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Abstract. This paper proposes a plant/controller design integration method for H∞ loop-shaping
design based on symbolic-numeric hybrid optimization. This approach firstly employs parametric
polynomial spectral factorization to accomplish parametric optimization and derive an expression
for the optimal cost. Owing to the obtained expression, sensitivity analysis of the achievable per-
formance level with respect to plant parameters is amenable, which allows numerical optimization
methods to seek the optimal set of parameter values.
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1. Introduction

Complicated systems of today heavily rely on computers
so as to achieve shorter lead time in the development pro-
cess and also higher performance and efficiency during op-
eration. When systems involve dynamics, control of such
dynamics is one of crucial factors that determine the per-
formance of the systems. Micro computers are the key
ingredient to achieve good control, but the increased com-
putational power and the development of design algorithms
are indispensable for control system design as well.

Modern control design formulates control problems as
optimization problems. Cost functions typically employed
involve system norms such as the H2-norm and the H∞-
norm. The use of these norms is motivated by the facts that
they are easy to deal with and that they admit practical
engineering interpretations. Solution approaches have been
developed for H2 control and H∞ control, and they usually
involve solution of Riccati equations [15] and optimization
based on linear matrix inequalities (LMIs) [2], which are
solved numerically on computers.

Ordinary solution approaches for control problems how-
ever assume that dynamical systems to be controlled
(plants) are given in advance (e.g., already designed and
fixed). This assumption is not necessarily satisfactory in
that the plant may not be designed appropriately for con-
trol purposes and, consequently, that even the best con-
trol strategy may only achieve mediocre performance. This
motivates plant/controller design integration, an approach
that designs both the plant and the controller simultane-
ously [4, 9].

Conventional solution approaches are not suited for in-
tegrated design. Numerical solution of algebraic Riccati
equations requires that all the plant data should be given

as numbers and the LMI-based optimization formulation
yields bilinear matrix inequalities (BMIs) which are not
convex problems and tend to be hard to solve [8].

In order to resolve the computational issue, the authors
have proposed a symbolic-numeric hybrid optimization ap-
proach for H2 control problems [10]. The key technique
is parametric polynomial spectral factorization [1] that ex-
ploits the power of algebraic methods, which allows solu-
tion of parametric Riccati equations. By means of para-
metric polynomial spectral factorization, the optimal value
of the cost function in H2 control can be expressed in terms
of plant parameters in an algebraic manner. As the con-
sequence of this parametric optimization, one can employ
numerical optimization techniques and optimize the opti-
mal cost with respect to plant parameters, obtaining the
optimal controller for the plant that is designed to be easy
to control. Although the integrated design problem is non-
convex, the proposed approach can achieve local optima.

This paper attempts to extend this symbolic-numeric hy-
brid optimization approach to H∞ control problems. The
main difference, which is the cause of the difficulty, is the
way the optimal cost is characterized. In the H2 control
case, the optimal cost can be expressed as a rational func-
tion in plant parameters and the Sum of Roots, a quantity
introduced in polynomial spectral factorization by means
of algebraic approaches and characterized in an algebraic
manner. It is thus straightforward to carry out analysis of
the sensitivity of the optimal cost with respect to parame-
ters, allowing orthodox optimization methods such as New-
ton’s method to be utilized. The solution of H∞ control is
typically more involved, and one has to have the optimal
cost as a parameter and change its value iteratively to see
whether associated equations have feasible solutions. Here,
instead of striving for general H∞ control problems, solu-
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Figure 1: H∞ loop-shaping design formulation.

tion of a special class of H∞ control, known as H∞ loop-
shaping design, is aimed at. The reason is twofold. Firstly,
the optimal cost in this formulation is expressed as the
largest real eigenvalue of a matrix and thus can be charac-
terized algebraically. Secondly, this formulation more often
than not helps to design satisfactory controllers in practice.
The rest of the paper is organized as follows. In Sec-

tion 2, the problem formulation of H∞ loop-shaping design
and its solution approach are reviewed. Section 3 reviews
parametric polynomial spectral factorization based on al-
gebraic methods and its extension to solution of Riccati
equations. In Section 4, the integrated H∞ loop-shaping
design problem is formulated, and a symbolic-numeric hy-
brid optimization solution approach is proposed. The ap-
proach is demonstrated on a design example in Section 5.
Some concluding remarks are made in Section 6.

2. H∞ Loop-shaping Design

The H∞ loop-shaping design problem is formulated in the
following way [12]. In the feedback configuration in Fig-
ure 1, given a plant P (s), the task is to find, from the set Ks

of all stabilizing real rational controllers, a controller K(s)
that minimizes the H∞-norm of the transfer function ma-
trix from (d1 d2)

T to (y1 y2)
T. An explicit expression for

the optimal cost

γopt := inf
K∈Ks

∥∥∥∥[ I
K

]
(I + PK)−1

[
I P

]∥∥∥∥
∞

can be computed by solving Riccati and Lyapunov equa-
tions.
Let P (s) be given in minimal realization state-space rep-

resentation

P (s) =

[
A B
C 0

]
.

Then,

γopt =
√

1 + λmax(XY ) =
1√

1− λmax(Y Q)
, (1)

where X and Y are the unique stabilizing solutions of the
Riccati equations

ATX +XA−XBBTX + CTC = 0 ,

AY + Y AT − Y CTCY +BBT = 0 , (2)

respectively, and Q is the unique solution of the Lyapunov
equation

Q(A− Y CTC) + (A− Y CTC)TQ+ CTC = 0 . (3)

These matrices are related as

Q = (I +XY )−1X .

It is noted that Riccati equations are nonlinear equations
while Lyapunov equations are linear equations and easier
to solve.
It is known that finding the optimal controllers is nu-

merically and theoretically complicated, and obtaining sub-
optimal controllers which are easier to find is usually suffi-
cient. For any γ > γopt, a controller achieving∥∥∥∥[ I

K

]
(I + PK)−1

[
I P

]∥∥∥∥
∞

< γ

is given by

K(s) =

[
A−BBTX∞ − Y CTC Y CT

BTX∞ 0

]
,

where

X∞ =
γ2

γ2 − 1
Q
(
I − γ2

γ2 − 1
Y Q

)−1

.

The problem setting and the solution are in the mod-
ern control framework, but the achievable performance
level γopt admits classical control interpretations and gives
lower bounds for gain and phase margins. See [14] for de-
tails.

3. Parametric Polynomial Spectral
Factorization and Solution of

Riccati Equations

The task of polynomial spectral factorization is stated as
follows. Given a 2n-th order even polynomial f(s) in s with
no roots on the imaginary axis,

f(s) = s2n + a2n−2s
2n−2 + · · ·+ a2s

2 + a0 , (4)

the task is to find a unique polynomial

g(s) = sn + σsn−1 + bn−2s
n−2 + · · ·+ b0 (5)

that satisfies the relationship

f(s) = (−1)ng(s)g(−s) (6)

and moreover has roots in the open left half plane only (i.e.,
is stable). The polynomial g(s) that is sought is called the
spectral factor.
A number of numerical approaches have been developed

[6, 13], but such numerical approaches are not applicable
for parametric polynomial spectral factorization. Recently,
an algebraic approach was developed by the authors [1],
which can be utilized for the parametric case where ai
in (4) are expressed as polynomials/rational functions of
parameters. More specifically, the problem of polynomial
spectral factorization reduces to finding the algebraic rela-
tionship between parameters and a quantity σ called the
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Sum of Roots (SoR). Then the coefficients of the spectral
factor g(s) are expressed in polynomial form in the SoR
and rational form in parameters. The following theorem is
the basis of the algebraic approach.

Theorem 1 ([1]). Given f(s) and g(s) as in (4) and (5),
respectively, consider σ, bi, i = 0, . . . , n − 2, as variables.
A system of algebraic equations in terms of σ and bi’s is
obtained by comparing the coefficients of (6). Then the
set G of the polynomials obtained from the polynomial parts
of the equations forms the reduced Gröbner basis of the
ideal generated by itself with respect to the graded reverse
lexicographic order σ ≻ bn−2 ≻ · · · ≻ b0. Moreover, in the
generic case, σ is a separating element, and one can get a
special Gröbner basis called shape basis with respect to any
elimination ordering {b0, . . . , bn−2} ≻≻ σ:{

Sf (σ), bn−2 − hn−2(σ), . . . , b0 − h0(σ)
}
,

where Sf is a polynomial of degree exactly 2n and hi’s are
polynomials of degree strictly less than 2n.

For Gröbner bases and associated ideas such as the
graded reverse lexicographic order, readers are referred to
standard textbooks, e.g., [5].
This fact allows the shape basis to be effectively obtained

by means of the basis conversion (change-of-order) tech-
nique [5, 7], since all is needed is a conversion from a par-
ticular Gröbner basis to another Gröbner basis. Once the
shape basis is computed, it is straightforward to compute
the spectral factor, and one has to find the largest real root
of Sf (σ) and then substitute it into hi(σ) [1]. In the para-
metric case, Sf is a polynomial in σ and parameters, while
hi’s are polynomials in σ but in general rational functions
in parameters. The result indicates that all the coefficients
of the spectral factor can be related with the SoR and pa-
rameters in an algebraic manner.
On solving Riccati equation (2), it is customary to con-

sider the so-called Hamiltonian matrix

H =

[
AT −CTC

−BBT −A

]
that is associated to it [15]. The eigenvalues of H are lo-
cated symmetrically about the real and imaginary axes,
with no eigenvalues being on the imaginary axis. Namely,
the characteristic polynomial of H, det(sI − H), satisfies
the condition for f(s) in (4). Then, polynomial spectral
factorization is executed for the characteristic polynomial.
It is shown [11] that the solution Y of (2) is expressed as
rational functions in the coefficients of the spectral factor,
and, consequently, in the SoR. In this way, Riccati equa-
tions with parameters can be solved.

4. Proposed Approach

4.1. Plant/Controller Integrated Design Prob-
lem

When the plant does not contain any parameters, there is
an established method for optimal design where two Riccati

equations, or a Riccati equation and a Lyapunov equation,
are solved numerically. If the plant has some parameters
that can be adjusted, one may wish to tune these param-
eters so that the plant may be easier to control and, con-
sequently, a better closed-loop system with the optimally
designed controller may be achieved. Namely, not only is
optimal controller design aimed at, but also freedom in the
plant is exploited, leading to preferable overall design. This
paper considers the latter control design problem.
Assume that the plant have some parameters that can

be tuned and that, given some values for these parame-
ters, optimal control design is always possible. The task
considered in this paper is to find the smallest value of the
optimal cost γopt (i.e., find the best of the best) and param-
eter values that achieve this. More specifically, let q = (qi)
be the parameter vector and denote its feasible set by Q.
The task is to find

inf
q∈Q

γopt = inf
q∈Q

inf
K∈Ks

∥∥∥∥[ I
K

]
(I + PK)−1

[
I P

]∥∥∥∥
∞

and qopt that achieves this. Since both the plant and the
controller are optimized, this problem is a plant/controller
design integration problem. It is noted that this is in general
a non-convex optimization problem and that there may
be many local optima. It is difficult to find the global
optimum with guarantee, and the proposed approach only
attempts to find a local minimum. Also, parameters qi are
design parameters and thus can be chosen, i.e., they are not
uncertain parameters as considered in the robust control
setting. It is a standing assumption that parameters enter
the plant coefficients in polynomial/rational function form.
As reviewed in Section 2, γopt is expressed in terms of the

largest eigenvalue λmax(XY ) of XY (or the largest eigen-
value λmax(Y Q) of Y Q) as in (1). Minimization of γopt
is equivalent to minimizing λmax(XY ) (or λmax(Y Q)). In
order to simplify the computation, the approach proposed
here minimizes λmax(Y Q) instead of γopt.

4.2. Outline of the Approach

The suggested approach is first outlined. The basic strat-
egy is reminiscent of that of the approach [10] proposed by
the authors for H2 control.

1. Solve Riccati equation (2), keeping parameters as they
are, by means of parametric polynomial spectral fac-
torization [1] and its extension to solution to Riccati
equations [11]. Further solve Lyapunov equation (3)
symbolically.

2. Based on the algebraic relationship obtained in the
previous step, compute the sensitivity of λmax(Y Q)
with respect to plant parameters.

3. Using the sensitivity computed in the previous step,
compute the minimal value of λmax(Y Q) and param-
eter values that achieve this by means of typical nu-
merical optimization approaches such as the steepest
descent method and Newton’s method [3].
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It is noted that Steps 1 and 2 are executed symboli-
cally and that Step 3 involves numerical optimization. In
this way, a symbolic-numeric hybrid approach is realized.
Step 1 can be executed by the approaches referenced above.
Step 2 is the crucial step in the proposed approach and is
described in detail in the next subsection. Step 3 may seem
nothing but a simple application of optimization techniques
of textbook level, which is partially the case. It is, however,
emphasized that this only becomes possible because of the
result in Step 2 which allows direct sensitivity analysis of
the optimal cost with respect to parameters by exploiting
the power of algebraic methods.

4.3. Sensitivity Analysis Step

The crucial difference between the H2 control problem [10]
and theH∞ loop-shaping design problem considered here is
the way the optimal costs are expressed in terms of param-
eters and the SoR. The optimal cost in the H2 control case
is expressed as a rational function in terms of the elements
of the solution matrices of Riccati equations, whereas the
optimal cost in H∞ loop-shaping design is characterized
as the largest real eigenvalue of the solution matrices of
Riccati/Lyapunov equations, which complicates analysis of
the sensitivity of the optimal cost to parameters. One can
nevertheless employ the implicit function theorem for this
purpose.

In fact, when executing parametric polynomial spectral
factorization, the result is not expressed in explicit form
in terms of parameters. Instead, what is obtained is an
algebraic relationship where the SoR plays a role of con-
necting parameters and the result. Therefore, for the H2

control case, the implicit function theorem is indeed used
to compute the partial derivatives of the SoR with respect
to parameters and further the partial derivatives of the op-
timal cost with respect to parameters. In H∞ loop-shaping
design, what one has to do is to use the implicit function
theorem repeatedly.

More specifically, parametric polynomial spectral factor-
ization in Step 1 relates the parameters q and the SoR σ
algebraically:

Sf (σ; q) = 0 .

Further, the solution Y of Riccati equation (2) is expressed
in q and σ. By symbolically solving Lyapunov equation (3),
its solution Q is obtained in terms of q, σ and the elements
of Y (which are expressed in q and σ). By using these
solution and the characteristic equation of the matrix Y Q,
det(λI −Y Q) = 0, the largest real eigenvalue λmax(Y Q) is
related to q and σ in an algebraic manner.

With the above preparation, the sensitivity of λmax(Y Q)
to the parameters q can be analysed in the following way.
Firstly, compute the partial derivative of Sf (σ; q) = 0 with
respect to qi, regarding σ as a function of q. The resulting
expression involves σ, q and ∂σ

∂qi
, In fact, it is linear in ∂σ

∂qi
,

and one can solve it for ∂σ
∂qi

, i.e., ∂σ
∂qi

is expressed explicitly
in terms of q and σ.

In a similar fashion, one can carry out sensitivity anal-
ysis of λmax(Y Q) to q, which allows one to perform
plant/controller integrated design for H∞ loop-shaping de-
sign. Again partial differentiating det(λI − Y Q) = 0 in
terms of qi, regarding λ and σ as a function of q this time,
one will get a linear equation for ∂λ

∂qi
and thus obtain an

expression for ∂λ
∂qi

in terms of q, σ, ∂σ
∂qi

and λ, which are
all computable once q is fixed. If one further computes the

partial derivative of ∂λ
∂qi

, expressions for ∂2λ
∂q2i

and other 2nd

order partial derivatives of λ can be computed. Those ex-
pressions enable the steepest descent method and Newton’s
method to be performed.

5. Design Example

In this section, the proposed approach is applied to the
following plant with two parameters, q1 and q2, to demon-
strate the approach:

P (s; q1, q2) =
q2(s− q1)

s2(s− 3)
=


3 1 0 0
0 0 1 q2
0 0 0 −q1q2
1 0 0 0

 ,

Q =
{
(q1, q2)

∣∣ 0.1 ≤ q1 ≤ 1, 2 ≤ q2 ≤ 4
}
.

The task is to find parameter values that minimize
λmax(Y Q), which is essentially equivalent to γopt.
Firstly, parameters q1, q2 and λmax(Y Q) are alge-

braically related. The solution of (2) can be written as

Y =

σ + 3 b1 b0
b1 b1σ − b0 b0σ
b0 b0σ Y3,3

 ,

Y3,3 = b0σ
2 − b0b1 − 9b0 + q1q

2
2 ,

where σ, b1 and b0 are obtained from parametric polyno-
mial spectral factorization. The SoR σ is the largest real
root of

Sf (σ; q1, q2) = σ8 − 36σ6 +
(
−8q22 + 486

)
σ4

+
(
−64q21q

2
2 + 144q22 − 2916

)
σ2

+ 16q42 − 648q22 + 6561 ,

and b1 and b0 are expressed in closed-form in σ and qi:

b1 =
1

2

(
σ2 − 9

)
, (7)

b0 =
σ

8
(
4q22 − 81

)
×
{
σ6 − 36σ4 +

(
−4q22 + 405

)
σ2

+
(
−64q21q

2
2 + 72q22 − 1458

)}
. (8)

Lyapunov equation (3) yields a set of linear equations in
the elements of Q, and it is thus straightforward to solve
it symbolically:

Q =
1

2b0(b1σ − b0)

b0b1 0 −b0
0 b0 0

−b0 0 σ

 .
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From (7) and (8), expressions for the elements of Q are
obtained as rational functions in σ and qi.
Using the obtained expressions for Y and Q, one can

compute the characteristic polynomial of Y Q:

det(λI − Y Q) = λ3

+
(
3b20 − b0b1σ − 3b0b1 − b0σ

3 + 9b0σ − q1q
2
2σ

)
λ2

+ b0
(
3b30 − 3b20σ

3 − 3b20σ
2 + 18b20σ + 27b20 − b0b

3
1

− b0b
2
1σ

2 + 2b0b1σ
4 + 3b0b1σ

3 − 18b0b1σ
2 − 27b0b1σ

− 2q1q
2
2b0σ − 3q1q

2
2b0 + 2q1q

2
2b1σ

2 + 3q1q
2
2b1σ

)
λ

− b20(b1σ − b0)
(
b30 + 2b20b1σ + 3b20b1 − 2b20σ

3 − 6b20σ
2

+ 9b20σ + 27b20 + b0b
3
1 − 2b0b

2
1σ

2 − 3b0b
2
1σ + 9b0b

2
1

+ b0b1σ
4 + 3b0b1σ

3 − 9b0b1σ
2 − 27b0b1σ − q1q

2
2b0σ

− 3q1q
2
2b0 − q1q

2
2b

2
1 + q1q

2
2b1σ

2 + 3q1q
2
2b1σ

)
,

which is a 3rd order polynomial in λ. By using (7) and
(8) and clearing the denominators, its coefficients are ex-
pressed as polynomials in σ and qi. The quantity to be
sought, namely, λmax(Y Q), is the largest real root of this
polynomial.
Using the relationship Sf (σ; q1, q2) = 0, one can compute

the partial derivatives of σ, ∂σ
∂qi

, by way of the implicit

function theorem. Moreover, from det(λI − Y Q) = 0, the
sensitivity of λmax(Y Q) to changes in parameters qi can
be analysed. For instance, at (q1, q2) = (0.4, 3), they are
computed as

∂

∂q1
λmax(Y Q) = 0.002033515157 ,

∂

∂q2
λmax(Y Q) = −0.0001402638544 ,

∂2

∂q21
λmax(Y Q) = 0.01037328705 ,

∂2

∂q1∂q2
λmax(Y Q) = −0.001604806724 ,

∂2

∂q22
λmax(Y Q) = 0.0005480235616 .

Furthermore, starting from (q1, q2) = (0.4, 3), Newton’s
method computes the optimal value

λmax(XY ) = 0.9972422498 ,

qopt = (0.27004, 2.7002) ,

after 10 iterations (Figure 2).

6. Concluding Remarks

This paper has established a symbolic-numeric hybrid op-
timization approach for plant/controller design integration
in H∞ loop-shaping design. The approach first carries out
parametric optimization and obtains an expression for the
optimal cost with parameters by way of parametric poly-
nomial spectral factorization. The result is then exploited
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Figure 2: Optimization result by Newton’s method.

to analyse the sensitivity of the optimal cost to parame-
ters. Numerical optimization is thus amenable. As a con-
sequence, the approach finds a pair of a plant and a con-
troller that minimizes the cost function, achieving the best
of the best design.
Further work includes its extension to more general H∞

control problems, where the characterization of the optimal
cost is more involved. A method of effectively characteriz-
ing the optimal cost may be a crucial step.
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