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Abstract. The formulation of models for the growth of microbes (fungi; bacteria) must not only
take account of the current number of the microbes but also of the effect of the environment in
which the growth is occurring and of the type of measurements used to record the growth. In
industrial processes, the effect of physiological (morphological) changes on the growth must be
taken into account. When growth is occurring in an open environment which achieves an equilibrium
(e.g. balancing growth and harvesting) and is measured as the time evolution of the total number
of microbes present (alive and dead), autonomous ordinary differential equation (ODE) models
are appropriate. The corresponding growth measurements (optical density; centrifuged weight),
because they record the total number of microbes present (alive and dead), have a logistic structure
which autonomous equations, such as the Verhulst, capture. For growth in a closed environment,
which is indicative of the situation in laboratory experiments, autonomous ODE models do not
necessarily capture the dynamics under investigation. Such situations arise when the question under
examination relates to the activity of the surviving microbes, such as in a study of the spoilage and
contamination of food, the gene silencing activity of fungi or the production of a chemical compound
by bacteria or fungi. Practical and theoretical implications associated with the measurement and
modelling of the number of surviving microbes in a closed environment is the focus in this paper.
The limitations of current measurement protocols to track the number of surviving microbes are
discussed. The use of non-autonomous modifications of autonomous ODE models of growth is
proposed and analysed. In particular, a non-autonomous version of the von Bertalanffy model is
proposed as an appropriate framework in which to analyse growth in a closed and/or deteriorating
environment.

Keywords. growth modelling, autonomous, non-autonomous, microbial growth, ordinary differential
equations, closed environment, food contamination, surviving microbes

1. Introduction

The recovery of information about biological processes of-
ten reduces to the modelling of the growth of individuals or
populations of individuals. First order ordinary differential
equation (ODE) models, utilized for the implementation of
the recovery, include (i) the two parameter Verhulst equa-
tion [4] and (ii) the four parameter equation proposed by
von Bertalanffy [25] in 1957. They are popular because,
for a wide range of choices of the parameters, their exact
solutions are known and, thereby, the recovery process can
be reduced to a curve fitting and regression activity. Their
limitations relate to them being autonomous differential
equations, which implicitly implies that only the current
size of the population controls the growth. The role of the
effect of the environment is thereby ignored. Consequently,
a corollary of Coleman’s [6] 1979 observation that

“The idea that populations are self-governing sys-
tems which regulate their densities in accord with
their own properties and those of their environ-
ments has long been present in the ecological lit-

erature.”

is that the modelling of growth is a non-autonomous ac-
tivity with the role of the environment determining the
structure of the non-autonomous terms.

As will be discussed in some detail below, when the
matter under investigation relates to knowing the number
of surviving microbes, the structure of the corresponding
growth curve will, at some appropriate stage, attain a max-
imum and then decay with the nature of the decay being
an indirect measurement of the effect of the environment.
However, current measurement protocols, such as optical
density and centrifuged weight, only record, indirectly, the
number of microbes present (alive and dead). Depending
on the situation, the corresponding growth curves will have
either a strictly monotone increasing or a logistic (cumula-
tive) structure. It is this fact that underlies the popularity
of single first order autonomous ODE models (such as the
Verhulst or the von Bertalanffy equation), since the com-
plexity of their solutions is limited to having a monotone
increasing, monotone decreasing or logistic structure.
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Such solutions are not representative of situations where
the growth, after reaching a maximum, decays, which oc-
curs for the number of microbes that survive as the re-
sources available for their survival decrease [17]. The com-
petition leading to death must be taken into account. As
stated in Peleg and Corradini [17] (and illustrated in their
Figure 1.)

“An ideal microbial growth curve is a plot of the
number of living cells as a function of time.”

and, thereby, has four basic biological phases – lag; ex-
ponential growth; stationary; mortality. Because of the
limitations associated with using single autonomous ODEs
to model growth, it is necessary to turn to the utilization of
non-autonomous and systems of ODEs to model the num-
ber of living cells in a closed environment.
The utility and appropriateness of modelling growth as

single non-autonomous ODEs are examined in this paper.
The focus is non-autonomous versions of the autonomous
Verhulst and von Bertalanffy models, along with a discus-
sion of the properties of their solutions. The change from
an autonomous to a non-autonomous structure allows the
role played by the interaction between the environment and
the current size of the population to be included in the
modelling.
The possibility of using a coupled system of autonomous

ODEs is not pursued here, as this introduces the added
complexity about how to model the interaction between
the environment and the current size of the population.
Experimental protocols for performing the measurement
of the number of living cells is not discussed in detail. The
interested reader is referred [7, 16, 8].
The paper has been organized in the following man-

ner. Traditional protocols for the measurement of micro-
bial growth and the interpretation of the recorded logistic
structure are examined in Section 2. Autonomous mod-
els and their solutions are discussed in Section 3 to high-
light, in part, the limited structure that their solutions have
and their inability to reproduce the four phase growth be-
haviour of the surviving microbes in a closed or deteriorat-
ing environment. Section 4 is devoted to an examination
and analysis of non-autonomous models. It includes a dis-
cussion of the earlier non-autonomous modelling. The for-
mulation of a simple non-autonomous multiplicative model
is used to highlight how the non-autonomous terms control
the nature of the growth and the decay. A non-autonomous
version of the von Bertalanffy equation is proposed and
analysed in Section 5. Conclusions are given in Section 6.

2. Measurements of microbial growth
and their interpretation

The traditional protocols for the measurement of micro-
bial growth, in both open and closed environments, in-
clude measuring the optical density of the microbes in a
representative sub-sample and weight of microbes after the
centrifuging of a representative sub-sample. Such a growth
curve is an indirect measurement of the actual number of

microbes and is usually assumed to be proportional to the
number or to be representative of the situation under in-
vestigation. The resulting recorded structure, because such
measurements include both living and dead microbes, is lo-
gistic.
It is this fact that motivates the formulation of au-

tonomous models to explain the growth. However, it is
also a bottleneck. The logistic structure hides much of
the finer detail of the dynamics such as the proportion of
living to dead microbes. There are a number of ways in
which the number of either living or dead cells can be mea-
sured or estimated [7, 16, 26, 8, 21]. However, they are
challenging to implement and time consuming to perform
and, therefore, only utilized when circumstances are imper-
ative. Nevertheless, in the study of the population dynam-
ics of microbes, an investigation of when non-autonomous
ODE models must be used instead of autonomous ODE
ones, represents an important mathematics-for-industry
topic from a biological R&D perspective.
This leads naturally to ask the following question:

“How should the resulting logistic structure be in-
terpreted?”.

Not surprisingly, it depends on whether the environment
is open or closed. When it can be assumed that an au-
tonomous model is appropriate for the situation and the en-
vironment is open, then the model contains a “harvesting”
term. The prototypical situation is the Verhulst model.
The asymptote thereby reflects the fact that the growth
is brought into equilibrium by the “harvesting” term. For
example, in the industrial production of microbes, the har-
vesting balances off the population reproduction growth
which is maintained through the replenishment of nutri-
ents. It is tacitly assumed that there is no need to distin-
guish between living and dead microbes because the process
has been designed to minimize death.
When the environment is closed, if an asymptote occurs,

then either all the microbes are dead, because the food
supply has been depleted, or, for whatever reason, the liv-
ing ones have stopped reproducing. As already mentioned,
in most closed systems, it is the number of surviving mi-
crobes that is required to resolve matters under investiga-
tion. This does not negate the utility of the logistic curve,
since it contains information like the time it takes for a
given type of microbe to fully consume a given amount of
some particular class of nutrients. In fact, such interpreta-
tions apply more generally in the management of biological
organisms. For example, for fish, logistic modelling is im-
portant in the design of aquatic farming protocols.
In the deliberations below, the microbial contamination

of food is used as the motivation, as extensive literature
which includes experimental data is available. An equally
important situation arises when the living microbe per-
forms a secondary activity which is under investigation,
such as the production of pharmaceuticals and biochemi-
cals or the gene silencing of a transgene by fungi or bac-
teria. Using microbes such as yeast, fungi or bacteria for
the production of secondary metabolites is wide spread and
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essential for human health [20].
The big challenge in the study of the population dy-

namics of the surviving organisms (bacteria, fungi) in a
closed environment is the experimental measurement of
their numbers (proportion). Some representative experi-
mental measurements of such situations can be found in
Figure 13 of Horowitz et al. [13] and Figures 3 and 5 in
Carvell and Dowd [5]. As already mentioned, most experi-
mental protocols, such as the optical density of well stirred
sub-samples [15] and the weight of the solid component
after centrifuging, only record (indirectly) the total popu-
lation (alive and dead). This measurement difficulty is re-
flected in the fact that a key aspect in Peleg and Corradini
[17] is simulating the likely behaviour of the models that
they have formulated to reproduce a four phase structure.

3. Autonomous growth modelling

The modelling of biological growth, using autonomous
ODE models, has a long history [11, 22, 9].
It appears that the emphasis on autonomous modelling

can be traced to a number of independent reasons: in the
measurement of the populations of many organisms, it is
the evolution of the total population (alive and dead) that
is observed; growth and decay processes are popular ap-
plications to motivate lectures about autonomous ODEs;
growth and decay are both conceptualized as being differ-
ent rate processes each of which depends only on the cur-
rent size of the population, which is plausible biologically;
biological growth and decay, experimentally and observa-
tionally, appears to be a self-limiting process.
The autonomous ODE modelling of the self-limiting

growth of a biological population N(t) dates from Ver-
hulst’s historic paper of 1838 and takes the form [4]

dN

dt
= rN

(
1− N

K

)
,

where r > 0, K > 0 and t denote, respectively, the growth
rate, the carrying capacity (harvesting level) and time. In
this simple model, even though the decay is quadratic com-
pared with the linear growth, the solution has a logistic
(cumulative) structure. A key generalization of this model
is that proposed by von Bertalanffy [25], which takes the
form

dN

dt
= ηNm−κNn, N = N(t), t ≥ 0, N(0) = N0, (1)

with η, m, κ, n and N0 non-negative. When n = 1, equa-
tion (1) has a Bernoulli ODE structure, the solution of
which, as noted by von Bertalanffy [25], has the explicit
form

N(t) =
{
α− (α−N1−m

0 ) exp(−
( η

α

)
(1−m)t)

}1/(1−m)

,

(2)
where α =

(
η
κ

)
, from which it follows that initial growth or

decay is controlled by whether m > 1 or m < 1. Other ana-
lytic solutions are known. For example, whenm = n = 1,

one obtains the standard exponential growth/decay solu-
tion N(t) = N0 exp((η − κ)t), whereas, for m = n ̸= 1,

N(t) =
[
N1−m

0 + (1−m)(η − κ)t
]1/(1−m)

.

The solution of equation (1) when n = 2−m, m ̸= 1, takes
the following compact form

N(t) =

[√
η

κ

A exp(2
√
ηκ(1−m)t)− 1

A exp(2
√
ηκ(1−m)t) + 1

]1/(1−m)

,

where

A =

√
η +

√
κN1−m

0√
η −

√
κN1−m

0

.

For general m and n, the closed form solution for N(t)
involves hypergeometric functions, the complexity of which
limits their practical utilization.
Even though such models involve a competition between

growth and decay, because of their autonomous structure,
the complexity of their solutions is limited to monotone
increasing, monotone decreasing and logistic (cumulative)
behaviour. The reason for this can be easily verified math-
ematically. Consider the following first order autonomous
ODE

dN

dt
= N ′(t) = g(N), t ≥ 0, N(0) = N0, g ∈ C1[0,∞).

(3)
If g(N) = 0 does not have a solution, then N ′(t) does not
change sign. Consequently, depending on whether g(N) is
initially positive or negative, N(t) is correspondingly al-
ways increasing or decreasing. Otherwise, let t∗ denote the
first value of t when g(N(t∗)) = 0. It follows immediately
from equation (3) that N ′(t∗) = 0. Differentiation of the
autonomous equation (3) with respect to t yields

d2N

dt2
= N ′′(t) =

dg(N)

dN
N ′(t), t ≥ 0. (4)

The trajectory of N(t) for t > t∗ depends on the sign of

N ′′(t∗) = N ′′(t)]t=t∗ =

[
dg(N)

dN
N ′(t)

]
t=t∗

.

However, because N ′(t∗) = 0, it follows that N ′′(t∗) =
0 which implies that the growth of N(t) asymptotes to
the constant value N(t∗). An important form for g(N) is
given by Nf(N)+K with K a constant [11], which will be
discussed below.
This leads naturally to the conclusion that, for the mod-

elling of the population dynamics of the surviving organ-
isms in a closed environment, in order to accommodate the
mentioned four phases involved, the appropriate framework
is non-autonomous ODEs. This fact is only acknowledged
implicitly in Peleg and Corradini [17] in that the ODEs that
they analyse have a non-autonomous structure. In part,
this is because their focus is model formulation within a
food spoilage context rather than the underpinning math-
ematics. However, they do comment
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“The issue of cell mortality · · · is not explicitly
addressed by any of the traditional algebraic and
rate models”.

A quite comprehensive study of the properties of au-
tonomous single variable ODEs can be found in Tsoularis
and Wallace [22]. For various choices for the parameters
α, β and γ, they examine the properties of the solutions of
the following autonomous equation

dN

dt
= rNα

[
1−

(
N

K

)β
]γ

, t ≥ 0, N(0) = N0. (5)

It has a much more general structure than either the Ver-
hulst or the von Bertalanffy equations, though, with γ = 1,
it can be rearranged to recover the Verhulst and von Berta-
lanffy forms. The various graphical plots associated with
the special cases considered all represent realizations of
the point made above about the logistic structure of au-
tonomous single variable ODEs.

4. Non-autonomous growth modelling

As highlighted in the previous section, the conceptual-
ization, which underlies the formulation of autonomous
growth models, is the assumption that the growth and the
decay are rate processes, each of which depends only on
the current size of the population.
From a modelling perspective, how does one highlight

the difference between autonomous and non-autonomous
modelling?
Implicit in the 1979 quotation of Coleman [6], already

cited above, is the conclusion that

“the autonomous structure is appropriate only
when the population size alone drives the dynam-
ics”, whereas “the non-autonomous structure is
immediately relevant when the environment is as-
sumed to play a role, even if it is minor”.

4.1. Earlier non-autonomous growth modelling

For different reasons, various non-autonomous versions of
the autonomous Verhulst equation have been analysed. For
example, the following non-autonomous version of the Ver-
hulst equation, which has been studied by various authors
[10, 11],

dN

dt
= r(t)N

(
1− N

K(t)

)
, r(t), K(t) > 0, N(0) = N0,

(6)
has the solution [10]

N(t) =N0 exp

(∫ t

0

r(τ) dτ

)
×

[
1 +N0

∫ t

0

r(τ)

K(τ)
exp

(∫ τ

0

r(ζ) dζ

)
dτ

]−1

.

(7)

In a way, the popularity of this non-autonomous form of
the Verhulst equation is the fact that its solution has a
known analytic form which can be directly exploited. An
analysis of the important situation where r(t) and K(t) are
slowly varying has been investigated by Coleman [6] and
Shepherd and colleagues [10].
Coleman [6] exploits ideas and results from continuum

mechanics, related to the concept of “fading memory”, to
perform his analysis.
Hallam and Clark [11] appear to have been the first to

analyse and compare alternative non-autonomous forms of
the Verhulst equation for modelling growth in a deteriorat-
ing environment. Their paper also contains a detailed dis-
cussion as to why the effect of deteriorating environments is
an essential feature of real-world population dynamics and
thereby cannot be ignored in the associated modelling.
In a detailed analysis of the structure of the solutions of

equation (6), Hallam and Clark [11] used an “asymptotic
equivalence” analysis to establish that:

(a) For suitably large r, extinction occurs, which is con-
sistent with the situation being modelled.

(b) For suitably small r, the steady state value of the so-
lution exceeds the assumed carrying capacity of the
population. Since, biologically, r is interpreted as the
growth rate of the population, in the absence of envi-
ronmental stress, this result leads to the unacceptable
conclusion that, for a population which is barely able
to persist, it is able to do better in a deteriorating
environment.

In order to circumvent this difficulty, Hallam and Clark [11]
propose and validate the following model as the more ap-
propriate way to transform the autonomous Verhulst equa-
tion to a non-autonomous form for modelling growth in a
deteriorating environment

dN

dt
= N

(
r(t)− c

N

B(t)

)
, r(t), B(t) > 0, N(0) = N0,

(8)
where the decay term has been modified to accommodate
the change, with c being a measure of the population re-
sponse to the environmental stress N(t)/B(t) with B(t)
denoting the maximum population that the environment
can support. This alternative form has the analytic solu-
tion

N(t) =N0 exp

(∫ t

0

r(τ) dτ

)
×
[
1 +N0

∫ t

0

c

B(τ)
exp

(∫ τ

0

r(ζ) dζ

)
dτ

]
.

(9)

Though equations (7) and (9) have a similar algebraic form,
there is a key difference in that the term r(τ)/K(τ) in (7)
has been replaced by c/B(τ) in (9). It is the interplay
between r(τ) and K(τ) in r(τ)/K(τ) that is the source of
the difficulty highlighted by Hallam and Clarke [11]. In
addition, from a modelling perspective, the shortcoming
associated with (6) relates to its algebraic form having a
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strong coupling of the decay with the growth, which does
not arise in (8).
As a consequence of these conclusions, Hallam and

Ma [12] studied the following more general form of equa-
tion (8)

dN

dt
= g(N)(r(t)− f(N)N), N = N(t), (10)

for quite general g(N) and f(N). Their goal was to high-
light the type of regularity that must be imposed on g(N)
and f(N) to guarantee a population dynamics consistent
with that associated with a deteriorating environment. The
effect of periodic environmental fluctuations for the mod-
els (6) and (8) has been examined by Rogovchenko and
Rogovchenko [19]. Their results support the conclusions of
Hallam and Clark [11] that the model (8) is the more appro-
priate framework in which to formulate non-autonomous
version of the Verhulst equation. In their analysis of per-
sistence and extinction for stochastic non-autonomous lo-
gistic systems, Liu and Wang [14] work with a counter part
of (8) which has the form (10).
Vance and Coddington [24] and Vance [23], in a study

of the extinction and persistence behaviour associated with
non-autonomous models of the form

dN

dt
= Nf(N, t),

identified conditions on the time evolution of the environ-
ment for which the solution N̄ of

dN̄

dt
= N̄ f̄(N̄),

yields the essential details about the behaviour ofN(t) with
f̄ corresponding to a long term averaging of f(N, t). In
essence, this conceptualizes situations where the popula-
tion, on average, either continues to increase or asymptote.
Baranyi and colleagues, in a series of papers [2, 3], ex-

amined the effectiveness of modelling change in population
growth, due to some physiological episodes such as inocu-
lation, in terms of a non-autonomous multiplicative model
of the form

dN

dt
= r(t)f(N)N, N = N(t), (11)

with r(t) chosen to reflect the nature of the episode under
investigation. A variety of choices for r(t) are motivated,
compared and discussed in some detail in [2, 3].

4.2. Multiplicative stretched exponential
growth and decay

As suggested by Peleg and Corrandini [17], the compe-
tition between growth and decay, because it depends on
other factors as well as the current size of the population,
could be modelled as a multiplicative interaction between
the growth and the decay. Such a model, after an initial
growth, allows for a subsequent decrease in the size of the

population, as occurs for the survivors in a closed environ-
ment. A simple example of such a multiplicative process
is

N(t) = N0 exp
(
αtβ

)
exp

(
−atb

)
, (12)

which models an initial growth (by having α > a) which is
eventually dominated by the decay (by having b > β). This
multiplicative behaviour is equivalent to the multiplicative
process proposed by Peleg and Corradini [17]

N(t) = N0 exp

[(
t

tcg

)m1
]
exp

[
−
(

t

tcd

)m2
]

(13)

on setting m1 = β, m2 = b, α = (1/tcg)
m1 and a =

(1/tcd)
m2 . Biologically, equation (13) represents the prod-

uct of interrupted growth from a (positive) initial popula-
tion with a decay factor with range from zero to one as the
population eventually disappears. The parameters tcg and
tcd represent the characteristic times of the growth and the
decay, respectively, had they been unimpeded. An isother-
mal chemical kinetics rational for this choice has been given
by Peleg et al. [18].
This multiplicative growth-decay process for (12) cor-

responds to the solution of the following non-autonomous
ODE

dN

dt
=

(
αβtβ−1 − abtb−1

)
N, N(0) = N0. (14)

The importance of this structure is that it shows that the
four phases can be generated without having to invoke the
assumption that the growth and decay rates depend on
different powers of the population N . In addition, it shows
that the competition between the factors orchestrating the
growth and the decay can be modelled and interpreted in
terms of non-autonomous terms.
It follows that the value of t∗, at which the right hand

side of equation (14) equals zero, is given by

t∗ =

(
αβ

ab

)1/(b−β)

.

Differentiation of equation (14) with respect to t, followed
by the replacement of t with t∗ and a little algebra yields

b− 1

t∗
>

β − 1

t∗
⇒ b > β

as the condition for

d2N

dt2

]
t=t∗

< 0

which guarantees that N(t) has a maximum at t = t∗ and
that it is the only maximum of N(t).
In their discussion of (13), Peleg and Corradini make

some general comments about the behaviour of the terms
in their model. Their comments can be formalized and
extended as follows:

(i) For m1 < 1, the exponential growth is initially con-
cave upwards and subsequently concave downwards
with the cross-over point at

t# = tcg

(
1−m1

m1

)1/m1
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which corresponds to the point where the second
derivative of the exponential growth term in equation
(13) is zero.

(ii) The m1 = 1 situation corresponds to standard expo-
nential growth which is strictly monotone increasing
and is concave upwards.

(iii) For m1 > 1, the exponential growth is only concave
upwards as the second derivative of the exponential
growth term in equation (13) is always positive.

(iv) Increasing tcg increases the flatness of the “lag” phase
before the exponential-like growth becomes apparent.

(v) For m2 < 1, the exponential decay is only concave
upwards as the second derivative of the exponential
decay term in equation (13) is always positive. In fact,
such exponential decay, with m2 < 1, is an example of
a completely monotone function [1].

(vi) The m2 = 1 situation corresponds to standard expo-
nential decay which is strictly monotone decreasing
and is concave downwards.

(vii) Form2 > 1, the exponential growth is initially concave
downward and subsequently concave upward with the
cross-over point at

t# = tcd

(
m2 − 1

m2

)1/m2

which corresponds to the point where the second
derivative of the exponential decay term in equation
(13) is zero.

(viii) Decreasing tcg decreases the time needed for the ex-
ponential decay to asymptote to zero, while increasing
tcd extends the time taken for the exponential-like de-
cay to disappear.

(ix) When tcg ≈ tcd (tcg < tcd), the height of the peak
is reduced, broadening the width of the “stationary”
(“equilibrium”) phase.

Interestingly, this multiplicative model reproduces the four
phase structure with the evolution of both the growth and
decay only interacting with the current size of the popula-
tion. Some representative plots that are generated by this
multiplicative model are shown in Figure 1. The decreasing
curves illustrate point (ix) above as tcg approaches tcd.

5. Non-autonomous ODE modelling

The interesting feature to note about the structure of the
right hand side of the ODE (14) is that it separates into
an interaction between the current size N(t) of the popula-
tion and the time evolution of the competition between the
growth and decay. It has the same form as the ODE that
defines how the funds accumulate in a bank account with

Figure 1: A simulation of the four phase structure using
the multiplicative model with N0 = 20, m1 = 4, m2 = 5,
tcd = 44 and tcg = 40 (red), 41 (blue), 42 (black).

the interest rate and the withdrawal strategy taking over
the roles of the growth and decay. In addition, this simple
non-autonomous model, by taking specific account of the
“environment”, generates a wider class of solutions than
is possible using its autonomous counterpart. However, as
noted earlier about the results of Hallam and Clark [11]
about the formulation of non-autonomous versions of the
autonomous Verhulst model, there is a need to avoid having
strong coupling between the time evolution of the growth
and decay terms, unless there is compelling evidence oth-
erwise.

In the resulting non-autonomous Verhulst model, the
growth interacts with the current size of the population
whereas the decay interacts with the square of the cur-
rent size. On the other hand, the natural generalization of
the autonomous of the Verhulst equation to a more gen-
eral autonomous form, as already noted above, is the von
Bertalanffy equation (1). Combining these two observa-
tions leads naturally to the non-autonomous form of the
von Bertalanffy equation as the framework for the mod-
elling of growth in a closed and/or deteriorating environ-
ment

dN

dt
(t) = α(t)Nβ − a(t)N b(t), N = N(t), (15)

with α(t), β, a(t) and b all non-negative. The multiplicative
model (14) is a quite special realization with β = b = 1.

This thereby yields a quite general non-autonomous
structure which allows for general interactions between the
current size of the population and the current state of the
environment.

5.1. Non-autonomous von Bertalanffy equations

The solutions derived above for the various non-
autonomous forms of the Verhulst equation, as well as the
multiplicative model, correspond to special cases of the
proposed non-autonomous von Bertalanffy equation (15).
With β arbitrary and b = 1, the Bernoulli ODE is recov-
ered. Applying the transformation V = N (1−β) to the
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corresponding form of (15) yields the linear equation

dV

dt
+ (1− β)a(t)V = (1− β)α(t).

The standard integrating factor approach can then be used
to obtain the solution

N(t) =

[
exp (−f(t))

×
{
N

(1−β)
0 − (1− β)

∫ t

0

α(τ) exp (f(τ)) dτ

}]1/(1−β)

where f(t) = (1 − β)
∫ t

0
a(s) ds and N(0) = N0. When

b = β = 1 the solution

N(t) = N0 exp

(∫ t

0

α(τ)− a(τ) dτ

)
is obtained. The case b = β ̸= 1 has the solution

N(t) =

[
N

(1−β)
0 + (1− β)

∫ t

0

α(τ)− a(τ) d(τ)

]1/(1−β)

.

Setting β = m, b = n, α(t) = η and a(t) = κ for these
solutions recovers the first three solutions to equation (1).
More generally, applying the transformation

V = N (1−β), β ̸= 1, to (15) yields the nonlinear
equation

dV

dt
= (1− β)

[
α(t)− a(t)V (b−β)/(1−β)

]
.

Choosing different values for the power (b − β)/(1 − β),
recognisable first order ODEs are obtained, such as

dV

dt
= (1− β)

[
α(t)− a(t)V 2

]
, when b = 2− β,

and

dV

dt
= (1− β)

[
α(t)− a(t)V 3

]
, when b = 3− 2β,

which correspond, respectively, to a Riccati and an Abel
equation of the first kind.

6. Conclusions

The growth of microbes in closed environments is a key in-
dustrial activity where living microbes perform a secondary
activity such as the production of pharmaceuticals and bio-
chemicals. It is equally important in

(a) scientific investigations such as arises in the study of
the gene silencing of a transgene by fungi or bacteria,

(b) ecological situations where the environment which sus-
tains life is under challenge (i.e. deteriorating), and

(c) food safety and security where food spoilage and con-
tamination must be identified and controlled.

Because, in such situations, the population dynamics
can sometimes have a four phase structure (lag, growth,
equilibrium, decay) rather than a logistic structure, the
need arises to study the appropriateness or otherwise of
autonomous ODE models to explain the observed dynam-
ics. Such a study represents an important “mathematics-
for-industry” topic from a biological R&D perspective.
Here, after a comparison of autonomous and non-

autonomous ODE models in terms of the properties of their
solutions, a number of non-autonomous models are formu-
lated and analysed. It is concluded that a non-autonomous
version of the von Bertalanffy equation has the appropriate
structure and generality to accommodate the modelling of
the interaction between current population size and chang-
ing environment for the types of biological situations listed
above.
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