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Abstract. We prove formulae of reconstructing the order of fractional derivative in time in the
fractional diffusion equation by time history at one fixed spatial point. The proof is based on
asymptotics of the solution as t → 0 or t → ∞. The order is important for evaluating the anomaly
of the diffusion in heterogeneous medium, and in particular, the order determines the decay rate of
solution for large t. We show numerical tests for our reconstruction formula.
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1. Introduction

Recently anomalous diffusion phenomena have attracted
great attention, which show different aspects from the
classical diffusion. For example, Adams and Gelhar [1]
pointed that observation data in the saturated zone of an
actual aquifer deviate from simulated results by the classi-
cal advection-diffusion equation. Some anomalous diffusion
can be interpreted as slow diffusion, and is characterized
by the long-tailed profile in spatial distribution of densities
as the time passes. Also see Berkowitz, Cortis, Dentz and
Scher [4].
For the anomalous diffusion, a microscopic model was

proposed by the continuous-time random walk. That is, let
x(t), t > 0 be the probability density function of location of
particle at time t, and let us assume that the mean square
displacement grows as

⟨x2(t)⟩ ∼ tα, (1.1)

where α > 0 is a constant (e.g., Metzler and Klafter [14],
Sokolov, Klafter and Blumen [19]). The case α = 1 corre-
sponds to the classical diffusion, and the transport phe-
nomenon exhibits sub-diffusion for α < 1, while super-
diffusion for α > 1. Thus the determination of α is needed
for suitable simulation of the anomalous diffusion and there
are many column experiments on reactive flow in heteroge-
neous media (e.g., Hatano and Hatano [9]). On the other
hand, the anomalous diffusion subject to (1.1) can be de-
scribed by a macroscopic model (e.g., [14, 19]) which is
called a fractional diffusion equation. Here we consider a
simplified form:

∂α
t u(x, t) = ∆u(x, t), x ∈ Ω, (1.2)

where Ω ⊂ Rd, and we set

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

(t− s)−α ∂u

∂s
(x, s) ds,

where Γ(1 − α) is the gamma function. Then u(x, t) de-
scribes the probability of finding a particle at location x
and time t.

First we discuss the asymptotic behavior of u(x, t) to
clarify the slow diffusion by comparing with other model
equations. First we consider

∂α
t u = ∆u, x ∈ Rd, t > 0. (1.3)

Henceforth by p(x, y, t) we denote the fundamental solu-
tion to the corresponding equation, and for two functions
f and g in y, we understand by f ∼ g that there exists
a constant C > 0 such that C−1f(y) ≤ g(x) ≤ Cf(y) for
all y under consideration. Moreover let C, Ck denote posi-
tive constants. Then for example by (3.7) in Eidelman and
Kocubei [7], we have

p(x, y, t) = π− d
2 |x− y|−dH20

12

[
|x−y|2
4tα | (1, α)

|
(
d
2 , 1
)
, (1, 1)

]

∼ C0|x− y|−
d(1−α)
2−α t

−αd
2(2−α) exp

−C1

(
|x− y| 2

α

t

) 1
2
α

−1

 ,

as |x−y|2
tα → ∞. (1.4)

Here H is the H-function (see Kilbas, Srivastava and
Trujillo [11], Podlubny [15]).

Next we will consider the classical diffusion equation,
that is, α = 1:

∂tu(x, t) = ∆u(x, t), x ∈ Rd, t > 0.

Then

p(x, y, t) ∼ t−
d
2 exp

(
−C2

(
|x− y|2

t

))
(1.5)
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(see e.g., Davies [6]). Finally as diffusion process on a frac-
tal, we discuss ∂t−∆ on the Sierpinski gasket E. We know

p(x, y, t) ∼ t−
ds
2 exp

(
−C3

(
|x− y|dw

t

) 1
dw−1

)
,

x, y ∈ E, 0 < t < 1 (1.6)

(e.g., Barlow and Perkins [3]). Here

ds =
2 log 3

log 5
: the spectral dimension

dw =
log 5

log 2
> 2 : the walk dimension.

Also we refer to Kigami [10] and Kumagai [12].
If 0 < α < 1, then the aymptotic behavior (1.4) es-

sentially differs from (1.5) and (1.6) because of the factor

|x − y|−
d(1−α)
2−α . This factor means that some singularity

at x remains for positive time t > 0 of the fundamental
solution which has singularity at x at time t = 0. This
means that particles cannot diffuse rapidly, which can ex-
plain as a character of the slow diffusion. On the other
hand, the asymptotic formulae (1.5) and (1.6) mean that
for classical diffusion equation and the diffusion process on
Sierpinski gasket, no singulariy at x appear for positive t
by immediate diffusion.
Thus α ∈ (0, 1) is an important index characterizing the

slow diffusion. In this paper, we discuss determination of α,
and establish formulae of determining 0 < α < 1 by obser-
vation data u(x0, t), t > 0 with fixed x0 ∈ Ω. Our formulae
may give easy way for determining α, e.g., by experiments
in the flow cells or columns. This paper is composed of
five sections. In Section 2 we show main results and Sec-
tion 3 is devoted to the proof. In Section 4 we discuss an
error analysis of the formula at t → 0 for noisy data and
in Section 5, we make numerical testing.

2. Main result

Consider

∂α
t u(x, t) = (Lu)(x, t)

≡
d∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u(x, t),

x ∈ Ω, 0 < t < T, (2.1)

∂Lu(x, t) + σ(x)u(x, t) = 0, x ∈ ∂Ω, 0 < t < T,

and
u(x, 0) = a(x), x ∈ Ω.

Here Ω ⊂ Rd is a bounded domain with smooth boundary
∂Ω, ν(x) = (ν1(x), . . . , νd(x)) denotes the unit outward
normal vector to ∂Ω at x and aij , c are sufficiently smooth.
Moreover aij = aji, 1 ≤ i, j ≤ d are of C1(Ω), c ∈ C(Ω),
c(x) ≤ 0 for x ∈ Ω, σ ∈ C∞(∂Ω), ≥ 0, ̸≡ 0 on ∂Ω, there
exists a constant ν > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ ν
d∑

j=1

ξ2j , x ∈ Ω, ξ1, . . . , ξd ∈ R,

and we set

∂Lv(x) =
d∑

i,j=1

aij(x)
∂v

∂xj
(x)νi(x), x ∈ ∂Ω.

Inverse Problem. Let x0 ∈ Ω be fixed. Determine α ∈
(0, 1) from observation data

u(x0, t) for small t or large t.

Theorem 1. (i) We assume that

a ∈ C∞
0 (Ω), La(x0) ̸= 0.

Then

α = lim
t→0

t∂u∂t (x0, t)

u(x0, t)− a(x0)
. (2.2)

(ii) We assume that

a ∈ C∞
0 (Ω), a ≥ 0 or ≤ 0, ̸≡ 0 on Ω.

Then

α = − lim
t→∞

t∂u∂t (x0, t)

u(x0, t)
. (2.3)

Remark 1. (i) gives an identification formula for the order
α by data near t = 0, while (ii) is for data for large t > 0.
The condition a ∈ C∞

0 (Ω) means that a = 0 near the
boundary ∂Ω and a is infinitely many times differentiable
in Ω. For example we can take a very smooth bell-shaped
function as a(x).
As is seen from the proof in section 3, we see the fol-

lowing: for any fixed small δ > 0, there exists a constant
C0 > 0 depending on aij , c, a, Ω, σ, such that∣∣∣∣∣

(
−
T ∂u

∂t (x0, T )

u(x0, T )

)
− α

∣∣∣∣∣ ≤ C0

Tα

for any α ∈ [0, 1 − δ]. This is useful for estimating errors
when we approximate α by setting t = T :

−
T ∂u

∂t (x0, T )

u(x0, T )
.

3. Proof of Theorem 1

Let L2(Ω), Hℓ(Ω), ℓ ∈ N, denote usual Lebesgue space and
Sobolev space and let us set

(a, b) =

∫
Ω

a(x)b(x) dx, ∥a∥ = (a, a)
1
2 .

Let {φn}n∈N be the set of all the eigenfunctions of L with
the boundary condition ∂Lu + σu = 0; that is, Lφn =
−λnφn, φn ̸= 0, and ∂Lφn(x) + σ(x)φn(x) = 0 for x ∈
∂Ω. Here and henceforth we number the eigenvalues with
multiplicities as

λ1 ≤ λ2 ≤ · · · ,
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and we choose φn such that (φn, φn) = 1 and (φn, φm) = 0
if n ̸= m. Then we can prove

λn > 0, n ∈ N.

In fact, λn ≥ 0 can be first proved as follows. Let Lu =
−λnu, ∂Lu + σu = 0 and u ̸≡ 0. Then, multiplying Lu =
λnu by u and integrating by parts, and using the boundary
condition, σ ≥ 0 and c ≤ 0, we obtain

− λn∥u∥2

=

∫
Ω

 d∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ cu

u dx

=

∫
Ω

−
d∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
+ cu2

 dx+

∫
∂Ω

(∂Lu)u dS

=

∫
Ω

−
d∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
+ cu2

 dx−
∫
∂Ω

σu2 dS

≤ 0.

Therefore by u ̸≡ 0, we see that λn ≥ 0. Moreover let
Lu0 = 0 in Ω and ∂Lu0 + σu0 = 0 on ∂Ω. Then by the
above equalities, we have

∫
Ω

−
d∑

i,j=1

aij
∂u0

∂xi

∂u0

∂xj
+ cu2

0

 dx−
∫
∂Ω

σu2
0 dS = 0,

which implies ∇u0 = 0 in Ω. Hence u0 is a constant func-
tion, and

∫
∂Ω

σu2
0 dS = 0. Since σ ̸≡ 0 on ∂Ω, we see that

u0 = 0. This means that 0 can not be an eigenvalue. Thus
we have proved that λn > 0, n ∈ N.
By a ∈ C∞

0 (Ω), we can see the following: For any ℓ ∈ N,
there exists a constant C(ℓ) > 0 such that

|(a, φn)| ≤
C(ℓ)

|λn|ℓ
, n ∈ N (3.1)

and
∞∑

n=1

−λn(a, φn)φn(x0) = La(x0),

∞∑
n=1

(a, φn)φn(x0) = a(x0).

(3.2)

Moreover Lφn = −λnφn in Ω implies ∥Lmφn∥ = |λn|m,
m ∈ N. By the regularity of elliptic equation (e.g., Gilbarg
and Trudinger [8]), we see that there exists a constant
C1 > 0 such that ∥φn∥H2m(Ω) ≤ C1(∥Lmφn∥+∥φn∥). Here
∥φn∥H2m(Ω) is the norm in H2m(Ω) (e.g., Adams [2]). By

the Sobolev embedding theorem (e.g., [2]), if m > d
4 , then

there exists a constant C2 = C2(m) > 0 such that

max
x∈Ω

|φn(x)| ≤ C2∥φn∥H2m(Ω) ≤ C1C2(|λn|m+1), n ∈ N.

Hence there exist constants κ > 0 and C3 > 0 such that

|φn(x0)| ≤ C3|λn|κ, n ∈ N. (3.3)

Moreover
|λn| ≤ C4n

2
d (3.4)

(e.g., Courant and Hilbert [5]). Therefore, by (3.1)–(3.3),
similarly to Sakamoto and Yamamoto [18], by the Fourier
method, we can prove

u(x0, t) =
∞∑

n=1

(a, φn)φn(x0)Eα,1(−λnt
α), 0 < t < T, (3.5)

where the series is convergent in C[0, T ]. Here the Mittag-
Leffler function is defined as follows:

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C

(e.g., Podlubny [15]). Therefore

∂u

∂t
(x0, t) =

∞∑
n=1

(a, φn)φn(x0)
d

dt
Eα,1(−λnt

α)

=

∞∑
n=1

−λn(a, φn)φn(x0)t
α−1Eα,α(−λnt

α),

0 < t < T (3.6)

(e.g., formula (1.83) on p. 22 in [15]). On the other hand,

Eα,α(−λnt
α) =

∞∑
k=0

(−λnt
α)k

Γ((k + 1)α)

=
1

Γ(α)
+ tα

(
Eα,α(−λnt

α)− Γ(α)−1

tα

)
≡ 1

Γ(α)
+ tαrn(t),

where rn(t) is continuous at t = 0 and limt→0 rn(t) exists.
Hence

∂u

∂t
(x0, t) =

( ∞∑
n=1

−λn(a, φn)φn(x0)

)
tα−1

Γ(α)

+

( ∞∑
n=1

−λn(a, φn)φn(x0)rn(t)

)
t2α−1,

and

lim
t→0

t1−α ∂u

∂t
(x0, t)

=
1

Γ(α)

( ∞∑
n=1

−λn(a, φn)φn(x0)

)

+ lim
t→0

tα

( ∞∑
n=1

−λn(a, φn)φn(x0)rn(t)

)
. (3.7)

By [15] (formula (1.148) on p. 35), we have

|rn(t)| =

∣∣∣∣∣
∞∑
k=1

(−λn)
ktα(k−1)

Γ((k + 1)α)

∣∣∣∣∣ = |λn|

∣∣∣∣∣
∞∑
k=0

(−λnt
α)k

Γ(kα+ 2α)

∣∣∣∣∣
= |λn||Eα,2α(−λnt

α)| ≤ |λn|, t ≥ 0, n ∈ N.
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Hence, by (3.1) and (3.3),∣∣∣∣∣
∞∑

n=1

−λn(a, φn)φn(x0)rn(t)

∣∣∣∣∣ ≤
∞∑

n=1

|λn|2|(a, φn)φn(x0)|

≤
∞∑

n=1

|λn|2
C(ℓ)

|λn|ℓ
C3|λn|κ.

By (3.4), we take sufficiently large ℓ ∈ N to have

max
0≤t≤T

∣∣∣∣∣
∞∑

n=1

−λn(a, φn)φn(x0)rn(t)

∣∣∣∣∣ < ∞. (3.8)

Hence, by using (3.2), equation (3.7) yields

lim
t→0

t1−α ∂u

∂t
(x0, t) =

La(x0)

Γ(α)
. (3.9)

On the other hand, we have

Eα,1(−λnt
α) = 1− λnt

α

Γ(α+ 1)
+ t2α

∞∑
k=2

(−λn)
ktα(k−2)

Γ(αk + 1)

= 1− λnt
α

Γ(α+ 1)
+ t2αλ2

nEα,2α+1(−λnt
α).

Therefore, using (3.2), we have

u(x0, t) =
∞∑

n=1

(a, φn)φn(x0) +
∞∑

n=1

−λn(a, φn)φn(x0)

Γ(α+ 1)
tα

+ t2α
∞∑

n=1

λ2
nEα,2α+1(−λnt

α)(a, φn)φn(x0)

= a(x0) +
La(x0)

Γ(α+ 1)
tα + t2αr̃(t).

Here by (3.1), we see that sup0≤t≤T |r̃(t)| < ∞. Conse-
quently

lim
t→0

t−α(u(x0, t)− a(x0)) =
La(x0)

Γ(α+ 1)
. (3.10)

In terms of (3.9) and (3.10), using La(x0) ̸= 0 and Γ(α +
1) = αΓ(α), we have

lim
t→0

t∂u∂t (x0, t)

u(x0, t)− a(x0)
=

limt→0 t
1−α ∂u

∂t (x0, t)

limt→0 t−α(u(x0, t)− a(x0))

=

La(x0)
Γ(α)

La(x0)
Γ(α+1)

= α.

Thus we can complete the proof of (i).
Next we will prove (ii). In (3.5) and (3.6), we apply the

asymptotic behavior of the Mittag-Leffler function at ∞
(e.g., Theorem 1.4 (pp. 33–34) in [15]):

Eα,1(−η) =
η−1

Γ(1− α)
+O

(
1

η2

)
and

Eα,α(−η) = − η−2

Γ(−α)
+O

(
1

η3

)

as η → ∞, η > 0. Therefore

u(x0, t) =
∞∑

n=1

(a, φn)φn(x0)
1

Γ(1− α)λntα

+O

(
1

t2α

) ∞∑
n=1

(a, φn)φn(x0)
1

λ2
n

and

∂u

∂t
(x0, t) =

∞∑
n=1

(a, φn)φn(x0)
1

Γ(−α)λntα+1

+O

(
1

t2α+1

) ∞∑
n=1

(a, φn)φn(x0)
1

λ2
n

.

Since Lφn = −λnφn in Ω, noting that λn > 0, we see that

∞∑
n=1

(a, φn)φn(x0)

λn
= −(L−1a)(x0),

∞∑
n=1

(a, φn)φn(x0)

λ2
n

= (L−2a)(x0),

we obtain

u(x0, t) =
−(L−1a)(x0)

Γ(1− α)tα
+O

(
1

t2α

)
(L−2a)(x0)

and

∂u

∂t
(x0, t) =

−(L−1a)(x0)

Γ(−α)tα+1
+O

(
1

t2α+1

)
(L−2a)(x0).

Here we can prove

(L−1a)(x0) ̸= 0.

In fact, we set b(x) = L−1a(x), x ∈ Ω. Then Lb(x) = a(x),
x ∈ Ω. Without loss of generality, we may assume that
a ≥ 0 on Ω. Then Lb(x) ≥ 0 in Ω. By the strong max-
imum principle (e.g., Theorem 4.10 (p. 109) in Renardy
and Rogers [17]), in view of c ≤ 0 on Ω, we see that
maxx∈Ω b(x) < 0, which means L−1a(x0) ̸= 0.
Therefore

t∂u∂t (x0, t)

u(x0, t)
=

−(L−1a)(x0)
Γ(−α)tα +O

(
1

t2α

)
(L−2a)(x0)

−(L−1a)(x0)
Γ(1−α)tα +O

(
1

t2α

)
(L−2a)(x0)

−→ Γ(1− α)

Γ(−α)

as t → ∞. Since Γ(1− α) = −αΓ(−α), the proof of (ii) is
completed.

Remark 2. By (3.5) and (3.6), we can approximate
u(x0, t) and

∂u
∂t (x0, t) by the N -partial sums

uN (t) =
N∑

n=1

(a, φn)φn(x0)Eα,1(−λnt
α)
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and

vN (t) =
N∑

n=1

(a, φn)φn(x0)
d

dt
Eα,1(−λnt

α)

respectively. Since Eα,1(−λnt
α) is completely monotonic

(e.g., Pollard [16]), we see that

d

dt
Eα,1(−λnt

α) ≤ 0,
d2

dt2
Eα,1(−λnt

α) ≥ 0, t ≥ 0.

Therefore uN (t) and vN (t) are linear combinations of
monotone decreasing functions and monotone increasing

functions respectively. Thus we can assume that tvn(t)
uN (t)

which is a truncated formula of (2.3), does not oscillate
tremendously as t → ∞.

4. Error estimate with noisy data

We discuss formula (2.2) in the case where available data
d(t) are polluted with errors in C1. Here we give only a
sketch and in a forthcoming paper we will discuss details in
the case of errors in L2, which is more realistic. Henceforth
Ck denote generic constants which are independent of t
and α, δ and dependent on γ, t0. For the formulation, we
assume to be given a priori bounds γ ∈ (0, 1) and δ > 0
such that

0 < α < γ < 1 (4.1)

and∣∣∣∣d′(t)− ∂u

∂t
(x0, t)

∣∣∣∣ ≤ C1δt
γ−1, 0 ≤ t ≤ t0, d(0) = a(x0).

(4.2)
Here and henceforth we set η′(t) = dη

dt (t) and assume that
t0 > 0 is small.
We note that δ > 0 is a noise level and we have to con-

sider the factor tγ−1 in (4.2). Because we can prove∣∣∣∣∂u∂t (x0, t)

∣∣∣∣ ∼ tα−1 (4.3)

as t → 0 for a ∈ C∞
0 (Ω) (e.g., [18]) and so we have to take

into consideation the singularity at t = 0 also for available
data. Moreover we notice that∣∣∣∣∂u∂t (x0, t)

∣∣∣∣ ≤ C1δt
γ−1 ≤ C2δt

α−1

by α ≤ γ and 0 ≤ t ≤ t0.
We prove an error estimate under conditons (4.1) and

(4.2).

Proposition 1. We assume

a ∈ C∞
0 (Ω), La(x0) ̸= 0.

Then

lim sup
t↓0

∣∣∣∣∣ t∂u∂t (x0, t)

u(x0, t)− a(x0)
− td′(t)

d(t)− a(x0)

∣∣∣∣∣
≤ C1δ

(
1

|La(x0)|
+

1

|La(x0)|(|La(x0)| − C1δ)

)
.

Since La(x0) ̸= 0, we see that

lim sup
t↓0

∣∣∣∣∣ t∂u∂t (x0, t)

u(x0, t)− a(x0)
− td′(t)

d(t)− a(x0)

∣∣∣∣∣ = O(δ).

Proof. For simplicity we set a0 = a(x0) and a1 = La(x0).
First we prove

u(x0, t)− a0 =
tα

Γ(α+ 1)
a1 + t2αr(t), 0 ≤ t ≤ t0, (4.4)

where |r(t)| ≤ C2 for 0 ≤ t ≤ t0. In fact, by [18] for
example, we have

u(x0, t)− a0

=
∞∑

n=1

(a, φn)Eα,1(−λnt
α)φn(x0)−

∞∑
n=1

(a, φn)φn(x0)

=
∞∑

n=1

(a, φn)(Eα,1(−λnt
α)− 1)φn(x0)

=
∞∑

n=1

(a, φn)
−λnt

α

Γ(α+ 1)
φn(x0)

+

∞∑
n=1

(a, φn)

(
Eα,1(−λnt

α)− 1 +
λnt

α

Γ(α+ 1)

)
φn(x0)

=
tα

Γ(α+ 1)
a1 + t2α

∞∑
n=1

(a, φn)λ
2
nEα,2α+1(−λnt

α)φn(x0).

Here we used the representation of Eα,2α+1(−λnt
α) by the

power series.
We set

r(t) =
∞∑

n=1

(a, φn)λ
2
nEα,2α+1(−λnt

α)φn(x0).

By [15] we see that |Eα,2α+1(−λnt
α)| ≤ C3 for t ≥ 0, and

so

|r(t)| ≤ C4

∞∑
n=1

|(a, φn)λ
2
nφn(x0)|.

By a ∈ C∞
0 (Ω), using (3.3) and (3.4), we can prove |r(t)| ≤

C5 for t ≥ 0 similarly to (3.8). Thus the proof of (4.4) is
completed.
Therefore we have

|u(x0, t)− a0| ≥
tα

Γ(α+ 1)
(a1 − C5t

α), 0 ≤ t ≤ t0. (4.5)

Moreover (4.2) yields

|d(t)− u(x0, t)| ≤
∫ t

0

C1δs
α−1 ds ≤ C6t

αδ, 0 ≤ t ≤ t0.

(4.6)
Hence (4.5) and (4.6) imply

|d(t)− a0| = |u(x0, t)− a0 + d(t)− u(x0, t)|
≥ |u(x0, t)− a0| − |d(t)− u(x0, t)|

≥ tα

Γ(α+ 1)
(a1 − C5t

α)− C6t
αδ

≥ tα

Γ(α+ 1)
(a1 − C7δ − C7t

α). (4.7)
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Moreover (4.2) and (4.3) yield

|d′(t)| ≤
∣∣∣∣d′(t)− ∂u

∂t
(x0, t)

∣∣∣∣+ ∣∣∣∣∂u∂t (x0, t)

∣∣∣∣ (4.8)

≤ C1δt
α−1 + C2t

α−1 ≤ C8t
α−1, 0 ≤ t ≤ t0.

Therefore we use (4.2), (4.5) and (4.6)–(4.8) to obtain∣∣∣∣∣ t∂u∂t (x0, t)

u(x0, t)− a(x0)
− td′(t)

d(t)− a(x0)

∣∣∣∣∣
= t

∣∣(∂u
∂t (x0, t)− d′(t)

)
(d(t)− a0) + d′(t)(d(t)− u(x0, t))

∣∣
|(u(x0, t)− a0)(d(t)− a0)|

≤ t

(∣∣∂u
∂t (x0, t)− d′(t)

∣∣
|u(x0, t)− a0|

+
|d′(t)||d(t)− u(x0, t)|

|(u(x0, t)− a0)(d(t)− a0)|

)

≤ C9t

(
C1δt

α−1

tα(a1 − C5tα)
+

C9t
α−1tαδ

t2α(a1 − C5tα)(a1 − C7δ − C7tα)

)
= C9

(
C1δ

a1 − C5tα
+

C9δ

(a1 − C5tα)(a1 − C7δ − C7tα)

)
.

Thus the proof of the proposition is completed.

5. Numerical tests

The numerical tests were performed for the following
Robin-typed boundary value problem

∂αu

∂tα
=

∂2u

∂x2
, 0 < x < 10, 0 < t < 2, 0 < α ≤ 1,

ux(0, t) = 2u(0, t), ux(10, t) = 0, 0 < t < 2,

u(x, 0) = 1, 0 < x < 10.

The forward problem was solved by numerical differ-
ence method with Caputo fractional derivative of order
α ∈ (0, 1) and implicit scheme [13], and the numbers of
the spatial grids and the temporal grids are 200 and 1000,
respectively. The fractional differential order was deter-
mined by (2.2), which is a reconstruction formula by data
of solution near t = 0 and four fractional differential orders
such as α = 0.4, 0.6, 0.8, 0.9 were tested. The results are
demonstrated in Figure 1. Here for simplicity of the compu-
tations, we choose an initial value u(x, 0) = 1, 0 < x < 10.
Although the initial value does not satisfy the conditions
in the theorem, our numerical performance is quite good.

The numerical results show that the recovered value of α
has the very steep deceleration at the beginning time, and
then its deceleration rate is changed to very small near
the expected value very quickly, therefore the fractional
differential order can be easily identified from the recovery
formula (2.2).
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Figure 1: Recovering α from formula (2.2)
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