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Abstract. By using the finite element approximation and constructive a priori error estimates, a
new formulation for proving the existence of solutions for nonlinear parabolic problems is presented.
We present a method to estimate the norm of the linearized inverse operator for concerned nonlinear
problem. Then we formulate a verification principle for solutions by using the Newton-type operator
incorporating with Schauder’s fixed point theorem.
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1. Introduction

In this paper, we consider a numerical method to verify the
existence of solutions for the following nonlinear parabolic
problems:

∂
∂tu− ∆u = f(u;x, t) (x, t) ∈ Q,
u(x, 0) = 0 x ∈ Ω,
u(x, t) = 0 (x, t) ∈ ∂Ω × J.

(1.1)

where Ω ⊂ Rn is a bounded and convex domain (n =
1, 2, 3), J = (0, T ] with T > 0 and Q ≡ Ω × J . Here, the
nonlinear map f will be prescribed later.

1.1. Functional spaces

Here we denote the usual k-th order L2 Sobolev space on Ω
by Hk(Ω), and also denote the L2-inner product and norm
on Q by (·, ·) and ∥·∥, respectively. Moreover, we introduce
the following Sobolev spaces:

H(Q) ≡ {ϕ ∈ H0(Q) ∩H1(J ;L2(Ω)) ; ϕ(x, 0) = 0 in Ω}.

where H0(Q) ≡ L2(J ;H1
0 (Ω)) and H1

0 (Ω) ≡ {ϕ ∈ H1(Ω) ;
ϕ = 0 on ∂Ω}. We define the H0-norm and H-norm by
∥ϕ∥X ≡ (∇ϕ,∇ϕ)

1
2 for ϕ ∈ H0(Q) and

∥ϕ∥H(Q) ≡
(

(
∂

∂t
ϕ,

∂

∂t
ϕ) + (∇ϕ,∇ϕ)

) 1
2

,

for ϕ ∈ H(Q), respectively.

1.2. Finite element subspaces and projections

We introduce the finite element subspaces Sh of H1
0 (Ω)

and Sk of L2(J) depending on the parameter h and k with
nodal functions {ϕi}1≤i≤Nh

and {ψi}1≤i≤Nk
, respectively.

Moreover, we denote the finite element subspace Sk
h :=

Sh ⊗ Sk of H(Q) with nodal functions {φi}1≤i≤N .
For an arbitrary u ∈ H1

0 (Ω), we define the H1
0 -projection

Px : H1
0 (Ω) −→ Sh ⊂ H1

0 (Ω) by (∇u−∇Pxu,∇ϕh)L2(Ω) =
0, for all ϕh ∈ Sh. Moreover, for an arbitrary v ∈ L2(J),
we define the L2-projection Pt : L2(J) −→ Sk ⊂ L2(J) by
(v − Ptv, ϕ

k)L2(J) = 0, for all ϕk ∈ Sk. Also for an
arbitrary u ∈ H(Q), we define the parabolic-projection
P k

h : H(Q) −→ Sk
h ⊂ H(Q) by

(
∂

∂t
(u− P k

hu), φh) + (∇u−∇P k
hu,∇φh) = 0,

∀φh ∈ Sk
h.

Now for each ψ ∈ L2(Q), let u be a solution of the following
basic parabolic problem

∂
∂tu− ∆u = ψ (x, t) ∈ Q,
u(x, 0) = 0 x ∈ Ω,
u(x, t) = 0 (x, t) ∈ ∂Ω × J.

(1.2)

And we denote u ≡ ∆−1
t ψ. Then notice that P k

hu satisfies
the fllowing weak form in Sk

h, which implies that P k
hu co-

incides with the usual finite element approximation of the
problem (1.2).

(
∂

∂t
P k

hu, φh) + (∇P k
hu,∇φh) = (ψ,φh),

∀φh ∈ Sk
h.

The following assumption is natural and our starting point[4].
Assumption 1. There exist positive constants c0 and c1
independent of h and k such that, for any u ∈ H1

0 (Ω) ∩
H2(Ω) and v ∈ H1(J),

∥u− Pxu∥L2(Ω) ≤ (c1h)
2 ∥∆u∥L2(Ω),

∥∇u−∇Pxu∥L2(Ω) ≤ c1h∥∆u∥L2(Ω),

∥v − Ptv∥L2(J) ≤ c0k∥
∂

∂t
v∥L2(J).
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Here, h and k correspond to the maximum mesh size in
space and time directions, respectively.

2. Constructive a priori error
estimates

In this section, suppose that u is a solution of (1.2). Then
note that u ∈ H(Q) ∩ L2(J ;H2(Ω)).
Lemma 1. [1] For an arbitrary φh ∈ Sk

h, we have

∥u− P k
hu∥2

X ≤ 2∥ ∂
∂t (u− P k

hu)∥∥u− φh∥

+∥∇u−∇φh∥2.

Lemma 2. We have the following estimates.

∥u− PtPxu∥ ≤ C0(h2, k)∥ψ∥,
∥∇u−∇PtPxu∥ ≤ C1(h,

√
k)∥ψ∥,

where C0(h2, k) :=
√

4(c1h)4 + (c0k)2 and C1(h,
√
k) :=√

4(c1h)2 + 2c0k.

Proof. By simple computations and Assumption 1, it im-
plies that

∥u− PtPxu∥2 = ∥u− Ptu+ Pt(u− Pxu)∥2

≤ ∥u− Ptu∥2 + ∥Pt(u− Pxu)∥2

≤ (c0k)2∥
∂

∂t
u∥2 + ∥u− Pxu∥2

≤ (c0k)2∥
∂

∂t
u∥2 + (c1h)4∥∆u∥2,

∥∇u−∇PtPxu∥2 = ∥∇u−∇Pxu+ ∇Px(u− Ptu)∥2

≤ ∥∇u−∇Pxu∥2 + ∥∇Px(u− Ptu)∥2

≤ (c1h)2∥∆u∥2 + ∥∇(u− Ptu)∥2

= (c1h)2∥∆u∥2 − (u− Ptu,∆u)

≤ (c1h)2∥∆u∥2 + c0k∥
∂

∂t
u∥∥∆u∥.

Hence using inequalities ∥ ∂
∂tu∥ ≤ ∥ψ∥ and ∥∆u∥ ≤ 2∥ψ∥,

we can obtain

∥u− PtPxu∥2 ≤
(
(c0k)2 + 4(c1h)4

)
∥ψ∥2,

∥∇u−∇PtPxu∥2 ≤
(
4(c1h)2 + 2c0k

)
∥ψ∥2.

Therefore, this proof is completed.

Using Lemmas 1 and 2, we obtain the following construc-
tive a priori error estimation.
Theorem 2. The following estimates hold true.

∥u− P k
hu∥X ≤ C(h,

√
k)∥ψ∥,

where

C(h,
√
k) ≡

√
2C0(h2, k)(1 + σ) + C1(h,

√
k)2

and σ > 0 is a constant satisfying ∥ ∂
∂tP

k
hu∥ ≤ σ∥ψ∥. Note

that σ can be numerically determined by solving some ma-
trix eigenvalue problems.

3. Norm of the linearized inverse
operator

In order to formulate a verification algorithm by using an
infinite dimensional Newton-like method, we need the norm
estimation for the linearized inverse operator of the original
nonlinear parabolic problems.
First, we consider the solvability of the linear parabolic
problem of the form

Lu ≡ ∂
∂tu− ∆u+ b · ∇u+ cu = g (x, t) ∈ Q,

u(x, 0) = 0 x ∈ Ω,
u(x, t) = 0 (x, t) ∈ ∂Ω × J,

(3.1)

where g ∈ L2(Q). We assume that b ∈ L∞(J ;W 1
∞(Ω)n),

c ∈ L∞(Q). It is well-known that the operator L defined
by (3.1) is invertible. Thus we show a numerical method
to estimate the norm for L−1 in the below.

Now according to the usual verification principle, e.g.,[2][3],
we formulate a sufficient condition for which the equation
(3.1) has a unique solution. As the preliminary, letting

ah(vh, wh) ≡ (
∂

∂t
vh, wh) + (∇vh,∇wh),

for vh, wh ∈ Sk
h, we define the matrices G = (Gi,j), L =

(Li,j) and D = (Di,j) by : for 1 ≤ i, j ≤ N

Gi,j = ah(φj , φi) + (b · ∇φj , φi) + (cφj , φi),
Di,j = (∇φj ,∇φi),
Li,j = (φj , φi).

Let D
1
2 and L

1
2 be lower triangular matrices satisfying

the Cholesky decomposition: D = D
1
2 D

T
2 and L = L

1
2 L

T
2 ,

respectively. And we denote the matrix norm by ∥ · ∥E

induced from the Euclidean norm | · |E in RN . Also we
define the following constants:

Kb := ∥ |b|E ∥L∞(Q), Kc := ∥c∥L∞(Q),

where ∥·∥L∞(Q) means L∞-norm on Q. Here, e.g. for N =
2, |b|E =

√
b1(x, t)2 + b2(x, t)2. Let cp > 0 be a Poincaré

constant such that ∥ϕ∥ ≤ cp∥ϕ∥X for each ϕ ∈ H0(Q).
Then we have the following main result of this paper.
Theorem 3. Let γ ≡ C(h,

√
k)τ(Mτ + 1), where M ≡

∥DT
2 G−1L

1
2 ∥E and τ ≡ Kb + cpKc. If γ < 1 then for any

g ∈ L2(Q), a unique solution u ∈ H0(Q) of the equation
Lu = g satisfies

∥u∥X ≤ M∥g∥,

where M ≡
(
M + C(h,

√
k)(κ1 + κ2)

)
and

κ1 :=
1

1 − γ
(Mτ + 1), κ2 := Mτκ1.

Proof. Let ψ := ∆−1
t g ∈ H(Q) ∩ L2(J ;H2(Ω)). Then we

can rewrite the equation Lu = g as u = Au + ψ, where
the compact operator A : H0(Q) −→ H0(Q) is defined by
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Au := −∆−1
t (b · ∇u + cu). As in [3], we decompose the

equation u = Au+ ψ as

P k
hu = P k

hAu+ P k
hψ,

(I − P k
h )u = (I − P k

h )Au+ (I − P k
h )ψ,

where I implies the identity map on H0(Q). Here we define
two operators by

Nhu ≡ P k
hu− [I −A]−1

Sk
h

(I − P k
h )Au+ [I −A]−1

Sk
h

ψ,

Tu ≡ Nhu+ (I − P k
h )Au+ (I − P k

h )ψ,

respectively, where [I −A]−1
Sk

h

means the inverse of P k
h (I −

A)|Sk
h

: Sk
h −→ Sk

h．The existence of the operator [I−A]−1
Sk

h

can be verified by some guaranteed numerical computations
in computer. Then the equation u = Au+ ψ is equivalent
to u = Tu. Setting u∗ := (I − P k

h )u, we have

Nhu = P k
hu− [I −A]−1

Sk
h

P k
h (u−Au) + [I −A]−1

Sk
h

P k
hψ

= [I −A]−1
Sk

h

P k
hAu∗ + [I −A]−1

Sk
h

P k
hψ.(3.2)

Since P k
hAu∗ = −P k

h ∆−1
t (b ·∇u∗ + cu∗) ∈ Sk

h, the equation
(3.2) implies that

ah(Nhu, φh) + (b · ∇Nhu+ cNhu, φh)

= ah(P k
hAu∗ + P k

hψ,φh)

= (
∂

∂t
(Au∗ + ψ) − ∆(Au∗ + ψ), φh)

= (−b · ∇u∗ − cu∗ + g, φh)
= (φ,φh)
= (P0φ,φh),

for all φh ∈ Sk
h, where φ := −b·∇u∗−cu∗+g ∈ L2(J ;L2(Ω))

and P0 : L2(Q) −→ Sk
h is the L2-projection such that

(φ−P0φ, ϕh) = 0 for all ϕh ∈ Sk
h. Note that ∥P0φ∥ ≤ ∥φ∥.

Now denoting

Nhu :=
N∑

j=1

wjϕj and P0φ :=
N∑

j=1

vjϕj ,

for the basis {ϕj}1≤j≤N of Sk
h, we have a matrix equation

of the form

Gw⃗ = Lv⃗.

Here w⃗ = (w1, w2, · · · , wN )T and v⃗ = (v1, v2, · · · , vN )T are
coefficient vectors of Nhu and P0φ, respectively. Thus it
implies that

∥Nhu∥2
X = w⃗T Dw⃗

= w⃗T DG−1Lv⃗

= (w⃗T D
1
2 )(D

T
2 G−1L

1
2 )(L

T
2 v⃗)

≤ ∥DT
2 w⃗∥E∥D

T
2 G−1L

1
2 ∥E∥L

T
2 v⃗∥E

= ∥Nhu∥X∥DT
2 G−1L

1
2 ∥E∥P0φ∥.

By some simple calculations, it holds that

∥φ∥ = ∥ − b · ∇u∗ − cu∗ + g∥
≤ Kb∥u∗∥X +Kc∥u∗∥ + ∥g∥
≤ (Kb + cpKc)∥u∗∥X + ∥g∥,

where we have used the fact that ∥u∗∥ ≤ cp∥u∗∥X . Thus
defining M ≡ ∥DT

2 G−1L
1
2 ∥E , we obtain

∥Nhu∥X ≤M∥P0φ∥ ≤ M∥φ∥
≤ M (τ∥u∗∥X + ∥g∥) ,

where τ ≡ Kb+cpKc. Therefore, by the triangle inequality,
we have

∥(I − P k
h )(Au+ ψ)∥X ≤C(h,

√
k) (∥b · ∇u+ cu∥ + ∥g∥)

≤C(h,
√
k) (τ∥u∥X + ∥g∥)

≤C(h,
√
k)

(
τ∥P k

hu∥X + τ∥u∗∥X + ∥g∥
)
.

Since the unique solution u ∈ H0(Q) of (3.1) satisfies u =
Tu, it implies that

P k
hu = Nhu, (I − P k

h )u = (I − P k
h )Au+ (I − P k

h )ψ.

Hence we can obtain

∥P k
hu∥X ≤Mτ∥(I − P k

h )u∥X +M∥g∥,
∥(I − P k

h )u∥X ≤C(h,
√
k)

(
τ∥P k

hu∥X + τ∥(I − P k
h )u∥X + ∥g∥

)
.

If γ ≡ C(h,
√
k)τ(Mτ + 1) < 1 then substituting the es-

timate of ∥P k
hu∥X into the right-hand side of ∥(I−P k

h )u∥X

and solving it with respect to ∥(I − P k
h )u∥X , we get

∥(I − P k
h )u∥X ≤ C(h,

√
k)

1 − γ
(Mτ + 1)∥g∥

= C(h,
√
k)κ1∥g∥,

where κ1 = (Mτ + 1)/(1 − γ). Thus setting κ2 = Mτκ1,
we also have

∥P k
hu∥X ≤ MC(h,

√
k)τκ1∥g∥ +M∥g∥

=
(
M + C(h,

√
k)κ2

)
∥g∥.

Therefore, this proof is completed by ∥u∥X ≤ ∥P k
hu∥X +

∥(I − P k
h )u∥X .

4. Verification algorithms for
nonlinear problems

In this section, we mention about the actual applications
of the results obtained in the previous section to the veri-
fication of solutions for nonlinear parabolic problem (1.1).
We assume that the nonlinear map f(u;x, t) from H(Q)
into L2(Q) is continuous and bounded.
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Usually, we transform the original parabolic problem
(1.1) into the so-called residual equation by using an ap-
proximate solution uh ∈ Sk

h ⊂ H(Q)∩L2(J ;H2(Ω)) defined
by

(
∂

∂t
uh, φh) + (∇uh,∇φh) = (f(uh;x, t), φh)(4.1)

for ∀φh ∈ Sk
h.

Setting w := u − uh, concerned problem is reduced to the
following residual form

∂
∂tw − ∆w = f(w + uh;x, t) −

(
∂
∂tuh − ∆uh

)
in Q,

w(x, 0) = 0 x ∈ Ω,
w(x, t) = 0 in ∂Ω × J.

(4.2)

Hence denoting the Fréchet derivative at uh by f ′(uh), the
Newton-type residual equation for (4.2) is written as:

Lw ≡ ∂
∂tw − ∆w − f ′(uh)w = g(w) (x, t) ∈ Q,

w(x, 0) = 0 x ∈ Ω,
w(x, t) = 0 (x, t) ∈ ∂Ω × J,

(4.3)

where g(w) ≡ f(w + uh;x, t) −
(

∂
∂tuh − ∆uh

)
− f ′(uh)w.

Then the equation (4.3) is rewritten as the fixed point form

w = F (w)
(
≡ L−1g(w)

)
.

We consider the set, which we often refer as the candidate
set, of the form

Wα,β ≡ {w ∈ H(Q) : ∥w∥X ≤ α, ∥ ∂
∂t
w∥ ≤ β}.

Then the Newton-like operator F : H0(Q) → H0(Q) be-
comes compact on Wα,β , and is expected to be a contrac-
tion map on some neighborhood of zero.

First for the existential condition of solutions, we need
to choose the set Wα,β , which is equivalent to determine
positive numbers α and β, satisfying the following criterion
based on Schauder’s fixed point theorem:

F (Wα,β) ⊂ Wα,β .(4.4)

Next for the proof of local uniqueness within Wα,β , the
following contraction property is needed on the same set
Wα,β in (4.4):

∥F (w1) − F (w2)∥H(Q)(4.5)
≤ λ∥w1 − w2∥H(Q),∀w1, w2 ∈Wα,β ,

for some constant 0 < λ < 1. Notice that, in the above
case, Schauder’s fixed point theorem can be replaced by
Banach’s fixed point theorem.

For (4.4), by using the same constant M in the theorem
3, a sufficient condition can be written as

sup
w∈Wα,β

∥F (w)∥X ≤ M sup
w∈Wα,β

∥g(w)∥ < α,

sup
w∈Wα,β

∥ ∂
∂t
F (w)∥ ≤ sup

w∈Wα,β

∥g(w) + f ′(uh)F (w)∥

≤ N sup
w∈Wα,β

∥g(w)∥ < β,

where N ≡ 1+Mτ . Here, we assumed the equality f ′(uh)ϕ =
−b · ∇ϕ − cϕ holds for the coefficient functions b and c in
(3.1).

On the other hand, for the verification of local uniqueness
condition (4.5) on Wα,β , in general, we use the following
deformation:

g(w1) − g(w2) = Φ(w1, w2)(w1 − w2),

where Φ(w1, w2) denotes a function in w1 and w2, for ex-
ample, if g(w) = w2, then Φ(w1, w2) = w1+w2. Therefore,
the condition (4.5) reduces to find a constant 0 < λ < 1
satisfying the inequalities of the form

M∥Φ(w1, w2)(w1 − w2)∥ ≤ λ∥w1 − w2∥X ,

N∥Φ(w1, w2)(w1 − w2)∥ ≤ λ∥ ∂
∂t

(w1 − w2)∥,

for all w1, w2 ∈Wα,β .

Concluding remarks: We derived a constructive a priori
error estimates for the finite element approximation defined
on the whole domain of space and time of the basic linear
parabolic problems. By using this result, we presented a
verification principle based on a Newton-like method for
the solutions of nonlinear parabolic problems. In general,
some constants included in the error estimates seem to be
not necessarily effective when the time interval J is large.
Therefore, in order to apply the method for more realis-
tic problem than the prototype example, e.g., in [1], we
would need to develop a technique based on the step by
step method in time.
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