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Abstract. We propose a fracture model of a vibrating wire modeled as a one dimensional spring-
mass system. We introduce a phase field variable for damage of the springs and represent a fracture of
the wire by a cutting of the spring. The model we propose consists of a system of ordinary differential
equations and admits rigorous mathematical analysis, such as global existence of a unique solution
and an energy decay estimate. The validity of our fracture model and its estimate is confirmed
using numerical simulations.
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1. Introduction

When an improperly constructed structure, such as bridge,
tower and building, is oscillating in response to an external
force with a certain frequency, such as that generated by
a wind or an earthquake, a violent swaying motion can
occur. This is referred to mechanical resonance and it can
even lead to disastrous failure.
How to avoid such catastrophic failure has been a key

activity in structural and vibration analysis for many
years. On the other hand, over the last few decades, vari-
ous numerical simulation techniques for crack propagation
and structure failure have been developed and applied to
various situations; e.g. DEM (discrete element method)
[2, 3], RBSM (rigid body spring model) [4], and PDS-FEM
(FEM-β) method [5, 9]. In most of the above studies, the
fracture was modelled by the cutting of virtual springs.
These simulation techniques are extremely powerful and
can easily include various kind of effects besides fracture.
On the other hand, one thing common to them is that
only limited mathematical analysis has been undertaken
because they include many articficial numerical steps to
avoid numerical instabilities and to obtain desirable simu-
lation results. The spring cutting criterion is one of such
artificial choices in the crack simulation.
For more details about crack propagation simulation, we

refer to [9]. It contains a very good literature survey about
numerical techniques for crack propagation including the
above methods as well as other methods such as X-FEM.
For details about performing a vibration analysis with X-
FEM in a cracked domain, we refer to [1].
The aim of this paper is the formulation of a rigorous

mathematical vibration-fracture model. Here, we exam-
ine a one dimensional wave equation model of a straight
vibrating wire (spring-mass system). The corresponding
spring mass system is examined in Section 2. Following

the approach in [7], we introduce in Section 3 a phase field
variable for the springs to represent their damage. We pro-
pose a phase field model for the fracture of the vibrating
wire and prove that there exists a unique global solution.
In Section 4, we show that our model has a kind of gradient
structure in terms of energies which are naturally defined.
Using the gradient flow structure, we derive some uniform
energy estimates which are independent of the number of
the space division. The number of pieces of the broken wire
is also uniformly estimated in Theorem 4.

In Section 5, some numerical results are derived using
a time discretization scheme. In terms of the numerical
examples, it is established that complex vibration-fracture
phenomena can be modelled using our simple ODE model.
In addition, our model can be analyzed mathematically to
give results such as global existence of a unique solution
and an energy decay estimate.

2. Spring-mass model for vibrating
wire

We consider a spring-mass model for a straight vibrating
wire of length l in the x-y plane. For i = 0, . . . , N , let Pi

be a point mass mi > 0, and let (xi, ui(t)) be the position
of Pi at time t, where 0 = x0 < x1 < x2 < · · · < xN = l
are fixed. We call ui the displacement of Pi in y-direction.
We suppose that, for i = 1, . . . , N , the neighboring weights
Pi−1 and Pi are connected by a spring Si and that Pi−1

and Pi receive forces of κi(ui − ui−1) and κi(ui−1 − ui)
respectively in the y-direction through Si, where κi > 0
is the known spring constant of Si. We assume that the
boundary conditions at two the end points are given by

u0(t) = a(t), uN (t) = b(t), (1)
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and we denote the given external force acting on Pi in the
y-direction by Fi(t). Then, the equation of motion of Pi is
given by

mi
d2ui
dt2

= κi(ui−1 − ui) + κi+1(ui+1 − ui) + Fi(t)

(i = 1, . . . , N − 1). (2)

For the displacement u := (u1, . . . , uN−1)
T ∈ RN−1, taking

(1) into account, we define an elastic energy and a kinetic
energy by

E1(u) :=
1

2

N∑
i=1

κi|ui − ui−1|2 − F · u, (3)

E2(u̇) :=
1

2

N−1∑
i=1

mi|u̇i|2, (4)

where u̇ := (u̇1, . . . , u̇N−1)
T ∈ RN−1, u̇i :=

dui

dt , and F :=
(F1, . . . , FN−1)

T ∈ RN−1. Then, if a(t), b(t) and Fi(t) do
not depend on t, it is well-known that the following law of
the energy conservation holds:

d

dt
(E1(u(t)) + E2(u̇(t))) = 0.

When the elastic wire is homogeneous, i.e. when its den-
sity ρ (mass per unit length) is constant, the mass of Pi is
given by mi = ρhi, where

hi :=
xi+1 − xi−1

2
(i = 1, . . . , N − 1). (5)

Equation (2) is a finite difference scheme for a wave equa-
tion of a vibrating string

ρ
∂2u

∂t2
(t, x) = µ

∂2u

∂x2
(t, x) + f(t, x) (t > 0, 0 < x < l)

u(t, 0) = a(t), u(t, l) = b(t) (t > 0)

u(0, x) = u0(x),
∂u

∂t
(0, x) = v0(x) (0 < x < l),

(6)

where ρ and µ are given positive constants and f , a, b, u0

and v0 are given sufficiently smooth functions. For (6), we
define

mi = ρhi, κi =
µ

xi − xi−1
, Fi(t) = hif(t, xi). (7)

Then, (2) and (1) can be viewed a Shortley-Weller type
finite difference scheme [8, 10]. A standard and elementary
error estimate is given by:

Proposition 1. For a smooth solution u(t, x) (0 ≤ t ≤ T )
to (6), if u(t) (0 ≤ t ≤ T ) is a solution of (2) and (1) with
the initial conditions:

ui(0) = u0(xi), u̇i(0) = v0(xi) (i = 1, . . . , N − 1),

there exists a constant CT > 0 such that

|u(t, xi)− ui(t)| ≤ CT (h
2 +△h)

(0 ≤ t ≤ T, i = 1, . . . , N − 1)

holds, where

h := max
1≤i≤N

(xi − xi−1),

△h := max
1≤i≤N−1

|xi+1 − 2xi + xi−1|.

A proof of this proposition is given using standard stability
and truncation error estimates. Since it is an elemental
calculation, it is omitted.
In the simulation of this spring-mass model, the choice

of values of the spring constants is a most delicate task.
Proposition 1 suggests a reasonable choice for the spring
constant as given in (7).

3. Fracture model for the vibrating
wire

Under a suitable periodic external force, the wave equa-
tion (6) or the corresponding spring-mass system (2) can
exhibit a resonance phenomena. Then, physically, the
strength of the wire cannot resist large vibrations and a
failure can be expected to occur at a certain moment. In
this section, we propose a phase field model for the dam-
age of the spring, by which we can simulate the motion
of the wire from resonance to fracture. We suppose that
each spring Si is damaged if the stress of Si exceeds a given
threshold and that its spring constant κi is weakened and
changes to κ̃i < κi. We introduce a phase field variable
zi ∈ [0, 1] for each spring Si and suppose that (1 − zi)

2 is
the relative damage of the spring constant, i.e., we suppose
that

κ̃i = (1− zi)
2κi (i = 1, 2, . . . , N).

When zi = 0, this corresponds to the case that the
spring Si has no damage, whereas zi = 1 corresponds
to the case that the spring is totally broken. Let z(t) =
(z1(t), . . . , zN (t))T ∈ RN .
We also assume that a weakened spring cannot recover

and that the damage of the spring accumulates and weak-
ens its spring constant, and leads to failure of the wire. We
propose the following phase field model for fracture of the
straight vibrating wire

mi
d2ui
dt2

= κ̃i(ui−1 − ui) + κ̃i+1(ui+1 − ui) + Fi(t)

(i = 1, . . . , N − 1)

u0(t) = a(t), uN (t) = b(t)

α
dzi
dt

= [Qi − γi]+ (1− zi) (i = 1, . . . , N)

u(0) = u0, u̇(0) = v0, z(0) = z0,

(8)

where [c]+ := max(c, 0) and α > 0 is a suitable time con-
stant, and u0 ∈ RN−1, v0 ∈ RN−1, z0 ∈ RN are given.
The term Qi is defined by

Qi := κi(ui − ui−1)
2 (i = 1, . . . , N),

and represents the magnitude of the stress on the spring
Si. We suppose that the strength of the spring Si is repre-
sented by the given positive constant γi > 0. The larger γi
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is, the harder it is to break the spring Si. Here, we call γi
fracture toughness of Si using the analogy from the frac-
ture mechanics. The first equation of (8) is an equation of
motion similar to (2). The third equation is an evolution
equation of the i-th damage variable zi and it represents
that zi can increase and approach to 1 if and only if Qi

exceeds the threshold γi. We define a convex set K ⊂ RN

by

K := {z = (z1, . . . , zN )T ∈ RN ; zi ∈ [0, 1] (i = 1, . . . , N)},

and we suppose that
z0 ∈ K. (9)

Suppose that N ≥ 3. In the following, we denote the
maximum norm in RN−1 or RN by ∥·∥∞. The ODE system
(8) can be rewritten as the following first order system

u̇(t) = v(t)

v̇(t) = f(t,u(t), z(t))

ż(t) = g(t,u(t), z(t))

u(0) = u0, v(0) = v0, z(0) = z0,

(10)

where u(t) ∈ RN−1, v(t) ∈ RN−1, and z(t) ∈ RN . The
functions f = (f1, . . . , fN−1)

T : R × RN−1× RN → RN−1

and g = (g1, . . . , gN )T : R×RN−1×RN → RN are defined
as follows. For u = (u1, . . . .uN−1)

T ∈ RN−1 and z =
(z1, . . . .zN )T ∈ RN , we define

fi(t,u,z) :=

1

m1
{(1− z1)

2κ1(a(t)− u1)

+(1− z2)
2κ2(u2 − u1) + F1(t)} (i = 1),

1

mi
{(1− zi)

2κi(ui−1 − ui)

+(1− zi+1)
2κi+1(ui+1 − ui) + Fi(t)}

(i = 2, . . . , N − 2),

1

mN−1
{(1− zN−1)

2κN−1(uN−2 − uN−1)

+(1− zN )2κN (b(t)− uN−1) + FN−1(t)}
(i = N − 1),

and

gi(t,u,z) :=
1

α
[Qi(t,u)− γi]+(1− zi) (i = 1, . . . , N),

Qi(t,u) :=


κ1(a(t)− u1)

2 (i = 1),

κi(ui−1 − ui)
2 (i = 2, . . . , N − 1),

κN (b(t)− uN−1)
2 (i = N) .

We have the following lemmas.

Lemma 1. Let T > 0. We suppose that a ∈ C0([0, T ]), b ∈
C0([0, T ]) and F ∈ C0([0, T ],RN−1). Then f ∈ C0(R ×

RN−1×RN , RN−1) and g ∈ C0(R×RN−1×RN , RN ) hold.
Moreover, for an arbitrary bounded subset G ⊂ RN−1×RN ,
there existsM > 0 such that the following inequalities hold.

∥f(t,u, z)− f(t, ũ, z̃)∥∞ ≤M(∥u− ũ∥∞ + ∥z − z̃∥∞),

∥g(t,u, z)− g(t, ũ, z̃)∥∞ ≤M(∥u− ũ∥∞ + ∥z − z̃∥∞),

for all t ∈ [0, T ], (u, z) ∈ G, (ũ, z̃) ∈ G. Moreover, we
have

∥f(t,u, z)∥∞ ≤ 4κ

m
∥u∥∞ +A(t)

(t ∈ [0, T ], u ∈ RN−1, z ∈ K), (11)

where

m := min
1≤i≤N−1

mi, κ := max
1≤i≤N

κi,

A(t) :=
1

m
(κmax(|a(t)|, |b(t)|) + ∥F (t)∥∞) . (12)

Proof. Since each fi is a polynomial of a(t), b(t), Fj(t),
uj(t) and zj(t), the Lipschitz condition for f is clear. We
can also easily show the Lipschitz condition for g from the
facts that Qi is a polynomial of a(t), b(t) and uj(t) and
that ∣∣∣ [c1]+ − [c2]+

∣∣∣ ≤ |c1 − c2| (c1, c2 ∈ R).

The estimate (11) directly follows from the definition of
fi.

Lemma 2. Under the conditions of Lemma 1 and (9), we
suppose that (u, z) ∈ C2([0, T ],RN−1) × C1([0, T ],RN ) is
a solution to (8). Then the following inequalities hold:

żi(t) ≥ 0, zi(t) ∈ [0, 1] (i = 1, . . . , N, t ∈ [0, T ]), (13)

max
(
∥u(t)∥∞,∥u̇(t)∥∞

)
≤ ec0t max

(
∥u0∥∞, ∥v0∥∞

)
+

∫ t

0

ec0(t−s)A(s) ds (t ∈ [0, T ]),

where A(s) is defined by (12) and c0 := max(1, 4κ/m).

Proof. Let v(t) := u̇(t). Then (u(t),v(t), z(t)) is a solution
to (10) for t ∈ [0, T ]. For i = 1, . . . , N , from (10), we have

żi(t) = hi(t)(1−zi(t)) (t ∈ [0, T ]), zi(0) = z0i ∈ [0, 1], (14)

where

hi(t) :=
1

α
[Qi(t,u(t))− γi]+ .

We remark that hi ∈ C0([0, T ]) and hi(t) ≥ 0. Solving the
ODE (14), we have

zi(t) = 1− (1− z0i )e
−

∫ t
0
hi(s)ds.

and from this expression, we obtain (13). Since z(t) ∈ K,
from Lemma 1, we obtain

∥v̇(t)∥∞ = ∥f(t,u(t), z(t))∥∞ ≤ 4κ

m
∥u(t)∥∞ +A(t), (15)
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for t ∈ [0, T ]. We define

φ(t) := max (∥u(t)∥∞, ∥u̇(t)∥∞) , ψ(t) :=

∫ t

0

φ(s) ds.

From (10), we have

∥u(t)∥∞ =

∥∥∥∥u0 +

∫ t

0

u̇(s) ds

∥∥∥∥
∞

≤ ∥u0∥∞ +

∫ t

0

∥u̇(s)∥∞ ds ≤ φ(0) + ψ(t),

and from (15), we have

∥u̇(t)∥∞ =

∥∥∥∥v0 +

∫ t

0

v̇(s) ds

∥∥∥∥
∞

≤ ∥v0∥∞ +

∫ t

0

∥v̇(s)∥∞ ds

≤ ∥v0∥∞ +
4κ

m

∫ t

0

∥u(s)∥∞ ds+

∫ t

0

A(s) ds

≤ φ(0) +
4κ

m
ψ(t) +

∫ t

0

A(s) ds.

Hence we obtain the following Gronwall type inequality:

ψ′(t) = φ(t) ≤ φ(0) + c0ψ(t) +

∫ t

0

A(s) ds.

Solving this differential inequality, we have

φ(t) ≤ ec0tφ(0) +

∫ t

0

ec0(t−s)A(s) ds.

We prove the unique existence of the global solution.

Theorem 1. We suppose that a ∈ C0([0,∞)), b ∈
C0([0,∞)), F ∈ C0([0,∞),RN−1), and (9). Then there
exists a unique solution (u, z) ∈ C2([0,∞),RN−1) ×
C1([0,∞),RN ) to (8). Moreover, z(t) ∈ K holds for
t ∈ [0,∞).

Proof. Instead of (8), we consider the equivalent first order
system (10). From Lemma 1, there exists a unique local
solution to the initial value problem (10). Let T ∗ > 0 be
the maximal time of the existence of the solution to (10).
If T ∗ < ∞, from a general theory of the ODE system, the
solution (u(t),v(t), z(t)) has to blow up as t→ T ∗−0, i.e.,

lim
t→T∗−0

max (∥u(t)∥∞, ∥v(t)∥∞, ∥z(t)∥∞) = ∞.

But it contradicts the estimates in Lemma 2. Hence, it
follows that T ∗ = ∞.

4. Uniform energy estimates

We consider the following energies. Similarly to (3), the
elastic energy E1 is defined by

E1(u, z) :=
1

2

N∑
i=1

κ̃i|ui − ui−1|2 − F · u,

and the kinetic energy E2(u̇) is defined by (4). We addi-
tionally consider the energy:

E3(z) :=
1

2

N∑
i=1

γi(1− (1− zi)
2), (16)

which represents the energy consumed by the damage of
the springs. The following theorem shows that our phase
field model possesses a kind of gradient flow structure.

Theorem 2. Let (u(t), z(t)) be a solution to (8). If a(t),
b(t) and F (t) do not depend on t, then the following equal-
ity holds.

d

dt

(
E1(u(t),z(t)) + E2(u̇(t)) + E3(z(t))

)
= −α

N∑
i=1

∣∣∣∣dzidt
∣∣∣∣2 ≤ 0. (17)

Proof. Under the assumptions, since u̇0 = u̇N = 0 and
Ḟi = 0, we obtain

d

dt

(
E1(u(t), z(t)) + E2(u̇(t)) + E3(z(t))

)
=

N∑
i=1

κ̃i(ui − ui−1)(u̇i − u̇i−1)−
N−1∑
i=1

Fiu̇i

−
N∑
i=1

(1− zi)żiκi|ui − ui−1|2 +
N∑
i=0

miu̇iüi

+

N∑
i=1

γi(1− zi)żi

=

N−1∑
i=1

{κ̃i(ui − ui−1)− κ̃i+1(ui+1 − ui)− Fi +miüi}u̇i

+

N∑
i=1

{γi(1− zi)− (1− zi)κi|ui − ui−1|2}żi

=
N∑
i=1

(γi −Qi)(1− zi)żi .

If Qi > γi, since αżi = (Qi − γi)(1− zi), we have

(γi −Qi)(1− zi)żi = −α|żi|2 (18)

On the other hand, if Qi ≤ γ, we have żi = 0. Hence, in
both cases, we obtain (18). The estimate (17) follows from
the above equalities.

Let l > 0 and T > 0 be fixed. We consider a space
division 0 = x0 < x1 < · · · < xN = l with N ∈ N, N ≥ 2,
and set the following assumptions for the parameters and
the initial and boundary conditions of the problem (8).

(H1) We suppose that u0 ∈ C1([0, l]), v0 ∈ C0([0, l]), a ∈
C1([0, T ]), b ∈ C1([0, T ]), and f ∈ C0([0, T ] × [0, l])
are given independently of the space division, and set

u0i := u(xi), v
0
i := v(xi), Fi(t) := hif(t, xi)

(i = 1, . . . , N − 1).
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(H2) ρ > 0, mi = ρhi (i = 1, . . . , N − 1)

(H3) µ > 0, κi =
µ

xi − xi−1
(i = 1, . . . , N)

(H4) α > 0,

(H5) γi > 0, z0i ∈ [0, 1] (i = 1, . . . , N) and there exists
C0 > 0 which is independent of the space division

such that
N∑
i=1

γiz
0
i ≤ C0.

We define the following discrete energies

U0(t) :=
1

2

N−1∑
i=1

mi|ui(t)|2,

U1(t) :=
1

2

N∑
i=1

κ̃i(t)|ui(t)− ui−1(t)|2,

U2(t) :=
1

2

N−1∑
i=1

mi|u̇i(t)|2,

U3(t) :=
1

2

N∑
i=1

γi
(
1− (1− zi(t))

2
)
,

U4(t) := α
N−1∑
i=1

∫ t

0

|żi(s)|2 ds.

Theorem 3. Under the conditions (H1)–(H5), there ex-
ists Mk(t) > 0 (0 ≤ t ≤ T, k = 0, . . . , 4) which do not
depends on α, {γi}Ni=1 and the space division such that, if
the conditions(u1(t)− a(t))ȧ(t) ≥ 0

(uN−1(t)− b(t))ḃ(t) ≥ 0
(0 ≤ t ≤ T ), (19)

hold, then a solution of (8) satisfies the following uniform
estimates:

Uk(t) ≤Mk(t) (0 ≤ t ≤ T, k = 0, . . . , 4).

Proof. We remark that Ui(t) ≥ 0 for i = 0, . . . , 4 and that
the following estimates hold:

U0(0) ≤
ρl

2
∥u0∥2∞, U1(0) ≤

µl

2
∥u′0∥2∞,

U2(0) ≤
ρl

2
∥v0∥2∞, U3(0) ≤ C0, U4(0) = 0,

from the conditions (H1)–(H5), which are uniformly
bounded independently of α, {γi}Ni=1 and the space divi-
sion. We define

U(t) := U1(t) + U2(t) + U3(t) + U4(t).

Then, similarly to Theorem 2, we obtain

d

dt
U(t) = −

N∑
i=1

κi(1− zi(t))żi(t)|ui(t)− ui−1(t)|2

+
N∑
i=1

κ̃i(t)(ui(t)− ui−1(t))(u̇i(t)− u̇i−1(t))

+
N−1∑
i=1

miu̇i(t)üi(t) +
N∑
i=1

γi(1− zi(t))żi(t)

+ α
N−1∑
i=1

|żi(t)|2

=
N−1∑
i=1

Fi(t)u̇i(t) + κ̃1(t)(a(t)− u1(t))ȧ(t)

+ κ̃N (t)(b(t)− uN−1(t))ḃ(t)

≤
N−1∑
i=1

Fi(t)u̇i(t),

where we used the conditions (19). Using |Fi(t)| ≤ hi∥f∥∞
and the Cauchy-Schwarz inequality, we obtain that

d

dt
U(t) ≤

N−1∑
i=1

Fi(t)u̇i(t) ≤ ∥f∥∞

√
2l

ρ

√
U2(t)

≤ ∥f∥∞

√
2l

ρ

√
U(t).

Solving this differential inequality, we obtain that

U(t) ≤

(√
U(0) +

√
l

2ρ
∥f∥∞t

)2

(0 ≤ t ≤ T ).

Similarly, from the inequality:

d

dt
U0(t) ≤

N−1∑
i=1

miui(t)u̇i(t) ≤ 2
√
U2(t)

√
U0(t),

we obtain that

U0(t) ≤
(√

U0(0) +

∫ t

0

√
M2(s) ds

)2

(0 ≤ t ≤ T ).

As shown in numerical examples in the next section, the
wire breaks at the spring Si if the damage variable zi(t) is
close to 1. For fixed 0 ≤ ε≪ 1, we define I(t) which is the
number of broken springs as follows:

I(t) := #{Si; zi(t) ≥ 1− ε}.

In other words, the wire is broken into I(t)+1 pieces. The
number of broken pieces of the wire is uniformly estimated
as follows.

Theorem 4. Under the conditions of Theorem 3,

I(t) ≤ 2(
min

i=1,··· ,N
γi

)
(1− ε)

M3(t)
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holds. In particular, if there exists a constant γ > 0 in-
dependent of the space dividion such that γi ≥ γ > 0 for
all i = 1, . . . , N , then I(t) ≤ 2γ−1(1 − ε)−1M3(t) holds,
namely the number of broken pieces of the wire is uniformly
bounded.

Proof. The assertion follows from the following inequali-
ties:

M3(t) ≥ U3(t) =
1

2

N∑
i=1

γi(2− zi(t))zi(t)

≥ 1

2

(
min

i=1,...,N
γi

) N∑
i=1

zi(t)

≥ 1

2

(
min

i=1,...,N
γi

)
(1− ε)I(t).

5. Numerical results

We consider the following time discretization scheme for
the phase field model of (8). Let τ > 0 be a time increment.
For k = 0, 1, 2, . . ., we denote numerical approximations
of u and z at time t = kτ by uk = (uk0 , . . . , u

k
N )T and

zk = (zk1 , . . . , z
k
N )T, respectively. We adopt the three point

central difference for ü and the backward Euler scheme for
ż. Then we have the following finite difference scheme:

mi
uk+1
i − 2uki + uk−1

i

τ2

= κ̃ki (u
k
i−1 − uki ) + κ̃ki+1(u

k
i+1 − uki ) + Fi(kτ)

(i = 1, . . . , N − 1, k = 0, 1, . . .)

uk0 = a(kτ), ukN = b(kτ) (k = 0, 1, 2, . . .)

α
zk+1
i − zki

τ
= [Qk

i − γi]+ (1− zk+1
i ) (i = 1, . . . , N)

u0,u−1, z0: given,

(20)

whereκ̃
k
i := (1− zki )

2κi

Qk
i := κi(u

k
i − uki−1)

2
(i = 1, . . . , N, k = 0, 1, 2, . . .) .

When mi and κi are defined as (7), since κ̃i < κi, the
Courant-Friedrichs-Lewy condition becomes

τ ≤ √
ρ min
1≤i≤N

(xi − xi−1).

In the third equation of (20), we define A = [Qk
i −γi]+ ≥

0. Then zk+1
i is explicitly solved as

zk+1
i =

τA+ αzki
τA+ α

= zki +
τA(1− zki )

τA+ α
.

From this expression, we can compute the solution of (20)
successively. We remark that zki ≤ zk+1

i ≤ 1 if 0 ≤ zki ≤ 1,
and that zk+1

i = zki if Qk
i ≤ γi.

In the following numerical examples, if zk+1
i ≥ 0.99 then

zk+1
i is replaced by 1 and we disconnect the wire at the

t = 2.65 t = 3.65

t = 4.65 t = 4.70

t = 4.75 t = 4.80

t = 5.30 t = 6.00

Figure 1: A fracture phenomena of a resonating wire sim-
ulated by (20) with f(x, t) = sin 3πt and N = 40.
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t = 0.000 t = 0.525

t = 0.740 t = 0.912

t = 1.000 t = 1.312

t = 1.317 t = 1.330

Figure 2: A fracture phenomena of a damaged wire with a
solitary wave simulated by (20) with f(x, t) = −0.01 and
N = 400.

spring Si in the figures if zk+1
i = 1. We also set l = 1,

ρ = 1, α = 10−5 and a(t) = b(t) ≡ 0, and we choose
τ = h = 1/N and xi = ih (i = 0, . . . , N). The fracture
toughness γi is defined as follows:

γi := γ φ

(
xi−1 + xi

2

)
(i = 1, . . . , N), (21)

φ(x) :=


−180x+ 10 (0 ≤ x < 0.05)

1 (0.05 ≤ x ≤ 0.95)

180x− 170 (0.95 < x ≤ 1),

with γ > 0. Since we consider the Dirichlet boundary
condition, the two end points x = 0, 1 have relatively large
stress. Actually, if we choose uniform fracture toughness
γi = γ for all spring Si, the springs S1 and SN at the end
points are often first to be broken. In order to avoid such
end point fracture, we reinforce the fracture toughness by
(21).
A numerical example of the fracture of a resonating wire

is shown in Fig. 1, where we set f(t, x) = 0.1 sin(3πt), u0 =
u−1 = 0, z0 = 0, N = 40, T = 6, and γ = 2.25 × 10−4.
In the first stage in the period 0 ≤ t ≤ 4.5, under the
periodic forcing term sin 3πt, the wire resonates and a large
vibration of the mode of sin 3πx is induced. The resonance
causes large stress around x = 0, 1/3, 2/3, 1 and the stress

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0  0.5  1  1.5  2

time

E1
E2
E3

E

Figure 3: This graph shows the energy profiles in time of
E1, E2, E3 and E := E1+E2+E3 for the simulation shown
in Fig. 2. The horizontal axis is time t.

gives damage to some springs around x = 1/3 and 2/3 in
4.5 ≤ t ≤ 4.75. Around t = 4.75 ∼ 4.8, two phase field
variables reach to 1 and the wire breaks at those points.
Four zi variables reach to 1 in the end and the wire breaks
into three long pieces and two short ones (4.8 ≤ t ≤ 6).
Another example of the fracture caused by a traveling

solitary wave is shown in Fig. 2, where we set N = 400,
T = 2, γ = 2.25× 10−3, f(t, x) ≡ −0.01, and uki = ū(xi −
kτ − 0.075) (i = 0, . . . , N, k = 0,−1) with

ū(x) :=

0 (|x| ≥ 0.025)

0.01 cos2(20πx) (|x| < 0.025) .

We suppose that the initial spring S240 at x = 0.6 has a
damage of twenty percent, i.e., the initial phase field vari-
able for the relative damage is set as

z0i :=

0.2 (i = 240)

0 (else) .

A solitary wave starts from x = 0.075 and moves to the
right. It pass the damaged spring S240 at t = 0.525. At
that time, S240 is more weakened by the wave and damaged
more than fifty percent but not yet broken (figure of t =
0.740). After that, the solitary wave becomes upside down
by the reflection at the right boundary and moves to the
left (figure of t = 1.000). Around t = 1.312 ∼ 1.317, it
again arrives at S240, which has been damaged more than
fifty percent by the first arrival, and it finally breaks the
wire.
The energy profiles for the simulation of Fig. 2 in time are

shown in Fig. 3, where E1, E2, E3 and E := E1 +E2 +E3

are plotted with the horizontal axis t. When the solitary
wave passes the damaged spring at t = 0.525, E3 increases
and the total energy E decreases. At the second passing
(t = 1.312 ∼ 1.330), E3 increases and E decreases again.
Globally, the total energy E is monotonically decreasing as



32 Journal of Math-for-Industry, Vol. 5 (2013A-4)

proved in Theorem 2 except for some tiny oscillations due
to the time discretization.

6. Concluding remarks

Various aspects of a vibrating wire and its fracture were ob-
served in terms of the numerical simulations of our phase
field model. In addition to its ability to represent com-
plex phenomena, our phase field model is very simple and
was derived in a rigorous mathematical manner. We were
able to prove the global existence of a unique solution in
Section 3 and even some uniform energy estimates in Sec-
tion 4.

Although we have confined our attention to the one di-
mensional wave equation model in this research, it is rela-
tively starightforward to extend our model to the two di-
mensional wave equation includiong our mathematical esti-
mates. It is more important and interesting to extend our
approach to vibrating beam or shell and to two or three
dimensional linear elasticity problem. We remark that a
basic idea in this direction in static linear elasticity prob-
lem is described in [7].
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