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Abstract. We present spectral and scattering theories for a differential operator with a dissipation
term that can be used to describe the dynamics of a tectonic plate with dissipative boundary
conditions. The generating operator is non-selfadjoint causing some additional complexity. This
difficulty has been overcome by developing the selfadjoint-dilation theory. We develop a functional
model for the dissipative operator and the associated scattering theory of Lax-Phillips type.
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1. Structure & dynamics of tectonic
plates.

By now the naive idea of the Earth as a hard body is viewed
as far from reality. In fact the Earth is similar to an egg
with a cracked shell. This shell – the lithosphere – is com-
posed of numerous fragments – the most part covered by 14
large fragments, the tectonic plates. The scale of these large
tectonic plates varies within a range of several thousand
kilometers and bodies of neighboring plates contact directly
along relatively small active zones with diameters of about
100 km. Along the remainder of the boundaries, neighbor-
ing tectonic plates are often separated by relatively nar-
row channels are filled with smaller fragments and disperse
materials which cannot accumulate significant amounts of
elastic energy, and so transform it into heat, causing the
dissipation of stored elastic energy in the form of seismo-
gravitational oscillations (SGO). These SGOs admit spec-
tral interpretation, see [21, 44] and our discussion below.
Tectonic plates are relatively thin (30–100 km thick) under
the oceans, but are thicker (200–300 km) on the ancient
continental platforms and along the oceanic ridges. The
elastic properties of the plates are determined by Young’s
modulus 17.28 × 1010 kgm−1 sec−2, density 3380 kgm−3

and the Poisson coefficient 0.28. The velocity of longi-
tudinal waves on the plates is about 8000m sec−1, and
the velocity of the flexural waves depends on the frequency
and varies, with the type of the wave, on a wide range
around 4500m sec−1. The tectonic plates float on the as-
tenosphere. The viscosity of the astenosphere is large for
fast motions, but relatively small for slow ones.

The exterior dynamics of the tectonic plates is defined
by their sliding along the astenosphere (with liquid friction)
by convective flows in the Earth’s mantle and also due to
changes of the rotation speed of Earth caused by fluctu-

ations in the moment of inertia. Both factors are caused
by irregularities in the energy dissappation from the liq-
uid upper core (see §4). Though forced oscillations may be
present in the tectonic system most of the elastic dynamics
are defined by the SGO of the plates caused by variation
of the strain-stress conditions at the active zones. These
elastic properties of the plates can be described in terms
of thin plate models floating on a liquid with appropriate
boundary conditions analogous to the model of floating ice,
see [10]. Here we base our observations on the assump-
tion of the spectral nature of SGO, see [21, 44]. This is
supported by synchronous observations of SGO on several
GEOSCOPE stations and confirmed by the direct calcula-
tion of flexural eigen-modes of a rectangular plate, see [27].
We note that the dissipation of elastic energy of these SGOs
due to the liquid underlay and the presence of disperse ma-
terials on the boundary were not taken into account in that
study. However the density of distribution of the eigenval-
ues of the model thin plate and their number below certain
levels appears very much the same as the observed values of
square frequencies of SGOs on an equivalent tectonic plate.
Note that relatively minor details concerning the shape of
the plate do not influence the lower eigenvalues correspond-
ing to the long-wave elastic modes. An extended experi-
mental materials science model supporting the hypothesis
on the spectral nature of the flexural component of SGO
on the tectonic plates can be found in numerous papers,
see for instance [37, 38, 39, 40, 41, 42, 43, 45, 46].

The Synchronous observations of slow SGOs give a very
rough estimation of the damping (or decay) of the elastic
energy stored in the tectonic plates. These observations
were made in Borovoe (Kazakhstan, 1992) and in Obninsk
(Central Russia, 1987) simultaneously with corresponding
observations by the seismogravimetric complex at St. Pe-
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Figure 1: (a) Simultaneous observations by the gravimeter
in Borovoe (1) and the seismogravimetric complex of St.
Petersburg University (2), December 1992. (b) Pulsations
intensity in the gliding window 6 hrs. The vertical arrow is
the time of the earthquake in Indonesia (magnitude M =
7.5), 12 December 1992.

tersburg University.
Among various types of oscillations of the Earth, a spe-

cial role is played by pulsations (observed first in [19]) and
recognized as an important phenomenon [21, 19, 20]. Typ-
ical pulsations in December 1992 lasted up to 80 hrs and
were followed by an earthquake of magnitude M = 7.5 in
Indonesia, 12 December 1992, see Fig. 1. Spectra of the

Figure 2: (a) The envelopes of SGO, 0.075–0.095mHZ for
Obninsk (1)and St. Petersgurg (2),1987. (b) The envelopes
of SGO 0.153–0.167mHZ for Borovoe (1) and St. Peters-
burg (2), 1992.

corresponding SGOs in synchronous observations in 1987
and 1992 had a similar structure and a stable maximum
on the interval 0.110-0.130 mHZ. Beside each pair of syn-
chronous spectra there is a common narrow interval with
one peak in 1987 (0.075–0.095mHz) or two peaks in 1992
(0.153–0.167mHz). From these narrow frequency inter-
vals the envelopes of the SGOs were calculated and the

damping of the corresponding amplitudes was estimated.
Despite the large distances between the stations involved

Figure 3: Dynamics of seismo-gravitational oscillations ob-
served in St. Petersburg, 22–28 March 2000, before an
earthquake in Japan (M = 7.6). Here Z, EW , NS mark
components of the displacement. The magnitude of oscil-
lation of the (vertical) Z-component was actually 2 times
larger than the horizontal oscillations EW , NS. In the
domain 0 one sees an intense pulsation, [37, 38]. In the do-
main 2 one sees a change in the SGO spectrum compared
with domain 0 and 1. The last curve shows (without fil-
tering) the record of all displacements of the base of the
seismograph in a relative scale.

in the experiment, the envelopes look similar and contain
the same number of maxima and minima, see Fig. 2, a.
We calculated a decay rate τ (damping decrement), from
the envelopes, see Fig. 2, based on the length of the time
interval ∆T characterized by the damping of the amplitude
A(τ) in the ratio 2 : 1:

A(∆T ) = A(0)e−τ ∆T , τ = ln 2/∆T

The decrement found from the observations (with no pul-
sations taken into account) was 0.028 1/hrs (Obninsk) and
0.023 for St. Petersburg. For another interval of frequen-
cies (with pulsations and two spectral peaks ) the decre-
ment was 0.040 for Borovoe and 0.046 for St. Petersburg.
Note that the decay decrement, as a spectral parameter, is
expected to be the same for a certain single mode of SGO
(with selected frequency) independently of location.

Estimates of the decay rate obtained for both pairs of
observations are close despite the naive method of calcu-
lation. Small differences in decay rate calculated from en-
velopes observed in remoted locations for the same interval
of frequencies enable decay rates to be viwed as a spectral
characteristic of the mode, similar to frequency. Mathe-
matically both observables arise as the imaginary and the
real parts of the corresponding complex “frequency” – an
eigenvalue of a relevant dissipative generator of the wave
dynamics of the thin plate floating on the liquid underlay,
see section 2.
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The monitoring of the SGO background provides infor-
mation on the amount of elastic energy accumulated, due
to stress, at the active zone of a tectonic plate. Evidence
of the growth of stored energy is seen from the growing fre-
quencies of SGO before the earthquakes. Indeed, the effect
of growing of frequencies of SGO under a localized bound-
ary stress was observed in [21] from analysis of spectral-
time (ST) cards (St. Petersburg 22–28 March 2000) just
before an earthquake in Japan, and noted in [44], from
which Fig. 4. is taken.

Figure 4: The time- frequency cards showing the variation
of the frequency of the corresponding SGO

Space-time card analysis reveals an important connec-
tion between the stress magnitude and the frequency of the
SGOs observed. In spectral terms, stress magnitude and
frequency are obtained from the eigenvalues of the gen-
erator of the wave process. According to the celebrated
variational principle, see [7], the elastic deformation caused
by the stress enhances the corresponding Hamiltonian, and
hence the growth of the corresponding conditional minima,
coincident with the eigenvalues of the biharmonic Hamil-
tonian of the tectonic plate – the squares of the eigenfre-
quencies of the corresponding generator, §2. A similar well
known effect is used in musical instruments attenuated via
regulation of tension of strings.

In what follows we quote from [44] concerning the dy-
namics of the frequencies revealed from analysis of the
spectral-time cards (ST-cards) of the vertical component
of SGOs, based on comparison of data represented in Fig. 4.
Frequency growth of SGOs is seen on ST-card, Fig. 3. The
spectral amplitudes are represented in Fig. 4 by variation
of the shade. Maximal amplitudes are white. The ampli-

tudes on the shaded domains are 3.5 times greater than the
average amplitude (frequency ∼ 200 mcHz). One can see
from Fig. 4 (part 1) a few domains, where the frequencies
of the modes increase or decrease. This is interpreted as
evidence of an accumulation (or discharge, by forming local
cracks) of the elastic energy due to stress. Growth/decrease
of the frequency is characterized by the ratio ∆v/t, where
∆ is the increment of the frequency on the interval [0, t].
We have obtained from [44] the relevant data from obser-
vations of real processes, including an essential damping
of amplitudes of the SGO. That paper [44] is dedicated to
an analysis of the elastic dynamics of a thin plate with no
dissipation.

In this paper we attempt to develop an appropriate anal-
ysis for a more realistic model, with dissipation of elas-
tic energy and the damping of SGO amplitudes is taken
into account. The analysis of the dynamics with no damp-
ing can be developed, with use of an appropriate fitted
zero-range model, based on spectral theory and an op-
erator extensions procedure for symmetric operators, the
corresponding analysis with SGO amplitudes damping re-
quires spectral analysis and the operator extensions for
non-symmetric – dissipative – operators.

Key features of dissipative spectral theory were devel-
oped in [18, 24, 28], unfortunately the corresponding opera-
tor extension techniques was absent. This is a major obsta-
cle in using appropriate zero-range models of the boundary
stress as a tool of the corresponding analytic perturbation
procedure, c.f. similar techniques for selfadjoint operators,
[29].

Experimental results show that the damping decrements
of the SGO amplitudes are important spectral variables,
and can be used, together with the frequencies and am-
plitudes of the SGO, and the shapes of the corresponding
modes for fitting of a model of a tectonic plate under stress.
Monitoring of SGOs would then allow a fit of the corre-
sponding model of the plate under stress. Mathematical
modeling would then enable calculation of the eigenvalues
and eigenfunctions of the fitted solvable model, this in turn
would allow estimation of the elastic energy accumulated
in the active zone of the plate and, eventually, predicting
the power of expected earthquake.

Here we aim to attract the attention of mathematicians
and geologists to an interesting area of seismology provid-
ing an alternative approach to prediction of earthquakes
and/or tsunami and ultimately a preliminary estimation
of their power. A further part of the paper suggests new
mathematical methods in the dissipative operator exten-
sion theory based on Lax-Phillips analysis of the genera-
tor of the corresponding contracting dynamics. We need
Lax-Phillips analysis as a background for construction of a
fitted soluble model of the stressed tectonic plate using the
model as a first step in the relevant analytic perturbation
procedure for calculation of the perturbed dynamics under
stress.
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2. Plates in a dissipative environment

There are two ways in which dissipation of the elastic en-
ergy accumulated on a thin tectonic plate due to boundary
stress may occur. First, through the disperse materials fill-
ing the channel between the neighboring plates beyond the
active zones of direct contact. Second, by the contact of
the plate with the liquid underlay.
The disperse material cannot accumulate an essential

amount of elastic energy, but simply transforms it into
heat, [17, 48]. We do not discuss here the physics of this
process, but assume that the dissipation is described by a
phenomenological dissipative boundary condition, defined
by a real operator matrix (see §2.1). We neglect the pres-
ence of neighboring plates and hence assume that a single
thin plate is embedded into the domain filled with disperse
materials, emulated by a dissipative boundary condition on
the boundary of the plate.
To take into account the dissipation defined by the fluid

underlay, we should consider contact of the plate with a vis-
cous liquid, described by a modified Navier-Stokes equation
and derive the dissipation, assuming a small, but non-zero
liquid viscosity with respect to slow movements. We will
not do this here, but assume, see §2.2, that the dynamics of
SGOs on the thin plate floating on the fluid is described by
the bi-harmonic wave equation (5), see [10], with a positive
damping parameter β on the velocity, assuming that this
phenomenological parameter defines the dissipation due to
small viscosity and does not vanish, contrary to [10].
We aim to construct a fitted zero-range solvable model

of a floating plate under boundary stress in a dissipative
environment. Contrary to the conservative case, where the
corresponding unperturbed operator is Hermitian or self-
adjoint, we need a version of the operator-extension theory
for dissipative operators L. We will achieve this based on
construction of the selfadjoint dilation L̂ of the dissipative
generator of the wave dynamics in an extended space via
attachment of incoming and outgoing channels on the plate
Ω and it’s boundary γ. Then the zero-range perturbation
of the dilation L̂ is introduced via special boundary con-
dition on the selected deficiency subspace N orthogonal to
incoming and outgoing channels which remain unaffected.
Subsequent splitting of these gives a dissipative operator
L, – a zero-range perturbation of the original dissipative
operator L. This program includes several steps:

1. Description of dissipative boundary conditions for the
thin-plate model (bi-harmonic operator on a bounded
domain).

2. Construction of a selfadjoint dilation, see [24], L̂ : H →
H of the dissipative thin-plate model L : K → K ⊂ H.

3. Restriction of the dilation L̂ → L̂0, with deficiency
subspaces N±i from the original co-invariant subspace
K, and subsequent extension of L̂0 → L̂B with a Her-
mitian matrix extension parameter B : N ≡ Ni+Ni →
N and corresponding selfadjoint generator L̂B of the
relevant unitary group UB(t) = exp iL̂Bt.

4. Description of spectral properties of the dissipative
generator of the relevant Lax-Phillips semigroup, see
[18], PKUB(t)

∣∣
K, t ≥ 0, obtained as a zero-range per-

turbation LB of the original dissipative generator L of
the wave dynamics of the tectonic plate emulating the
stressed dynamics of the tectonic plate in a dissipative
environment.

Steps 3 & 4 are standard in dissipative operator theory, so
we concentrate here on 1 & 2 and provide, in the Appendix
a brief review of the spectral analysis of dissipative oper-
ators in terms of the functional model. There are consid-
erable technical details which are necessary for the proofs
of a number of the results we claim here which underpin
the mathematical phenomena we discuss. We shall present
those in a forthcoming manuscript. Indeed, similar tech-
niques to those presented here can be used for the stress
applied on the body of the plate, caused by violent con-
vective flows in the asthenosphere, or the stresses on the
oceanic plated, which are responsible for tsunami, see §4
and an extended discussion in [14].

2.1. Dissipative boundary conditions.

The bi-harmonic operator ∆2 acts on L2(Ω), Ω ⊂ R2 a
relatively compact domain with smooth boundary ∂Ω ≡ γ.
Integration by parts yields the boundary form :

Jint(u, v) =

∫
Ω̃

[
∆2ū v − ū∆2v

]
= ⟨Ξu

+,Ξ
v
−⟩ − ⟨Ξu

−,Ξ
v
+⟩

=

∫
γ

dγ

[
⟨
(

∂∆u
∂n

−∆u

)
,

(
v
∂v
∂n

)
⟩

−⟨
(

u
∂u
∂n

)
,

(
∂∆v
∂n

−∆v

)
⟩
]

(1)

Or, alternatively the form

JN (u, v) ≡
∫
γ

dγ

[
⟨
(

∂∆u
∂n
∂u
∂n

)
,

(
v
∆v

)
⟩

−⟨
(

u
∆u

)
,

(
∂∆v
∂n
∂u
∂n

)
⟩
]
. (2)

We select standard selfadjoint boundary conditions for the
bi-harmonic operator so that the Lagrangian form (1) van-
ishes. The Lagrangian plane (defined by boundary condi-
tions) is an Hermitian matrix B in the appropriate Sobolev
class of the boundary data, for instance(

∂∆u
∂n

−∆u

)
+Bt

(
u

∂u
∂n

)
= B

(
u

∂u
∂n

)
, (3)

where

Bt = (σ − 1)

(
0 ∂2

∂t2
∂2

∂t2 0

)
,

with the Poisson coefficient σ, 0 ≤ σ ≤ 1/2 and ∂2

∂t2 taken
along the boundary. Equation (3) with B = 0 gives natural
boundary conditions for the thin plate model. Similarly for
the dissipative boundary condition we substitute B for a
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dissipative matrix operator. Thus for a dissipative model
and in the simplest case B = m i

2 Γ+
γ Γγ with a constant

2× 2 nonsingular matrix operator Γγ acting from L2(γ,E)
to an auxiliary space K

∣∣
γ
:

(
∂∆u
∂n

−∆u

)
+ (σ − 1)

(
0 ∂2

∂t2
∂2

∂t2 0

)(
u

∂u
∂n

)
=

i

2
Γ+
γ Γγ

(
u

∂u
∂n

)
. (4)

The bi-harmonic operator with this boundary condition is
dissipative in L2(Ω) and is connected to the generator L of
the wave dynamics of the tectonic plate with dissipation.

2.2. Damped wave process on the tectonic plate.

Flexural oscillations of the thin plate Ω floating on a liquid
with small viscosity are described in non-dimensional coor-
dinates by the wave equation for the vertical displacements
η [10] on the horizontal surface Ω ⊂ ∂Ω̃ of the liquid filling
the 3D domain Ω̃ with ∆Ω = ∆:

∆2
Ω η +mηtt + βηt + η + ϕt = pa, (5)

Here m is the relative 2D density of the 2D plate, ϕ is
the hydrodynamic potential in Ω̃, β – a positive damp-
ing parameter, and pa is an additional pressure applied on
the surface Ω in the upward direction. The hydrodynamic
potential satisfies 3D-Laplace equation ∆ϕ = 0 in Ω̃ and
Neumann boundary conditions on ∂Ω̃ \ Ω, ∂ϕ

∂n

∣∣
∂Ω̃\Ω = 0.

Kinematic matching conditions are imposed on the plate:
∂ϕ
∂z − ∂η

∂t

∣∣
Ω
= 0. The hydrodynamic potential satisfies the

volume conservation condition
∫
Ω

∂ϕ
∂z dΩ = 0, which allows

us to disregard the zero eigenvalue of the Laplacian in Ω̃
and define the partial Neumann-to-Dirichlet map ND0 on
the orthogonal complement of constants in an appropri-
ate Sobolev class from L2(Ω). The relative ND-map is
represented by the formal spectral series over the system
φΩ
l ≡ φl

∣∣
Ω
of the eigenfunctions of the Neumann Laplacian

in Ω̃, restricted to Ω

ND0 ≡
∑
l>0

φΩ
l ⟩ ⟨φΩ

l

λl
. (6)

This series is divergent, but can be regularized based on the
resolvent equation, [33], and implies the positivity of the
relative ND-map. Then we eliminate the hydrodynamic
potential from (5) based on the kinematic matching condi-

tion ∂ϕ
∂z = ND ∂2η

∂t2 . This yields a “wave equation” for the
vertical displacement η on Ω:

(m+ND0) ηtt + βηt +∆2η + η = pa. (7)

With negligeable upward pressure pa (i.e. thin plate) the
equation (5) is homogeneous:

(m+ND0) ηtt+βηt+∆2η+η ≡ Dηtt+βηt+Lη = 0, (8)

The homogeneous wave equation (8) can be presented as
a first order equation in Lax-Phillips form, [18], with op-
erator coefficient (m+ND0) ≡ D and D−1L ≡ LD, as
follows:

1

i

∂

∂t

( u
ut

)
= i

(
0 −1
LD D−1 β

)(
u
ut

)
≡ LD

(
u
ut

)
≡ LDu⃗. (9)

LD is dissipative in E (Cauchy data u⃗ = (u, ut) ≡ (u0, u1)),
with energy norm

⟨u⃗, v⃗⟩E =
1

2

∫
Ω

[∆ū0∆v0 + ū0v0 +Dū1 v1)] dΩ, (10)

Lemma 1. The boundary form of the Lax-Phillips gener-
ator LD in the energy-normed space of the Cauchy data η⃗
is represented as

⟨LDu⃗, v⃗⟩E − ⟨u⃗,LDv⃗⟩E

= − i

2

[
⟨Ξu0

+ ,Ξv1
− ⟩L2(γ) − ⟨Ξu1

− ,Ξv0
+ ⟩L2(γ)

]
− i⟨βu1, v1⟩L2 .

The boundary form is often interpreted as a “current”
associated with the “wave function” of the problem. For
selfadjoint operators - Hamiltonians of conservative phys-
ical systems - boundary forms vanish due to conserva-
tive boundary conditions imposed on the symplectic data
Ξ±
∣∣
γ
, u0,1

∣∣
Ω
. For multi-channel systems, conservative

boundary conditions are interpreted as balancing the cur-
rents on the contact of the channels.

Hereafter we consider the dissipative boundary condi-
tions for the generator of the wave dynamics coming from
the boundary conditions and data Ξ+ = iΓ+ΓΞ−, as in
(16) below, if Γ+Γ = B > 0.

2.3. The selfadjoint dilation of a dissipative
generator.

Unfortunately rigorously formulated multi-channel prob-
lems are usually too complicated for explicit analysis be-
cause of the problem of multiple returning waves. Lax-
Phillips systems are characterized by the condition that all
such waves (exiting from K into an outgoing channel) never
return, [18]. Thus the structure of the outgoing channel is
not important for damped evolution and only the balance
of currents is essential. Therefore, for Lax-Phillips sys-
tems, we are able to replace the outgoing channels with
the simplest outgoing channels providing the required bal-
ance. Then the damped evolution eiLt in K can be em-
bedded into the larger space H = K ⊕ Din ⊕ Dout via
the attachment of trivial artificial incoming and outgoing
channels Din,out = L2(R∓) so that the system obtained is

Lax-Phillips with a selfadjoint generator L̂D. We use the
analogue of the boundary conditions (3,4) disregarding the
term with the Poisson coefficient. For instance, the genera-
tor L̂D is obtained from the original dissipative operator by
attachment of truncated momenta i d

dx on L2(R∓). Then
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the positive cone of the relevant unitary evolution group

eiL̂Dt, t ≥ 0 restricted onto the co-invariant subspace K
coincides with the original damped evolution, see [18, 24]:

PKe
iL̂Dt

∣∣
K = eiLDt, t > 0. (11)

This remarkable connection between the dissipative oper-
ator LD and its nearest selfadjoint relative L̂D - the self-
adjoint dilation - is the most important feature of the cor-
responding spectral theory, see [24]. Essential details of
the spectral picture of the dissipative operator LD can be
interpreted in terms of the corresponding scattering ma-
trix/characteristic function, see [24, 28, 31]. Here we use
the dilation as a tool for explicit construction of the zero-
range model of a weakly perturbed dissipative operator.

Construct the selfadjoint dilation of LD by attachment
of incoming/outgoing channels to the boundary of Ω and
to the support supp β ⊂ Ω of β > 0. Set

Dγ
in,out = L2(R∓, Eγ), DΩ

in,out = L2(R∓, EΩ),

The truncated momenta are defined on Dγ
in,out, DΩ

in,out as

i
duγ+
ds

, i
duγ−
ds

, i
duΩ+
ds

, i
duΩ−
ds

. (12)

The boundary forms of the truncated momenta on uγ± ∈
Hγ and uΩ± ∈ HΩ are represented in terms of boundary
data uγ±(0±, γ), u

Ω
±(0±,Ω) or in terms of the corresponding

symplectic variables

Ξγ
+ =

uγ+ + uγ−
2

, Ξγ
− =

uγ+ − uγ−
i

,

ΞΩ
+ =

uΩ+ + uΩ−
2

, ΞΩ
− =

uΩ+ − uΩ−
i

Jγ(u
γ , vγ) = i⟨uγ+(0+, γ), v

γ
+(0, γ)⟩Eγ

−i⟨uγ−(0−, γ), v
γ
−(0−, γ)⟩Eγ

= ⟨Ξuγ

+ ,Ξvγ

− ⟩ − ⟨Ξuγ

− ,Ξvγ

+ ⟩,
JΩ(u

Ω, vΩ) = ⟨iuΩ+(0+,Ω), vΩ+(0,Ω)⟩EΩ

−⟨iuΩ−(0−,Ω), vΩ−(0−,Ω)⟩EΩ

= ⟨ΞuΩ

+ ,ΞvΩ

− ⟩ − ⟨ΞuΩ

− ,ΞvΩ

+ ⟩. (13)

We factorize the operators β = Γ+
Ω ΓΩ, B = Γ+

γ Γγ so as
to have nonsingular factors acting on the boundary spaces
of u⃗, uΩ±(0±), u

γ
±(0±). Define LD, associated with the bi-

harmonic operator with dissipative boundary conditions
Ξu
+

∣∣
γ
= iBΞu

+

∣∣
γ
. We verify the following elsewhere.

Theorem 1. The matrix operator defined in

H = DΩ
out ⊕Dγ

out ⊕ K ⊕Dγ
in ⊕DΩ

out (14)

by the formula

L̂D


uΩ+
uγ+
u⃗
uγ−
uΩ−

 =



i
duΩ

+

ds

i
duγ

+

dr

i

(
0 −1
LD 0

)(
u0
u1

)
+

(
0

Γ+
ΩΞ

uΩ
1

+

)
i
duγ

−
dr

i
duΩ

+

ds


(15)

with the boundary conditions imposed on ΞΩ
±,Ξ

γ
±,Ξ

u0
± ,Ξu1

± :

ΞΩ
− = ΓΩu

1, Ξu0
+ = Γ+

γ Ξ
γ
+, Ξ

γ
− = ΓγΞ

u1
− (16)

is a selfadjoint dilation of the operator LD.

A similar statement is true for the dissipative wave gen-
erator with the boundary condition (4) again for the bi-
harmonic operator. In fact description of the dilation can
be simplified by introducing total incoming and outgoing
spaces Din,out = Dγ

in,out ⊕ DΩ
in,out and total vectors u⃗± =

uγ±⊕uΩ±. Then, instead of Γγ , ΓΩ use Γ : E → Eγ⊕EΩ and
the adjoint Γ+, the formula (15) for the dilation reduces to

L̂

 u+
u
u−

 =

 idu+

ds

Asau+ Γ+ u++u−
2

idu−
ds

 (17)

with boundary condition u+−u−
i = Γu. Here Asa is the

self-adjoint part, with zero contribution to the boundary
form of L̂. In this form the dilation formula was presented
in [28].

3. Restriction-extension scheme for
dilation

Originally von Neumann’s operator extension theory was
developed as a tool to construct the functional calculus,
in particular to construct the appropriate dynamic group.
Though the zero-range model arose in [9] independently,
the connection between them was noted in [5] and von
Neumann’s theory is considered foundational to zero-range
models of quantum and acoustic systems, see [8, 3, 4, 6, 22]
and references therein. Now zero-range models are used
in analytic perturbation procedures to improve conver-
gence of the perturbation series in resonance spectral prob-
lems with unperturbed eigenvalues embedded in continuous
spectrum, see [34, 29, 35].
Since we need to mark the operators by their extension

parameter α, we will write Lα instead of LD,α and L̂α

instead of L̂D,α for the dilations.
To construct a zero-range model of the dissipative op-

erator L, we develop an appropriate restriction-extension
procedure L̂ → L̂α for the corresponding dilation, and then
consider the Lax-Phillips semigroup generated by L̂α. Due
to the special selection of the deficiency subspace of the di-
lation N±i ⊂ K, the incoming and outgoing subspaces re-
main L2(R±, E) – the same as incoming and outgoing sub-
spaces of the dilation L̂. Then the restriction eiLαt of the
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extended unitary group eiL̂αt to the co-invariant subspace

K yields a contracting semigroup PKe
iL̂αt

∣∣
K ≡ eiLαt, t ≥ 0,

whose generator serves as a zero-range perturbation of the
original dissipative operator LD ≡ L.
The deficiency elements at the complex point −i of a

local restriction of a self-adjoint differential operator L to
the domain of all smooth elements, vanishing near given
point a coincide with square integrable derivatives of the
corresponding Green function GL

i (x, a). Thus the defi-
ciency index is (6, 6) of the 2D bi-harmonic operator at
a ∈ Ω, see [15] and the index is (3, 3) for the local re-
striction of the bi-harmonic operator with the Neumann
homogeneous boundary condition. Further, restriction of
the bi-harmonic operator with natural boundary condi-
tions for a thin plate, (3) with B = 0, has deficiency in-
dex (5, 5) (an important remark of C. Fox and S. Nazarov
shows the deficiency index of the local restriction of the
bi-harmonic operator may be greater than the index of
the similar restriction of the operator with the Neumann
homogeneous boundary condition). Generally the index
of the locally restricted unperturbed bi-harmonic opera-
tor does not exceed (6, 6), but may vary depending on
the original boundary condition. The restriction of the
selfadjoint operator L̂ ≡ A is equivalent to selection of
the deficiency subspace for given value iδ of the spectral
parameter. The restriction is local if the deficiency ele-
ments are generalized solutions of the corresponding ho-
mogeneous equation and belong to the Hilbert space H in
question. In particular, for the local restriction of the di-
lation L̂ one can use the Green function or the derivatives
of the Green function of the dissipative bi-harmonic oper-
ator. We assume that the deficiency subspace is a generat-
ing subspace Ni (or develop the restriction-extension pro-
cedure in the invariant subspace generated by the defect
Ni +Ni, and assume that the deficiency subspaces do not
overlap:N−i ∩Ni =

A+iI
A−iINi ∩Ni = 0, dim Ni = d). Then

set D
A

0 = (A − iI)−1 (E
A
⊖Ni) and define the restriction

as A→ A0 = A
∣∣
DA

0
.

The procedure of restriction suggested above does not
guarantee density of the domain of the restricted operator.
Nevertheless, the deficiency subspaces N±i do not overlap,
the extension procedure for the orthogonal sum l0⊕A0 can
be developed based on von Neumann’s formula. We fol-
low [32]. The “formal adjoint” operator for A0 is initially

defined on the defect Ni + N−i := N by A
+

0
e ± i e = 0

for e ∈ N±i, which makes sense as Ni, N−i do not overlap.
When the formal adjoint on the defect is constructed, we re-
strict it to a certain plane in the defect where the boundary
form vanishes. These Lagrangian planes are parametrized
by isometries V : Ni → N−i of the form TV = (I − V )Ni .
When the deficiency subspaces do not overlap, the corre-
sponding isometry is admissible, and from [16] there is a
self-adjoint extension AV of the restricted operator A0.

Lemma 2. The lagrangian plane TV in the defect forms a
non-zero angle with the domain DA

0 of the restricted oper-
ator A0.

It follows that once the extension is constructed on the

Lagrangian plane the extended operator can be found in
the form of a direct sum of the closure of the restricted op-
erator and the extended operator on the Lagrangian plane.
The extension of the dissipative operator on the defect

N = N1 + N−1 can be constructed by a symplectic pro-
cedure. Indeed if we choose an ortho-normal basis in Ni :
{fs} , s = 1, 2, . . . , d, as a set of deficiency vectors of the

restricted operator A0. The vectors f̂s = A+iI
A−iI fs form an

orthonormal basis in the dual deficiency subspaceN−i. Un-
der the non-overlapping condition one can use the formal
adjoint operator A+

0 defined on the defect Ni +N−i = N ,
[2, 1]

u =

d∑
s=1

[xs fs + x̂s f̂s] ∈ N , (18)

A+
0 u =

d∑
s=1

[−i xs fs + i x̂s f̂s]. (19)

To use the symplectic version of the operator-extension
techniques we introduce in the defect N a new basis W±

s ,
on which the formal adjoint A+

0 is correctly defined

W+
s =

fs + f̂s
2

=
A

A− iI
fs, W

−
s =

fs − f̂s
2i

= − I

A− iI
fs,

A+
0 W

+
s = W−

s , A
+
0 W

−
s = −W+

s .. Then represent ele-
ments u ∈ N via the new basis as

u =
d∑

s=1

[ξ
+

s W
+
s + ξ

−

s W
−
s ]. (20)

Then, with
∑d

s=1 ξs,± es := ξ⃗± we re-write the above as

u =
A

A− iI
ξ⃗
u

+
− 1

A− iI
ξ⃗
u

−
,

A
+

0
u = − 1

A− iI
ξ⃗
u

+
− A

A− iI
ξ⃗
u

−
(21)

The formula of integration by parts for abstract operators
found in [32]

Lemma 3. Consider the elements u, v from the domain of
the (formal) adjoint operator A+

0 :

u =
A

A− iI
ξ⃗
u

+
− 1

A− iI
ξ⃗
u

−
, v =

A

A− iI
ξ⃗
v

+
− 1

A− iI
ξ⃗
v

−

with coordinates ξ⃗u±, ξ⃗
v
±:

ξ⃗
u

±
=

d∑
s=1

ξ
u

s,±
fs,i ∈ Ni , ξ⃗

v

±
=

d∑
s=1

ξ
v

s,±
fs ∈ Ni .

Then, the boundary form of the formal adjoint operator is
equal to

J
A
(u, v) = ⟨A+

0 u, v⟩ − ⟨u,A+
0 v⟩ = ⟨ξ⃗

u

+
, ξ⃗

v

−
⟩
N
− ⟨ξ⃗

u

−
, ξ⃗

v

+
⟩
N
.

The symplectic coordinates ξ⃗u±, ξ⃗
v
± of the ele-

ments u, v play the role of the boundary values
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{U ′(0), U(0), V ′(0), V (0)} for the 1D Schrödinger
equation. The boundary form vanishes on the Lagrangian
plane Tα defined in D(A+

0 ) defined by the “boundary
condition” with an Hermitian operator Bα : Ni → Ni :
ξ⃗+ = Bαξ⃗−. This boundary condition defines a self-adjoint
operator Aα as a restriction of A+

0 onto the Lagrangian
plane Tα ∈ D(A+

0 ). The resolvent of Aα so defined is
represented at regular points of Aα by the following Krein
formula, see [2],

(Aα − λI)
−1

=
I

A− λI
− A+ iI

A− λI
PΓα

I

I + P I+λA
A−λIPΓ

P
A− iI

A− λI
. (22)

Next, from [32], for generalized resolvents of symmetric
operators.

Lemma 4. The vector-valued function of the spectral pa-
rameter

u(λ) =
A+ iI

A− λI
ξ⃗
u

+
:= u0 +

A

A− iI
ξ⃗
u

+
− 1

A− iI
ξ⃗
u

−
, (23)

satisfies the adjoint equation [A+
0 −λI]u = 0, and the sym-

plectic coordinates ξ⃗
u

±
∈ Ni of it are connected by the for-

mula

ξ⃗
u

−
= −PNi

I + λA

A− λ
ξ⃗
u

+
(24)

Introduce the map

−PNi

I + λA

A− λI
PNi =: M(λ) : Ni → Ni.

The matrix-function M(λ) = PNiAPNi −PNi

I+A2

A−λIPNi has
negative imaginary part in the upper half-plane ℑλ > 0
and serves an analog of the celebrated Weyl-Titchmarsh
function. The operator-function M exists on the real axis
λ, on the complement of the spectrum of the restriction of
the operator A onto the invariant subspace generated by
the defect. In particular it has simple poles at the eigen-
values a2r of A. Then (22) gives an explicit equation for the
perturbed resolvent of the extension, so the resolvent of
the finite-dimensional perturbation L̂α of the dilation L̂ of
L. In [44] the parameters of the extension were interpreted
as Saint-Venant parameters. The finite-dimensional for-
mula (22) allows us, in principle, to calculate the evolution

operator eiL̂αt, and the restriction of it onto co-invariant
subspace K – the corresponding Lax-Phillips semigroup,

PKe
iL̂αt

∣∣
K ≡ eiLαt (25)

generated by the finite-dimensional dissipative perturba-
tion Lα of L of the Lax-Phillips semigroup.

4. Computation

The dynamical picture exposed above is united by the com-
mon theme of the spectral nature of SGOs. One of most
important questions in mathematical modeling is on the

nature of the dissipation of elastic energy stored on the tec-
tonic plates due to the fluid underlay. We avoid this ques-
tion by introducing the positive damping parameter β and
so the basic physical question on the nature of the damp-
ing remains unsolved. Next we suggest a program of study
of SGO- related phenomena based on synchronous obser-
vations of frequencies, decay decrements and the shape of
amplitudes of SGOs.

4.1. Computing for the Weyl function.

To apply the results we have determined mathematically
we need to compute the Neumann-to-Dirichlet map or the
corresponding Weyl function. We consider the relative ND-
map for the 3D Laplacian with hydrodynamic potential ϕ
on the astenosphere and with given inhomogeneous bound-
ary conditions on the tectonic plate Ω situated on the sur-
face of the Earth Σ, the homogeneous Neumann boundary
condition on the complement Σ\Ω, Robin boundary condi-
tions in the depth on the mutual boundaries and perhaps
the homogeneous Neumann boundary condition on the in-
ner core. The relative Weyl function M is defined for the
bi-harmonic equation with the spectral parameter (26) as
a map connecting the boundary data Ξu

± on ∂Ω ≡ γ of the
solution u of the adjoint bi-harmonic boundary problem
with Ξu

+ fixed on γ and the spectral parameter λ in the
weighted space of the square-integrable functions:

∆2u+ u = λDu. (26)

Selecting an orthogonal basis ψl⃗, l⃗ = (l1, l2), ls = 1, 2, . . .
in the space of the two-component vectors Ξ−, and solving
the corresponding boundary problem

∆2Ψl⃗ +Ψl⃗ = λDΨl⃗, Ξ
Ψ

l⃗
+

∣∣
γ
= ψl⃗, (27)

we extend the bases from the boundary onto the plate Ω
and find the matrix elements Ml⃗m⃗ of the Weyl function
from the bilinear form:∫

Ω

[
∆Ψ̄l⃗ ∆Ψm⃗ + Ψ̄l⃗ Ψm⃗ − λΨ̄l⃗ Ψm⃗

]
dΩ

+

∫
γ

⟨ΞΨ̄
l⃗

+ ΞΨ̄m⃗
− ⟩dγ = 0.

If λ is not an eigenvalue of the spectral problem for the
bi-harmonic equation ∆2u + u = D λu with the boundary
condition Ξu

+

∣∣
γ
= 0, then the corresponding solutions Ψl⃗

are found uniquely and the Weyl function is defined. One
can construct a rational approximation to the Weyl func-
tion near the regular point and near the pole of M at an
eigenvalue of the above spectral problem.

4.2. Rational approximation

Rational approximation of the Weyl function serves a basis
for approximate calculation of the spectral properties of
the dissipative bi-harmonic operator and the relevant Lax-
Phillips generator with weak dissipative perturbations B, β
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near a fixed spectral point. For the dissipative biharmonic
equation

∆2u+ u = λDu, Ξ+

∣∣
γ
= BΞ−

∣∣
γ

(28)

the eigenvalues are found from the homogeneous equa-
tion [M − B] Ξ−

∣∣
γ

= 0. This rational approximation of

M →MN reduces the equation to a finite-dimensional one
and we calculate the shift of the eigenvalues of the spectral
problem while the boundary condition Ξu

+

∣∣
γ
= 0 becomes

Ξu
+

∣∣
γ
= BΞu

−
∣∣
γ
, with B ≈ 0. The rational approximation

can be chosen in various ways, in particular so that poles
of the rational approximation of the corresponding scatter-
ing matrix coincide with the poles of the original scattering
matrix, see for instance [22].

4.3. Zero-range perturbation.

The explicit finite-dimensional (not more than 6) pertur-
bation of the dissipative generator of the wave evolution
at (22), does not give an explicit form for the quantities
which may be observed. This makes the process of fitting
the solvable model difficult. Indeed, both terms on the
right-hand side of the Krein formula contain the resolvent
of the “unperturbed” operator, which has singularities on
the spectrum of the corresponding problem. We expect
that these singularities compensate each other so only the
singularities in the spectrum of the perturbed operator Lα

remain. The question of compensation singularities in the
Krein formula was considered in [23] [35, 22]. It is possible
that these ideas give an explicit formula for the polar term
of the resolvent of Lα near it’s eigenvalue. This gives a
finite-dimensional expression for the perturbed eigenvalues
(eigenfrequencies and the corresponding damping decre-
ments) and eigenfunctions, which can be monitored as SGO
-modes. This would help fit the solvable model and then
estimate, based on the fitted model, the amount of elastic
energy, stored on the modes which may give an alternative
approach to the important problem of prediction of earth-
quakes and tsunami, and the estimation of their expected
power.

5. Observations and conclusions.

Figure 5: Tsunami collision senario

The basic observation of instability of frequencies of SGO
motivates numerous questions concerning both the reasons
for the instability and the influence of these instabilities
upon various processes in the troposphere.
These questions and the associated hypotheses around

the models deserve careful analysis.
The variation of the frequencies of SGO may be consid-

ered not only as a precursor of an earthquake, but also as
a precursor of a tsunami caused by the collisions of tec-
tonic plates in active zones. However deformation of the
plates in an underwater active zone may be greater than
usual because the oceanic plates are relatively thin lead-
ing to the possible formation of a decompression area un-
der the active zone. The specific character of the destruc-
tion of these stressed plates may allow formation of deep
splits and cracks through which oceanic water enters the
decompressed area and mixes with the liquid component
of the astenosphere. The amount of water entering the
under-plates area in active zone may be quite significant -
perhaps up to 10 cubic kilometers, as for instance during
the recent Christmas tsunami in Malasia, 2009. This hot
mixture may spread along an under-plate channel for large
distances, thus transferring the energy and potentially trig-
gering new geological events, see [14].

Therefore monitoring of the SGO frequencies and the
damping parameters and use of a fitted model for the active
zone with correctly chosen Saint-Venant parameters should
allow us to calculate, in an explicit form, the deformation
of the eigenmodes of the stressed plate. Then, comparing
the results of monitoring frequencies, amplitudes and the
decay parameters of SGO with the corresponding data re-
covered from the already fitted mathematical model of the
tectonic plate under the dissipative boundary conditions
and the point-wise stress at the active zones, it might be
possible in practice to define the active zone from which
the perturbation is coming. This leaves the problem of es-
timating, based on the fitted solvable model, the elastic
energy, accumulated due to stress. The technique of using
solvable models for localized excitations of tectonic plates
allows us to estimate the elastic energy stored on the cor-
responding SGO. In particular, returning to our original
problem we expect that the rational approximation of the
characteristic function of the dissipative operator L and its
local zero-range perturbation LB at the active zone may al-
low us to solve the inverse problem and recover, in explicit
form, the dependence of the frequencies of SGO and de-
cay decrements from the parameters B of of the zero-range
model. We expect that under the special conditions on the
parameters of the dissipative operator β,Γγ and its singu-
lar perturbation, some of perturbed eigenvalues may en-
dure anomalously small decay decrements. In this case the
corresponding SGO modes are characterized by extremely
slow dissipation of the elastic energy stored in them and
allow observation of a corresponding pumping effect on the
eigenmode, while the corresponding eigenvalue is near a
stable eigenvalue for the tectonic plate.
We hope that the necessary data for the relevant analysis

could therefore be collected by the appropriate monitoring
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of SGO.

Appendix: Scattering and the spectral analysis of
the dissipative operator.

Here we omit the lower index D for LD and L̂D. We
consider the simplified version, of Theorem 1, with Γ : K →
Eγ⊕EΩ. Denote by Asa the self-adjoint part of the original
dissipative operator L.
Theorem 2. The matrix operator defined in

H = Dout ⊕K ⊕Din (29)

by the formula

L̂

 u+
u
u−

 =

 idu+

ds
Asau+ Γ+(u+ + u−)/2

idu−
ds

 (30)

with the corresponding boundary condition u+−u−
i = Γu

is a selfadjoint dilation of the dissipative operator L: the
compression of the resolvent Rλ, ℑλ < 0 of the operator
L̂ onto the subspace K coincides with the resolvent of the
operator L:

P
K
[L − pI]

−1
P

K
= (L− pI)

−1

, ℑp < 0. (31)

The spectrum of the operator L̂ is absolutely continuous
and consists of two branches σ̂L = R ∪ σc. The incoming
eigenfunctions of the first branch are scattered waves

Ψin
ν =

 e−ipsS+ν
uinν

e−ipsν,

 (32)

with the transmission coefficient S+ = L+−pI
L−pI found as the

limit on the real axis of the spectral parameter p from the
lower half-plane. The term uinν is a limit from the lower
half-plane of the solution of

[Asa − Ip]uinν + Γ+(S+ + I)/2ν = 0. (33)

These form a basis in the invariant subspace Hin of the

dilation obtained as a closure
∨

t>0 e
iL̂tDin. Similarly the

outgoing scattered waves are defined.

Theorem 3. The incoming and outgoing eigen-functions
of the dilation L are generalized solutions of the corre-
sponding homogeneous equation with exponential behavior
in L2(R±, E) :

Ψin
ν =

 e−ikxν ν ∈ E x ∈ R−
uinν in K
e−ikxS+ν ν ∈ E x ∈ R+

Ψout
ν =

 e−ikxν ν ∈ E x ∈ R+

uoutν in K
e−ikxSν ν ∈ E x ∈ R−

These eigenfunctions are labeled by direction vectors ν ∈ E.
The components uin,out are generalized solutions of the in-
homogeneous equation (33) with complex spectral parameter

p = k∓i0 and are uniquely defined by the direction vectors,
see (3) below, as images of strong limits of properly framed
resolvent of the self-adjoint operator Asa or strong limits
of the resolvent of L, L

+

on the real axis from the lower
(upper) half-planes. The transmission coefficients S, S+

are also uniquely defined from the homogeneous equation.
In particular, S, S+ are analytic matrix-function in upper
and lower half-planes ℑp > 0, ℑp < 0

S+(k − i0) = I − i lim
p→k−i0

Γ
I

L − pI
Γ+

S(k + i0) = I + i lim
p→k+i0

Γ
I

L+ − λI
Γ+. (34)

uinν = −1

2

1

Asa − (k − i0)

(
I + S+(k − i0)

)
ν

=

[
ν +

iΓ

2

I

L+ − (k + i0)
Γ+ν

]
, ν ∈ E.

uoutν = −1

2

I

Asa − (k + i0)
(I + S(k + i0)) ν

=

[
ν − iΓ

2

I

L − (k − i0)
Γ+ν

]
, ν ∈ E.. (35)

The eigenfunctions ψ>, ψ< of the complementary compo-
nents of the dilation in E ⊖E− = E< and E ⊖E+ = E> have
the form:

Ψ< =

 0
u<

e−ikxν<

 , Ψ> =

 e−ikxν>

u>

0

 , (36)

and are obtained as normalized linear combinations of the
incoming and outgoing waves. Choosing vectors ν>, ν< as
eigenvectors of operators ∆> = I − S+S, ∆< = I − SS+

with non-zero eigenvalues δ>, δ< respectively, we obtain:

u>ν> =
1

δ>
[
Ψin

ν> − S+ν>Ψout
ν>

]
,

u<ν< =
1

δ<
[
Ψout(ν<)− Sν<Ψin

]
.

The systems
{
Ψin

ν ,Ψ
<
ν<

}
and

{
Ψout

ν ,Ψ>
ν>

}
are orthogonal,

with spectral density matrices(
1 0
0 ∆>

)
and

(
1 0
0 ∆<

)
.

The system Ψin,out
ν is not orthogonal, but with respect to

the data (f in, fout) ≡
(
⟨Ψin, f⟩, ⟨Ψout, f⟩

)
has the spectral

density matrix (
Iin,in S
S+ Iout,out

)
with blocks

⟨Ψ∈
ν ,Ψ

in
µ ⟩ = δ(ν − µ), ≡ Iin,in⟨Ψ∈

ν ,

Ψout
µ ⟩ = Sin,out(ν, µ) = δ(ν−µ)S, ⟨Ψout

µ ,Ψin
ν ⟩ = δ(ν−µ)S+.
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Then a functional model of the dissipative operator is
obtained, see [24] by rewriting the dissipative operator in
terms of this system of eigenfunctions {Ψout,Ψ>} of the
dilation. This system

{
Ψin,Ψout

}
gives the most simple

formulae for the spectral quantities, see [28, 26, 31] in terms
of the so called “symmetric functional model”.
The functional model allows us to calculate angles be-

tween invariant subspaces of the absolutely continuous, dis-
crete and singular spectrum of the dissipative operator in
terms of its characteristic function (playing the role of the
relevant scattering matrix). In particular the eigenfunc-
tions of the absolutely continuous “complementary compo-
nent” of the absolutely continuous part of the dissipative
operator are identified up to the parametrization by the
direction vectors. The mid-components u<, u> E<, E>

serve as a canonical system of eigenfunctions for the abso-
lutely continuous spectrum of the original dissipative op-
erator and adjoint operator.
We have the corresponding spectral expansion, see [28,

31]:

u =
1

2π

∫
σa

|S(k)|2 − 1

S+(k)
u<(k)⟨u, u>(k)⟩dk, (37)

converging for elements u represented as orthogonal projec-
tions of elements of the complementary subspace E< onto
K. This set is dense in the absolutely-continuous subspace
of the operator L, [24] and [30, 47]. Thus the incoming-
outgoing eigenfunctions of the dilation and eigenfunctions
in the complementary subspaces E<, E> play essentially
different roles in the spectral problem for the dissipative
operator.
For discussion of choice of the canonical system of eigen-

functions of the absolutely-continuous spectrum in case
of spectral multiplicity one for a unitary operator and a
canonical system of eigenfunction of it’s contracting per-
turbation. see [36].
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