
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Design Procedure for a Large-Scale
Reconfigurable Data-Path

Honda, Hiroaki
Institute of Systems, Information Technologies and Nanotechnologies

Mehdipour, Farhad
Graduate School of Information Science and Electrical Engineering, Kyushu University |
Institute of Systems, Information Technologies and Nanotechnologies

Kataoka, Hiroshi
Graduate School of Information Science and Electrical Engineering, Kyushu University |
Institute of Systems, Information Technologies and Nanotechnologies

Inoue, Koji
Graduate School of Information Science and Electrical Engineering, Kyushu University |
Institute of Systems, Information Technologies and Nanotechnologies

他

https://hdl.handle.net/2324/13842

出版情報：情報処理学会研究報告, 2009-ARC-182. 2009 (14), pp.97-102, 2009-02-19. 情報処理学会
バージョン：
権利関係：ここに掲載した著作物の利用に関する注意 本著作物の著作権は（社）情報処理学会に帰属し
ます。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては
「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。

 1

A Design Procedure for a Large-Scale Reconfigurable Data-Path
Hiroaki HONDA†, Farhad MEHDIPOUR††, Hiroshi KATAOKA††, Koji INOUE††,

and Kazuaki MURAKAMI††

†Institute of Systems, Information Technologies and Nanotechnologies, Fukuoka 814-0001, Japan
††Graduate School of Information Science and Electrical Engineering Kyushu University, Fukuoka

819-0395, Japan

E-mail: dahon@isit.or.jp, {farhad, kataoka}@c.csce.kyushu-u.ac.jp, {inoue,murakami}@i.kyushu-u.ac.jp

Abstract Large-Scale Reconfigurable Data-Path (LSRDP) processor has been proposed for the reduc-
tion of required memory bandwidth in a high performance scientific computing. LSRDP micro-architecture
design procedure and how it is exploited are presented. First, 24 benchmark Data Flow Graphs (DFGs) are
extracted from 2nd order partial differential equations and electron repulsion integral calculations. LSRDP
architectural specifications including height, width, and maximum connection length between floating point
units are obtained through analyzing the statistics gathered from the compilation of DFGs.

Keyword Large-Scale Reconfigurable Data-Path, Data Flow Graph, Architecture Design

大規模再構成可能データパスプロセッサの設計手法
本田宏明†, ファラハドメディプー††, 片岡広志†††, 井上弘士††, 村上和彰††

†九州先端科学技術研究所, ††九州大学システム情報科学研究院, †††九州大学システム情報科学府

概要 要求メモリバンド幅を抑えつつも高性能な科学技術計算を可能とするような，大規模再構成可能データパ

スプロセッサ （LSRDP）が提案されている．本稿ではこの LSRDP について，詳細なアーキテクチャ設計を行っ

た．２階の偏微分方程式ならびに二電子積分からの24 個のベンチマークとなるデータフローグラフを使用し，マ

ッピングツールの結果から統計的に LSRDP の高さ、幅、演算器間の最大結合距離を求めた．

Keyword 大規模再構成可能データパス，データフローグラフ，アーキテクチャ設計

1. Introduction
Computer systems based on parallel com-

puter clusters with General-Purpose Proces-
sors (GPP) are often utilized for the high per-
formance computing. Those parallel com-
puters with GPPs account for a large share of
the performance ranking in TOP500[1]. On the
other hand, the hybrid architecture comprising
an accelerator augmented to a GPP might be
chosen for special purpose computations. The
accelerator should be designed to feature
small size, high performance, and low power
consumption.

Recent examples of such accelerator are
CSX600 PCI-X board[2], GRAPE-DR proces-
sor[3], Cell processor[4] which is heteroge-

neous multi-core processor and General Pur-
pose computing on Graphic Processing Unit
(GPGPU) calculations are often used by
graphic accelerator chips[5]. Those accelera-
tors commonly have Single Instruction Multi-
ple Data stream (SIMD) mechanism for total
architecture, or functional units.

Generally, a large memory bandwidth is
demanded in conventional accelerators to
perform calculations efficiently. Therefore, an
on-chip memory can be utilized for reduction
of the required memory bandwidth.

Recently, the Large-Scale Reconfigurable
Data-path (LSRDP) processor is proposed by
Murakami et al. [6-8] for reducing memory
pressure itself on the system performance. The

 2

LSRDP architecture comprises a two dimen-
sional array of floating point Functional Units
(FUs) and interconnection networks among
FUs referred as Operand Routing Networks
(ORNs). The main intuition behind the LSRDP
is that the cascaded FUs can generate a final
result without temporally memorizing inter-
mediate data, therefore, the number of mem-
ory load/store operations corresponding to
spill codes can be reduced (Fig. 1).

In the CREST SFQ-RDP project[9], devel-
oping algorithm for LSRDP and specifying
LSRDP architecture configuration are the
main tasks.

In this paper, LSRDP detailed architecture
design procedure and the results are shown. In
Section 2, LSRDP architecture is introduced.
In Section 3, architecture designing method-
ology, benchmark application, and detailed
architecture design scheme are explained.
Section 4 presents the results of architecture
design procedure. Finally, Section 5 concludes
the paper.

2. Outline of LSRDP architecture
2.1. On chip design parameters

The LSRDP is shown in Fig.1. LSRDP sys-
tem is constituted with LSRDP accelerator
chip, GPP and main memory are connected
through a shared bus to each other. Generally,
LSRDP is configured as a two-dimensional
array of FUs connected with flexible ORNs,
Streaming Buffer (SB) which is the FIFO
type buffer, and Streaming Memory Access
Controller (SMAC) for data I/O. Each FU
can be fed data through SMAC and SB to one

or more FUs via ORN switches. Feedback
data flow connections are not supported,
which means that the flow of data in the FU
array is only in one direction from input to
output. The LSRDP should be an adaptable
accelerator, because it is aimed to target
various scientific applications. In order to
satisfy this requirement, the LSRDP is fea-
tured with dynamically reconfiguring of the
ORNs. Originally, the ORN consists of pro-
grammable switches. By means of setting the
control signals provided with FUs and ORN
switches, the function of the LSRDP can be
configured at run time. Such flexibility
makes it possible to implement various DFGs
on the FU array.

In an LSRDP, a data flow graph (DFG) ex-
tracted from a target application program is
mapped to the two dimensional FU array.
Since the cascaded FUs can generate a final
result without temporally memorizing inter-
mediate data, we can reduce the number of
memory load/store operations corresponding
to spill codes. Therefore, memory bandwidth
required to achieve a high performance can be
reduced. Furthermore, since a loop-body
mapped into the FU array is executed in a
pipeline fashion, LSRDP can provide a high
computing throughput.
2.2. On chip design parameters

In the LSRDP design stage, following ar-
chitectural specifications have to be decided:

• Type and granularity of each functional
unit (FU)

• Configuration of processing element (PE)
• LSRDP height and width
• Number of I/O ports
• Size of Operand Routing Networks

(ORNs), especially maximum connection
length between consecutive rows

• Layout of FU operation types
• Reconfiguration mechanism

In following sections above specifications
are decided except Layout of FU and recon-
figuration mechanism. Reconfiguration
mechanism is strongly depends on detailed
properties of the LSRDP micro-architecture.

3. Architecture designing scheme
3.1. Design methodology

Different strategies can be used for deter-
mining LSRDP architectural specifications in
detail. Our approach is based on the quantita-
tive analysis of DFGs of benchmark applica-
tions and their mapping results onto the
LSRDP. Fig.2 shows the flow of the design

General
Purpose

Processor

ORN

: : : :

ORN

...FPU FU FUFU

...FU FU FUFU

...FU FU FUFU

Main
memory

LSRDP

SB

SMAC

Fig.1: LSRDP system

General
Purpose

Processor

ORN

: : : :

ORN

...FPU FU FUFU

...FU FU FUFU

...FU FU FUFU

Main
memory

LSRDP

SB

SMAC

Fig.1: LSRDP system

 3

stages. As the design flow is an iterative pro-
cedure of gathering statistics and analysis of
results, therefore, the designer should decide
the priority of specifications in the first step.
Then, for determining each design parameter,
applications (extracted DFGs) should be
mapped on the LSRDP. There is no limitation
in the initial architecture and the mapping
process is performed without forcing any con-
straint. In the next stage, the results of map-
ping should be analyzed by the designer to
decide an appropriate value for the intended
parameter. This process is repeated to specify
the entire specifications of the architecture. In
the following sections more details on those
procedures will be given.

3.2. Benchmark application
We utilized totally twenty four DFGs as a

benchmark set to design the LSRDP architec-
ture. Four applications are selected.
One-dimensional heat and vibration equation,
two-dimensional Poisson equation, and recur-
sion calculation part of Electron Repulsion
Integral (ERI) as a quantum chemistry appli-
cation. All calculations are constructed based
on ADD, SUB, and MUL operations.

Generally, 2-dimensional 2nd order partial
differential equations with constant coeffi-
cients are categorized to three types: heat or
diffusion equation, vibration equation and
Poisson equation. Each equation has following
canonical form, respectively:

2

2
(,) (,)T x t T x tA
t x

∂ ∂
=

∂ ∂
 (1)

2 2

2 2
(,) (,)V x t V x tA
t x

∂ ∂
=

∂ ∂
 (2)

2 2

2 2
(,) (,) (,)u x y u x y f x y
x y

∂ ∂
+ =

∂ ∂
 (3)

These equations are solved by finite dif-
ference method using following expres-
sions[10]:

1 1 1(,) * (,) * (,) (,)i j i j i j i jT x t D T x t B T x t T x t+ − +⎡ ⎤= + +⎣ ⎦ (4)

1 1 1

1

(,) * (,) * (,) (,)

* (,)
i j i j i j i j

i j

V x t D V x t B V x t V x t

C V x t
+ − +

−

⎡ ⎤= + +⎣ ⎦
+

(5)

(1) ()

() ()
1 1

() () 2
1 1

(,) (1)* (,)

(,) (,)
4

(,) (,) (,)

n n
i j i j

n n
i j i j

n n
i j i j i

u x y u x y

u x y u x y

u x y u x y h f x y

ω

ω

+

− +

− +

= −

⎡+ +⎣

⎤+ + − ⎦

 (6)
Here, D, B, C and ω are constants. By us-

ing Eq.(6) which is an iterative equation (re-
ferred as successive over relaxation method),
final u(x,y) is calculated as converged form.

In the next stage, benchmark DFGs are
manually extracted from Eq. (4), (5) and (6),
then mapped on the LSRDP by utilizing a
mapping tool which will be explained in the
following section. However, it is inefficient to
map only small DFGs which are extracted di-
rectly from Eqs. (4)-(6). Therefore larger
DFGs are generated through connecting the
smaller ones.

For example, in heat equation, extracted
DFG which corresponds to Eq.(4) can be
shown as in Fig.4. This finite difference equa-
tion shows that the next point during the time
evolution process: (xi,tj+1) is obtained by us-

Fig.2: Design flow for LSRDP design
based on the quantitative approach
Fig.2: Design flow for LSRDP design
based on the quantitative approach

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

Fig.3: Data Flow Graph of
minimum unit of heat equation

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

Fig.3: Data Flow Graph of
minimum unit of heat equation

 4

ing current three points: (xi,tj+1) (xi,tj+1)
(xi,tj+1). If this equation is applied to the
1-dimentional N+1 points: xi-N/2 ~ xi+N/2 and is
iterated M times to calculate from tj to tj+M,
then, this equation have to be iteratively ap-
plied ~N*M times. By extending that equation
over the space and time dimensions, the final
computation structure will correspond to the
DFGs in Fig.7.

By connecting N DFGs over the space and
M over the time directions, finally we obtain a
large DFG with N inputs and N-2M outputs, 4*
(2N-2M)*M/2 operations. In consequence, by
implementing the obtained DFG on the LSRDP,
numerous operations are possible to be exe-
cuted in each local clock of the LSRDP pipe-
lined architecture.

Similar methods of the above mentioned
large DFG generation procedure are applicable
to basic DFGs of vibration and Poisson equa-
tions.

For the electron repulsion calculation, re-
cursion calculation parts[12] are described as
Fig.5. In the formula, (pis,ss)(n)~(pipjpkpl)(n)
are objective integral values. (ss,ss)(n) is ini-
tial integral value, and all the other values are
coefficients. Since each i,j,k,l index corre-
sponds to space three components: x,y,z, each
integral expression has multiple components.
For example, (pipjpkpl)(n) has 81 components
and corresponding DFG has 81 outputs. Di-
viding DFG to smaller ones would be useful if
the DFG size is lager than the number of re-
sources in the LSRDP. In this case, vertical
partitioning of DFG is practical to decrease
the number of outputs and operations.

Numbers of final benchmark DFGs are
summarized in Table 1.

3.3. LSRDP Compiler
Fig. 6 shows the proposed compilation

flow for the LSRDP. The most important func-
tionality of the compilation flow is to gener-
ating configuration bit-stream and an executa-
ble code for the reconfigurable processor in-
cluding GPP and LSRDP. In the first stage a
hw/sw partitioning is performed on the input
application manually (like an approach intro-
duced in the previous section) or by means of
an automatic tool. Considering the LSRDP
architectural specifications, DFGs are mapped
on the LSRDP through placing DFG nodes on
the PEs, routing interconnection as well as
positioning input/output nodes on the proper
positions. Configuration bit-stream corre-
sponding to each one of DFGs can be gener-
ated after completion of the mapping stage.
An executable code including non-critical
segments of the application code and a piece
of code for LSRDP interfacing has to be gen-
erated.

Mapping tool is developed as a part of

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

N inputs

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

M time evolutions

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

N inputs

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

T(i,j+1)

T(i-1,j) T(i,j) T(i+1,j)

+

*

*

+

D

B

M time evolutions

Fig.4:Connection of Data Flow Graphs

(0) (0) (1)

(0) (0) (1)

(1)

(0) (0) (1)

(0) (1)

(0) (

(,) (,) (,)

(,) (,) (,)

(,)
2

(,) (,) (,)

{(,) - (,) }

(,) (,)

i i i

i k k i k i

ik ab

i j j i j i

ij a a

i j k k i j

p s ss PA ss ss WP ss ss

p s p s QC p s ss WQ p s ss
Z

ss ss

p p ss PB p s ss WP p s ss

Z ss ss Z ss ss

p p p s QC p p ss

δ

δ ρ

= +

= +

+

= +

+

= 0) (1)

(0) (1)

(0) (0) (1)

(0) (1)

(0) (1)

(,)

{ (,) - (,) }
2

(,) (,) (,)

{ (,) - (,) }
2

{(,) - (,) }

(, , , , ,)

k i j

ab
ik j jk i

i j k l l i j k l i j k

ab
ik j k jl i k

kl b i j b i j

WQ p p ss

Z
sp ss p s ss

p p p p QD p p p s WQ p p p s

Z
sp p s p s p s

Z p p ss Z p p ss

i j k l x y z

δ δ

δ δ

δ ρ

+

+

= +

+

+

=

Fig.5: Electron Repulsion Integral Recursion formula

(0) (0) (1)

(0) (0) (1)

(1)

(0) (0) (1)

(0) (1)

(0) (

(,) (,) (,)

(,) (,) (,)

(,)
2

(,) (,) (,)

{(,) - (,) }

(,) (,)

i i i

i k k i k i

ik ab

i j j i j i

ij a a

i j k k i j

p s ss PA ss ss WP ss ss

p s p s QC p s ss WQ p s ss
Z

ss ss

p p ss PB p s ss WP p s ss

Z ss ss Z ss ss

p p p s QC p p ss

δ

δ ρ

= +

= +

+

= +

+

= 0) (1)

(0) (1)

(0) (0) (1)

(0) (1)

(0) (1)

(,)

{ (,) - (,) }
2

(,) (,) (,)

{ (,) - (,) }
2

{(,) - (,) }

(, , , , ,)

k i j

ab
ik j jk i

i j k l l i j k l i j k

ab
ik j k jl i k

kl b i j b i j

WQ p p ss

Z
sp ss p s ss

p p p p QD p p p s WQ p p p s

Z
sp p s p s p s

Z p p ss Z p p ss

i j k l x y z

δ δ

δ δ

δ ρ

+

+

= +

+

+

=

Fig.5: Electron Repulsion Integral Recursion formula

Fig.6: Outline of compiler flow

Fig.6: Outline of compiler flow
8376# of DFG

ERIPoissonVibrationHeatApplication

8376# of DFG

ERIPoissonVibrationHeatApplication

Table 1: Numbers of DFGs for each applications

8376# of DFG

ERIPoissonVibrationHeatApplication

8376# of DFG

ERIPoissonVibrationHeatApplication

Table 1: Numbers of DFGs for each applications

 5

LSRDP compiler. In addition, it can be used
for analyzing the mapping results as well as
generating statistics required during the de-
sign procedure which all will help the de-
signer to make a decision on the LSRDP ar-
chitectural specifications

3.4. Architecture design
3.4.1. DFG classification

DFGs obtained though DFG extraction
phase have different qualities with respect to
their size, no of inputs and outputs and etc.
Smaller implementations of a DFG should be
tried while a DFG violates constraints. Ac-
cording to this classification four classes in-
cluding Small (S), Medium (M), Large (L)
and XLarge (XL) are constructed using the
threshold numbers of FUs, inputs and outputs.
For each group, following architecture de-
sign procedure is processed and final speci-
fications are obtained.

3.4.2. Configuration of each processing
element

Each Processing Element (PE) consists of
FU and Transfer Unit (TU) which transfers
data from previous to following row by skip-
ping current row. Their different types of PE
structure can be considered.

Type I: FU, TU, or FU + TU
Type II: FU, TU, FU + TU, or TU + TU
Type III: FU or TU.

In the design procedure, a suitable type is
chosen after analyzing the mapping results.

3.4.3. Placement and routing
In order to minimize the LSRDP size in the

mapping procedure, two different criteria were
considered within the placement process: op-
timizing the total number of resources or the
maximum connection length to minimize the
ORN size. Connection length is defined as the
horizontal distance between two PEs, which
are located in consecutive rows and have data
dependency as shown in Fig.7.
3.4.4. Port positioning

In the LSRDP it is assumed that I/O ports
are located in the top and bottom borders.
Between I/O ports and PEs in the first/last

rows ORNs are located to make their
connections possible. In this port positioning
step, the main objective is to reducing the
connection legnth of the ports and PEs.

3.4.5. Connection length minimization
Since a considerable number of ORN

should be used in the RDP architecture, re-
ducing ORN size is an important challenge in
the LSRDP design procedure. In order to op-
timize ORN size, mainly following three
minimizing techniques are used: 1) leaving
some unoccupied PEs during the placement
process, 2) reducing maximum permissible
width for placing DFG nodes and 3) some
node is ripped-up and re-routing relative
nodes. During the mapping process those
methods should be attempted and the best re-
sult is chosen.

4. Results and Discussion

From the preliminary placement and routine
mapping results, we select type II as the
structure of PEs: FU, TU, FU+TU, or TU+TU.
This type is most flexible one for routing.
Following results are obtained under the type
II configuration of PE.

Table 2 shows the results obtained through
the design procedure as well. Numbers of FUs,
Inputs, and Outputs represent the maximum
size of the benchmark DFGs for each class.
Maximum and average values of width and
height are reported in the following columns.
Column 7th denotes the total number of PEs
required for implementing applications. The
last column shows the maximum and average
number of required TUs as well.

Table 3 shows final results of optimizing
maximum connection lengths. From those re-
sults, maximum values are almost two times

(i, 0)

(i+1,
0)

(i+1,
j)

...

...

(i,j)

Reconfigurable Routing Network

...

... ...

...

(i+1,
j+L)

Longest Connection
Length= L

(i,
j+2)

(i,
j+1)

(i+1,
j+2)

(i+1,
j+1)

Connection
Length= 0

Connection
Length= 2

Fig.7: Definition of connection length

(i, 0)

(i+1,
0)

(i+1,
j)

...

...

(i,j)

Reconfigurable Routing Network

...

... ...

...

(i+1,
j+L)

Longest Connection
Length= L

(i,
j+2)

(i,
j+1)

(i+1,
j+2)

(i+1,
j+1)

Connection
Length= 0

Connection
Length= 2

Fig.7: Definition of connection length

Table 2: Results of LSRDP design procedure

of FUs # of Inputs # of Outputs Width
(max/avg)

Height
(max/avg)

Total # of
PEs

(max/avg)

Extra TUs
(max/avg)

RDP-S 128 19 12 26/14.9 10/6.7 98/51.7 56/23.5
RDP-M 512 19 12 26/17.1 16/9.3 170/77.8 92/37.1
RDP-L 1024 38 24 58/40 24/14.4 730/260.1 428/141.3

RDP-XL > 1024 64 52 122/45.3 25/12.4 1217/350.4 1065/240

 6

larger than the average values. Connection
lengths distribution analysis shows 79% of
connections are less than 2 and 89% of con-
nections are less than the average value (4).
Hence, only a small fraction of connection
results in a larger maximum connection
length.

5. Conclusions

In this paper, Large-Scale Reconfigurable
Data-Path (LSRDP) micro-architecture design
procedure and their results are shown. First,
24 benchmark Data Flow Graphs (DFGs) are
manually extracted from time evolution heat
and vibration equation, Poisson equation, as
well as electron repulsion integral calculations.
From the analyses of mapping results of
benchmark DFGs, LSRDP height, width, and
maximum connection length between floating
point units are obtained.

Acknowledgments
This research was supported in part by

Core Research for Evolutional Science and
Technology (CREST) of Japan Science and
Technology Corporation (JST).

References

[1] TOP500 Supercomputer,
http://www.top500.org/.

[2] ClearSpeed Processor,
http://www.clearspeed.com/.

[3] Cell Broadband Engine,
http://cell.scei.co.jp/index_j.html.

[4] J. Makino, K. Hiraki and M. Inaba,
GRAPE-DR: 2-Pflops massively-parallel
computer with 512-core, 512-Gflops
processor chips for scientific computing,
SC07 2007.

[5] J.D. Owens, D. Luebke, N. Govindaraju,
M. Harris, J. Krger, A.E. Lefohn, and T.
Purcell, A Survey of General-Purpose
Computation on Graphics Hardware,
Computer Graphics Forum, 26(1), pp.
80-113, March 2007.

[6] H. Kataoka, H. Honda, F. Mehdipour, Koji
Inoue, and Kazuaki Murakami, Perform-

ance Evaluation of a Large-Scale Recon-
figurable Data-Path Utilized for Scientific
Application, IPSJ SIG Technical Reports,
VLD2007-133, CPSY2007-76, RECONF
2007-79, pp.1-6, October 2008 (in Japa-
nese).

[7] K. Shimasaki, T. Nagano, H. Honda, F.
Mehdipour, K. Inoue, and K. Murakami,
On-chip Network Architecture for Large
Scale Reconfigurable Data-Path, IPSJ SIG
Technical Reports, 2007-ARC-173, pp.
115-120, June 2007 (in Japanese).

[8] H. Honda, et al., Large-Scale Recon-
figurable Data-Path Processor using Sin-
gle Flux Quantum circuit, ICCMSE, 2007.
09.

[9] Japan Science and Technology Agency’s
CREST program, “Low-power, high-per-
formance, reconfigurable processor using
single flux quantum circuits”.

[10] W.H. Press, B.P. Flannery, S.A. Teukolsky,
and T.W. Vetterling, Numerical Recipes in
C, Cambridge University Press, 1988.

[11] S. Obara and A. Saika, Efficient recursive
computation of molecular integrals over
Cartesian Gaussian Functions, J. Chem.
Phys., Vol.84, pp.3963, 1986.

Table 3: Final results of Maximum
Connection Length

MCL
max/avg

RDP-S 9/4

RDP-M 9/5

RDP-L 19/9.3

Table 3: Final results of Maximum
Connection Length

MCL
max/avg

RDP-S 9/4

RDP-M 9/5

RDP-L 19/9.3

－E

