we get∫ 1

−1

d(cos θ)I2(cos θ)

=
1

4πp3
Im

∫ 1/
√

1+c/2

dt
1

1− t2
log

(
1 + i

mπ

2p
t

)
=

1

4πp3
Im [− log(1 + iv) log(1− u) + log(1− iv) log(1 + u)

+Li2

(
1− u

1 + 1/iv

)
− Li2

(
iv

1 + iv

)
− Li2

(
1− u

1− 1/iv

)
+ Li2

(
iv

1− iv

)]
,

(A.15)

where the dilogarithm function, Li2, is defined as

Li2(z) = −
∫ z

0

dt
log(1− t)

t
, (A.16)

and u and v are defined as,

u =
1

1 + c/2
=

2p2

m2
π + 2p2

, v =
mπ

2p
. (A.17)

There are several useful formulae for the dilogarithm function. One of them
is

Li2(1− z) =Li2(z) +
π2

6
− log(1− z) log(z) =

∞∑
k=1

zk

k2
,

Li2

(
1

z

)
=− Li2(z) +

π2

6
− log(z) log(1− z). (A.18)
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Let us explain other integrals. The first one involves I1(cos θ),∫ 1

−1

(1− cos θ)nI1(cos θ) ≡
icn

8πp3
Fn (A.19)

Integrating by parts, this can be written as

Fn =
m2

π + 2p2

4np2

(
2

c

)n

log

(
1 +

4p2

m2
π

)
− 2n− 1

2n
Fn−1 −

1

n
Gn, (A.20)

where

Gn =

∫ 1/
√

1+c/2

0

dt
t2n−1

(1− t2)n+1
. (A.21)

We obtain a recursion relation for Gn,

Gn =
(m2

π + 2p2)2

8np4

(
2

c

)n

− n− 1

n
Gn−1. (A.22)

From eq.(), F0 is obtained easily.

F0 =
1

4
log2

(
1 +

4p2

m2
π

)
. (A.23)

For n = 1, we have

G1 =
1

c
. (A.24)

The recursion relations determine all the Fn’s and Gn’s.
Next we consider the integral involving I2(cos θ) given below:∫ 1

−1

(1− cos θ)nI2(cos θ) ≡
cn

4πp3
Xn. (A.25)

As in the case of Fn, we derive recursion relation,

Xn =Im

∫ 1/
√

1+c/2

0

dt
t2n

(1− t2)n+1
log

(
1 +

it

2v

)
=
m2

π + 2p2

4np2

(
2

c

)n

arctan
pm

m2
π + 2p2

− 2n− 1

2n
Xn−1 −

mπ

4np
Yn, (A.26)
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where

Yn =Im

∫ 1/
√

1+c/2

0

dt
it2n−1

(1− t2)n(1 + it/2v)
. (A.27)

We also derive a recursion relation for Yn,

Yn =
2m2

π

p2c
(Gn−1 − Yn−1) . (A.28)

We can calculate X0 and Y1 as follows,

X0 =
1

2
Im

[
2 log (1− 2iv) log

1 + 2v2 + iv

1 + 2v2

−Li2

(
2v(1 + 2v2 + iv)

(2v + i)(1 + 2v2)

)
+ Li2

(
2v(1 + 2v2 + iv)

(2v − i)(1 + 2v2)

)
+Li2

(
2v

2v + i

)
− Li2

(
2v

2v − i

)]
, (A.29)

Y1 =
m2

π

p2c
log

(
1 +

p2

m2
π

)
, (A.30)

so that we can determine all the Xn’s and Yn’s recursively.
The results in case of n = 1 and n = 2 as,∫ 1

−1

d cos θ(1− cos θ)I(cos θ) = Box1, (A.31)

∫ 1

−1

d cos θ(1− cos θ)2I(cos θ) = Box2, (A.32)

are given in eqs.(A.66) and eqs.(A.67).
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A.2 Method of decomposition of the tensor

part

There are integrals including inner products in the integrand which appear in
the calculations of the diagrams involving tensor forces. We need to express
such integrals in terms of integrals which do not include inner products. To
do so, we decompose them as partial fractions. The tensorial structure of the
integrals are also important in rewriting them. For example, the result of
the following integral is a second-rank symmetric tensor of l, and therefore
may be written as a sum of δij and lilj,∫

d3k

(2π)3
kikje

−k2

λ2[
(k+ l)2 − p2 − iε

]
(k2 +m2

π)
= δijg

′ (l, p) + liljh
′ (l, p) . (A.33)

Multiplying δij and lilj both sides of the equation,

ng′ (l, p) + l2h′ (l, p) =

∫
d3k

(2π)3
k2e−

k2

λ2[
(k+ l)2 − p2 − iε

]
(k2 +m2

π)

=H ′
0 (l, p)−m2

πH2 (l, p) , (A.34)

l2g′ (l, p) + l4h′ (l, p) =

∫
d3k

(2π)3
(k · l)2 e−

k2

λ2[
(k+ l)2 − p2 − iε

]
(k2 +m2

π)

=− 1

2
X ′

2 +
∆

4
X ′

1 +
∆2

4
H2 (l, p) , (A.35)

where the notation ∆ = l2 − p2 −m2
π is introduced and the integrals which

appear in the above equation are given by equation are

H ′
0 (l, p) =

∫
d3k

(2π)3
e−

k2

λ2

(k+ l)2 − p2 − iε
,

X ′
1 =

∫
d3k

(2π)3

(
1

(k+ l)2 − p2 − iε
− 1

k2 +m2
π

)
e−

k2

λ2 ,

X ′
2 =

∫
d3k

(2π)3
(k · l) e−

k2

λ2

(k+ l)2 − p2 − iε
,

H ′
2 (l, p) =

∫
d3k

(2π)3
e−

k2

λ2[
(k+ l)2 − p2 − iε

]
(k2 +m2

π)
. (A.36)
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Solving eqs.(A.34) and (A.35), we obtain g′ and h′, in terms of the integrals
which do not include inner products in the integrands,

g′ (l, p) =
1

n− 1

(
H ′

0 −m2
πH2 (l, p)

)
+

1

2(n− 1)l2

{
X ′

2 −
∆

2
[X1 +∆H2 (l, p)]

}
,

h′ (l, p) =− 1

(n− 1)l2
(
H ′

0 −m2
πH2 (l, p)

)
− n

2(n− 1)l4

{
X ′

2 −
∆

2
[X1 +∆H2 (l, p)]

}
. (A.37)

Substituting g′ and h′ back into eq.(A.37), we obtain a decomposition of the
tensor integral, eq.(A.33).
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A.3 Tensor integrals

In this section, we show how to calculate the tensor part of the two-loop
triangle diagram shown in Fig.6.2(b) and the three-loop diagram shown in
Fig.6.2(c). Let us consider the integral corresponding the two-loop diagram
first:

BT
2 =

∫
d3kd3l

(2π)6

{
[(k− l) · (l− p′)]2 − 1

n
(k− l)2 (l− p′)2

}
e−

(k−l)2

λ2 e−
(l−p′)2

λ2

(k2 − p2 − iε) (l2 − p2 − iε)
[
(k− l)2 +m2

π

] [
(l− p′)2 +m2

π

]
=
(p2 +m2

π)
2(−3nm4

π + 6m2
πp

2(n− 4) + 10np4)

48(n− 1)p4
U1 +

m4
π (nm

2
π + 4p2)

2

16(n− 1)np4
V7

+
2m2

π(12− 7n)− 7np2

48(n− 1)
U3 −

m2
π (nm

2
π + 4p2) (nm2

π + 2(2− n)p2)

16(n− 1)np4
V ′
2

+
(m2

π + p2)(3nm4
π + 3m2

πp
2(8− 3n) + (12− 13n)p4)

48(n− 1)p4
U ′
4 −

n(X1)
′2

24(n− 1)

+
3nm4

π − 6(n− 2)m2
πp

2 + 2(6− 5n)p4

48(n− 1)p4
(U9X1)

′ +
(p2 +m2

π)

4(n− 1)p2
(U9H0)

′

+
(m2

π + p2)2

4(n− 1)p2
(U2H0)

′ +
(m2

π + p2)(3nm4
π − 3m2

πp
2(n− 4)− 7np4)

48(n− 1)p4
(U2X1)

′

− m2
π (nm

2
π + 4p2)

4(n− 1)np2
(V1H0)

′ − m4
π(nm

2
π + 4p2)

16(n− 1)p4
(V1X1)

′ +
1

4
(H0X1)

′

− n− 2

4(n− 1)
ξX1H0 +

n− 4

4n
H ′2

0 +
nm2

π − 2(n− 2)p2

8(n− 1)p4
∆ζ1(−ip)− nζ2(0)

8(n− 1)

− nm4
π + 4m2

πp
2

8(n− 1)p4
∆ζ2(−ip) +

n (p2 +m2
π)

8(n− 1)p2
∆ζ1(ω)

ω2
+

n(m2
π + p2)2

8(n− 1)p2ω2

∆ζ2(ω)

ω2

− n (p2 +m2
π)

2

16(n− 1)p2

∫
d3l

(2π)3
e−

(l−p′)2

λ2

l4
{
X1 −

(
p2 +m2

π

)
H2 (l, p)

} [
1− (p2 +m2

π)

(l− p′)2 +m2
π

]
+

nm2
π + 4p2

8(n− 1)p4
∆ζ3(−ip)− nm4

π + 4m2
πp

2 − np4

8(n− 1)p4
∆ζ4(−ip)− n

8(n− 1)
ζ4(−ip)

+
n

4(n− 1)p4
∆ζ5(−ip)− nm2

π

8(n− 1)p4
H1ζ6(−ip)− n(p2 +m2

π)

8(n− 1)p2
ζ3(ω)

ω2

+
n(p2 +m2

π)
2

8(n− 1)p2ω2
[ζ4(ω)− ζ4(0)] +

n

4(n− 1)p2
∆ζ5(ω)

ω2
− n(p2 +m2

π)

8(n− 1)p2
H1

ζ6(ω)

ω2
.
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Next, we show the tensor part of three loop diagram,

BT
3 =

∫
d3kd3ld3q

(2π)9
1

k2 − p2 − iε

1

l2 − p2 − iε

1

q2 − p2 − iε

× e−
(k−l)2

λ2 e−
(l−q)2

λ2

[(k− l)2 +m2
π] [(l− q)2 +m2

π]

{
[(k− l)·(l− q)]2 − 1

n
(k− l)2(l− q)2

}
=− 1

n
H3

0 +
1

2(n− 1)
H3

0 +
m4

π

n(n− 1)
V8 +

1

2(n− 1)

(
nm8

π

8p4
+

m6
π

p2

)
(V8 − J2)

+
(19n− 48)m4

π + 2(13n− 12)p2m2
π + 10np4

48(n− 1)
J2 +

2m2
π(12− 7n)− 7np2

48(n− 1)
J3

+
1

2(n− 1)

([
H2

0X1

]
(3A)

−
[
H2

0X1

]
(3B)

+

(
1 +

m2
π

p2

)
[H0U9X1]

)

− 1

(n− 1)

(
nm6

π

8p4
+

m4
π

2p2

){
[V2X1]− [J4X1]

}
− 2(5n− 6)m2

π + 7np2

24(n− 1)
[J4X1]

− 2m2
π

n(n− 1)
[H0V2] +

(2m2
π + p2)

2(n− 1)
[H0J4] +

m4
π

2(n− 1)p2

(
[H0J4]− [H0V2]

)

+
nm4

π

16(n− 1)p4
[
U9X

2
1

]
+

∆R1(−ip)

2(n− 1)p2
+

nm2
π

8(n− 1)p4
[∆R1(−ip)−∆R2(−ip)]

+
n(p4 −m4

π)− 4m2
πp

2

8(n− 1)p4
∆R3(−ip) +

n

16(n− 1)p4
∆R4(−ip)

+
n

48(n− 1)

[(
3W1(−ip) +W1(0)

)
− 4H2

1∆H4(−ip)− 3∆W1(−ip) + 6∆W5(−ip)

− 2H1

(
3H6(−ip) +H6(0)

)
+ 2W10 − 6W12(−ip) + 6H3H5(−ip)

]

+
n

16(n− 1)

[
2(p2 +m2

π)

p2
∆R1(ω)−∆R2(ω)

ω2
− 2(p2 +m2

π)
2

p2
∆R3(ω)

ω2

+
1

p2
∆R4(ω)

ω2
+

(p2 +m2
π)

2

p2
1

ω2

(
∆W1(ω)− 2H1∆H6(ω) +H2

1∆H4(ω)

)
+

2(p2 +m2
π)

3

p2
1

ω2

(
−∆W9(ω) +H1∆H5(ω)

)
+

(p2 +m2
π)

4

p2
J5

]∣∣∣∣∣
ω→0

.

(A.39)

54



Integrals appearing in the above equations shown above are defined as:

(V1H0)
′ =

∫
d3ld3k

(2π)6
e−

(l−p′)2

λ2 e−
k2

λ2

(l2 − p2 − iε)
[
(l− p′)2 +m2

π

] 1

(k+ l)2 − p2 − iε

=
e

m2
π

λ2

(4π)2

{(
λ√
π
+ ip− 8p2

3
√
πλ

)
i

2p
log

(
1− 2ip

mπ

)
−
(
1

2
− 2mπ

3λ
√
π

)
−
[
1

π
+

ip√
πλ

(
2
√
2 + 1

)]}
,

(V1X1)
′ =

∫
d3ld3k

(2π)6
e−

(l−p′)2

λ2 e−
k2

λ2

(l2 − p2 − iε)
[
(l− p′)2 +m2

π

] [ 1

(k+ l)2 − p2
− 1

k2 +m2
π

]

=
e

m2
π

λ2

(4π)2

{(
mπ + ip− 2m2

π√
πλ

− 8p2

3
√
πλ

)
i

2p
log

(
1− 2ip

mπ

)
−1

2

(
1 +

mπ√
πλ

)
+

[
1

π
− ip√

πλ

(
2
√
2 + 1

)]}
,

V ′
2 =

∫
d3ld3k

(2π)6
e−

(l−p′)2

λ2 e−
(k−l)2

λ2

(l2 − p2 − iε) (k2 − p2 − iε)
[
(k− l)2 +m2

π

]
=

e
m2

π
λ2

(4π)2

[
− log

(
mπ − 2ip

λ

)
− γE

2
− 2Catalan

π
− 2ip

λ

√
2

π
+

2(mπ − ip)√
πλ

]
,

V7 =

∫
d3k

(2π)3

∫
d3l

(2π)3
1

k2 − p2 − iε

1

l2 − p2 − iε

e−
(k−l)2

λ2

(k− l)2 +m2
π

e−
(l−p)2

λ2

(l− p)2 +m2
π

=−
(

1

4π

)2
e

2m2
π

λ2

4p2

[
3

2
log2

(
1− 2ip

mπ

)
+ 2Li2

(
2ip−mπ

mπ

)
+Li2

(
mπ + 2ip

2ip−mπ

)
+

π2

4
+

4ip√
πλ

log

(
1− 2ip

mπ

)]
,
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U1 =

∫
d3k

(2π)3

∫
d3l

(2π)3
1

l2
1

k2 − p2 − iε

e−
(k−l)2

λ2

(k− l)2 +m2
π

e−
(l−p)2

λ2

(l− p)2 +m2
π

=

(
1

4π

)2
e

2m2
π

λ2

m2
π + p2

[
log(2)− i(mπ − ip)

2p
log

(
1− ip

mπ

)
− i(mπ + ip)

2p
log

(
1 +

ip

mπ

)
+

i (m2
π + p2)√
πλp

log

(
mπ + ip

mπ − ip

)]
,

(U2H0)
′ =

∫
d3ld3k

(2π)6
e−

(l−p′)2

λ2 e−
k2

λ2

l2
[
(l− p′)2 +m2

π

] 1

(k+ l)2 − p2 − iε

=
e

m2
π

λ2

(4π)2

{(
λ√
π
+ ip− 2p2√

πλ

)
1

2ip
log

(
mπ + ip

mπ − ip

)
−
(
1

2
− 2mπ

3
√
πλ

)
−
(
1

π
+

4ip√
2πλ

)}
,

(U2X1)
′ =

∫
d3ld3k

(2π)6
e−

(l−p′)2

λ2 e−
k2

λ2

l2
[
(l− p′)2 +m2

π

] [ 1

(k+ l)2 − p2 − iε
− 1

k2 +m2
π

]

=
e

m2
π

λ2

(4π)2

{(
mπ + ip− 2m2

π√
πλ

− 2p2√
πλ

)
1

2ip
log

(
mπ + ip

mπ − ip

)
−
(
1

2
+

mπ

2
√
πλ

)
+

(
1

π
− 4ip√

2πλ

)}
,

U3 =

∫
d3k

(2π)3

∫
d3l

(2π)3
1

k2 − p2 − iε

e−
(k−l)2

λ2

(k− l)2 +m2
π

e−
(l−p)2

λ2

(l− p)2 +m2
π

=

(
1

4π

)2

e
2m2

π
λ2

[
mπ − ip

ip
log

(
mπ − ip

mπ

)
− log

(mπ

λ

)
+

(
1 +

8R4

π

)
+

4√
π

mπ

λ
− i

2
√
2√
π

p

λ

]
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R4 =

∫ ∞

0

dxe−x2

Er(x) log(x) = − π

16
γE +

1

8
(−2Catalan− π log(2)),

Catalan =−
∫ π

4

0

dx log [tan(x)] ' 0.9159655942 · · · ,

U ′
4 =

∫
d3ld3k

(2π)6
e−

k2

λ2 e−
(l−p′)2

λ2

l2
[
(k+ l)2 − p2 − iε

]
(k2 +m2

π)

=
e

m2
π

λ2

(4π)2

[
− log

(
mπ − ip

λ

)
− γE

2
− 2Catalan

π
− 2ip

λ

√
2

π
+

2mπ√
πλ

]
,

(H ′
0)

2 =

∫
d3kd3l

(2π)6
e−

l2

λ2 e−
k2

λ2[
(l+ p′)2 − p2 − iε

] [
(k+ l+ p′)2 − p2 − iε

]
=

1

(4π)2

[
λ2

4
+

2 +
√
2

2

λ√
π
ip− 2(2 + 3π)

3

p2

π
− 28 + 17

√
2

6

ip3√
πλ

]
,

(H0X1)
′ =

∫
d3kd3l

(2π)6
e−

l2

λ2 e−
k2

λ2[
(l+ p′)2 − p2 − iε

] [
(k+ l+ p′)2 − p2 − iε

]
=

1

(4π)2

[
λ2

4
− λ2

π
+

λmπ√
π

+
iλp√
2π

− 2p2

3π
− 2p2 + imπp−

2m2
π

π

− 17ip3

3λ
√
2π

− 14ip3

3λ
√
π
− 2mπp

2

3λ
√
π

− 2im2
πp

λ
√
π

]
,

ξX1H0 =

∫
d3kd3l

(2π)6

[
1

l2 − p2 − iε
− 1

(l− p′)2 +m2
π

]
e−

(l−p′)2

λ2 e−
k2

λ2

(k+ l)2 − p2 − iε

=
1

(4π)2

{
λ√
π
(mπ + ip)− m2

π

4π
(4 + π) + ipmπ −

p2

3

(
5 +

2

π

)
+

2√
πλ

(
m3

π

3
− 3ipm2

π

2
√
2

− 4p2mπ

3
− 7ip3

3
− ip3

√
2

)}
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(X1)
′2 =

∫
d3kd3l

(2π)6

[
1

l2 − p2 − iε
− 1

(l− p′)2 +m2
π

]
×
[

1

(k+ l)2 − p2 − iε
− 1

k2 +m2
π

]
e−

(l−p′)2

λ2 e−
k2

λ2

=
1

(4π)2

{
m2

π

4π
(4 + 3π) + 2ipmπ −

p2

3π
(5π − 4)

− 2√
πλ

[
5m3

π

3
+

3ipm2
π

2
√
2

+ ipm2
π +

7p2

3
(mπ + ip) + ip3

√
2

]}
,

(U9H1)
′ =

∫
d3kd3l

(2π)6

(
1

l2 − p2 − iε
− 1

l2

)
e−

(l−p′)2

λ2 e−
k2

λ2

k2 +m2
π

=
H1

4π

[
ip− 2p2√

πλ
− 2ip3

λ2

]
,

(H0U9)
′ =

∫
d3kd3l

(2π)6

(
1

l2 − p2 − iε
− 1

l2

)
e−

(l−p′)2

λ2 e−
k2

λ2

(k+ l+ p′)2 − p2 − iε

=
1

(4π)2
λ√
π

(
ip− 3

√
π

2λ
p2 − p2√

πλ
− 2

√
2ip3

λ2
− 14ip3

3λ2

)
,

(U9X1)
′ = [(U9H0)

′ − (U9H1)
′]

=
1

(4π)2

[
imπp−

3p2

2
+

p2

π
− 2ip√

πλ

(
m2

π − imπp+
4p2

3
+
√
2p2
)]

,
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ζ1(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

k · (l+ p′)

(k+ l+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2

=
1

2

[
κ1θ1(M)− θ2 − θ4(M) + (p2 +m2

π)θ3(M)
]
,

ζ2(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

1

l2 +m2
π

k · (l+ p′)

(k+ l+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2

=
1

2

[
κ1θ5(M)− ξH1H0 − θ7(M) + (p2 +m2

π)θ6(M)
]
,

ζ3(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

(l · p′) + p2

(k+ l+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2

=
1

2

[
θ2 − θ8(M) + (p2 −m2

π)θ3(M)
]
,

ζ4(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

(l · p′) + p2

(k+ l+ p′)2 − p2
1

k2 +m2
π

e−
k2

λ2 e−
l2

λ2

=
1

2

[
θ14 − θ10(M) + (p2 −m2

π)θ11(M)
]
,

ζ5(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

[(l · p′) + p2] [k · (l+ p′)]

(k+ l+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2 ,

=
1

2
ν1 −

1

4
κ1θ12(M) +

1

4
ν2 +

1

4
θ13(M)− p2 +m2

π

4
θ8(M) +

p2 −m2
π

2
ζ1(M)

ζ6(M) =

∫
d3l

(2π)3
(l · p′) + p2

(l+ p′)2 +m2
π

e−
l2

λ2

=
1

2

[
κ1 − θ12(M) + (p2 −m2

π)θ1(M)
]
,

∆ζi(M) =ζi(M)− ζi(0), i = 1 ∼ 6, (A.44)
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ξH1H0 =

∫
d3kd3l

(2π)6
1

l2 +m2
π

1

(k+ l+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2 ,

θ1(M) =

∫
d3l

(2π)3
e−

l2

λ2
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=
2
√
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(4π)2ip

∫ ∞

0

dxe−
2M
λ

x
(
e
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λ
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x
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,

θ2 =

∫
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(2π)6
e−
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λ2 e−
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=
2
√
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∫ ∞

0

dx
(
e

2
√

2ip
λ
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,

θ3 =

∫
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(2π)6
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λ2 e−
k2

λ2[
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π
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]
=

λ4

(4π)3

∫ ∞

0

dx

∫ x

0
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e

2ip
λ

y
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e−
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λ

x
(
e
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λ

y − e−
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λ

y
)(

e
2ip
λ

x − e−
2ip
λ

x
)
e−x2

e−y2

+
λ4

(4π)3

∫ ∞

0

dx

∫ ∞

x

dy
e

2ip
λ

y

ipM
e−

2M
λ

y
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)
e−x2

e−y2 ,

θ4(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

k2

(l+ k+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2

=
λ6

2(4π)3

∫ ∞

0

dx

∫ x

0

dy
e

2ip
λ

y

ipM
e−

2M
λ

x
(
e

2M
λ

y − e−
2M
λ

y
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2y2

)
e−x2

e−y2

+
λ6

2(4π)3

∫ ∞

0

dx

∫ ∞

x

dy
e

2ip
λ

y

ipM
e−

2M
λ

y
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2y2

)
e−x2

e−y2 ,

(A.45)
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θ5(M) =

∫
d3l

(2π)3
1

(l+ p′)2 +m2
π

1

l2 +m2
π

e−
l2

λ2

=
2
√
π

(4π)2ip

∫ ∞

0

dx
e−

2M
λ

x

x

(
e

2ip
λ

x − e−
2ip
λ

x
)

×
[√

πe−
2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
,

θ6(M) =

∫
d3ld3k

(2π)6
1

(l+ p′)2 +m2
π

1

l2 +m2
π

1

(k+ l+ p′)2 − p2
e−

l2

λ2 e−
k2

λ2

=
λ2

(4π)3ipM

∫ ∞

0

dx

∫ x

0

dz
e

2ip
λ

z

x
e−

2M
λ

x
(
e

2M
λ

z − e−
2M
λ

z
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
[√

πe−
2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
e−z2

+
λ2

(4π)3ipM

∫ ∞

0

dx

∫ ∞

x

dz
e

2ip
λ

z

x
e−

2M
λ

z
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
[√

πe−
2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
e−z2 ,

θ7(M) =

∫
d3ld3k

(2π)6
1

(l+ p′)2 +m2
π

k2

l2 +m2
π

1

(k+ l+ p′)2 − p2
e−

l2

λ2 e−
k2

λ2

=
λ4

2(4π)3ipM

∫ ∞

0

dx

∫ x

0

dz
e

2ip
λ

z

x
e−

2M
λ

x
(
e

2M
λ

z − e−
2M
λ

z
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2z2

) [√
πe−

2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
e−z2

+
λ4

2(4π)3ipM

∫ ∞

0

dx

∫ ∞

x

dz
e

2ip
λ

z

x
e−

2M
λ

z
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2z2

) [√
πe−

2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
e−z2 ,

(A.46)
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θ8(M) =

∫
d3ld3k

(2π)6
1

(l+ p′)2 +m2
π

l2

(k+ l+ p′)2 − p2
e−

l2

λ2 e−
k2

λ2

=
λ6

2(4π)3

∫ ∞

0

dx

∫ x

0

dy
e

2ip
λ

y

ipM
e−

2M
λ

x
(
e

2M
λ

y − e−
2M
λ

y
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2x2

)
e−x2

e−y2

+
λ6

2(4π)3

∫ ∞

0

dx

∫ ∞

x

dy
e

2ip
λ

y

ipM
e−

2M
λ

y
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2x2

)
e−x2

e−y2 ,

θ10(M) =

∫
d3ld3k

(2π)6
1

(l+ p′)2 +m2
π

l2

(k+ l+ p′)2 − p2
1

k2 +m2
π

e−
l2

λ2 e−
k2

λ2

=
λ4

2(4π)3

∫ ∞

0

dx

∫ x

0

dy
e

2ip
λ

y

y

1

ipM
e−

2M
λ

x
(
e

2M
λ

y − e−
2M
λ

y
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2x2

)
e−x2

[√
πe−

2mπ
λ

y − e−
2mπ
λ

yErfc
(
y − mπ

λ

)
− e

2mπ
λ

yErfc
(
y +

mπ

λ

)]
+

λ4

2(4π)3

∫ ∞

0

dx

∫ ∞

x

dy
e

2ip
λ

y

y

1

ipM
e−

2M
λ

y
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2x2

)
e−x2

[√
πe−

2mπ
λ

y − e−
2mπ
λ

yErfc
(
y − mπ

λ

)
− e

2mπ
λ

yErfc
(
y +

mπ

λ

)]
,

θ11(M) =

∫
d3ld3k

(2π)6
1

(l+ p′)2 +m2
π

1

(k+ l+ p′)2 − p2
1

k2 +m2
π

e−
l2

λ2 e−
k2

λ2

=
λ2

(4π)3

∫ ∞

0

dx

∫ x

0

dy
e

2ip
λ

y

ipMy
e−

2M
λ

x
(
e

2M
λ

y − e−
2M
λ

y
)(

e
2ip
λ

x − e−
2ip
λ

x
)

× e−x2
[√

πe−
2mπ
λ

y − e−
2mπ
λ

yErfc
(
y − mπ

λ

)
− e

2mπ
λ

yErfc
(
y +

mπ

λ

)]
+

λ2

(4π)3

∫ ∞

0

dx

∫ ∞

x

dy
e

2ip
λ

y

ipMy
e−

2M
λ

y
(
e

2M
λ

x − e−
2M
λ

x
)(

e
2ip
λ

x − e−
2ip
λ

x
)

× e−x2
[√

πe−
2mπ
λ

y − e−
2mπ
λ

yErfc
(
y − mπ

λ

)
− e

2mπ
λ

yErfc
(
y +

mπ

λ

)]
,
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θ12(M) =

∫
d3l

(2π)3
l2

(l+ p′)2 +m2
π

e−
l2

λ2

=

√
πλ4

(4π)2ip

∫ ∞

0

dxe−
2M
λ

x
(
e

2ip
λ

x − e−
2ip
λ

x
) (

3− 2x2
)
e−x2

,

θ13(M) =

∫
d3kd3l

(2π)6
1

(l+ p′)2 +m2
π

l2k2

(l+ k+ p′)2 − p2
e−

k2

λ2 e−
l2

λ2

=
πλ8

(4π)4

∫ ∞

0

dx

∫ ∞

0

dy
e

2ip
λ

y

ipM

(
e−

2M
λ

|x−y| − e−
2M
λ

(x+y)
)(

e
2ip
λ

x − e−
2ip
λ

x
)

×
(
3− 2x2

) (
3− 2y2

)
e−x2

e−y2 ,

θ14(M) =

∫
d3kd3l

(2π)6
1

(k+ l+ p′)2 − p2
1

k2 +m2
π

e−
k2

λ2 e−
l2

λ2

=
λ3

(4π)3

∫ ∞

0

dx
e

2ip
λ

x

ipx

(
e

2ip
λ

x − e−
2ip
λ

x
)

×
[√

πe−
2mπ
λ

x − e−
2mπ
λ

xErfc
(
x− mπ

λ

)
− e

2mπ
λ

xErfc
(
x+

mπ

λ

)]
e−x2

,

(A.48)

κ1 =

∫
d3k

(2π)3
e−

k2

λ2 =

√
πλ3

2(2π)2
,

ν1 =

∫
d3ld3k

(2π)6
[k · (l+ p)] e−

l2

λ2 e−
k2

λ2

(k+ l+ p′)2 − p2
,

ν2 =

∫
d3ld3k

(2π)6
l2

(k+ l+ p′)2 − p2
e−

l2

λ2 e−
k2

λ2 , (A.49)
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H1 ≡
∫

d3k

(2π)3
1

k2 +m2
π

e−
k2

λ2

=
1

4π

[
λ√
π
−mπ +

2√
π

m2
π

λ
− m3

π

λ2
+

4

3
√
π

m4
π

λ3
− 1

2

m5
π

λ4

]
+O

(
1

λ5

)
.

H3 ≡
∫

d3k

(2π)3
e−

k2

λ2 =
λ3

8π
√
π
=

(
λ3

4π

)(
1

2
√
π

)
,

H4(M) ≡
∫

dnl

(2π)n
1

l2 +m2
π

, ( without exponential factor)

H5(M) ≡
∫

d3k

(2π)3

∫
d3l

(2π)3
1

k2 − p2 − iε

1

(k− l)2 +m2
π

1

l2 +m2
π

e−
(k−l)2

λ2

=4
√
π

(
1

4π

)3 ∫ ∞

0

dy

∫ ∞

0

dx

x
e−x2−y2+2(β−M̃)x−2αy

(
e2xy − e−2xy

)
,

H6(M) ≡
∫

d3k

(2π)3

∫
d3l

(2π)3
1

l2 +m2
π

1

(k+ l)2 − p2 − iε
e−

k2

λ2

=λ2

(
1

4π

)2(
1

8π
√
π

)∫
d3x

1

|x|2
e−

x2

4
−M̃ |x|+β|x|,

H7(M) ≡
∫

d3k

(2π)3

∫
d3l

(2π)3
1

l2 +m2
π

k2

(k+ l)2 − p2 − iε
e−

k2

λ2

=λ4

√
π

2

(
1

4π

)3 ∫ ∞

0

dx
(
6− x2

)
e−

x2

4
−M̃x+βx,

(A.50)
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R1(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

2(k · l)
l2 +m2

π

e−
q2

λ2

(q+ l)2 − p2 − iε

=−W4(M)−W2 +H3H6(M) + (p2 +m2
π)W1(M),

R2(M) ≡
∫

d3kd3ld3q

(2π)9
1

(k+ l)2 − p2 − iε

2(k · l)
l2 +m2

π

1

q2 +m2
π

e−
k2

λ2
−q2

λ2

=H1

[
−H7(M) + (p2 +m2

π)H6(M)

+

∫
d3kd3l

(2π)6

(
1

l2 +m2
π

− 1

(k+ l)2 − p2 − iε

)
e−

k2

λ2

]
,

R3(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

2(k · l)
l2 +m2

π

e−
q2

λ2

(q+ l)2 − p2 − iε

1

q2 +m2
π

=−W12(M) +H3H5(M)−W10 + (p2 +m2
π)W9(M),

R4(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

4(k · l)(q · l)
l2 +m2

π

e−
q2

λ2

(q+ l)2 − p2 − iε

=W20(M)− 2(p2 +m2
π)W13(M) + 2 (W14 −W15(M)) +W17

+ (p2 +m2
π)

2W1(M)− (2p2 +m2
π)W2 + 2(p2 +m2

π)H3H6(M)

+H2
3H4(M)− 2H2

3H4(−ip). (A.51)
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W1(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

1

l2 +m2
π

e−
q2

λ2

(q+ l)2 − p2 − iε

=
2π

M̃
λ3

(
1

4π

)5 ∫ ∞

0

dx

∫ ∞

0

dze−
x2

4
− z2

4
+β(x+z)

(
e−M̃ |x−z| − e−M̃(x+z)

)
,

W2 ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

e−
q2

λ2

(q+ l)2 − p2 − iε

=λ5

(
1

4π

)4 ∫ ∞

0

dxe−
x2

2
+2βx,

W3(M) ≡
∫

d3kd3ld3q

(2π)9
1

l2 +m2
π

e−
k2

λ2 e−
q2

λ2

(q+ l)2 − p2 − iε

=

[∫
d3k

(2π)3
e−

k2

λ2

]∫
d3l

(2π)3

∫
d3q

(2π)3
1

l2 +m2
π

1

(q+ l)2 − p2 − iε
e−

q2

λ2

=H3H6(M),

W4(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

k2

l2 +m2
π

e−
q2

λ2

(q+ l)2 − p2 − iε

=
λ5

8

(
1

4π

)5
1

M̃

∫
d3x

∫ ∞

0

dz
1

|x|2
(
6− x2

)
e−

x2

4
− z2

4 eβ(|x|+z)

×
(
e−M̃ ||x|−z| − e−M̃(|x|+z)

)
,

W5(M) ≡
∫

d3kd3ld3q

(2π)9
1

(k+ l)2 − p2 − iε

1

l2 +m2
π

1

q2 +m2
π

e−
k2

λ2
−q2

λ2

=

∫
d3kd3l

(2π)6
e−

k2

λ2

(k+ l)2 − p2 − iε

1

l2 +m2
π

[∫
d3q

(2π)3
e−

q2

λ2

q2 +m2
π

]
=H1H6(M), (A.52)
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W6 ≡
∫

d3kd3ld3q

(2π)9
1

(k+ l)2 − p2 − iε

1

q2 +m2
π

e−
k2

λ2
−q2

λ2

=

[∫
d3k

(2π)3
e−

k2

λ2

][∫
d3l

(2π)3
1

l2 − p2 − iε

][∫
d3q

(2π)3
1

q2 +m2
π

e−
q2

λ2

]
=W7(−ip),

W7(M) ≡
∫

d3kd3ld3q

(2π)9
1

l2 +m2
π

1

q2 +m2
π

e−
k2

λ2
−q2

λ2

=

[∫
d3k

(2π)3
e−

k2

λ2

][∫
d3l

(2π)3
1

l2 +m2
π

][∫
d3q

(2π)3
1

q2 +m2
π

e−
q2

λ2

]
=H1H3H4(M),

W8(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

k2

l2 +m2
π

e−
q2

λ2

q2 +m2
π

=H3H7(M),

W9(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

1

l2 +m2
π

e−
q2

λ2

(q+ l)2 − p2 − iε

1

q2 +m2
π

=
2λ

M̃

(
1

4π

)4 ∫ ∞

0

dx

∫ ∞

0

dw

∫ ∞

0

dz

z
e−x2−z2−w2+2β(x+z)−2αw

×
(
e−2M̃ |x−z| − e−2M̃(x+z)

)(
e2zw − e−2zw

)
,

W10 ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

e−
q2

λ2

(q+ l)2 − p2 − iε

1

q2 +m2
π

=2λ3

(
1

4π

)4 ∫ ∞

0

dx

x
e−2x2+4βx

∫ ∞

0

dze−z2−2αz

(
e2xz − e−2xz

)
,

(A.53)
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W11(M) ≡
∫

d3kd3ld3q

(2π)9
1

l2 +m2
π

1

(q+ l)2 − p2 − iε

1

q2 +m2
π

e−
k2

λ2
−q2

λ2

=

[∫
d3k

(2π)3
e−

k2

λ2

]∫
d3ld3q

(2π)6
1

l2 − p2 − iε

1

(l− q)2 +m2
π

e−
q2

λ2

q2 +m2
π

=H3H5(M),

W12(M) ≡
∫
d3kd3ld3q

(2π)9
k2e−

k2

λ2

(k+ l)2 − p2 − iε

1

l2 +m2
π

1

(q+ l)2 − p2 − iε

e−
q2

λ2

q2 +m2
π

=
λ3

M̃

(
1

4π

)4 ∫ ∞

0

dx

∫ ∞

0

dz

z

(
3− 2x2

)
e−(x2+z2)e2β(x+z)

×
(
e−2M̃ |x−z| − e−2M̃(x+z)

)
×
[
e(α−z)2Er (α− z)− e(α+z)2Er (α+ z)

]
,

W13(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

k2

l2 +m2
π

e−
q2

λ2

(q+ l)2 − p2 − iε

=
2π

M̃
λ5π

(
1

4π

)7 ∫ ∞

0

dz

∫
d3x(6− x2)

1

|x|2
e−

x2

4
− z2

4
+β(|x|+z)

×
(
e−M̃ |x−z| − e−M̃(x+z)

)
,

W14 ≡
∫

d3kd3ld3q

(2π)9
k2

(k+ l)2 − p2 − iε

1

(q+ l)2 − p2 − iε
e−

k2

λ2
−q2

λ2

=λ7π

(
1

4π

)5 ∫ ∞

0

dx(6− x2)e−
x2

2
+2βx,

W15(M) ≡
∫

d3kd3ld3q

(2π)9
k2

(k+ l)2 − p2 − iε

1

l2 +m2
π

e−
k2

λ2
−q2

λ2

=H3H7(M), (A.54)
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W19 ≡
∫

d3kd3ld3q

(2π)9
1

(k+ l)2 − p2 − iε
e−

k2

λ2
−q2

λ2

=H2
3H4(M = −ip),

W20(M) ≡
∫

d3kd3ld3q

(2π)9
e−

k2

λ2

(k+ l)2 − p2 − iε

k2q2

l2 +m2
π

e−
q2

λ2

(q+ l)2 − p2 − iε

=
λ7

2

1

M̃

(
1

4π

)4 ∫ ∞

0

dx

∫ ∞

0

dz
(
3− 2x2

) (
3− 2z2

)
e−x2−z2+2β(x+z)

×
(
e−2M̃ |x−z| − e−2M̃(x+z)

)
, (A.55)

[U9H0X1] ≡
∫

d3kd3ld3q

(2π)9

[
1

l2 − p2 − iε
− 1

l2

]
× 1

(k+ l)2 − p2 − iε

[
1

(q+ l)2 − p2 − iε
− 1

q2 +m2
π

]
e−

k2

λ2
−q2

λ2

=∆W1(−ip)−∆W5(−ip),

[
H0X

2
1

]
≡
∫

d3kd3ld3q

(2π)9
1

l2 − p2 − iε

[
1

(k+ l)2 − p2 − iε
− 1

k2 +m2
π

]

×

[
1

(q+ l)2 − p2 − iε
− 1

q2 +m2
π

]
e−

k2

λ2
−q2

λ2 .

=W1(−ip)− 2H1H6(−ip) +H2
1H4(−ip),

[
U9X

2
1

]
≡
∫
d3kd3ld3q

(2π)9

[
1

l2 − p2 − iε
− 1

l2

][
1

(k+ l)2 − p2 − iε
− 1

k2 +m2
π

]

×

(
1

(q+ l)2 − p2 − iε
− 1

q2 +m2
π

)
e−

k2

λ2
−q2

λ2

=∆W1(−ip)− 2∆W5(−ip) +H2
1∆H4(−ip). (A.56)
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[H0J4] ≡
∫

d3kd3ld3q

(2π)9
e−

(l−q)2

λ2

q2 − p2 − iε

e−
(k−l)2

λ2

k2 − p2 − iε

1

l2
1

(k− l)2 +m2
π

=W9(M → 0)

=

(
1

4π

)3

eα
2

[
−
(

λ√
π
+ ip− 2p2√

πλ

)
log

(
mπ − ip

λ

)
+

λ√
π

(
−1 +

√
2− γE

2
− sinh−1(1)

)
+

mπ

2

− ip

{
1 + 2Catalan

π
+

1

2
(1 + γE)

}
+ i

8mπp

3
√
πλ

+

(
5− 4

√
2

6

)
m2

π√
πλ

+
p2

6
√
πλ

(
13 + 4

√
2 + 6γE + 12 sinh−1(1)

)]
+O

(
1

λ2

)
.

(A.57)

[H0V2] ≡
∫

d3kd3ld3q

(2π)9
e−

(l−q)2

λ2

q2 − p2 − iε

e−
(k−l)2

λ2

k2 − p2 − iε

1

l2 − p2 − iε

1

(k− l)2 +m2
π

=W9(M = −ip)

=

(
1

4π

)3

eα
2

[
−
(

λ√
π
+ ip− 8p2

3
√
πλ

)
log

(
mπ − 2ip

λ

)
+

λ√
π

(
−1 +

√
2− γE

2
− sinh−1(1)

)
+

mπ

2

− ip

{
3 + 2Catalan

π
+

1 + γE
2

}
+ i

8mπp

3
√
πλ

+

(
5− 4

√
2

6

)
m2

π√
πλ

+
2p2

9
√
πλ

{
31− 2

√
2 + 6γE + 12 sinh−1(1)

}]
+O

(
1

λ2

)
, (A.58)
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V8 =

∫
d3k

(2π)3

∫
d3l

(2π)3

∫
d3q

(2π)3
1

k2 − p2 − iε

1

l2 − p2 − iε

1

q2 − p2 − iε

× 1

(k− l)2 +m2
π

1

(l− q)2 +m2
π

e−
(k−l)2

λ2 e−
(l−q)2

λ2

=−
(

1

4π

)3
i

p
e

2m2
π

λ2

{
−Li2

(
mπ

2ip−mπ

)
− π2

12

+
4p

i
√
πλ

[√
2− log

(
mπ − 2ip

λ

)
− sinh−1(1)− γE

2

]}
+O(λ−2),

(A.59)

J2 =

∫
d3k

(2π)3

∫
d3l

(2π)3

∫
d3q

(2π)3
1

l2
1

k2 − p2 − iε

1

q2 − p2 − iε

× 1

(k− l)2 +m2
π

1

(l− q)2 +m2
π

e−
(k−l)2

λ2 e−
(l−q)2

λ2

=

(
1

4π

)3

e
2m2

π
λ2

{
log(4)

mπ − ip

+
4√
πλ

[
log

(
mπ − ip

λ

)
+ sinh−1(1) +

γ

2
−

√
2

]}
+O(λ−2),

(A.60)

J3 =

∫
d3k

(2π)3

∫
d3l

(2π)3

∫
d3q

(2π)3
1

k2 − p2 − iε

1

q2 − p2 − iε

× 1

(k− l)2 +m2
π

1

(l− q)2 +m2
π

e−
(k−l)2

λ2 e−
(l−q)2

λ2

=2λ

(
1

4π

)4

e
2m2

π
λ2
{
4
√
π sinh−1(1)

−2mππ

λ
[1− γE − log(4)] + 4π

mπ − ip

λ
log

(
mπ − ip

λ

)
+
4ip

λ

[
−2Catalan+ γ

√
π + π

(
1− 3

2
γ − 3 log(2)

)]
+
16ipmπ

√
π

λ2
+

4
√
πm2

π

λ2

[
−
√
2 + sinh−1(1)

]}
+O(λ−2), (A.61)
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J5 =
1

ω2

∫
d3k

(2π)3

∫
d3l

(2π)3

∫
d3q

(2π)3

(
1

l2 + ω2
− 1

l2

)
1

k2 − p2 − iε

1

q2 − p2 − iε

× e−
(k−l)2

λ2

(k− l)2 +m2
π

e−
(l−q)2

λ2

(l− q)2 +m2
π

=

(
1

4π

)3

e
2m2

π
λ2

{
1

ω

[
− 1

(mπ − ip)2
+

4√
πλ(mπ − ip)

]
+

1 + log(4)

3(mπ − ip)3

− 2√
πλ(mπ − ip)2

}
+O

(
λ−2, ω

)
, (A.62)

J6 =
1

ω2

∫
d3l

(2π)3

∫
d3k

(2π)3

(
1

l2 + ω2
− 1

l2

)
1

k2 − p2 − iε

e−
(k−l)2

λ2

(k− l)2 +m2
π

=

(
1

4π
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e
m2

π
λ2

[
1

ω
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− 1

mπ − ip
+

2√
πλ

)
+

1

2(mπ − ip)2

]
+O

(
λ−2, ω

)
,

(A.63)

J8 =
1

ω2

∫
d3l

(2π)3

(
1

l2 + ω2
− 1

l2

)
= − 1

4π

1

ω
, (A.64)
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Box0 =

∫ 1

−1

d cos θ

∫
d3k

(2π)3
1

(k2 + 2k · p) (k2 +m2
π) ((k− q)2 +m2

π)

=
1

8p3π

[
i

4
log2

(
1 +

4p2

m2
π

)
+ImLi2

(
imπp− 2p2

m2
π

)
+ ImLi2

(
2p2 − imπp

m2
π + 4p2

)]
, (A.65)

Box1 =

∫ 1

−1

d cos θ

∫
d3k

(2π)3
(1− cos θ)

(k2 + 2k · p) (k2 +m2
π) ((k− q)2 +m2
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=
1

8p3π
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1 +

p2
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π

2p2
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log

(
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m2
π
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4p4
+

m2
π

p2
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ImLi2

(
imπp− 2p2

m2
π

)
+ ImLi2

(
2p2 − imπp

m2
π + 4p2
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,

(A.66)

Box2 =

∫ 1

−1

d cos θ

∫
d3k

(2π)3
(1− cos θ)2
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=
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π
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3m2
π

p2
+

3

4

(
m4

π
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+
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π
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log2
(
4p2

m2
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+
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π
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(
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+
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m4
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+
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A.4 Table of Integral formulae

We show the table of integrals appear in loop integral. Intervals of integration
of all integrals are (0,∞)

Integrand Value

e−x2
log(x) −

√
π
4
[γE + 2 log(2)]

xe−x2
log(x) −γE

4

e−x2
Erfc(x) π

8

xe−x2
Erfc(x)

√
π
8
(2−

√
π)

Erfc(x) log(x)
√
π
8
(2−

√
π)

e−x2
Erfc(x) log(x) −πγE

16
+ 1

8
(−2Catalan− π log(2))

xe−x2
Erfc(x) log(x)

√
π

16

[(√
2− 2

)
γE − 4sinh−1(1) +

√
2 log(8)

]
[Erfc(x)]2

√
π
4

(
2−

√
2
)
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Appendix B

Wilsonian RG analysis for the
P waves

In this section, we show the results of Wilsonian RG analysis for the P-wave
nucleon-nucleon scattering including pions. The phase shift calculation for
P-wave has to be based on this analysis [21].

B.1 The RGEs for the P waves in the NEFT

without pions

The RGEs for the P waves in the NEFT without pions to the next-to-leading
order are obtained in [22] . With suitable redefinitions of dimensionless
coupling constants, they take the same form in all the channels:

dx

dt
= −3x− (x+ y + z)2, (B.1)

dy

dt
= −5y −

(
1

2
x2 + 2xy +

3

2
y2 + yz − 1

2
z2
)
, (B.2)

dz

dt
= −5z +

(
1

2
x2 + xy − xz +

1

2
y2 − yz − 3

2
z2
)
, (B.3)

where x, y, z are dimensionless coupling constants for the leading-order,
the next-to-leading-order, and the redundant operators. The parameter t is
defines as t = ln(Λ0/Λ). See Ref. [22] for details. Even though there is
a nontrivial fixed point, it does not seem to be important for the realistic
two-nucleon systems in the P waves.
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B.2 Pion exchange in the P waves

In the (naive) KSW power counting [11], the leading-order (Q0) contribution
consists solely of the single-pion exchange. The order Q contribution comes
from the potential-box diagram, and the four nucleon operators contribute
only in higher orders in Q. This is a very strange situation however. The
cutoff dependence of the potential-box diagram should be absorbed by con-
tact terms, but there seem no such terms at the order. Is the power counting
inconsistent?

The crucial observation is that the one-pion exchange in the P waves is
different from that in the S waves. Actually, the momentum-dependence of
the one-pion exchange in the P waves are

FγS =

(
2π2

MΛ

)(
3m2

π

2

)[
1

r13 +m2
π

− 1

r14 +m2
π

]
, (B.4)

F kj
γT =

(
2π2

MΛ

){
δkj
(
m2

π

2

)[
1

r13+m2
π

− 1

r14+m2
π

]
+

[
pk13p

j
13

r13+m2
π

− pk14p
j
14

r14+m2
π

]}
,

(B.5)

where ~pij ≡ ~pi − ~pj, rij ≡ |~pij|2 with ~pi being an external momentum, M
and Λ are the nucleon mass and the floating cutoff respectively. Note that
there is a minus sign between the t- and u-channel contributions. Because
of this sign, the leading-order terms with large momentum transfer cancel.
It effectively demotes the pion exchange to the order of the leading contact
interaction.

B.3 RGEs

In this section, we present sets of RGEs for the case including pions for all the
channels in the P waves up to the next-to-leading order. The contributions
from the contact interactions are the same as in Eqs. (B.1) – (B.3), so that we
show them as “(pionless).” The dimensionless coupling constant γ denotes
the strength of the pion exchange, and satisfies

d

dt
γ = −γ. (B.6)

An additional contact operator which is proportional to m2
π appears to

this order. The corresponding dimensionless coupling constant is denoted by
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u. The contribution from the contact terms to the RGE for u is given by

du

dt
= −3u− 2(x+ y + z)u. (B.7)

1P1 channel:
In this channel, there is no tensor force. Only the coupling u receives the

contribution from the pion exchange.

du

dt
= (pionless)+4(x+ y + z)γ. (B.8)

3P0 channel:
In this channel, the tensor force is attractive.

dx

dt
= (pionless)−8

3
(x+ y + z)γ − 16

9
γ2, (B.9)

dy

dt
= (pionless)− 4

15
(4x+ 9y − z)γ − 8

15
γ2, (B.10)

dz

dt
= (pionless)+

4

3
(x+ y − z)γ +

8

9
γ2, (B.11)

du

dt
= (pionless)+

4

3
(x+ y + z − 2u)γ +

16

9
γ2. (B.12)

3P1 channel:
In this channel, the tensor force is repulsive.

dx

dt
= (pionless)+

4

3
(x+ y + z)γ − 4

9
γ2, (B.13)

dy

dt
= (pionless)+

2

15
(4x+ 9y − z)γ − 2

15
γ2, (B.14)

dz

dt
= (pionless)−2

3
(x+ y − z)γ +

2

9
γ2, (B.15)

du

dt
= (pionless)+

4

3
uγ. (B.16)

3P2 channel:
In this channel, the tensor force is attractive.
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dx

dt
= (pionless)− 4

15
(x+ y + z)γ − 4

9
γ2, (B.17)

dy

dt
= (pionless)− 2

75
(4x+ 9y − z)γ +

22

75
γ2, (B.18)

dz

dt
= (pionless)+

2

15
(x+ y − z)γ +

2

9
γ2, (B.19)

du

dt
= (pionless)+

8

15

(
x+ y + z − 1

2
u

)
γ +

16

9
γ2. (B.20)
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