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TREE EXPRESSIONS AND THEIR PRODUCT 
            FORMULA

                  By 

Shuichi INOKUCHI* and Yasuo KAWAHARAt

                           Abstract 

  In this paper we propose tree expressions which represent transition diagrams of 

finite transition systems by algebraic formulas. We consider the cartesian product 

of transition systems and present a product formula of tree expressions. By the 

product formula we easily get the tree expression of the product of transition 
systems represented by tree expressions.

Key Words and Phrases: tree expression, product formula, transition system

1. Introduction 

    Many artificial transition systems have been devised by engineers and scientists. 
They investigated transition systems and applied them to many fields. Generally tran
sition systems are represented by a pair (X, f) of a non empty set X and a transition 
function f on X. It is not easy to understand behaviors of a transition system (X, f). 
So in order to understand behaviors of the transition systems more easily we describe 
their transition diagrams by graphs showing their transition. If the number of X is small 
then we can easily describe the transition diagram. But if the number of X is large then 
we cannot describe it. 

    So we consider special transition systems such that they can be separated or are 
composed by several transition systems. If a transition system can be separated, then 
analysing small separated transition systems is a clue to understand global behaviors. 
Two transition systems have simple behavior but often their combination behave com
plexly. So we investigate a product of transition systems. 

    There are several studies on a cartesian product of transition systems. Kumamoto 
and Nohmi (in preparation) analysed behaviors of integral affine transition systems, and 
showed that the transition diagrams of integral affine transition systems are the cartesian 
product of a system whose nodes are all on a limit cycle and a system having a fixed 
point. Lee and Kawahara (1996) presented tree expressions and their product formula, 
and got the result that transition diagram of some cellular automata can be represented 
by the cartesian product of transition diagrams of cellular automata with smaller cells. 
But their tree expressions can represent only transition systems with a fixed point and 
their product formula is limited on transition systems such that they have a fixed point 
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and their height is less than 2. Namely their product formula can't apply to transition 
systems having a limit cycle of period length p and more than 3 height. 

    Cellular automata are the subjects investigated by many researchers and behaviors 
of cellular automata with some rules are shown. Kawahara (1991), Lee and Kawahara 
(1992), Kawahara et al. (1995) investigated 1-D and 2-D cellular automata with linear 
rules 60 and 90, and Inokuchi and Sato (2000) investigated behaviors of 1-D cellular 
automata with threshold rules and showed that the number of limit cycles and transient 
lengths. 
    In this paper we introduce new 'tree expressions' which represent transition dia

grams of all finite transition systems in algebraic formulas in order to investigate tran
sition diagrams of transition systems, especially cellular automata . And we investigate 
the cartesian product of finite transition systems, and present a product formula of tree 
expressions. The product formula presented in this paper can be applied to all finite 
transition systems.

2. Preliminaries 

    In the following sections we introduce tree expressions, which are special finite 
transition systems, and provide their product formulas. So in this section we define 
necessary notations and state properties of finite systems for after discussion. 

    A system (or transition system) (X, f) is a pair of a nonempty set X and a transition 
function f : X  --* X. A system (X, f) is finite if X is a finite set. A system (X, f) is 
connected if for every x, y E X there exist nonnegative integers m and n such that 
fn(x) = fn(y) A subsystem (S, f IS) of (X, f) is a system such that S C X and 
(f I S) (x) = f (x) E S for every x E S. (That is, the restriction f IS of f on S defines a 
function S —> S.) Usually a subsystem (S, f IS) of (X, f) is denoted by S for short . 

   A dynamorphism : (X, f) —* (Y, g) from a system (X, f) into another system 
(Y, g) is a function co : X -.4 Y such that gcp = cat . A dynamorphism cp : (X, f) --* (Y, g) 
is called an isomorphism of systems if there exists an inverse dynamorphism : (Y, g) —> (
X, 1) such that co' = idy and 1 = idx where idx and idy are identity functions on 

X and Y, respectively. It is trivial that isomorphic systems have isomorphic transition 
diagrams. 
    We first show that every finite system can be decomposed into a disjoint union of 
connected ones. 

PROPOSITION 2.1. Every finite system (X, f) is a disjoint union (coproduct) of 
connected subsystems. That is, X = X1 + • • • + Xk, where Xi is a connected subsystem 
for i=1,•••,k. 

   Let (X, f) be a system. For a nonnegative integer n n-th images fn (X) of f is 
a subset of X such that x E fn(X)  if and only if there exists z E X with x = f n (z) . 
Note that fn(X)  0 for each nonnegative integer n since X 0, and the following 
descending chain condition holds: 

X = f°(X) ? f(X) 2 ... 2 fn (X) 2 fn+1(X) J 

Now we define f°°(X) = n n>0 f n (X ). 
   LEMMA 2.2. Let (X, f) be a connected finite system. If x E f°°(X) and m = 

min{ k > 0; x = f k (x)} , then f' (X) = {x, 1(x),... , fm-1(x)} and If°° (X) I = m.
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   Let (X, f) be a connected finite system, x E  f°°(X) and If°° (X) = m. Then 
< x, f (x), • • • , 171+1(x) > is called a limit cycle of period length m of (X, f). In particular 
if m = 1 then < x > is called a fixed point. 

   Let (X, f) be a finite system. For an element x E X the height hx (x) of x from 
limit elements I°° (X) and the root r (x) below x are defined as follows: 

hx(x) = min{k > 0; fk(x) E f(X)} 

and 

r (x) = fhx (x) (x). 

Also the height H(X, f) of (X, f) is defined by 

H(X, f) = min{n > 0; f n (X) = f °° (X) }. 

And for an arbitrary element x E X we define f,7 1(x), X(x) and X* (x) by 

f* 1(x) = f -1(x)  f°° (X), 

X(x) = f* 1(x) + U X(u) 
uE f. 1(x) 

and 

X*(x) = {x} + X(x). 

Namely, X(x) is the set of all y E X such that y f °O (X) and x = f k (y) for some 
positive integer k, and X* (x) is the set of all z E X such that z f°°(X) and x = f h (z) 
for some nonnegative integer h. 

PROPOSITION 2.3. Let (X, f) be a connected system with a limit cycle < xo, • • • , xp_1 > 
of period length p. Then (X, f) is the disjoint union of X*(xi) for 0 < i < p — 1. That 
is, 

p-1 

                  X = U X*(xi) (disjoint union). 
i=0 

In particular, X = X* (x0) for any system X with a limit cycle (or fixed point) < xo > 
of period length 1.

3. Tree Expressions 

    In this section we define tree expressions which are special systems, and present a 
function which transforms transition systems into tree expressions. 

   Let N be the set of all positive integers, N* the set of all finite strings of positive 
integers including the empty string e, and N+ the set of all nonempty strings in N*. As 
in formal language theory we use two operations + (set union) and . (concatenation) on 
subsets of N*, that is, S1 + S2 = {w E N*; w E Si or w E S2} and S1 . 52 = {w1 • w2 e 
N*; w1 E S1 and w2 E S2}, where Si and S2 are subsets of N*. Define a function 
µ : N* N* by µ(e) = e and µ(w • k) = w for all w E N* and k E N. Then (N*, µ) is a 
connected infinite system with a unique fixed point E. We often write n for a singleton 
set {n}.
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   DEFINITION 3.1. A p-set (pretree set) is a finite subset of N+ defined as follows: 

  1. The empty set is a p-set, denoted by [0]. 

  2. If m is a positive integer and  E1, E2, • • , Em are p-sets, then 

mm 

[m + EEi]  _ {1,2,• • • ,m} + U i • Ei (disjoint union) 
i=1i=1 

     is a p-set. 

A p-set means the information of inputs of a node which is not on a limit cycle. For 

example, 

                [3 + [0] + [0] + [0]] _ {1, 2, 3} 

[3 + [2 + [0] + [0]] + [0] + [0]] _ {1, 2, 3} + 1 • [2 + [0] + [0]] + 2 • [0] + 3 • [0] 
{1,2,31+1.11,2} 

_ {1, 2, 3,1 • 1,1 •2},

so they represent Figure 1 and 2.

Figure 1: [3 + [0] + [0] + [0]]

Figure 2: [3 + [2 + [0] + [0]] + [0] + [0]]

 DEFINITION 3.2. A t-set (tree set) is a subset of N* recursively defined as follows: 

1. The singleton set {€} is a t-set, denoted by [1]*.
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  2. If m is a positive integer not less than 2 and  E1, E2, • • • , Em_i are p-sets, then 

m-1m-1 

[m + E Ei]* _ {e} + [(m — 1) + E Ei] 
i=1i=1 

     is a t-set. 

A t-set means the information of inputs of a node which is on a limit cycle. For example, 

[4 + [2 + [0] + [0]] + [0] + [0]]* = {e} + [3 + [2 + [0] + [0]] + [0] + [0]] 
= {E, 1,2,3,1. 1,1 . 2}, 

so it represents Figure 3.

Figure 3: [4 + [2 + [0] + [0]] + [0] + [0]]*

DEFINITION 3.3. Let To, T1i • • , Tp_1 be t-sets. Then a tree expression 

p-1 
<To,T11••• Tp-1>= Ui•Ti 

i=o

is a subsystem of (Z(p)N*, µp), where 

  • µp(i) = i + 1 (mod p), and 

  • µp(iw) = i • µ(w) 

for iEZ(p) and WET±. 

For example, 

< [3 + [0] + [2 + [0] + [0]]]*, [4 + [3 + [0] + [0] + [0]] + [0] + [2 + [0] + [0]]]* > 
  = 0•[3+[0]+[2+[0]+[O]]]*+1•[4+[3+[0]+[0]+[0]]+[0]+[2+[0]+[O]]]* 

   = 0•{e,1,2,2.1,2.2}+1•{e,1,2,3,1.1,1.2,1.3,3.1,3.2} 
= {0,0.1,0.2,0.2.1,0.2.2, 

1,1•1,1•2,1.3,1•1•1,1•1.2,1•1.3,1•3•1,1•3.2},
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Figure 4: < [3 + [0] + [2 + [0] + [0]]]*, [4 + [3 + [0] + [0] + [0]] + [0] + [2 + [0] + [0]]]* >

so this tree expression represents Figure 4. 

   Let E be a t-set. Trivially tree expression < E > with a fixed point and t-set E 

are isomorphic. So we often write E for < E >. 

   The number of nodes of a system is larger and larger, and the redundancies of its 

tree expression increase. So in order to reduce the redundancies we introduce notations 

as follows; 

  • If Ej+1 = Ej+2 = • • • = Ej+n = [0], then a p-set [m + Ei] and a t-set 
[m+E 11 Ei],, are denoted by [m+ELI Ei+Em j+'n+1 Ei] and [m+ELI Ei+ 

    Em-1       i=j+n+1 Ei}* respectively. 

  • If Ej+1 = Ej+2 = • = Ej+n, then a p-set [m + ~m 1 Ei] and a t-set [m + 
Ei"_11 Ei]. are denoted by [m + ~z Ei + nEj+1 + Em j+n+1 Ei] and [m + 

    Ei-1 Ei + nEj+1 + Ez"i—+n+1                         1Ei]. respectively. 

          j 

   Two tree expressions < [2 + [2]], [3], [4 + [2]]. > and < [2 + [2}], [4 + [2]], [31. > 
represent Figure 5 and 6, and are not isomorphic trivially. 
Generally a tree expression < Eo, E1, • . • , Ep_1 > is not isomorphic to 
< E,.(o), ET(1), • • • , ET~i_1~ >, where 7 is a permutation, except for some cases, for 
example < EE_1 i Eo, E1, • , Ep_2 > and so on. 

DEFINITION 3.4. An equivalence relation N on the set of all p-sets is defined as 
follows; 

  1. [0] ti [0], 

  2. [m + ~i' Ei] ti [n + Ej 1 F3] if m = n and there is a permutation 'r on the set 
{1, 2, • • • , m} such that Ei F7.(i) for each i = 1, 2, • , m.
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Figure 5: < [2 +  [2]]  *, [3], [4 + [2]]. >

Figure 6: < [2 + [2]] *, [4 + [2]], [3]. >

   DEFINITION 3.5. Define T+ = T n N+ for a t-set T. Note that T+ = [(m — 1) + 
Ei''11 Ei] (a p-set) when T = [m + Em 11 Ed.. Two t-sets T and Ti are equivalent if 
two p-sets T+ and T'+ are equivalent. 

   PROPOSITION 3.6. Let E be a p-set and T a t-set. Then the following hold; 

1. If w E E and Iwi>1, then p(w)EE.
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  2. For two equivalent p-sets E and F there is a bijection f : E  —* F such that 
If(w)1 = I wl for all w E E and ,a(f (w)) = f (p(w)) for all w E E with 1w1 > 1. 

 3. If w E T, then p(w) E T (that is, T is a finite subsystem of (N*, µ)), 

4. Two equivalent t-sets are isomorphic as systems. (That is, T ' T' implies T ̂ _ T'.) 

    PROOF. 1. Let E = [m+Ei'_'1 Ei] (m > 0) be a p-set and w E E with lwl > 1. 
    Then w = iw' for some integer i such that 1 < i < m and w' E Ei. If Iw'l = 1, 
    then it(w) = i E {1, 2, • • , m} C E. If Iw'I > 1, then p(w') E Ei by the induction 

    hypothesis. So bc(w) = ip(w') E iEi C E. 

  2. Let E =  Ei] and F = [m + p=1 Fi] (m > 0) be equivalent p-sets and 
    T a permutation such that Ei = FT(i). Assume that fi : Ei — F,-(i) is a bijection 

    (i = 1, • • • ,m) such that µ(fi(wi)) = fi(µ(wi)) for all wi E Ei such that I wiI > 1. 
   Define f : E —> F as follows: f (e) = e, f (i) = T(i) and f (iwi) = T(i) fi(wi) for 

    i = 1, • • • , m and wi E Ei. Finally it is easy to check that f : E —> F is a desired 
    bijection. 

  3. It is trivial from 1. 

  4. It immediately follows from 2. 

    By tree expressions defined above we can represent the transition diagrams of ar
bitrary finite systems. We define a transformation function -y to get tree expressions of 
finite systems as follows; 

   DEFINITION 3.7. Let (X, f) be a connected finite system with a limit cycle 
< xo, • . , xp_ 1 > of period length p. Then a transformation function -y is defined as 
follows; 

7(X) =<'Y(X*(xo)),y(X*(xi)),...,'Y(X*(xp-1)) >, 

y(X*(x)) = [If,T1 (x)I  + 1 + > y(X (u))]* 
uEf* 1(x) 

and 
'y(X(u)) = [I.f* 1(u)i +> y(X(u`))]• 

u'Ef-1(u) 

And we show that the transformation function y defined above is an isomorphism, that 
is, (7(X), Pp) ~' (X, f)• 

   THEOREM 3.8. Let (X, f) be a connected finite system with a limit cycle of period 
length p. Then the system (y(X), µp) is isomorphic to (X, f), that is, (y(X), jig) 
(X, .f)• 

    PROOF. Let (X, f) be a connected finite system with a limit cycle 
< xo, x1, • • • , xp-1 > of period length p.
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1. In the case that H(X, f) = 0, that is, (X, f) is a system such that X =  {xo,  x1,  • • , xp—i } 
  and f (xi) = xi+1( mod p) . Then we have 

X* (xi) = {xi} + f k 1(xi) + U X (u) 
uEf. 1(xi) 

                     = {xi} 

  for any i ( 0 > i > p — 1 ). We have 

-y(X) = <'Y(X*(xo)),ry(X*(xi)), • • •,ry(X*(xp-i)),> 
                 = < [1J*, [11*, • • • , [1]* > 

P-1 

              = Ui•[1J* 
i=o 

                     = {0,1,•••,p-1} 

  Therefore we have (X, f) ^' (ry(X ), µp). 

2. In the case that H(X, f) = 1. 
  Then X*(xi) = {xi} + f;,-1 (xi). So we have 

'Y(X) = <'Y(X*(xo)),'Y(X*(xi)),•..,'Y(X*(xp-1)) > 
p—i 

                = U i •'Y(X*(xi) 
i=o 

p-1 

               = U 2 • [If* 1(xi)1 + 1+ 1 f* 1(xi)I[0J]* 
i=0 

p-1 p-1 

            = U i+ U i•[If*1(xi) I+ I f;-1 (Xi) I [0] J 
i=o i=o 

  From (1) we have 

(f°° (X ), f l.f °° (X)) (10,1, • . , p — 1}, µp 1 {O,1, . • .49   — 1}). 

  Now we show 

(.f* 1(xi), f I.f* 1(xi)) 
         (i • [I f,« 1(xi)1 + If* 1(xi)I[Pi],µpli • [If* 1(xi)I + I.f* 1(xi)I[OJJ) 

  for any i (0 > i > p — 1) . It is clear that              

If* 1(xi)I = li' [If* 1(xi)I + If*1(xi)I[OJJ1• 

f I f* 1(xi) (x) is undefined for any x E f k 1(xi) and µp l i • [I f,; 1(xi) I + I f * 1(xi) I [0]] (y) 
  is undefined for any y E i . [I L71 (Xi)  l + I f k 1(xi) I [01] • Thus we have 

(f* 1(xi), f I.f* 1(xi)) 
(i' [If* 1(xi)I + If* 1(xi)I[0J],i Ii • [If* 1(xi)1 + If* 1(xi)I[o]])•
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  Now we let k and  hi be an isomorphism from r(X) to {0,1, • • ,p — 1} and 
 from f:1 (Xi) to i [I f* 1(xi)I + I f,;71 (Xi) I [0]], respectively. We define the function 

  h : X --> -y(X) as follows; 

                    k(x)if x Ef °°(X) 
                 _ h(x)k( xi).hi(x) if xEf471(xi) 

  We show that the function h is an isomorphism. First we assume that x E f°°(X). 
  Then we have 

h f (x) = h(f (x)) 
                       = k(f(x)) 

                        = pp(k(x)) 
                         = µp(h(x)) 
                              = p.ph(x) 

  Next we assume that x E f* 1(xi). Then we have 

hf (x) h(xi) 
                          = k(xi) 
                        = µp(k(xi)hi(x)) 
                         = i h(x) 

  Thus the function h is an isomorphism. So we have (X, f) ^_' (-y(X ), µp). 

3. In the case that H(X, f) > 2. 
 First we show that the system (X (x), f IX (x)) is isomorphic to 

(-y(X (x)), µ17(X(x))) for any x E X — f (f °°(X)) by induction. Let x be in 
 X — f-1(f °O(X)). 

  (a) Assume that f-1(x) = 0. 
     Then we have X (x) = 0 and -y(X (x)) = [0] = 0. So 

(X (x), f IX (x)) (-y(X (x)),,iI'Y(X (x))) 

  (b) Assume that f-1(x) # 0 and f-2(x) = f -1(f -1(x)) = 0. 
     Then X (x) = f;-1(x)  + Uuc f* 1 (x) X ('u) and f IX (x) (y) is undefined for any 

     y E X (x). And we have 
'Y(X(x)) = [If* 1(x)I + If* 1(x)I[0]] 

                           = {0,1, ..., 1f* 1(x)I — 1} 

     and ,u1 y(X (x)) (z) is undefined for any z E 7(X (x)). So 

(X (x), f IX (x)) ti (-y(X (x)), ,u rr(X (x)))
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(c)  Assume  that (X (y), fIX(y)) "' ('y(X(y)),µl'y(X(y))) foranyy E Xf1(f°°(X)) 
  such that f* n+l (y) = 0 and f1(x) 0 and f(x) = 0. 

  Then 
X (x) = f* 1(x) + U X (u) 

uE f, 1(x) 

   and 

7(X (x)) _ [if ,: 1(x) I + E 'Y(X (u))}. 
uE f. 1 (x) 

   By the induction hypothesis we have 

(X (u), f IX (u)) " '(-y(X (u)), µl -y(X (u))) 

  for any u E f' (x). Now we let the function hu : X (u) —* -y(X (u)) be an 
   isomorphism, and define the function h : X(x) —* -y(X(x)) as follows; 

        h(y) =s(y) if y E f* 1(x) 1                s(u) . hu(y) if ye X (u) and u E f*(x) 

   where s : f* 1(x) —* N is a set function. It is an isomorphism. Thus This 
   derive 

(X (x), f IX (x)) "' (-y(X (x)), /1l-y(X(x))) 
  for any x E X  f* 1(f°°(X)). 

  From (2) 

(f1(f°°(X)),flf-1(f°°(X))) 
              ~' ('y(f1(f°°(X))),, h'(f1(f°°(X)))), 

   and so we let k be an isomorphism. We define the function g : X -* -y(X) as 
   follows; 

             k(x) if x E f1(f°°(X)) 
       g(x) = 1 k(u) • ku (x) if x E X (u) and u E f -1(f °O (X)) 

   where ku : X (u) —* 'y(X (u)) is isomorphism for u E f —1(f °° (X)). Then the 
   function g is an isomorphism.

4. Products of Systems and Product Formula 

   In this section we discuss the product of connected finite systems, and present a 

product formula of tree expressions. 
   Let X = (X, f) and Y = (Y, g) be two systems. The (cartesian) product X x Y of 

X and Y is a system 
                         (X xY,f xg), 

where (f x g)(x, y) = (f (x), g(y)) for x E X and y E Y. 
   Kumamoto and Nohmi (in preparation) analysed the transition diagram of inte

gral affine transition systems and decided the transition diagram of any integral affine
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transition systems with the cartesian product. And they presented the product formula 
of transition diagrams of integral affine transition systems. 

    From now we discuss the cartesian product of connected finite systems and present 
a product formula of tree expressions. 

    Let X = (X, f) and Y = (Y, g) be two systems, and < x0, • • , xp_1 > and < 
yo, • , yq_1 > be two limit cycles of X and Y with period length p and q, respectively. 
Then X x Y have gcd(p, q) limit cycles of period length lcm(p, q), where gcd(p, q) and 
lcm(p, q) are the greatest common divisor and the least common multiple of p and q, 
respectively. Limit cycles of X x Y can be known if limit cycles of X and Y are known. So 
applying of transformation function -y to X x Y we have its isomorphic tree expression. 

   Note that 

   (f x 9)* 1(xi, yj) = f* 1(xi) x 9* 1(yj) + f* 1(xi) x {yj-1}) + {xi-1} x 9* 1(y~)• 

Then we have 

           (7((X x Y)*(xi, yj)) =[I(f x 9)1(xi.,yj)I +7((X x Y)(u,v))]* 
(u,v)E(f xg). 1(xt,yi) 

= [If1(xi)1191(yj)I +X (u) ®Y(v) 

(u,v) E.f. 1(x:) x g. 1 (yi) 

+ E x(u) ®Y(y _1) + > X (xi-1) ®Y(v)]*, 
uef. 1(x )vEg. l(yi) 

where X (u) 0 Y(v) = 7((X x Y) (u, v)). 
   For all (u, v) E f(x) x g* 1(y) 

X(u) ®Y(v) _ [if-1 (u) 119-1(v) I + X (u') ®Y(v')}. 
(u',v') Ef -1(u) x g-1(v) 

For all u E f k1(x) we have 

          (f x 9) 1(u,yj-1) = f-1(u) x 9* 1(yy-1) + f-1(u) x {yj-2}, 

so 

X(u) 0 Y(yi-1) 

= [If1(u)1191(y, -1)I + X(u') ® Y(v')] 
(u',v')E(f xg). 1(u,yi-1) 

[If(u)119(y,-1)I + X(u,) ®Y(v') 
(u',v')Ef.1 (u) xg. 1 (y.i-1) 

+ > X(u,) ® Y(y3-2)]• 
u'Ef -1(u)
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   Similarly, for all v e  g(y) we have 

X (xi-1) ® Y(v) 

[If(xi1)~I9(v)~ +X(ui) 0 Y(v') 
(u',v')Ef, 1(xi_i)xg-1(v) 

           + E X (x. _2) ® Y(v')]• 
v'Eg-1(v) 

From above discussion and the transformation function ry the following formula can 

be found out. 

    THEOREM 4.1 PRODUCT FORMULA. Let E =< Ep, E1, • • • , Ep_i > and D =< 

Do, D1, • • . , Dq_i > be two tree expressions with limit cycles < 0, 1, • • • ,p — 1 > and 

< 0,1, •  • , q — 1 > respectively where Ei = [mi + Ei + • • • + Ertl* and Di = [nj + 
Di + • • • D~i —1 ]* •Then a subtree (E x D) (i, j) of the cartesian product E x D such that 
its root is (i, j) is shown recursively as follows: 

     (E x D)(i, j) 
       mi1'nj-1mi-1nj-1 

= [mini + EEk®D~+ E Ek ®Dj-1 mod q Ei-1 mod p Dii ]* 
k=1 h=1k=1h=1 

where 

 mnm n 

[m+ Gil ®[n+EFj] = [mn+EEGi ®Fj], 
i=1 j=1i=1 j=1 

mm nj-1m 

[m+ Fi]®Di = [mnj+E E Fk®D + Fk®Dj_l mod q], 
i=1k=1 h=1k=1 

mi-1 n 

Ei®[n+>Fj] = [min+ E Fh+>Eil mod p®Fh}• 
j=1k=1 h=1h=1 

    COROLLARY 4.2. For the product of tree expressions with a fixed point the following 

formula is acquired; 

m-1n-1 

<[m+E Ed* > x <[n+>Fj]*> 
i=1j=1 

m-1 n-1m-1n-1n-1 m-1 

 = <[mn+EEEi®Fj+EEi®[n+EFj]*+~[m+E Ed* ®Fj]*> 
i=1 j=1i=1j=1j=1 1=1 

where 

mnm n 

[m+ Ei] ®[n+EFj] = [mn+EEEi ®Fj], 
i=1j=1i=1 j=1
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mn-1mn-1 m n-1 

[m+EEi]®[n+EFj]* = [mn+>Ej®[n+ F3]*+EEEi®Fj], 
  i=1j=1i=1j=1i=1 j=1 

m-1nnm-1m-1 n 

[m+ Ei]* ® [fl +>Fj] _ [mn+E[m+ E Ed. ®Fj + E EEi ®Fj]• 
  i=1j=1j=1i=1i=1 j=1 

   Now we give two examples of the product of tree expressions. 
   First we consider the product of simple tree expressions < [2 + [1 + [1 + [1]]]]* > 

and < [2 + [1 + [1]]]* > with a fixed point. The product of these are calculated by using 
the product formula (Corollary 4.2) and represented by the following tree expression.

  < [2 + [1 + [1 + [1]]]]* > x < [2 + [1 + [1]]]* > 
_ < [4 + [1 + [1 + [1]]] ®[1 + [1]] + [1 + [1 + [1]]] ®[2 + [1 + [1]]]* 

+[2 + [1 + [1 + [1]]]]* ® [1 + [1]]]* > 
= < [4 + [1 + [1 + [1]] ®[1]] + [2 + [1 + [1]] ®[2 + [1 + [1]]]* + [1 + [1]] ®[1 + [1]]] 

  +[2 + [2 + [1 + [1 + [1]]]]* ® [1] + [1 + [1 + [1]]] ® [1]]]* > 
_ < [4+[1+[1]]+[2+[2+[1]®[2+[1+[1]]]*+[1]®[1+[1]]]+[1+[1]]] 

  +[2 + [2] + [1]]]. > 
= <[4+[1+[1]]+[2+[2+[2]+[1]]+[1+[1]]]+[2+[2]+[1]]]*>

The product of these systems is illustrated as Figure 7.

Figure 7: < [2 + [1 + [1 + [1]]]]* > x < [2 + [1 + [1]]]* >

   Secondly we consider the product of Figure 4 and 5. Let E =< [3 + [2]]*, [4 + 
[2] + [3]]* > (Figure 4) and F =< [2 + [2]]*, [3]*, [4 + [2]]* > (Figure 5). Since the limit 
cycles of E and F are < 0,1 > and < 0, 1, 2 >, that of the product of E and F is
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<  (0,  0),  (1,1),  (0,  2),  (1,  0),  (0,1),  (1,  2) >. So the product of E and F are represented 
by 

< (E x F)(0, 0), (E x F)(1,1), (E x F)(0, 2), (E x F)(1, 0), (E x F)(0,1), (E x F)(1, 2) > 

and each subtrees of E x F are calculated as follows; 

(E x F)(0, 0) = [6 + [2] ® [2] + [2] ® [4 + [2]]* + [4 + [2] + [3]]* ® [2]]* 
         = [6 + [4] + 2[8]]* 

                   (E x F)(0,1) = [9 + [2] ® [0] + [2] ® [2 + [2]]* + [4 + [2] + [3]]* ® [0]]* 
         = [9 + [4]]* 

(E x F)(0, 2) = [12 + [2] ®[2] + [2] ®[3]* + [4 + [2] + [3]]* ®[2]]* 
         = [12 + [4] + [6] + [8]]* 

(E x F)(1,0) = [8 + [2] ®[2] + [2] ®[3] + [2] ®[4 + [2]]. + [3] ®[4 + [2]]* +[3+[2]]®[2]] * 
         = [8 + [4] + 2[6] + [8] + [12]]* 

(E x F)(1,1) = [12 + [2] ®[2 + [2]]* + [3] ®[2 + [2]]*]* 
         = [12 + [4] + [6]]* 

(E x F)(1, 2) = [16 + [2] ®[2] + [3] ®[2] + [2] ®[3]* + [3] ®[3]* + [3 + [2]]* ®[2]]* 
         = [ 16 + [4] + 3[6] + [9]]*

So the transition diagram of an isomorphic system of the product of Figure 4 and 5 is 
illustrated as Figure 8.
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5. Conclusion 

   In this paper we introduced tree expressions which can represent transition dia

grams of finite systems, and presented their explicit product formula. Tree expressions 
can represent transition diagrams of all finite systems, and make us be able to deal with 

transition diagram of finite systems by algebraic methods. And our product formula is 

useful for analysis and applications of finite systems which can be separated or is the 

product of finite systems. 
    But there exist several weak points. First, tree expressions have redundancy. The 

larger the number of nodes of a system is, the longer the length of its tree expression. 

Second, tree expressions are not unique. It is easy to introduce uniqueness of tree 
expressions by lexicographical order. But the tree expression of the product of normal 

tree expressions to be got by applying product formula is not always normal, where a 

tree expression is normal if t-sets in it are in order. 

   Future works are to overcome these weak points and to apply it to the analysis of 

cellular automata.
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