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Abstract. In this note, we prove that the linear programming for computing the quasi-additive
bound of the formula size of a Boolean function presented by Ueno (2010) is equivalent to the
dual problem of the linear programming relaxation of some integer programming for computing the

protocol partition number.
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1. INTRODUCTION

Proving lower bounds for a concrete computational model
is a fundamental problem in Computational Complex-
ity [1]. In this note, we consider formula size lower bounds
for a Boolean function. If we can show a super-polynomial
formula size lower bound for a function in NP, it implies
that NC' # NP [10]. Karchmer and Wigderson [4] proved
that the size of a smallest formula computing a Boolean
function f is equal to the protocol partition number of the
communication matrix arising from f. Karchmer, Kushile-
vitz and Nisan [3] formulated the problem of computing
a lower bound for a protocol partition number, called the
rectangle bound, as an integer programming problem and
introduced a technique which gives a lower bound by show-
ing a feasible solution of the dual problem of its linear
programming relaxation. It is known [8] that this tech-
nique subsumes techniques proposed in [5, 6, 7]. However,
Karchmer, Kushilevitz and Nisan [3] also proved that this
technique can not prove a lower bound larger than 4n? for
non-monotone formula size in general.

Recently, Ueno [11] introduced a novel technique, called
the quasi-additive bound, which is inspired by the notion
of subadditive rectangle measures presented by Hrubes,
Jukna, Kulikov and Pudlédk [2]. Although the linear pro-
gramming for computing the quasi-additive bound can be
seen as a simple extension of the linear programming for
computing the rectangle bound, Ueno [11] proved that the
quasi-additive bound can surpass the rectangle bound and
it is potentially strong enough to give the matching formula
size lower bounds.

In this note, we prove that the linear programming for
computing the quasi-additive bound of the formula size of
a Boolean function f presented by Ueno [11] is equivalent
to the dual problem of the linear programming relaxation
of some integer programming for computing the protocol
partition number of the communication matrix arising from
f. Together with the result of Ueno [11], our results imply

that there exists no gap between our integer programming
for computing the protocol partition number and its linear
programming relaxation. We hope that the results of this
note help to understand why the quasi-additive bound is
more powerful than the rectangle bound. Furthermore, to
the best of our knowledge, no one studied an exact integer
programming formulation for computing a protocol parti-
tion number. Thus, it may be of independent interests.

2. PRELIMINARIES

Let R and Z, be the sets of reals and non-negative integers,
respectively. Let X, Y and Z be finite sets. A non-empty
subset of X x Y x Z is called a relation. When we em-
phasize that a relation T is a subset of X x Y x Z, then
we say that T is a relation on (X,Y, Z). For each relation
T on (X,Y,Z), define C(T) := X xY. We call an element
of C(T) a cell.

A formula is a binary tree with each leaf labeled by
a literal and each non-leaf vertex labeled by either of the
binary connectives V and A. A literal is either a variable or
its negation. The size of a formula is defined by its number
of literals. For a Boolean function f, we define formula size
L(f) as the size of a smallest formula computing f.

Karchmer and Wigderson [4] characterized the size of a
smallest formula computing a Boolean function by using
the notions of a communication matrix and a protocol par-
tition number. Suppose that we are given a relation T on
(X,Y, 7). The communication matrix M (T') of T is de-
fined by a matrix whose rows and columns are indexed by
X and Y, respectively. Each cell (z,y) of C(T) contains
elements z of Z such that (x,y, z) € T. A non-empty direct
product X’ x Y' C X x Y is called a rectangle of M(T).
We denote by R(T) the set of rectangles of M(T'). Define
R(T) :=R(T)\ {X x Y}. A rectangle X’ x Y is said to
be monochromatic, if there exists an element z of Z such
that (x,y,z) € T for every (z,y) € X' xY'. Let M(T)
be the set of monochromatic rectangles of M (7). For a
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Y Wl R) (VReR(T), V{V.W} € P(R))

max Z o(c)
ceC(T)

st. Y )+ > w(e,R) <1 (YReM(T))
cER ceC(T)\R
YooweV)+ Y dleW) >
ceC(T)\V ceC(T)\W ceC(T)\R

¢ € RC(T)7 ,ll} c RC(T)X'R,(T)

Figure 1: A linear programming QA(T).

rectangle X’ x Y’/ a partition of X’ x Y’ is defined by

e a pair of rectangles X x Y/ and X} x Y’ such that
X'=X{UX)and X]NX,=0, or

e a pair of rectangles X’ x Y{ and X’ x Yy such that
Y =Y/UY] and Y/ NY, = 0.

We say that a set R of disjoint rectangles recursively
partitions M(T), if

U R=XxY.
RER

and there exists a rooted binary tree representation of
R defined as follows. A vertex of this tree corresponds to
some rectangle of M (T'). Especially, the root vertex corre-
sponds to X XY, and a leaf corresponds to a rectangle of R.
For each non-leaf vertex v, rectangles corresponding to its
children consist of a partition of a rectangle corresponding
to v. The size of a smallest set of disjoint monochromatic
rectangles which recursively partitions M (T) is called the
protocol partition number of M(T) and it is denoted
by CP(T),

For each Boolean function f: {0,1}" — {0,1}, define
F71(1) and £~1(0) by

FH) = {z e {0,137 | o) =1},

F7H0) = {z € {0,1}" | f(z) = 0}.
For each Boolean function f: {0,1}" — {0,1}, define the
relation Ty by

Ty o= {(0,9,8) € 71 (1) x f71(0) x {L,...,n} | & £y}

Karchmer and Wigderson [4] gave the following character-
ization of the size of a smallest formula.

Theorem 1 ([4]). For each Boolean function f,

CP(Ty) = L(f).

2.1. QUASI-ADDITIVE BOUND

Let T be a relation on (X,Y, 7). For each rectangle R of
R(T), let P(R) be the set of partitions of R. Now we con-
sider the linear programming QA(T") described in Figure 1.
Let ga(T) be the optimal objective value of an optimal

solution for QA(T). The value qa(T) is called the quasi-
additive bound. Although QA(T) can be seen as a sim-
ple extension of the linear programming for computing the
rectangle bound (see [3]), Ueno [11] proved the following
surprising result.

Theorem 2 ([11]). For each relation T,
qa(T) = CF(T).

From Theorems 1 and 2, we can see the following corol-
lary.

Corollary 1 ([4, 11]). For each Boolean function f,

qa(Ty) = L(f).

Let T'(T') be the set of ordered pairs (R, P) of a rectangle
R of R(T') and a partition P of R. Define the integer pro-
gramming PN(T) as described in Figure 2. In PN(T'), we
use the notation y(R, P) instead of y((R, P)). Let LPN(T")
be the linear programming relaxation of PN(T"). The fol-
lowing theorem was proved by Ueno [12].

Theorem 3 ([12]). For each relation T, QA(T) is equiva-
lent to the dual problem of LPN(T).

3. MAIN RESULTS

Here we give our main result. For each relation T', let pn(T')
be the objective value of an optimal solution of PN(T).

Theorem 4. For each relation T,
pn(T) = CP(T).

We will leave the proof of Theorem 4 to the next sec-
tion. By Theorems 3 and 4, the following corollary can be
obtained.

Corollary 2. For each relation T, QA(T) is the dual prob-
lem of the linear relazation of some integer programming
for computing CT(T).

Furthermore, by the weak duality theorem (see [9]) and
Theorems 2, 3 and 4, the following corollary can be ob-
tained. For each relation T, let lpn(7T") be the objective
value of an optimal solution of LPN(T).

Corollary 3. For each relation T,

pn(T) = lpn(T).
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min Z z(R)

REM(T)

s.t. Z

REM(T): c€R

2(R)=1 (Yce O(T))
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> y(R,P)+x(R) if Re M(T)

Z y(V P) _ PeP(R)
(V,P)er’(V): ReEP
PeP(R)

M(T (T
w€Z+( ), y€Z+()

> y(R,P)

(VR € R(T))

otherwise

Figure 2: An integer programming PN(T).

Proof. By Theorems 2, 3 and 4,
CP(T) = ga(T) < Ipn(T) < pn(T) = C7(T),

where the first inequality follows from the weak duality
theorem. 0

4. PROOF

In this section, we give the proof of Theorem 4. Theorem 4
clearly follows from the following Lemmas 1 and 2.

Lemma 1. Let T be a relation, and let M’ be a subsets of
M(T) which recursively partitions M(T). Define a vector

T € ZT(T) by

1, Re M,

0, otherwise.

2(R) == {

(T

Then, there exists y € Zi ) such that (z,y) is a feasible

solution for PN(T).

Lemma 2. Let T be a relation, and let (x,y) a feasible
solution for PN(T). Define

M, = {Re M(T)| z(R) = 1}.

Then, M, recursively partitions M(T).

4.1. PROOF OF LEMMA 1

Define M(T) := M, R(T) := R and I'(T) :=T'. Since (1)
is clearly satisfied, it suffices to prove that (2) is satisfied.

Let 7 be a rooted binary tree representation of M’. In
the sequel, we do not distinguish between a vertex v of T
and the corresponding rectangle. Define a vector y € ZE
as follows. If R is a non-leaf vertex of 7 and the children of
R counsist of a partition P, define y(R, P) := 1. Otherwise,
define y(R, P) := 0. We will show that (x,y) satisfies (2).

Let R be a rectangle of R. We first assume that R is
is not contained in 7. In this case, y(R, P) = 0 for every
partition P of R and y(V, P) = 0 for every (V, P) € T such
that R € P. Furthermore, if R € M, then z(R) = 0 follows
from R ¢ M'. These imply that (2) satisfies.

Next we consider the case where R is contained in 7.
Since R # X x Y, R is not the root of 7. Hence, there
exist the parent W and the sibling S of R in 7. Define
Q :={R,S}. Then, y(W,Q) =1 and y(V, P) = 0 for every
(V,P) € T such that R € P and (V,P) # (W,Q). Thus,
the left-hand side of (2) is equal to 1, and it suffices to
show that the right-hand side of (2) is equal to 1.

If Ris aleaf of T (i.e., R € M’), then z(R) = 1 and
y(R, P) = 0 for every partition P of R. Thus, the right-
hand side of (2) is equal to 1. If R is a non-leaf vertex of
T, then z(R) =0 by R & M'. Let Q' be a partition of R
which consist of the children of R in 7. Then, y(R,Q’) =1
and y(R, P) = 0 for every partition P of P(R) such that
P # @Q'. These facts imply that the right-hand side of (2)
is equal to 1. This completes the proof.

4.2. PROOF OF LEMMA 2

By (1), M, partitions M (T'). So, what remains is to prove
that it “recursively” partitions M (T).

By induction on
> xR,
REM(T)

we prove the lemma. For every pair of a relation 7" and a
feasible solution (x,y) for PN(T') such that

> z(R)=1,
ReM(T)

we have X XY € M(T) and (X xY) = 1. So, the lemma
clearly holds.

Assuming that the lemma holds for every pair of a rela-
tion T and a feasible solution (z,y) for PN(T) such that

> aR)=k>1,
ReM(T)

we consider a pair of a relation T" and a feasible solution
(z,y) for PN(T') such that

> w(R)=k+1.

REM(T)

We first prove the following claim.



122

Claim 5. There exists (S,Q) € I'(T) such that
1. both rectangles of Q are monochromatic,
2. x(V) =1 for both rectangles V' of Q, and
3. y(S,Q) > 0.

Proof. Since

> x(R) =2,
REM(T)
there exists a rectangle R of M(T') such that z(R) = 1 and
R # X x Y. Hence, by (2) there exists (R, P) € I'(T') such
that y(R, P) > 0. Let (S,Q) be a pair of I'(T") such that
y(S,Q) > 0 and |S] is minimum. If V' is not monochromatic
or (V) = 0 for a rectangle V of @, it follows from (2) that
y(V, P) > 0 for some P € P(V), which contradicts |S] is
minimum. This completes the proof. O

Let (S, Q) be a pair of I'(T') satisfying the conditions of
Claim 5. Define Q := {V,W}. Since V is monochromatic,
there exists some element z of Z which every cell of V
contains. Here we consider a new relation 7" obtained from
T by adding z to the entry of every cell of W. Define

o e 7z by

1, ifR=S5,
#(R) = 0, fR=Vo R=W,
) z(R), fRe M(T)and R#S,V,W,
0, otherwise.
Furthermore, define y € Zi(T ) by
/ L ZI/(R7P)_17 lf (R7P):(S7Q)7
v(R,P):= { y(R, P), otherwise.

Notice that ¢'(S,Q) > 0 follows from y(S,Q) > 0. Since
S ¢ M(T) or z(S) =0 by (1), we have

> a(R) =k

ReM(T)

Hence, in order to use the induction hypothesis, we need
the following claim.

Claim 6. (2/,y) satisfies (1) and (2) for T'.

Proof. Since (1) is satisfied by the definition of 2’ and the
induction hypothesis, we consider the constraint (2). By
the definition of (2’,y") and induction hypothesis, it suffices
to consider the constraint for S, V and W.

First we consider the constraint for S. Since 2/(S) —

x(S)=1(f S ¢ M(T), set z(S) :=0) and

Z y,(Sap)f Z y(S7P):7]_7

PEP(S) PeP(S)

the right-hand side of (2) does not change. Hence, since
the left-hand side does not change, (2) is satisfied. Next
we consider the constraint for V. The left-hand side of (2)
decreases by 1 due to (S,Q). Since 2/(V) — z(V) = —1,
the right-hand side of (2) also decreases by 1. Hence, (2) is
satisfies. The same argument is clearly valid for W. This
completes the proof. O
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By the induction hypothesis, M, recursively partitions
M(T"). Tt is not difficult to see that we can construct a
rooted binary tree representation of M, by adding two
vertices V and W under S of the rooted binary tree repre-
sentation of M. This completes the proof.
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