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Abstract. For a quantum walk on a graph, there exist many kinds of operators for the discrete-
time evolution. We give a general relation between the characteristic polynomial of the evolution
matrix of a quantum walk on edges and that of a kind of transition matrix of a classical random
walk on vertices. Furthermore we determine the structure of the positive support of the cube of
some evolution matrix, which is said to be useful for isospectral problem in graphs, under a certain
condition.
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1. Introduction

Recently many researchers in various fields pay attention
to the quantum walk on graphs. Outstanding reviews are
found, for example, in [1, 11, 12, 13, 20]. Roughly speaking,
a classical random walk on a graph presents the particle on
some vertex moves to its neighbour one with some probabil-
ity in one unit time, whereas a discrete-time quantum walk
presents the quantum wave on some oriented edge travels
to its neighbour one with some rate for its amplitude. In
this note, we say transition or adjacency for a matrix giv-
ing the hopping rate between two vertices; evolution for a
matrix giving the hopping rate between two oriented edges.
Until now, the spectrum of the Grover evolution matrix

U = U(G) of a regular graph G is expressed in terms
of that of the adjacency matrix A = A(G) of G (cf. [4, 7,
14]); moreover the spectra of the positive supportU+(G) of
U(G) and the positive support (U2)+(G) of its square of a
regular graphG are also expressed in terms of that ofA(G).
On the other hand, a mapping property from the spectrum
of the transition operator of a random walk on G to that of
the Szegedy evolution operator of a quantum walk, which
is introduced firstly in [18], is shown in [16]. One of our
main purposes in this note is to give a generalized formula
of the above.
Let us explain our setting. Graphs treated here are fi-

nite only. Let G = (V (G), E(G)) be a connected graph
(having possibly multiple edges and self-loops) with the
set V (G) of vertices and the set E(G) of unoriented edges.
We say two vertices u and v are adjacent if there exists
an unoriented edge joining u and v; uv ∈ E(G). Con-
sidering each edge in E(G) to have two orientations, we
can introduce the set of all oriented edges; we denote it by
D(G). For an oriented edge e ∈ D(G), the origin vertex
and the terminal one of e are denoted by o(e) and t(e),
respectively; the inverse edge of e is denoted by e−1. The
degree deg v = degG v of a vertex v of G stands for the

number of oriented edges whose origin is v. Throughout
this note, a connected graph G is often assumed to have
n vertices and m unoriented edges, V (G) = {v1, . . . , vn}
and D(G) = {e1, . . . , em, e−1

1 , . . . , e−1
m }. Now let us give

a weight w on D(G) such that w(e) is a nonzero complex
number for each e ∈ D(G). With respect to this weight,
we introduce three weighted matrices Sw

G = Sw, Dw
G = Dw

and Uw
G = Uw. Firstly Sw is a weighted transition (or

adjacency) n × n matrix, whose (u, v)-element stands for
the hopping rate of particle’s moving from u ∈ V (G) to
v ∈ V (G), defined as follows:

(Sw)u,v =


∑

o(e)=u,t(e)=v

w∗(e)w(e−1), if uv ∈ E(G),

0, otherwise,
(1)

where w∗(e) is the complex conjugate of a complex number
w(e). Secondly Dw is a weighted degree n × n diagonal
matrix, whose (u, u)-element stands for the weighted degree
of u ∈ V (G), defined as follows:

(Dw)u,v = δu,v ·
∑

o(e)=v

|w(e)|2. (2)

Lastly, for an arbitrary fixed real number s, Uw,s is a
weighted evolution 2m × 2m matrix, whose (e, f)-element
stands for the hopping rate of wave’s traveling from e ∈
D(G) to f ∈ D(G), defined as follows:

(Uw,s)e,f =

{
s · w(e)w∗(f−1)− δe−1,f , if o(e) = t(f),

0, otherwise.

(3)
Here δa,b is the Kronecker delta function, that is,

δa,b =

{
1, if a = b,

0, otherwise.

Uw,s is a utility operator in the following sense. Depending
on the choice of a weight w and a real number s, the matrix
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Uw,s may be an evolution operator of a quantum walk
or what is called an edge matrix, which are discussed in
Examples 1 or 2 in Section 2, respectively.
Our first theorem is a kind of spectral mapping property

between Sw and Uw,s as follows:

Theorem 1.1. For any finite graph G, any weight w and
any real number s, we have

det(λI2m −Uw,s
G )

= (λ2 − 1)m−n det
(
(λ2 − 1)In − s · λSw

G + s ·Dw
G

)
.

Setting some suitable weight w and integer s, we can easily
obtain from Theorem 1.1 all the previous results concerning
spectra of quantum walks found in [4, 7, 14, 16]. Details
will be discussed in Section 2.
As a branch of discrete spectral geometry, it is natural

to ask what geometric property of graphs effects on the
spectral structure of an evolution operator of a quantum
walk. Here we shall focus on an isospectral problem, which
is one of the actual and classical ones, in graph settings, to
answer the question raised by M. Kac [10]: Can one hear
the shape of a drum? More precisely, our interest is to
find an evolution operator of a quantum walk and a wider
class of graphs such that any pair of isospectral graphs in
such a class are always isomorphic. For a type of adjacency
matrix, which corresponds to a classical random walk, there
are many kinds of construction for a pair of isospectral
non-isomorphic graphs. Those can be seen, for instance,
in [19]. Recent years, for a type of evolution matrix for
a quantum walk, research studies on isospectral problems
are actively given in [4, 5, 6, 7, 15, 17]. In those, important
evolution matrices are as follows: the Grover matrix U,
its positive support U+, the positive support of its square
(U2)+ and that of the cube (U3)+. Here the Grover matrix
U = U(G) = (Ue,f )e,f∈D(G) of G is defined by

Ue,f =


2/degG o(e), if t(f) = o(e) and f ̸= e−1,

2/degG o(e)− 1, if f = e−1,

0, otherwise.

(4)

Moreover the positive support F+ = (F+
i,j) of a real matrix

F = (Fi,j) is defined as follows:

F+
i,j =

{
1, if Fi,j > 0,

0, otherwise.

To review briefly the results in [4] and so on, any pair of
regular graphs isospectral for U, U+ and (U2)+ are also
isospectral for the standard adjacency matrix A; thus each
of such matrices cannot distinguish two non-isomorphic
graphs. All of those can be easily obtained from Theo-
rem 1.1; details will be seen in Section 2. On the other
hand, Emms et al. pointed out the property of (U3)+, the
positive support of U cubed, is entirely different from that
ofU, U+ and (U2)+ in [4]: for the known family of strongly
regular graphs srg(n, k, r, s) up to n = 64, any two non-
isomorphic graphs have been verified, with help of com-
puters, to be non-isospectral for (U3)+. Here a strongly

regular graph srg(n, k, r, s) with parameters (n, k, r, s) is a
k-regular on n vertices such that any two adjacent vertices
have exactly r common neighbours and any two nonad-
jacent vertices have exactly s common neighbours. We
should remark that, any two graphs with same parameters
are isospectral for the standard adjacency matrix A, but
are not always isomorphic. Refer to a standard text book,
e.g. [3]. For example, it is known that the number of non-
isomorphic graphs srg(36, 15, 6, 6) is 32,548; thus the result
stated above says that all of these are naturally isospectral
for A, whereas any pair of those are non-isospectral for
(U3)+. Also, in [4], two 4-regular non-isomorphic graphs
on 14 vertices which are isospectral for (U3)+ are stated,
so the following interesting conjecture is proposed: For any
strongly regular graphs with the same set of parameters,
they are isospectral for (U3)+ if and only if they are iso-
morphic.
In this note, we shall give a kind of evidence that the

structure of (U3)+ is different from that ofU+ orA but not
so far. Our second theorem is, for regular graphs with their
girth greater than 4, to illustrate the difference between
(U3)+ and a polynomial of U+ in a simple form. Here the
girth g(G) of a graph G is the length of a shortest cycle in
G. Detail can be seen in Section 3.

Theorem 1.2. Let G be a connected k-regular graph such
that k ≥ 3 and its girth g(G) ≥ 5. The positive support
(U3)+ is of the form

(U3)+ = (U+)3 + TU+,

where TU stands for the transpose of U.

The rest of this note is organized as follows. In Sec-
tion 2, after giving the proof of Theorem 1.1, we state, as
some application, some characteristic polynomials and the
spectra of evolution matrix and its positive support. In
Section 3, we treat the positive support of the cube of the
Grover matrix and give the proof of Theorem 1.2.

2. Proof and application of
Theorem 1.1

Suppose that G is a connected graph with n vertices and m
unoriented edges as is in Section 1. Let us first introduce a
kind of coboundary operator Aw and a kind of shift oper-
ator P as follows: Aw is a 2m× n complex valued matrix
such that

(Aw)e,v = w(e−1) · δt(e),v (5)

and P is a 2m× 2m-matrix such that

Pe,f = δe−1,f . (6)

We write (Aw)∗ for the adjoint matrix, which is called also
the conjugate transpose matrix, of A. It is easy to check
that P2 = I2m and that

((Aw)∗)Aw = Dw, (7)

((Aw)∗)PAw = Sw, (8)

P (sAw((Aw)∗)− I2m) = Uw,s, (9)
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where s is a fixed real number; Dw, Sw and Uw,s are de-
fined as in Section 1.
We shall give the proof of Theorem 1.1.

Proof of Theorem 1.1. It holds that

det(λI2m −Uw,s) = det (λI2m −P (sAw((Aw)∗)− I2m))

= det (λI2m +P− sPAw((Aw)∗))

= det(λI2m +P) det
(
I2m − sPAw((Aw)∗)(λI2m +P)−1

)
for any generic λ. Here we should remark that

(λI2m +P)(λI2m −P) = (λ2 − 1)I2m

and that

det(Im −KL) = det

((
Im −K
0n,m In

)(
Im K
L In

))
= det

((
Im K
L In

)(
Im −K
0n,m In

))
= det(In − LK)

for any m × n-matrix K and any n × m-matrix L. Then
we can see it holds that

det
(
I2m − sPAw((Aw)∗)(λI2m +P)−1

)
= det

(
In − (s/(λ2 − 1))((Aw)∗)(λI2m −P)PAw

)
= det

(
In − (s/(λ2 − 1))(λ((Aw)∗)PAw − ((Aw)∗)Aw)

)
.

By (7) and (8), we obtain

det(λI2m −Uw,s
G )

= (λ2 − 1)m−n det
(
(λ2 − 1)In − s · λSw

G + s ·Dw
G

)
,

where both sides of the above are the polynomials of λ of
order 2m. This completes the proof.

Example 1. When s = 2 and Dw = In, that is,∑
o(e)=v

|w(e)|2 = 1

for every vertex v ∈ V (G), we can easily check that Uw,2

becomes a unitary matrix. Thus it may be said that Uw,s

presents various types of evolution operators of quantum
walks. Actually we denote by Cv a (local) unitary operator
as follows: for each vertex v ∈ V (G),

(Cv)e,f =

{
2w(e)w∗(f)− δe,f , if v = o(e) = o(f),

0, otherwise.

Restricting the set of oriented edges to Dv(G) = {e; o(e) =
v}, we can naturally identify Cv with 2wvw

∗
v − Idv ,

where dv = degG v and wv is a column vector wv =
T (w(e1), . . . , w(edv )) such that ek ∈ Dv(G) for each k. The
expression above implies the reflection operator in the dv-
dimensional complex vector space. In this sense, Cv is

often called a local quantum coin at v of reflection type. It
should be noted that

2Aw((Aw)∗)− I2m = P

( ⊕
v∈V (G)

Cv

)
P

in (9); thus it holds that

Uw,2 =

( ⊕
v∈V (G)

Cv

)
P.

Hence the quantum walk induced by such a discrete time
evolution Uw,2 is so called a coined quantum walk ([1, 11,
12]). We shall exhibit some illustrative examples below.
Let p : D(G) → (0, 1] be a transition probability such

that ∑
e : o(e)=v

p(e) = 1,

for every vertex v ∈ V (G). A classical random walk on G is
defined by this probability p, that is, a particle at v = o(e)
can be considered to move to a neighbour t(e) along the
oriented edge e with probability p(e) in one unit time. For
a finite graph G, we consider the transition matrix Tp such
that Tp is an n× n-matrix and

(Tp)u,v =


∑

o(e)=u,t(e)=v

p(e), if uv ∈ E(G),

0, otherwise.

With respect to the transition probability of a classical ran-
dom walk, the evolution matrix of the Szegedy walk, which
is a kind of quantum walk introduced in [18], is defined as
follows (cf. [16, 18]): Usz is a 2m× 2m-matrix and

(Usz)e,f =

{
2
√
p(e)p(f−1)− δe−1,f , if t(f) = o(e),

0, otherwise.

(10)
Now let us set a weight w as w(e) =

√
p(e) and s = 2 in

Theorem 1.1. Thus, by (1)–(3), we obtain that Dw = In,
Uw,s = Usz and

(Sw)u,v =


∑

o(e)=u,t(e)=v

√
p(e)p(e−1), if uv ∈ E(G),

0, otherwise.

(11)
We denote Sw in (11) by Sp here. Thanks to Theorem 1.1,
we obtain the following formula, which recovers the result
for finite graphs in [16]:

Corollary 2.1 (cf. [16]). For the Szegedy matrix Usz of
G, we have

det(λI2m −Usz) = (λ2 − 1)m−n det((λ2 + 1)In − 2λSp).

For a transition probability p, if there exists a positive
valued function m : V (G) → (0,∞) such that

m(o(e))p(e) = m(t(e))p(e−1)

for every oriented edge e ∈ D(G), p is said to be reversible;
the function m is said to be a reversible measure for p or



106 Journal of Math-for-Industry, Vol. 5 (2013B-3)

for the random walk, which is unique, if exists, up to a
multiple constant. If p is reversible, it is easy to check
that MTpM

−1 = Sp, where (M)u,v =
√
m(u) · δu,v; hence

Tp and Sp are isospectral. As a representative examples
of a reversible random walk, we may display the simple
random walk on G, which is induced by p such that p(e) =
1/degG o(e) for every e ∈ D(G). Obviously m(u) = degG u
is a reversible measure for such p. We denote the transition
matrix for the simple random walk by T0. The Szegedy
matrix with respect to the simple random walk is called
the Grover matrix, whose original form can be seen in [21].
In fact, setting p(e) = 1/degG o(e) in (10), we can get (4)
introduced in Section 1. For the simple random walk T0,
the standard adjacency matrix A can be expressed as

A = DT0,

where D is the standard degree matrix such that

(D)u,v = degG u · δu,v. (12)

Combining the above with Corollary 2.1, we have also the
following formula, which recovers the results seen in [4, 14,
16]:

Corollary 2.2 (cf. [4, 14, 16]). For the Szegedy matrix
Usz with respect to a reversible random walk Tp, we have

det(λI2m −Usz) = (λ2 − 1)m−n det((λ2 + 1)In − 2λTp).

In addition, for the Grover matrix U, we can express the
above in terms of A as

det(λI2m −U) =
(λ2 − 1)m−n det((λ2 + 1)D− 2λA)∏

v∈V (G) degG v
.

Example 2. Here let us set a weight w as w(e) = 1 for any
oriented edge e ∈ D(G) and s = 1; for such w and s, we
denote Sw, Dw and Uw,s by S1, D1 and U1,1, respectively.
Thus, by (1)–(3), we obtain the following: S1 becomes the
standard adjacency matrix A, that is,

(A)u,v =


∑

o(e)=u,t(e)=v

1, if uv ∈ E(G),

0, otherwise;

D1 becomes the standard degree matrix D as is seen in
(12); U1,1 becomes a 2m× 2m-matrix such that

(U1,1)e,f =

{
1, if o(e) = t(f) and f ̸= e−1,

0, otherwise.
(13)

For any graph G such that minv∈V (G) degG v ≥ 2, we
can easily see that the positive support U+ of the the
Grover matrix U introduced in Section 1 coincides with
U1,1 in (13). In the context of the Ihara zeta function
of a graph (see [2, 8, 9, 14]), the concept of edge ma-
trix plays an important role. For a 2m × 2m matrix
B = B(G) = (Be,f )e,f∈D(G) such that

Be,f =

{
1, if t(e) = o(f),

0, otherwise,

the edge matrix of G is defined as B−P, which obviously
coincides with TU1,1. As is also shown in [15], we have

B−P = TU+ (14)

for any graph G such that minv∈V (G) degG v ≥ 2. Summa-
rizing the above with Theorem 1.1, we obtain the following
formula, which recovers the results in [4, 7, 14]:

Corollary 2.3 (cf. [4, 7, 14]). For a graph G such that
minv∈V (G) degG v ≥ 2 and the positive support U+ of the
Grover matrix U, we have

det
(
λI2m −U+

)
= (λ2 − 1)m−n det

(
(λ2 − 1)In − λA+D

)
.

In addition, if G is a connected k-regular graph with k ≥ 2,
U+ has 2n eigenvalues of the form

λ =
λA

2
±
√
−1
√
k − 1− λ2

A/4,

where λA is an eigenvalue of the matrix A. The remaining
2(m−n) eigenvalues ofU+ are ±1 with equal multiplicities.

On the positive support (U2)+ of the Grover matrix U
squared for a regular graph, its eigenvalues are expressed by
those of A in [4]; another proof by using different methods
is also given in [7].

Theorem 2.4 ([4]). Let G be a connected k-regular graph
with n vertices and m edges. Suppose that k ≥ 3. The
positive support (U2)+ has 2n eigenvalues of the form

λ =
λ2
A − 2k + 4

2
±
√
−1λA

√
k − 1− λ2

A/4

The remaining 2(m− n) eigenvalues of U+ are 2.

Let us close this section with giving still another proof
of Theorem 2.4 in virtue of expressing the characteristic
polynomial of (U2)+ in terms of A directly.

Proof of Theorem 2.4. It is easy to see that

(U2)+ = (U+)2 + I2m

for k ≥ 3 (cf. [7]), so we have

det(λI2m − (U2)+) = det(λI2m − ((U+)2 + I2m))

= det((λ− 1)I2m − (U+)2).

Moreover it follows from Corollary 2.3 that

det(λI2m − (U)+)

= (λ2 − 1)m−n · det((λ2 + k − 1)I2m − λA),

where D = kIn since G is k-regular. Now let us denote
det(λI −M) by φ(λ;M) for a square matrix M. Then it
holds that φ(µ;U+) = det(µI2m −U+) and φ(−µ;U+) =
(−1)2m det(µI2m +U+). So we have

φ(µ;U+)φ(−µ;U+) = det(µI2m −U+) det(µI2m +U+)

= det(µ2I2m − (U+)2).
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Simultaneously we have

φ(µ;U+)φ(−µ;U+)

= (µ2 − 1)2m−2n · det
(
(µ2 + k − 1)2I2m − µ2A2

)
.

Here putting µ2 = λ− 1, we get

det(λI2m − (U2)+) = det((λ− 1)I2m − (U+)2)

= (λ− 2)2m−2n · det((λ+ k − 2)2I2m − (λ− 1)A2).

Therefore, it follows that

det(λI2m − (U2)+)

= (λ− 2)2m−2n

×
∏

λA∈Spec(A)

(λ2 + (2k − 4− λ2
A)λ+ (k − 2)2 + λ2

A).

Solving λ2 + (2k − 4 − λ2
A)λ + (k − 2)2 + λ2

A = 0, we can
get the result.

As a conclusion in this section, we may state the fol-
lowing: if two k-regular graphs which are isospectral for
A, then they are also isospectral for U, U+ and (U2)+;
thus each of such matrices cannot distinguish two non-
isomorphic graphs.

3. The positive support of the cube of
the Grover matrix of a graph

Let G be a connected graph. Then a path P of length ℓ
in G is defined as a sequence P = (e1, . . . , eℓ) of ℓ ori-
ented edges in D(G) such that t(ei) = o(ei+1) (1 ≤ i ≤
ℓ − 1). We may write P = (v0, e1, v1, . . . , vℓ−1, eℓ, vℓ),
if o(ei) = vi−1 and t(ei) = vi for i = 1, . . . , ℓ, The
path P is called a cycle if v0 = vℓ. In addition, a cy-
cle C = (v0, e1, v1, . . . , vℓ−1, eℓ, v0) is called essential if
e−1
1 ̸= eℓ and all the vertices of C are mutually distinct.
The girth g(G) of a graph G is defined as the minimum
length of essential cycles in G.
Assuming that G is a connected k-regular graph with

k ≥ 3 and g(G) ≥ 5, we shall give the proof of Theorem 1.2
as is seen in Section 1.

Proof of Theorem 1.2. Here G is a connected k-regular
graph (k ≥ 3) with n vertices and m edges. As is in Ex-
ample 2, we shall put w as w(e) = 1 for any oriented edge
e ∈ D(G) and s = 1. Let us denote Aw in (5) by TDh

and DhP by Dt, where P is defined as in (6) in Section 2.
Hence they can be expressed as

(Dh)v,e =

{
1, if t(e) = v,

0, otherwise,

(Dt)v,e =

{
1, if o(e) = v,

0, otherwise.

In addition, it follows from (1)–(3) and Example 2 that

Dh(
TDt) =

TA and (TDt)Dh = TB

and that

U =
2

k
(TDt)Dh −P.

We shall consider the structure of the positive support
(U3)+ of the cube of the Grover matrix U. Since all
nonzero elements of B and TU are in the same place, all
nonzero elements of B3 and TU3 are in the same place;
we treat B3 and TU3 in parallel. Let us denote here
TU+ = B−P in (14) by Q. Thus we have

B3 = (Q+P)3

= Q3 +Q2P+QPQ+PQ2

+QP2 +P2Q+PQP+P3.

Now we divide the relation of oriented edges e and f of
the nonzero (e, f)-element of (TU)3 into the eight cases in
Figure 1. In fact, the cases I, II, III, IV, V, VI, VII and
VIII correspond to the matrices Q3, Q2P, QPQ, PQ2,
QP2, P2Q, PQP and P3, respectively.
For a path P = (e1, . . . , eℓ) in G, we say that P is an

(e1, eℓ)-path; if e
−1
i+1 = ei for some i (1 ≤ i ≤ ℓ − 1), we

say that a path P = (e1, . . . , eℓ) has a backtracking. Let
us count the number of backtrackings in an (e, f)-path in
each case. In the case I, an (e, f)-path has no backtracking;
in the cases II, III and IV, an (e, f)-path has exactly one
backtracking; in the cases V, VI and VII, an (e, f)-path
has exactly two backtrackings; in the case VIII, an (e, f)-
path has exactly three backtrackings. Then we can see that
the elements of TU3 corresponding to nonzero elements of
Q2P, QPQ, PQ2 and P3 are negative. Furthermore, the
elements of TU3 corresponding to nonzero elements of Q3,
QP2, P2Q and PQP are positive.
If t(e) = o(f), then nonzero (e, f)-elements of QPQ,

QP2 and P2Q are overlapped; so we have

(TU3)e,f =
2

k

(
2

k
− 1

)
2

k
· (k − 2) + 2 · 2

k

(
2

k
− 1

)2

= 0

for such e and f . Thus all positive elements of (TU)3 and
Q3 +PQP are in the same place; it holds that

(TU3)+ = (Q3 +PQP)+. (15)

We first show that nonzero element ofQ3 and PQP are not
overlapped. Let us assume that a nonzero (e, f)-element of
Q3 andPQP are overlapped: there exists an essential cycle
of length 4 from e to f in G, which contradicts g(G) > 4.
Next we show that all nonzero elements of two matrices Q3

and PQP are 1. It is trivial that all nonzero elements of
PQP are 1. Then let us assume that an (e, f)-element of
Q3 is not less than 2: there exist two distinct (e, f)-paths
P = (e, g, h, f) and Q = (e, g1, h1, f) in G and then the
cycle (g, h, h−1

1 , g−1
1 ) is an essential cycle of length 4 in G,

which contradicts the assumption g(G) > 4.
Thus the expression (15) becomes the following form:

(U3)+ = (TQ)3 +PTQP.

Since TQ = TB−P = U+, we have

(U3)+ = (U+)3 +PU+P.
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V :
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�

VI :
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-

VII :

f
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�

VIII :
eg - g�
f

Figure 1: The nonzero (e, f)-array of (TU)3.

and

PU+P = P(TDtDh −P)P = P(TDt)DhP−P3

= TDhDt −P = TU+.

Hence we obtain

(U3)+ = (U+)3 + TU+.
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