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Abstract. Doubly nonnegative (DNN) optimization is one of the most important topics in convex
optimization. Some approaches which use DNN optimization are effective for some NP-hard opti-
mization problems, e.g., the maximum stable set problem and the quadratic assignment problem
(QAP). However, the obtained DNN optimization problems often become highly degenerate. This
implies that it is numerically difficult to find accurate optimal values and solutions of such problems
even by the state-of-the-art computational technology. We propose a numerical reduction method
for such DNN optimization problems, which uses a simple idea based on facial reduction algorithms.
We improve the numerical tractability of the DNN optimization problems by our proposed method.
We present the improvement by presenting the preliminary numerical experiments for QAP.

Keywords. doubly nonnegative optimization, semidefinite optimization, facial reduction algorithm

1. Introduction

A doubly nonnegative (DNN) matrix is a positive semidefi-
nite matrix with nonnegative entries. We denote the space
of n × n symmetric matrices and the cone of n × n DNN
matrices by Sn and Dn, respectively. In this paper, we con-
sider the following linear optimization problem over Dn:

minimize C • Y
subject to Ai • Y = bi (i = 1, . . . ,m), Y ∈ Dn,

(1)

where b1, . . . , bm ∈ R, A1, . . . ,Am,C ∈ Sn are given, Y ∈
Sn is a decision variable, and C • Y := tr(CTY ) is the
standard trace inner product on Sn. We call (1) a DNN
optimization problem.
In recent studies [4, 5, 13, 14, 27], some approaches which

use DNN optimization problem (1) for some NP-hard opti-
mization problems are proposed to obtain lower bounds of
the optimal values of the original problems. It is mentioned
in [9, 26] that such DNN approaches provide tighter lower
bounds than some existing approaches, such as ones that
use linear optimization (LO) and semidefinite optimization
(SDO). Since DNN optimization problem (1) can be refor-
mulated into an SDO problem equivalently, we can solve
it in polynomial time to any precision, theoretically. One
can obtain a lower bound by applying SDO software, e.g.,
SDPA [25], SeDuMi [17], SDPT3 [19], and CSDP [1], to
the resulting SDO problem.
One of the difficulty in such DNN approaches is that

the obtained DNN optimization problems are often highly
degenerate, and virtually all existing SDO solvers would
encounter numerical difficulties before they could obtain
accurate solutions. As a result, the optimal value and so-
lution obtained by many SDO solvers are often inaccurate

and useless. For instance, Tanaka et al. [18] pointed out
that DNN optimization problems proposed by Burer [4, 5]
are highly degenerate.
Our contribution in this paper is to propose a nu-

merical reduction method for DNN optimization prob-
lem (1) in order to remove the degeneracy. Our pro-
posed method can be used as a preconditioner for im-
proving the numerical tractability of the problem. In
our proposed method, we use an approach proposed by
Tanaka et al. [18] and a simple idea based on facial re-
duction algorithms [2, 3, 12, 15, 16, 20, 21, 22, 27]. Al-
though our proposed method does not remove the degen-
eracy completely, we may hope that the numerical stability
of software for solving the resulting problems is improved
in practice. We see the improvement from the numerical
experiments for the quadratic assignment problem (QAP)
in Section 3. The result implies that using our proposed
method for preconditioning to the original DNN optimiza-
tion problem (1), one can solve the resulting problem more
accurately than the original problem.
The remainder of this paper is organized as follows: In

Section 2, we propose a numerical reduction method for
DNN optimization problem (1) and give some remarks. We
present the preliminary numerical experiments for the QAP
in Section 3. Section 4 is devoted to conclusion.

2. Numerical reduction of DNN
optimization problem

In this section, we propose a numerical reduction method
for DNN optimization problem (1). We assume that the set
of A1, . . . ,Am in (1) is linearly independent without loss
of generality since one can remove all linearly dependent
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matrices inA1, . . . ,Am. Let Sn
+ andNn be the cones of n×

n positive semidefinite matrices and nonnegative matrices,
respectively. We remark that we have Dn = Sn

+ ∩Nn.
A matrix Y is an interior feasible solution of DNN op-

timization problem (1) if Y is feasible in (1), Y is positive
definite and all elements in Y are positive. (1) is degenerate
if it has no interior feasible solutions.
Although our proposed method can be used to make (1)

less degenerate, it does not work effectively for all degener-
ate problem (1). In fact, we present an example where the
degeneracy is not be removed by our proposed method at
all in Example 1. However, our proposed method is effec-
tive for degenerate DNN optimization problems obtained
by the DNN approach by Burer [4, 5]. We may hope that
the numerical stability of software for such DNN optimiza-
tion problems is improved. To show the effectiveness, we
present a numerical result for the QAP in Section 3.
In our proposed method, we reduce DNN optimization

problem (1) to a more compact form by using a nonzero so-
lution to the following system associated with problem (1):

find y ∈ Rm, S ∈ Sn
+, T ∈ Nn

such that bTy ≥ 0,
m∑
i=1

Aiyi + S + T = O.
(2)

It is clear that (y,S,T ) = (0,O,O) is a trivial solution of
(2). The following theorem plays an essential role in our
proposed method.

Theorem 1. We have the following relationships between
DNN optimization problem (1) and its associated sys-
tem (2):

(i) (2) has a nonzero solution such that bTy = 0 if and
only if (1) is degenerate;

(ii) If (2) has a nonzero solution such that bTy > 0, then
(1) is infeasible.

Proof. First, we give a proof of the only-if part of (i). Let
(y,S,T ) be a nonzero solution of (2) such that bTy = 0.
For any feasible solution Y to (1), it holds that

Y • S + Y • T = −Y •

(
m∑
i=1

Aiyi

)

= −
m∑
i=1

(Ai • Y ) yi = −bTy.

It follows from bTy = 0, Y ,S ∈ Sn
+, and Y ,T ∈ Nn,

Y • S = Y • T = 0. Since the A1, . . . ,Am is linearly
independent, we have S ̸= O or T ̸= O. In fact, if S =
T = O then y = 0 since the set of A1, . . . ,Am is linearly
independent. This contradicts that (y,S,T ) is nonzero. If
we have S ̸= O, then Y cannot be positive definite, and if
we have T ̸= O, then all elements of Y cannot be positive
simultaneously. Thus, (1) is degenerate.
We can prove the if part of (i) by using the result in

[12, (2) of Theorem 3.2] or [22, Lemma 3.2]. To apply this
result, we need to convert (1) to the so-called dual standard

form. This is described in [22, Section 2]. See [12, 22] for
completeness of the proof of the if part of (i).
To prove (ii), we suppose the contrary that (1) has a

feasible solution Y . Then for any solution (y,S,T ) of (2)
such that bTy > 0, we have Y •S +Y •T = −bTy. Since
bTy > 0, Y ,S ∈ Sn

+ and Y ,T ∈ Nn, this equation implies
the contradiction.

In the remainder of this section, we discuss how to reduce
DNN optimization problem (1) by using a nonzero solution
of system (2) such that bTy = 0, how to find a nonzero
solution of (2), and some remarks on our proposed method.
First, we give a way to reduce a degenerate DNN op-

timization problem (1) by using a nonzero solution of (2)
such that bTy = 0. For a nonzero solution (y,S,T ) of (2)
such that bTy = 0, it follows from (i) in Theorem 1 that (1)
is equivalent to the following DNN optimization problem:

minimize C • Y
subject to Ai • Y = bi (i = 1, . . . ,m), Y ∈ Dn,

Y • S = 0,Y • T = 0.
(3)

By using Y • S = 0 and Y • T = 0, we reduce (3) into a
more compact form. Let I+ := {(i, j) : Tij > 0}. It follows
from Y •T = 0 that Y ij = 0 for all (i, j) ∈ I+. Therefore,
(3) is equivalent to

minimize C • Y
subject to Ai • Y = bi (i = 1, . . . ,m), Y ∈ Dn,

Y • S = 0, Y ij = 0 ((i, j) ∈ I+).
(4)

Furthermore, we reduce (4) by using Y • S = 0. This is
based on [18, 22]. Since S is positive semidefinite, we can
decompose it to

S = RRT,

whereR ∈ Rn×r is full column rank. Then there exists L ∈
Rn×(n−r) such that the matrix V := (L,R) is nonsingular.
Since Y • (RRT) = 0, RTY R = O, and thus for any
feasible solution Y of (3), we have

V TY V =

(
LTY L LTY R

RTY L RTY R

)
=

(
LTY L LTY R

RTY L O

)
.

It follows from the positive semidefiniteness of Y that
LTY R = O and RTY L = O. Let Z̃ := V TY V . Then
we can express Z̃ by

Z̃ =

(
Z O
O O

)
,

where Z ∈ Sn−r
+ . We define C̃ and Ãi as follows:

C̃ := V −1CV −T, Ãi := V −1AiV
−T .

Since we have (V −1EV −T) • (V TFV ) = E • F for all
E,F ∈ Sn, (4) is equivalent to the following optimization
problem:

minimize C̃ • Z̃
subject to Ãi • Z̃ = bi (i = 1, . . . ,m),

Z̃ =

(
Z O
O O

)
, Z ∈ Sn−r

+ ,

(V −TZ̃V −1)ij = 0 ((i, j) ∈ I+),

(V −TZ̃V −1)ij ≥ 0 ((i, j) ∈ I0),

(5)
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where I0 := {(i, j) : Tij = 0}. We write Ãi, C̃ and V −1 as
follows:

Ãi =

(
Ãi1 Ãi2

Ã
T

i2 Ãi3

)
, C̃ =

(
C̃1 C̃2

C̃
T

2 C̃3

)
,V −1 =

(
Ṽ 1

Ṽ 2

)
.

Then we reformulate (5) as follows:

minimize C̃1 •Z
subject to Ãi1 •Z = bi (i = 1, . . . ,m),

Z ∈ Sn−r
+ ,

(Ṽ
T

1 ZṼ 1)ij = 0 ((i, j) ∈ I+),

(Ṽ
T

1 ZṼ 1)ij ≥ 0 ((i, j) ∈ I0).

(6)

One can convert (6) into an SDO problem. We remark that
the resulting problem becomes less degenerate than the
original (1) although the degeneracy may not be removed
completely. We also note that the coefficient matrices in (6)
could be denser than those in (1) since V −1 is often dense.
Furthermore, the sizes of positive semidefinite constraint
and nonnegative constraints in the resulting problem (6)
are n− r and |I0|, while they are n and n(n+ 1)/2 in (1),
respectively. In this sense, (5) is smaller than (1). If S has
a higher rank and/or T contains many nonzero elements,
then the resulting problem (6) may be small enough to be
solved by SDO solvers.
Next, we discuss how to find a nonzero solution of (2).

A nonzero solution (y,S,T ) of (2) plays an essential role
in our proposed method. To find such a solution (y,S,T )
of (2), we solve the following problem:

maximize bTy

subject to

m∑
i=1

Aiyi + S + T = O, S ∈ Sn
+, T ∈ Nn.

(7)
Since (y,S,T ) = (0,O,O) is one of feasible solutions of
(7), the optimal value is nonnegative. If the optimal value is
positive, then it follows from (ii) of Theorem 1 that (1) is in-
feasible. Since we can reformulate (7) to an SDO problem,
we may obtain a nonzero solution by applying SDO solvers.
However, the size is almost the same as an SDO problem
which is converted from (1), so that finding a nonzero solu-
tion to (2) is as computationally expensive as solving (1).
In our method, we decompose (7) to the following two

optimization problems to find a nonzero solution of (7):

maximize bTy

subject to
m∑
i=1

Aiyi + T = O, T ∈ Nn,
(8)

maximize bTy

subject to

m∑
i=1

Aiyi + S = O, S ∈ Sn
+.

(9)

We remark that LO problem (8) and SDO problem (9) are
much smaller than an SDO problem equivalent to (7). We
observe that for any feasible solutions (ypsd,S) to (8) and
(ynn,T ) to (9), (ypsd + ynn,S,T ) is one of the solutions

of (2). Consequently, we obtain a nonzero solution of (7)
if we can find nonzero solutions of (ypsd,S) to (8) and/or
(ynn,T ) to (9).
For LO problem (8), if a nonzero solution exists, then

we can obtain the densest solution of (8) with interior-
point methods since the central path of an LO problem
converges to the strong complementary solution, i.e., for
optimal solution (y∗,T ∗) and Y ∗ of (8) and its dual, we
have Y ∗

ijT
∗
ij = 0 and Y ∗

ij + T ∗
ij > 0 for all i, j. See e.g., [24]

for more details on interior-point methods for LO problems.
For SDO problem (9), we can obtain a solution S which

has the largest rank in the optimal solutions with an
interior-point method since interior-point methods for SDO
problems also converge the analytical center of the optimal
set. See e.g., [8] for more details about interior-point meth-
ods for SDO problems.
Tanaka et al. [18] pointed out that SDO problem (9)

obtained from DNN optimization problem (1) for a DNN
approach proposed by [4, 5] always has an analytical fea-
sible solution. They reduced the semidefinite constraint
in (1) by using the analytical feasible solution of (9), in-
stead of using a solution obtained by SDO software. We
use the same approach to find a nonzero solution of SDO
problem (9) in the numerical experiments in Section 3.
Even if (1) is degenerate, then one may not be able to

construct a nonzero solution of (7) from nonzero solutions
of (8) and (9). We present such an example.

Example 1. In DNN optimization problem (1), let

Apsd :=

 1 −1 0
−1 1 0
0 0 0

 , Ann :=

0 0 0
0 0 1
0 1 0

 ,

A := Apsd + Ann, b = 0, and C be any constant matrix.
From ±A ̸∈ Sn

+ and ±A ̸∈ N n, we can see that prob-
lems (8) and (9) have no nonzero solutions. However, (7)
has the nonzero solution (−1,Apsd,Ann).

Finally, we give some remarks on our proposed method.

Remark 1. This reduction can be regarded as an in-
complete FRA for DNN optimization problem (1). More
precisely, it corresponds to the first iteration of FRA
for (1). FRA is an algorithm which reduces conic op-
timization problems proposed by Borwein and Wolkow-
icz [2, 3] and later simplified by Pataki [12]. In general,
if a given conic optimization problem is feasible, it gener-
ates an equivalent one which has interior feasible solutions
in finitely many iterations; Otherwise, it returns a certifi-
cate of the infeasibility. For more details about FRAs, see
also [15, 16, 20, 21, 22, 27].

Remark 2. Unlike SDO problem (9), we do not have any
analytical solutions to LO problem (8). Since the solu-
tion obtained by LO software contains numerical errors oc-
curred in floating-point computation, it may not be exact.
In the numerical experiments in Section 3, we use the fol-
lowing numerical remedy: Let (y†,T †) and Y † be solutions
of (8) and its dual obtained by LO software in which an
interior-point method is implemented. Then since they are
approximation of optimal solutions of (8) and its dual, they
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satisfy Y †
ijT

†
ij ≃ 0 and Y †

ij , T
†
ij > 0 for all i, j. For such so-

lutions, we set I0 and I+ as follows:

I+ = {(i, j) : Y †
ij < T †

ij}, I0 = {(i, j) : T †
ij < Y †

ij}.

Remark 3. We can generalize our method to the following
linear optimization problem over the intersection of multi-
ple closed convex cones Kk ⊆ Rn (k = 1, . . . ,K):

minimize cTx
subject to aT

i x = bi (i = 1, . . . ,m)
x ∈ Kk, (k = 1, . . . ,K),

(10)

where c,ai ∈ Rn. Note that this problem includes prob-
lem (1) as a special case since we have Dn = Sn

+ ∩N n. For
problem (10), under a mild assumption, we can formulate
the following problem corresponding to (2) as follows:

find y ∈ Rm, sk ∈ K∗
k (k = 1, . . . ,K)

such that bTy ≥ 0,

m∑
i=1

aiyi +

K∑
k=1

sk = 0,

where K∗
k is the dual cone of Kk, i.e., K∗

k = {z : xTz ≥
0 (∀x ∈ Kk)}. We can decompose this system in a way
similar to our method.

3. Preliminary numerical experiments

In this section, we verify the effectiveness of our method.
To this end, we solved the following three types of DNN
optimization problems (14) obtained from a DNN ap-
proach by Burer [4, 5] for the quadratic assignment problem
(QAP) with SDPA, which is one of the fastest and the most
widely used SDO software:

original DNN optimization problem (1) obtained by ap-
plying a DNN approach by Burer [4, 5] (for the for-
mulation, see (14) in Appendix A),

only psd the reduced problem (6) by using a solu-
tion (ypsd,S,O) to (2) for (14), where (ypsd,S) is an
analytical solution of (9) derived by Tanaka et al. [18],

psd + nn the reduced problem (6) by using a solu-
tion (ypsd +ynn,S,T ) to (2) for (14), where (ypsd,S)
is an analytical solution of problem (9) derived by
Tanaka et al. [18] and (ynn,T ) is a numerical solution
of problem (8).

We used the instances of the QAP in QAPLIB [6]. We
reformulate the three types of DNN optimization problems
to the following SDO problems: We convert (1) into the
following primal SDO problem:

minimize

(
C O
O O

)
•
(
Y O
O Diag y

)
subject to

(
Ai O
O O

)
•
(
Y O
O Diag y

)
= bi

(i = 1, . . . ,m),
vechY = y,(
Y O
O Diag y

)
∈ Sn+n(n+1)/2

+ ,

where, for y ∈ Rd, Diag y ∈ Sd denotes the diagonal ma-
trix obtained by y and, for Y ∈ Sd, vechY ∈ Rd(d+1)/2

denotes the vector obtained by the lower triangular part of
Y . Similarly, we convert (6) into the following primal SDO
problem:

minimize

(
C̃1 O
O O

)
•
(
Z O
O Diag y

)
subject to

(
Ãi1 O
O O

)
•
(
Z O
O Diag y

)
= bi

(i = 1, . . . ,m),

vech(Ṽ
T

1 ZṼ 1)I+ = 0,

vech(Ṽ
T

1 ZṼ 1)I0 = y,(
Z O
O Diag y

)
∈ Sn−r+|{(i,j)∈I0:i≤j}|

+ ,

where, for Y ∈ Sd and I ⊂ {1, . . . , d}2, vechY I ∈
R|{(i,j)∈I:i≤j}| is the vector obtained by the lower trian-
gular part of Y I . We solved them with SDPA 7.3.6 [25]
linked with OpenBLAS 0.2.4 with the default parameter.
We executed all experiments on a computer with Intel®
Xeon® CPU E5530 with 2.40 GHz (8 CPUs) and 24 GByte
memory and we used 32 threads.

We compared the accuracy of the obtained solutions and
the computational time in Table 1 and all tables in Ap-
pendix B. In all the tables, instance and type denote
the names of instance and the types of DNN optimization
problems. dim psd, dim nn, and dim eq denote the size
of positive semidefinite variable matrices, the number of
nonnegative constraints, and the number of linear equality
constraints, respectively. Note that the size of linear equa-
tion systems which SDPA solves at each iteration (Schur
complement equation) is equal to dim eq. err1 to err6

denotes DIMACS errors [11], which measure the accuracy
of the solutions returned by SDPA. If all values are suffi-
ciently close to zero, then the solution is accurate and one
can regard it as an optimal solution of the DNN optimiza-
tion problem. err1 and err3 correspond to the relative
error to the equality constraints of primal and dual of SDO
problems, respectively. err5 and err6 correspond to the
relative duality gap. err2 and err4 are omitted since they
are always equal to zero in the case of SDPA. For the for-
mal definition of them, see e.g., [11]. time denotes how
much time were spent before SDPA stopped.

We observe in all tables that for original and only psd,
SDPA could not reduce DIMACS errors sufficiently for all
instances. Especially, err5 and err6 were still large for
all instances. In contrast, for psd + nn, SDPA returned
more accurate solutions than original and only psd in
all instances. We observed from the numerical experi-
ments that the sets of coefficient matrices in the resulting
SDO problems obtained by psd + nn and only psd were
linearly dependent. For this, we removed all redundant
constraints corresponding to linearly dependent matrices
from the SDO problems, so that dim eq of psd + nn and
only psd are smaller than that of original.
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Table 1: Numerical results for “taiXXa” in QAPLIB [6].

instance type dim psd dim nn dim eq err1 err3 err5 err6 time [sec]

tai5a original 26 351 431 1.4e-07 2.9e-11 4.1e-02 4.7e-02 0.12

only psd 17 351 377 6.4e-07 1.4e-11 5.5e-02 5.9e-02 0.11

psd + nn 17 251 327 1.5e-08 1.6e-13 1.0e-07 9.6e-08 0.11

tai6a original 37 703 817 2.9e-07 3.8e-11 6.4e-02 7.1e-02 0.40

only psd 26 703 740 1.7e-06 2.3e-11 6.5e-02 7.1e-02 0.38

psd + nn 26 523 668 3.2e-10 3.4e-13 5.3e-08 5.3e-08 0.46

tai7a original 50 1275 1429 4.6e-07 4.6e-11 7.5e-02 8.2e-02 1.42

only psd 37 1275 1325 1.9e-06 7.0e-11 3.7e-02 4.1e-02 1.97

psd + nn 37 981 1227 5.4e-09 5.2e-13 1.8e-07 1.8e-07 1.62

tai8a original 65 2145 2345 3.2e-06 1.7e-10 1.4e-01 1.7e-01 3.80

only psd 50 2145 2210 5.5e-06 2.3e-11 6.1e-02 7.0e-02 5.06

psd + nn 50 1697 2082 1.4e-08 2.9e-13 1.1e-07 1.1e-07 6.09

tai9a original 82 3403 3655 1.4e-06 5.9e-11 8.9e-02 1.1e-01 11.65

only psd 65 3403 3485 9.2e-06 3.0e-11 6.7e-02 8.3e-02 13.82

psd + nn 65 2755 3323 4.2e-09 6.2e-13 9.2e-07 9.2e-07 19.71

tai10a original 101 5151 5461 1.6e-06 8.4e-11 6.3e-02 7.9e-02 27.39

only psd 82 5151 5252 8.2e-06 2.0e-11 3.7e-02 4.8e-02 38.14

psd + nn 82 4251 5052 2.7e-08 6.0e-13 4.3e-07 4.3e-07 47.44

tai11a original 122 7503 7877 2.8e-06 8.2e-11 6.7e-02 8.9e-02 55.47

only psd 101 7503 7625 1.7e-05 3.0e-11 3.8e-02 4.9e-02 78.53

psd + nn 101 6293 7383 1.2e-08 2.6e-13 2.2e-07 2.2e-07 120.36

tai12a original 145 10585 11029 2.8e-06 6.4e-11 6.5e-02 8.2e-02 124.30

only psd 122 10585 10730 2.5e-05 3.1e-11 1.1e-01 1.2e-01 178.99

psd + nn 122 9001 10442 2.0e-09 1.2e-12 1.1e-06 1.1e-06 220.68

tai13a original 170 14535 15055 4.8e-06 1.2e-10 1.2e-01 1.5e-01 223.44

only psd 145 14535 14705 3.7e-05 5.9e-11 1.3e-01 1.5e-01 281.18

psd + nn 145 12507 14367 6.7e-09 6.6e-13 3.3e-08 3.3e-08 628.34

tai14a original 197 19503 20105 2.9e-06 1.1e-10 1.1e-01 1.3e-01 442.23

only psd 170 19503 19700 5.9e-05 1.8e-11 1.9e-01 2.1e-01 506.92

psd + nn 170 16955 19308 4.8e-09 4.5e-13 1.3e-07 1.3e-07 1169.63

tai15a original 226 25651 26341 1.5e-05 1.1e-10 2.2e-01 2.8e-01 447.18

only psd 197 25651 25877 4.5e-05 2.8e-10 1.7e-01 2.0e-01 1012.57

psd + nn 197 22501 25427 4.1e-09 4.8e-13 4.0e-08 3.9e-08 2231.11

tai16a original 257 33153 33937 8.4e-06 2.6e-10 2.6e-01 3.0e-01 879.28

only psd 226 33153 33410 5.4e-05 8.0e-11 2.1e-01 2.4e-01 1043.34

psd + nn 226 29313 32898 2.4e-08 2.5e-13 6.6e-08 6.8e-08 2529.61

tai17a original 290 42195 43079 1.1e-05 1.1e-10 2.2e-01 2.7e-01 1904.90

only psd 257 42195 42485 7.0e-05 3.9e-11 2.9e-01 3.2e-01 1889.13

psd + nn 257 37571 41907 5.4e-08 4.1e-13 2.7e-08 2.9e-08 4906.94
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4. Conclusion

In this paper, we proposed the reduction method for DNN
optimization problems (1). In our method, we decompose
(2) to SDO problem (9) and LO problem (8) to obtain a
nonzero solution of (2). We used an analytic solution of
(9) by a way proposed in Tanaka et al. [18].
In Section 3, we applied our reduction method to the

DNN optimization problem obtained by Burer [4, 5] for the
QAP. We observed that the numerical stability of SDPA
is improved for DNN optimization problems obtained by
applying our proposed method.
To solve the reduced problem quickly is challenging fu-

ture work. In fact, even for N = 17 in Table 1, SDPA
took longer than one hour. This result suggests that it is
still difficult to obtain lower bounds for large instances, say
N ≥ 30, using SDPA and other SDO solvers.
For (8), we use a numerical solution obtained by LO

software. In this sense, our proposed method is not rigor-
ous and depends on the numerical errors in computation,
e.g., round-off errors. In fact, our method may find a wrong
nonzero solution of (2) for a non-degenerate DNN optimiza-
tion problem due to numerical errors, despite the fact that
the system (2) associated with a non-degenerate problem
does not have any nonzero solutions. To establish a rigor-
ous reduction method for DNN optimization problem (1)
is one of the most important future work.
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A. DNN relaxation problem for QAP

Here, we introduce a DNN optimization problem appears in
a DNN approach by [4, 5, 13] for QAP. QAP is a well-known
NP-hard combinatorial optimization problem, which is for-
mulated as follows:

minimize

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

fijdklzikzjl

subject to
n∑

k=1

zik = 1 (i = 1, . . . , n),

n∑
i=1

zik = 1 (k = 1, . . . , n),

zik ∈ {0, 1} (i, k = 1, . . . , n),

(11)

where fij and dkl are given real numbers. Defining Q ∈
Sn2

and ai ∈ Rn2

(i = 1, . . . , 2n) appropriately, we can
represent QAP as follows:

minimize xTQx
subject to aT

p x = 1 (p = 1, . . . , 2n),
xr ∈ {0, 1} (r = 1, . . . , n2).

(12)

Let X = xxT. If x is feasible in (12), then aT
pXaq =

1 (p, q = 1, . . . , 2n), x ≥ 0, and X ∈ Nn. Also, xr ∈ {0, 1}
is equivalent toXrr = x2

r = xr for r = 1, . . . , n2. Therefore,
problem (12) is equivalent to the following problem:

minimize Q •X
subject to aT

p x = 1 (p = 1, . . . , 2n),
aT
pXaq = 1 (p, q = 1, . . . , 2n),

Xrr = xr (r = 1, . . . , n2),
X − xxT = O, x ≥ 0, X ∈ Nn.

(13)

Replacing the nonlinear constraint X = xxT by a semidef-
inite constraint X − xxT ∈ Sn

+, we obtain the following
problem:

minimize Q •X
subject to aT

p x = 1 (p = 1, . . . , 2n),
aT
pXaq = 1 (p, q = 1, . . . , 2n),

Xrr = xr (r = 1, . . . , n2),
X − xxT ∈ Sn

+, x ≥ 0, X ∈ Nn.

We can represent it as the following DNN optimization
problem:

minimize Q •X
subject to aT

p x = 1 (p = 1, . . . , 2n),
aT
pXaq = 1 (p, q = 1, . . . , 2n),

Xrr = xr (r = 1, . . . , n2),(
1 xT

x X

)
∈ D1+n.

(14)

Let f∗ and µ∗
DNN be the optimal values of (11) and (14),

respectively. Since (14) is obtained by replacing X = xxT

by the weaker constraint X−xxT ∈ Sn
+ and (13) is equiva-

lent to (11), we have f∗ ≥ µ∗
DNN. Therefore, we can obtain

a lower bound µ∗
DNN of f∗ by solving DNN optimization

problem (14).

B. Detail of numerical results

Here, we show all results of the numerical experiments in
Section 3. We show the results for 5 ≤ N ≤ 8, 9 ≤ N ≤ 12,
and 15 ≤ N ≤ 16 in Tables 2, 3, and 4 respectively. We can
see that we obtain the best results for psd + nn in most
instances.
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Table 2: Results of solving instances in QAPLIB [6] (5 ≤ N ≤ 8).

instance type dim psd dim nn dim eq err1 err3 err5 err6 time [sec]

nug5 original 26 351 431 2.1e-07 2.3e-11 2.7e-02 3.1e-02 0.14

only psd 17 351 377 3.5e-07 1.4e-11 1.1e-02 1.3e-02 0.12

psd + nn 17 251 327 2.1e-10 2.2e-13 3.5e-08 3.5e-08 0.12

nug6 original 37 703 817 1.3e-06 6.7e-11 7.0e-02 9.1e-02 0.39

only psd 26 703 740 2.2e-06 7.7e-11 1.4e-02 2.2e-02 0.47

psd + nn 26 523 668 1.4e-09 5.4e-13 1.2e-07 1.2e-07 0.46

nug7 original 50 1275 1429 1.1e-06 4.3e-11 1.1e-01 1.4e-01 1.32

only psd 37 1275 1325 1.8e-06 3.5e-11 3.4e-02 4.1e-02 1.44

psd + nn 37 981 1227 2.0e-09 7.1e-13 2.3e-07 2.3e-07 1.80

esc8a original 65 2145 2345 1.4e-06 3.8e-11 2.5e-01 3.6e-01 3.81

only psd 50 2145 2210 5.2e-06 2.4e-11 2.6e-01 3.2e-01 4.07

psd + nn 50 1697 2082 1.4e-12 8.7e-13 1.7e-07 1.7e-07 5.90

esc8b original 65 2145 2345 2.0e-06 5.0e-11 1.4e-01 2.3e-01 4.73

only psd 50 2145 2210 6.3e-06 8.1e-11 5.8e-02 9.3e-02 5.73

psd + nn 50 1697 2082 7.2e-10 1.0e-12 2.3e-07 2.3e-07 6.98

esc8c original 65 2145 2345 1.6e-06 3.6e-11 9.2e-02 1.3e-01 4.39

only psd 50 2145 2210 7.0e-06 4.0e-11 1.1e-01 1.6e-01 4.39

psd + nn 50 1697 2082 5.1e-08 1.3e-12 5.7e-08 7.2e-08 8.15

esc8d original 65 2145 2345 2.9e-06 7.8e-11 1.8e-01 3.3e-01 5.07

only psd 50 2145 2210 1.0e-05 1.3e-10 9.6e-02 1.7e-01 6.08

psd + nn 50 1697 2082 2.1e-07 9.7e-13 1.0e-07 2.0e-07 8.13

esc8e original 65 2145 2345 2.5e-06 4.7e-11 4.0e-01 7.0e-01 4.09

only psd 50 2145 2210 2.4e-05 1.7e-10 5.9e-01 7.8e-01 4.09

psd + nn 50 1697 2082 1.4e-08 2.5e-12 3.0e-07 2.9e-07 6.40

esc8f original 65 2145 2345 2.9e-06 7.8e-11 1.8e-01 3.3e-01 5.08

only psd 50 2145 2210 1.0e-05 1.3e-10 9.6e-02 1.7e-01 6.08

psd + nn 50 1697 2082 2.1e-07 9.7e-13 1.0e-07 2.0e-07 8.11

nug8 original 65 2145 2345 1.0e-06 4.7e-11 1.1e-01 1.3e-01 3.81

only psd 50 2145 2210 3.6e-06 5.4e-11 5.0e-02 6.2e-02 5.07

psd + nn 50 1697 2082 1.7e-10 1.3e-12 6.6e-08 6.6e-08 7.82
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Table 3: Results of solving instances in QAPLIB [6] (10 ≤ N ≤ 12).

instance type dim psd dim nn dim eq err1 err3 err5 err6 time [sec]

lipa10a original 101 5151 5461 1.6e-06 8.6e-11 6.2e-02 7.4e-02 23.84

only psd 82 5151 5252 7.4e-06 1.1e-10 1.8e-01 1.9e-01 29.23

psd + nn 82 4251 5052 1.2e-09 1.6e-13 4.0e-07 4.0e-07 39.60

lipa10b original 101 5151 5461 1.4e-06 6.5e-11 8.3e-02 9.0e-02 23.56

only psd 82 5151 5252 2.1e-05 1.4e-11 1.2e-01 1.3e-01 24.77

psd + nn 82 4251 5052 2.9e-09 2.8e-13 3.1e-07 3.1e-07 37.72

rou10 original 101 5151 5461 2.3e-06 1.2e-10 1.0e-01 1.2e-01 27.44

only psd 82 5151 5252 1.6e-05 4.0e-11 6.4e-02 7.8e-02 29.16

psd + nn 82 4251 5052 1.5e-09 3.6e-13 6.5e-07 6.5e-07 49.66

scr10 original 101 5151 5461 1.2e-06 4.9e-11 7.2e-01 8.2e-01 23.84

only psd 82 5151 5252 8.7e-06 2.4e-10 4.1e-01 4.8e-01 26.97

psd + nn 82 4251 5052 2.4e-08 4.5e-12 2.0e-07 1.9e-07 48.00

tai10b original 101 5151 5461 2.5e-06 4.9e-11 7.8e-01 9.2e-01 19.98

only psd 82 5151 5252 8.1e-06 2.5e-09 7.4e-01 8.3e-01 35.94

psd + nn 82 4251 5052 5.6e-09 5.2e-12 4.9e-06 4.9e-06 49.58

chr12a original 145 10585 11029 2.3e-06 7.4e-11 8.3e-01 9.6e-01 106.71

only psd 122 10585 10730 2.0e-05 2.6e-10 7.4e-01 9.5e-01 148.28

psd + nn 122 9001 10442 7.7e-08 7.2e-13 6.0e-06 6.0e-06 240.19

chr12b original 145 10585 11029 2.0e-06 1.7e-10 8.2e-01 9.6e-01 106.91

only psd 122 10585 10730 2.1e-05 2.6e-11 8.3e-01 9.4e-01 137.79

psd + nn 122 9001 10442 8.0e-09 1.4e-12 3.8e-06 3.8e-06 229.57

chr12c original 145 10585 11029 2.3e-06 1.1e-10 8.6e-01 9.4e-01 100.45

only psd 122 10585 10730 5.9e-05 1.6e-10 9.5e-01 9.9e-01 116.52

psd + nn 122 9001 10442 1.9e-09 2.7e-12 5.0e-06 5.0e-06 229.65

nug12 original 145 10585 11029 2.4e-06 5.4e-11 1.2e-01 1.5e-01 123.49

only psd 122 10585 10730 2.1e-05 2.0e-11 1.2e-01 1.5e-01 136.61

psd + nn 122 9001 10442 1.1e-08 1.2e-12 8.5e-08 8.5e-08 309.28

rou12 original 145 10585 11029 5.4e-06 4.0e-11 4.1e-01 4.3e-01 92.23

only psd 122 10585 10730 2.7e-05 2.6e-11 1.1e-01 1.3e-01 147.81

psd + nn 122 9001 10442 1.9e-09 2.0e-13 2.6e-07 2.6e-07 304.30

scr12 original 145 10585 11029 3.5e-06 9.2e-11 7.9e-01 9.9e-01 117.47

only psd 122 10585 10730 1.7e-05 3.6e-10 6.0e-01 7.0e-01 147.89

psd + nn 122 9001 10442 5.6e-08 1.5e-11 1.3e-06 1.2e-06 286.15

tai12b original 145 10585 11029 1.9e-06 7.4e-11 8.2e-01 9.4e-01 125.80

only psd 122 10585 10730 3.6e-05 3.8e-10 3.6e-01 4.0e-01 137.64

psd + nn 122 9001 10442 9.1e-10 9.1e-13 6.5e-07 6.5e-07 210.64
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Table 4: Results of solving instances in QAPLIB [6] (15 ≤ N ≤ 16).

instance type dim psd dim nn dim eq err1 err3 err5 err6 time [sec]

chr15a original 226 25651 26341 3.7e-06 1.7e-10 9.2e-01 1.1e+00 442.65

only psd 197 25651 25877 5.1e-05 1.6e-10 9.3e-01 1.1e+00 1020.00

psd + nn 197 22501 25427 2.5e-07 3.6e-12 2.3e-05 2.3e-05 2304.14

chr15b original 226 25651 26341 4.4e-06 9.2e-11 9.2e-01 1.1e+00 428.00

only psd 197 25651 25877 4.3e-05 2.7e-10 9.2e-01 1.1e+00 1326.92

psd + nn 197 22501 25427 5.3e-08 1.5e-12 1.3e-05 1.3e-05 2150.70

chr15c original 226 25651 26341 4.0e-06 2.0e-10 9.5e-01 1.0e+00 556.49

only psd 197 25651 25877 1.0e-04 1.2e-10 9.8e-01 1.0e+00 782.64

psd + nn 197 22501 25427 7.3e-08 6.5e-12 9.4e-06 9.5e-06 1953.25

dre15 original 226 25651 26341 8.4e-06 1.4e-10 9.8e-01 1.0e+00 448.15

only psd 197 25651 25877 4.5e-05 9.3e-11 9.2e-01 1.1e+00 1015.31

psd + nn 197 22501 25427 1.0e-08 1.2e-12 5.3e-06 5.3e-06 1930.59

nug15 original 226 25651 26341 5.9e-06 1.2e-10 3.0e-01 3.7e-01 446.36

only psd 197 25651 25877 5.5e-05 9.1e-11 3.5e-01 4.1e-01 1169.53

psd + nn 197 22501 25427 2.1e-08 1.8e-12 1.2e-06 1.2e-06 2469.80

rou15 original 226 25651 26341 3.9e-06 8.4e-11 1.3e-01 1.6e-01 559.14

only psd 197 25651 25877 5.6e-05 7.7e-12 1.8e-01 2.1e-01 938.71

psd + nn 197 22501 25427 2.3e-09 8.2e-13 1.3e-07 1.3e-07 2290.06

scr15 original 226 25651 26341 5.1e-06 1.1e-10 8.7e-01 1.1e+00 426.34

only psd 197 25651 25877 1.6e-05 7.5e-10 9.3e-01 9.7e-01 1016.17

psd + nn 197 22501 25427 2.2e-08 4.6e-12 1.6e-06 1.6e-06 2155.56

tai15b original 226 25651 26341 4.3e-06 5.8e-11 8.3e-01 1.0e+00 482.34

only psd 197 25651 25877 6.1e-05 4.4e-10 6.5e-01 1.2e+00 937.62

psd + nn 197 22501 25427 3.8e-10 1.1e-11 3.5e-06 3.5e-06 2082.33

esc16a original 257 33153 33937 1.4e-05 8.3e-11 9.3e-01 1.2e+00 812.94

only psd 226 33153 33410 4.3e-05 6.2e-11 9.3e-01 1.0e+00 920.67

psd + nn 226 29313 32898 1.3e-07 1.2e-12 5.5e-08 3.8e-08 4478.04

esc16b original 257 33153 33937 7.1e-06 1.2e-10 2.1e-01 2.4e-01 879.32

only psd 226 33153 33410 3.6e-05 1.5e-10 2.1e-01 2.4e-01 919.10

psd + nn 226 29313 32898 4.3e-08 1.3e-11 2.3e-07 2.4e-07 2608.03

esc16c original 257 33153 33937 7.6e-06 2.6e-10 9.3e-01 1.1e+00 839.85

only psd 226 33153 33410 9.9e-05 1.5e-09 9.5e-01 1.1e+00 918.95

psd + nn 226 29313 32898 5.7e-07 2.6e-12 4.5e-07 5.1e-07 2435.09

esc16d original 257 33153 33937 9.6e-06 3.4e-10 9.3e-01 1.0e+00 911.62

only psd 226 33153 33410 5.9e-05 2.9e-10 9.4e-01 1.1e+00 921.18

psd + nn 226 29313 32898 1.1e-08 9.4e-12 2.9e-06 2.9e-06 2510.38

esc16e original 257 33153 33937 8.5e-06 1.9e-10 9.3e-01 1.1e+00 806.49

only psd 226 33153 33410 4.6e-05 9.8e-11 9.3e-01 1.0e+00 1002.45

psd + nn 226 29313 32898 1.6e-06 4.0e-12 7.8e-07 9.6e-07 3302.79

esc16f original 257 33153 33937 6.3e-06 1.5e-10 8.6e-01 1.0e+00 890.67

only psd 226 33153 33410 8.9e-05 2.8e-09 9.2e-01 1.1e+00 998.40

psd + nn 226 29313 32898 1.3e-10 6.5e-11 7.5e-09 7.5e-09 1419.82

esc16g original 257 33153 33937 1.4e-05 1.2e-10 9.1e-01 1.1e+00 947.54

only psd 226 33153 33410 1.1e-04 1.6e-10 9.8e-01 1.0e+00 834.14

psd + nn 226 29313 32898 4.5e-08 1.6e-11 5.1e-08 4.2e-08 3795.53

esc16h original 257 33153 33937 1.1e-05 1.5e-10 8.9e-01 9.7e-01 1104.83

only psd 226 33153 33410 6.7e-05 4.8e-10 6.0e-01 7.1e-01 1001.01

psd + nn 226 29313 32898 3.7e-07 8.3e-12 9.3e-08 1.2e-07 2128.09

esc16i original 257 33153 33937 6.1e-06 1.4e-10 9.2e-01 1.1e+00 801.59

only psd 226 33153 33410 4.1e-05 7.3e-11 9.2e-01 1.0e+00 1002.68

psd + nn 226 29313 32898 6.7e-08 2.2e-12 8.0e-09 2.1e-08 3699.14

esc16j original 257 33153 33937 4.9e-06 1.2e-10 9.5e-01 1.0e+00 942.45

only psd 226 33153 33410 4.7e-05 5.7e-11 9.3e-01 1.0e+00 919.85

psd + nn 226 29313 32898 6.0e-07 7.3e-12 4.9e-06 4.9e-06 3091.60


