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Abstract  Large-Scale Reconfigurable Data-Path (LSRDP) processor has been proposed for the reduc-
tion of required memory bandwidth in a high performance scientific computing. LSRDP micro-architecture 
design procedure and how it is exploited are presented. First, 24 benchmark Data Flow Graphs (DFGs) are 
extracted from 2nd order partial differential equations and electron repulsion integral calculations. LSRDP 
architectural specifications including height, width, and maximum connection length between floating point 
units are obtained through analyzing the statistics gathered from the compilation of DFGs. 
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概要  要求メモリバンド幅を抑えつつも高性能な科学技術計算を可能とするような，大規模再構成可能データパ

スプロセッサ （LSRDP）が提案されている．本稿ではこの LSRDP について，詳細なアーキテクチャ設計を行っ

た．２階の偏微分方程式ならびに二電子積分からの24 個のベンチマークとなるデータフローグラフを使用し，マ

ッピングツールの結果から統計的に LSRDP の高さ、幅、演算器間の最大結合距離を求めた． 

Keyword 大規模再構成可能データパス，データフローグラフ，アーキテクチャ設計 
 
 

1. Introduction 
Computer systems based on parallel com-

puter clusters with General-Purpose Proces-
sors (GPP) are often utilized for the high per-
formance computing. Those parallel com-
puters with GPPs account for a large share of 
the performance ranking in TOP500[1]. On the 
other hand, the hybrid architecture comprising 
an accelerator augmented to a GPP might be 
chosen for special purpose computations. The 
accelerator should be designed to feature 
small size, high performance, and low power 
consumption. 

Recent examples of such accelerator are 
CSX600 PCI-X board[2], GRAPE-DR proces-
sor[3], Cell processor[4] which is heteroge-

neous multi-core processor and General Pur-
pose computing on Graphic Processing Unit 
(GPGPU) calculations are often used by 
graphic accelerator chips[5]. Those accelera-
tors commonly have Single Instruction Multi-
ple Data stream (SIMD) mechanism for total 
architecture, or functional units. 

Generally, a large memory bandwidth is 
demanded in conventional accelerators to 
perform calculations efficiently. Therefore, an 
on-chip memory can be utilized for reduction 
of the required memory bandwidth. 

Recently, the Large-Scale Reconfigurable 
Data-path (LSRDP) processor is proposed by 
Murakami et al. [6-8] for reducing memory 
pressure itself on the system performance. The 
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LSRDP architecture comprises a two dimen-
sional array of floating point Functional Units 
(FUs) and interconnection networks among 
FUs referred as Operand Routing Networks 
(ORNs). The main intuition behind the LSRDP 
is that the cascaded FUs can generate a final 
result without temporally memorizing inter-
mediate data, therefore, the number of mem-
ory load/store operations corresponding to 
spill codes can be reduced (Fig. 1). 

In the CREST SFQ-RDP project[9], devel-
oping algorithm for LSRDP and specifying 
LSRDP architecture configuration are the 
main tasks. 

In this paper, LSRDP detailed architecture 
design procedure and the results are shown. In 
Section 2, LSRDP architecture is introduced. 
In Section 3, architecture designing method-
ology, benchmark application, and detailed 
architecture design scheme are explained. 
Section 4 presents the results of architecture 
design procedure. Finally, Section 5 concludes 
the paper. 

 
2. Outline of LSRDP architecture 
2.1. On chip design parameters 

The LSRDP is shown in Fig.1. LSRDP sys-
tem is constituted with LSRDP accelerator 
chip, GPP and main memory are connected 
through a shared bus to each other. Generally, 
LSRDP is configured as a two-dimensional 
array of FUs connected with flexible ORNs, 
Streaming Buffer (SB) which is the FIFO 
type buffer, and Streaming Memory Access 
Controller (SMAC) for data I/O. Each FU 
can be fed data through SMAC and SB to one 

or more FUs via ORN switches. Feedback 
data flow connections are not supported, 
which means that the flow of data in the FU 
array is only in one direction from input to 
output. The LSRDP should be an adaptable 
accelerator, because it is aimed to target 
various scientific applications. In order to 
satisfy this requirement, the LSRDP is fea-
tured with dynamically reconfiguring of the 
ORNs. Originally, the ORN consists of pro-
grammable switches. By means of setting the 
control signals provided with FUs and ORN 
switches, the function of the LSRDP can be 
configured at run time. Such flexibility 
makes it possible to implement various DFGs 
on the FU array. 

In an LSRDP, a data flow graph (DFG) ex-
tracted from a target application program is 
mapped to the two dimensional FU array. 
Since the cascaded FUs can generate a final 
result without temporally memorizing inter-
mediate data, we can reduce the number of 
memory load/store operations corresponding 
to spill codes. Therefore, memory bandwidth 
required to achieve a high performance can be 
reduced. Furthermore, since a loop-body 
mapped into the FU array is executed in a 
pipeline fashion, LSRDP can provide a high 
computing throughput. 
2.2. On chip design parameters 

In the LSRDP design stage, following ar-
chitectural specifications have to be decided: 

• Type and granularity of each functional 
unit (FU) 

• Configuration of processing element (PE) 
• LSRDP height and width 
• Number of I/O ports  
• Size of Operand Routing Networks 

(ORNs), especially maximum connection 
length between consecutive rows 

• Layout of FU operation types 
• Reconfiguration mechanism 

In following sections above specifications 
are decided except Layout of FU and recon-
figuration mechanism. Reconfiguration 
mechanism is strongly depends on detailed 
properties of the LSRDP micro-architecture. 

 
3. Architecture designing scheme 
3.1. Design methodology 

Different strategies can be used for deter-
mining LSRDP architectural specifications in 
detail. Our approach is based on the quantita-
tive analysis of DFGs of benchmark applica-
tions and their mapping results onto the 
LSRDP. Fig.2 shows the flow of the design 

General 
Purpose 

Processor

ORN

: : : :

ORN

...FPU FU FUFU

...FU FU FUFU

...FU FU FUFU

Main
memory

LSRDP

SB

SMAC

Fig.1: LSRDP system

General 
Purpose 

Processor

ORN

: : : :

ORN

...FPU FU FUFU

...FU FU FUFU

...FU FU FUFU

Main
memory

LSRDP

SB

SMAC

Fig.1: LSRDP system



 

 3

stages. As the design flow is an iterative pro-
cedure of gathering statistics and analysis of 
results, therefore, the designer should decide 
the priority of specifications in the first step. 
Then, for determining each design parameter, 
applications (extracted DFGs) should be 
mapped on the LSRDP. There is no limitation 
in the initial architecture and the mapping 
process is performed without forcing any con-
straint. In the next stage, the results of map-
ping should be analyzed by the designer to 
decide an appropriate value for the intended 
parameter. This process is repeated to specify 
the entire specifications of the architecture. In 
the following sections more details on those 
procedures will be given. 
 

3.2. Benchmark application 
We utilized totally twenty four DFGs as a 

benchmark set to design the LSRDP architec-
ture. Four applications are selected. 
One-dimensional heat and vibration equation, 
two-dimensional Poisson equation, and recur-
sion calculation part of Electron Repulsion 
Integral (ERI) as a quantum chemistry appli-
cation. All calculations are constructed based 
on ADD, SUB, and MUL operations. 

Generally, 2-dimensional 2nd order partial 
differential equations with constant coeffi-
cients are categorized to three types: heat or 
diffusion equation, vibration equation and 
Poisson equation. Each equation has following 
canonical form, respectively: 

2

2
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2 2

2 2
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These equations are solved by finite dif-
ference method using following expres-
sions[10]: 
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 (6) 
Here, D, B, C and ω  are constants. By us-

ing Eq.(6) which is an iterative equation (re-
ferred as successive over relaxation method), 
final u(x,y) is calculated as converged form. 

In the next stage, benchmark DFGs are 
manually extracted from Eq. (4), (5) and (6), 
then mapped on the LSRDP by utilizing a 
mapping tool which will be explained in the 
following section. However, it is inefficient to 
map only small DFGs which are extracted di-
rectly from Eqs. (4)-(6). Therefore larger 
DFGs are generated through connecting the 
smaller ones. 

For example, in heat equation, extracted 
DFG which corresponds to Eq.(4) can be 
shown as in Fig.4. This finite difference equa-
tion shows that the next point during the time 
evolution process: (xi,tj+1) is obtained by us-

Fig.2: Design flow for LSRDP design 
based on the quantitative approach
Fig.2: Design flow for LSRDP design 
based on the quantitative approach
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ing current three points: (xi,tj+1) (xi,tj+1) 
(xi,tj+1). If this equation is applied to the 
1-dimentional N+1 points: xi-N/2 ~ xi+N/2 and is 
iterated M times to calculate from tj to tj+M, 
then, this equation have to be iteratively ap-
plied ~N*M times. By extending that equation 
over the space and time dimensions, the final 
computation structure will correspond to the 
DFGs in Fig.7. 

By connecting N DFGs over the space and 
M over the time directions, finally we obtain a 
large DFG with N inputs and N-2M outputs, 4* 
(2N-2M)*M/2 operations. In consequence, by 
implementing the obtained DFG on the LSRDP, 
numerous operations are possible to be exe-
cuted in each local clock of the LSRDP pipe-
lined architecture. 

Similar methods of the above mentioned 
large DFG generation procedure are applicable 
to basic DFGs of vibration and Poisson equa-
tions. 

For the electron repulsion calculation, re-
cursion calculation parts[12] are described as 
Fig.5. In the formula, (pis,ss)(n)~(pipjpkpl)(n) 
are objective integral values. (ss,ss)(n) is ini-
tial integral value, and all the other values are 
coefficients. Since each i,j,k,l index corre-
sponds to space three components: x,y,z, each 
integral expression has multiple components. 
For example, (pipjpkpl)(n) has 81 components 
and corresponding DFG has 81 outputs. Di-
viding DFG to smaller ones would be useful if 
the DFG size is lager than the number of re-
sources in the LSRDP. In this case, vertical 
partitioning of DFG is practical to decrease 
the number of outputs and operations. 

Numbers of final benchmark DFGs are 
summarized in Table 1.  

3.3. LSRDP Compiler 
Fig. 6 shows the proposed compilation 

flow for the LSRDP. The most important func-
tionality of the compilation flow is to gener-
ating configuration bit-stream and an executa-
ble code for the reconfigurable processor in-
cluding GPP and LSRDP. In the first stage a 
hw/sw partitioning is performed on the input 
application manually (like an approach intro-
duced in the previous section) or by means of 
an automatic tool. Considering the LSRDP 
architectural specifications, DFGs are mapped 
on the LSRDP through placing DFG nodes on 
the PEs, routing interconnection as well as 
positioning input/output nodes on the proper 
positions. Configuration bit-stream corre-
sponding to each one of DFGs can be gener-
ated after completion of the mapping stage. 
An executable code including non-critical 
segments of the application code and a piece 
of code for LSRDP interfacing has to be gen-
erated. 

Mapping tool is developed as a part of 
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LSRDP compiler. In addition, it can be used 
for analyzing the mapping results as well as 
generating statistics required during the de-
sign procedure which all will help the de-
signer to make a decision on the LSRDP ar-
chitectural specifications 

 
3.4. Architecture design 
3.4.1. DFG classification  

DFGs obtained though DFG extraction 
phase have different qualities with respect to 
their size, no of inputs and outputs and etc. 
Smaller implementations of a DFG should be 
tried while a DFG violates constraints. Ac-
cording to this classification four classes in-
cluding Small (S), Medium (M), Large (L) 
and XLarge (XL) are constructed using the 
threshold numbers of FUs, inputs and outputs. 
For each group, following architecture de-
sign procedure is processed and final speci-
fications are obtained. 

3.4.2. Configuration of each processing 
element 

Each Processing Element (PE) consists of 
FU and Transfer Unit (TU) which transfers 
data from previous to following row by skip-
ping current row. Their different types of PE 
structure can be considered. 

Type I:   FU, TU, or FU + TU 
Type II:  FU, TU, FU + TU, or TU + TU 
Type III: FU or TU. 

In the design procedure, a suitable type is 
chosen after analyzing the mapping results.  

3.4.3. Placement and routing 
In order to minimize the LSRDP size in the 

mapping procedure, two different criteria were 
considered within the placement process: op-
timizing the total number of resources or the 
maximum connection length to minimize the 
ORN size. Connection length is defined as the 
horizontal distance between two PEs, which 
are located in consecutive rows and have data 
dependency as shown in Fig.7.  
3.4.4. Port positioning 

In the LSRDP it is assumed that I/O ports 
are located in the top and bottom borders. 
Between I/O ports and PEs in the first/last 

rows ORNs are located to make their 
connections possible. In this port positioning 
step, the main objective is to reducing the 
connection legnth of the ports and PEs.  

3.4.5. Connection length minimization 
Since a considerable number of ORN 

should be used in the RDP architecture, re-
ducing ORN size is an important challenge in 
the LSRDP design procedure. In order to op-
timize ORN size, mainly following three 
minimizing techniques are used: 1) leaving 
some unoccupied PEs during the placement 
process, 2) reducing maximum permissible 
width for placing DFG nodes and 3) some 
node is ripped-up and re-routing relative 
nodes. During the mapping process those 
methods should be attempted and the best re-
sult is chosen. 

 
4. Results and Discussion 

From the preliminary placement and routine 
mapping results, we select type II as the 
structure of PEs: FU, TU, FU+TU, or TU+TU. 
This type is most flexible one for routing. 
Following results are obtained under the type 
II configuration of PE. 

Table 2 shows the results obtained through 
the design procedure as well. Numbers of FUs, 
Inputs, and Outputs represent the maximum 
size of the benchmark DFGs for each class. 
Maximum and average values of width and 
height are reported in the following columns. 
Column 7th denotes the total number of PEs 
required for implementing applications. The 
last column shows the maximum and average 
number of required TUs as well. 

Table 3 shows final results of optimizing 
maximum connection lengths. From those re-
sults, maximum values are almost two times 
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Table 2: Results of LSRDP design procedure

# of FUs # of Inputs # of Outputs Width
(max/avg)

Height
(max/avg)

Total # of
PEs

(max/avg)

Extra TUs
(max/avg)

RDP-S 128 19 12 26/14.9 10/6.7 98/51.7 56/23.5
RDP-M 512 19 12 26/17.1 16/9.3 170/77.8 92/37.1
RDP-L 1024 38 24 58/40 24/14.4 730/260.1 428/141.3

RDP-XL > 1024 64 52 122/45.3 25/12.4 1217/350.4 1065/240
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larger than the average values. Connection 
lengths distribution analysis shows 79% of 
connections are less than 2 and 89% of con-
nections are less than the average value (4). 
Hence, only a small fraction of connection 
results in a larger maximum connection 
length. 
 
5. Conclusions 

In this paper, Large-Scale Reconfigurable 
Data-Path (LSRDP) micro-architecture design 
procedure and their results are shown. First, 
24 benchmark Data Flow Graphs (DFGs) are 
manually extracted from time evolution heat 
and vibration equation, Poisson equation, as 
well as electron repulsion integral calculations. 
From the analyses of mapping results of 
benchmark DFGs, LSRDP height, width, and 
maximum connection length between floating 
point units are obtained.  
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