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Abstract. After we survey our positivity problem for α-determinants of matrices, we reformulate it
as polynomial optimization problems. By using SDP relaxation, we perform numerical computation
for these optimization problems. We also give SOS representations for the α-determinants to obtain
the optimal value when the matrix size n = 3, and give conjectures for n = 4, 5.
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1. Introduction

We start by reviewing two 1-parameter interpolations be-
tween the determinant and the permanent of a matrix.

Definition 1.1. For a square matrix A = (aij) of size n,

detαA =
∑
σ∈Sn

αd(σ)
n∏

i=1

aiσ(i) (α-determinant),

q-detA =
∑
σ∈Sn

qι(σ)
n∏

i=1

aiσ(i) (q-determinant),

where Sn is the symmetric group of order n, d(σ) is the
minimum number of transpositions whose product repre-
sents σ ∈ Sn, i.e.,

d(σ) = n−#{cycles of σ}

and ι(σ) is the inversion number defined by

ι(σ) = #{1 ≤ i < j ≤ n | σ(i) > σ(j)}.

The α-determinant is essentially the same as the α-
permanent which was introduced by Vere-Jones [18], i.e.,
perαA = αndet1/αA. Here we prefer the α-determinants
for later discussions.
The functions d and ι on Sn coincide when n = 2 and

they do not when n ≥ 3. The following table is for n = 3.

e (12) (13) (23) (123) (132)
d(σ) 0 1 1 1 2 2
ι(σ) 0 1 3 1 2 2

Therefore, for a 3× 3 matrix A = (aij)
3
i,j=1, we have

detαA = a11a22a33 + (a11a23a32 + a13a22a31 + a12a21a33)α

+ (a12a23a31 + a13a21a32)α
2,

q-detA = a11a22a33 + (a11a23a32 + a12a21a33)q

+ (a12a23a31 + a13a21a32)q
2 + a13a22a31q

3.

Their difference in this case is only for the coefficient of
the transposition (13). For special values 1, 0, −1, it is
clear that the q-determinant and the α-determinant coin-
cide, and they are well-known quantities,

det−1A = detA =
∑
σ∈Sn

sgn(σ)

n∏
i=1

aiσ(i) (determinant),

det0A =
n∏

i=1

aii (product of diagonals),

det1A = perA =
∑
σ∈Sn

n∏
i=1

aiσ(i) (permanent).

It should be mentioned that when A ≥ O, i.e., A is a
positive semidefinite matrix, it holds that

perA ≥
n∏

i=1

aii ≥ detA ≥ 0, (1.1)

or equivalently det1A ≥ det0A ≥ det−1A ≥ 0. The first
inequality is obtained by E. Lieb [4] and the second one is
sometimes called Fischer’s inequality. It is natural to ask
whether similar inequalities hold for q-determinants and α-
determinants. Although monotonicity in the parameter q
or α cannot be expected in general, the following positivity
result has been shown for q-determinants:

Theorem 1.2 (Bożejko and Speicher (1991)). For −1 ≤
q ≤ 1, it holds that q-detA ≥ 0 for any A ≥ O.

In [15], we raised the following positivity problem for
α-determinants.

Problem 1. Find the range of α ∈ R such that detαA ≥ 0
for any A ≥ O.

For this problem, we obtained affirmative results for

α ∈ {−1/m | m ∈ N} ∪ {0} ∪ {2/m | m ∈ N} (1.2)
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in the case of real-symmetric matrices and

α ∈ {−1/m | m ∈ N} ∪ {0} ∪ {1/m | m ∈ N} (1.3)

in the case of Hermitian matrices [15, 16]. Also we can find
real-symmetric matrices for which detαA is negative unless
α ∈ {−1/m | m ∈ N} ∪ [0, 2] (resp. α ∈ {−1/m | m ∈
N} ∪ [0, 1]) for real-symmetric (resp. Hermitian) matrices
[11, 16]. From these results, we conjectured the following:

Conjecture 1.3 ([15, 16]). (1) When α ∈ {−1/m | m ∈
N} ∪ [0, 2],

detαA ≥ 0

for any real-symmetric positive semidefinite matrix A.
(2) When α ∈ {−1/m | m ∈ N} ∪ [0, 1],

detαA ≥ 0

for any Hermitian positive semidefinite matrix A.

In the present paper, concerning with this positivity con-
jecture, we discuss the infimum of α-determinants over a
convex subset of the cone of positive semidefinite matri-
ces. In Section 2 we explain why we need positivity for
α-determinants by showing the probabilistic background
of the problem. In Section 3 we review some known re-
sults towards Conjecture 1.3 above. In Section 4, we refor-
mulate the positivity problem as polynomial optimization
problems (POP) which depend on the size of matrices. In
Section 5, we review semidefinite programming (SDP) re-
laxation problems associated with POP. In Section 6, we
give the answer of the reformulated problem for positive
semidefinite matrices of size 3 (Theorem 6.1), and give up-
per bounds (Propositions 6.7 and 6.9) and numerical lower
bounds (Figure 3 to 5) for those of size 4 and 5, which lead
us to Conjectures 6.8 and 6.10. In Section 7, we give a
remark and some open questions.

2. α-determinantal point processes

This positivity problem arises from the study of the exis-
tence of certain point processes. Here we briefly survey this
point. Details can be found in [15] and [16].
Let R be a “nice” space such as Rd and λ a fixed reference

measure on it. A (simple) point process on R is a random
point configuration, i.e., a probability measure µ on the set
of all locally finite subsets of R. It is uniquely determined
by correlation functions (or joint intensities) ρn : R

n →
[0,∞) by the formula

Eµ

[
n∏

i=1

N(Ai)

]
=

∫
A1×···×An

ρn(x)λ
⊗n(dx1 · · · dxn)

for every n ≥ 1 and disjoint Borel sets A1, . . . , An ⊂ R,
where N(A) is the number of points inside a Borel set A.
For example, the correlation functions of a stationary Pois-
son point process on Rd are given by ρn(x) = cn (x =
(x1, . . . , xn) ∈ (Rd)n) for some c > 0.

Figure 1: From the left, Poisson, determinantal and per-
manental point processes on R2. The figure is borrowed
from [3].

A point process is called determinantal or fermionic if
its correlation functions are given by determinants, i.e.,

ρn(x) = det(K(xi, xj))
n
i,j=1

with a positive semidefinite kernel K : R × R → C sat-
isfying certain conditions. This is originally considered
as fermionic particles in quantum physics; however, there
found many interesting examples of determinantal point
processes, such as eigenvalues of some random matrices,
e.g., Gaussian Unitary Ensemble, the Ginibre point pro-
cess, zeros of a certain Gaussian analytic function, non-
intersecting Brownian motions in one-dimension, uniform
spanning trees on a graph, random domino tiling (dimer
model).
From the physical point of view, boson is also impor-

tant as well as fermion. We can also define point processes
corresponding to boson. A point process is called perma-
nental or bosonic if its correlation functions are given by
permanents, i.e.,

ρn(x) = per(K(xi, xj))
n
i,j=1.

For both determinantal and permanental point processes, it
follows from the inequality (1.1) that correlation functions
are non-negative if the kernel K is positive semidefinite.
See Figure 1 for typical samples of Poisson, determinantal
and permanental point processes.
A point process µ is uniquely determined by its Laplace

transform
Lµ(f) = Eµ[exp(−⟨ξ, f⟩)],

where ⟨ξ, f⟩ =
∑

i f(xi) for a point configuration ξ =
{xi}i ⊂ R and a nonnegative function f of compact sup-
port on R. The Laplace transform of determinantal point
process µK,−1 and permanental point process µK,+1 are
given by

LµK,±1(f) = det(I ∓Kϕ)
±1, (2.1)

where Kϕ is an integral operator with kernel Kϕ(x, y) =
ϕ1/2(x)K(x, y)ϕ1/2(y) with ϕ = 1− e−f . We can naturally
interpolate it by introducing 1-parameter α to the above
Laplace transforms as

LµK,α
(f) = det(I + αKϕ)

−1/α. (2.2)

The equality (2.2) defines a signed measure µK,α in gen-
eral and by expanding the right-hand side we obtain
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detα(K(xi, xj))
n
i,j=1 as “signed” correlation functions for

µK,α. However, if µK,α is indeed a probability mea-
sure, or equivalently there exists a point process, which
we call α-deteminatal point process, the correlation func-
tions detα(K(xi, xj))

n
i,j=1 are nonnegative for any n ∈ N

and x1, . . . , xn ∈ R. Hence, the positivity problem of α-
determinants is equivalent to the existence problem of point
processes. We remark that the limiting case α = 0 corre-
sponds to Poisson point processes.

3. Known results towards positivity
conjecture

Here we list some known results for the positivity. More
details can be found in [11, 15, 16]

1. For the all 1 matrix 1 of size n, we have

detα1 = (1 + α)(1 + 2α) · · · (1 + (n− 1)α)

=: cn(α).

More generally, if A is an n by n matrix of rank 1, or
equivalently A = u∗u for a row vector u ∈ Cn,

detαA = cn(α)

n∏
i=1

|ui|2.

Unless α ∈ {−1/m | m ∈ N} ∪ [0,∞), the above can
be negative if n is big enough.

2. When A is of rank p (≥ 2), it holds that detαA ≥ 0
whenever α ∈ [0, 1

p−1 ]. In particular, when A is of

rank 2, detαA ≥ 0 whenever α ∈ [0, 1] (cf. (4.12),
[16]).

3. Real-symmetric case [16]: define a (2N+2)×(2N+2)
matrix of rank two by AN = uTu+ vTv with

u = (1, 1, 1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
N

),

v = (1,−1, 0, . . . , 0︸ ︷︷ ︸
N

, 1, . . . , 1︸ ︷︷ ︸
N

).

When α > 2, detαAN < 0 for sufficiently large N .

4. Hermitian case [11]: define a (2N + K) × (2N + K)
matrix of rank two by AK,N = u∗u+ v∗v with

u = (1, . . . , 1︸ ︷︷ ︸
K

, 1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
N

),

v = (1, e2πi/K , . . . , e2πi(K−1)/K︸ ︷︷ ︸
K

, 0, . . . , 0︸ ︷︷ ︸
N

, 1, . . . , 1︸ ︷︷ ︸
N

).

When α > 1, one can show that detαAK,N < 0 for
sufficiently large K and N .

5. For real-symmetric case, det2A is nonnegative when-
ever A ≥ O. This follows from the fact that det2A
is equal to the correlation function of a Cox process,
which is a Poisson point process with random intensity
being squared real Gaussian field with covariance A.

6. The correlation function of the superposition of m-
independent copies of Cox process the above is equal
to det2/mA. Hence, det2/mA is nonnegative for any
real-symmetric positive semidefinite matrices. Simi-
larly, the correlation function of the superposition of
m-independent copies of determinantal point process
the above is equal to det−1/mA, which implies that
det−1/mA is nonnegative for any real-symmetric posi-
tive semidefinite matrices. Therefore, when

α ∈ {−1/m | m ∈ N} ∪ {0} ∪ {2/m | m ∈ N}, (3.1)

the α-determinant is nonnegative for any real-
symmetric matrices.

7. Roughly speaking, detαA can be written in terms of
a Poisson point process with intensity being diagonals
of Wishart random matrix (cf. [16]). From this fact,
for n = 2, 3, . . . , detαA ≥ 0 for real-symmetric, n by
n positive semidefinite matrices when

α ∈
[
0,

2

n− 1

]
∪
{ 2

n− 1
,

2

n− 2
, . . . ,

2

2
= 1, 2

}
.

Remark that the numerator 2 is replaced by 1 for the
Hermitian case.

4. Reformulation of the positivity
problem

In what follows, we only consider the real-symmetric ma-
trices. Hermitian cases can also be considered.
Since the conjugation by a regular diagonal matrix does

not change the sign of α-determinant, for our positivity
problem, without loss of generality, we may assume that
the diagonals of matrices are all 1, e.g., when n = 3

A = A3[x] =

 1 x1 x2

x1 1 x3

x2 x3 1

 ,

where x = (x1, x2, x3). Let Pn be the totality of such
positive semidefinite real-symmetric matrices of size n.
The set Pn is a compact convex subset of [−1, 1]dn with
dn = n(n − 1)/2, the number of variables. We consider a
minimization problem for fixed matrix size, and for each n
we define

λn(α) := min
A

detαA s.t. A ∈ Pn.

It is easy to see that (i) for any α and n, λn(α) ≤ 1 since
detαIn = 1 for the identity matrix In ∈ Pn, and (ii) for
fixed α, the quantity λn(α) is non-increasing in n since Pn

can be naturally embedded in Pn+1. We now define

λ∞(α) := lim
n→∞

λn(α) ∈ [−∞, 1].

We note that λ∞(α) is upper semi-continuous since detαA
is a continuous function of α for each n and A.
Now Problem 1 in the introduction is rewritten as fol-

lows:
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Problem 2. Find the range of α ∈ R such that λ∞(α) ≥ 0.

From 1. in Section 3, we can see that λ∞(α) = −∞
when α ∈ (−∞, 0) \ {−1/n, n ∈ N}. In this setting, when
α ≥ 0, Conjecture 1.3 is equivalent to

λ∞(α) ≥ 0 if and only if α ∈ [0, 2] (resp. α ∈ [0, 1]) (4.1)

for real-symmetric case (resp. Hermitian case). We restate
known sufficient conditions for positivity mentioned at 6.
in Section 3. For n = 2, 3, . . . , it holds that λn(α) ≥ 0
when

α ∈
[
0,

2

n− 1

]
∪
{ 2

n− 1
,

2

n− 2
, . . . , 1, 2

}
and thus λ∞(α) ≥ 0, if α ∈

{
2
k

∣∣ k = 1, 2, . . .
}
.

5. POP and SDP relaxation

Semidefinite programming (SDP) is a convex optimization
over the cone of positive semidefinite matrices. It has been
developed for last decade from the theoretical and prac-
tical points of view, and the development is still ongoing.
Here we formulate our problem as a polynomial optimiza-
tion problem (POP) and estimate it from below by SDP
relaxation.
Although the relaxation procedure below is rather stan-

dard, here we explain, for simplicity, when n = 3. Our ob-
jective function is written with the variable x = (x1, x2, x3)
as

fα(x) = detα

 1 x1 x2

x1 1 x3

x2 x3 1


= 1 + α(x2

1 + x2
2 + x2

3) + 2α2x1x2x3.

Then, our problem is the following:
POP3: Find

λ3(α) := min fα(x) s.t. A =

 1 x1 x2

x1 1 x3

x2 x3 1

 ≥ O,

or equivalently

min fα(x) s.t.


1− x2

1 ≥ 0

1− x2
2 ≥ 0

1− x2
3 ≥ 0

1− (x2
1 + x2

2 + x2
3) + 2x1x2x3 ≥ 0.

By introducing the vector consisting of all monomials of
degree ≤ d

ud[x] = (1, x1, x2, x3, x
2
1, x1x2, . . . , x

d
3)

and a positive semidefinite matrix for which the degree of
each element ≤ 2d

Md[x] = ud[x]
Tud[x],

we rewrite the constraint in another equivalent form as
(1− x2

1)Mr−1(x) ≥ O

(1− x2
2)Mr−1(x) ≥ O

(1− x2
3)Mr−1(x) ≥ O

(1− (x2
1 + x2

2 + x2
3) + 2x1x2x3)Mr−2(x) ≥ O

for r ≥ 2. Here r is called the relaxation order. By linear-
lization of variables as xa

1x
b
2x

c
3 ⇒ mabc

e.g. 1 ⇒ m000, x1 ⇒ m100, x2
1x3 ⇒ m201 etc.

and omitting the constraints xa
1x

b
2x

c
3 = mabc for each a, b, c,

we have the SDP relaxation problems SDP3,r (r ≥ 2) as
follows:
SDP3,r. Find µ

(r)
3 (α) := min{1+α(m200+m020+m002)+

2α2m111}

s.t.



Mr(m) ≥ O

(1− σ200)Mr−1(m) ≥ O

(1− σ020)Mr−1(m) ≥ O

(1− σ002)Mr−1(m) ≥ O

{1− (σ200 + σ020 + σ002) + 2σ111}Mr−2(m) ≥ 0,

where m = (m000,m100,m010, . . . ,m2r,2r,2r) and σijk is
acting on each variable mabc as shift of indices, i.e.,
σijkmabc = ma+i,b+j,c+k. For example,

σ201


m000 m100 m010 m001

m100 m200 m110 m101

m010 m110 m020 m011

m001 m101 m011 m002



=


m201 m301 m211 m202

m301 m401 m311 m302

m211 m311 m221 m212

m202 m302 m212 m203

 .

By SDP relaxation, we have obvious inequalities

µ
(r)
3 (α) ≤ µ

(r+1)
3 (α) ≤ λ3(α).

This means that µ
(r)
3 (α) gives a lower bound for λ3(α), and

hence positivity of λ3(α) follows from that of µ
(r)
3 (α) for

some r.
In the same manner as above, we can also define SDP

relaxation problems for any n ∈ N and µ
(r)
n (α) which gives

a lower bound of λn(α).

6. The case n = 3, 4, 5

6.1. POP and SOS relaxations

Let R[x] be the ring of real polynomials of the variables x =
(x1, . . . , xn). We say that f ∈ R[x] is a positive polynomial
on Rn if f(x) ≥ 0 for any x ∈ Rn. We denote the set of
all positive polynomials by Π. A positive polynomial f is
said to be a sum of squares polynomial (for short, SOS
polynomial) if there exist some polynomials p1, . . . , pL ∈
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R[x] so that f =
∑L

i=1 p
2
i . We denote the set of all SOS

polynomials by Σ. Obviously, Σ ⊂ Π. Conversely, every
positive polynomial of one variable is an SOS polynomial,
however it is not always the case for positive polynomials
of several variables. For example, the Motzkin polynomial
f(x, y) = 1− 3x2y2 + x2y4 + x4y2 is a positive polynomial
on R2 but not an SOS polynomial.
It is easy to see that g ∈ R[x] is an SOS polynomial

of degree 2d if and only if there exists a real-symmetric,
positive semidefinite matrix Q of size

(
n+d
d

)
such that

g(x) = ud[x]Qud[x]
T .

The problem of finding an SOS representation for a given
positive polynomial is often reduced to the semidefinite op-
timization problem, i.e., the problem of finding such a real-
symmetric positive semidefinite matrix Q.
In Section 5, we discussed the following constrained POP

for x ∈ Rn: for polynomials f, g1, . . . , gm ∈ R[x],

min f(x) s.t. gj(x) ≥ 0 (∀j = 1, 2, . . . ,m). (6.1)

Here we consider its dual problem:

ρ∗ := max ρ s.t. f(x)− ρ ≥ 0 (∀x ∈ K), (6.2)

where K is a basic semi-algebraic set defined by

K = {x ∈ Rn | gj(x) ≥ 0 (∀j = 1, 2, . . . ,m)}.

We say that a positive polynomial p on K admits an SOS
representation if there exist SOS polynomials σ0, . . . , σm

such that

p(x) = σ0(x) +

m∑
j=1

gj(x)σj(x). (6.3)

The set of all such p(x) is denoted by Q(g1, . . . , gm), which
is called the quadratic module generated by g1, . . . , gm. If
the level set {x ∈ Rn | u(x) ≥ 0} is compact for some u ∈
Q(g1, . . . , gm), by Putinar’s Positivstellensatz (cf. Theorem
2.14 in [6]), one can find such σj ∈ Σ, j = 1, 2, . . . ,m when
p is strictly positive on K.
If we replace the condition “f(x) − ρ ≥ 0 on K” by

“f(x)−ρ on K admits an SOS representation” in (6.2), we
have an SOS relaxation problem as

ρSOS := max ρ s.t. f − ρ admits an SOS representation.

It is obvious that ρ∗ ≥ ρSOS. SDP solvers can find positive
semidefinite matrices Qi, i = 0, 1, . . . ,m such that

f(x)− ρ
(r)
SOS =

m∑
j=0

gj(x)ur−pj (x)Qjur−pj (x)

≥ 0 (∀x ∈ K),

where we put g0(x) ≡ 1 and pj = ⌈deg gj/2⌉. Here
r ≥ max(⌈deg f/2⌉, pj , j = 0, 1, . . . ,m) corresponds to the

relaxation order. Therefore, we obtain f(x) ≥ ρ
(r)
SOS for all

x ∈ K.
Note that K has a non-empty interior in our problem.

Hence by the strong duality theorem of SDP (cf. [6]), we

have µ
(r)
n (α) = ρ

(r)
SOS, where µ

(r)
n (α) is the minimum of the

SDP relaxation problem for (6.1) with relaxation order r
as in Section 5.

6.2. For n = 3 (i)

For n = 3, we can compute λ3(α) explicitly by direct com-
putation as follows. See Figure 2.

Theorem 6.1. For α ≥ 0,

λ3(α) = µ
(r)
3 (α) = min

{
1

4
(1 + α)(4− α), 1

}
for any r ≥ 3.

We omit a direct proof as it is elementary but tedious.
Instead we prove this formula by giving SOS representa-
tions for detαA.
From SDP relaxation problem SDP3,r, we can easily

compute µ
(r=2)
3 (α) and µ

(r=3)
3 (α) numerically for given α

(see Figure 2) by using SDPA 7.3.5 [21] on a Mac. From
this solution, as mentioned in the last subsection, we also
find an SOS representation of detαA as in (6.3). We can
then construct an expression for general α, using the pro-
cedure in [12], as follows.

Proposition 6.2. Let Vα =

(
α/2 α2/3
α2/3 α/2

)
. Then, the

α-determinant for n = 3 admits an SOS representation

fα(x) = 1 +
∑

ijk:cyclic

{
vijkVαv

T
ijk +

α

4
(1− x2

i )(x
2
j + x2

k)
}
,

where vijk = (xi, xjxk) and∑
ijk:cyclic

pijk = p123 + p231 + p312.

Since Vα is positive semidefinite when α ∈ [0, 3/2], we
see that fα(x) ≥ 1 for any A3[x] ∈ P3. Hence, we can
conclude that λ3(α) = 1 at least for α ∈ [0, 3/2]. This type
of representation is not unique. In the next subsection, we
will find another representation for λ3(α).

6.3. For n = 3 (ii)

Here we discuss the problem in the extended framework of
SDP and SOS relaxations for POP developed in [7, 9].

1 2 3 4

-3

-2

-1

1

Figure 2: µ
(r=2)
3 (α) (blue) and µ

(r=3)
3 (α) (purple) for 0 ≤

α ≤ 4.
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An m ×m symmetric matrix F (x) is said to be a poly-
nomial matrix if there exists a finite number of m × m
symmetric constant matrices Hb such that

F (x) =
∑
b

Hbx
b,

where xb = xb1
1 xb2

2 · · ·xbd
d for given x = (x1, . . . , xd) ∈ Rd

and the multi-index b ∈ Nd. We call the inequality
F (x) ∈ Sm+ polynomial matrix inequality (PMI), where Sm+
is the closed cone of the positive semidefinite matrices of
size m. Note that F (x) is just a polynomial if the size
of Hb is 1 × 1. An m × m polynomial matrix F (x) is
said to be an m×m SOS polynomial matrices if there ex-
ist m×m polynomial matrices G1(x), . . . , Gq(x) such that
F (x) =

∑q
i=1 Gi(x)

TGi(x). We denote the set of m × m
SOS polynomial matrices by Σm×m and that with degrees
at most 2r by Σm×m

r . The following lemma is presented
in [7]. This plays an essential role in SDP relaxation for
polynomial optimization problems that contain PMIs.

Lemma 6.3. Let W (x) be an m ×m polynomial matrix
with degree 2r. Then W (x) ∈ Σm×m

r if and only if there
exists a positive semidefinite matrix V ∈ Smn0

+ such that

W (x) =
∑

a∈Nn
r

∑
b∈Nn

r
Vabx

a+b, where n0 :=
(
n+r
r

)
, Nn

r =

{a ∈ Nn |
∑n

i=1 ai ≤ r}, and Vab ∈ Sm is the (a, b)-th block
of V ∈ Smn0

+ .

We recall our positivity problem:

λn(α) = min{detαAn[x] | An[x] ∈ Sn+}. (6.4)

This can also be written as

λn(α) = min{detαAn[x] | Mr−1[x]⊗An[x] ∈ Sn1
+ }

since An[x] ∈ Sn+ is equivalent to Mr−1[x] ⊗ An[x] ∈ Sn1
+

where n1 =
(
dn+r−1

r−1

)
n with dn = n(n − 1)/2. We can

rewrite it as

λn(α) = min

{∑
b

fb(α)x
b

∣∣∣∣∣ ∑
b

Er,bx
b ∈ Sn1

+

}

for some fb(α) ∈ R and Er,b ∈ Sn1
+ . By replacing all mono-

mials xb with new variables yb (linearlization) as in Sec-
tion 5, we obtain the following SDP relaxation problem

ν(r)n (α) = min

{∑
b

fb(α)yb

∣∣∣∣∣ ∑
b

Er,byb ∈ Sn1
+

}

and λn(α) ≥ ν
(r)
n (α). Its dual problem is obtained from

the following SOS problem:

ρ
(r)
SOS(α) = sup

ρ

∣∣∣∣∣∣
∑

b fb(α)x
b − ρ = W (x) ·An[x]

(x ∈ Rdn),
ρ ∈ R, W (x) ∈ Σn×n

r−1

 ,

where A · B = Tr(AB). From Lemma 6.3, there exists
V ∈ Sn1

+ such that W (x) · An[x] = V · (Mr−1[x] ⊗ An[x]).

Then, we have an equivalent form:

ρ
(r)
SOS(α)

= sup

ρ

∣∣∣∣∣∣
∑

b fb(α)x
b − ρ = V · (Mr−1[x]⊗An[x])

(x ∈ Rdn)
ρ ∈ R, V ∈ Sn1

+ .

 .

Since the feasible region of (6.4) has a non-empty inte-
rior and the SOS relaxation problem is feasible, by the

strong duality for SDP (cf. [6]), we have λn(α) ≥ ν
(r)
n (α) =

ρ
(r)
SOS(α). SDP solvers can find V ∈ Sn1

+ , from which we
found the following SOS representation.

Proposition 6.4. For α ≥ 0,

detαA3[x]−min

{
1

4
(1 + α)(4− α), 1

}

= p1(α)

 x2
3 x1x2x3 x1x2x3

x1x2x3 x2
2 x1x2x3

x1x2x3 x1x2x3 x2
1

 ·

1 1 1
1 1 1
1 1 1


+ p2(α)

∑
ijk:cyclic

 1 x2
i x2

j

x2
i x2

i xixjxk

x2
j xixjxk x2

j

 ·

 1 −2 −2
−2 4 4
−2 4 4

 ,

where

p1(α) =

{
1
3α(2α− 3) 3/2 ≤ α ≤ 3,

α α ≥ 3,

and

p2(α) =

{
1
3α(3− α) 3/2 ≤ α ≤ 3,
1
12α(α− 3) α ≥ 3.

In particular, when α ≥ 3/2, we have the inequality

detαA3[x] ≥ min
{1

4
(1 + α)(4− α), 1

}
whenever A3[x] ∈ S3+.

Proof. We can directly verify the above equality. Since
any principal minor of the tensor product of two positive
semidefinite matrices is also positive semidefinite, we see
that

(M̌1[x]⊗A3[x])(3,5,7),(3,5,7)

=

 x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3

⊗

 1 x1 x2

x1 1 x3

x2 x3 1


(3,5,7),(3,5,7)

=

 x2
3 x1x2x3 x1x2x3

x1x2x3 x2
2 x1x2x3

x1x2x3 x1x2x3 x2
1

 ≥ O,

where M̌1[x] = (x1, x2, x3)
T (x1, x2, x3) ≥ O.

Remark that for 0 ≤ α ≤ 3, we also have the following
more neat SOS representation.



Takayuki Osogami, Tomoyuki Shirai and Hayato Waki 7

Proposition 6.5. For 0 ≤ α ≤ 3,

detαA3[x]− 1

=

 x2
3 x1x2x3 x1x2x3

x1x2x3 x2
2 x1x2x3

x1x2x3 x1x2x3 x2
1

 ·

 α α2/3 α2/3
α2/3 α α2/3
α2/3 α2/3 α


≥ 0.

Proof of Theorem 6.1. Combining Propositions 6.4 and
6.5, we obtain the lower bound of λ3(α). Also when
x = (1/2, 1/2,−1/2), the optimal values are attained for
every α ≥ 0. We obtain the assertion.

6.4. For n = 4

For x = (x1, x2, . . . , x6) ∈ R6 and

A4[x] =


1 x1 x2 x3

x1 1 x4 x5

x2 x4 1 x6

x3 x5 x6 1


we see that the α-determinant is given by

gα(x) := detα(A4[x])

= 1 + α

6∑
i=1

x2
i

+ 2α2(x1x2x4 + x1x3x5 + x2x3x6 + x4x5x6)

+ α2(x2
1x

2
6 + x2

2x
2
5 + x2

3x
2
4)

+ 2α3(x2x3x4x5 + x1x3x4x6 + x1x2x5x6).

We consider the minimization problem as follows:

λ4(α) = min gα(x) s.t. A4[x] ∈ P4.

Lemma 6.6. When 0 ≤ α ≤ 1, it holds that λ4(α) = 1.

Proof. Since λ4(α) ≤ 1, it suffices to show that λ4(α) ≥ 1.
Indeed, we have the following representation

gα(x)− 1

=
α

2

∑
(i,j,k)∈Λ

 x2
i xixjxk xixjxk

xixjxk x2
j xixjxk

xixjxk xixjxk x2
k

 ·

 1 2α
3

2α
3

2α
3 1 2α

3
2α
3

2α
3 1


+ α2

 x2
1x

2
6 x1x2x5x6 x1x3x4x6

x1x2x5x6 x2
2x

2
5 x2x3x4x5

x1x3x4x6 x2x3x4x5 x2
3x

2
4

 ·

1 α α
α 1 α
α α 1


≥ 0

when α ∈ [0, 1], where

Λ = {(1, 2, 4), (1, 3, 5), (2, 3, 6), (4, 5, 6)}.

Positivity follows from the fact that all matrices appeared
in the above equality are positive semidefinite whenever
A4[x] ∈ S4+ and α ∈ [0, 1]. Therefore, we obtain the desired
inequality.

1 2 3 4

-25

-20

-15

-10

-5

Figure 3: µ
(r=2)
4 (α) (blue), µ

(r=3)
4 (α) (purple) and

µ
(r=4)
4 (α) (orange) for 0 ≤ α ≤ 4.

2.2 2.4 2.6 2.8 3.0 3.2

-5

-4

-3

-2

-1

1

Figure 4: µ
(r=3)
4 (α) (purple) and µ

(r=4)
4 (α) (orange) for

2 ≤ α ≤ 3.3. The solid line is the upper bound given in
Proposition 6.7.

Proposition 6.7. For α ≥ 0,

λ4(α) ≤ min
{1

2
(1 + α)(2 + 2α− α2), 1

}
.

Proof. Let α∗ = 1+
√
17

2 = 2.56155 . . . . Then, the right-
hand side attains at the identity matrix I4 for 0 ≤ α ≤ α∗
and at A = uTu+ vTv with

u =
( 1√

2
,
1√
2
, 1, 0

)
, v =

( 1√
2
,− 1√

2
, 0, 1

)
for α ≥ α∗. Therefore, the upper bound for λ4(α) follows.

The numerical lower bound matches the upper bound
(see Figure 4). We conjecture the following:

Conjecture 6.8. For α ≥ 0,

λ4(α) = µ
(r)
4 (α) = min

{1

2
(1 + α)(2 + 2α− α2), 1

}
for any r ≥ 4.

In Figures 3 and 4, we used a MacBook Air to solve SDP
relaxation problems for (n, r) = (3, 2), (3, 3), (4, 2), (4, 3) in
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the framework of Section 5. The specification is as follows:
OS is Mac OS X 10.6, CPU is Intel Core 2 Duo with 1.4
GHz and the memory is 4 GByte.
For (n, r) = (4, 4), we used SDPA online solver at Fuji-

sawa lab., Chuo University [20].

6.5. For n = 5

For x = (x1, x2, . . . , x10) ∈ R10 and

A5[x] =


1 x1 x2 x3 x4

x1 1 x5 x6 x7

x2 x5 1 x8 x9

x3 x6 x8 1 x10

x4 x7 x9 x10 1

 ,

we see that the α-determinant is given by

hα(x) := detα(A5[x])

= 1 + α

10∑
i=1

x2
i

+ 2α2(x1x2x5 + x1x3x6 + x1x4x7 + x2x3x8 + x2x4x9

+ x3x4x10 + x5x6x8 + x5x7x9 + x6x7x10 + x8x9x10)

+ α2(x2
1x

2
8 + x2

1x
2
9 + x2

1x
2
10 + x2

2x
2
6 + x2

2x
2
7 + x2

2x
2
10

+ x2
3x

2
5 + x2

3x
2
7 + x2

3x
2
9 + x2

4x
2
5 + x2

4x
2
6 + x2

4x
2
8

+ x2
5x

2
10 + x2

6x
2
9 + x2

7x
2
8)

+ 2α3(x2x3x5x6 + x2x4x5x7 + x3x4x6x7 + x1x3x5x8

+ x1x2x6x8 + x1x4x5x9 + x1x2x7x9 + x3x4x8x9

+ x6x7x8x9 + x1x4x6x10 + x1x3x7x10 + x2x4x8x10

+ x5x7x8x10 + x2x3x9x10 + x5x6x9x10)

+ 2α3(x2
1x8x9x10 + x2

2x6x7x10 + x2
3x5x7x9 + x2

4x5x6x8

+ x3x4x
2
5x10 + x2x4x

2
6x9 + x2x3x

2
7x8 + x1x4x7x

2
8

+ x1x3x6x
2
9 + x1x2x5x

2
10)

+ 2α4(x1x2x6x9x10 + x1x3x5x9x10 + x1x2x7x8x10

+ x1x4x5x8x10 + x2x3x5x7x10 + x2x4x5x6x10

+ x1x3x7x8x9 + x1x4x6x8x9 + x2x3x6x7x9

+ x3x4x5x6x9 + x2x4x6x7x8 + x3x4x5x7x8).

We consider the minimization problem as follows:

λ5(α) = minhα(x) s.t. A5[x] ∈ P5.

Here we give an upper bound by computing a matrix of
rank two.

Proposition 6.9. For α ≥ 0,

λ5(α) ≤ min
{1

4
(1 + α)(1 + 2α)(4 + 3α− 2α2), 1

}
.

Proof. It is obvious that λ5(α) ≤ 1. Set

A =


1 s −t s −t
s 1 −s t t
−t −s 1 t −s
s t t 1 −s
−t t −s −s 1



with

(s, t) =
(√5 + 1

4
,

√
5− 1

4

)
,
(
−

√
5− 1

4
,−

√
5 + 1

4

)
.

Then, A is of rank 2 and we obtain the assertion by direct
computation of detαA.

2.3 2.4 2.5 2.6 2.7 2.8

-20

-15

-10

-5

Figure 5: ν
(3)
5 (α) (purple) for 2.2 ≤ α ≤ 2.8 and ν

(4)
5 (α)

(red) for 2.2 ≤ α ≤ 2.55. The solid line is the upper bound
given in Proposition 6.9. The two functions 1 and 1/4(1 +
α)(1 + 2α)(4 + 3α − 2α2) meet at α = 1/2(51/3 + 52/3) =
2.31699 . . . .

In Figure 5, we used a Linux machine to solve SDP re-
laxation problems in the framework of Subsection 6.3. The
specification is as follows: OS is Ubuntu 12.10, the model
name of cpu is Intel(R) Xeon(R) CPU E5530 with 2.40
GHz, the number of physical cpu is two and the memory
is 24 GByte. We used eight CPU cores of this computer.
In particular, to solve SDP relaxation for n = 5 with re-
laxation order r = 4, we used SDPA 7.3.5 [21] linked with
GotoBLAS2 1.13 [22]. In other cases, we used SeDuMi 1.3
[23] with MATLAB R2012b at the same Linux computer.
In Figure 5, for small α, there is a gap between the upper

bound given in Proposition 6.9 and the numerical lower
bound when the relaxation order r = 3. However, when
r = 4, they seem to match. Proposition 6.9 and Figure 5
support the following conjecture.

Conjecture 6.10. For α ≥ 0,

λ5(α) = ν
(r)
5 (α) = min

{1

4
(1+α)(1+2α)(4+3α−2α2), 1

}
for r ≥ 4.

7. Concluding remarks and open
questions

During the preparation of this paper, we found a paper
[1] which states that positivity holds only for parameters
given in (1.2) for real-symmetric case and (1.3) for Hermi-
tian case. The proof relies on a result due to A. D. Scott-
A. D. Sokal for complete monotonicity of inverse powers
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of certain polynomials that are defined through determi-
nants [17]. It is still unknown which matrices break the
positivity. Finding such matrices would also be an inter-
esting problem.
Here are some open questions.

• Compute λn(α) for n ≥ 4. Find corresponding SOS
representations.

• Is λn(α) monotone decreasing in α ∈ [0,∞]?

• Compute λ∞(α).

• Compute λn(α), λ∞(α) for Hermitian positive
semidefinite matrices.

• For the q-determinant, we can also define the simi-
lar quantities, say λn(q) and λ∞(q), just by replacing
the α-determinant with the q-determinant. By Theo-
rem 1.2, we see that λ∞(q) ≥ 0 for −1 ≤ q ≤ 1. Study
these quantities.
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