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ABSTRACT
Recently quantifier elimination (QE) has been of great interest in many fields of science and engineering. In this paper an
effective symbolic-numeric cylindrical algebraic decomposition (SNCAD) algorithm and its variant specially designed for QE
are proposed based on the authors’ previous work and our implementation of those is reported.

Based on analysing experimental performances, we are improving our design/synthesis of the SNCAD for its practical
realization with existing efficient computational techniques and several newly introduced ones.

The practicality of the SNCAD is now examined by experimentation on real computer, which also reveals the quality of the
implementation.

1. INTRODUCTION
Cylindrical algebraic decomposition (CAD) is a general-purpose symbolic method aiming for quantifier elimination (QE)

which is a powerful tool to resolve non-convex and parametric optimization problems exactly. However, QE based on CAD is
not considered to be practical on real computers, since CAD usually consists of many purely symbolic computations and has
a bad computational complexity in nature.

To circumvent the inherent computational complexity of QE algorithm based on CAD, several researchers have focused on
QE algorithms specialized to particular types of input formulas; see [35, 21, 24, 37, 19]. This direction is quite promising in
practice since a number of important problems in engineering have been successfully reduced to such particular input formulas
and resolved by using the specialized QE algorithms. See concrete successful applications in [36, 34, 13, 18, 1, 3]. Moreover,
using discriminant varieties seems another promising direction; see [17].

However, there still remain many significant problems in engineering that cannot be recast as such particular formulas.
Therefore, it is strongly desired to develop an efficient algorithm for CAD. One of the crucial parts of CAD construction lies
in the lifting phase. Computational difficulties in the lifting phase stem from symbolic computation over towers of algebraic
extensions and combinatorial explosion in CAD construction of Rn. An effective way for efficient CAD construction is to
utilize numerical computation, instead of symbolic treatment, with derived numerical information on algebraic numbers as
far as possible without violating correctness of the results. So far there have been some attempts to introduce numerical
computation into CAD construction: for example, Hong, 1993 [20], Strzeboński, 1999 [31], Collins et al., 2002 [12], Ratchan,
2002 [28], Anai and Yokoyama, 2005 [5], and Strzeboński, 2006 [32].

In this paper, we employ a scheme for SNCAD roughly introduced in [5], which uses in the lifting phase certified numerical
computation over algebraic extensions and the dynamic evaluation technique in [15] with successive representations of algebraic
extensions. As far as the authors know, the scheme was first proposed by [5] and has not yet implemented until the present.
Here we propose an advanced SNCAD scheme by incorporating several new devices nicely in a concrete way into the original
scheme in [5].

Moreover, to examine our new scheme, we implemented the whole algorithms for SNCAD and QE based on SNCAD on
Maple (as a part of SyNRAC [39]). Finally, we report the details of our implementation and its experimentation on real
computer to evaluate the effectiveness of the proposed scheme.

In order to accomplish more effective and practical implementation of algebraic algorithms, a research direction towards



hybrid methods combining computer algebra with numerical verification methods have been pursued [29, 30]. Viewing the
symbolic-numeric CAD methods from another side, one can see that such approach provides new validated numerical methods
for non-convex optimization problems which are a difficult task for ordinary numerical methods, with the help of symbolic
computation. Both aspects are of surely practical importance. Thus our work would be one of a successful example of such
direction.

The paper is organized as follows. Our scheme for an efficient SNCAD algorithm and QE based on SNCAD are proposed in
Section 2. Then the computational flow and several key algorithms for realizing our SNCAD scheme are presented in Section
3. Section 4 is devoted to some remarks on our implementation on Maple and the experimental results are given in Section
5. Discussion and some concluding remarks are made in Section 6.

2. A SCHEME FOR EFFICIENT SYMBOLIC-NUMERIC CAD COMPUTATION

2.1 Standard CAD algorithms
We briefly sketch the basic ideas of CAD; see [10] for details. Assume that we are given an input formula ϕ with m free

variables u1, . . . , um and n quantified variables x1, . . . , xn

ϕ(u1, . . . , um) ≡ Q1x1 . . . Qnxn ψ(u1, . . . , um, x1, . . . , xn),

where Qi ∈ {∃, ∀} and ψ is a quantifier-free formula. We can assume, by transporting terms if necessary, each atomic formula
in ψ is represented in the form f ρ 0, where f is a polynomial on u1, . . . , um, x1, . . . , xn and ρ ∈ {≤, <, =, 6=}. Let F be the
set of polynomials appearing in ψ as the left hand sides of atomic formulas. A subset C ⊆ Rm+n is said to be sign-invariant
for F if every polynomial in F has a constant sign on all points in C. Then ψ(c) is either “true” or “false” for all c ∈ C.

Suppose we have a finite sequence D1, . . . ,Dm+n for F which has the following properties:

1. Each Di is a partition of Ri into finitely many connected semi-algebraic sets called cells. For 1 ≤ j ≤ n each Dm+j is
labeled with Qj .

2. Di−1, 1 < i ≤ m + n, consists exactly of the projections of all cells in Di along the coordinate of the i-th variable in
(u1, . . . , um, x1 . . . xn). For each cell C ∈ Di−1 we can determine its preimage S(C) ⊆ Di under the projection.

3. Each cell C ∈ Dm+n is sign-invariant for F . Moreover for each cell C ∈ Dm+n we are given a sample point tC in such a
form that we can determine the sign of f(tC) for each f ∈ F and thus evaluate ϕ(tC).

Then the partition Dm+n of Rm+n for F is called an F -invariant cylindrical algebraic decomposition of Rm+n. The CAD
algorithm computes such a sequence D1, . . . ,Dm+n and it consists of three phases; projection phase, base phase and lifting
phase.

Projection phase: We first construct from F ⊂ R[u1, . . . , um, x1, . . . , xn] a new finite set F ′ ⊂ R[u1, . . .,um, x1, . . .,xn−1]
that satisfies a special condition called “delineability”, where the order of the real roots of all polynomials in F as univariate
polynomials in xn does not change above each connected cell in Dm+n−1.

The step constructing F ′ from F is called a projection and denoted by F ′ := PROJ(F ). We call polynomials in F ′ projection
polynomials and those irreducible factors projection factors. Iterative application of PROJ operator leads to a finite sequence

Fm+n, . . . , F1, where Fm+n := F, Fi := PROJ(Fi+1)

for 1 ≤ i < m + n. The PROJ operator, in general, computes certain coefficients, discriminants, resultants, and subresultant
coefficients derived from polynomials in Fi+1 and their higher derivatives by regarding those as univariate polynomials in their
last variable. The final set F1 consists of univariate polynomials in u1.

Base phase: Then we construct a partition D1 of the real line R1 into finitely many intervals that are sign-invariant for
F1. This step is called base phase and achieved by isolating the real zeros of the univariate polynomials in F1.

Lifting phase: The partitions Di ⊆ Ri for 2 ≤ i < m + n are computed recursively: The roots of all polynomials in Fi

as univariate polynomials in their last variable are delineated above each connected cell C in Di−1. Thus we can cut the
cylinder above C into finitely many connected semi-algebraic sets (cells). This is done by real root isolation of the univariate
polynomials derived through specializing the polynomials in Fi by a sample point of C. Then Di is a collection of all such
cells obtained from all cylinders above the cells of Di−1.

A finite sequence D1, . . . ,Dm+n for F has a tree-structure: The first level of nodes under the root of the tree corresponds
to the cells in D1. The second level of nodes stands for the cells in D2, i.e., the cylinders over the cells of R1. The leaves
represent the cells of Dm+n, i.e., a CAD of Rm+n. A sample point of each cell is stored in its corresponding node or leaf. At
each level of the tree there are a number of projection polynomials Fi whose signs define a cell when evaluated over a sample
point.

In the subsequent sections we propose a scheme for an efficient CAD algorithm which incorporates certified numerical
computation effectively. Moreover we mention further improvement of the proposed scheme for executing QE.



2.2 Our SNCAD scheme
In this section we summarize the fundamental concept of our SNCAD scheme (particularly for the lifting phase) that is

an improved version of the scheme proposed in [5]. For a projection operator PROJ , we employ an existing one. (In our
implementation we use the projection in [7].)

As far as the authors know, the core idea of the scheme was first suggested by [5] and had not been completely implemented
till this time. The features of our scheme are listed below. We note that we in fact exploit some new organized combinations
among the listed items for efficient CAD construction based on symbolic-numeric computation, in which the main novelty of
this work consists. The technical details will be explained in §3.

1. Symbolic-numeric computation with switchover strategy: In the lifting phase, we replace heavy symbolic com-
putations related to the arithmetic of algebraic numbers with numerical arithmetic, by which the total efficiency should
be greatly improved.

In our principle “switchover strategy”, we use certified numerical computations based on interval computation as long
as we can ensure the accuracy of the results. If numerical computations cannot confirm the validity of the output or
turn out to be ill-conditioned for those verification, then we switch those to symbolic counterparts, that is, symbolic
computations over algebraic extension fields, or improve the precision of intervals with the help of symbolically computed
parts.

For this reconstruction, we devise a special way of expressing algebraic numbers and make good use of efficient repre-
sentation of algebraic extension fields.

2. Expression of algebraic numbers: Each algebraic number is expressed by a pair of its defining polynomial (symbolic
part) and an isolating interval (numerical part). The defining polynomial is a triangular system of polynomials where
the main variable in the last polynomial corresponds to a specified algebraic number. This expression corresponds quite
naturally to our successive representation of algebraic extension fields.

For numerical arithmetics with algebraic numbers, we use corresponding isolating intervals for those values instead of
those symbolic expressions. Consequently, real root isolation of a polynomial over an algebraic extension can be reduced
to that of a polynomial with interval coefficients over the base field Q. If we fail to do the root isolation of such a
polynomial, we improve the precision of the intervals using defining polynomials and try it again.

We also use interval arithmetic for sign determination of algebraic numbers, while for zero determination we use“symbolic
reconstruction” which consists of exact, symbolic methods such as polynomial division and GCD computation. Details
will be given in §2.4

3. Successive representation with dynamic evaluation: In the lifting phase, each algebraic number appears succes-
sively as a zero of a polynomial over an extension field generated by adjoining already computed algebraic numbers.
Thus, in the mathematical sense, we have to deal with algebraic extension fields which are generated successively. For
handling those, we use successive representation of algebraic extension fields, as it is suited naturally to procedures in the
lifting phase. Also, from a computational point of view, in general, successive representation of algebraic extension fields
is superior to representation by primitive elements, since the latter is frequently suffered from overwhelming coefficient
swells which make the computational efficiency very bad.

We utilize dynamic evaluation for dealing with algebraic extensions efficiently in combination with successive represen-
tation. By dynamic evaluation technique, we can avoid heavy computation of algebraic factorization of polynomials and
we only need square-free computation of polynomials which can be computed rather efficiently by a fast method for
GCD computation.

2.3 Sensible use of SNCAD for efficient QE
For performing quantifier elimination, we do not have to compute a full CAD. Therefore, saving CAD construction is of

interest for improving the efficiency. Of course, we can use the same ideas of “partial CAD” proposed in [11], which exploits
the logical structure of an input QE problem systematically.

Furthermore, we are able to strategize how to avoid unnecessary computations in the lifting phase by using numerical
information on algebraic numbers. The details of such strategies which we actually employ are shown in §3.2.

It is noted that we employ an existing algorithm for solution formula construction. (We actually use the algorithm proposed
in [6] for our implementation.)

2.4 Remarks on symbolic reconstruction
Using numerical computation for handling algebraic numbers can greatly improve the efficiency of CAD construction

because we can avoid symbolic computations over algebraic extension fields and also prune unnecessary branches of a CAD
tree effectively by numerical values of algebraic numbers, while it may cause uncertainty of the computed results depending
on the accuracy of numerical computation. Therefore, along our switchover strategy, we also use such numerical computation
with a machinery for validating numerically computed results by symbolic reconstruction which reconstructs them exactly
with a smaller number of symbolic computations.

Actually computations over algebraic extension fields are required in the lifting phase to compute respective isolating
intervals of algebraic numbers over successive extension fields. What we need to do is “sign determination” of polynomials



substituted those variables with given algebraic numbers, i.e., to determine exactly whether they are zero or not and their
sign if nonzero. We may usually expect that sign determinations are mostly properly done by only numerical computation.
We check again the sign exactly by symbolic computation only for unreliable numerical results This is the ground why our
method would improve the efficiency of standard CAD construction.

Moreover the reconstruction procedure is improved by dynamic evaluation technique integrated with successive representa-
tions of algebraic extensions as follows: An algebraic extension of Q is expressed by a residue class ring Q[X]/M, where X is
a set of variables and M is a maximal ideal in Q[X]. Usually, computation of maximal ideals tends to be very hard. Instead
of Q[X]/M, we utilize “lazy representation” Q[X]/J , where J is not necessarily a maximal ideal but an easily computable
radical one. Q[X]/J may not be a domain, i.e., it could have zero-divisors. In the computation over Q[X]/J , if a given
algebraic number does not correspond to a zero-divisor, then it is not equal to zero and we come to check its sign by using a
certain numerical method. If we meet some zero-divisors ab = 0, then we can split the ideal J as follows:

J = (J + 〈a〉) ∩ (J + 〈b〉).

This decomposition is achieved by GCD computation or Gröbner basis computation. Thus, by using lazy representation
successively for towers of extensions, we do not require any algebraic factorization or primitive element computation for a
simple extension which is often difficult especially in the case of tall towers of extensions. Furthermore the most crucial point
is that we can easily choose one necessary branch, say, J + 〈a〉 in the decomposition by virtue of numerical information
“isolating intervals” of algebraic numbers and hence can prune unnecessary branches for the further computation of towers of
extensions.

3. ALGORITHMIC DETAILS
In this section we first summarize the computational flow in the whole lifting phase and then explain some key algorithms

concretely for realizing our SNCAD scheme in an effective manner. Moreover, we also mention some improvements for efficient
QE by direct evaluation of input formulas based on interval arithmetic.

3.1 SNCAD

3.1.1 Whole computational flow of lifting phase
Now we present the whole procedure of our lifting phase LiftingSNCAD(). First let us note again that each sample point,

which is an algebraic number in general, is given by a pair of an isolating interval and its defining polynomial. A function
IsEqualSymbolic() checks whether two isolating intervals stand for the same algebraic number in a symbolic sense by using
their defining polynomials.

A function IntervalRealRootIsolation() is a significant portion of the whole procedure. Its essential point is that
we achieve real root isolation for interval polynomials which are derived from projection factors by substituting isolating
intervals into the corresponding algebraic numbers appearing in their coefficients. From now on, we call such a polynomial
with interval coefficients an interval polynomial. In §3.1.2 we will explain how we compute isolating intervals of real roots for
interval polynomials concretely.

LiftingSNCAD([X1, . . . , Xn], [f1, . . . , fm])

Input: sample points X1, . . . , Xn ∈ Rk,
projection factors f1, . . . , fm ∈ Q[x1, . . . , xk, x]

Output: lifted sample points ∈ Rk+1

for i = 1 to n do
for j = 1 to m do

Yij ← IntervalRealRootIsolation(fj , Xi)
for j = 1 to m − 1, l = j + 1 to m do

if (the intervals Yij and Yil overlap) then
if IsEqualSymbolic(Yij , Yil) then

remove Yil from the list
else

increase precision of Yij , Yil until separated

return {[Xi, Yij ]}

3.1.2 Real root isolation for interval polynomials
Next we explain details on the function IntervalRealRootIsolation() which executes real root isolation for an interval

polynomial concretely. In the function, actually in RealRootIsolation(), the well-known Krawczyk method [22, 25, 26] is
used for isolating real roots of polynomials.

However, as the Krawczyk method fails in isolating real roots for non square-free polynomials, we provide two basic func-
tions IntervalRealRootIsolationSqrfree() and
SymbolicSqrfree() in the function, where IntervalRealRootIsolationSqrfree() isolates real roots for square-free in-
terval polynomials and SymbolicSqfree() computes the square-free decomposition of polynomials in a symbolic manner.



Also IntervalRealRootIsolationSqrfree()
fails if the precision for intervals is insufficient. In such case, we increase the precision by using defining polynomials.

In our scheme since we use dynamic evaluation for representing algebraic extensions, the defining polynomial of an algebraic
number to be newly adjoined to a base field is needed to be only square-free. This is in fact suitable for our scheme. We just
need symbolic square-free decomposition SymbolicSqrfree() and thus we can avoid expensive symbolic computation such
as an irreducibility check or irreducible factorization of polynomials.

The algorithm shown below is for isolating positive real roots. Actually the same algorithm is applied to f(−x) for isolating
negative real roots.

IntervalRealRootIsolation(f , X)

Input : sample point X ∈ Rk,
projection factor f(x1, . . . , xk, x) ∈ Q[x1, . . . , xk, x]

Output: isolating intervals of the roots in x > 0 of f(X, x),
square-free part of f

g ← f
F ← g(X, x)
r ← IntervalRealRootIsolationSqrfree(F )
if error then

g ← SymbolicSqrfree(g)
F ← g(X, x)
while

r ← IntervalRealRootIsolationSqrfree(F )
if not error then

break
increase precision of X

return r, g

Finally we illustrate how IntervalRealRootIsolationSqrfree() accomplishes real root isolation of an interval polyno-
mial (derived from a square-free polynomial).

Let f(x1, . . . , xk, x) ∈ Q[x1, . . . , xk, x] be a projection factor, X ∈ Rk a sample point, [l, h] an interval and F (x) =
Pd

i=0[li, hi]x
i an interval polynomial which derived from f(x1, . . ., xk, x) by substituting the interval expression of each

component X for its corresponding variable in f .
We set Fh(x) =

Pd
i=0 hix

i and Fl(x) =
Pd

i=0 lix
i. Then we have Fl(x) ≤ F (x) ≤ Fh(x) when x > 0. We denote the

positive real roots of Fh(x) by α1 < · · · < αth and those of Fl(x) by β1 < · · · < βtl . When Fh(x) and Fl(x) have the same
number of positive real roots, i.e., th = tl, the positive real roots of F (x) may be given by [min(α1, β1), max(α1, β1)], . . .,
[min(αth , βtl), max(αth , βtl)].

If the precisions of interval coefficients of F (x) are not sufficiently small, there might occur the following ill-conditioned
cases for real root isolation:

1. The numbers of real roots th of Fh(x) is not equal to that tl of Fl(x),

2. th = tl but max(αi, βi) ≥ min(αi+1, βi+1) for some i,

3. th = tl and max(αi, βi) < min(αi+1, βi+1) for every i, but the interval [min(αi, βi), max(αi, βi)] contains two or more
real roots of f(X, x).

In order to check the third case we need to verify whether f has only one real root in the given interval or not. This is
done by a function CheckOnlyOneRoot(), which is efficiently done by the following manner: First it checks if values of
derivatives of f in the given interval is constant. If so, it is shown that f has a unique root in the give interval. Otherwise, it
counts the number of real roots based on Descartes’ rule of sign, where the given interval is transformed to (0,∞).

It is noted that if the sign of each coefficient of an input interval polynomial is definite (i.e., l·h > 0 or l = h = 0, this is easily
accomplished), we can expect that real root isolation is more efficient, because extension of intervals is generally-restrained.

IntervalRealRootIsolationSqrfree(F )

Input : interval polynomial F (x) =
P

[li, hi]x
i

Output: isolating intervals of the roots of F (x) (x > 0)

Fh ←
P

hix
i, Fl ←

P

lix
i

ah ← RealRootIsolation(Fh)
al ← RealRootIsolation(Fl)
if #(al) 6= #(ah) then error
for i = 1 to #(al) do

b[i] ← [min(al[i, 1], ah[i, 1]), max(al[i, 2], ah[i, 2])]
for i = 2 to #(b) do



if b[i − 1, 2] > b[i, 1] then error
for i = 1 to #(b) do

if CheckOnlyOneRoot(F, b[i]) = false then error
return b

3.2 QE based on SNCAD
Since our final goal is to perform efficient QE, we generally do not need to compute a full CAD. Therefore, saving CAD

construction is of interest for improving the efficiency. Now we show our strategy by avoiding unnecessary computations via
interval arithmetic. Though such strategy cannot be always applicable, possible situations are rather often the case with
real-world problems in science and engineering. In fact they are applied to most of our examples in §5.

(1) We exploit some features in the structure of input polynomials for simplifying the problem before CAD construction.
For example, when we have a polynomial in which each of the variables is bounded by an interval (e.g. 0 < a < 1), we
might have a chance to determine its sign by using interval arithmetic easily.

Example: Consider the following QE problem over R;

∀a∀b(0 < a < 1 ∧ 0 < b < 1 ⇒ (a − b − 2)F (a, b) ≥ 0).

We can easily see −3 < a− b−2 < −1 provided that 0 < a < 1 and 0 < b < 1. Therefore the input formula is equivalent
to

∀a∀b(0 < a < 1 ∧ 0 < b < 1 ⇒ F (a, b) ≤ 0).

(2) There might be cases where we can determine an interval (possibly two or more intervals) whose truth value is readily
computed from an input formula by using numerical arithmetic before CAD construction. Then we do not generate the
cells which lies in the interval and hence we can omit not only to check if a pair of algebraic numbers are the same and
but to lift such cells.

Example: Consider the following QE problem over R;

∀x∀y
`

x ≥ 0 ∨ x2 + y2 ≥ 1 ∨ f(x, y) < 0
´

.

We obtain the intervals [−∞,−1], [0,∞] for x where the formula is true along the following:

x2 + y2 ≥ 1 ⇒ x2 + [0,∞] ≥ 1 ⇒ x2 ≥ [−∞, 1].

4. REMARKS ON IMPLEMENTATION
We have implemented all algorithms presented in the previous sections §2 and §3 (except some advanced ones in §2.4) on

Maple as a part of SyNRAC. As for projection phase and solution formula construction, we employ the projection function
proposed by [7] and the formula construction algorithm shown in [6]. We list up some remarks on our implementations.

Interval computation: We have developed our own package for interval computations, since we aim at making a more
efficient and effective interval arithmetic for our purposes. Moreover, as the Maple interval package “INTERVAL” sometimes
outputs wrong results which might cause serious problems in our computation, we have provided our original one. In the below,
we show an example of wrong outputs, where the number of significant digits exceeds the setting for the Digits environmental
variable.

> Digits, Rounding;
10, nearest

> evalr(INTERVAL(0.3333333333333..0.3333333333334)*3);
0.9999999999

Real root isolation: For isolating real roots of a polynomial we use Krawczyk’s method. We use its implementation
in C language by us which is available within double precision. Usually Krawczyk’s method is more efficient than a Maple
command “realroot”. As Krawczyk’s method is called many times, this greatly improves the efficiency.

Boolean expressions: Since we definitely need an efficient logic package suited for our purposes, we have been developing
our own commands for boolean expressions (see [38, 39]). Such boolean functions are ALL, EX, OR, and AND whose
sample outputs are shown in the following:

> syn_qe(_ALL(x, a*x^2+b*x+c>0), [a,b,c,x]);
_OR(_AND(b = 0, 0 < c, 0 <= 4*a*c-b^2),

_AND(0 <= c, 0 < 4*a*c-b^2))

> syn_qe(_EX(y, _AND(x^2+y^2=1, x+y<0)), [a,b,c,x]);
_OR(2 x^2 < 1, _AND(x <= 0, 0 <= x + 1))

> syn_qe(_EX([z],_AND(x^2+y^2+z^2=1,x+2*y+z<1)),[x,y,z]);
_OR(_AND(0 <= 1+x, 5*x < -3, x^2+y^2 <= 1),

_AND(0 <= 1+x, x <= 1, 2*x^2+5*y^2+4*x*y-2*x-4*y < 0),
_AND(0 <= 1+x, x <= 1, 5*y+2*x < 2, x^2+y^2 <= 1))



5. EXPERIMENTATION
In this section we show our experiment on several benchmark problems including some engineering problems to demonstrate

the effectiveness and efficiency of our SNCAD and QE by SNCAD and our implementation.
Comparisons with some QE implementations based on CAD (SyNRAC, QEPCAD B 1.50 [8], REDLOG 3.0 [14] and Math-

ematica 6) are shown in Table 1. All the computation is executed on a PC with Intel(R) Core Solo CPU U1500 1.33 GHz
and 1 GB memory. All timing data are given in second. QEPCAD was executed with option “+N40000000 +L10000”.

In Table 1, symbols SyN, QEP, RED and MATH stand for SyNRAC, QEPCAD B, REDLOG and Mathematica, respectively
and SyN2 means SyNRAC implementation without a dynamic evaluation.

Table 2 shows the number of cells produced in CAD for each problem. We could not know the numbers of cells produced
by REDLOG and Mathematica had constructed. In the first four examples the numbers of cells produced by Mathematica
are taken from [32].

Table 3 tells us the numbers of occurrences of important key events in our algorithm. The first column“precision” shows the
number of times raising the precision. The second one “zero check” represents “the number of the case the result is actually
zero / the number of zero checks executed”. The last column “sqrfree” shows “the number of worked square-free computations
/ the number of executed square-free computations / the number of calls of IntervalRealRootIsolation()”.

problem SyN SyN2 QEP RED MATH

adam1 0.01 0.01 2.11 2.78 0.23
adam2-1 31 2293 529 >3600 2.75
adam2-2 282 >3600 1595 >3600 3.31
adam3 129 2092 >3600 >3600 21.58

pl01 1.19 0.61 1.01 0.08 0.06
lass 3.07 3.93 1.03 1.84 0.16

simple 2.05 4.07 1.04 5.79 0.15
makepdf 0.31 0.26 0.98 - 0.02
makepdf2 1.63 1.65 0.98 - 0.05

collision 0.14 0.12 1.03 0.02 0.02
consistency 0.13 0.08 1.03 0.14 0.02
termination 0.69 0.84 0.99 0.13 0.04
candj 2.55 3.81 1.04 1.18 0.15
dandh 2.44 2.74 0.99 0.62 0.08
xaxis 14.51 21.60 1.14 4.86 0.13
ono 0.88 0.74 24.70 1.73 0.72

Table 1: Computing time (sec)

problem SyN QEP MATH

adam1 13 58 81
adam2-1 3027 6835 4853
adam2-2 9799 11653 5053
adam3 7661 - 32606

pl01 123 475 -
lass 899 1328 -

simple 741 863 -
makepdf 57 56 -
makepdf2 247 265 -

collision 47 519 -
consistency 33 277 -
termination 319 310 -
candj 567 685 -
dandh 1091 1215 -
xaxis 2791 3029 -
ono 69 239 -

Table 2: Number of cells

We note that Mathematica’s implementation of CAD offers essentially “generic CAD”, that is, it may miscategorize some
points, which are measure-zero subsets of the free variable space, in the output formula [8], by which it can drastically decrease



problem precision zero check sqrfree

adam1 0 0/1 0/0/7
adam2-1 7 8/155 68/70/1640
adam2-2 1696 117/913 346/355/8340
adam3 49 12/1054 160/170/5678

pl01 0 6/10 0/0/92
lass 0 10/50 2/4/678

simple 0 21/33 22/26/394
makepdf 0 2/2 0/0/18
makepdf2 0 9/28 0/1/115

collision 0 0/0 0/0/12
consistency 0 0/0 0/0/10
termination 0 3/10 0/0/134
candj 0 2/48 0/1/398
dandh 0 12/104 0/0/635
xaxis 1 36/348 15/15/1723
ono 0 0/0 0/0/76

Table 3: Numbers of occurrences

the time and space requirements of the computation. In our experiments, all the implementations except for Mathematica
performed QE computation without omitting measure-zero subsets.

By tables, the authors think that the following points are confirmed from the computational results:

• Table 1 shows that SyN is more efficient than the others for relatively large problems. We can say that our proposed
scheme and techniques in this paper works well, in particular, on large size problems.

• The significant effect of dynamic evaluation can be seen by comparing SyN and SyN2 in Table 1.

• Table 2 shows that SyN produces a smaller number of cells than the others by virtue of the techniques presented in §3.2.

• From Table 3 it can be shown that raising precision indeed occurs for some problems and checking symbolic zero is also
required and actually worked a lot. Moreover it turns out that we can avoid quite a lot of square-free computations as
an effect of numeric computation while there still remain necessary square-free computation.

The problems we deal with here are shown in the sequel. Four example problems in the first block of the tables are quoted
from [32] concerning with stability study and control design. The second block consists of typical control design problems
which are very obstinate for semidefinite programming [27]. The exemplary examples for solution formula construction [6] are
in the third block. The last block adds some more well-known examples from previous QE related papers.

Example 1. (adam1 [32]) Stability of Dormand-Prince fifth-order embedded seven-stage method (Example 4.4 from Hong,
et al. (1997)).

∀x∀y((x < 0 ∧ x2 + y2 <
99438

100000
)

⇒ R(x + iy)R(x − iy) < 1),

where

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
+

z5

120
+

z6

600
.

Example 2. (adam2 [32]) Stability of a six-point upwind-based second-order accurate scheme for approximating a two-
dimensional advection equation (Example 5.4 from Hong, et al. (1997))

2 − 1 ∀α∀β∀C2((α ≥ 0 ∧ β ≥ 0 ∧ 4(α2 + β2) < 1) ⇒ (B ≤ 0 ∨ D ≤ 0)),

2 − 2 ∀α∀β∀C2((0 ≤ α ≤ 1 ∧ 0 ≤ β ≤ 1) ⇒ A ≤ 0 ∧ C ≤ 0 ∧ (B ≤ 0 ∨ D ≤ 0)),



where

A = C4
2 (α − β + 1)(α − β − 1)(α − β)2

B = 2C4
2β(3α2β − 2α2 − 2αβ2 + α + β3 − β) + 4C3

2αβ(α2 − α + β2 − β) + 2C2
2α(α3 − 2α2β + 3αβ2 − α − 2β2 + β)

C = C4
2β2(β2 − 1) + 4C3

2αβ2(β − 1) + α2(α2 − 1) + 2C2
2αβ(3αβ − 2α − 2β + 1) + 4C2α

2β(α − 1)

D = C2
2R + 2C2S + T

R = 8α2β2 − 12α2β + 5α2 − 8αβ3 + 8αβ2 + 2αβ − 4α + 4β4 − 4β3 − 3β2 + 4β

S = 4α3β − 2α3 − 4α2β2 − 2α2β + α2 + 4αβ3 − 2αβ2 + 2αβ − 2β3 + β2

T = 4α4 − 8α3β − 4α3 + 8α2β2 + 8α2β − 3α2 − 12αβ2 + 2αβ + 4α + 5β2 − 4β.

Example 3. (adam3 [32]) Robust multi-objective feedback design (Example 4.2 from Dorato, el at. (1997)). Find the set
of n

d
satisfying.

∃q1∃q2∀w (q1 > 1 ∧ q2 > 0 ∧ n
d

> 0 ∧
(n

d
− q2

1)w4 + (n
d
((q1 + 1)2 − 2q2) − (q2

1 + q2
2))w2 + (n

d
− 1)q2

2 ≥ 0 ∧
(n

d
− q2

1)w4 + (n
d
((q1 − 1)2 − 2q2) − (q2

1 + q2
2))w2 + (n

d
− 1)q2

2 ≥ 0)

Example 4. (pl01 [27])

∀t1∀t2 ((−1 ≤ t1 ≤ 1 ∧ −1 ≤ t2 ≤ 1)
⇒ f ≤ t21t

4
2 + t41t

2
2 + 1 − 3t21t

2
2)

Example 5. (lass [23])

∀t1∀t2∀ρ ((0 ≤ ρ < 1 ∧ −ρ ≤ t1 ≤ ρ ∧ −ρ ≤ t2 ≤ ρ)
⇒ f ≤ t21t

4
2 + t41t

2
2 + 1 − t21t

2
2)

Example 6. (simple [6])

∃z (10x − 10y − 19z > 0 ∧ (x2 + y2 + (z − 3)2 < 9 ∨ 2x + 10y + 19z ≥ 11))

Example 7. (makepdf [6])

∃y (x2 + y2 = 1 ∧ x + y < 0)

Example 8. (makepdf2 [6])

∃z (x2 + y2 + z2 = 1 ∧ x + 2y + z < 1)

Example 9. (collision: Collision Problem [11])

∃t∃x∃y( (15/16)t ≥ 6 ∧ (15/16)t ≤ 10
∧ x − (15/16)t ≥ −1 ∧ x − (15/16)/t ≤ 1
∧ y − (15/16)t ≥ −9 ∧ y − (15/16)/t ≤ −7
∧ (x − t)2 + y2 ≤ 1

Example 10. (consistency: Consistency in Strict Inequalities [11])

∃x∃y∃z (x2 + y2 + z2 < 1 ∧ x2 + (y + z − 2)2 < 1)

Example 11. (termination: Termination of Term Rewrite System [11])

∃r∀x∀y (x > r ∧ y > r ⇒ x2(1 + 2y)2 > y2(1 + 2x2))

Example 12. (candj: Collins and Johnson 1989b [11, 24])

∃r (0 < r < 1 ∧ b > 0 ∧ a ≥ 1/2 ∧
3a2r + 3b2r − 2ar − a2 − b2 < 0
3a2r + 3b2r − 4ar + r − 2a2 − 2b2 + 2a > 0

Example 13. (dandh: Davenport and Heintz [11])

∃c∀b∀a ((a = d ∧ b = c) ∨ (a = c ∧ b = 1) ⇒ a2 = b)



Example 14. (xaxis: The x-axis ellipse problem [6])

∀x∀y (0 < a ≤ 1 ∧ 0 < b ≤ 1 ∧
0 ≤ c < 1 − a ∧ (c − a < x < c + a ∧
(b2(x − c)2 + a2y2 − a2b2 = 0) ⇒ x2 + y2 ≥ 1))

Example 15. (ono: Ono’s inequality [33])

∀a∀b∀c ((t1 ≥ 0 ∧ t2 ≥ 0 ∧ 3t ≥ 0) ⇒ (n ≥ 0)),

where

s = (a + b + c)/2

k = s(s − a)(s − b)(s − c)

t1 = a2 + b2 − c2

t2 = b2 + c2 − a2

t3 = c2 + a2 − b2

n = (16k)3 − 27t21t
2
2t

2
3.

6. DISCUSSION AND CONCLUDING REMARKS
In this paper we reported our implementation for effective symbolic-numeric CAD and QE based on SNCAD on real

computer which have been evaluated the practicality and quality by computational experiments on several examples including
practical engineering problems.

Since CAD consists of some sub-procedures, the efficiencies of the subprocedures (with certified numerical computations)
influence the total efficiency. Moreover, the choice of strategy (i.e., combination of sub-procedures, switching between numerical
and symbolic computations) also affects the overall efficiency. From the experimental results, it can be confirmed that our
SNCAD and QE based on SNCAD have significant effects. In particular, our implementation is effective to relatively large
problems. This is because a lot of heavy symbolic computations can be avoided by using the following organically:

• switchover machinery of numerical and symbolic computations,

• combination of dynamic evaluation and interval computations, and

• reduction techniques of the number of necessary cells.

Of course, as to our SNCAD scheme, there is more room for improvement not only in lifting phase but also in solution
formula construction by elaborately exploiting numerical information. Moreover, it seems to be very promising to combine
SNCAD with the ideas of discriminant variety for solving large practical problems.
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