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Abstract. Based on neurophysiological studies, a walking model has been proposed, which is the
coupling of two oscillatory systems, i.e., a central pattern generator (CPG) and a musculoskeletal
system (Body). The walking model can well reproduce human walking. However, time delays
on a sensorimotor loop give a serious problem in motor control in general. Indeed even a short
time delay induces the walking model to fall. Theoretical studies have shown that the walking
model can overcome the time delays by the flexible-phase locking. It emerges from the following
two conditions; 1) activity of CPG and Body has stability of limit cycle; 2) a sign differs between
coupling coefficients of the connection from Body to CPG and from CPG to Body, i.e., the afferent
and efferent connection. Physical or physiological interpretation of this two theoretical conditions
is an important problem. The condition 1) has already interpreted [1]. In this paper, we gain a
physical interpretation of the condition 2). We introduce the simplified model fit to best analyze.
Analyzing the simplified model, this study leads to the interpretation in which signs of the coupling
coefficients corresponding to the excitatory and inhibitory connection are regarded as a force to
forward and backward shift the CPG activity, respectively. This is an essential element to yield the
flexible-phase locking.
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1. Introduction

Neurophysiological studies [2, 3, 4, 5] have shown that
signal transmission involves long time delay (more than
100ms) on sensorimotor loops in human locomotion sys-
tem. In general, the time delay gives a serious problem for
motor control in control engineering, in which it is dealt
with as dead time. Based on neurophysiological evidence
[6, 7, 8], Taga et al. [9] have modeled the human walking
system, which is the coupled system of two oscillatory sys-
tems, i.e., a central pattern generator (CPG) and a mus-
culoskeletal system (Body). Indeed, their walking model
has shown to be fallen even by a short time delay (70ms)
on the loop between CPG and Body. By using the model
simplified the coupled system of CPG and Body, theoreti-
cal studies [1] have shown that both of the walking model
and the simplified model can overcome loop time delay by
its own function latent in the coupled two dynamics, i.e.,
the ‘flexible-phase locking’. The flexible-phase locking is
the function which induces the CPG phase to forward shift
adaptively to time delay. Indispensability of neuronal ac-
tivity’s phase shift according to time delay for walking sys-
tems and the reason why Taga’s walking model [9] cannot
yield such phase shift are mentioned in detail in the studies
[1]. The flexible-phase locking emerges from the following
two conditions; 1) activity of CPG and Body has stability
of limit cycle; 2) a sign differs between coupling coefficients

of the connection from Body to CPG and from CPG to
Body, i.e., the afferent and efferent connection. Physical or
physiological interpretation of this two theoretical condi-
tions is an important problem. The condition 1) is easy to
interpret because of the property of their activities already
shown in the studies [1]. On the other hand, understanding
of the condition 2) has been an open question. The expres-
sion of the two conditions is confined to only mathematical
understanding, although the conditions have been looked
for as mechanisms of physical or physiological phenomena.
Thus, this problem is important for scientific fields such as
neurophysiology, physics, and mathematical science. This
study is directed toward physical or physiological under-
standing of the condition 2), i.e., a sign difference between
afferent and efferent coupling coefficients, which is required
for establishing the flexible-phase locking.

From a viewpoint of the solution orbit, the walking
model [1] can be characterized by the following two; a)
CPG has an asymptotically stable limit cycle and Body os-
cillation could also be characterized by a limit cycle. b) the
phase of the neuron output (CPG activity) shifted quarter
period ahead of the joint motion (Body activity) without
the time delay and the phase shift increases in proportion
to time delay interval.

The simplified model [1] could reproduce the two charac-
teristics a) and b). However, in the simplified model, limit
cycles have been constructed by the perturbation of har-
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monic oscillators in the Van der Pol equation. Therefore,
it is difficult to quantitatively analyze the mechanisms of
flexible-phase locking.
On the other hand, it is well known that the λ−µ system

[10] has a explicitly written stable limit cycle. Moreover,
coupling of the two systems can easily reproduce the phase
difference of quarter period without the time delay and
the phase shift increasing in proportion to the time delay.
These correspond to a) and b).
In this work, by using the λ− µ system, we construct a

simplified model such that it can structurally agree with the
walking model in terms of a) and b). The constructed sim-
plified model could enable to easily analyze quantitatively
phase dynamics. Thus this study attempts to physically
or physiologically interpret the mechanism of the flexible-
phase locking.
This paper is organized as follows. First in Section 2, we

survey the walking model [1], and see the model’s phase re-
lationship between CPG activity and Body motion. Next
in Section 3, we introduce a simplified model composed
of the λ − µ system. Through the analysis and computer
simulations of the simplified model, we investigate theoret-
ically the mechanisms of the flexible-phase locking. Lastly
in Section 4, we discuss about the mechanisms.
This study reveals that, depending on pathways on which

the time delay is involved, the time delay induces different
effectiveness in direction of phase shift. That is, the time
delay on afferent and efferent pathway induces the phase of
CPG activity to shift forward and backward in proportion
to the increase of time delay interval, respectively. Fur-
thermore, this study reads to physical understanding of the
condition 2), i.e., signs of the coupling coefficients in the
simplified model [1]. That is, signs of the coupling coeffi-
cients correspond to the excitatory and inhibitory connec-
tion, which is interpreted to occur the forward and back-
ward shift of the CPG activity, respectively.

2. The walking model

2.1. Walking model

In this section we introduce our walking model in which
flexible-phase locking can occur [11]. We called this model
the delayed direct-coupled CPG and Body (Fig. 1).
The time delays through the sensorimotor loop are as-

sumed to be represented as follows: The total time delay
∆t through the loop consists of two equivalent amounts of
time delay ∆t = ∆a+∆e, i.e., an afferent delay ∆a and an
efferent delay ∆e [9, 12, 13].
First, we assume ∆a = ∆e(=: ∆).
The Body consists of an interconnected chain of 5 rigid

links in the sagittal plane as shown in Fig. 7. The reaction
forces from the ground are modeled as a two-dimensional
spring and damper. The motion of the Body can be rep-
resented by differential equations of a (6 × 1) vector of
mass point positions of 1 link and inertial angles of 4 links.
The equations are derived by means of the Newton-Euler
method (Appendix A).

Fig. 1: Outline of the walking model (a delayed synapti-
cally coupling of CPG and Body). ∆a is the afferent time
delay and ∆e is the efferent time delay.

The CPG composed of 12 neurons (Fig. 2) is represented
by the following BVP (Bonhöffer van del Pol) differential
equations [14]:

τiu̇i(t) = ui(t)− vi(t)− ui(t)
3/3 +

12∑
ij=1

(wijyi)

+u0 + αwFi(x(t−∆)),
τ ′i v̇i(t) = ui(t) + a− bvi(t),

(1)

where ui is the potential of the ith neuron; vi is respon-
sible for the accommodation and refractoriness of the ith
neuron; wij is the connecting weight from the ith neuron
to the jth neuron; τi and τ ,i are the time constants of the
potential and the accommodation and refractory effects,
respectively; yi is the output of the ith neuron; u0 is the
constant parameter. αw is a positive coefficient of afferent
connections from the Body to the CPG; Fi is a sensory
feedback, and x is a (6 × 1) vector of the mass point po-
sitions of 1 link and the inertial angles of 4 links (Fig. 7);
t is the time; a and b are positive constants; the natural
frequency of each joint neuron (τi, τ

′
i) is set a value similar

to the natural frequency of each joint angle [15].
It is well known that a BVP potential has an asymptot-

ically stable limit cycle attractor with appropriate param-
eters [14], which was confirmed by computer simulation.
Torque was assumed to be proportional to the magni-

tude of the neuronal output. This periodic torque causes
the Body to oscillate harmonically. At the same time, the
outputs of the hip joint’s flexor neurons (1st and 7th) con-
trol the mechanical impedance (muscle viscoelasticity) of
the hip joint so that the maximum angle of the thigh can
be voluntarily and approximately confined Eq. (16). Con-
sequently, this impedance control can stabilize the orbit of
the Body oscillation induced by the periodic torque. Thus,
the Body oscillation could also be characterized by a limit
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Fig. 2: Central pattern generator (CPG) and feedback pathway. ui

is the potential of the ith neuron in the CPG. ◦ and • denote an
excitatory connection and an inhibitory connection, respectively. x3,
x4, x5, and x6 are the angles of Body segments. The motion of the
hip,the knee joint and the ankle joint in the right leg are governed by
neurons 1-2, 3-4, and 5-6, respectively. Similarly, the motion of the
joints in the left leg is governed by neurons 7-12. Odd-numbered neu-
rons control flexion of the joint, while even-numbered neurons control
its extension. The hip joint angles of both legs are used as feedback
to the hip joint neurons. The afferent delay ∆a and the efferent delay
∆e take place in the transmission of the neuronal output and of the
feedback, respectively. αw and βw are the afferent coupling strength
and the efferent coupling strength. It is confirmed by computer sim-
ulation that the CPG itself has an asymptotically stable limit cycle.

cycle.
The CPG receives sensory feedback from the Body. The

feedback Fi, i = 1, . . . , 12, to the ith neuron is given as
follows:

F1 = F, F2 = F ′, F7 = F ′, F8 = F, Fi = 0 (else),

where F, F ′ are given as follows:

F = −f(−x5(t−∆)), F ′ = −f(−x3(t−∆)),

f(x) = max(0, x),

where x3 and x5 are the thigh angles of the right and left
legs at the hip joint, respectively, as defined in Appendix A.

2.2. Simulation results

The loop time delay ∆t was the only selected simulation
parameter. The other parameters were fixed to a certain
value.
For ∆t = 0ms, the model resulted in a stable walking

pattern. Our result also shows that the Body oscillation
can be characterized by a stable limit cycle.
For a loop delay ∆t > 0, our model clearly showed an

ability to generate a stable walking pattern similar to that

Fig. 3: Flexible-phase locking of neuron activity in the walking
model. The graph shows the activities of flexor neuron (y1) and angle
motion (x5) in the left leg. Solid line, dotted line, and dot-dashed
line denote the neuronal output, the delayed neuronal output, and the
joint angle motion, respectively. Arrows indicate the phase difference
between neuronal output and joint angle motion, and between de-
layed neuronal output and joint angle motion, taking as reference the
time when the joint angle becomes larger than 0. The phase of neu-
ronal output is shifted forward according to ∆t; t1, t2 are the times,
c represents a constant value. Therefore, the phase relationship be-
tween delayed neuronal output and joint angle motion is maintained
constant.

in the case of no delay. Fig. 3 shows the hip neuronal
output y1, the delayed neuronal output, and the hip joint
angle x5 simulated under three conditions of ∆t; ∆t = 0,
100, and 200ms.

Fig. 4: The graph shows the forward phase shift of neuronal output
as a function of the total time delay ∆t. The vertical axis denotes
t2 − t1

T
−

π

2
. T is a period of walking cycle. The phase of neuronal

output is shifted forward according to ∆t.

As showed in Fig. 3, the phase of the neuronal output
could shift forward on that of the joint motion according
to ∆t; When ∆t = 0, the phase shift of neuronal out-
put shifted π/2 ahead of the joint motion; besides, this
phase shift increases in proportion to the increase of ∆t

(see Fig. 4). Therefore, the phase relationship between the
delayed neuronal output and the joint angle is constantly
maintained in spite of changes of ∆t.
The computer simulations showed the phase behaviors
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between the CPG activity and the Body motion under the
condition of ∆a = ∆e in Fig. 3, 4.

(a)

(b)

Fig. 5: The graph shows the forward phase shift of neuronal output
as a function of the afferent time delay ∆a and the backward of joint
angle motion as a function of the efferent time delay ∆e. The vertical

axis denotes
t2 − t1

T
−

π

2
. T is a period of walking cycle. The phase

of neuronal output is shifted forward according to ∆t. (a) shows the
relationship between phase shift and the efferent time delay ∆e when
∆a = 0. The phase shift decreased in proportion to the increase of ∆e

(b) shows the relationship between phase shift and the afferent time
delay ∆a when ∆e = 50ms. The phase shift increased in proportion
to the increase of ∆a.

When ∆a ̸= ∆e, as the computer simulations showed
in Fig. 5, the phase shift is increasing or decreasing with
respect to ∆a, ∆e. It shows the relationships between the
phase shift and the efferent time delay ∆e when ∆a =
0ms, and the relationships between the phase shift and
the efferent time delay ∆a when ∆e = 50ms. In relation
to such a phase shift, the computer simulations showed
that the phase shift increases in proportion to the increase
of the time delay ∆a; conversely, the phase shift decreases
in proportion to the increase of the time delay ∆e, which
corresponds to the elemental effectiveness of the flexible-
phase locking.

3. Analysis of the walking model

In the previous section, we showed a proper phase rela-
tionship between the CPG activity and the Body motion
(Fig. 5). In this section, we will give a theoretical under-
standing of the phase shift according to time delays ∆a

and ∆e by introducing the λ−µ system [10] as a simplified
model and analyzing it.
As we see, the walking model can be regarded as a cou-

pling of two oscillators, we limit our analysis to a simplified
model consisting of two stable oscillators as shown in Fig. 6.

Fig. 6: The conceptual diagram of the simplified model. u1 and
u2 are the potentials of the 1st neurons and the 2nd neurons.
The connections from the CPG to the Body are inhibitory and
the connections from the Body to the CPG are excitatory.

In the walking model, the connections from CPG to
Body are inhibitory and the connections from the Body to
the CPG are excitatory. The simplified model with synap-
tic coupling considered in this section is{

u̇1 = G(u1) + εA1u2(t−∆e),
u̇2 = G(u2) + εA2u1(t−∆a),

(2)

where 0 < ε ≪ 1 and the vectors u1, u2 and G(u) are
defined by

u1 :=

(
x1

y1

)
,u2 :=

(
x2

y2

)
and

G(u) :=

(
(λ− x2 − y2)x− µy
(λ− x2 − y2)x+ µx

)
for positive constants λ > 0 and µ > 0. Matrices A1, A2

are

A1 =

(
a11 a12
a21 a22

)
, A2 =

(
b11 b12
b21 b22

)
.

Here, we consider that the 1st oscillator u1 and the 2nd
oscillator u2 correspond to CPG and Body of the walking
model, respectively. ε is a small coupling strength coeffi-
cient of the synapse connections. A1, A2 are the (2 × 2)
coupling matrices. ∆a, ∆e are the time delay from Body
to CPG and CPG to Body, respectively.
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3.1. Limit Cycle

First, we consider the unperturbed system of ε = 0 in (2)

u̇ = G(u), u ∈ R2, (3)

where, the vectors u, G(u) ∈ R2 are defined by

u =

(
x
y

)
, G(u) =

(
(λ− x2 − y2)x− µy
(λ− x2 − y2)x+ µx

)
for positive constants λ > 0 and µ > 0. It is easy to see
that (3) has a periodic solution S(t) :=

√
λ(cosµt, sinµt)

with a period p := 2π/µ.

We now check the stability of the periodic solution S(t)
in (3). Let A(t) be the linearized matrix with respect to
S(t), that is,

A(t) :=
∂G

∂u
(S(t))

=

(
−2λ cos2 µt −2λ cosµt sinµt− µ

−2λ cosµt sinµt+ µ −2λ sin2 µt

)
.

Proposition 1 (Ei [16]). The periodic solution S(t) is
asymptotically stable in (3).

Proof. We consider the fundamental matrix

Y (t) = (v1(t),v2(t)) for v1,v2 ∈ R2

of the linearized ODE

Ẏ (t) = A(t)Y (t).

v1 is obtained as the derivative of S(t)

v1(t) = Ṡ =
√
λµ(− sinµt, cosµt).

v2 is obtained by putting

v2(t) =

(
−u(t) sinµt
v(t) cosµt

)
.

Then v̇2 = A(t)v2 yields
−µu̇ sinµt− µ2u cosµt = (−2 cos2 µt)(−µu sinµt)

+(−2 cosµt sinµt− µ)µv cosµt,

µv̇ cosµt− µ2v sinµt = (−2 sin2 µt)µv cosµt

+(−2 cosµt sinµt+ µ)(−µu sinµt),

which is 
u̇ =

(
µ
cosµt

sinµt
+ 2 cos2 µt

)
(v − u),

v̇ =

(
µ
sinµt

cosµt
− 2 sin2 µt

)
(v − u).

(4)

It follows that

ẇ =

(
µ
sinµt

cosµt
− µ

cosµt

sinµt
− 2

)
w (5)

by using the change of variable w := v − u. Then w is
obtained in the form

w = exp(

∫ (
µ
sinµt

cosµt
− µ

cosµt

sinµt
− 2

)
dt)

=
1

cosµt sinµt
e−2t.

Substituting w = v − u into (4) and (5), we have

u̇(t) =

(
µ
cosµt

sinµt
+ 2 cos2 µt

)
1

cosµt sinµt
e−2t

=
(µ+ 2 cosµt sinµt)

sin2 µt
e−2t

and hence

u(t) =

∫
µt+ 2 cosµt sinµt

sin2 µt
e−2tdt = −cosµt

sinµt
e−2t.

Similarly, we can get

v(t) =

∫
µt+ 2 cosµt sinµt

sin2 µt
e−2tdt =

cosµt

sinµt
e−2t.

Thus, the fundamental matrix Y (t) is given by

Y (t) =

(
−
√
λµ sinµt e−2t cosµt√
λµ cosµt e−2t sinµt

)
.

It is easy to check that

Y −1(0) =

(
0 1√

λµ

1 0

)
, Y

(
2π

µ

)
=

(
0 e

−4π
µ√

λµ 0

)
.

Then the periodic map U is calculated as

U = Y (2π/µ)Y −1(0) =

(
e−4π/µ 0

0 1

)
,

which implies the two floquet multipliers are 1 and
e−4π/µ < 1 and the periodic solution S(t) is asymptoti-
cally stable in (3).

Let
XP := {v ∈ C[0, p];v(0) = v(p)}

and

⟨u,v⟩P :=

∫ p

0

⟨u(t),v(t)⟩dt.

L be the linearized operator with respect to the periodic
solution S(t), that is

Lv := G′(S(t))v − vt for v ∈ XP .

L∗ is the adjoint operator of L with respect to the inner
product. L∗ is given by

L∗ = tG′(S(t)) + ∂t.

Especially, 0 is a simple eigenvalue of L because S(t) is
linearly stable. Hence there exists an eigenfunction ϕ∗(t) ∈
XP such that L∗ϕ∗ = 0 and ⟨St(t), ϕ

∗⟩P = 1.
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Proposition 2. The eigenfunction ϕ∗ is given by

ϕ∗(t) =
1

2π
√
λ

(
− sinµt
cosµt

)
.

Proof. First, we write ϕ∗(t) as

ϕ∗(t) =

(
U(t)
V (t)

)
.

Since the adjoint operator of L is expressed by

L∗ = tG′(S(t)) + ∂t,

ϕ∗ satisfies

L∗ϕ∗ = tG′(S(t))ϕ∗ + ∂tϕ
∗ = 0 (6)

with ⟨St(t), ϕ
∗⟩P = 1.

Here we have

G′(S(t)) =

(
−2λ cos2 µt −2λ cosµt sinµt− µ

−2λ cosµt sinµt+ µ −2λ sin2 µt

)
and

tG′(S(t)) =

(
−2λ cos2 µt −2λ cosµt sinµt+ µ

−2λ cosµt sinµt− µ −2λ sin2 µt

)
Therefore (6) becomes

(
−2λ cos2 µt −2λ cosµt sinµt+ µ

−2λ cosµt sinµt− µ −2λ sin2 µt

)(
U(t)
V (t)

)
+ ∂t

(
U(t)
V (t)

)
= 0

with ∫ 2π
µ

0

(−
√
λµ sinµtU(t) +

√
λµ cosµtV (t))dt = 1.

That is,
−2U(t) cos2 µt+ (−2 sinµt cosµt+ µ)V (t) + U̇(t) = 0,

−2V (t) sin2 µt+ (−2 sinµt cosµt− µ)U(t) + V̇ (t) = 0,

−
√
λ sinµtU(t) +

√
λ cosµtV (t) = 1/2π.

which can be solved as
U(t) = − 1

2π
√
λ
sinµt,

V (t) =
1

2π
√
λ
cosµt,

and we have

ϕ∗(t) =
1

2π
√
λ

(
− sinµt
cosµt

)
.

3.2. Phase dynamics

In the case ε > 0 is sufficiently small but not 0, the solution
of (2) can be regarded as follows

u1(t) = S(t+h1(t))+o(1), u2(t) = S(t+h2(t))+o(1), ε ↓ 0

and hence u1(t−∆a),u2(t−∆e) is close to

u1(t−∆a) ∼ S(t−∆a+h1(t)), u2(t−∆e) ∼ S(t−∆e+h2(t)).

Here we define h1 = h1(t) and h2 = h2(t) are the phases
of the 1st oscillator u1 and the 2nd oscillator u2, respec-
tively. The phase difference h(t) is defined by

h(t) := h2(t)− h1(t).

Proposition 3 (Ei [16]). |uj(t)−S(t+hj(t))| ≤ O(ε) hold
and h1(t), h2(t) satisfy

ḣ1(t) = εω1(h) +O(ε2), ḣ2(t) = εω2(h) +O(ε2),

where

ω1(h) :=

∫ p

0

⟨A1S(t−∆e + h2), ϕ
∗(t+ h1)⟩dt,

ω2(h) :=

∫ p

0

⟨A2S(t−∆a + h1), ϕ
∗(t+ h2)⟩dt.

Here, ω1(h) can be represented in the form

ω1(h) =

∫ p

0

⟨A1S(z + h−∆e), ϕ
∗(z)⟩dz

by changing the variable z := t + h1. Similarly, ω2(h) can
also be written as

ω2(h) =

∫ p

0

⟨A2S(z − h−∆a), ϕ
∗(z)⟩dz.

Proposition 4. ω1(h), ω2(h) are calculated as follows:

ω1(h) =
a21 − a12

2
√
λµ

cosµ(h−∆e) +
a22 + a11

2
√
λµ

sinµ(h−∆e),

ω2(h) =
b21 − b12

2
√
λµ

cosµ(h+∆a)−
b22 + b11

2
√
λµ

sinµ(h+∆a).

Proof. We can calculate

ω1(h) =

∫ p

0

⟨A1S(z + h−∆e), ϕ
∗(z)⟩dz

=

∫ 2π
µ

0

⟨A1

(
cosµ(z + h−∆e)
sinµ(z + h−∆e)

)
, ϕ∗(z)⟩dz

=

∫ p

0

⟨A1 cosµ(h−∆e)

(
cosµz
sinµz

)
, ϕ∗(z)⟩dz

+A1 sinµ(h−∆e)

(
− sinµz
cosµz

)
, ϕ∗(z)⟩dz

= cosµ(h−∆e)

∫ p

0

⟨A1

(
cosµz
sinµz

)
, ϕ∗(z)⟩dz

+ sinµ(h−∆e)

∫ p

0

⟨A1

(
− sinµz
cosµz

)
, ϕ∗(z)⟩dz

= cosµ(h−∆e)
a21 − a12

2
√
λµ

+ sinµ(h−∆e)
a22 + a11

2
√
λµ

.
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Thus ω1(h) is given in the form

ω1(h) =
a21 − a12

2
√
λµ

cosµ(h−∆e)+
a22 + a11

2
√
λµ

sinµ(h−∆e).

Similarly, we also can get

ω2(h) =
b21 − b12

2
√
λµ

cosµ(h+∆a)−
b22 + b11

2
√
λµ

sinµ(h+∆a).

Here, we define{
M1 := a21 − a12, N1 := a11 + a22,

M2 := b21 − b12, N2 := b11 + b22.

Then ω1(h), ω2(h) are represented as follows:

ω1(h) =
cosµ(h−∆e)

2
√
λµ

M1 +
sinµ(h−∆e)

2
√
λµ

N1,

ω2(h) =
cosµ(h+∆a)

2
√
λµ

M2 −
sinµ(h+∆a)

2
√
λµ

N2.

From Proposition 3, ḣ1(t), ḣ2(t) can be rewritten as

ḣ1(t) = εω1(h) +O(ε2)

= ε
cosµ(h−∆e)

2
√
λµ

M1 + ε
sinµ(h−∆e)

2
√
λµ

N1 +O(ε2)

ḣ2(t) = εω2(h) +O(ε2)

= ε
cosµ(h+∆a)

2
√
λµ

M2 − ε
sinµ(h+∆a)

2
√
λµ

N2 +O(ε2)

(7)

and the phase difference h(t) is given

ḣ(t) := ḣ2(t)− ḣ1(t) = ε(ω2(h)− ω1(h)) +O(ε2)

=
ε

2
√
λµ

(M2 cosµ(h+∆a)−N2 sinµ(h+∆a)

−M1 cosµ(h−∆e)−N1 sinµ(h−∆e)) +O(ε2)
(8)

3.3. Corresponding to walking model

In this subsection, we will determine the parameters M1,
M2, N1, N2 so that our simplified model (2) can struc-
turally correspond with the walking model (1). We omit
higher order terms O(ε) in (8).

3.3.1. Excitation and inhibition

As mentioned in previous section, the efferent and afferent
pathway, i.e., the connection from CPG to Body and from
Body to CPG is inhibitory and excitatory, respectively, in
the walking model. We understand that the phase of CPG
will speed up and the phase of Body will slow down, re-
spectively. When both time delays ∆a = ∆e = 0, that is,
we understand ḣ1(0) = εω1(0) > 0 and ḣ2(0) = εω2(0) < 0
by (7).

When ∆a = ∆e = 0, we have

ω1(0) =
1

2µ
M1 and ω2(0) =

1

2µ
M2,

which means M1 > 0 and M2 < 0. Thus we assume

H1) M1 > 0 and M2 < 0.

3.3.2. CPG phase quarter period ahead of Body
phase

Since, ḣ(t) = ḣ2(t)− ḣ1(t) can be written as

ḣ(t) = ε
cosµh

2
√
λµ

(M2 −M1)− ε
sinµh

2
√
λµ

(N2 +N1)

=
ε

2
√
λµ

√
(M2 −M1)2 + (N1 +N2)2 cos(µh+ γ0).

where

cos γ0 =
M2 −M1√

(M2 −M1)2 + (N1 +N2)2
,

sin γ0 =
N1 +N2√

(M2 −M1)2 + (N1 +N2)2
,

(9)

the phase shift satisfies

h(t) → π

2µ
− γ0

µ
=

1

4
p− γ0

µ
as t −→ +∞. (10)

As mentioned in Section 2, the CPG phase is p/4 ahead
of the Body phase when no time delays ∆a = ∆e = 0 in the
walking model. In order to correspond with it, the phase
difference (10) should satisfy

p

4
− γ0

µ
= −p

4
.

Since p =
2π

µ
and

1

4
p =

π

2µ
, we should assume γ0 = π,

that is

H2) N1 +N2 = 0

from (9).

3.4. Analysis of the phase shift

Under assumptions H1) and H2), we consider the effect of
time delays ∆a and ∆e. From (8) and H1), H2), we have

ḣ(t) =
ϵ

2
√
λµ

(α cosµh+ β sinµh), (11)

where

α := α(∆a,∆e)

= M2 −N2µ∆a −M1 +N1µ∆e +O(∆2
a +∆2

e)

β := β(∆a,∆e)

= −M2µ∆a −N2 −M1µ∆e −N1 +O(∆2
a +∆2

e)
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by the expansions
cosµ(h+∆a) = cosµh− µ∆a sinµh+O(∆2

a),
sinµ(h+∆a) = sinµh+ µ∆a cosµh+O(∆2

a),
cosµ(h−∆e) = cosµh+ µ∆e sinµh+O(∆2

e),
sinµ(h−∆e) = sinµh− µ∆e cosµh+O(∆2

e)

for |∆a|, |∆e| ≪ 1. Then (11) reads

ḣ(t) =
ε

2
√
λµ

(α2 + β2)
1
2 (sinµh+ γ), (12)

where

cos γ =
β

(α2 + β2)
1
2

, sin γ =
α

(α2 + β2)
1
2

.

That is, the angle γ is given by

γ = γ(∆a,∆e) = arccos
β

(α2 + β2)
1
2

.

Proposition 5.

γ(∆a,∆e) = −π

2
+ C1∆a + C2∆e +O(∆2

a +∆2
e) (13)

holds for |∆a|, |∆e| ≪ 1, where

C1 :=
µM2

M2 −M1
> 0, C2 :=

µM1

M2 −M1
< 0.

Proof. Seeing γ(0, 0) = −π

2
, we expand γ(∆a,∆e) as

γ(∆a,∆e) = γ(0, 0) +
∂γ(0, 0)

∂∆a
∆a +

∂γ(0, 0)

∂∆e
∆e

+O(∆2
a +∆2

e)

= −π

2
+ C1∆a + C2∆e +O(∆2

a +∆2
e),

when |∆a|, |∆e| ≪ 1, where

C1 :=
µM2

M2 −M1
> 0, C2 :=

µM1

M2 −M1
< 0.

Thus, we find from (12)

µh(t) + γ → −π as t → +∞.

From (13), we have

µh(t)− π

2
+ C1∆a + C2∆e → −π

and therefore

h(t) → −π/2µ− C1

µ
∆a −

C2

µ
∆e.

Thus the phase difference h(t) = h2(t) − h1(t) with the
period p = 2π/µ satisfies

h(t) → −p/4− C1

µ
∆a −

C2

µ
∆e +O(∆2

a +∆2
e)

(t → +∞)

(14)

and

h1(t) → h2(t) + p/4 +
C1

µ
∆a +

C2

µ
∆e

+O(∆2
a +∆2

e) (t → +∞)

(15)

From (15), the phase of the 1st oscillator u1 could shift
forward on that of the 2nd oscillator u2 according to the
time delay ∆a, ∆e. Precisely speaking, the phase shift
increases in proportion to ∆a and the phase shift decreases
in proportion to ∆e. These observation quite well agree
with the results of computer simulations of the walking
model (1).

4. Discussions

The computer simulation results for the walking model (1)
showed two typical properties that 1) the phase of the CPG
activity shifted p/4 (p is a period) ahead of the Body mo-
tion when the loop time delay ∆t = 0 (Fig. 3), 2) the
phase shift increases according to the increase of the af-
ferent time delay ∆a; conversely, the phase shift decreases
according to the increase of the efferent time delay ∆e as
observed in (Fig. 5).
In order to understand these phenomena theoretically,

we introduced the simplified model consisting of two cou-
pled oscillators characterized by stable limit cycles. In that
model, coefficients are adjusted such that typical properties
a) and b) mentioned in Introduction are reappeared.
Under these conditions, we analyzed the simplified model

by using the phase dynamical approach [16, 17] and the
phase difference of the 1st oscillator u1 (CPG) and 2nd
oscillator u2 (Body) were derived as

h(t) = h2(t)−h1(t) → −p/4− C1

µ
∆a−

C2

µ
∆e, (t −→ +∞)

where

C1

µ
=

M1

M2 −M1
< 0,

C2

µ
=

µM2

M2 −M1
> 0,

when time delays ∆a and ∆e exist. Thus, the phase differ-
ence h(t) is increasing or decreasing with respect to ∆a or
∆e, respectively while phase of the 1st oscillator u1 (CPG)
could shift ahead p/4 of the 2nd oscillator u2 (Body) in
the case of no time delay. These analytical results quit
agree with the simulation results in the walking model (1)
(Fig. 4, 5). Thus, the effects against time delays (flexible-
phase locking) can be completely and naturally reduced in
our simplified model.
The previous study [1] has theoretically clarified the ef-

fectiveness against total time delay on a sensorimotor loop.
This study revealed that, depending on pathways on which
time delays ∆a and ∆e are involved, the time delay induces
different effectiveness in direction of phase shift. Our re-
search assumed only the connection of excitation and inhi-
bition and the function forming a quarter phase difference,
as mentioned as H1) and H2) in Sec. 3.3. Nevertheless,
the flexible-phase locking was reproduced completely. This
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strongly suggests that only the connection of excitation
and inhibition and the function forming a quarter phase
difference automatically yield the flexible-phase locking in
general. This is an unexpected and surprising scientific
discovery.
This study also reads to physical understanding of the

condition 2), i.e., signs of the coupling coefficients in the
simplified model [1]. Our analysis simply assumed the ex-
citation and inhibition at connections to be a force of the
forward and backward phase shift, respectively, as in H1).
This means to need no alternative assumptions in order to
gain the flexible-phase locking. Thus, the excitation and
inhibition at connections can be interpreted as a force of
the forward and backward phase shift.

Appendix A. The equations of motion
for the Body of the walking model

All variables and conventions correspond to those shown in
Fig. 7. All variables and parameters follow the ones pro-
posed by Taga (1994). By using the Newton-Euler method,
motion of the Body (Taga, 1991) can be written as follows:

P (x)ẍ = Q(x, ẍ,Tr(y)),

therefore,
ẍ = [P (x)]−1Q(x, ẍ,Tr(y)),

Fig. 7: Model of bipedal Body as an interconnected chain of 5 rigid
links (a point mass m1 on the hip and four rigid bodies Ii(i = 1, 4)

where

x =


x1

x2

x3

x4

x5

x6

 ,

p11 =
∑5

n=1 mn,

p12 = 0,

p13 = (0.5m2 +m3)I1 cos(x3),

p14 = 0.5m3l2 cos(x4),

p15 = (0.5m4 +m5)l3 cos(x5),

p16 = 0.5m5l4 cos(x6),

p21 = 0,

p22 =
∑5

n=1 mn,

p23 = (0.5m2 +m3)I1 sin(x3),

p24 = 0.5m3l2 sin(x4),

p25 = (0.5m4 +m5)l3 sin(x5),

p26 = 0.5m5l4 sin(x6),

p31 = (0.5m2 +m3)I1 cos(x3),

p32 = (0.5m2 +m3)I1 sin(x3),

p33 = 0.25m2l
2
1 +m3l

2
1 + I1,

p34 = 0.5m3l1l2 cos(x4 − x3),

p35 = 0,

p36 = 0,

p41 = 0.5m3l2 cos(x4),

p42 = 0.5m3l2 sin(x4),

p43 = 0.5m3l1l2 cos(x4 − x3),

p44 = I2 + 0.25m3l
2
2,

p45 = 0,

p46 = 0,

p51 = (0.5m4 +m5)I3 cos(x5),

p52 = (0.5m4 +m5)I3 sin(x5),

p53 = 0,

p54 = 0,

p55 = (0.25m4 +m5)l
2
3 + I3,

p56 = 0.5m5l3l4 cos(x6 − x5),

p61 = 0.5m5l4 cos(x6),

p62 = 0.5m5l4 sin(x6),

p63 = 0,

p64 = 0,

p65 = 0.5m5l3l4 cos(x5 − x6),

p66 = 0.25m5l
2
4 + I4,

q1 = (0.5m2 +m3)l1 sin(x3)ẋ3
2

+ 0.5m3l2 sin(x4)ẋ4
2 + (0.5m4 +m5)l3 sin(x5)ẋ5

2

+ 0.5m5l4 sin(x6)ẋ6
2 + Fg1 + Fg3,

q2 = −(0.5m2 +m3)l1 cos(x3)ẋ3
2 − 0.5m3l2 cos(x4)ẋ4

2

−(0.5m4 +m5)l3 cos(x5)ẋ5
2

−0.5m5l4 sin(x6)ẋ6
2 + Fg1 + Fg2 −

5∑
n=1

mng,

q3 = 0.5m3l1l2 sin(x4 − x3)ẋ4
2 + Fg1l1 cos(x3)

+ Fg2l1 sin(x3)− (m2 + 2m3)0.5gl1 sin(x3)
+ Trp1 + Tr2 − Tr2 − Tr4,
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q4 = 0.5m3l1l2 sin(x3 − x4)ẋ3
2 − 0.5m2gl2 sin(x4)

+ Fg1l2 cos(x4) + Fg2l2 cos(x4)
+ Trp2 + Tr2 − Tr3,

q5 = 0.5m5l3l4 sin(x6 − x5)ẋ6
2

− 0.5(m4 + 2m5)gl3 sin(x5) + Fg3l3 cos(x5)
+ Fg4l3 sin(x5) + Trp3 + Tr4 − Tr5 − Tr1,

q6 = 0.5m5l3l4 sin(x5 − x6)ẋ5
2 − 0.5m4gl4 sin(x6)

+ Fg3l4 cos(x6) + Fg4l4 sin(x6) + Trp4 + Tr5 − Tr6.

Horizontal and vertical forces on the ankles are given by

Fg1 =

{
−kg(xr − xr0)− bgẋr yr − yg(xr) < 0,

0 otherwise.

Fg2 =

{
−kg(yr − yr0) + bgf1(−ẏr) yr − yg(xr) < 0,

0 otherwise.

Fg3 =

{
−kg(xl − xl0)− bgẋl yl − yg(xl) < 0,

0 otherwise.

Fg4 =

{
−kg(yl − yl0) + bgf1(−ẏl) yl − yg(xl) < 0,

0 otherwise.

where yg(x) is the function which represents the terrain.
When the ground is even, yg(x) = 0.(xr, yr) and (xl, yl)
represent the positions of the ankles, which are given by

(xr, yr) = (x1 + l1 cosx3 + l2 cosx4, x2 − l1 sinx3 − l2 sinx4),

(xl, yl) = (x1 + l1 cosx5 + l2 cosx6, x2 − l1 sinx5 − l2 sinx6).

Passively generated torques at each joint are given by

Trp1 = krf1(x4 − x3)− brf2(x4 − x3)(x4 − x3)

− b(ẋ3 − ẋ5)− b(ẋ3 − ẋ4),

Trp2 = −krf1(x4 − x3) + brf2(x4 − x3)(x4 − x3)

− b(ẋ4 − ẋ3)− bẋ4,

Trp3 = krf1(x6 − x5)− brf2(x6 − x5)(x6 − x5)

− b(ẋ5 − ẋ3)− b(ẋ5 − ẋ6),

Trp4 = −krf1(x6 − x5) + brf2(x6 − x5)(x6 − x5)

− b(ẋ6 − ẋ5)− bẋ6,

where k and b are the positive constants.
Actively generated torques at each joint are given by

Tr1 = βw[p1(y1 − y2)

+ f2(y1){−pef1(x3 − x5 − x0)
2 − pb(ẋ3 − ẋ5)}

Tr2 = βwp1(y3 − y4),

Tr3 = βw(p2y − 3− p3y4)f2(Fg2),

Tr4 = βw[p1(y7 − y8)

+ f2(y7){−pef1(x5 − x3 − x0)
2 − pb(ẋ5 − ẋ3)}

Tr5 = βwp1(y9 − y10),

Tr6 = βwp2(y11− p3y12)f2(Fg4),

(16)

where βw and p are the positive constants; depending on
the ith neuronal output yi, the mechanical viscoelastic
torque at the hip joint was assumed to be produced when

the hip joint angle between the left and right thighs was
beyond a threshold angle x0.
Besides

f1(z) = max(0, z), f2(z) =

{
0, for z ≤ 0,
1, otherwise.

Appendix B. Simulation parameters

Body

m1 = 48.0, m2 = 7.0, m3 = 4.0, m4 = 7.0, m5 = 4.0,

l1 = 0.4, l2 = 0.5, l3 = 0.4, l4 = 0.5,

I1 = m2l
2
1/3, I2 = m3l

2
2/3, I3 = m4l

2
3/3, I4 = m5l

2
4/3,

kg = 30000.0, kr = 2000.0, bg = 3000.0, br = 200.0,

b = 1.0, βw = 2.0,

p1 = 12.5, p2 = 13.5, p3 = 2.5, pe = 150.0, pb = 15.0,

x0 = 0.1π rad, g = 9.8m/s2.

Central pattern generator
τi (i = 1, . . . , 12) are given by

τ4 = τ10 = 1/60, τi = 1/30 (else).

τ ′i (i = 1, . . . , 12) are given by

τ ′3 = τ ′9 = 2.0, τ ′4 = τ ′10 = 20/3, τ ′i = 10/3 (else).

w12, w21, w78, w87 = −2.0,

w17, w71, w28, w82 = −1.0,

w15, w26, w24, w43, w56, w65 = −1.0,

w7 12, w8 12, w8 10, w10 9, w11 12, w12 11 = −1.0,

otherwise wij = 0.0,

u0 = 0.3, αw = 1.0, a = 0.7, b = 0.8.

Initial conditions

x1 = 0.0, x2 = l1 + l2, x3, x4, x5, x6 = 0.0,

u̇i = 0.0, u̇i = 0.0.

References

[1] K. Ohgane, S.-I. Ei, H. Mahara: Neuron Phase shift
adaptive to time delay in locomotor control, Applied
Mathematical Modelling. 33 (2009) 797–811.

[2] P.H. Hammond: The influence of prior instruction
to the subject on an apparently involuntary neuro-
muscular response, J. Physiol. 132 (1956) 17–18.

[3] C.W.Y. Chan, J.G. Melvill, R.E. Kearney, D.G. Watt:
The late electromyographic response to limb displace-
ment in man. I. Evidence for supraspinal contribution,
Electroenceph. Clin. Neurophysiol. 46 (1979) 173–181.



Wulin Weng, Shin-Ichiro Ei and Kunishige Ohgane 133

[4] C.W.Y. Chan, J.G. Melvill, R.F.H. Catchlove: The
late electromyographic response to limb displacement
in man. II. Sensory origin, Electroenceph. Clin. Neu-
rophysiol. 46 (1979) 182–188.

[5] Y. Shinoda, T. Yamaguchi, T. Futami: Multiple axon
collaterals of single corticospinal axons in the cat
spinal cord, J. Neorophysiol. 55 (1986) 425–448.

[6] S. Grillner: Neurobiological bases of rhythmic motor
acts in vertebrates, Science. 228 (1995) 143–149.

[7] B. Calancie, B. Needham-Shropshire, P. Jacobs, K.
Willer, G. Zych, B.A. Green: In voluntary stepping
after chronic spinal cord injury. Evidence for a central
pattern generator for locomotion in man, Brain. 117
(1994) 1143–1159.

[8] M.R. Dimitrijevic, Y. Gerasimenko, M.M. Pinter: Evi-
dence for a spinal central pattern generator in humans,
Ann. NY Acad. Sci. 860 (1998) 360–376.

[9] G. Taga: Emergence of bipedal locomotion through
entrainment among the neuro-musculo-skeltal system
and environment, Physica D. 75 (1994) 190–208.

[10] S.-I. Ei, K. Ohgane: A new treatment for periodic
solutions and coupled oscillators, Kyushu J. Math. 65
(2011) 197–217.

[11] K. Ohgane, S.-I. Ei, K. Kudo, T. Ohtsuki: Emergence
of adaptability to time delay in bipedal locomotion,
Biol. Cybern. 90 (2) (2004) 125–132.

[12] G. Caruso, O. Labianca, E. Ferrannini: Effect of is-
chemia on sensory potentials of normal subjects of dif-
ferent ages, J. Neurol. Neurosurg. Psychiat. 36 (1973)
455–466.

[13] N.B. Mankovskij, N.A. Timko: Age-related character-
istics of the functional condition of the neoromuscular
system, Z. Aiterforsch. 27 (1973) 191–200.

[14] R. Fitzhugh: Impulses and physiological states in the-
oretical models of nerve membrane, Biophys. H 1
(1961) 445–466.

[15] G. Taga, Y. Yamaguchi, H. Shimizu: Self-organized
control of bipedal locomotion by neural oscillators in
unpredictable environment, Biol. Cybern. 65 (1991)
147–159.

[16] S.-I. Ei: A Remark on the Interpretation of Periodic
Solutions, Bulletin of the Japan Society for Industrial
and applied Mathematics. 14(1) (2004) 35–47.

[17] Y. Kuramoto: Chemical Oscillations, Waves, and
Turbulence, Springer-Verlag, Berlin, 1984.

Wulin Weng and Shin-Ichiro Ei
Faculty of Mathematics, Kyushu University, 744 Motooka
Nishi-ku, Fukuoka 819-0395, Japan
E-mail: b-oh(at)math.kyushu-u.ac.jp

ichiro(at)math.kyushu-u.ac.jp

Kunishige Ohgane
Graduate school of Arts and Sciences, University of Tokyo,
3-8-1 Komaba Mekuro-ku, Tokyo 153-8092, Japan
E-mail: ohganemath(at)yahoo.co.jp


